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Abstract. Decision trees are simple, yet powerful, classification models
used to classify categorical and numerical data, and, despite their sim-
plicity, they are commonly used in operations research and management,
as well as in knowledge mining. From a logical point of view, a decision
tree can be seen as a structured set of logical rules written in proposi-
tional logic. Since knowledge mining is rapidly evolving towards temporal
knowledge mining, and since in many cases temporal information is best
described by interval temporal logics, propositional logic decision trees
may evolve towards interval temporal logic decision trees. In this paper,
we define the problem of interval temporal logic decision tree learning,
and propose a solution that generalizes classical decision tree learning.

Keywords: Decision trees · Interval temporal logics · Symbolic learning.

1 Introduction

It is commonly recognized that modern decision trees are of primary importance
among classification models [30]. They owe their popularity mainly to the fact
that they can be trained and applied efficiently even on big data sets, and that
they are easily interpretable, meaning that they are not only useful for pre-
diction per se, but also for understanding the reasons behind the predictions.
Interpretability is of extreme importance in domains in which understanding
the classification process is as important as the accuracy of the classification
itself, such in the case of production business systems or in the computer-aided
medicine domain. A typical decision tree is constructed in a recursive man-
ner, following the traditional Top Down Induction of Decision Trees (TDIDT)
approach [26]: starting from the root, at each node the attribute that best par-
titions the training data, according to a predefined score, is chosen as a test to
guide the partitioning of instances into child nodes. The process continues until
a sufficiently high degree of purity (with respect to the target class), or a min-
imum cardinality constraint (with respect to the number of instances reaching
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the node), is achieved in the generated partitions. This is the case of the well-
known decision tree learning algorithm ID3 [26], which is the precursor of the
commonly-used C4.5 [27]. A decision tree can be seen as a structured set of rules:
every node of the tree can be thought of as an if-then-else statement, and, in this
way, each branch becomes a conjunction of such conditional statements, that is,
a rule, whose right-hand part is the class. A conditional statement may have
many forms: it can be a yes/no statement (for binary categorical attributes),
a categorical value statement (for non-binary categorical attributes), or a split-
ting value statement (for numerical attributes); the ariety of the resulting tree
is two if all attributes are binary or numerical, or more, if there are categorical
attributes with more than two categories. Each statement can be equivalently
represented with propositional letters, so that a decision tree can be also seen as
a structured set of propositional logic rules.

Temporal classification: static solutions. Just focusing on the static as-
pects of data is not always adequate for classification; for example, in the medi-
cal domain, one may want to take into account which symptoms a patient was
experiencing at the same time, or whether two symptoms were overlapping.
That is, in some application domains, the temporal aspects of the information
may be essential to an accurate prediction. Within static decision tree learning,
temporal information may be aggregated in order to circumvent the absence of
explicit tools for dealing with temporal information (for example, a patient can
be labelled with a natural number describing how many times he/she has been
running a fever during the observation period); the ability of a decision tree to
perform a precise classification based on such processed data, however, strongly
depends on how well data are prepared, and therefore on how well the under-
lying domain is understood. Alternatively, decision trees have been proposed
that use frequent patterns [15, 19, 22] in nodes, considering the presence/absence
of a frequent pattern as a categorical attribute [13, 18]. Nevertheless, despite
being the most common approach to (explicit) temporal data classification, fre-
quent patterns in sequences or series have a limited expressive power, as they
are characterized by being existential and by intrinsically representing temporal
information with instantaneous events.

Our approach: interval temporal logic decision trees. A different ap-
proach to temporal classification is mining temporal logic formulas, and since
temporal databases universally adopt an interval-based representation of time,
the ideal choice to represent temporal information in data is interval temporal
logic. The most representative propositional interval temporal logic is Halpern
and Shoham’s Modal Logic of Allen’s Relations [20], also known as HS. Its lan-
guage encompasses one modal operator for each interval-to-interval relation, such
as meets or before, and the computational properties of HS and its fragments
have been studied in the recent literature (see, e.g. [10–12]). The very high ex-
pressive power of HS, as well as its versatility, make HS the ideal candidate to
serve as the basis of a temporal decision tree learning algorithm. Based on these
premises, we propose in this paper a decision tree learning algorithm that pro-
duces HS-based trees. Our proposal, Temporal ID3, is a direct generalization of
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the ID3 algorithm [26], founded on the logical interpretation of tree nodes, and
focuses on data representation and node generation; we borrow other aspects,
such as splitting based on information gain and the overall learning process
from the original algorithm. The accuracy of a decision tree and its resilience
to over-fitting also depends on the stopping criterion and possible post-pruning
operations, but we do not discuss these aspects here.

