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ABSTRACT The consolidation of the Fog Computing paradigm and the ever-increasing diffusion of Internet
of Things (IoT) and smart objects are paving the way toward new integrated solutions to efficiently provide
services via short-mid range wireless connectivity. Being the most of the nodes mobile, the node discovery
process assumes a crucial role for service seekers and providers, especially in IoT-fog environments where
most of the devices run on battery. This paper proposes an original model and a fog-driven architecture
for efficient node discovery in IoT environments. Our novel architecture exploits the location awareness
provided by the fog paradigm to significantly reduce the power drain of the default baseline IoT discovery
process. To this purpose, we propose a deterministic and competitive adaptive strategy to dynamically adjust
our energy-saving techniques by deciding when to switch BLE interfaces ON/OFF based on the expected
frequency of node approaching. Finally, the paper presents a thorough performance assessment that confirms
the applicability of the proposed solution in several different applications scenarios. This evaluation aims
also to highlight the impact of the nodes’ dynamic arrival on discovery process performance.

INDEX TERMS Bluetooth Low Energy, Discovery, Fog Computing, IoT, IoT-Fog Enviroments, Smart
Discovery, Power Efficient Discovery, Ski Rental Problem

I. INTRODUCTION

ADVANCES in wireless communications and mobile
devices are enabling new service opportunities and

integration possibilities. Internet of Things (IoT) objects are
everyday life physical things equipped with computation,
storage, communication, and sensing capabilities, such as
wearables, sensors, actuators, and even smartphones.

Fog computing has a distributed architecture targeting
applications and services with widespread deployment as for
the IoT [1], [2]. Fog computing is positioned as an interme-
diate layer between Cloud computing infrastructure and IoT
devices. Thus, fog nodes bridge application objects running
in the Cloud and the edge [3], [4]. Fog computing enriches
IoT environments with computing resources, communication
protocols, location awareness, mobility support, low latency,
geo-distribution [5]–[7]. These benefits enhance Quality of
Experience (QoE) of IoT applications’ users [8]. Physically,
fog nodes are industrial network routers, smart mobile access

points, smart switches deployed into the environments of
interest such as smart residential or business buildings,
shopping centers, smart urban areas and so on [9], [10]. As a
complementing concept to the cloud, fog computing has been
identified as a possible solution to ensure energy efficiency at
the IoT devices [11]. However, at the application layer, there
are still open issues and trade-offs for existing protocols in
terms of energy efficiency and reliability of communications
[12], [13].
In this paper, we leverage the possibility of easily inte-

grating short and medium range wireless connectivity in the
same IoTdevices to propose novel cross-networkmanagement
operations to overcome those typical limitations of Bluetooth
Low Energy (BLE) discovery [14]. We propose Power Effi-
cient Node Discovery (PEND), an enhanced node discovery
solution specifically tailored for IoT-Fog environments to
ensure sustainability/energy efficiency and discoverability, as
well as reliability. The fog layer entity (fog node) bridges
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the IoT devices and the Cloud, and provides the needed
context awareness about nodes in the locality [15], [16].
Fog nodes (FNs) typically are smart networking appliances
equipped with computational and storage capabilities, such as
smart access points, smart switches, smart industrial routers,
or even powerful smartphones. IoT devices at the edge are
considered to be a Bluetooth Low Energy Scanner (BLE-
S) and a Bluetooth Low Energy Advertiser (BLE-A) in the
subscriber and publisher roles, respectively. The fog node,
at fog level, keeps track of the trajectory of the BLE-A,
and implements a signaling scheme to control the Bluetooth
interface of the BLE-S depending on the geo-location of the
BLE-A, which is communicated through WiFi interface. FNs
receive BLE-As’ location updates, they store their locations
and calculate their trajectory. The signaling scheme allows to
synchronize the advertisement and scanning frames leading
to 100% discoverability (i.e., Device Matching Ratio–DMR,
as used in the paper) of the devices, and remarkable savings
in the BLE, CPU, and per-application battery consumption.
In addition, in this paper we propose an optimization model,
based on the ski rental problem formulation, to save energy
by introducing an adaptive BLE interface switching ON/OFF
strategy based on the advertisers’ arrival frequency. Finally,
we widely assessed the proposed solution and we report
a large selection of experimental results that confirm the
effectiveness of the proposed solution under different possible
configurations by highlighting its advantages and limitations.

The remainder of the paper is structured as follows. Section
II presents some background material about our research and
reports related work. Section III details our proposed model
and architecture. Section IV addresses our original solution
for adaptive BLE switching ON/OFF strategy with energy
saving, while SectionV presents experimental results. Finally,
Section VI ends the paper and presents our ongoing work
directions.

II. RELATED WORKS
BLE has become a strong candidate technology to connect
smart objects and IoT nodes [17]–[19]. One of the challenging
aspects of the BLE is its discovery process. The BLE
discovery phase is critical since it impacts the detection
and connection capability of each device. The other main
aspect of the discovery phase is its energy efficiency. BLE is
particularly tailored for IoT communications and, being the
IoT nodes mostly running on battery, the power efficiency has
a remarkable importance [20]. Given the above mentioned
reasons, BLE discovery and its power efficiency remain open
issues and challenges for the researchers in this field.

BLE provides APIs that allow the developers to tune
several parameters and settings that impact on the behaviors
of the device during the discovery process. The discovery
parameters are many. Among the others, the most commonly
tuned ones are the scanning frame length, and the scanning
interval for the BLE scanner, and the advertising interval,
advertising arrival rate, and advertising event duration for the
BLE advertiser. By the tuning these parameters, it is possible

to improve the performance of the BLE discovery process
[21]. In [22], the authors proposed a discovery approach,
named sDiscovery, based on tuning the length of scanning
window and scanning interval according to the number of
redundant and new devices discovered on each discovery
cycle. Redundant devices are devices detected in the current
discovery cycle but already discovered in the previous one.
In particular, more redundant devices are discovered each
cycle, more stable is the environment, and more stable is the
environment, more sporadically the discovery process can be
scheduled, and the scanning window can be shortened. The
approach adopted has two main aspects that can be improved.
First, sDiscovery protocol scans the proximity in any case
and, then, it checks the number of new devices and adjusts
itself. In this way, the protocol scans the proximity even if
there are no new devices around. In this case, the protocol
tunes the scanning process settings by reducing the frame
length and enlarging the scanning interval. Immediately after,
new devices might approach and, according with the new
scanning adjustment, these new approaching devices might
be missed. In a nutshell, the proposed sDiscovery is a good
solution in general, but there is room for improvement by
aiming the responsiveness of the algorithm. Another possible
improvement might be to move the execution of the algorithm
for the self-tuning out from the device itself. This might lead
to avoid computational overhead.

