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ON AUTOMORPHISMS OF MODULI SPACES OF PARABOLIC VECTOR

BUNDLES

CAROLINA ARAUJO, THIAGO FASSARELLA, INDER KAUR, AND ALEX MASSARENTI

Abstract. Fix n ≥ 5 general points p1, . . . , pn ∈ P1, and a weight vector A = (a1, . . . , an) of real
numbers 0 ≤ ai ≤ 1. Consider the moduli space MA parametrizing rank two parabolic vector bundles
with trivial determinant on

(

P1, p1, . . . , pn
)

which are semistable with respect to A. Under some
conditions on the weights, we determine and give a modular interpretation for the automorphism group

of the moduli space MA. It is isomorphic to
(

Z

2Z

)k
for some k ∈ {0, . . . , n − 1}, and is generated by

admissible elementary transformations of parabolic vector bundles. The largest of these automorphism
groups, with k = n−1, occurs for the central weight AF =

(

1

2
, . . . , 1

2

)

. The corresponding moduli space
MAF

is a Fano variety of dimension n− 3, which is smooth if n is odd, and has isolated singularities
if n is even.
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1. Introduction

Let C be a smooth projective curve and fix distinct points p1, . . . , pn ∈ C, which we refer to as
parabolic points. Let S = p1 + · · ·+ pn be the effective reduced divisor determined by these points. A
quasi parabolic vector bundle on

(

C,S
)

is a vector bundle E on C with the additional data of a flag
on the fiber over each parabolic point. If in addition we attach some weights to theses flags we call it
a parabolic vector bundle. Parabolic vector bundles were introduced by Mehta and Seshadri ([Ses77],
[MS80]) in order to generalize to curves with cusps the Narasimhan-Seshadri correspondence between
stable vector bundles on smooth projective curves and unitary representations of their fundamental
groups ([NS65]). As in the classical case, once one fixes a line bundle L and a notion of slope-stability,
there is a moduli space of semistable parabolic vector bundles having determinant L. The notion of
slope-stability depends on sets of weights assigned to the parabolic flags. Different choices of weights
usually yield different moduli spaces, coming from variation of GIT.

There is one case in which the theory has been extensively investigated, and the different moduli
spaces are well described. This is the case when C ∼= P1 is the complex projective line, the vector
bundles have rank 2 and the flags are given by parabolic directions Vi ⊂ Epi over each parabolic point.
In this case, we may assume that the vector bundles have trivial determinant, and the slope-stability
condition depends on the choice of a weight vector A = (a1, . . . , an) of real numbers 0 ≤ ai ≤ 1 (see
Section 2). We denote by MA the corresponding moduli space of semistable parabolic vector bundles.

The goal of this paper is to determine and give a modular interpretation of the automorphism groups
of the moduli spaces MA. Descriptions of automorphisms of moduli spaces in terms of the objects that
they parametrize were obtained in many cases. See for instance [BM13, Mas14, MM14, MM17, FM17,
Mas17, BM17, FM18, Lin11, Roy71], for moduli spaces of pointed curves and other configuration
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spaces, [BGM13] for moduli spaces of vector bundles over curves, and [BM16] for generalized quot
schemes.

In [Bau91], Bauer described the weight polytope ∆ ⊂ [0, 1]n consisting of weight vectors A for which
MA 6= ∅. He also exhibited a wall-and-chamber decomposition on ∆ corresponding to the variation
of GIT for the moduli spaces MA, and described the birational maps between models corresponding
to different chambers. The weight polytope ∆ is the polytope generated by the even vertices of the
hypercube [0, 1]n, where the parity of a vertex is the parity of the set of its coordinates that equal 1.
This polytope is called demi-hypercube. It is the weight polytope for the root system of Dn, and its
symmetry group

Aut(∆) ∼= W (Dn) ∼=
(

Z/2Z
)n−1

⋊ Sn

is generated by reflections along pairs of coordinate axes centered at the middle point
(

1
2 , . . . ,

1
2

)

, and
permutations of the n coordinate axes.

1.1. Elementary transformations. The normal subgroup
(

Z/2Z
)n−1

⊳ Aut(∆) of reflections admits

a modular realization as a group of elementary transformations, which we now describe. Let
(

E,v
)

be a rank 2 quasi parabolic vector bundle on
(

P1, S
)

of degree 0, and let R ⊂ {1, . . . , n} be a subset
of cardinality r ≥ 0. Identifying vector bundles with their associated locally free sheaves, we consider
the natural exact sequence of sheaves

0 → E′ α
→ E →

⊕

i∈R

(Epi/Vi)⊗Opi → 0 .

Note that we have the following equality

detE′ = detE ⊗OP1

(

−
∑

i∈R

pi
)

.

In particular, E′ is a vector bundle of rank 2 and degree −r. We view E′ as a quasi parabolic vector
bundle on

(

P1, S
)

as follows. If i 6∈ R, then αpi : E
′
pi −→ Epi is an isomorphism and

V ′
i = (αpi)

−1(Vi) ⊂ E′
pi

is the parabolic direction at pi. If i ∈ R, then V ′
i = ker(αpi) is the parabolic direction at pi. This

operation corresponds to the birational transformation of ruled surfaces P(E) 99K P(E′) obtained by
blowing-up the points P(Vi) ∈ P(Epi) and then blowing-down the strict transforms of the fibers P(Epi)
to the points P(V ′

i ) ∈ P(E′
pi), i ∈ R. When r is even, we obtain a correspondence

elR :
(

E,v
)

7→
(

E′ ⊗OP1(r/2), {V ′
i }
)

between rank 2 quasi parabolic vector bundles on
(

P1, S
)

of degree 0. We call it the elementary

transformation centered at the parabolic points {pi}i∈R. Note that elR is not the identity unless
R = ∅. Elementary transformations are involutions and elR ◦ elS = elR∪S\R∩S . So they form a group

El =
{

elR
∣

∣ R ⊂ {1, . . . , n} of even cardinality
}

∼=

(

Z
2Z

)n−1

.