Existing approaches to temporal logic decision trees. Learning temporal
logic decision trees is an emerging field in the analysis of physical systems, and,
among the most influential approaches, we mention learning of automata [3]
and learning Signal Temporal Logic (STL) formulas [6, 14, 24, 28]. In particu-
lar, STL is a point-based temporal logic with until that encompasses certain
metric capabilities, and learning formulas of STL has been focused on both the
fine tuning of the metric parameters of a predefined formula and the learning
the innermost structure of a formula; among others, decision trees have been
used to this end [8]. Compared with STL decision tree learning, our approach
has the advantage of learning formulas written in a interval-based, instead of
point-based, well-known and highly expressive temporal logic language; because
of the nature of the underlying language and of the interval temporal logic mod-
els, certain application domains fit naturally into this approach. Moreover, since
our solution generalizes the classical decision tree learning algorithm ID3, and,
particularly, the notion of information gain, it is not limited to binary classifica-
tion only. Moreover, in [7] a first-order framework for TDIDT is presented with
the attempt to make such paradigm more attractive to inductive logic program-
ming (ILP). Such a framework provides a sound basis for logical decision tree
induction; in opposition, we employ the framework to represent modal, instead
of first-order, relational data. Additionally, our approach should not be confused
with [23], in which the term interval indicates an uncertain numerical value (e.g.,
the patient has a fever of 38 Celsius versus the patient has a fever between 37.5
and 38.5 Celsius), and in which an algorithm for inducing decision trees on such
uncertain data is presented that is based on the so-called Kolmogorov-Smirnov
criterion, but the data that are object of that study are not necessarily temporal,
and the produced trees do not employ any temporal (logical) relation. In [4, 29]
and [21], the authors present two other approaches to a temporal generalization
of decision tree learning. In the former, the authors provide a general method for
building point-based temporal decision trees, but with no particular emphasis on
any supporting formal language. In the latter, the constructed trees can be seen
as real-time algorithms that have the ability to make decisions even if the entire
description of the instance is not yet available. Finally, in [16], a generalization
of the decision tree model is presented in which nodes are possibly labelled with
a timestamp to indicate when a certain condition should be checked.

Summarizing, our approach is essentially different from those presented in
the literature in several aspects. As a matter of fact, by giving a logical perspec-
tive to decision tree learning, we effectively generalize the learning model to a
temporal one, instead of introducing a new paradigm. In this way, instances that
present some temporal component are naturally seen as timelines, and, thanks
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to the expressive power provided by HS, our algorithm can learn a decision tree
based on the temporal relations between values, instead of the static information
carried by the values.

2 Preliminaries

Decision trees. Decision tree induction is based on the following simple con-
cepts [27]. Given a set of observable values V = {v1, v2, . . . , vn}, with associated
probabilities Π = {π1, π2, . . . , πn}, the information conveyed by Π (or entropy),
is defined as:

E(Π) = −
n∑

i=1

πi log(πi).

Assume that a data set T has n instances, each characterized by the attributes
A1, . . . , Al, and distributed over s classes C1, . . . , Cs. Each class C can be seen
as the subset of T composed of precisely those instances classified as C, so that
the information needed to identify the class of an element of T is:

Info(T ) = E({ |C1|
|T |

,
|C2|
|T |

, . . . ,
|Cs|
|T |
}).

Intuitively, the entropy is inversely proportional to the purity degree of T with
respect to the class values. Splitting, which is the main operation in decision
tree learning, is performed over a specific attribute A. If A is categorical and its
domain Dom(A) consists of m distinct values, we can split T into T1, . . . , Tm,
each Ti being characterized by A having precisely the value ai (i.e., A = ai).
The information of a categorical split, therefore, is:

InfoCat(A, T ) =

m∑
i=1

(
|Ti|
|T |

)Info(Ti).