Another study on tuning the BLE discovery settings in
order to improve the discovery process is proposed in [23]. In
this article, the authors focus on improving the speed of mass
device discovery and prolonging the battery life. In this case,
the tuning of the discovery parameters is done at deployment
time. This is another good approach, in particular if applied
to some specific scenarios. Besides of that, this approach
might be improved by addressing the staticity of the discovery
process configuration. In this way, it might suit to multiple
types of scenario. In [23], conversely from [22], the authors
target the tuning of the BLE advertiser by configuring the
advertising packet, and the advertising event parameters. The
same approach has been adopted in [24]. Here the authors
tuned the advertising interval to minimize the discovery time.
In this work, the approach adopted by authors is valuable,
but it might be improved by making the discovery parameters
reconfigurable at run time. An adaptive algorithm might be
introduced.

Another valid work in which the authors tuned the
advertising settings to improve the discovery process is
[25]. In this work, the authors proposed an algorithm to
dynamically adjust the advertisement interval considering the
network conditions based on a carrier sensing (CS) scheme.
This type of approach is valid, in this work the self-adaptive
procedure is run directly on the device, and this might cause
a CPU and energy overhead. Other previous works, targeting
the tuning of advertisement event parameters of discovery
process in order to reduce the energy consumption, are [26],
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[27]. In these two works there is room for improvements by
targeting the same aspects emerged in the previous papers.
The first work presents a solution based on a fixed pre-
setting of the advertisement parameters. The second one
presents a solution based on adaptive strategies, but, also
in this case, those algorithms are executed on the device
itself. The same drawback emerges also in [28] and [29].
In [28], the authors designed an adaptive strategy to tune
the configuration parameters of the discovery process at
run time. This strategy aims to adjust both advertiser and
scanner settings in order to find the best tradeoff between
energy efficiency and responsiveness of the discovery process.
In particular, authors aimed to minimize the time needed
by the devices to discover each other in the most energy
efficient manner possible. Targeting the discovery parameters
of the advertiser and scanner is an approach also adopted in
[29]. In this work, the authors have developed and adopted
a mathematical model which can compute the neighbor
discovery latencies for all possible parametrizations. Kindt
et al. used such theory for tuning the discovery parameters
of scanning and advertising processes in order to improve
the device discovery both in terms of power efficiency and
discoverability [29].

Complementary to the researches mentioned above, which
improve the BLE discovery performance by tuning the dis-
covery configuration parameters at a low level, the discovery
protocols we designed and proposed in [7], namely PEND and
SPEND, exploit the advantages provided by Fog computing.
The fog has a pivotal role to exploit the full potential of
IoT nodes by enabling the context and location awareness
of the nodes. This paper proposes a fog-based architecture
aimed to overcome the typical limitations of the conventional
discovery approach. The model and architecture, proposed in
this paper, aim to optimize the device discoverability and to
improve the discovery power sustainability. Our work differs
from and complements the previous studies by concentrating
on the following original aspects: our solution is not based
on any discovery parameters pre-setting, and it does not load
the devices with any extra heavy computational algorithm
or task. It exploits the support provided by fog to trigger
and to configure the discovery process. In this way, all the
potentially heavy computational tasks and algorithms are
laid on fog nodes, contrary to what the above mentioned
solutions have done. Section III presents the system model
and corresponding architecture in detail.

In addition, in this article we also propose an energy-saving
strategy based on the Ski Rental problem [30]. This type of
theoretical problem belongs to the class of problems to help in
choosing between a periodic cost, paid repeatedly (rent a pair
of skis), and a determined price paid once (buying price). It is
demonstrated that the optimal off-line deterministic strategy
to minimize losses for this class of problems is to pay the
repeated rent cost until it is equal to the buying price, after
which, it is better paying the buying cost. We used an off-

line deterministic strategy because this kind of approaches
are the simplest and achieve easily reproducible results [31].
The authors in [32], demonstrate that this problem is 2-
competitive. This kind of strategy perfectly suits that kind
of problem in which there is the dilemma between paying a
small amount repeatedly or paying a bigger cost just once,
and it has been widely applied [33]–[35].

III. MODEL AND ARCHITECTURE
This section firstly provides a complete overview of the
reference model. Then, it introduces the proposed distributed
architecture. Finally, the last subsection addresses the pro-
posed theoretical energy-saving model based on the "Ski
Rental Problem".

