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A B S T R A C T

The assessment of microbial functional diversity is an important indicator of soil quality. Different methodo-
logical approaches are currently used; among them are enzyme activities (EA) and CLPP (community level
physiological profile) techniques (e.g. MicroResp™, MR). The aims of the study were: i) to assess the efficacy of
both methods in capturing differences among various land use categories when different levels of selected ex-
planatory variables such as, total organic carbon (TOC) and pH are considered, and ii) to explore, through a
quantile regression approach, the possible relationships between each of the two methods with land use cate-
gory, TOC and pH. The Shannon diversity index (H’), calculated from EA and MR data, was chosen as a synthetic
index deriving from the same mathematical model. The quantile regression model (QRM), the Kruskal-Wallis
and Spearman rank correlation tests were performed.

Enzyme activities and MicroResp were reliable ecological indicators to assess soil microbial functional di-
versity. No correlation was found between the diversity indexes, H’EA and H’MR; it was therefore supposed that
the two methods may target complementary components of microbial functional diversity. Both methods were
effective in capturing differences among various land use categories, in particular H’MR in soils with low TOC
content (< 1.5%). Moreover, the QRM approach allowed a more detailed analysis along the distribution of the
diversity indexes (H’EA and H’MR) indicating that H’EA was more dependent on the selected variables.

1. Introduction

The links between ecosystem functioning and levels of soil biodi-
versity have been the focus of the recent scientific literature (Delgado-
Baquerizo et al., 2016; Creamer et al., 2016b; Griffiths et al., 2016;
Nannipieri et al., 2003). The first authors provided evidence that loss in
microbial diversity will likely reduce multiple ecosystem functions thus
negatively impacting the provision of ecosystem services. Adhikari and
Hartemink (2016) claimed for new insights into soil microbial diversity
and their role in soil functional variability. Since up to 80/90% of soil
functions, from humification to mineralization, is microbially-medi-
ated, the diversification of soil microrganisms in terms of structure and/
or activity is essential to maintain functioning of terrestrial ecosystems
(Pereira Silva et al., 2013).

Microbial functional diversity is defined as “the sum of the ecolo-
gical processes, and/or capacity to use different substrates developed by
the organisms of a community” (Insam et al., 1989). Emmerling et al.
(2002) and Wellington et al. (2003) report that if microbial genetic
diversity assesses a latent diversity, which may not be expressed,

functional diversity is related to the actual activities resulting from that
potential so that “functional rather than taxonomic diversity may pro-
vide greater insight to microbial roles in ecosystems” (Zak et al., 1994).

Over the last 10 years, the scientific literature provided a great
number of papers aimed to assess microbial functional diversity as an
important ecological indicator to monitor and assess soil quality
changes in different pedoclimatic conditions, land uses and human
pressure levels (e.g. management practices) (Bardgett and van der
Putten, 2014; Griffiths et al., 2016).

To measure the activity and diversity of the microbial community a
number of methods can be applied, to cite few of the most common
approaches: (i) catabolic activity investigated by Biolog™-plates
(Garland and Mills, 1991; Rutgers et al., 2016), (ii) respiration of dif-
ferent substrates as investigated by the MicroResp™ method (Campbell
et al., 2003; Chapman et al., 2007; Creamer et al., 2016a) and (iii)
enzyme activities (Nannipieri et al., 2012; Hendriksen et al., 2016).

Although all methodological approaches are reliable and sensitive,
few studies have aimed to understand their effectiveness to dis-
criminate microbial functional diversity in relation to soil organic C and
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pH as the main properties being affected by land use and management
practices, anthropic impact and other pedogenic factors. To achieve this
goal, a large number of case studies covering different land use cate-
gories is necessary. In this study, about 200 measurements of microbial
functional diversity obtained over a broad spectrum of key soil prop-
erties and across different land uses and management, were selected.
Furthermore, microbial functional diversity obtained through enzyme
activities (EA) and CLPP-MicroResp (MR), was synthetically re-
presented by the Shannon index (H’) that transforms the obtained re-
sults to a comparable range of values deriving from the same mathe-
matical model. The Shannon index is a comprehensive indicator of
microbial species, individual numbers and evenness, or distribution of
the enzyme activities and is influenced by richness of community spe-
cies (Bending et al., 2002; Li et al., 2007).