When we perform an elementary transformation, the stability condition is preserved after an appro-
priate modification of weights. For a weight vector A = (a1, . . . , an) ∈ ∆ and a subset R ⊂ {1, . . . , n}
of even cardinality, we set

AR := (a′1, . . . , a
′
n) ∈ ∆

where a′i = ai if i 6∈ R, and a′i = 1 − ai if i ∈ R. If
(

E,v
)

is semistable with respect to A, then

elR
(

E,v
)

is semistable with respect to AR. This follows from the following observation. If L ⊂ E is
a line bundle, then its image L′ ⊂ E′ is

L′ = L⊗OC(−D)

where D is the reduced divisor supported on the points pi such that Vi * L. We conclude that the
correspondence elR defines an isomorphism between moduli spaces

elR : MA −→ MAR .
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The moduli space MAF
associated to the central weight AF =

(

1
2 , . . . ,

1
2

)

is specially interesting.
It is a Fano variety of dimension n− 3 that is smooth if n is odd, and has isolated singularities if n is
even. If follows from the above discussion that elR induces an automorphism of MAF

for every subset
R ⊂ {1, . . . , n} of even cardinality. In other words, we have:

(

Z
2Z

)n−1
∼= El ⊂ Aut

(

MAF

)

.

Our first result is the following.

Theorem 1.2. Fix n ≥ 5 general points p1, . . . , pn ∈ P1 and let MAF
be the moduli space of rank

two parabolic vector bundles with trivial determinant on
(

P1, S
)

wich are semistable with respect to

the weight vector AF =
(

1
2 , . . . ,

1
2

)

. Then
(

Z
2Z

)n−1
∼= El = Aut

(

MAF

)

.

We remark that for n odd, the isomorphism

Aut
(

MAF

)

∼=

(

Z
2Z

)n−1

was proved in [AC17, Proposition 1.9], without the modular description as elementary transforma-
tions. For n = 5, the moduli space MAF

is isomorphic to a del Pezzo surface of degree four and its
automorphism group is classically known ([Dol12, Section 8.6.4]).

For an arbitrary weight A ∈ ∆, let CA denote the subset of ∆ consisting of weight vectors defin-
ing the same stability condition as A. It can be explicitly read off from Bauer’s wall-and-chamber
decomposition on ∆. Consider the subgroup of A-admissible elementary transformations:

ElA =
{

elR ∈ El
∣

∣ AR ∈ CA
}

⊂ El.

Then

(1.3) ElA ⊂ Aut
(

MA

)

.

In general one does not have equality in (1.3). For instance, there are weight vectors A ∈ ∆ for which
MA

∼= Pn (see [Bau91] and Section 4). However, there is an open sub-polytope of ∆ for which equality
in (1.3) holds. It can be described as follows. For every vertex v of ∆, let Hv ⊂ Rn be the hyperplane
spanned by those vertices of ∆ that are adjacent to v. Let Π be the sub-polytope obtained from ∆
by chopping off each vertex v of ∆ with the hyperplane Hv (see Section 4). It contains in its interior
the subset CAF

consisting of weight vectors defining the same stability condition as AF .

Corollary 1.4. Fix n ≥ 5 general points p1, . . . , pn ∈ P1 and let A be a weight vector in the interior

of the polytope Π defined above. Let MA be the moduli space of rank two parabolic vector bundles with

trivial determinant on
(

P1, S
)

which are semistable with respect to the weight vector A. Then

ElA = Aut
(

MA

)

.

The polytope Π has a natural description from the point of view of birational geometry. Namely,
for weights A in the interior of the polytope Π, the moduli spaces MA are small modifications of the
Fano variety MAF

.

This paper is organized as follows. In Section 2, we revise basic properties of moduli spaces of
parabolic vector bundles, Hitchin systems and spectral curves. This theory is used in Section 3 to
prove Theorem 1.2. In Section 4, we use birational geometry and the small equivalence of models to
prove Corollary 1.4. In Section 5, we describe the automorphism group of moduli spaces of involutional
vector bundles on hyperelliptic curves by relating them to MA.

Acknowledgements. Carolina Araujo was partially supported by CNPq and Faperj Research Fel-
lowships. Thiago Fassarella was partially supported by CNPq. Inder Kaur was supported by a CNPq
post-doctoral fellowship. Alex Massarenti is a member of the Gruppo Nazionale per le Strutture Al-
gebriche, Geometriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica ”F. Severi”
(GNSAGA-INDAM). Part of this work was developed during the visit of some of the authors to ICTP,
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2. Moduli spaces of parabolic vector bundles on P1

Fix p1, . . . , pn ∈ P1 general points and denote by S = p1 + · · · + pn the effective reduced divisor
determined by them.