A. MODEL
The wide spread of wearables, Body Area Networks (BAN),
and Personal Area Networks (PAN) call for new solutions
able to efficiently support the continuous connectivity of these
smart objects. Bluetooth is the standard de-facto technology
for wirelessly connecting any smart device in a short range.
This trend has led the research community to focus its
attention on the crucial aspects of this technology. In the
mobile communication field, one of the hottest topic is
the node discovery process. Moreover, speaking of battery-
operated mobile nodes, another crucial aspect to address
is energy management. The device discovery has a central
role in IoT, it enables the nodes connection and the IoT
service providing. The Bluetooth Special Interest Group
(SIG), with the release of Bluetooth Low Energy (BLE),
has paved the way to the massive adoption of Bluetooth
as node communication enabling technology in IoT field.
BLE is able to provide a quite simple discovery process
while keeping the energy consumption relatively low. The
applications of BLE discovery-based systems fall in several
fields, such as marketing advertisement [36], city’s point
of interest discovery [37], sports performance monitoring
[38], [39], indoor positioning systems [40], [41], smart
health systems [42], just to name few. The traditional or
conventional BLE discovery process has a quite simple and
trivial architecture, it involves two type of entities, a scanner
and an advertiser. The BLE scanner (BLE-S) looks for other
devices in the proximity, while the BLE advertiser (BLE-A)
announces its presence to the nearby BLE-S. Let us introduce
an example of a typical conventional BLE discovery scenario,
a BLE beacon is located in proximity of a painting in a
museum and it is continuously in the active state scanning the
vicinity for other devices. In this scenario, when a new device
approaches, it gets discovered and the scanner sends to it all
the information about the painting. In this conventional BLE
discovery scenario, one of the two entities has a static location
and continuously advertises its presence or scans for other
devices while, on the other hand, the other entity is supposed
to be moving. In this paper, we consider the above described
conventional scenario as our reference. In this reference
scheme, the BLE-Ss have a static and known position, while
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the BLE-As are mobile. In the conventional BLE discovery
scenario, the BLE-S constantly and periodically scans for
devices in the proximity, being the scan process an endless
loop. The other entity of the model, the BLE-A, continuously
advertises its presence. As we mentioned before, the BLE-A
does not have a static and fixed location, and we assumed it is
carried by pedestrian. The BLE discovery process succeeds
when an advertising packet sent byBLE-Ahits a BLE-S active
scanningwindow. In other words, when an advertisingBLE-A
is close enough to a scanning BLE-S to allow an advertising
packet to hit the BLE-S’s scanning window, the BLE-A is
discovered. The conventional BLE discovery approach might
result in the following situations: the BLE-Ss keep scanning
for devices even if there are no BLE-As nearby, and in the
same way, the BLE-As keep advertising their presence even
in areas where there are no BLE-Ss. Even in the case in
which a BLE-S and a BLE-A are within their discoverable
proximity, they might not discover each other. This might
occur because the scanning and the advertising process are
not synchronized. At low level, a BLE-S scans periodically on
three different channels on three different frequencies, namely,
37, 38, and 39, on 2402, 2426, 2480 MHz, respectively. At
the same way a BLE-A sends the advertising packets on the
same channels (see also [43] for more details on the discovery
process works at low level). In this way, for example, if a BLE-
A sends an advertising packet on a channel and a BLE-S is
scanning on a different one, they do not discover each other.
BLE is worldwide used as main short ranged node discovery
technology, and it is well known to be power efficient. This
does not mean that energy wastage could not still occur,
or the BLE discovery process could not be improved. The
novel architecture proposed in this work aims to improve BLE
discovery process and makes it even more power efficient. We
have already introduced the cases in which the conventional
BLE discovery scenario results to be not efficient in terms
of device discoverability, now we highlight its inefficiency in
terms of power consumption. In the conventional BLE dis-
covery scenario, the scanners have the BLE interface always
active and they scan for devices periodically and constantly,
i.e. a BLE beacon. In the same way, the advertisers have also
the BLE interface always active and they are in advertising
mode, continuously. This approach is clearly inefficient in
terms of power consumption. A continuously scanning BLE-
S, with no BLE-As around, is wasting energy. In the same
way, a BLE-A would significantly save power if it does not
advertise its presence in an area where there are no BLE-Ss.
Under this point of view, the most power efficient approach
would result in the BLE-S and BLE-A enable their BLE
interfaces and start scanning/advertising onlywhen they are in
the discoverable range of each other. In this paper, we propose
a novel architecture that, by exploiting the fog paradigm, aims
to overcome the aforementioned issues of conventional BLE
discovery scenario. We present an architecture and a new
interaction model aimed to heavily improve the BLE device
discoverability and BLE energy consumption. The idea is to
exploit the characteristics provided by fog computing such

as geo-distribution, location awareness, mobility support and
so on, in order to optimize the devices’ discoverability and
reduce the power consumption at the same time.

B. DISTRIBUTED ARCHITECTURE
We are proposing a novel architecture for device discovery
composed by three entities: BLE Scanner (BLE-S), BLE
Advertiser (BLE-A) and Fog Node (FN). We introduced
in our model the fog nodes, unlike the conventional BLE
discovery scenario, to exploit the advantages provided by the
fog paradigm to improve the power efficiency of the BLE
discovery process and optimize the devices’ discoverability.
Via FNs, we target the discovery synchronization, in other
words, we want to make the BLE-Ss and the BLE-As aware
of when they are in discoverable proximity of each other,
synchronizing the advertising and the scanning process. In
this way, the BLE-A and the BLE-S start advertising and
scanning only when they effectively are in their BLE range,
saving power and optimizing the device discoverability. The
architectural model we are going to refer is depicted in
Fig.1. We assume the BLE-Ss are located in fixed and static
locations, their goal is to discover BLE-As in themost efficient
way in terms of power consumption. The BLE-Ss are not
connected to any power supply. The BLE-As do not have a
static and known position, they are mobile and free to move.
We suppose the BLE-As are carried by pedestrians. Their goal
is to be discovered and to receive information by the BLE-Ss.
The BLE-Ss and BLE-As are smart devices like smartphones.
These devices have internet connectivity and a BLE interface.
BLE-Ss and BLE-As are connected to FNs via WiFI, over
MQTT protocol. The FNs are smart entities connected to the
infrastructure, i.e. smart access-points, smart switches, etc. At
the beginning, the BLE-As register themselves on FNs. The
advertisers subscribe on the topics of the points of interest
(POI), in which they are concerned. The FNs load on BLE-As
all the POI in where there are BLE-Ss providing the services
of interest. For example, recalling the scenario summarized
in Section III-A, an advertiser might be interested in some
particular artist’s artwork in a museum. More generally, a
BLE-A might be interested in some selected commercial
advertising, food or drink spots, some touristic attractions,
therefore any type of POI with location-based service. In this
way, only a restricted set of BLE-Ss are loaded to the BLE-A
and it will not be involved in the discovery process by each
nearbyBLE-S.When aBLE-A enters in one of the pre-fetched
POI’s areas (green areas in Fig.1), it starts sending its location
to the FNs. In this way, the FNs become aware about BLE-As
position. When a BLE-A enters in the BLE discovery range
of a BLE-S (blue areas in Fig.1), the FN alerts that specific
BLE-S and makes the discovery process synchronized and
starting. When a BLE-S is alerted by a FN, it switches the
BLE interface to ON and begins the scanning process, at the
same time, the BLE-A begins the advertising process, in a
fully synchronized manner. In this way, we optimize the BLE
device discoverability, activate BLE interface and discovery
process only when it is strictly needed, and reduce the power
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FIGURE1:The architecturalmodel of our presented scenario.
.

