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Abstract: Urine specimens represent a novel and non-invasive approach to isolate patient-specific stem
cells by easy and low-cost procedures, replacing the traditional sources (muscle/skin biopsy/adipose
tissue) obtained with invasive and time-consuming methods. Urine-derived stem cells (USCs) can be
used in a broad field of applications, such as regenerative medicine, cell therapy, diagnostic testing,
disease modelling and drug screening. USCs are a good source of cells for generating induced
pluripotent stem cells (iPSCs) and importantly, they can also be directly converted into specific cell
lines. In this review, we show the features of USCs and their use as a promising in vitro model to
study genetic diseases.
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1. Introduction

Stem cells represent a precious research tool used in different research, pre-clinical and clinical
studies [1]. Stem cells are undifferentiated cells with self-renewing capabilities and can differentiate
into multiple cell lineages.

Based on the differentiation features, stem cells can be classified in: Pluripotent cells like the
embryonic stem that can give rise to any cell types of all three embryonic lineages and grow indefinitely
in culture; and multipotent or unipotent cells like the adult stem cells that can differentiate into a
limited number of mature cell types [2] (Figure 1).

Despite human embryonic stem cells (hES) offering huge opportunities for new therapies in the
treatment of diseases, their use has been highly discussed, because (i) they are derived from early
embryos, and (ii) they activate immune responses and/or rejection.

Adult stem cells (also known as somatic stem cells) can be found after embryonic development in
tissues such as brain, blood, skeletal muscles, bone marrow, adipose tissue, skin and liver. They remain
in a quiescent and undifferentiated state until a disease or tissue injury activates their proliferation in
order to repair the damaged tissue in which they reside and maintain tissue homeostasis.

Mesenchymal stem cells (MSCs) are an example of multipotent adult stem cells characterized by
their adherence to plastic surfaces with an extensive proliferation capacity in vitro as well as in vivo.
They are called mesenchymal stem cells because they can differentiate into various mesoderm-type
cells such as osteoblasts, chondrocytes, myocytes, adipocytes [3].

Satellite cells (SCs) of skeletal muscle are an example of unipotent cells involved in muscle
regeneration. SCs are located between the basal lamina and plasma membrane of the muscle fibres
(sarcolemma) and are normally quiescent in adult muscle until a stimulus or damage takes place and
activates SCs to trigger the formation of new muscle fibres [4,5].

J. Clin. Med. 2019, 8, 627; doi:10.3390/jcm8050627 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-5619-628X
http://www.mdpi.com/2077-0383/8/5/627?type=check_update&version=1
http://dx.doi.org/10.3390/jcm8050627
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2019, 8, 627 2 of 10

The main issues of adult stem cells are both the limited number of cell types that can be obtained
and the traditional methods that are used to harvest them, especially when paediatric patients are
involved. The generation of induced pluripotent stem cells (iPSCs) provided a great opportunity to
overcome the ethical issues related to the hES cells and the limitation related to the proliferation rate of
adult stem cells [6].
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Figure 1. Classification of stem cells. Stem cells can be classified according to their plasticity in:
Totipotent that give rise to all embryonic and extraembryonic cell lines; pluripotent that can produce all
embryonic cell types; multipotent that differentiate to a great number of cell types; oligopotent that
have the ability to differentiate into only a few cell lineages; and unipotent that give rise to only one
specific cell type.

Different reprogramming methods have been developed to convert somatic cells into iPSCs as a
tool for different clinical and research applications. The iPSCs display self-renewal and pluripotency
capacities and they can be generated from different cell types with various reprogramming efficiency
based on the cell lines [7,8].

Despite their potential utility, some limitations regarding low reprogramming and differentiation
efficiency, long-term manipulation, tumorigenicity and invasive procedures required for collecting
most of them, prevented the use of iPSCs in the clinical application [9].

Ideally, the best source of cells should be obtained universally from healthy subjects or patients of
any age, gender and ethnic origin by non-invasive, simple and low-cost procedures [10].

A subpopulation of urine-derived stem cells (USCs), recently identified in urine samples, is
considered a promising cell resource for generating autologous stem cells to model disease because of
their non-invasive, easy and low expense methods of isolation. USCs can be isolated from human urine
as well as animal urine and show similar features of mesenchymal stem cells, which can potentially
differentiate towards osteocytes, chondrocytes, adipocytes, myocytes and endothelial cells [11].

2. Isolation and Characterisation of USCs

The collection and isolation of USCs from urine samples is an easy, quick, reproducible and
optimised method that allows urine cells to be obtained from healthy donors as well as from patients.

Several authors have described the isolation of USCs, albeit with slight differences mainly related
to the composition of the medium. Briefly, the general protocol includes the collection of urine (high
urine amounts give higher yields) followed by centrifugation and washing with phosphate buffered
saline (PBS). The cells are then cultured with medium in gelatin-coated 24-well plates [10,11] (Figure 2).

A critical step is the preservation of the urine after its collection, since the USCs can only survive
for a few hours without any preservation. Ideally, the USCs should be isolated immediately or within 4
h (from refrigerated urine) after the collection [12]. Lang and collaborators demonstrated that it is also
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possible to isolate USCs from 24-hour preserved urine using specific medium (solutions with 0.5%–10%
serum were the best environments for USCs during cold storage), and that the USCs maintain the
original stem cell properties such as shape, expression of MSCs surface markers, high telomerase
activity and normal karyotypes [13]. This method makes it easier for the distribution of urine samples
from clinical centres where cell isolation it is not available to sites where the isolation and cultures
of USCs can be done. This is a great opportunity for patients affected with diseases that hamper the
mobility of their transfer.
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Figure 2. Schematic overview of three methodological procedures for cell isolation from different sources.