The aim of the present study was therefore to: i) assess the efficacy
of both methods in capturing differences among the different land use
categories when different levels of pH and TOC are considered, ii) ex-
plore, through a quantile regression approach, the possible relation-
ships between each of the two methods and selected explanatory vari-
ables (TOC, land use category, pH).

2. Materials and methods

2.1. Experimental design, sites and soil categories

The results presented in this paper have been obtained performing
additional statistical analyses on data collected in the Laboratory of
Chemistry and Biochemistry, University of Tuscia, Viterbo, Italy during
the last 6 years (2010–2016). Microbial functional diversity was mea-
sured, by means of enzyme activities and CLPP-MicroResp™ technique,
in a wide range of soils analysed within different research projects.
Most of the sampling sites are located within the Mediterranean cli-
matic area. Other climatic areas are the monsoon one for the
Bangladesh case study, the temperate one for Switzerland, oceanic for
United Kingdom and boreal for Sweden. All soils represent a broad
spectrum of key soil properties across different land use categories,
wide range of soil pH and soil organic carbon content (TOC) (Table 1).

The soils were related to 15 case studies, each one including dif-
ferent treatments, with the aim to separate diverse land uses and/or
specific conditions. For this purpose, three groups were identified: F
(forest soils, 4 case studies), A (agricultural soils, 5 case studies) and EC
(extreme conditions, 6 case studies). The case studies related to forest
soils (F) included different management practices, lithological sub-
strates, afforestation and chronosequences. The soils under agricultural
land use (A) were characterized by different managements and/or
agricultural practices such as: organic, biodynamic, conventional
cropping systems, tillage/no tillage and natural green cover/no cover.
The third category (EC) included soils with peculiar characteristics due
to either pedo-climatic conditions (saline environments, natural arsenic
contamination in rice paddies and highly calcareous soils) or to heavy
anthropic impact (thallium contamination, a multi-element con-
taminated dump, arsenic contaminated mine) (Table 1).

2.2. Soil sampling

All soils were sampled at 0–20 cm depth during the dry season
(spring/summer), air dried, sieved at 2–mm mesh and preserved at
room temperature. Then, prior to biochemical analyses, soil moisture
content of air dried samples was adjusted to 60% of their water holding
capacity and soils were re-conditioned for 10 days.

2.3. Soil analyses and methodologies

The total organic carbon (TOC) was determined by combustion of
sample in an oxygen-enriched atmosphere and detection and quantifi-
cation of CO2 evolved by infrared detector using the Shimadzu TOC Ta
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VCSH analyzer while soil pH was measured on sieved soil suspended in
a solution of deionised water in 1:2.5 ratio (w/v). The pH was measured
in the supernatant with a pH meter (pH 211, Hanna Instruments).

A total of 196 values of microbial functional diversity, assessed by
means of enzyme activities and CLPP-MicroResp, were used for this
study (Table 1). Enzymes were measured following Marx et al. (2001)
using fluorogenic methylumbelliferyl (MUF)-substrates. Soils were
analysed for cellobiohydrolase, β-1,4-glucosidase, α-1,4-glucosidase, β-
N-acetyl-glucosaminidase, β-1,4-xylosidase, acid-phosphatase, ar-
ylsulphatases and butyrate esterase which is considered a proxy of
endocellular activity (Wittmann et al., 2004). The relative fluorogenic
substrates, prepared with acetate buffer 0.5M pH 5.5, were: 4-MUF-β-D-
cellobioside, 4-MUF-β-D-glucoside, 4-MUF-N-acetyl-β-glucosaminide, 4-
MUF-α-D-glucoside, 4-MUF-phosphate, 4-MUF-7-β-D-xyloside, 4-MUF-
sulphate and 4-MUF-butyrate. Fluorescence (excitation 360 nm, emis-
sion 450 nm) was measured with an automatic fluorimetric plate-reader
(Fluoroskan Ascent) and readings were performed after 0, 30, 60, 120
and 180min of incubation at 30 °C. The results were expressed as
nmoles of product (MUF) of each enzymatic reaction released per g of
soil per unit of time in relation to a standard curve prepared with in-
creasing MUF concentrations and incubated at the same experimental
conditions.

The community level physiological profile (CLPP) was determined
using the MicroResp™ soil respiration system (James Hutton Ltd,
Aberdeen, UK) according to Campbell et al. (2003).