consumption. Our model leverages the awareness given by
fog paradigm in order to optimize the device discoverability
and minimize the scanner power consumption at the same
time. The model depicted in Fig. 1 describes a three entities
architecture composed by BLE-Ss, BLE-As, and FNs. The
communication between the FNs andBLE-S/A are viaMQTT
over WiFi connection. The WiFi connectivity of the IoT
nodes (BLE-Ss and BLE-As) does not significantly impact
on the power consumption because WiFi interactions are
few, and the interface is mostly in idle state. Moreover, the
interactions are over MQTT, a widely recognized lightweight
protocol with extremely low energy impact. The architecture
presented is focused on improving the conventional BLE
discovery scenario described in Section III-A, primarily in
terms of device discoverability, and then in terms of energy
sustainability. This goal is achieved by the introduction and
the exploitation of FNs. In our model architecture, we use
the WiFi connectivity only for the few interactions among
IoT nodes and FNs, while the most onerous operations, such
as discovery process, are running on BLE. In this way, we
achieve the BLE discovery process optimization, besides
keeping the energy consumption as low as possible. Contrary,
by using the WiFi connectivity even for the discovery part,
the model would lose its core concept of locality provided by
BLE technology. This occurs because, as it is widely known,
WiFi is long-ranged communication technology with ranges
reaching to 200 meters whereas the BLE reach is at the order
of a few meters. With this size of range an advertiser could
receive information regarding amultitude of POI, and not only
from the nearest one. This causes the loss of the proximity
interest concept. Recalling the museum example above, an
advertiser would receive information from most part of the
artworks in the museum, while the visitor would be only
interested the artwork in front of him/her or, in any case, in
his/her closest proximity. With the latter version, BLE gives
the possibility to extend its range up to longer distances, a
few tens of meters [44]. However, this extension cannot reach
the distance coverable by WiFi technology. BLE is still a
short range communication technology, and it perfectly fits
our concept of locality.

The proposed architectural model has two components

of power consumption: the BLE activities and the WiFi
connection. As it is stated before, the discovery-related
activities are themost onerous in terms of power consumption.
These operations are performed on BLE technology. Hence,
firstly, we focused on reducing the power consumption of the
BLE discovery process. At this first stage, we kept the WiFi
connectivity of the scanner always active, targeting the power
consumed by BLE usage. The BLE interfaces of BLE-Ss are
kept OFF at the beginning. In the proposed model, the BLE-
As are in permanent movement and, as soon as a BLE-A
enters in the BLE-S’s POI area (green area), it starts sending
its location and its UUID to the FN viaMQTT, making the FN
aware about the position of the advertiser and its ID.When the
BLE-A gets closer to BLE-S, in the BLE discovery range (the
blue area), the FN alerts the relative BLE-S that switches on
its BLE interface and starts scanning for that specific BLE-A.
The FNs, being aware of the location of the BLE-Ss and
BLE-As, alert and wake up the BLE-S only when the BLE-A
is in the BLE range. This synchronization makes the device
discoverability guaranteed, minimizing the active time of the
BLE interface. Once the BLE-A is discovered, the BLE in-
terface will be switched OFF. It is easily understandable that,
according with the approach aforementioned, the switching
ON/OFF of the BLE interface is strictly dependent by the
arrival of BLE-As. This kind of interaction protocol and its
improvement have already been described as Power Efficient
Node Discovery (PEND) and Smart PEND (SPEND). A
deeper and more accurate description and analysis of these
two protocols can be found in [45]. The aforementioned
protocols have been proved to be a remarkable improvement
of the conventional BLE discovery scenario, in which the
fog paradigm is not involved, in terms of power efficiency.
In the previous work, the focus was mainly laid on the
interaction between BLE-A and BLE-S. In this work, we
propose a new strategy for the cost optimization in terms of
power consumption.We aim to reduce the power consumption
further and show new original unpublished experimental
results.
In the model already presented the BLE interface usage is

reduced but the WiFi connectivity is always active. In order
to improve even more the power saving, we tried to reduce
also theWiFi connectivity usage. The problem is addressed by
keeping theWiFi interface OFF at the beginning, and setting a
timer onBLE-Ss.When the timer triggers theBLE-S connects
to the FN, and if there are BLE-As in the proximity, it activates
the BLE interface and it starts scanning for devices. The FN,
being aware of the BLE-As’ location and their speed, sets up
the next timer value. The disadvantage of this kind of approach
is that the model might not guarantee the discoverability of
a BLE-A. Indeed, with a bad setting of the wake-up timer
on BLE-S, a BLE-A might pass through the BLE-S’s area
without being discovered. This kind of approach paves the
way to several challenges, for instance, what is the minimum
value of the timer that guarantees the discoverability of the
BLE-As? And then, which is the best trade-off between losing
some BLE-As and saving more power?
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In the next section a deep analysis regarding a switching
ON/OFF strategy to minimize the power consumption for the
first stage of the model will be presented. Furthermore, we
face the calculation of the minimum wakeup timer of the
BLE-Ss for avoiding the advertisers’ losses.

IV. ADAPTIVE BLE SWITCHING ON/OFF STRATEGY FOR
ENERGY SAVING
Originally, in the conventional BLE discovery approach,
described in Section III, the BLE interface of BLE-S was kept
always in ON state, and the scanning process was performed
constantly and periodically at a fixed rate. Then, with the
architecture we proposed and the protocols we introduced
in [45], the switching ON/OFF of the BLE interface, and
the activation of the scanning process are triggered by FNs.
According to our approach, the ON/OFF switching of the
BLE-Ss’ BLE interface and the activation of the scanning
processes became dependent by the arrival of the BLE-As.
Hence this approach, is strongly dependent by the BLE-
As’ arrival rate. Consequently, if the BLE-A’s arrival rate
significantly grows, the number of times that a BLE-S has to
switch ON/OFF the BLE interfece and perform a the scanning
process, grows as well. In this case, the BLE-S might enter
a continuous BLE switching ON/OFF status. This kind of
status results in higher power consumption than keeping the
BLE always active (conventional BLE discovery scenario).