As described above, the simple procedure requires only centrifugation, media and coating, and
for this reason the cost is very low (less than 80€ per sample), especially compared to a biopsy that
requires hospitalization, specialized physicians and surgical procedures [14].

The voided urine contains a heterogeneous population of cells and most of them are differentiated
cells that do not attach to the plastic plate. Only 0.1% cells in urine can attach in culture, although they
do not expand further after subculture, unlike the subpopulation of USCs [10].

Small colonies usually appear 7–15 days after plating (Figure 3a) and they possess a high
proliferative capacity (Figure 3b) with telomerase activity, long telomeres and low levels of
senescence-associated protein and apoptotic markers [15–17].
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Figure 3. Cell morphology of early adherent urine-derived stem cells (USCs) 15 days (a, P1) and 21
days (b, P4) after isolation from urine specimens.

The USCs carry a diploid set of chromosomes with normal karyotype also after several passages
and do not form teratomas in vivo [17].
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The USCs display expressions of MSCs surface markers such as CD166, CD105, CD13, CD54, CD73,
CD90, CD29 and CD49a with absence of hematopoietic surface markers CD14, CD34, CD45, CD31,
CD184 and HLA-DR [15,18–20]. In addition, the USCs are positive for pericyte (CD146) endothelial
(vWF), epithelial, smooth muscle (α-SMA, Desmin) and interstitial (c-Kit) markers [15,18].

Cultured USCs can differentiate into osteogenic, chondrogenic, adipogenic, myogenic, endothelial
(mesoderm) and neurogenic (ectoderm) lines in vitro [16,17,21].

Therefore, the morphology, phenotype and pluripotency features expressed by USCs resemble
the currently accepted biological characteristics of MSCs [21,22].

The possible origin of voided USCs may be the kidney, more specifically the glomerulus.
Indeed, cells obtained from female patients who received a sex-mismatched kidney transplant
showed the presence of the Y chromosome and expressed normal kidney cell gene and protein
markers [17]. In addition, voided USCs display similar morphology, cell phenotypes, growth patterns
and differentiation capacity of the USCs obtained from the upper urinary tract, suggesting they
originate from the upper urinary tract. Moreover, the USCs express CD146+/CD31− markers with
comparable expression levels of parietal cells and podocytes in glomerulus, while renal tubule epithelial
cells, bladder and ureter urothelial and smooth muscle cells are not detected [16].

3. Application of Urine-Derived Stem Cells in Genetic Diseases

Nowadays, there is growing interest in using urine as an in vitro model to study disease
mechanisms, to identify new biomarkers, to test compounds, and to use gene-editing approaches.
Investigating the molecular mechanisms that underlie the pathology is essential especially for diseases
where the genetic bases remain unknown or no cures are currently available.

Reprogramming techniques are often used to generate induced pluripotent stem cells (iPSCs)
from patient-derived urine cells since they possess a high level of reprogramming efficiency, up to
4% [18]. Direct reprogramming is another option to generate patient-specific cell lineages without the
iPSCs step, in order to reduce both costs and time required to obtain specific cell types and to enhance
the efficiency of the method.

In this section, the authors describe the potential application of urine-derived cells for studying
genetic diseases using native urine-derived stem cells (Section 3.1), direct reprogrammed urine cells
(Section 3.2), and urine-induced pluripotent stem cells (Section 3.3) (Table 1).

Table 1. Urine-derived cells can be used to generate differentiated cells for modelling genetic diseases.

Cellular Model Genetic Disease

Native urine-derived stem cells

Fabry disease
Inherited epidermolysis bullosa

Spinal muscular atrophy
Genetic kidney disorders

Direct reprogrammed urine cells (MyoD,
alginate microbeads-specific growth factors,
transcriptional factors-neurotrophic factors)

Limb Girdle Muscular Dystrophy
Duchenne Muscular Dystrophy

Wilson’s disease

Urine-induced pluripotent stem cells (iPSCs)

Hemophilia A
Familial hypercholesterolemia

Phenylketonuria
Down syndrome

Spinocerebellar ataxia
Paroxysmal kinesigenic dyskinesia

Cardiac diseases

3.1. Urine-Derived Cells as a Model to Study Genetic Diseases

For the first time, Slaats and colleagues demonstrated the potential employment of urine-derived
cells as a cellular in vitro model for diagnosis and pathophysiologic evaluation of patients with
Fabry disease (FD). Fabry disease is an X-linked lysosomal disorder caused by mutations in the
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alpha-galactosidase A (GLA) gene. The mutation causes a deficiency of the enzyme alpha-galactosidase
A (α-GalA), resulting in excessive deposition of globotriaosylceramide (Gb3) in enlarged lysosomes of
various cell types [23]. FD is a multi-organ disease and the kidney, heart and brain are predominantly
involved. The authors showed that USCs from FD patients can be used to measure α-GalA enzyme
activity, Gb3 levels, RNA levels and proteomic alterations. They found that the urine cells obtained
from FD patients exhibit a significant decrease of α-GalA enzyme activity compared to controls as well
as the accumulation of Gb3. Since the Gb3 measurements in urine resulted to be very inconsistent, the
possibility of measuring the enzyme activity in urinary cells could help in the Fabry disease diagnosis
and the monitoring of therapies using a non-invasive material. In addition, the proteomic analysis
showed the upregulation of lysosomal proteins in patient samples compared to controls, due to α-GalA
impairment, and these findings could be used as a first step in evaluating prognostic biomarkers in
patients’ urine [24].