The 15 substrates used for MicroResp were: α-D-glucose, D-
Galactose, D-fructose, L-arabinose, L-leucine, L-arginine, Glycine, L-as-
partic acid, γ-amino-butyric and glutamic acid, three carboxylic acids:
citric acid, oxalic acid and L-ascorbic acid, and two phenolic acids:
vanillic and syringic acid. The emission of CO2 by the microbial bio-
mass was estimated using a colorimetric method (microplate spectro-
photometer) before and after 6 h of incubation at 28 °C. The absorbance
was read at 595 nm. At the end the absorbance was normalised for any
difference recorded at time zero and then converted to% CO2 using the
formula y=A+B/(1+D×Ai) where Ai is the normalised 6hr data.
The formula is for a linear-to-linear (rectangular hyperbola) standard
curve fit obtained by means of a calibration procedure taking into ac-
count the spectrophotometer used, the different soils and incubation
conditions as reported in the MicroResp technical manual. In our ex-
perimental conditions the constants of the equation were: A: −1,62, B:
−4,85 and D: −8,1. The% CO2 was converted to μg C-CO2 g−1 h−1

production rate using gas constant, T °C, headspace volume, soil dry
weight (d.w.) and incubation time. The SEI (Synthetic Enzymatic Index)
and SIR (Substrate Induced Respiration) for all soils within the three
categories (F, A and EC) have been calculated as synthetic measures of
microbial functional capacity. Both SEI and SIR represent the total
microbial functional capacity expressed as sum of all enzymatic activ-
ities and of induced respiration of all substrates, respectively.

Microbial functional diversity was assessed calculating the Shannon
diversity index (Kennedy and Smith, 1995) corresponding to the en-
tropy concept defined by: H’=− ∑ pi * ln pi (Shannon and Weaver,
1949; Spellerberg and Fedor, 2003), where pi is in turn: for H’EA, the
ratio of the activity of a particular enzyme to the sum of all enzymatic
activities while for H’MR it is the ratio of the respiration rate of each
single C-substrate to the sum of all substrates. Shannon diversity index
is related to the entropy of a system and when applied as a measure of
microbial functions entropy, may express the heterogeneity of soil or-
ganic substrates availability and microbial processes (Marinari et al.,
2013). Since the eight enzymes and the 15 substrates here tested did
show activity in all the analysed samples, then, in this work, the di-
versity recorded reflects only the “evenness” or distribution of the en-
zyme activities or ability to use the different substrates (Bending et al.,
2002; Rodríguez-Loinaz et al., 2008).

2.4. Statistical analyses

The analysis of all collected data was carried out into various steps.
At first, with the aim to compare the two indexes, a standardization due
to the existing differences in the range of H’EA and H’MR possible/
admissible values was performed by transforming the original indexes
into two new variables each one with mean equal to zero and variance
equal to 1. As usual, the procedure was carried out by subtracting the
variable mean (i.e. the mean value of H’EA and H’MR, respectively)
from each observation and then dividing by its own standard deviation
(each one obtained from the original indexes). As a property of stan-
dardized (z-scores) values, the standardized distributions maintain the
same shape (i.e. in terms of skewness and kurtosis) of the two original
distributions and the transformation does not change the location of
any observation score relative to others in the distribution. From now
on, all the statistical analyses were carried out on the two standardized
distributions.

The descriptive analyses provided a clear picture of the distribution
of the two indexes (H’EA and H’MR) as well as information about the
shape of the two distributions. Moreover, rank correlation measures
and test performed by using the Spearman correlation enabled to
evaluate if, and to what extent, the two methodological approaches
(EA, enzyme activities and MR, MicroResp™) used to evaluate soil mi-
crobial functional diversity are related.

The Kruskal-Wallis non-parametric test was used to test if and to
what extent the two indexes distinguished the various land use cate-
gories in relation to TOC and pH ranges.

By considering the asymmetry of the two distributions (e.g. stan-
dardized H’EA and H’MR respectively, as shown in Fig. 2) as well as the
results of the Shapiro-Wilk normality test, we analysed the existence of
association between each of the two measures and selected covariates
by using Quantile Regression Models (QRMs). In fact, these types of
regression models offer the possibility to highlight how the effect of the
selected covariates, in this case TOC content, pH and land use category,
changes throughout the entire distribution of the dependent variable.
To estimate the relationships (in terms of association) between the
dependent variables and the set of selected covariates, the classical OLS
(Ordinary Least Squares) regressions could be applied. However, data
obtained from experimental collection tend to be skewed so that these
models were not able to describe the “correct” relationships. Moreover,
QRMs are more robust to the presence of outliers and can be consistent
under weaker stochastic assumption than with least-squares estimation
(Cameron and Trivedi, 2005; Koenker, 2005).