2.1. Quasi parabolic vector bundles. A quasi parabolic vector bundle (E,v), v = {Vi}, of rank
two on

(

P1, S
)

consists of

- a vector bundle E of rank two on P1; and
- for each i = 1, . . . , n, a 1-dimensional linear subspace Vi ⊂ Epi .

By abuse of notation we often write E for (E,v). We refer to the points pi’s as parabolic points, and
to the supspace Vi ⊂ Epi as the parabolic direction of E at pi.

Let (E,v) and (E′,v′) be quasi parabolic vector bundles. A homomorphism of vector bundles
f : E −→ E′ is called parabolic if f(Vi) ⊆ V ′

i for every i = 1, . . . , n. It is called strongly parabolic if
f(Epi) ⊆ V ′

i and f(Vi) = 0 for every i = 1, . . . , n. We denote by PHom(E,E′) and SPHom(E,E′)
the sheaves of parabolic and strongly parabolic homomorphisms, by PEnd(E) := PHom(E,E) and
SPEnd(E) := SPHom(E,E) the sheaves of parabolic and strongly parabolic endomorphisms of
(E,v), and by PEnd0(E) and SPEnd0(E) their subsheaves of traceless endomorphisms.

By taking the trace of the product of two endomorphisms, one defines symmetric OP1-bilinear sheaf
homomorphisms

End(E) × End(E) → OP1 and End0(E)× End0(E) → OP1 .

A simple linear algebra computation then yields the following parabolic dualities

(2.1) PEnd(E)∨ ∼= SPEnd(E)⊗OP1(S) and PEnd0(E)∨ ∼= SPEnd0(E)⊗OP1(S).

2.2. Weights and stability conditions. Fix a weight vector A = (a1, . . . , an) of real numbers
0 ≤ ai ≤ 1. The parabolic slope of (E,v) with respect to A is

µA(E) =
degE +

∑n
i=1 ai

2
.

Let L ⊂ E be a line subbundle. For each i = 1, . . . , n, set

ai(L,E) =

{

ai if Lpi = Vi,

0 if Lpi 6= Vi.

The parabolic slope of L ⊂ E with respect to A is

µA(L,E) = deg(L) +
n
∑

i=1

ai(L,E).

A quasi parabolic vector bundle (E,v) is µA-semistable (respectively µA-stable) if for every line
subbundle L ⊂ E we have µA(L,E) ≤ µA(E) (respectively µA(L,E) < µA(E)). A parabolic vector

bundle is a quasi parabolic vector bundle together with a weight vector A. We say that a parabolic
vector bundle is semistable if the corresponding quasi parabolic vector bundle is µA-semistable.

By [MS80], for each fixed degree d ∈ Z, there is a moduli space MA(d) parametrizing rank two
degree d quasi parabolic vector bundles on

(

P1, S
)

which are µA-semistable. It is a normal projective
variety. By twisting vector bundles with a fixed line bundle, we see that MA(d) ∼= MA(d

′) whenever
d and d′ have the same parity. By performing an elementary transformation centered at one parabolic
point pi, as described in the introduction, we see that MA(d) ∼= MAi(d− 1), where

Ai = (a1, . . . , 1 − ai, . . . , an).

So from now on we assume that d = 0 and write simply MA for the corresponding moduli space.
Let Ms

A ⊂ MA be the Zariski open subset parametrizing stable parabolic vector bundles. If it is
not empty, then it is an irreducible smooth quasi-projective variety of dimension n − 3. We describe
the tangent space of Ms

A at a point (E,v)). We denote by ωP1 the canonical sheaf of P1. For any
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invertible sheaf L and S ∈ Div(P1) we write L(S) instead of L ⊗ OP1(S). We also write TEM
s
A for

the tangent space of Ms
A at (E,v). By [Yok95, Theorem 2.4],

(2.2) TEM
s
A
∼= H1(P1,PEnd(E)) ∼= H0(P1,SPEnd(E)⊗ ωP1(S))∨,

where the second isomorphism holds by (2.1) and Serre duality. We refer to the combination of these
two dualities as parabolic Serre duality.

Let θ ∈ H0(P1,SPEnd(E)⊗ωP1(S)) be a global section. For each parabolic point pi, the residual en-
domorphism Res(θ, pi) ∈ End(Epi) is well defined. The strongly parabolic condition implies that these
endomorphisms are nilpotent for each parabolic point pi. In particular the trace tr(θ) ∈ H0(P1, ωP1(S))
of θ vanishes at p1, . . . , pn, and thus tr(θ) = 0. So we have an isomorphism

TEM
s
A
∼= H0(P1,SPEnd0(E)⊗ ωP1(S))∨.

2.3. Parabolic Higgs bundles. Given a parabolic vector bundle
(

E,v
)

on
(

P1, S
)

, a Higgs field on
(E,v) is a section

θ ∈ H0(P1,SPEnd(E)⊗ ωP1(S)).

In order to simplify notation we shall denote the vector space above by

Higgs(E,v) := H0(P1,SPEnd(E)⊗ ωP1(S)).

In view of (2.2), there is an isomorphism

Higgs(E,v) ∼= T ∗
EM

s
A

for each (E,v) ∈ Ms
A. As we noted above, the trace of a Higgs field vanishes. This implies that the

minimal polynomial of θ is t2 + det(θ).
A parabolic Higgs bundle (E, θ) on

(

P1, S
)

consists of a parabolic vector bundle
(

E,v
)

together
with a Higgs field θ on E. It is µA-semistable (respectively µA-stable) if for every line subbundle
L ⊂ E invariant under θ, we have µA(L,E) ≤ µA(E) (respectively µA(L,E) < µA(E)).

