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microRNAs (miRNAs) regulate gene expression by modulating the translation of

protein-coding RNAs. Their aberrant expression is involved in various human diseases,

including cancer. Here, we summarize the experimental pieces of evidence that proved

how dysregulatedmiRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation

irrespective of their oncogenic mutations. These findings revealed relevant pathogenic

mechanisms as well as mechanisms of resistance to target therapies. Based on this

knowledge, potential approaches for the control of RAS oncogenic activation can

be envisioned.
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INTRODUCTION

microRNAs (miRNAs) are small (19–24 nucleotides) non-coding RNAs discovered in 1993
in studies related to embryonic development of C. elegans (1, 2). Their importance significantly
increased following the discovery of their existence in all eukaryotic organisms (3). Currently, 2,654
mature miRNAs, originating from 1917 precursors, are described in humans (http://www.mirbase.
org/) (4, 5). Their main function is to negatively regulate gene expression at the post-transcriptional
level through the interaction of their “seed” portion by sequence homology typically with the
3′ non-coding regions of messenger RNAs (mRNAs). Through this interaction, miRNAs limit
translation, or promote degradation of target mRNAs (6, 7).

The modulation of target mRNAs by miRNAs is complex, considering that each mRNA
is generally targeted by multiple miRNAs, and the strength of this interaction is variable (8).
Classically, it has been thought that each miRNA can interact with hundreds of target mRNAs.
However, recent reports have highlighted RNA transcripts inducing degradation of respective
interacting miRNAs through a mechanism known as “target-directed miRNA degradation”
(TDMD) (9, 10). Added to the complexity of these direct interactions is the fact that some long
non-coding RNA (lncRNA) could function as “sponges,” that act as a buffer and prevent the action
of miRNAs on target protein-coding mRNAs (11, 12). Lastly, it is also important to consider that
cell co-localization of eachmiRNAwith the target mRNAs is necessary and depends on the eventual
tissue-specific expression of each of the interacting RNAs.

Thus, miRNAs, taken together, represent an essential phase in the regulation of gene
expression by modulating the translation of the entire transcriptome (13, 14). Given
their biological importance, their deregulation plays a significant role in pathogenic
mechanisms, including the neoplastic transformation (15, 16). The first evidence
associating miRNAs with human malignant diseases was the discovery of miR-15 and
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miR-16 in the minimal region of deletion at chromosome
13q14 in chronic lymphatic leukemia (17). Since this seminal
study, a myriad of other studies has confirmed the role
of miRNAs in tumorigenesis and other human diseases
as well.

miRNAs AS DIRECT REGULATORS OF RAS

The first functional evidence to establish a molecular link
between the deregulation of miRNAs with an explicit oncogenic
pathway was published in 2005 when Slack and collaborators
reported the importance of the downregulation of members
of the let-7 miRNA family with the activation of oncogenes
of the RAS family (18). The study demonstrated that the 3′

UTRs of KRAS, NRAS and HRAS mRNAs comprised multiple
complementary let-7a binding sites. The enforced expression of
let-7 could indeed reduce RAS protein levels (18). Conversely, let-
7 downregulation could lead to the loss of its post-transcriptional
control, causing RAS over-expression and activation. This
study was decisive in proving that aberrant expression of
miRNAs could play an important role in tumor initiation
and progression, and paved the way for studies that extended
miRNA involvement to all phases of neoplastic initiation and
progression (19).

The involvement of RAS (KRAS, NRAS, HRAS) in human
tumors is mainly associated with the presence of activating
mutations at codons 12, 13 and 61, able to activate various
molecular pathways, which play a key role in a large
number of tumor traits, spanning from cell proliferation, cell
survival, cytoskeleton organization, motility, and more (20). The
demonstration of the role of miRNAs in the abnormal regulation
of RAS thus represented another important mechanism involved
in key steps of tumorigenesis.

Since then, quite a few other reports have demonstrated the
modulation of RAS by miRNAs. In many cases, the interaction
was only predicted by computer algorithms, but several studies
have experimentally validated these interactions. Table 1 lists the
microRNAs for which the ability to modulate the expression of
KRAS, NRAS, or HRAS has been experimentally confirmed.