If, on the other hand, A is numerical, then the set {a1 < . . . < am} of actual
values for A that are present in T gives rise to m− 1 possible splits, all of them
binary, and the information conveyed by each possible split is, then, a function
not only of the attribute but also of the chosen value:

InfoNum(A, ai, T ) = (
|T1|
|T |

)Info(T1) + (
|T2|
|T |

)Info(T2),

where T1 (respectively, T2) encompasses all and only those instances with A ≤
ai (respectively, A > ai). The information conveyed by an attribute can be
consequently defined as:

InfoAtt(A, T ) =

{
InfoCat(A, T ) if A is categorical,

min
ai∈Dom(A)

{InfoNum(A, ai, T )} if A is numerical,
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[x, y]RA[x′, y′]⇔ y = x′
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[x, y]RB [x′, y′]⇔ x = x′, y′ < y

[x, y]RE [x′, y′]⇔ y = y′, x < x′

[x, y]RD[x′, y′]⇔ x < x′, y′ < y
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Fig. 1. Allen’s interval relations and HS modalities.

and the information gain brought by A is defined as:

Gain(A, T ) = Info(T )− InfoAtt(A, T ).

The information gain, which can be also seen as the reduction of the expected
entropy when the attribute A has been chosen, is used to drive the splitting pro-
cess, that is, to decide over which attribute (and how) the next split is performed.
The underlying principle to decision tree building consists of recursively splitting
the data set over the attribute that guarantees the greatest information gain un-
til a certain stopping criterion is met. Each split can be seen as a propositional
condition if p then -, else -. When splitting is performed over a numerical at-
tribute, e.g., A ≤ ai, then the corresponding propositional statement is simply
the condition itself (in our example, is a propositional letter pA≤ai); when it
is performed over a categorical attribute, e.g., A = a1, A = a2, . . . , then each
statement is a propositional statement (in our example, pA=a1

, pA=a2
,. . . ) on its

own.

Interval temporal logic. Let D ⊆ N. In the strict interpretation, an interval
over D is an ordered pair [x, y], where x, y ∈ D and x < y, and we denote by
I(D) the set of all intervals over D. If we exclude the identity relation, there
are 12 different Allen’s relations between two intervals in a linear order [1]:
the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends),
RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that
is, RX = (RX)−1, for each X ∈ A, where A = {A,L,B,E,D,O}. Halpern
and Shoham’s modal logic of temporal intervals (HS) is defined from a set of
propositional letters AP, and by associating a universal modality [X] and an
existential one 〈X〉 to each Allen’s relation RX . Formulas of HS are obtained by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ,

where p ∈ AP and X ∈ A. The other Boolean connectives and the logical
constants, e.g., → and >, as well as the universal modalities [X], can be defined
in the standard way. For each X ∈ A, the modality 〈X〉 (corresponding to the
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inverse relation RX of RX) is said to be the transpose of the modalities 〈X〉,
and vice versa. The semantics of HS formulas is given in terms of timelines
T = 〈I(D), V 〉3, where D is a linear order and V : AP → 2I(D) is a valuation
function which assigns to each atomic proposition p ∈ AP the set of intervals
V (p) on which p holds. The truth of a formula ϕ on a given interval [x, y] in an
interval model T is defined by structural induction on formulas as follows:

T, [x, y] 
 p if [x, y] ∈ V (p), for p ∈ AP;
T, [x, y] 
 ¬ψ if T, [x, y] 6
 ψ;
T, [x, y] 
 ψ ∨ ξ if T, [x, y] 
 ψ or T, [x, y] 
 ξ;
T, [x, y] 
 〈X〉ψ if there is [w, z] s.t [x, y]RX [w, z] and T, [w, z] 
 ψ;
T, [x, y] 
 〈X̄〉ψ if there is [w, z] s.t [x, y]RX̄ [w, z] and T, [w, z] 
 ψ.

HS is a very general interval temporal language and its satisfiability prob-
lem is undecidable [20]. Our purpose here, however, is to study the problem of
formula induction in the form of decision trees, and not of formula deduction,
and therefore the computational properties of the satisfiability problem can be
ignored at this stage.

3 Motivations

In this section, we present some realistic scenarios in which learning a temporal
decision tree may be convenient, and, then, we discuss aspects of data prepro-
cessing related to the temporal component.