We denote by MHiggs
A the moduli space of µA-semistable parabolic Higgs bundles of rank two and

trivial determinant. It is a normal, quasiprojective variety of dimension 2n − 6. By (2.2), MHiggs
A

contains as an open subset the total space of the cotangent bundle of Ms
A.

2.4. The Hitchin map. Let (E, θ) be a parabolic Higgs bundle on
(

P1, S
)

, and consider det(θ) ∈

H0(P1, ω⊗2
P1 (2S)). Since Res(θ, pi) is nilpotent for every parabolic point pi ∈ P1, det(θ) lies in the

linear subspace V ⊂ H0(P1, ω⊗2
P1 (2S)) consisting of sections vanishing at p1, . . . , pn. Identifying V with

H0(P1, ω⊗2
P1 (S)), the Hitchin map is defined as

H : MHiggs
A −→ H0(P1, ω⊗2

P1 (S))
(E,v, θ) 7−→ det(θ).

Our next goal is to describe the fibers of the Hitchin map, and of its restriction to the total space
of the cotangent bundle of Ms

A, which we denote by

h : T ∗Ms
A −→ H0(P1, ω⊗2

P1 (S)).

For this purpose we recall the properties of spectral curves associated to the Hitchin map.

2.5. Spectral curves. Denote by V the total space of the sheaf ωP1(S), with natural map π : V −→
P1. There is a tautological section s ∈ H0

(

V, π∗(ωP1(S))
)

. Given a ∈ V ⊂ H0(P1, ω⊗2
P1 (2S)), we define

the spectral curve Ca associated to a as the zero locus of the section

s2 + π∗a ∈ H0
(

V, π∗(ω⊗2
P1 (2S))

)

.

We denote by πa : Ca −→ P1 the restriction of π to Ca. It is a 2 : 1 map branched over the zero locus
of the global section a.

2.6. The Fano model. The central weight vector AF =
(

1
2 , . . . ,

1
2

)

yields a distinguished moduli

space MAF
. For n = 4, we have MAF

∼= P1. So from now on we assume that n ≥ 5.
The moduli space MAF

is a Fano variety of dimension n− 3 (see [Muk05, Cas15, AM16]). If n is
odd, then there are no stricly µA-semistable bundles and so MAF

is smooth. If n is even, then

Sing
(

MAF

)

= MAF
\Ms

AF
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consists of a finite set of points (see [BHK10, Section 2]).

We summarize in the following proposition the description of the fibers of the Hitchin map

H : MHiggs
AF

−→ H0(P1, ω⊗2
P1 (S))

in terms of spectral curves.

Proposition 2.7 ([BHK10, Section 2, Proposition 2.2, Lemma 3.1]). Let the notation be as above and

fix a general section a ∈ H0(P1, ω⊗2
P1 (S)). Then

(i) The spectral curve Ca is a smooth and connected curve of genus n− 3.
(ii) The fiber H−1(a) is an abelian variety isomorphic to Picn−2(Ca).
(iii) The codimension of H−1(a) \ h−1(a) in H−1(a) is at least two.

(iv) Denote by p : h−1(a) −→ Ms
AF

the restriction of the natural projection T ∗Ms
AF

−→ Ms
AF

,

and by Θ the theta divisor on Picn−2(Ca) ⊃ h−1(a). Then

p∗
(

−KMs
AF

)

= 4n−3Θ|h−1(a) .

Remark 2.8. It follows from Proposition 2.7 that the Hitchin map h : T ∗Ms
AF

−→ H0(P1, ω⊗2
P1 (S)) is

the affinization of T ∗Ms
AF

. In other words, viewed as an affine variety, H0(P1, ω⊗2
P1 (S)) is the spectrum

of the ring of regular functions on T ∗Ms
AF

.

2.9. The natural involution on the fibers of the Hitchin map. The natural involution ia :
Ca −→ Ca switching the sheets of the 2 : 1 covering πa : Ca −→ P1 induces the involution on
Picn−2(Ca) mapping L ∈ Picn−2(Ca) to i∗aL. We want to describe the corresponding involution on

the fiber H−1(a) ⊂ MHiggs
AF

.

For this purpose, let us review the correspondence in Proposition 2.7(ii). Given a line bundle
L ∈ Picn−2(Cs), we consider the rank 2 vector bundle E = (πa)∗L on P1. The parabolic points
p1, . . . , pn ∈ P1 are contained in the ramification locus of πa. Therefore there is a distinguished
1-dimensional linear subspace Vi in the fiber Epi . The tautological section

sa = s|Ca
∈ H0

(

Ca, π
∗
a(ωP1(S))

)

induces a homomorphism θ = (sa)∗ : E −→ E ⊗ ωP1(S). The parabolic Higgs bundle on
(

P1, S
)

associated to the line bundle L is (E,v, θ). The equation E = (πa)∗L can be viewed as the eigenspace
decomposition of θ on E.

Now notice that the parabolic Higgs bundle on
(

P1, S
)

associated to the line bundle i∗aL is (E,v, θ′),
where θ′ is obtained from θ by swapping the eigenspaces. Since θ is traceless, its eigenvalues λ1, λ2

satisfy λ1 = −λ2. Hence θ′ = −θ.