Referring to the soil context, the application of QRMs has important
advantages. Firstly, QRMs can help to explore if the existing differences
observed between the two measures can be attributed to different ef-
fects played by the explanatory variables at the various quantiles.
Secondly, it can be interesting to understand what happens throughout
the entire distribution of the two measures (H’EA and H’MR) and at
their extremes.

We estimated two QRMs which assumed the dependent variable to
be: (i) H’EA and (ii) H’MR respectively. In both models the set of cov-
ariates includes factors describing: the land use category (distinguished
into Forest, Agricultural and Extreme soil Conditions), the levels of pH
and TOC. Among the soil properties that mostly affect microbial bio-
mass activity and diversity, TOC and pH were chosen as covariates to
explain H’ index variability (Creamer et al., 2016b; Fierer and Jackson,
2006; Constancias et al., 2015). In this study, soils were grouped into
three categories in relation to TOC content: i) low: for TOC<1.5%; ii)
medium TOC<1.5–3> ; iii) high: for TOC ≥3%. Similarly, soils were
grouped into three categories in relation to pH values: i) < 6.5 slightly
acid – very strongly acid, ii)< 6.5–7.4>neutral, iii) > 7.4 slightly
alkaline – moderately alkaline. STATA software (STATA 13.2 edition)
was used for statistical analyses. Three distinct levels of significance
were considered for the estimated coefficients and are reported in the
model: a value of p < 0.001 (indicated in the tables of results with
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***), emphasizing strong relationships between the explicative variable
of interest and the dependent variable significant at 0.1% level; the
value of p < 0.01 (indicated in tables of results with **) indicates a
relationship significant at 1% level and finally a value of p < 0.05
(indicated in the tables of results with *) emphasizing a relationship
between the variables significant at 5% level.

3. Results

Fig. 1 shows the functional capacity of soil microbial biomass cal-
culated as the SEI and SIR for all soils within the three categories (F, A
and EC). Soils characterized by extreme conditions showed the highest
level of variability – including upper outliers – for SEI (ranging from 42
to 11,800 nmoles MUF g−1 h−1), while the functional capacity of forest
soils showed a high level of dispersion for SIR (ranging from 0.9 to
177 μg CO2 g−1 h−1). Agricultural soils show, for both methodological
approaches, a smaller level of variability.

Fig. 2 shows the distribution of the two standardized indexes values
H’EA and H’MR, respectively, over the 196 values of microbial func-
tional diversity. The two distributions (expressed in terms of z-scores)
are positively skewed and leptokurtic – as emerged by the descriptive
statistics reported in Table 2 – and significantly different from nor-
mality as confirmed by the Shapiro-Wilk W and Shapiro-Francia W’ test.

The Spearman rank correlation, verifying the similarity of the or-
derings of the data when ranked according to each of the measures,
showed that the two measures are not related for measuring microbial
functional diversity (p-value=0.0987) (Table 3). However, by

distinguishing rank correlation according to the land use category, we
found a moderate and significant level of inverse rank correlation (p-
value= 0.0073) when the two indexes refer to soil of type A. No sig-
nificant rank correlation was found between the two measures for soil
type EC and F (p-value=0.6534 and p-value=0.8727 respectively)
(Table 3).

According to the results of Kruskal-Wallis test, both H’EA and H’MR
distinguished in different ways the various soils when TOC or pH ranges
were considered (Table 4). Thus, according to the obtained p-values
H’MR showed a slightly higher discriminatory potential than H’EA.
H’MR, in fact, was significantly effective at low TOC ranges (< 1.5%)
where H’EA was not. On the other hand, both methods failed to dis-
criminate in alkaline soils (pH values≥ 7.4).

Fig. 1. Boxplot of microbial functional capacity measured by means of enzyme activities
and CLPP-MicroResp. a) SEI (synthetic enzymatic index) and b) SIR (substrate induced
respiration) distributions in the three soil categories (F, forest, A,agricultural and EC,
extreme conditions soils).

Fig. 2. Distribution of the two standardized indexes: a)H’EA and b) H’MR.