As mentioned, let-7 was the first, and probably the most
important miRNA implicated in the regulation of genes of the
RAS family (18). In the human genome, 12 loci are known
to encode for members of the let-7 family: let-7a-1, -2, -3;
let-7b; let-7c; let-7d; let-7e; let-7f-1, -2; let-7g; let-7i; miR-98.
While it is described that members of the let-7 family are up-
regulated in the course of cell differentiation, numerous studies
have reported the reduction of let-7 expression in different tumor
types (21, 22). Already in 2004, Takamizawa et al. demonstrated
the downregulation of let-7 in non-small cell lung carcinoma
(NSCLC) (23, 24) and documented its prognostic significance.
Furthermore, in line with these observations, they proved that
enforced expression of let-7 miRNA could inhibit in vitro cell
growth of the lung adenocarcinoma A549 cells (23, 25–27). These
studies were further confirmed in murine in vivo models of
NSCLC (28, 29) and revealed that let-7 mimics could represent
potential therapeutic molecules.

TABLE 1 | Human microRNAs targeting RAS family members.

miRNA HRAS KRAS NRAS

hsa-let-7a-5p 1 1 1

hsa-let-7b-5p 1 1 1

hsa-let-7c-5p 1 1

hsa-let-7g-5p 1

hsa-miR-1-3p 1

hsa-miR-16-5p 1

hsa-miR-18a-3p 1

hsa-miR-20a-5p 1

hsa-miR-26a-5p 1

hsa-miR-27a-3p 1 1

hsa-miR-96-5p 1

hsa-miR-98-3p 1

hsa-miR-98-5p 1

hsa-miR-124-3p

hsa-miR-126-3p 1

hsa-miR-134-5p 1

hsa-miR-139-5p 1

hsa-miR-143-3p 1 1

hsa-miR-145-5p 1

hsa-miR-148b-3p 1

hsa-miR-152-3p 1

hsa-miR-155-5p 1

hsa-miR-181a-5p 1 1 1

hsa-miR-181c-5p 1

hsa-miR-181d-5p 1

hsa-miR-193a-3p 1

hsa-miR-193b-3p 1

hsa-miR-199a-5p 1

hsa-miR-200c-3p 1

hsa-miR-206 1

hsa-miR-214-3p 1

hsa-miR-216b-5p 1

hsa-miR-217 1

hsa-miR-224-5p 1

hsa-miR-340-5p 1

hsa-miR-365a-3p 1

hsa-miR-384 1

hsa-miR-433-3p 1

hsa-miR-452-5p 1

hsa-miR-487b-3p 1

hsa-miR-543 1 1

hsa-miR-613 1

hsa-miR-622 1

hsa-miR-663a 1

hsa-miR-4689 1

Data from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw).

Given the proven interaction of let-7 withmembers of the RAS
family, it is plausible that the observed effects were due to the
modulation of RAS. However, let-7 can also regulate additional
important oncogenes such as c-MYC, high-mobility group A
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(HMGA), Janus protein tyrosine kinase (JAK), signal transducer
and activator of transcription 3 (STAT3) (30). Its action as a
tumor suppressor gene is therefore achieved through the ability
to interact with multiple oncogenes and inhibit the activation of
their molecular pathways (18, 28).

Essentially all types of human cancer present a general down-
regulation of let-7 (21). Among others, the modulation of RAS
by let-7 was demonstrated in colorectal cancer (CRC) where let-7
is strongly down-regulated in tumor tissues compared to adjacent
healthy tissues. Similar to the study onNSCLC cells, let-7 was also
shown to act as a growth suppressor in human CRC cells (31).

Confirming the importance of RAS regulation by let-7, the
discovery of the LCS6 polymorphism (Let-7 Complementary
Sites 6, rs61764370) in the KRAS 3′ UTR region further
demonstrated let-7 expression altering interaction. This
polymorphism has been associated with a greater risk of
developing tumors and worse prognosis in lung, oral, and
colorectal cancer (32–34).

An understanding of a mechanism leading to let-7 down-
regulation in cancer came from studies on LIN28 in mammals.
Lin28 and Lin28b act as RNA binding proteins that are able
to associate with the terminal loop of the precursors of let-7
family miRNAs and block their processing into mature miRNAs
(35–38). Since LIN28 is over-expressed in human cancer, this
mechanism causes let-7 down-regulation, which establishes a
connection with RAS and other cancer-associated signalings.