With a high arrival rate of the BLE-As, it might be more
power efficient to keep the BLE interface of the BLE-S always
active, with periodic scans. This falls in a balance dilemma
between switching continuously ON/OFF the BLE interface
or adopting the conventional strategy, keeping the interface
always active. The balance dilemma just described belongs
to class of problems of choosing between paying a periodic
cost (rent a pair of skis) or paying a bigger cost just once
(buying price). This class of problems is known as ’Ski
Rental problem’ [46]. The best off-line deterministic strategy
is paying the rental cost until the accumulated expense does
not reach the buying cost, then, it is better paying the buying
cost instead. In our model, it means that the optimal strategy
in term of power saving is to adopt the strategy of switching
ON/OFF the BLE interface of the scanners at every BLE-
A’s arrival until the power consumption due to continuous
switching becomes equal to keep the interface always active.
We address the problem only in terms of power consumption,
assuming the scanning frequency of the conventional scenario
high enough to avoid the device discoverability losses. This
strategy belongs to the class of two-competitive algorithms in
which the optimum is given by the ratio between the buying
cost over the rental price.More formally, the proposed analysis
is based on two metrics; Energy of SWitching (ESW) is the
energy consumed for switching on the BLE interface, the
energy required for the scanning process, and the energy
required to switch off the interface. The sum of these three
elements has to be repeated each time a BLE-A enters in
the BLE discoverability range, plus the energy consumed by
keeping theWiFi connectivity active and theMQTT activities

(low). ESW is namely the repeating cost of renting. The
Energy UP (EUP) is the energy consumed by keeping the
BLE interface always active with a periodic scan process, it
is the energy consumed by adopting the conventional BLE
discovery approach. It is given by the sum of the energy
consumed by switching on and off the interface just once (at
the beginning and at the end), plus the energy consumed by the
scanning process multiplied for the scanning frequency. The
scanning frequency is supposed to be static and calculated
over a finite period of time, significantly larger of a single
scanning window, i.e. one hour. EUP is namely the buying
cost of the ski. Formally the two metrics are expressed in the
Equation 1a and 1b

ESW = ewi f i+

N∑
i=1
(eONi + eOFFi + eSCANi) ∗ f rARRi ∗ δi

(1a)

EUP = eON + eOFF + eMAN+

(eSCAN ∗ f rSCAN )
(1b)

Where N is total number of BLE-As in the system, eON and
eOFF are the energies required to activate and deactivate the
BLE interface, respectively. The eMAN is the energy required
to keep the interface active, while eSCAN represents the energy
consumed by the scanning process. Furthermore, let ewifi be
the energy consumed by keeping theWiFi connectivity always
active and the MQTT activities. Then, frSCAN and frARR are
respectively the scanning frequency of aBLE-S and the arrival
frequency of the BLE-As. While δi is a boolean variable, it is
1, if the ith BLE-A is in the BLE discovery range of a BLE-
S, 0 otherwise. Once we have defined the aforementioned
metrics, we can obtain the optimum of our balance dilemma.
The optimum, according with the deterministic 2-competitive
strategy for this class of problem, is given by the division of
EUP over ESW. The optimum in our case is meant as the
maximum number switching ON/OFF of the BLE interface
before adopting an always active conventional-like strategy
results to be more power efficient. The optimum OPT is
calculated with the Formula 2a, then Formula 2b.

OPT =
EUP
ESW

=
eON + eOFF + eMAN + (eSCAN ∗ f rSCAN )

ewi f i +
∑N

i=1(eONi + eOFFi + eSCANi) ∗ f rARRi ∗ δi
(2a)

considering the worst case in which every BLE-A enters in the
BLE discoverability range and defining eSW as (eON + eOFF),
equation 2 becomes:

=
eSW + eMAN + (eSCAN ∗ f rSCAN )

ewi f i + [(eSW + eSCAN ) ∗ N ∗ f rARR]
(2b)

As already stated, considering a finite period of time T,
frSCAN is static and fixed. It makes the calculation of the
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optimum totally dependent by frARR.

The second power consumption component of our system
is given by the WiFi connectivity always active. We tackle
this aspect by turning the WiFi connectivity of the BLE-Ss in
OFF state for a certain period of time. The timer that wakes up
the connectivity of the BLE-Ss is driven by FNs. The BLE-As
start to send their location as soon as they enter in a BLE-S’s
POI area (green area), making the FNs aware about their ID
and location. With the BLE-A’s location constantly updated,
the FNs are able to calculate the advertiser’s speed and arrival
frequency. The FNs, are smart infrastructural appliances,
equipped computational and storage capabilities. Though the
continuous update of the BLE-A’s location (in green area),
the FN can calculate the BLE-A’s speed and its arrival rate,
supposing that constant. Given all those information, the FNs
are capable to efficiently set a wakeup timer on the BLE-
Ss. With the WiFi connectivity not always active, the device
discovery is not guaranteed. With the WiFi connectivity in
OFF state, the FN would not be able to alert the BLE-S
of an approaching BLE-A, and, in this case, the advertiser
would not be discovered. It is necessary to find a trade-off
between power saving and device discoverability. This is a
wide problem with multiple solutions, and each of them is
strictly dependent by the application context.We approach the
problem by calculating the minimum timeout that guarantees
the discoverability of all BLE-As.

We assume the museum context cited in the example used
in previous sections. The BLE-Ss are placed on points of
interest (specific art works), and they have a circular area of
radius r as BLE discoverability range. In addition, as it has
already stated, the BLE-As are devices carried by pedestrians
with a certain reduced speed (VBLE-A, supposed constant) and
an arrival frequency (frARR). It is reasonable to state that the
minimum wakeup period of the BLE-Ss must be less than
the BLE-A’s arrival period plus the time the BLE-A takes
to entirely across the BLE discoverability area (blue area) of
the BLE-S (tAREA). Formally this relation is expressed in the
Formula 3a, 3b, and 3c:

TWAKEUP < TARR + tAREA

tAREA =
2 ∗ r

VBLE−A

(3a)

=> TWAKEUP < TARR +
2 ∗ r

VBLE−A
(3b)

=> f rWAKEUP >
1

TARR +
2∗r

VBLE−A

(3c)

WhereTWAKEUP is the wakeup period of the BLE-S,TARR

is the BLE-A arrival period, and tAREA is the time needed to
completely across the whole BLE discovery area. Assuming
the speed of the BLE-As known and constant, the frWAKEUP
becomes dependent by frARR. The FNs are aware of BLE-
A’s speed and the radius of the area, and according with the
historical of the arrival frequency of the BLE-As, the FNs

are capable to estimate and set the wakeup timeout on the
BLE-Ss.