Table 2
Descriptive statistics of the two standardized measures. H’EA and H’MR: Shannon di-
versity index calculated by means of enzyme activities and MicroResp, respectively, over
196 soil samples.

Measure Min q0.25 q0.50 q.0.75 Max Skewness Kurtosis

H’EA −3.940 −0.451 0.039 0.754 1.953 −0.851 4.279
H’MR −3.567 −0.242 0.382 0.651 0.933 −1.746 5.506

Table 3
Spearman rs values for both standardized indices H’EA and H’MR calculated for all data
and within the three soil categories F, A and EC soils. ns: not significant, **p < 0.01.

All data (F) (A) (EC)

H’EA – H’MR −0.1183 ns −0.0273 ns −0.3180** −0.0482 ns
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The analysis of the potential relationships between each of the
measures (H’EA and H’MR) and the selected variables (land use, TOC
and pH) was carried out by referring to the quantile regression model
(QRM), which enabled analysis of the effect of the covariates
throughout the entire distribution as well as at the extremes. Table 5
shows the estimation results of regression models at quantiles 0.25,
0.50 and 0.75.

Focusing on TOC content we only found a negative association at
quantile 0.75 (p-value < 0.05) between H’EA and high level of TOC
(equal or greater than 3%). On the other hand, pH levels are negatively
related to the H’EA measure in the lower part of the distribution (e.g at
quantile 0.25 of the dependent variable H’EA, p-value < 0.01) while a
positive relationship was observed with high levels of pH in the highest
quantile of the distribution (e.g. for high values of the dependent
variable H’EA). Furthermore, a positive relationship was found between
medium level of pH (values ranging between 6.5 and 7.4) and H’MR in
the middle part of the distribution (quantile 0.50).

The land use category is a key factor distinguishing the values of the
two measures. For H’EA the relationship is positive and strongly sig-
nificant at quantiles 0.25 and 0.75 for land use category F (forest soils)
while a negative relationship with agricultural land use category was
observed at quantiles 0.50 and 0.75. At the same time, we observed
positive and significant relationships between the values of H’MR and
agricultural land use category at all different quantiles throughout the
entire distribution while forest soil only at 0.75 quantile (Table 5).

4. Discussion

In this study, a large data set of 196 values of Shannon diversity
index, calculated from data of enzyme activities and CLPP-MicroResp
techniques, was used. Griffiths et al. (2016) recently included both
techniques in a list of 18 potential, powerful indicators aimed to
monitor soil biodiversity and ecosystem function across Europe.

The first aim of this paper was to assess the relative sensitivity of
each methodological approach in capturing differences among the land
use categories when different levels of pH and TOC are considered.

The Kruskal-Wallis test showed that both methods were able to
highlight differences among land use categories at almost all ranges of
TOC and pH. However, while both of them failed to discriminate in
alkaline soils (pH > 7.4), only MicroResp was completely effective
along the whole TOC gradient, including low TOC values (< 1.5%).
This result might point to MicroResp as a more powerful tool for
evaluating microbial functional diversity, particularly in oligotrophic
environments where the addition of easily available organic C sources
(represented by the different substrates) may stimulate microbial re-
spiration. Conversely, enzyme production is not similarly stimulated as
it requires a higher energetic expense (Burns and Dick, 2002). In studies
aimed to evaluate the effect of land use change on microbial functional
diversity, the CLPP-MicroResp approach can be thus suggested as soil
microbial catabolic evenness among various land-uses is usually related
to differences in organic C pools (Degens et al., 2000). Creamer et al.
(2009) also reported that the MSIR (multi substrate induced respira-
tion) technique resulted in a much more distinct and relatively con-
sistent pattern of separation between the tested soils with respect to
enzyme activities. The lack of potential for both techniques to dis-
criminate among different land uses in alkaline soils (pH > 7.4) may
be due to the fact that the interrelationship between soil pH and mi-
crobial diversity may be lost (Fierer and Jackson, 2006) or even de-
creased (Griffiths et al., 2011) at soil pH values higher than 7.