We conclude that the involution on the fiber H−1(a) ⊂ MHiggs
AF

induced by the natural involution

ia : Ca −→ Ca maps (E,v, θ) to (E,v,−θ).

3. The automorphism group of the Fano model MAF

In this section we show that the automorphism group of the Fano model MAF
is the group of

elementary transformations El ∼=
(

Z
2Z

)n−1
(Theorem 1.2).

Let ϕ ∈ Aut(MAF
) be an automorphism sending a general rank two parabolic vector bundle (E,v)

to (E′,v′). Since El ⊂ Aut(MAF
) is finite, in order to prove that the groups coincide, it is enough

to show that there is an elementary transformation elR ∈ El as defined in Paragraph 1.1 sending
(E,v) to (E′,v′). This is equivalent to showing that the blowup of P(E) at the finite set of points
{P(Vi)}i=1,...,n is isomorphic over P1 to the blowup of P(E′) at {P(V ′

i )}i=1,...,n. In order to prove this
isomorphism, we first show how to recover the blowup of P(E) at {P(Vi)}i=1,...,n as the projectivization
of the nilpotent cone associated to E. This construction works for any smooth projective curve C.

3.1. The nilpotent cone. Let C be a smooth projective curve and fix parabolic points p1, . . . , pn ∈ C.
Let

(

E,v
)

be a rank 2 quasi parabolic vector bundle on
(

C,S
)

. For any invertible sheaf L on C, we
consider the locally free subsheaf of SPEnd(E)⊗L consisting of traceless endomorphisms. We denote
this sheaf by SPEnd0(E) ⊗ L, and the corresponding vector bundle on C by SPEnd0(E,L). Notice
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that their rank is 3. We will define a codimension one quadratic cone bundle NE ⊂ SPEnd0(E,L),
the nilpotent cone of E.

For any p ∈ C \ {p1, . . . , pn} consider the cone of SPEnd0(E,L)p ∼= C3 consiting of nilpotent
elements:

NE,p = {Φ ∈ SPEnd0(E,L)p | Φ2 = 0} ⊆ SPEnd0(E,L)p.

Note that since the endomorphisms Φ ∈ SPEnd0(E,L)p are traceless, the condition Φ2 = 0 is equiva-
lent to det(Φ) = 0. By letting p vary in C \ {p1, . . . , pn}, we get a cone bundle in SPEnd0(E,L) over
C \{p1, . . . , pn}. We define the nilpotent cone NE as the closure of this cone bundle in SPEnd0(E,L).

Proposition 3.2. Let the notation be as above. Then the projectivized nilpotent cone P(NE) is

isomorphic over C to the blow-up of the ruled surface P(E) at the set of points {P(Vi)}i=1,...,n.

Proof. Let U ⊆ C be a trivializing open subset for both E and SPEnd0(E,L) containing only one of
the parabolic points, pi ∈ U . We fix an identification E|U

∼= U × C2 and basis for C2 with respect to
which the parabolic direction at pi is Vi = 〈(1, 0)〉.

Write t for a local parameter for U at pi. After shrinking U if necessary, we may assume that t is
a regular function on U . Sections of SPEnd0(E,L) over U are families of endomorphisms given by
matrices of the form

Mt =

(

tα β
tγ −tα

)

,

with α, β, γ ∈ Γ(U,L). So we can fix an identification SPEnd0(E,L)|U ∼= U ×C3 and basis for C3 with
respect to which the endomorphism of Ep corresponding to a point

(

p, (a, b, c)
)

∈ (U \ {pi})× C3

is given by the matrix

(

t(p)a b
t(p)c −t(p)a

)

. We have

det(Mt) = −t(tα2 + βγ).

So we see that in SPEnd0(E,L)|U ∼= U × C3, the nilpotent cone NE is cut out by the equation

ta2 + bc = 0.

This shows that P(NE)|U ⊂ U ×P2 is a smooth surface, the fibers of P(NE)|U −→ U over U \ {pi} are
smooth conics, and the fiber over pi is the union of two intersecting lines

F1 = {b = 0} and F2 = {c = 0}.

From the defining equation of P(NE)|U , we see that (a : c) = (b : −ta), and so we have a morphism

fU : P(NE)|U −→ P(E)|U
(

p, (a, b, c)
)

7−→
(

p, (a : c)
)

mapping F1 isomorphically onto the fiber of P(E)|U −→ U over pi, and contracting F2 to the point
P(Vi) ∈ P(E)|U .

On U \ {pi}, the vector (a, c) is precisely the eigenvector of the nilpotent matrix
(

ta b
tc −ta

)

.

Therefore the local morphisms fU glue together to define a global birational morphism over C

f : P(NE) −→ P(E).

It is an isomorphism away from n smooth rational curves, which get contracted to the points P(Vi) ∈
P(E), i = 1, . . . , n, and the result follows. �

Now we go back to our original setting, with C ∼= P1. In the proof of Theorem 1.2 we will apply
Proposition 3.2 with L = ωP1(S). We will need the following result.

Lemma 3.3. Suppose that n ≥ 6, and let (E,v) ∈ MAF
be a general parabolic vector bundle. Then

SPEnd0(E)⊗ ωP1(S) is globally generated.
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Proof. For any point p ∈ P1, evaluation at p yields an exact sequence:

0 → SPEnd0(E)⊗ ωP1(S − p) → SPEnd0(E)⊗ ωP1(S) → SPEnd0(E)⊗ ωP1(S)p → 0.