V. EXPERIMENTAL RESULTS
In the previous section we have underlined how the impact of
the advertisers’ dinamicity is crucial for the performance of
our model and, more widely, for the device discovery process
in general. In this section, we give a practical aspect to the
energy saving strategy presented in the previous section. We
study more in detail the relation between EUP and ESW
and how this latter varies according to the BLE-A’s dynamic
arrival. We have implemented the Formula 2b, and we are
going to discuss all its aspects. We have highlighted how the
impact of dinamicity of advertisers’ arrival is crucial in our
model, in the last subsection we applied the BLE-A arrival
dynamicity to PEND and SPEND protocols comparing them
with the conventional device discovery scenario running on
the presented architecture. As we have already stated, our
model exploits PEND and SPEND as device discovery pro-
tocols. These protocols have already been introduced in [45],
with preliminary results and a study of their performance. We
widely extended the experiments presented in our previous
work by introducing the dynamic arrival of the BLE-A and a
study on how the performance are affected by the dinamicity
of the BLE-As. We present and discuss the novel results
regarding PEND and SPEND. In these new experiments, we
have combined the impact of advertiser arrival dinamicity
with the different lengths of BLE-S scanning window.

ENERGY SAVING STRATEGY IMPLEMENTATION
In this subsection, we present a study based on the proposed
energy saving strategy due to the implementation of the
Equation 2. We estimated all the parameters from the ex-
periments run on Conventional scenario, PEND and SPEND,
then, we applied them to the equation. We calculated the
theoretical maximum number of BLE interface ON/OFF
switching before a smart interface switching approach turns to
bemore power inefficient thanConventional scenario.We also
analyzed and plotted how this number change by varying the
frequency of BLE-A’s arrival. The data used for implementing
the Equation 2b has been calculated by the experiments run on
PEND, and Conventional scenario, these data is summarized
in Table 1.

TABLE 1: Parameters values of the optimal number of
switching equation.

Parameter Value

EUP 43,5 [mAh]

ewifi 3,25 [mAh]

esw + eSCAN 0,48 [mAh]
N {20, 30, 40, 50}

EUP is the energy of keeping the BLE interface constantly
ONand in periodic scanning. It is the energy consumption that
reflects the scanner behavior under the Conventional scenario.
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FIGURE 2: Ratio between EUP and ESW. It results in the
optimal number of ON/OFF switching of the scanner’s BLE
interface according with 2-competitive strategy applied to our
model.

.

Briefly, we statically tuned the BLE-S’s scanning frequency
and scanning frame length by setting the inter-scanning period
to 30 seconds, and the frame length to 30 seconds. By
doing so, we focus our attention on BLE-A’s arrival, and we
make the equation strictly dependent by advertiser’s arrival
frequency. Once the scanning frequency is defined as static,
EUP becomes a constant and its value can be easily fetched by
Conventional scenario experiments. The other values of the
parameters has been fetched by the energy consumption report
made by the Android Device Bridge during the experiments
[47]. The values are calibrated on experimentwith a finite time
duration of 60 minutes. We needed a experimental duration
long enough to let us run the discovery process several times.
Since the single process duration goes from 10 seconds up to
60 seconds, we picked one hour as single run duration. The
whole set of the experiment settings is listed in Table 2. It
is worth to note that EUP represents the power consumption
of the Conventional discovery scheme. Its value in Table 1
has been calculated from the experiment with a scanning
frame length of 30 seconds, scanning period of 30 seconds,
advertiser arrival period of 60 seconds and advertising frame
length of 30 seconds. The energy consumption due to WiFi
interface utilization is expressed with ewifi, while esw + eSCAN
is the energy consumed by a single switching ON/OFF of the
BLE interface plus the energy due to the scanning process.
N is the number of the total advertisers in the system. Fig. 2
depicts the ration between EUP and ESW on varying of the
BLE-A’s arrival period. We plotted four trends changing the
total number of BLE-As in the system, N.

The chart in Fig. 2 shows how the number of optimal
switching varies accordingwith the arrival of the BLE-As.We
implement the proposed strategywith four different number of
total advertiser devices within the whole system. The values
of N used are, 20, 30, 40, 50 devices. On the X axis there
are the values of the advertiser arrival period, expressed in

FIGURE 3: Energy values of EUP and ESW in relation with
the BLE-A arrival period.

.

minutes, while the Y axis represent the optimal number of
ON/OFF switching. From the chart in Fig. 2 emerges the
ratio between EUP and ESW has an asymptotic trend. This
behavior is reasonable because with the enlarging of the
arrival period, theBLE-Aarrives evermore sporadically.With
a such very occasional arrival, the BLE-S basically, does not
ever switch ON its BLE interface, and the ewifi becomes the
predominant component of the ESW. If we push the arrival
period to the infinite, the energy consumption of the BLE
interface becomes 0, because the BLE-S never switches the
BLE interface ON, and the ratio between EUP and ESW
turns to be a fraction of two constant value. The value of the
asymptote is the result of outcoming division. On the other
hand, with a BLE-A’s arrival period close to zero, hence with
an arrival frequency very high, the number of time of BLE
interface ON/OFF switching drastically drops to zero. This
because, under an high BLE-A arrival rate, it would be much
more power efficient to keep the BLE interface alwaysON and
scanning. In the chart depicted in Fig. 3, we put in relation
the energy values of our two component, EUP, and ESW, with
the BLE-As’ arrival period.
Also in Fig. 3, we plot the trends of ESW under the same

four different number of total devices as before, 20, 30, 40,
50. In addition, in this chart, we also plot the behavior of
EUP. This trend has a constant value because, by definition,
it is not affected by BLE-A’s arrival. On the other hand, the
trends referring to ESWare strongly dependent by advertisers’
dinamicity. Indeed, from the Fig. 3, clearly emerges how the
energy consumption varies according with the arrival period.
The ESW component has a asymptotic behavior. Indeed, with
the enlarging of arrival period, the BLE-S using the BLE
interface switching strategy consumes ever less. If we push
the BLE-As’ arrival period to infinite the trends of ESW result
to be 3,25, the value of energy consumed by the WiFi usage.
This is reasonable because with an infinite arrival period,
hence an arrival frequency equal to zero, the BLE-As result
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to be never approaching, hence, the component of energy
consumption due to the BLE interface usage is 0, and the
ESW results to be ewifi. In the opposite case, with a very
little arrival period, hence with an arrival frequency high, the
energy consumption due to the switching strategy results to
be extremely high. Under this condition applying the strategy
of keeping the BLE interface always ON and in periodic
scanning would result much more power efficient. According
with what we have already stated so far, a question might
be risen, what is the advertiser’s threshold arrival frequency
after which is better to switch from a BLE interface switching
strategy to a BLE interface static one? It is worthy to be
highlighted that the EUP straight line intersects the curves of
the ESW trends in a point. The value of projection of that
point on the X axis is the threshold arrival period, hence the
threshold arrival frequency can be easily obtained.