Inherited epidermolysis bullosa (EB) is a group of heterogeneous genetic diseases caused by
mutations in at least 17 genes that encode for intracellular, transmembrane or extracellular proteins. EB is
characterised by fragile skin (formation of blisters, erosions and wounds) and mucous membranes [25].
Currently, there is no cure for EB, although progress has been made in testing novel treatments in gene
therapy, cell therapy and bone marrow transplantation fields [26]. Stem cells play a central role in
regenerative medicine and the isolation of them from patients affected by severe genetic skin diseases
like EB could be extremely painful and not feasible. Therefore, Schosserer and collaborators isolated
and characterised USCs from patients with EB. They confirmed the expression of typical markers
of MSC, the ability to differentiate into osteogenic, chondrogenic and adipogenic cell lines, and the
immune-modulatory properties. These results suggest a promising non-invasive way to obtain stem
cells for therapeutic approaches and to improve medical conditions of patients with EB [22].

Urine cell cultures were also established from spinal muscular atrophy (SMA) patients. SMA is a
recessive disorder caused by the homozygous deletion of motor neuron 1 gene (SMN1). The application
of patient-derived urine cells has been tested in order to replace the muscle or skin biopsy procedures
that are considered unacceptable for young patients with SMA. Urine cells derived from SMA
patients carried SMN gene mutations and showed low levels of SMN protein compared with controls.
The treatment with both histone deacetylase inhibitors and morpholino modified antisense oligo
upregulated the levels of SMN, indicating that SMA patient-derived urine cells may be used as a tool
for molecular studies and for screening of potential compounds and drugs to treat SMA [27,28].

Lastly, human urine-derived cells can be used as an innovative tool for modelling of genetic
kidney disorders and to complement the diagnosis of inherited renal diseases through the study of the
functional effects caused by potentially pathogenic mutations with unknown significance [29].

3.2. Direct Reprogramming of Urine-Derived Cells

The direct reprogramming of urine cells in myogenic lineage has been applied to study muscle
diseases. Two works published in 2016 showed that USCs can be efficiently reprogrammed into
myogenic cells through the viral delivery of the muscle transcription factor MyoD [15,30]. This
strategy was successfully applied to generate myogenic cells from: (i) USCs derived from healthy
donors, (ii) two patients with limb girdle muscular dystrophy type 2C (LGMD2C), which results
from loss of function mutations in the gene encoding γ-sarcoglycan, (iii) two Duchenne muscular
dystrophy (DMD) patients with frameshift deletions of exons 46–47 and exon 45, respectively. Both
works demonstrated the full-length DMD transcript expression in reprogrammed healthy MyoD-USCs
and the truncated DMD transcript expression in the reprogrammed MyoD patient cells. In addition,
Falzarano et al. revealed the presence of dystrophin transcript also in native USCs, not MyoD
reprogrammed, from both controls and a DMD patient. As expected, dystrophin protein was detected
only in reprogrammed control cells but not in DMD patient cells, due to the frameshift mutations
that lead to the absence of dystrophin protein. In order to determine the feasibility of this model
to test drugs and new therapeutic approaches, the MyoD-USCs were also used to test the efficacy
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of both antisense oligoribonucletides (AONs) treatment and CRISPR/Cas9 editing. Both strategies
demonstrated the ability to induce exon skipping with AON and to edit the genome with CRISPR/Cas9
in urine-derived cells. Thus, the MyoD reprogramming in urine cells is able to recapitulate the primary
LGMD and DMD phenotypes in vitro [15,30].

A recent study reported a novel direct-reprogramming system of human USCs into myotubes.
The authors developed a retroviral doxycycline (Dox)-regulated inducible MYOD1 expression system for
the selection of cells by antibiotic (puromycin) and for the regulation of cell proliferation/differentiation
after MyoD transduction. Moreover, the 3-deazaneplanocin A hydrochloride (DZNep), a histone
methyltransferase inhibitor, was used to successfully promote the differentiation of USCs into myotubes.
Lastly, the authors assessed if the model was suitable for exon-skipping studies in USCs derived from
DMD patients. They showed that AONs targeting DMD exons, including 44, 50, 51 and 55, induced
the skipping of the specific targeted exon [31].

In this context, the USCs can be used as an alternative source to muscle and skin biopsies to explore
DNA, RNA and protein profiles for diagnostic and research purposes in neuromuscular diseases.

A different approach for the differentiation of USCs in skeletal myogenic lineage cells and
additionally in endothelial cells, is the use of alginate microbeads loaded with specific growth factors.
It has been demonstrated that the release of a combination of growth factors that induce myogenesis,
angiogenesis and innervation from microbeads can efficiently give rise to the differentiation of USCs in
muscular and endothelial cells in vivo, enhancing the revascularization and innervation and stimulating
resident cell growth [32].