In this study, no correlation was found between H’EA and H’MR all
over the data collected. Moreover, an opposite behaviour of the two
indexes was found in agricultural soils where the significant (p < 0.01)
correlation coefficient was negative. This result confirms what was
previously observed regarding oligotrophic environments characterized
by lower organic matter content, such as agricultural soils. In fact, as
reported by Lagomarsino et al. (2011), the microbial functional

Table 4
Results of Chi-squared statistics Χ2 and p-values obtained with Kruskal-Wallis rank test on
soil microbial functional diversity indices (H’EA and H’MR) among the three land use
categories within restricted classes of total organic carbon (TOC) and pH. P values are
reported in parentheses.

TOC values H’EA H’MR

Low: TOC < 1.5% 2.202 (0.333) 11.039 (0.004)
Medium: 1.5≤ TOC < 3% 7.640 (0.022) 6.272 (0.043)
High: TOC≥ 3% 4.431 (0. 035) 7.150 (0. 007)

pH values

pH < 6.5 11.843 (0.003) 8.971 (0.011)
6.5≤ pH < 7.4 13.867 (0.001) 30.998 (0.000)
pH≥ 7.4 1.046 (0.306) 2.517 (0.113)

Table 5
Estimation results of quantile regression models (QRMs) between soil microbial func-
tional diversity indices (H'EA and H'MR) and the selected variables (land use category:
forest soils - F, agricultural soils - A, extreme conditions soils - EC; pH and total organic
carbon ranges) at quantiles 0.25, 0.50, 0.75. SE= standard error, * Significant at 5%, **
1% and *** 0.1% level.

H’EA H’MR

Coef. SE Sign. Coef SE Sign.

Quantile 0.25
TOC values (ref.

Low: < 1.5%)
Medium: 1.5≤ TOC < 3 0.027 0.120 0.505 0.338
High: TOC≥ 3% 0.004 0.150 0.744 0.436

pH (ref. pH < 6.5)
6.5≤ pH < 7.4 −0.177 0.077 ** 0.295 0.183
pH≥ 7.4 −0.871 0.254 ** −0.471 0.343
Land use category (ref. EC)
F 0.462 0.160 ** 0.821 0.417
A 0.193 0.175 0.996 0.497 *

Constant −0.487 0.125 *** −1.276 0.426 **

Quantile 0.50
TOC values (ref. Low:< 1.5%)
Medium: 1.5≤ TOC < 3 −0.197 0.183 −0.043 0.097
High: TOC≥ 3% −0.583 0.340 −0.0.31 0.271

pH (ref. pH < 6.5)
6.5≤ pH < 7.4 0.066 0.259 0.213 0.088 *
pH≥ 7.4 0.417 0.342 −0.060 0.176

Land use category (ref. EC)
F 0.415 0.305 0.418 0.230
A −0.377 0.180 * 0.259 0.114 *
Constant 0.260 0.307 0.171 0.120

Quantile 0.75
TOC values (ref. Low: < 1.5%)
Medium: 1.5≤ TOC< 3 −0.001 0.142 0.008 0.072
High: TOC≥ 3% −0.549 0.256 * −0.070 0.136

pH (ref. pH < 6.5)
6.5≤ pH < 7.4 −0.008 0.233 0.079 0.073
pH≥ 7.4 0.527 0.235 * −0.096 0.116

Land use category (ref. EC)
F 0.422 0.192 ** 0.239 0.111 *
A −0.703 0.136 *** 0.160 0.080 *

Constant 0.804 0.246 ** 3.212 0.414 **

Notes: * p < 0.05; ** p < 0.01;***p < 0.001.
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diversity determined by means of the enzymatic pattern is affected by
land use showing an increase along a gradient of soil organic matter. In
the same paper the authors reported an inverse relationship between
microbial functional diversity and the catabolic response per unit of
biomass expressed by the metabolic quotient (qCO2).

The lack of correlation between H’ by means of enzymes and CLPP-
MicroResp suggests that the two techniques may assess sequential steps
of decomposition processes, even if in this meta-analysis the product of
most selected enzymatic reactions did not represent the substrates used
to test CLPP-MicroResp. Enzymatic hydrolysis focuses on the break-
down of complex organic polymers, which not necessarily leads to the
complete mineralization of substrates but can also lead to anabolic
pathways for biosynthetic processes, polymerization, condensation (e.g.
humification, interaction with mineral colloids). Conversely, CLPP-
MicroResp measures the complete mineralization of simple and com-
plex organic compounds to CO2, which represents the final step of de-
composition process. Therefore, in our opinion, a comprehensive as-
sessment of microbial functional diversity can be provided by the
integration of both techniques. For this reason, they can be considered
complementary components of microbial functional diversity.