THE IMPACT OF ADVERTISERS’ DINAMICITY ON PEND AND
SPEND
We have already mentioned along the whole paper the crucial
role ofBLE-As dynamic arrival in ourmodel. The architecture
introduced in this paper exploits PENDandSPENDprotocols.
These mechanisms have been already presented in IEEE ICC
2018 conference [45], and, in this manuscript, we extend
the our previous work introducing a novel study about the
impact of BLE-As arrival dinamicity on these protocols. In
this subsection we present a set of new experiment runs, that
combine the impact of dynamic arrival of advertisers and the
different lengths of the scanning frame. We firstly present the
impact of the BLE-A dynamic arrival on the DeviceMatching
Ratio (DMR) and then on the power consumption. It is worthy
to be reminded the definition of DMR. The Device Matching
Ratio, DMR, is defined as the percentage of the scanning
windows in which at least an BLE-A has been discovered
out of the total number of scanning windows within a limited
period of time, [45]. Aswe have done in the previous work, we
study the performance of Conventional, PEND and SPEND
schemes by varying the advertiser arrival rate according
the Poisson distribution, over three different scanning frame
length.We scheduled the BLE-A’s arrival with an average rate
of λ. Thus, the inter-arrival times between two consecutive
advertisers would follow the negative exponential distribution
with the mean β = 1/λ. In the experiments, we vary the inter-
arrival time (β) within the following set {30s, 60s, 90s, 120s},
while the scanning frame length within this other one {10s,
30s, 60s}. It is worthy to remind that, SPEND deactivates
the scanning frame immediately upon the detection of a
device match. Therefore, SPEND is not affected by the frame
length in the experiments. Table 2 presents the details of
the experimental settings. According with the approach used
in the our previous work, the performance study regarding
the energy consumption is broken down into the following
components: 1) Battery drained by BLE interface of the BLE-
S, 2) Battery drained by CPU as a result of BLE-initiated
processes, and 3) Battery drained by CPU accounted to the
discovery application process.

TABLE 2: General and discovery strategy-specific settings in
our experiments.

Parameter Value
Node Discovery Schemes Conventional, PEND,

SPEND

BLE-A and BLE-S operating systems Android 6.0.1 Marshmallow

Number of experiments per scenario 12
Total number of runs per experiment 30
Duration of a single run 60 minutes
BLE-S Scanning Frame Length {10, 30, 60} sec.
BLE-A Advertising Frame Length (`) 30 sec.
BLE-A Inter-arrival duration scheduled according to Pois-

son Distribution
Inter-arrival time β 1/λ
(β) values for Poisson Distribution {30, 60, 90, 120} sec.

MQTT Broker Type Mosquitto Server

BLE Activity in Conventional Discovery Always Active

BLE Activity in PEND MQTT Broker-Triggered

BLE Activity in SPEND MQTT Broker-Triggered

BLE-S Scanning Frame Rate in Conven-
tional Discovery

1 every 30 sec.

BLE-S Scanning Frame Rate in
PEND/SPEND

On demand

The following charts shows the trend of DMR under
Conventional, PEND and SPENDby varying the frame length
of the BLE-S. Fig. 4 depicts four different series, one for each
β according the parameter listed in Table 2.

FIGURE 4: Device Match Ratio of Conventional, PEND and
SPEND over the different BLE-S’s frame lengths. The series
depicted in the chart represent the affection of different β on
the DMR of Conventional, PEND and SPEND. The DMR of
PEND and SPEND is not influenced by the dynamic arrival
of BLE-As since they activate the BLE interface and the
scanning process if and only if there is a discoverable BLE-A.
Thus there is just one trend attributed to PEND/SPEND.
In Fig. 4 is depicted the DMRbehavior of the three schemes

under varying arrival rates (i.e. inter-arrival times, β) of BLE-
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A and the BLE-S scanning frame length. As seen in Fig. 4,
the PEND/SPEND schemes are represented by only one line,
this happens because the scanning process under these two
approaches is triggered by the fog nodes any time a new BLE-
A approaches. This policy guarantees the discoverability of
the BLE-A, hence the DMR is 100% under any BLE-A arrival
rate. On the other hand, in the Conventional scenario, the
scanning process is constant and periodic, hence the DMR
is strongly dependent by the BLE-A’s arrival. From Fig. 4 is
easy to observe how the DMR of the Conventional increases
with the enlarging of the frame length. On the BLE-A arrival
rate side, the DMR decreases as the inter-arrival (β) time
grows. From the Fig. 4 emerges that in case of advertisers’
arrival rate reasonable high, i.e. β = 30 sec., and a scanner’s
frame length large enough, i.e. 60 sec., the DMR performance
of the Conventional scheme might reach a performance close
to the PEND/SPEND one; As a side effect, it can drive to
massive battery consumption. On the other hand, when the
advertisers’ inter-arrival time grows, the DMR performance
of Conventional scheme significantly decrease down to less
than 20%, in case of λ = 120 sec, and BLE-S’ scanning frame
length 10 seconds.