By parabolic Serre duality,

H1(P1,SPEnd0(E)⊗ ωP1(S − p)) ∼= H0(P1,PEnd0(E)⊗OP1(p))∨.

So, in order to show that SPEnd0(E)⊗ ωP1(S) is globally generated, it is enough to show that

(3.4) H0(P1,PEnd0(E)⊗OP1(1)) = {0}.

Since (E,v) ∈ MAF
is general, the underlying vector bundle E is free, and a global section in

H0(P1, End0(E) ⊗OP1(1)) can be represented by a traceless 2 × 2 matrix of linear forms on P1. The
vector space of such matrices has dimension 6. Each parabolic condition φ(Vi) ⊆ Vi imposes one linear
condition. A straightforward computation shows that, since the parabolic directions are general, we
get n linearly independent conditions. Therefore, (3.4) holds for n ≥ 6. �

Remark 3.5. It follows from Lemma 3.3 that there is a surjective map of vector bundles on P1

Higgs(E,v) × P1 α
→ SPEnd0

(

E,ωP1(S)
)

.

By identifying Higgs(E,v) with the cotangent space T ∗
EM

s
AF

, we describe the quadratic cone α−1(NE)
in terms of the restriction of the Hitchin map

hE = h|T ∗
EMs

A
: T ∗

EM
s
A −→ H0(P1, ω⊗2

P1 (S)).

Given a point p ∈ P1 \ {p1, . . . , pn}, let Vp ⊂ H0(P1, ω⊗2
P1 (S)) be the linear space consisting of sections

vanishing at p. Then

α−1(NE)p = h−1
E (Vp).

Working with a trivialization of SPEnd0
(

E,ωP1(S)
)

in a neighborhood of p, as in the proof of Propo-

sition 3.2 above, we see that the vertex of the cone α−1(NE)p is a codimension 3 linear subspace of
Higgs(E,v) that coincides with the kernel of αp.

Proof of Theorem 1.2. Let ϕ ∈ Aut(MAF
) be an automorphism, and consider the induced homomor-

phism on the cotangent bundle

dϕ : T ∗Ms
AF

−→ T ∗Ms
AF

.

Recall from Remark 2.8 that the Hitchin map h : T ∗Ms
AF

−→ H0(P1, ω⊗2
P1 (S)) is the affinization of

T ∗Ms
AF

. Therefore there is morphism of affine varieties

f : H0(P1, ω⊗2
P1 (S)) −→ H0(P1, ω⊗2

P1 (S))

making the following diagram commute:

T ∗Ms
AF

T ∗Ms
AF

H0(P1, ω⊗2
P1 (S)) H0(P1, ω⊗2

P1 (S)).

dϕ

f

hh

We will show that the map f is multiplication by a nonzero constant.
The C∗-action by dilations on the fibers of the map T ∗Ms

AF
−→ Ms

AF
induces the C∗-action on

H0(P1, ω⊗2
P1 (S)) given by t · a = t2a. Since dϕ is C∗-equivariant, so is f . This implies that f sends

lines through the origin to lines through the origin, and hence f is linear.
Consider a general section a ∈ H0(P1, ω⊗2

P1 (S)), and set a′ = f(a). By Proposition 2.7, the spectral

curves Ca and Ca′ are smooth, and the isomorphism dϕ|h−1(a) : h−1(a) −→ h−1(a′) extends to an
isomorphism of polarized abelian varieties

F : Picn−2(Ca) ∼= H−1(a) −→ H−1(a′) ∼= Picn−2(Ca′).

By Paragraph 2.9, the isomorphism F commutes with the involutions on Picn−2(Ca) and Picn−2(Ca′)
induced by the natural involutions on Ca and Ca′ .
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Torelli theorem implies that F comes from an isomorphism F∗ : Ca −→ Ca′ between the spectral
curves. Moreover, since F commutes with the involutions on Picn−2(Ca) and Picn−2(Ca′) induced by
the natural involutions on Ca and Ca′ , we have a commutative diagram

Ca Ca′

P1 P1

F∗

F∗

πa′πa

where F∗ is an automorphism of P1 that sends the branch locus of πa to the branch locus of πa′ .
These branch loci are precisely the zero loci of a and a′, and include the general points p1, . . . , pn. We
conclude that F∗ is the identity, and a′ is a nonzero multiple of a. Therefore the linear map

f : H0(P1, ω⊗2
P1 (S)) −→ H0(P1, ω⊗2

P1 (S))

is multiplication by a nonzero constant. After rescaling if necessary, we may assume that f is the
identity.

Let (E,v) ∈ Ms
AF

be a general rank two parabolic vector bundle, and write ϕ(E,v) = (E′,v′).
As explained in the beginning of the section, and in view of Proposition 3.2, in order to prove the
theorem, it suffices to show that the projectivized nilpotent cones P(NE) and P(NE′) are isomorphic
over P1.

From the above discussion, we have the following commutative diagram:

T ∗
EM

s
AF

T ∗
E′Ms

AF

H0(P1, ω⊗2
P1 (S)).

hE hE′

dϕ

If n ≥ 6 then, by Lemma 3.3, there are surjective maps of vector bundles on P1

T ∗
EM

s
AF

× P1 α
→ SPEnd0

(

E,ωP1(S)
)

, and

T ∗
E′Ms

AF
× P1 α′

→ SPEnd0
(

E′, ωP1(S)
)

.