The human urine cells can also be directly converted into functional neurons using a combination
of the five specific transcriptional factors Ascl1, Brn2, NeuroD, c-Myc and Mytl1, associated with
various neurotrophic factors. This method was applied to convert urine-derived cells from both healthy
donors and patients with Wilson’s disease (WD), a genetic disorder caused by mutations in the ATP7B
gene. The generation of neurons from non-neural lineages is a significant progress for the studies of
neurological diseases [33].

3.3. Urine-Derived Induced Pluripotent Stem Cells (iPSCs) to Study Genetic Diseases

Hemophilia A (HA) is an X-chromosome-linked, recessive, severe genetic disorder caused by the
deficiency or defective of factor VIII (FVIII), a clotting protein. Currently, two treatments are available
for HA, fixed dose FVIII prophylaxis or factor replacement therapies.

Although these therapies have been very successful, some limitations remain such as efficacy, cost,
availability, and side effects, indicating the need for new drugs and treatments. The most commonly
used models to study disease mechanisms and drug screening of HA were animals, including mice,
dogs and pigs, but, unfortunately, they did not mirror the human pathophysiology [34]. Jia and
collaborators provided a new in vitro model based on HA patient-specific iPSCs and iPSC-derived
hepatocyte-like cells [35]. They generated iPSCs from HA patients’ urine by integration-free episomal
vectors and then differentiated the iPSCs in functional hepatocyte-like cells that recapitulated the
phenotype of HA disease in vitro. This model will be useful for the screening of new drugs and for the
personalized treatment and cell therapy of HA patients [35].

Human urine-derived induced pluripotent stem cells (UhiPSCs), differentiated into hepatocyte-like
cells, were also validated as a tool to model PCSK9-mediated hypercholesterolemia. Familial
hypercholesterolemia (FH) is a major risk factor for coronary artery disease and, despite the progress
of pharmacological therapy, FH remains one of the main causes of mortality and disability. FH is
primarily caused by mutations of three genes: LDL receptor (Ldlr), apolipoprotein B (apoB) and
the proprotein convertase subtilisin/kexin 9 (PCSK9). Designing more efficient drugs is needed to
overcome the limitations of standard therapy. The urine specimens provided an attractive and useful
source of uhiPSC-derived hepatocytes for studying in vitro PCSK9 mutations and function, and for the
identification and validation of new PCSK9 inhibitors or modulators [36,37].
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UhiPSCs were also obtained from a patient with phenylketonuria (PKU). PKU is a biochemical
genetic disorder characterized by mutations in the phenylalanine hydroxylase (PAH) gene that catalyses
the conversion of phenylalanine (Phe) to tyrosine. The defect causes accumulation of phenylalanine in
the blood and brain, producing intellectual disability and other neurologic features [38]. A non-invasive
and integration-free approach has been developed to generate iPSCs from PKU urine-derived cells that
were differentiated into neurons. This model could overcome the issues associated to both the lack of
an appropriate disease model and the difficulty in obtaining neural cells. Moreover, the differentiation
of iPSCs into osteoblasts and osteoclasts could allow the study of mechanisms underlying bone
impairment in PKU in order to identify new targets and treatments [39].

The generation of iPSCs from urine samples is considered a promising tool for application in
down syndrome (DS) studies, a genetic disorder caused by trisomy 21 (TS21). T21-iPSCs have been
generated from patients with DS, and glutamatergic neurons and cardiomyocytes were obtained.

The application of iPSCs in modelling DS and other neurodevelopmental and neurodegenerative
disorders improve the possibility to have human cell-based models for drug screening [40].

Machado-Joseph disease (MJD), also known as Spinocerebellar ataxia type 3 (SCA3), is an inherited
neurodegenerative disease caused by a CAG repeat expansion in the region of the ATXN3 gene and
associated with severe clinical phenotype and premature death. Urine cells of a SCA3 patient were
successfully reprogrammed in iPSCs using the Sendai virus delivery system, providing a robust model
for studying the SCA3 pathogenesis, drug testing and gene therapy research [41].

UhiPSCs lines are also able to model the paroxysmal kinesigenic dyskinesia (PKD), a monogenic
movement disorder with autosomal dominant inheritance. Proline-rich transmembrane protein 2 gene
(PRRT2) is the causative gene of PKD, although the function of the protein produced from this gene
is unknown. UhiPSCs, obtained from a patient with PKD, maintained the disease specific mutation,
showed lower PRRT2 levels compared with the control and were successfully differentiated into
glutamatergic, dopaminergic and spinal motor neurons. Therefore, PKD-UhiPSCs could be a valuable
model to investigate the pathogenic mechanisms of PKD [42].

Furthermore, the UhiPSC-based approach has been the key for the generation of cell lines
dependent on patients’ genetic backgrounds in the field of cardiac diseases. Despite animal models
having improved both the understanding of the genetics underlying inherited cardiovascular disorders
and the development of treatments, the limitations due to interspecies differences have required
new reliable experimental models. Obtaining human cardiomyocytes is extremely difficult and the
feasibility of generating functional cardiomyocytes from UhiPSCs by a non-invasive method provides
a solid platform for further studies.