Let-7 is not the only miRNA involved in the regulation of RAS
(HRAS, KRAS, or NRAS) (39). Among the miRNAs involved in
the regulation of members of the RAS family, miR-143 and miR-
145, co-expressed in the same primary transcript, can target both
KRAS and NRAS, and have been found to be down-regulated
in numerous human tumors (40–42). Already in 2003 Michael
et al. documented a significant reduction of miR-145 in CRC
compared to normal mucosa (43) and in 2014, Pagliuca et al.
confirmed that the miR-143/miR-145 cluster, highly expressed
in normal colon, was significantly decreased in CRC (44). Their
reduced expression has been correlated with p53 mutations
capable of reducing thematuration process of thesemiRNAs (45).

Very similar to let-7, members of the miR-181 family
were shown to target all the RAS family members (HRAS,
KRAS, and NRAS). They were found downregulated
in different types of cancer, such as oral squamous cell
carcinoma (46, 47), gastric cancer (48), and gliomas (49).
These findings suggest that miR-181 down-regulation is one
of the mechanisms leading to oncogenic RAS activation in
these tumors.

It is notable that in spite of KRAS activation by gene mutation
in 90% of the cases in pancreatic cancer, various miRNAs capable
of directly targeting KRAS are simultaneously downregulated.
Specifically, miR-96, miR-126, and miR-217 (50–53). Since the
reduced expression of these miRNAs correlates with higher
KRAS expression, these alterations likely represent a mechanism
for strengthening the already activated RAS signaling.

Another noteworthy miRNA capable of targeting KRAS is
miR-134. It was found downregulated in glioblastoma and renal
cell carcinoma (54, 55). miR-134 downregulation correlated
with the activation of the MAPK pathway and its enforced

expression in renal cancer cells could inhibit in vitro migration
and invasive traits.

Oncogenic mutations resulting in RAS activation are
prevalent in most human tumors, but there are exceptions. RAS
mutations in HCC are rare events but paradoxical wild-type RAS
activation is common (56). Dietrich et al. (57) discovered that
wild-type KRAS expression was increased in HCC compared
to non-tumor liver and revealed an inverse correlation with
miR-622 expression.

In addition to the above-mentioned examples, several other
miRNAs were proven to target and inhibit the expression
of RAS oncoproteins (Table 1). These miRNAs are generally
downregulated in tumors, thus concurring with reciprocal
overexpression and activation of RAS, irrespective of activating
gene mutations.

miRNAs AS RAS EFFECTORS

The interplay between miRNAs and RAS is not only represented
by miRNAs acting as negative modulators of RAS but also
includes downstream miRNA effectors. The most significant is
undoubtedly miR-21, which is up-regulated by KRAS oncogenic
mutants in non-small-cell lung cancer (58), laryngeal squamous
cell carcinoma (59), and pancreatic adenocarcinoma (60) as well
as many other human cancers. miR-21 is a known oncomiR
capable of blocking the expression of tumor suppressor genes
antagonists of the PI3K-AKT pathway, such as PTEN, or of
the RAS-MAPK pathway, such as PDCD4 or RASA1 (61–63)
(Figure 1).

miRNAs AS REGULATORS OF RECEPTOR
TYROSINE KINASES (RTKS)

RAS is a crucial node that connects receptor tyrosine kinases
(RTKs) with downstreammolecular pathways (Figure 1). Hence,
miRNAs can affect RAS activity by acting on RTKs as well as
MAPK, PI3K, or other pathways.

It is a well-known notion that RAS activation is physiologically
triggered by RTKs, a category of transmembrane receptors that
become activated in response to growth factors. Several miRNAs
are known to target RTK mRNAs and their dysregulation can
lead to inappropriate activation of the targeted RTK. Just to
mention a few examples, miR-7, miR-539 and miR-103-3p can
target and modulate the expression of the epidermal growth
factor receptor (EGFR) (64–66); miR-26a was shown to target
c-MET, the hepatocyte growth factor receptor (67); miR-199-3p
can target the vascular endothelial growth factor receptors 1 and
2 and the VEGFA ligand (68); miR-7 and miR-98 can target the
insulin growth factor receptor gene (64, 69).