Learning. There are several application domains in which learning a temporal
decision tree may be useful. Consider, for example, a medical scenario in which
we consider a data set of classified patients, each one characterized by its medi-
cal history, as in Fig. 2, top. Assume, first, that we are interested in learning a
static (propositional) classification model. The history of our patients, that is,
the collection of all relevant pieces of information about tests, results, symptoms,
and hospitalizations of the patient that occurred during the entire observation
period, must be processed so that temporal information is subsumed in propo-
sitional letters. For instance, if some patient has been running a fever during
the observation period, we may use a proposition fever, with positive values
for those patient that have had fever, and negative values for the others (as in
Fig. 2, bottom, left). Depending on the specific case, we may, instead, use the
actual temperature of each patient, and a static decision tree learning system
may split over fever < t, for some threshold temperature t, effectively intro-
ducing a new propositional letter, and therefore a binary split. Either way, the
temporal information is lost in the preprocessing. For example, we can no longer
take into account whether fever occurred before, after, or while the patient
was experiencing headache (head), which may be a relevant information for a

3 We deliberately use the symbol T to indicate both a timeline and an instance in a
data set.
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Patient Symptom TimeStamp

P1 fever [3,4]
P2 fever [4,5]
P3 fever [3,5]
P1 head [2,4]
P2 head [3,5]
P3 head [2,4]
P4 head [4,6]

Patient Class

P1 C1
P2 C1
P3 C2
P4 C2

Patient fever head Class

P1 yes yes C1
P2 yes yes C1
P3 yes yes C2
P4 no yes C2

P1

P2

P3

P4

fever
head

fever
head

fever
head

head

C1

C1

C2

C2

static
temporal

Fig. 2. Example of static and temporal treatment of information in the medical domain.

classification model. By generating, instead, the timeline of each patient (as in
Fig. 2, bottom, right), we keep all events and their relative qualitative relations.
By learning a decision tree on a preprocessed data set such as the one in Fig. 2
(bottom, left), we see that the attribute head has zero variance, and therefore
zero predictive capabilities; then, we are forced to build a decision tree using
attribute fever alone, which results in a classifier with 75% accuracy. On the
contrary, by using the temporal information in the learning process, we are able
to distinguish the two classes: C1 is characterized by presenting both head and
fever, but not overlapping, and this classifier has, in this toy example, 100% ac-
curacy. In this example, the term accuracy refers to the training set accuracy (we
do not consider independent train and test data), that is, the ability of the clas-
sification system to discern among classes on the data used to train the system
itself; it should not be confused with test set accuracy, which measures the real
classification performances that can be expected on future, real-life examples.

Alternatively, consider a problem in the natural language processing domain.
In this scenario, a timeline may represent a conversation between two individu-
als. It is known that, in automatic processing of conversations, it is sometimes
interesting to label each interval of time with one or more context, that is, a
particular topic that is being discussed [2, 5, 25], in order to discover the exis-
tence of unexpected or interesting temporal relations among them. Suppose, for
example, that a certain company wants to analyze conversations between selling
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agents and potential customers: the agents contact the customers with the aim
of selling a certain product, and it is known that certain contexts, such as the
price of the product (price), its known advantages (advantages) over other prod-
ucts, and its possible minor defects (disadvantages) are interesting. Assume that
each conversation has been previously classified between those that have been
successful and those that ended without the product being acquired. Now, we
want to learn a model able to predict such an outcome. By using only static in-
formation, nearly every conversation would be labelled with the three contexts,
effectively hiding the underlying knowledge, if it exists. By keeping the relative
temporal relations between contexts, instead, we may learn useful information,
such as, for example, if price and disadvantages are not discussed together, the
conversation will be likely successful.

Preprocessing. Observe, now, how switching from static to temporal informa-
tion influences data preparation. First, in a context such as the one described in
our first example, numerical attributes may become less interesting: for instance,
the information on how many times a certain symptom occurred, or its frequency,
are not needed anymore, considering that each occurrence is taken into account
in the timeline. Moreover, since the focus is on attributes relative temporal posi-
tions, even categorical attributes may be ignored in some contexts: for instance,
in our scenario, we may be interested in establishing the predictive value of the
relative temporal position of fever and head regardless of the sex or age of the
patient. It is also worth underlying that propositional attributes over intervals
allow us to express a variety of situations, and sometimes propositional labelling
may result in gaining information, instead of loosing it. Consider, again, the case
of fever, and suppose that a certain patient is experiencing low fever in an interval
[x, y], say, a given day, and that during just one hour of that day, that is, over the
interval [w, z] strictly contained in [x, y], he/she has an episode of high fever. A
natural choice is to represent such a situation by labelling the interval [x, y] with
lo and its sub-interval [w, z] with hi. On the other hand, representing the same
pieces of information as three intervals [x,w], [w, z], [z, y] respectively labelled
with lo, hi, and lo, which would be the case with a point-based representation
(or with an interval-based representation under the homogeneity assumption),
would be unnatural, and it would entail hiding a potentially important informa-
tion such as: “the patient presented low fever during the entire day, except for
a brief episode of high fever”. Building on such considerations, our approach in
the rest of this paper is based on propositional, non-numerical attributes only.