UhiPSCs from a patient with ventricular septal defects (VSDs) and heart failure (HF) showed
the retention of the mutation in the ryanodine receptor type 2 (RyR2), a gene that plays an important
role in HF progression. In addition, the UhiPSCs were directly differentiated using small molecules
in cardiomyocytes that showed spontaneous contraction and strong expression of cardiac-specific
proteins and genes [43].

Cells obtained from urine samples of a patient with a type 2 long QT (LQT2) syndrome, carrying
ion channel mutations, were reprogrammed in UhiPSCs and then differentiated into cardiomyocytes in
order to assess their benefit for studying cardiac arrhythmia phenotypes. UhiPS-derived cardiomyocytes
showed the expression of specific atrial/ventricular myofilament proteins and ion channels, and they
appeared electrically functional. This work demonstrates that UhiPS cells derived from patients
with ion channel mutations can be used as a model to differentiate in functional cardiomyocytes that
recapitulate cardiac arrhythmia phenotypes [20].

4. Summary and Conclusions

The cells derived from human urine samples possess unique features for the generation of
experimental in vitro models. They can be collected by completely non-invasive procedures that can be
applied universally to any gender, race and age. Importantly, there is a subpopulation of urine derived
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cells called urine-derived stem cells (USCs) that expresses markers of stemness, such as mesenchymal
surface markers, high telomerase activity and reprogramming factors. The USCs provide a useful
model for human diseases, including genetic disorders. The authors mentioned some examples of
applications of both patient-specific native USCs and UhiPSCs to study the mechanisms of genetic
disease. We described the feasibility of inducing the differentiation of urine-derived cells into skeletal
muscle, cardiac muscle, neuronal and hepatocytes cells and therefore, their ability to recapitulate the
muscular, cardiac, metabolic, neurodevelopmental and neurodegenerative disorders.

Urine cells can replace the MSC obtained from tissues via invasive ways and they can be employed
as a preservation method for both patient and healthy donor cells for the generation of a bio-bank for
research, therapy and transplantation applications [14].

Further studies are needed to better characterize the USCs model in clinical practice, to automate
the urine cell cultures and to make the UhiPSCs technology more scalable, even if a recent
study demonstrated the high-efficiency reprogramming of urine derived cells in UhiPSCs with
microfluidics [44].

In summary, the use of urine-derived cells offers a novel strategy for obtaining quantitative and
qualitative cells to model and study the molecular mechanisms of diseases, and they can be considered
a useful approach to further advance the field of regenerative technologies, including the creation of
organoid models for improving personalized therapy in renal diseases [45].
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2. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: past, present, and future. Stem Cell
Res. Ther. 2019, 10, 68. [CrossRef]

3. Nombela-Arrieta, C.; Ritz, J.; Silberstein, L.E. The elusive nature and function of mesenchymal stem cells.
Nat. Rev. Mol. Cell Biol. 2011, 12, 126–131. [CrossRef] [PubMed]

4. Pini, V.; Morgan, J.E.; Muntoni, F.; O’Neill, H.C. Genome Editing and Muscle Stem Cells as a Therapeutic
Tool for Muscular Dystrophies. Curr. Stem Cell Rep. 2017, 3, 137–148. [CrossRef] [PubMed]

5. Costamagna, D.; Berardi, E.; Ceccarelli, G.; Sampaolesi, M. Adult Stem Cells and Skeletal Muscle Regeneration.
Curr. Gene Ther. 2015, 15, 348–363. [CrossRef] [PubMed]

6. Montano, M. Model systems. In Translational Biology in Medicine; Woodhead Publishing in Biomedicine:
Sawston, UK, 2014; pp. 9–33.

7. Shi, L.; Cui, Y.; Luan, J.; Zhou, X.; Han, J. Urine-derived induced pluripotent stem cells as a modeling tool to
study rare human diseases. Intractable Rare Dis. Res. 2016, 5, 192–201. [CrossRef] [PubMed]

8. Steichen, C.; Si-Tayeb, K.; Wulkan, F.; Crestani, T.; Rosas, G.; Dariolli, R.; Pereira, A.C.; Krieger, J.E.
Human Induced Pluripotent Stem (hiPS) Cells from Urine Samples: A Non-Integrative and Feeder-Free
Reprogramming Strategy. Curr. Protoc. Hum. Genet. 2017, 92, 21.7.1–21.7.22. [PubMed]

9. Ji, X.; Wang, M.; Chen, F.; Zhou, J. Urine-Derived Stem Cells: The Present and the Future. Stem Cells Int.
2017. [CrossRef]

10. Zhang, Y.; McNeill, E.; Tian, H.; Soker, S.; Andersson, K.E.; Yoo, J.J.; Atala, A. Urine derived cells are a
potential source for urological tissue reconstruction. J. Urol. 2008, 180, 2226–2233. [CrossRef]