All the above-mentioned miRNAs were found dysregulated
in a variety of human cancers. miR-539 is downregulated in
breast cancer (BC) tissues and cell lines. miR-539 enforced
expression could inhibit BC cells proliferation and tumor growth
in vitro and in vivo (65). miR-7 is downregulated in breast
and colorectal cancer (CRC) cells (64, 66) and its reduced
expression in BC patients correlated with higher stage, grade,
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FIGURE 1 | Interactions of miRNAs with RAS. (A) Scheme of the direct interactions of miRNAs with the 3′UTR of KRAS. Data were derived from TargetScan v7.2

(http://www.targetscan.org) and from Johnson et al. (18), Chen et al. (40), Jiao et al. (53), Liu et al. (55), and Dietrich et al. (57). (B) A simplified scheme of the interplay

between miRNAs and RAS pathways. It shows that several miRNAs negatively regulate the MAPK and PI3K RAS-linked pathways at different points. Conversely,

miR-21, which is transcriptionally induced by the transcription factor ELK1, inhibits the MAPK and PI3K suppressors GAPs and PTEN, thereby further promoting RAS

activation. miRNAs indicated in green are downregulated in tumors, miRNAs indicated in red are upregulated.

and poor prognosis (64). The tumor suppressor activity of miR-
103-3p was confirmed by the anti-proliferative effects after its
enforced expression in lung cancer cell lines; furthermore, the
downregulation of miR-103a-3p in NSCLC was associated with
poor prognosis (66). miR-26a reduced levels were associated with

poor prognosis in Hepatocellular carcinoma (HCC) (67). MiR-
26a can also control the expression of VEGFA in HCC cells
and impairs VEGFR2-signaling thereby controlling angiogenesis.
miR-199-3p, another miRNA that can target VEGFR1, VEGFR2,
and the ligandVEGFA (68), is frequently down-regulated inHCC
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and it has been shown to have in vitro and in vivo anti-tumor
activity in HCC models (68, 70). MiR-98 is down-regulated in
retinoblastoma, where it also represents a prognosticmarker (69).

The above-reported miRNAs are just a few examples to
show how their deregulation can lead to RTKs overexpression
and consequently activation of RAS and its downstream
pathways. The latter are themselves regulated by miRNAs,
whose deregulation may directly cause the activation of RAS
downstream effectors independently from RAS triggering.

miRNAs AS REGULATORS OF MAPK
PATHWAY

The MAPK pathway is a well-studied pathway that promotes
cell proliferation and is controlled by RAS activation. It includes
several effectors with oncogenic function, widely studied in
different types of tumors and whose mutations also represent
tumorigenic mechanisms.

BRAF is probably the most studied element of the MAPK
pathway. BRAF activation has been associated with a missense
mutation V600E, commonly found in melanoma and thyroid
cancer, but also present at low frequency in several other types
of human cancer (71). As expected, various miRNAs can target
and regulate BRAF expression. KRAS targeting miR-143 and
miR-145, that we have mentioned above, can also target BRAF,
indicating a very important role of these miRNAs in regulating
the MAPK pathway at several levels (44). As mentioned earlier,
these miRNAs are frequently downregulated in various types of
cancer. miR-9-5p is another miRNA targeting BRAF, which was
shown to be down-regulated in papillary thyroid carcinoma (65).

Further downstream of MAPK pathway cascade,
MEK1/MEK2 (also called (MAP2K1 and MAP2K2) as well
as ERK1/ERK2, are also targets of miRNAs. miR-1826 can target
MEK1. It is down-regulated in bladder cancer and its reduced
expression is associated with more severe pathological traits (pT
and grade) (72). miR-101 can also target MEK1. This miRNA
exhibits reduced expression in diffuse large B cell lymphoma
(DLBCL) and it is associated with a worse prognosis (73).
miR-665 has been also shown to indirectly activate MEK in
BC cells by targeting the nuclear receptor subfamily 4 group A
member 3 (NR4A3) gene. This miRNA is upregulated in breast
cancer where its upregulation is associated with metastasis and
poor survival (74).

miRNAs THAT ACT ON MULTIPLE
TARGETS OF THE RAS PATHWAY

Among the several miRNAs that regulate elements of the
RAS-centered pathways, some miRNAs target multiple genes
belonging to the pathway thus reinforcing their role in
modulating MAPK pathway activation.

In this respect, miR-134 is a typical example, as its target
genes not only include KRAS (75), but also EGFR (76), HER2
(77), STAT5B (54), and PIK3CA (78), which are upstream
and downstream elements of the RAS-centered pathways.
This miRNA is downregulated in numerous types of human
cancers, where it affects cell proliferation, survival, invasiveness,

metastasis, and apoptosis [reviewed in (79)]. This miRNA
exemplifies the deregulatory action of single miRNA and
consequent wide effects on tumorigenic signals by acting on
multiple elements of the RAS pathways (79). Other miRNAs
targeting multiple RAS effectors include miR-143 / miR-145,
previously mentioned to target all RAS genes and BRAF; miR-
524-5p that can target both BRAF and ERK2. In melanoma,
miR-524-5p is downregulated and affects cell migration and
proliferation both in vitro and in vivo (80).