4 Learning Interval Temporal Logic Decision Trees

In this section we describe a generalization of the algorithm ID3 that is capable
of learning a binary decision tree over a temporal data set, as in the examples
of the previous section; as in classical decision trees, every branch of a temporal
decision tree can be read as a logical formula, but instead of classical logic we use
the temporal logic HS. To this end, we generalize the notion of information gain,
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while, at this stage, we do not discuss pre-pruning, post-pruning, and purity
degree of a sub-tree [9, 27].

Data preparation and presentation. We assume that the input data set
contains timelines as instances. For the sake of simplicity, we also assume that
all timelines are based on the same finite domain D of length N (from 0 to N−1).
The data set T can be seen as an array of n structures; T [j] represents the j-th
timeline of the data set, and it can be thought of as an interval model. Given a
data set T , we denote by AP the set of all propositional letters that occur in it.

Temporal information. We are going to design the learning process based on
the same principles of classical decision tree learning. This means that we need
to define a notion of splitting as well as a notion of information conveyed by a
split, and, to this end, we shall use the truth relation as defined in Section 2
applied to a timeline. Unlike the atemporal case, splits are not performed over
attributes, but, instead, over propositional letters. Splitting is defined relatively
to an interval [x, y], and it can be local, if it is applied on [x, y] itself, or temporal,
in which case it depends on the existence of an interval [z, t] related to [x, y] and
the particular relation RX such that [x, y]RX [z, t] (or the other way around). A
local split of T into T1 and T2, where [x, y] is the reference interval of T , and p
is the propositional letter over which the split takes place is defined by:

T1 = {T ∈ T | T, [x, y] 
 p},
T2 = {T ∈ T | T, [x, y] 
 ¬p}. (1)

On the contrary, a temporal split, in the same situation, over the temporal rela-
tion RX , is defined by:

T1 = {T ∈ T | T, [x, y] 
 〈X〉p},
T2 = {T ∈ T | T, [x, y] 
 [X]¬p}. (2)

Consequently, the local information gain of a propositional letter p is defined as:

LocalGain(p, T ) = Info(T )−
(

(
|T1|
|T |

)Info(T1) + (
|T2|
|T |

)Info(T2)

)
,

where T1 and T2 are defined as in (1), while the temporal information gain of a
propositional letter p is defined as:

TemporalGain(p, T ) = Info(T )− min
X∈A

{
(
|T1|
|T |

)Info(T1) + (
|T2|
|T |

)Info(T2)

}
,

where T1 and T2 are defined as in (2) and depend on the relation RX . Therefore,
the information gain of a propositional letter becomes:

Gain(p, T ) = max{LocalGain(p, T ), T emporalGain(p, T )}.
At each step, we aim to find the letter that maximizes the gain. Moreover,

temporal splits entail associating every T ∈ T1 with a new reference interval:
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proc FindBestUnanchoredSplit (T )

gBest = 0
for ([x, y] ∈ I(D))

AssignReferenceInterval(T , [x, y])
< X, p, g >= FindBestAnchoredSplit(T )
if (g > gBest)
then{
< XBest, pBest, gBest >=< X, p, g >
[xBest, yBest] = [x, y]

AssignReferenceInterval(T , [xBest, yBest])
return < XBest, pBest, gBest, [xBest, yBest] >

proc FindBestAnchoredSplit (T )

gBest = 0
for (p ∈ AP)< X, g >= Gain(p, T )

if (g > gBest)
then < XBest, pBest, gBest >=< X, p, g >

return < XBest, pBest, gBest >

proc TemporalID3 (T ){
c = CreateNode()
Learn(T , c)

proc Learn (T , c)

if NoStop(T )
then

if UnAnchored(T )
then{
< X, p, g, [x, y] >= FindBestUnanchoredSplit(T )
Label(c, [x, y])
else < X, p, g >= FindBestAnchoredSplit(T )