11. Wu, C.; Chen, L.; Huang, Y.Z.; Huang, Y.; Parolini, O.; Zhong, Q.; Tian, X.; Deng, L. Comparison of
the Proliferation and Differentiation Potential of Human Urine-, Placenta Decidua Basalis-, and Bone
Marrow-Derived Stem Cells. Stem Cells Int. 2018, 13, 11. [CrossRef]

http://dx.doi.org/10.1155/2014/516278
http://www.ncbi.nlm.nih.gov/pubmed/25120571
http://dx.doi.org/10.1186/s13287-019-1165-5
http://dx.doi.org/10.1038/nrm3049
http://www.ncbi.nlm.nih.gov/pubmed/21253000
http://dx.doi.org/10.1007/s40778-017-0076-6
http://www.ncbi.nlm.nih.gov/pubmed/28616376
http://dx.doi.org/10.2174/1566523215666150630121024
http://www.ncbi.nlm.nih.gov/pubmed/26122100
http://dx.doi.org/10.5582/irdr.2016.01062
http://www.ncbi.nlm.nih.gov/pubmed/27672542
http://www.ncbi.nlm.nih.gov/pubmed/28075482
http://dx.doi.org/10.1155/2017/4378947
http://dx.doi.org/10.1016/j.juro.2008.07.023
http://dx.doi.org/10.1155/2018/7131532


J. Clin. Med. 2019, 8, 627 9 of 10

12. Zhou, T.; Benda, C.; Dunzinger, S.; Huang, Y.; Ho, J.C.; Yang, J.; Wang, Y.; Zhang, Y.; Zhuang, Q.; Li, Y.; et al.
Generation of human induced pluripotentstem cells from urine samples. Nat. Protoc. 2012, 7, 2080–2089.
[CrossRef]

13. Lang, R.; Liu, G.; Shi, Y.; Bharadwaj, S.; Leng, X.; Zhou, X.; Liu, H.; Atala, A.; Zhang, Y. Self-Renewal and
Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours. PLoS ONE 2013,
8, e53980. [CrossRef]

14. Pavathuparambil Abdul Manaph, N.; Al-Hawwas, M.; Bobrovskaya, L.; Coates, P.T.; Zhou, X.F. Urine-derived
cells for human cell therapy. Stem Cell Res. Ther. 2018, 9, 189. [CrossRef]

15. Falzarano, M.S.; D’Amario, D.; Siracusano, A.; Massetti, M.; Amodeo, A.; La Neve, F.; Maroni, C.R.; Mercuri, E.;
Osman, H.; Scotton, C.; et al. Duchenne Muscular Dystrophy Myogenic Cells from Urine-Derived Stem
Cells Recapitulate the Dystrophin Genotype and Phenotype. Hum. Gene Ther. 2016, 27, 772–783. [CrossRef]
[PubMed]

16. Zhang, D.; Wei, G.; Li, P.; Zhou, X.; Zhang, Y. Urine-derived stem cells: A novel and versatile progenitor
source for cell-based therapy and regenerative medicine. Genes Dis. 2014, 1, 8–17. [CrossRef]

17. Bharadwaj, S.; Liu, G.; Shi, Y.; Wu, R.; Yang, B.; He, T.; Fan, Y.; Lu, X.; Zhou, X.; Liu, H.; et al. Multipotential
differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells
2013, 31, 1840–1856. [CrossRef] [PubMed]

18. Benda, C.; Zhou, T.; Wang, X.; Tian, W.; Grillari, J.; Tse, H.F.; Grillari-Voglauer, R.; Pei, D.; Esteban, M.A.
Urine as a source of stem cells. Adv. Biochem. Eng. Biotechnol. 2013, 129, 19–32. [PubMed]

19. Hea, W.; Zhub, W.; Cao, Q.; Shenb, Y.; Zhoub, Q.; Yub, P.; Liub, X.; Mab, J.; Lic, Y.; Honga, K. Generation
of Mesenchymal-Like Stem Cells From Urine in Pediatric Patients. Transplant. Proc. 2016, 48, 2181–2185.
[CrossRef]

20. Jouni, M.; Si-Tayeb, K.; Es-Salah-Lamoureux, Z.; Latypova, X.; Champon, B.; Caillaud, A.; Rungoat, A.;
Charpentier, F.; Loussouarn, G.; Baró, I.; et al. Toward Personalized Medicine: Using Cardiomyocytes
Differentiated from Urine-Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics
of Type 2 Long QT Syndrome. J. Am. Heart. Assoc. 2015, 4, e002159. [CrossRef]

21. Zhu, Q.; Li, Q.; Niu, X.; Zhang, G.; Ling, X.; Zhang, J.; Wang, Y.; Deng, Z. Extracellular Vesicles Secreted
by Human Urine-Derived Stem Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia.
Cell Physiol. Biochem. 2018, 47, 1181–1192. [CrossRef] [PubMed]

22. Schosserer, M.; Reynoso, R.; Wally, V.; Jug, B.; Kantner, V.; Weilner, S.; Buric, I.; Grillari, J.; Bauer, J.W.;
Grillari-Voglauer, R. Urine is a novel source of autologous mesenchymal stem cells for patients with
epidermolysis bullosa. BMC Res. Notes 2015, 8, 767. [CrossRef]

23. Körver, S.; Vergouwe, M.; Hollak, C.E.M.; van Schaik, I.N.; Langeveld, M. Development and clinical
consequences of white matter lesions in Fabry disease: a systematic review. Mol. Genet. Metab. 2018, 125,
205–216. [CrossRef]

24. Slaats, G.G.; Braun, F.; Hoehne, M.; Frech, L.E.; Blomberg, L.; Benzing, T.; Schermer, B.; Rinschen, M.M.;
Kurschat, C.E. Urine-derived cells: a promising diagnostic tool in Fabry disease patients. Sci. Rep. 2018, 8,
11042. [CrossRef]