These miRNAs are potentially very important, as they can
represent useful molecules to effectively restore the normal
expression of multiple proteins belonging to RAS pathways.

microRNAs IMPLICATED IN RESISTANCE
TO TARGET THERAPIES

Therapeutic interventions in advanced cancers include
traditional chemotherapy as well as targeted/immuno-therapies.
Targeted therapies make use of molecules capable of blocking
aberrantly activated oncogenes that act as tumorigenic drivers.
Oncogenic RAS proteins would represent outstanding targets
for such therapies. But, no drug targeting RAS has been
yet validated for clinical use. At present, most available
targeted therapies are instead designed to block the activity of
several elements of RAS-centered pathways. These include
a large number of tyrosine kinase inhibitors (TKIs) or
antibodies against RTKs; drugs that target BRAF V600E
mutation (vemurafenib and dabrafenib), MEK (trametinib,
cobimetinib and binimetinib), PI3K mutations (alpelisib),
and mTOR (everolimus). The RAS pathways are therefore
targeted by several drugs, with the RAS itself being a
major exception.

Evenmore disappointing is the fact that mutant activated RAS
often reduces the efficacy of targeted drugs and patients become
resistant to therapies. One of the best-known mechanisms
associated with the emergence of TKI resistance is indeed KRAS
mutation. It is known that tumors with KRAS mutations at
codons 12, 13, 61, or 146 do not respond to treatment with
anti- EGFR antibodies or TKIs and therefore mutational analyses
on all RAS genes are carried out on tumor biopsies before a
therapeutic regimen is chosen.

Albeit not implemented for clinical use, given their important
role in regulating RAS and linked pathways, it is reasonable
to believe that altered miRNA expression could also affect the
development of resistance to targeted therapies. To this effect, a
number of experimental evidences exist (81–95).

Among miRNAs that target KRAS, the reduced expression of
miR-181a was shown to be associated with gefitinib resistance in
lung cancer (96, 97); in CRC patients treated with cetuximab, it
was reported that low levels of miR-181a were associated with
a lower overall survival, indicating a reduced efficacy of anti-
EGFR therapy (98). While miR-145 was shown to synergize with
cetuximab activity (99), high levels of let-7 could predict the
efficacy of cetuximab therapy even in CRC patients carrying
mutant KRAS (100).

Dietrich et al. (57) not only revealed an inverse correlation
of KRAS and miR-622 expression but, additionally, they could
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attribute KRAS-miR-622 interplay to therapy resistance since
sorafenib induced further KRAS augmentation and down-
regulation of miR-622. These few examples suggest that the
miRNA-mediated modulation of RAS protein levels can indeed
affect the response to TKIs or anti-EGFR targeted therapies.

In addition to RAS, the dysregulation of miRNAs responsible
for the activation of elements of the MAPK or the PI3K pathways
can also reduce the efficacy of TKIs. For example, the reduction of
PTEN protein level by up-regulated miRNAs, like miR-21, miR-
221, miR-23a and miR-214, can reduce efficacy of TKIs in lung
cancer by activating the PI3K pathway (83, 101–106). miRNAs
have also been associated with resistance to the BRAF inhibitor
vemurafenib (107–110). In short, several studies have shown that
the dysregulation of miRNAs has an important role in the efficacy
of target therapies, thus suggesting that their levels of expression
can be useful to guide the choice of therapy, alongside the more
conventional mutational investigations. Furthermore, they also
provide suggestions for potential therapeutic approaches useful
to restore or improve sensitivity to treatments.

CONCLUSIONS

Taken together, published data provides a strong indication that
altered miRNA expression represents an important mechanism

for RAS activation, with various implications. First, it represents
a mechanism of pathogenic relevance, responsible for the
promotion of several tumor traits, irrespective of RAS oncogenic
mutations. Second, considering that the activation of RAS
represents a frequent mechanism of resistance for drugs directed
against RTKs, it is possible that miRNA dysregulation represents
a relevant aspect to consider when assessing the proper
management of patients on target therapies. Third, miRNAs
may represent potentially useful molecules for the control of
RAS oncogenic activation, aimed at overcoming the lack of
drugs targeting RAS and possibly improving the efficacy of
target therapies.
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