(T1, T2) = Split(T , X, p)
c1 = CreateLeftChild(c)
c2 = CreateRightChild(c)
Learn(T1, c1)
Learn(T2, c2)

Fig. 3. The algorithm Temporal ID3.

they all satisfy 〈X〉p on [x, y], and, for each one of them, there is a possibly
distinct witness. For example, T1, T2 are in T1 because satisfy 〈A〉p on [x, y], it
could be the case that T1, [y, z1] 
 p and T2, [y, z2] 
 p with z1 6= z2. So, T1 and
T2 would have two different reference intervals, namely [y, z1] and [y, z2]. In this
learning model, all splits are binary. During the tree learning process, we can
label the ‘lefthand’ edges of a split with the chosen 〈X〉p (or just p, when the
split is local), the corresponding ‘righthand’ edges with [X]¬p (or just ¬p), and
we can label the node with a new reference interval if the current data set does
not have one, yet.

The algorithm. Let us analyze the code in Fig. 3. At the beginning, the time-
lines in T are not assigned any reference interval, and we say that the data set
is unanchored. The procedure FindBestUnanchoredSplit systematically explores
every possible reference interval of an unanchored data set, and, for each one
of them, calls FindBestAnchoredSplit, which, in turn, tries every propositional
letter (and, implicitly, every temporal relation) in search of the best split. This
procedure returns the best possible triple < X, p, g >, where X is an interval
relation, if the best split is temporal, or it has no value, if the best split is lo-
cal, p is a propositional letter, and g is the information gain. TemporalID3 first
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creates a root node, and, then, calls Learn. The latter, in turn, first checks pos-
sible stopping conditions, and, then, finds the best split into two data sets T1

and T2. Of these, the former is now anchored (to the reference interval returned
by FindBestUnanchoredSplit), while the latter is still unanchored. During a re-
cursive call, when T1 is analyzed to find its best split, the procedure for this
task will be FindBestAnchoredSplit, called directly, instead of passing through
FindBestUnanchoredSplit.

Analysis. We now analyze the computational complexity of Temporal ID3. To
this end, we first compute the cost of finding the best splitting. Since the cardi-
nality of the domain of each timeline is N , there are O(N2) possible intervals.
This means that, fixed a propositional letter and a relation RX , computing
T1 and T2 costs O(nN2). Therefore, the cost of FindBestAnchoredSplit is ob-
tained by multiplying the cost of a single (tentative) splitting by the number
of propositional letters and the number of temporal relations (plus one, to take
into account the local splitting), which sums up to O(13nN2|AP|). The cost of
FindBestUnanchoredSplit increases by a factor of N2, as the for cycle ranges
over all possible intervals, and therefore it becomes O(13nN4|AP|). We can in-
crease the efficiency of the implementation by suitably pre-compute the value
of 〈X〉p for each temporal relation, each propositional letter, and each interval,
thus eliminating a factor of N2 from both costs.

If we consider AP fixed, and N constant, the cost of finding the best splitting
becomes O(n), and, under such (reasonable) assumption, we can analyze the
complexity of an execution of Learn in terms of the number n of timelines. Two
cases are particularly interesting. In the worst case, every binary split leads to
a very unbalanced partition of the data set, with |T1| = 1 and |T2| = n − 1 (or
the other way around). The recurrence that describes such a situation is:

t(n) = t(n− 1) +O(n),

which can be immediately solved to obtain t(n) = O(n2). In the average case,
every binary split leads to a non-unbalanced partition, but we cannot foresee the
relative cardinality of each side of the partition. Assuming that every partition
is equally probable, the recurrence that describes this situation is:

t(n) =
1

n
Σn

k=1(t(k) + t(n− k)) +O(n).

We want to prove that t(n) = O(nlog(n)). To this end, we prove by induction
that t(n) ≤ anlog(n) + b for some positive constants a, b, by separating our
argument in three parts. First, we manipulate our initial expression:

t(n) = 1
nΣ

n
k=1(t(k) + t(n− k)) +O(n)

= 2
nΣ

n
k=1t(k) +O(n)

≤ 2
nΣ

n
k=1(ak log(k) + b) +O(n) (inductive hypothesis)

= 2
nΣ

n
k=1(ak log(k)) + 2

nΣ
n
k=1b+O(n)

= 2a
n Σ

n
k=1(k log(k)) + 2b+O(n).
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[0, 1]

C2 C1

C2

〈L
〉fe
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〈O
〉he

ad
[O

]¬head

Fig. 4. A decision tree learned by Temporal ID3 on the example in Fig. 2.