Moreover, to further explain the lack of correlation between the two
methods, we should keep in mind that soil enzymes include the con-
tribution, considerable in most cases, of the immobilized fraction
(humus-clay bound enzymes) (Nannipieri et al., 2012). This fraction is
considered a permanent bio-catalytic property of the soil, not ne-
cessarily linked to the living biomass. Immobilized enzymes may re-
present soils’ background hydrolytic potentials, established and stabi-
lized during time, and representing their resilient capacity (Ceccanti
et al., 2008). To date, no methods are available to distinguish between
the extracellular activities of stabilized enzymes from that of enzymes
associated with active cells. Such separation is important because only
enzymes associated with active cells contribute to microbial activity.
The stabilized extracellular fraction is no more related to microbial
metabolism and can persist in soil under unfavourable conditions for
soil microorganisms (Nannipieri et al., 2012). Therefore, enzyme ac-
tivities, and the functional diversity measures derived from using this
methodology, inform on the general soil biological functioning in-
cluding not only the actual living microbial activity but also the past
biochemical activity still operating within soil matrix. Conversely,
CLPP-MicroResp has been considered a direct measurement of micro-
bial communities’ catabolic profile providing an instant photograph of
microbial physiology (Lagomarsino et al., 2007).

The QRM helped to understand if, and to what extent, the role of
selected covariates (land use, TOC and pH) changes throughout the
entire distribution of each dependent variable (H’EA and H’MR). It is, in
fact, known that microbial functions are largely dependent on organic
substrates availability and soil reaction (Bardgett and van der Putten,
2017). The QRM was found to be an effective statistical approach to
analyse microbial functional diversity response in relation to the se-
lected covariates, particularly at the lowest (0.25) and highest (0.75)
quantiles.

In this study QRM showed that both diversity indexes depended
more on soil pH than on TOC content indicating soil reaction as the
property mostly affecting microbial diversity (Zhalnina et al., 2014). In
fact, only when TOC values were above 3% the H’EA was negatively
affected suggesting that the increase of soil available organic com-
pounds may cause a negative feedback on microbial hydrolytic reac-
tions. On the contrary, it was more evident the relationship between pH
and both indices. H’EA was negatively related to pH in the 0.25 quantile
indicating that low levels of this index are more sensitive to soil pH
variations (Griffiths et al., 2011). Conversely the dependence of both
indexes (H’ MR and H’EA) on pH was positive at 0.50, and 0.75
quantiles, respectively. Soil pH variations can induce, more than the
mere TOC content, significant changes within microbial biomass
structure in terms of species and related functional patterns. Microbial
biochemical processes are strictly dependent on pH values that control

the majority of the reactions occurring in the soil. Fierer and Jackson
(2006) and Lemanceau et al. (2015) reported soil pH as the best pre-
dictor of microbial diversity and richness affecting consequently mi-
crobial functions.

However, the nature of this relationship is controversial. Griffiths
et al. (2011) report that a decline of β-diversity was observed at in-
creasing pH in a spatial assessment of soil bacterial community profiles
across Great Britain. Fierer and Jackson (2006), in a similar study
performed across North and South America, showed a unimodal dis-
tribution of bacterial diversity, reaching possibly a plateau at near
neutral pH.

Finally, the influence of the different land use categories was evi-
dent in some parts of the distribution for both indexes, especially at
0.75 quantile. In particular, the effect of forest soils was always posi-
tive, in most cases significant, for both indexes at all quantiles, con-
firming the strict relationship existing between the forest environment
and soil microbial diversity (Creamer et al., 2016b).

5. Conclusions and future perspectives

This study demonstrates that both methods, enzyme activities and
MicroResp, are reliable ecological indicators to assess soil microbial
functional diversity. However, since no correlation was found between
the diversity indexes H’EA and H’MR, it was hypothesized that the two
methods may target complementary components of microbial func-
tional diversity.

The results lead to the following conclusions: i) both methods were
effective in capturing differences among various land use categories
although MicroResp was more sensitive at low levels of soil organic
matter, ii) the QRM approach allowed a more detailed analysis along
the distribution of the diversity indexes (H’EA and H’MR) with H’EA
showing a more significant dependence on the selected variables.

This study can lay the foundations to further studies aimed to assign
an ecological significance to the assessment of microbial functional
diversity.
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