We studied the power consumption of the BLE under
a scanning frame length of 10, 30 and 60 seconds and
by setting β, the advertiser inter-arrival time, to 30, 60,
90, and 120 seconds. From Fig 5 emerges how, under
Conventional scheme, the power consumption decreases as
the scanning frame length gets longer. While the trend of the
power consumption grows with the enlarging of the scanning
windows under PEND. On the other hand, PEND scheme
takes advantage form fog node awareness and the BLE-
S’s scanning process is activated only when a device is in
discovery range, hence it also guarantees the discovery of new
device. Under this assumption, it is reasonable to state that
PEND does not need to have a long frame length. With a high
BLE-A arrival rate (β = 30 s), the power drained under PEND
increases accordingly with the increasing of frame length. It
becomes greater than the energy drained under Conventional.
This because, under PEND scheme, with our experiments
settings, a high arrival rate combinedwith a large frame length
leads the BLE-S to be always ON with the scanning process
always active. The Conventional scheme is not advertiser’s
arrival dependent, hence, it is not affected by the arrival
rate. This means that, if the advertisers’ arrival rate is very
high, it might be better to adopt a Conventional-like strategy
instead of PEND-like one in terms of power efficiency. The
dependency of PEND/SPEND from the advertisers’ arrival
leads the proposed schemes to have better performance in term
of power consumption as the time between two consecutive
arrivals (β) increases. On the other hand, the Conventional
scheme is arrival independent, hence the power consumption
is about constant under different β. SPEND shuts immediately
down the scanning process and the BLE interface after the
discovery of the new device, it does not wait for the entire
frame length. This behaviormakes the scheme independent by
the different scanning frame lengths. SPEND results to have

(a) BLE power drain with a scanning frame length of 10
seconds, under different inter-arrival time.

(b) BLE power drain with a scanning frame length of 30
seconds, under different inter-arrival time.

(c) BLE power drain with a scanning frame length of 60
seconds, under different inter-arrival time.

FIGURE5: BLE power consumption under different scanning
frame lengths and advertiser’s inter-arrival times.

the best performance in terms of power consumption under
every condition, it also guarantees the device discoverability.
In the next figure (Fig. 6) is depicted the power drained by the
CPU due to the BLE usage.
Fig. 6 shows the broken down charts of the power drained by

the CPU due to the BLE interface usage. The charts represent
the power consumed by varying the arrival time between
two consecutive BLE-As (β) from 30 up to 120 seconds in
average. The three charts relates the power consumption just

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2938888, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) CPU power drain due to Bluetooth activity with a
scanning frame length of 10 seconds, under different inter-
arrival time.

(b) CPU power drain due to Bluetooth activity with a
scanning frame length of 30 seconds, under different inter-
arrival time.

(c) CPU power drain due to Bluetooth activity with a
scanning frame length of 60 seconds, under different inter-
arrival time.

FIGURE 6: CPU power drain due to Bluetooth activity under
different scanning frame length and advertiser’s inter-arrival
time.

described with different values of β on changing of the BLE-
S’s scanning frame length, 10, 30, 60 seconds in, 6a, 6b, and
6c respectively. Fig. 6 highlights how the power consumption
generally grows as the BLE-S’s scanning window enlarges.
One of the impact factors of this consumption is the number
of scanning cycles on the three different frequency channels
during the scanning process. In fact, when the scanning

process is active, the BLE interface constantly scans three
channels on three different frequencies, namely 37, 38, and
39 (2402, 2426, and 2480 MHz). Hence, it is understandable
that larger is the scanning frame length, higher is the number
of cycles per window. We got the worst case under PEND
schemewith frame length 60 seconds and inter-arrival time 30
seconds. It is worthy to remind that the scanning process under
PEND is BLE-A’s arrival dependent and MQTT-triggered.
With a large scanningwindow and an arrival rate high enough,
the BLE-S’s scanning process would be always active. On the
other hand,Conventional scenario is not arrival dependent and
the consumption under this scheme is driven by the number
of times BLE-S discovers a new device. Finally, SPEND is
proved to be the best scheme even under this aspect. As the
other experiments, it is not affected by the window’s length,
and thanks to its policy of shutting down the scanning process
as soon as a new device is discovered, SPEND has very low
power consumption. The energy drained is low also because
SPEND discovers the new device very probably at the first
scanning cycle, then it stops the scanning process, hence,
the consumption of energy is kept as low as possible. In the
next figure, the energy consumption due to CPU usage by the
application is depicted.
The charts in Fig. 7 depict the power consumed by the

CPU of whole application under different settings of BLE-
S’s scanning frame length and BLE-A’s inter-arrival time. It
is worthy to be highlighted that the CPU power consumption
depicted in this figure, represents only the power consumption
of the CPU accounted to the application process, and it does
not account the BLE part. Fig. 6 accounts the power CPU
consumption due to BLE utilization, and it is aggregated into
BLE power consumption. Generally, the trend of CPU power
consumption of the whole application follows the BLE’s one.
It increases as the scanning frame gets larger under each
scheme. From Fig. 7 emerges that the Conventional scenario
typically has an higher power consumption than PEND and
SPEND.

VI. CONCLUSIONS AND FUTURE WORK
The introduction of fog-layer coordination in IoT device
discovery can significantly help in improving device dis-
coverability and in increasing power sustainability. The fog
paradigm enhances the IoT capabilities acting as a mid-
dleware between IoT nodes and Cloud. Fog supports IoT
environments by providing location awareness, computing
resources, mobility support, geo-distribution, and so on.
These features are crucial for improving the quality of
experience and the efficiency of service providing and seeking
in IoT environments.
The architecture presented in this work exploits the fog

paradigm to improve the BLE node discovery in terms of
device discoverability and in terms of power consumption.
Our model, leveraging the location awareness of the nodes in
the proximity, effectively triggers the discovery process thus
granting PEND/SPEND full discoverability by overcoming
typical issues of the conventional BLE discovery. At the
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(a) CPU power consumption of the whole application. It run
with a scanning frame length of 10 seconds, under different
inter-arrival time.

(b) CPU power consumption of the whole application. It run
with a scanning frame length of 30 seconds, under different
inter-arrival time.

(c) CPU power consumption of the whole application. It run
with a scanning frame length of 60 seconds, under different
inter-arrival time.

FIGURE 7: CPU power consumption of the whole appli-
cation. with different BLE-S’s scanning frame length and
varying the BLE-A’s inter-arrival time.

same time, the employed ski-rental optimization allows to
save energy by self-adapting the discovery process.

Boosted by these significant results, we are alreadyworking
on two main future work directions. On the one hand, we are
implementing real mobility patters for the advertisers in order
to have a much more realistic feedback on the performance
of our model. On the other hand, we target to develop a new
probabilistic technique based on machine learning algorithms

to nowcast short term user mobility so to further improve the
energy saving strategy.
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