Then, we focus our attention on conveniently bounding the first term of the
expression that we have obtained, as follows:

Σn
k=1(k log(k)) = Σ

dn2 e−1

k=1 (k log(k)) +Σn
k=dn2 e

(k log(k))

≤ Σd
n
2 e−1

k=1 (k log(n
2 )) +Σn

k=dn2 e
(k log(n))

= (log(n)− 1)Σ
dn2 e−1

k=1 k + log(n)Σn
k=dn2 e

k

= log(n)Σn
k=1k −Σ

dn2 e−1

k=1 k
≤ 1

2 log(n)n(n+ 1)− 1
2
n
2 (n

2 + 1)
= 1

2 (n2 log(n) + n log(n))− 1
8n

2 − 1
4n.

Finally, we plug in our bound, to obtain:

t(n) ≤ 2a
n ( 1

2 (n2 log(n) + n log(n))− 1
8n

2 − 1
4n) + 2b+O(n)

= an log(n) + 2a log(n)− an
4 −

a
2 + 2b+O(n)

≤ an log(n) + b,

for a large enough value of a such that

an

4
≥ 2alog(n)− a

2
+ b+O(n).

Computing the worst case has only a theoretical value; we can reasonably ex-
pect Temporal ID3 to behave like a randomized divide-and-conquer algorithm,
and its computational complexity to tend towards the average case. Possible
practical improvements of Temporal ID3 depend, however, on the stopping con-
ditions, which directly influence the base case and therefore the height of the
recursive call stack.

Example of execution. Consider our initial example of Fig. 2, with four time-
lines distributed over two classes. Since this is a toy example, there are many
different combination of interval, relation, and propositional letter that give the
same information gain. Fig. 4 gives one possible outcome, which seems to indicate
that, looking at the entire history, the class C2 is characterized by presenting
headache and overlapping fever, or no fever at all.
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5 Conclusions

Among all classification models, decision trees are still very popular. Their suc-
cess is due to the computational efficiency of the learning process, the inter-
pretability of tree models, and their wide versatility. Classical decision trees are
designed to interpret categorical and numerical attributes, and, in both cases,
every node of a tree can be seen as a propositional letter. Therefore, a decision
tree can be seen as a structured set of propositional logic rules, the right-hand
part of which is a class. Since classifying based on the static aspects of data is
not always adequate, and considered that decision tree learning cannot deal with
temporal knowledge in an explicit manner, building on the logical interpretation
of a decision tree, we considered the problem of learning a classification model
capable to combine propositional knowledge with qualitative temporal informa-
tion. We presented, first, a very well-known temporal propositional logic, that
is, HS. Then, we showed how temporal data can be prepared in a optimal way
for a temporal decision tree to be learned, and we presented a generalization of
the most classical decision tree learning algorithm, that is, ID3, that is able to
split the data set based on temporal, instead of static, information. We analyzed
the computational complexity of the proposed algorithm, and we showed a com-
plete example of execution. Future work include testing our method on real data,
and improving the capabilities of Temporal ID3 by enriching the underlying lan-
guage and studying the effect of different pruning and stopping conditions. Real
data testing is not an easy task: data that contain temporal information, such as
medical data (as per our example) are usually not prepared for timeline analysis.
Therefore, a non-trivial algorithmic effort must be devoted to data preparation,
with particular attention to correct and meaningful labeling of intervals.

Machine learning is generically focused on a non-logical approach to knowl-
edge representation. However, when learning should take into account temporal
aspects of data, a logical approach can be associated to classical methods, and
interval temporal logics has been already proposed as a possible tool in this
sense. Besides temporal decision tree learning, temporal logic can be also used
for rule extraction [17]. Combining these approaches with fragments of interval
temporal logics whose satisfiability problem is decidable (and tractable) may re-
sult into an integrated systems that pairs induction and deduction of formulas,
intelligent elimination of redundant rules, and automatic verification of inducted
knowledge against formal requirement. Also, using a logical approach to describe
learned knowledge may require non-standard semantics for logical formulas (e.g.,
fuzzy semantics, or multi-valued propositional semantics); these, in turn, pose
original and interesting questions on the theoretical side concerning the compu-
tational properties of the problems associated with these logics (i.e., satisfiability
or model checking), generating, de facto, a cross-feeding effect on the two fields.
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