By Remark 3.5, the induced isomorphism

dϕ : T ∗
EM

s
AF

× P1 −→ T ∗
E′Ms

AF
× P1

maps α−1(NE) to (α′)−1(NE′), and the kernel of α to the kernel of α′. Therefore it yields an isomor-
phism

SPEnd0
(

E,ωP1(S)
)

∼= SPEnd0
(

E′, ωP1(S)
)

over P1 mapping NE to NE′ . We conclude that P(NE) and P(NE′) are isomorphic over P1, as desired.

For n = 5 the result follows from [AC17, Proposition 1.9]. �

4. Models MA that are small modifications of MAF

In this section we determine the automorphism group of moduli spaces MA that are small modifi-
cations of MAF

. The weight polytope Π ⊂ ∆ consisting of weights A for which this happens can be
described after [Bau91] and [Muk05]. We note that [Bau91] and [Muk05] consider moduli spaces of
rank 2 parabolic vector bundles on P1 of degree 1, while here we work with degree 0. So, in order to
describe the weight polytopes that are relevant to our setting, we perform a reflection on the corre-
sponding polytopes described in [Bau91]. This reflection corresponds to an elementary transformation
centered at one parabolic point, as explained in Paragraph 1.1.
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4.1. The polytopes ∆ and Π. The vertices of the hypercube [0, 1]n ⊂ Rn are the points of the form
ξI =

(

(ξI)1, . . . , (ξI)n
)

, where I ⊂ {1, . . . , n}, (ξI)i = 1 if i ∈ I, and (ξI)i = 0 otherwise. The parity of
the subset I and the vertex ξI is the parity of |I|. For each subset I ⊂ {1, . . . , n}, consider the degree
one polynomial in the αi’s:

HI :=
∑

j 6∈I

αj +
∑

i∈I

(1− αi).

For any subset J ⊂ {1, . . . , n}, we have:

(4.2) HI(ξJ) = #(I
c
∩ J) + #(J

c
∩ I).

Let ∆ be the polytope generated by the even vertices of the hypercube. From (4.2) we see that ∆
is defined by the following set of inequalities:

∆ =

{

0 ≤ αi ≤ 1, i ∈ {1, . . . , n}

HI ≥ 1, I ⊂ {1, . . . , n} odd.

From (4.2) we also see that, for any vertex ξI ∈ ∆, the hyperplane spanned by those vertices of ∆
that are adjacent to ξI is (HI = 2). Hence, the polytope Π ⊂ ∆ defined in the introduction can be
defined by the following set of inequalities:

Π = ∆ ∩
(

HI ≥ 2
∣

∣ I ⊂ {1, . . . , n} even
)

.

More generally, we define a wall-and-chamber decomposition on ∆ as follows. For each subset
I ⊂ {1, . . . , n}, and each integer k satisfying 2 ≤ k ≤ n

2 and |I| ≡ k mod 2, consider the hyperplane
(HI = k). Now take the complement in the interior of ∆ of the hyperplane arrangement

(4.3)
(

HI = k
)

2≤k≤n
2
, |I|≡k mod 2

and consider its decomposition into connected components. Each connected component is called a
chamber of ∆.

In [Bau91], Bauer proved that this wall-and-chamber decomposition on ∆ corresponds to the vari-
ation of GIT for the moduli spaces MA, and described the birational maps between models corre-
sponding to different chambers. In particular, for 1

n−2 < ε < 1
n−4 and Aǫ = (1 − ǫ, ǫ, . . . , ε), the

moduli space MAε is isomorphic to the blow-up Xn−3
n of Pn−3 at n general points. This is known to

be a Mori dream space ([CT06, Theorem 1.3]). In particular its effective cone Eff(Xn−3
n ) comes with

a Mori chamber decomposition, and the chambers inside the movable cone Mov(Xn−3
n ) ⊂ Eff(Xn−3

n )
can be identified with the ample cones of small Q-factorial modifications of Xn−3

n ([HK00]). These
are Q-factorial projective varieties which are isomorphic to Xn−3

n outside a subset of codimension at
least two. Mukai realized in [Muk05] that there is a linear projection

φ : Rn+1 ∼= N1(Xn−3
n ) −→ Rn

mapping the effective Eff(Xn−3
n ) onto ∆, so that the wall-and-chamber decomposition of ∆ is induced

by the Mori chamber decomposition of Eff(Xn−3
n ). More precisely, for an arbitrary weight A ∈ ∆,

let CA denote the subset of ∆ consisting of weight vectors defining the same stability condition as A.
Then the relative interior of CA is the image under φ of the ample cone of the moduli space MA. In
particular, φ maps the anti-canonical class −KXn−3

n
to the central weight AF =

(

1
2 , . . . ,

1
2

)

, and the

movable cone Mov(Xn−3
n ) is mapped onto the polytope Π. The linear projection φ was made explicit

in [AM16, Section 3].

Proof of Corollary 1.4. Let A be a weight vector in the interior of the polytope Π. Recall from the
introduction that an elementary transformation elR ∈ El defines an automorphism of Ms

A if and only

if it is A-admissible, i.e., AR ∈ CA. In particular, ElA ⊂ Aut
(

MA

)

.