25. Has, C.; Fischer, J. Inherited epidermolysis bullosa: New diagnostics and new clinical phenotypes.
Exp. Dermatol. 2018. [CrossRef] [PubMed]

26. Rashidghamat, E.; McGrath, J.A. Novel and emerging therapies in the treatment of recessive dystrophic
epidermolysis bullosa. Intractable Rare Dis. Res. 2017, 6, 6–20. [CrossRef] [PubMed]

27. Zhang, Q.J.; Lin, X.; Li, J.J.; Lu, Y.Q.; Guo, X.X.; Dong, E.L.; Zhao, M.; He, J.; Wang, N.; Chen, W.J. Application
of urine cells in drug intervention for spinal muscular atrophy. Exp. Ther. Med. 2017, 14, 1993–1998.
[CrossRef] [PubMed]

28. Zhang, Q.J.; He, J.; Ni, W.; Lin, X.; Yao, X.P.; Lin, M.T.; Murong, S.X.; Wang, N.; Chen, W.J. Noninvasive
urine-derived cell lines derived from neurological genetic patients. Neuroreport 2013, 24, 161–166. [CrossRef]
[PubMed]

29. Lazzeri, E.; Ronconi, E.; Angelotti, M.L.; Peired, A.; Mazzinghi, B.; Becherucci, F.; Conti, S.; Sansavini, G.;
Sisti, A.; Ravaglia, F.; et al. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic
Kidney Disorders. J. Am. Soc. Nephrol. 2015, 26, 1961–1974. [CrossRef]

30. Kim, E.Y.; Page, P.; Dellefave-Castillo, L.M.; McNally, E.M.; Wyatt, E.J. Direct reprogramming of urinederived
cells with inducible MyoD for modeling human muscle disease. Skelet. Muscle. 2016, 6, 32. [CrossRef]

http://dx.doi.org/10.1038/nprot.2012.115
http://dx.doi.org/10.1371/journal.pone.0053980
http://dx.doi.org/10.1186/s13287-018-0932-z
http://dx.doi.org/10.1089/hum.2016.079
http://www.ncbi.nlm.nih.gov/pubmed/27530229
http://dx.doi.org/10.1016/j.gendis.2014.07.001
http://dx.doi.org/10.1002/stem.1424
http://www.ncbi.nlm.nih.gov/pubmed/23666768
http://www.ncbi.nlm.nih.gov/pubmed/23038280
http://dx.doi.org/10.1016/j.transproceed.2016.02.078
http://dx.doi.org/10.1161/JAHA.115.002159
http://dx.doi.org/10.1159/000490214
http://www.ncbi.nlm.nih.gov/pubmed/30041250
http://dx.doi.org/10.1186/s13104-015-1686-7
http://dx.doi.org/10.1016/j.ymgme.2018.08.014
http://dx.doi.org/10.1038/s41598-018-29240-w
http://dx.doi.org/10.1111/exd.13668
http://www.ncbi.nlm.nih.gov/pubmed/29679399
http://dx.doi.org/10.5582/irdr.2017.01005
http://www.ncbi.nlm.nih.gov/pubmed/28357176
http://dx.doi.org/10.3892/etm.2017.4791
http://www.ncbi.nlm.nih.gov/pubmed/28962115
http://dx.doi.org/10.1097/WNR.0b013e32835e2e44
http://www.ncbi.nlm.nih.gov/pubmed/23358449
http://dx.doi.org/10.1681/ASN.2014010057
http://dx.doi.org/10.1186/s13395-016-0103-9


J. Clin. Med. 2019, 8, 627 10 of 10

31. Takizawa, H.; Hara, Y.; Mizobe, Y.; Ohno, T.; Suzuki, S.; Inoue, K.; Takeshita, E.; Shimizu-Motohashi, Y.;
Ishiyama, A.; Hoshino, M.; et al. Modelling Duchenne muscular dystrophy in MYOD1-converted
urine-derived cells treated with 3-deazaneplanocin A hydrochloride. Sci. Rep. 2019, 9, 3807. [CrossRef]

32. Liu, G.; Pareta, R.A.; Wu, R.; Shi, Y.; Zhou, X.; Liu, H.; Deng, C.; Sun, X.; Atala, A.; Opara, E.C.; et al. Skeletal
myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth
factors. Biomaterials 2013, 34, 1311–1326. [CrossRef]

33. Zhang, S.Z.; Ma, L.X.; Qian, W.J.; Li, H.F.; Wang, Z.F.; Wang, H.X.; Wu, Z.Y. Modeling Neurological Disease
by Rapid Conversion of Human Urine Cells into Functional Neurons. Stem Cells Int. 2016, 2016, 8. [CrossRef]

34. Yen, C.T.; Fan, M.N.; Yang, Y.L.; Chou, S.C.; Yu, I.S.; Lin, S.W. Current animal models of hemophilia: The state
of the art. Thromb. J. 2016, 14, 22. [CrossRef]

35. Jia, B.; Chen, S.; Zhao, Z.; Liu, P.; Cai, J.; Qin, D.; Du, J.; Wu, C.; Chen, Q.; Cai, X.; et al. Modeling of
hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells. Life Sci. 2014,
108, 22–29. [CrossRef] [PubMed]

36. Si-Tayeb, K.; Idriss, S.; Champon, B.; Caillaud, A.; Pichelin, M.; Arnaud, L.; Lemarchand, P.; Le May, C.;
Zibara, K.; Cariou, B. Urine-sample-derived human induced pluripotent stem cells as a model to study
PCSK9-mediated autosomal dominant hypercholesterolemia. Dis. Model. Mech. 2016, 9, 81–90. [CrossRef]
[PubMed]

37. Melendez, Q.M.; Krishnaji, S.T.; Wooten, C.J.; Lopez, D. Hypercholesterolemia: The role of PCSK9.
Arch. Biochem. Biophys. 2017, 625–626, 39–53. [CrossRef]

38. Levy, H.L.; Sarkissian, C.N.; Scriver, C.R. Phenylalanine ammonia lyase (PAL): From discovery to enzyme
substitution therapy for phenylketonuria. Mol. Genet. Metab. 2018, 124, 223–229. [CrossRef] [PubMed]

39. Qi, Z.; Cui, Y.; Shi, L.; Luan, J.; Zhou, X.; Han, J. Generation of urine-derived induced pluripotent stem cells
from a patient with phenylketonuria. Intractable Rare Dis. Res. 2018, 7, 87–93. [CrossRef]

40. M Lee, Y.; Zampieri, B.L.; Scott-McKean, J.J.; Johnson, M.W.; Costa, A.C.S. Generation of Integration-Free
Induced Pluripotent Stem Cells from Urine-Derived Cells Isolated from Individuals with Down Syndrome.
Stem Cells Transl. Med. 2017, 6, 1465–1476. [CrossRef] [PubMed]

41. Wang, Y.; Shi, C.; Wang, Z.; Sun, H.; Yang, Z.; Zhang, F.; Liu, Y.; Liu, H.; Jiang, C.; Zhang, S.; et al. Generation
of induced pluripotent stem cell line (ZZUi004-A) from urine sample of a patient with spinocerebellar ataxia
type 3. Stem Cell Res. 2018, 28, 71–74. [CrossRef]

42. Zhang, S.Z.; Li, H.F.; Ma, L.X.; Qian, W.J.; Wang, Z.F.; Wu, Z.Y. Urine-derived induced pluripotent stem
cells as a modeling tool for paroxysmal kinesigenic dyskinesia. Biol. Open. 2015, 4, 1744–1752. [CrossRef]
[PubMed]

43. Cao, Y.; Xu, J.; Wen, J.; Ma, X.; Liu, F.; Li, Y.; Chen, W.; Sun, L.; Wu, Y.; Li, S.; et al. Generation of a
Urine-Derived Ips Cell Line from a Patient with a Ventricular Septal Defect and Heart Failure and the Robust
Differentiation of These Cells to Cardiomyocytes via Small Molecules. Cell. Physiol. Biochem. 2018, 50,
538–551. [CrossRef] [PubMed]

44. Luni, C.; Giulitti, S.; Serena, E.; Ferrari, L.; Zambon, A.; Gagliano, O.; Giobbe, G.G.; Michielin, F.; Knöbel, S.;
Bosio, A.; et al. High-efficiency cellular reprogramming with microfluidics. Nat. Methods. 2016, 13, 446–452.
[CrossRef] [PubMed]

45. Schutgens, F.; Rookmaaker, M.B.; Margaritis, T.; Rios, A.; Ammerlaan, C.; Jansen, J.; Gijzen, L.; Vormann, M.;
Vonk, A.; Viveen, M.; et al. Tubuloids derived from human adult kidney and urine for personalized diseases
modeling. Nat. Biotechnol. 2019, 37, 303–313. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-019-40421-z
http://dx.doi.org/10.1016/j.biomaterials.2012.10.038
http://dx.doi.org/10.1155/2016/2452985
http://dx.doi.org/10.1186/s12959-016-0106-0
http://dx.doi.org/10.1016/j.lfs.2014.05.004
http://www.ncbi.nlm.nih.gov/pubmed/24834837
http://dx.doi.org/10.1242/dmm.022277
http://www.ncbi.nlm.nih.gov/pubmed/26586530
http://dx.doi.org/10.1016/j.abb.2017.06.001
http://dx.doi.org/10.1016/j.ymgme.2018.06.002
http://www.ncbi.nlm.nih.gov/pubmed/29941359
http://dx.doi.org/10.5582/irdr.2018.01032
http://dx.doi.org/10.1002/sctm.16-0128
http://www.ncbi.nlm.nih.gov/pubmed/28371411
http://dx.doi.org/10.1016/j.scr.2018.01.027
http://dx.doi.org/10.1242/bio.013078
http://www.ncbi.nlm.nih.gov/pubmed/26621826
http://dx.doi.org/10.1159/000494167
http://www.ncbi.nlm.nih.gov/pubmed/30308486
http://dx.doi.org/10.1038/nmeth.3832
http://www.ncbi.nlm.nih.gov/pubmed/27088312
http://dx.doi.org/10.1038/s41587-019-0048-8
http://www.ncbi.nlm.nih.gov/pubmed/30833775
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Isolation and Characterisation of USCs 
	Application of Urine-Derived Stem Cells in Genetic Diseases 
	Urine-Derived Cells as a Model to Study Genetic Diseases 
	Direct Reprogramming of Urine-Derived Cells 
	Urine-Derived Induced Pluripotent Stem Cells (iPSCs) to Study Genetic Diseases 

	Summary and Conclusions 
	References