As explained above, MA is a small modifications of MAF
. So any automorphism ϕ ∈ Aut

(

MA

)

induces a pseudo-automorphism ϕF of MAF
. This means that ϕF is a birational automorphism of

MAF
that restricts to an isomorphism on the complement of a subset of codimension ≥ 2. Since

MAF
is a Fano variety, every pseudo-automorphism of MAF

is in fact an automorphism, and hence
ϕF ∈ El. We conclude that ϕ is induced by an elementary transformation, ϕ ∈ ElA. �
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Remark 4.4. If n ≥ 6, it follows from Corollary 1.4 that Aut(Xn−3
n ) = {Id}. In fact, taking Aǫ with

ǫ = 1
n−3 we can check that there is no A-admissible elementary transformation other than identity.

Besides that, for appropriate choices of weights, there are small modifications MA of Xn−3
n having

intermediate automorphism group.

5. Moduli of involutional vector bundles

Let n = 2g + 2 ≥ 6 be an even integer, and fix p1, . . . , pn ∈ P1 general points. Let π : C −→ P1 be
the 2 : 1 cover branched over the points p1, . . . , pn, set ci = π−1(pi) ∈ C, and denote by i : C −→ C
the hyperelliptic involution. An involutional vector bundle (E, j) on C is an i-invariant vector bundle
E, together with a lift j : E −→ E of the involution i to E. We denote by Minv

C/P1 the moduli

space of rank two semistable involutional vector bundles on C with trivial determinant, and such that
tr(jci) = 0 for 1 ≤ i ≤ n (see for instance [Abe04, Section 2]). Forgetting the lift j : E −→ E yields a
2 : 1 morphism

π : Minv
C/P1 −→ S

onto an irreducible component S of the moduli space of i-invariant rank two semistable vector bundles
on C with trivial determinant.

The Kummer variety of C is

Kum(C) =
Jac(C)

ι
,

where ι : Jac(C) −→ Jac(C) is the involution induced by i : C −→ C. It naturally embeds in S via
the map

Kum(C) −→ S
L 7−→ L⊕ i∗L.

By [Kum00, Theorem 2.1], the double cover π : Minv
C/P1 −→ S is branched over the Kummer variety

Kum(C) ⊂ S. We denote by

η : Minv
C/P1 −→ Minv

C/P1

the involution of Minv
C/P1 induced by π : Minv

C/P1 −→ S.

As in the previous sections, we denote by MAF
the moduli space of rank two parabolic vector

bundles with trivial determinant on
(

P1, S
)

which are semistable with respect to the central weight

AF =
(

1
2 , . . . ,

1
2

)

. By [Bho84, Proposition 1.2] there is an isomorphism

(5.1) MAF
∼= Minv

C/P1 .

This map is obtained by pulling back parabolic vector bundles on P1 to C, performing an elementary
transformation centered at the points c1, . . . , cn, and then twisting by an appropriate line bundle.

Proposition 5.2. Let the notation be as above. Then there is a splitting exact sequence

0 →
Z
2Z

∼= {Id, η} → Aut(Minv
C/P1) → Aut(S,Kum(C)) → 0,

where Aut(S,Kum(C)) denotes the group of automorphisms of S stabilizing Kum(C).

Proof. Let X be the blow-up of P2g−1 at p1, . . . , p2g+2, and denote by Ei the exceptional divisor over
pi. By [Bau91] and [Muk05], there is a small birational modification

f : X 99K MAF
∼= Minv

C/P1 ,

which is defined by the linear system
∣

∣m(−KX)
∣

∣ for m ≫ 1.

Let L be the linear system on P2g−1 of degree g hypersurfaces having multiplicity at least g − 1 at
the pi’s, and denote by LX the induced linear system on X. Then

(5.3) −KX ∼ 2gH −

2g+2
∑

i=1

(2g − 2)Ei ∼ 2(gH −

2g+2
∑

i=1

(g − 1)Ei) ∼ 2LX .
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By [Kum00, Theorem 2.1] the rational map fL induced by L is generically 2 : 1, dominant onto S,
and makes the following diagram commute

X Minv
C/P1

P2g−1 S.

f

fL

π

Since f is a small birational modification, (5.3) implies that π : Minv
C/P1 −→ S is defined by the linear

system |L′|, where 2L′ ∼ −KMinv
C/P1

. In particular, any automorphism of Minv
C/P1 preserves the fibers

of π, and hence descends to an automorphism of S stabilizing Kum(C), the branch locus of π. This
gives a group homomorphism

Aut(Minv
C/P1) −→ Aut(S,Kum(C)).

Any automorphism in Aut(S,Kum(C)) lifts to an automorphism of Minv
C/P1 . Furthermore, if ϕ ∈

Aut(Minv
C/P1) is a nontrivial automorphism that descends to the identity, then ϕ must switch the two

points on a general fiber of π, i.e, ϕ = η, yielding the stated exact sequence. �

Remark 5.4. By Theorem 1.2 and (5.1), Minv
C/P1

∼=
(

Z
2Z

)2g+1
. Proposition 5.2 yields

Aut(S,Kum(C)) ∼=

(

Z
2Z

)2g

.

On the other hand, tensoring by a 2-torsion line bundle on C induces an automorphism of Minv
C/P1 .

Therefore, Aut(S,Kum(C)) can be naturally identified with the group of 2-torsion points of Jac(C).

Remark 5.5. When n = 6, the description of Minv
C/P1 is classical. In this case, C is a curve of genus

2, S ∼= P3, and Kum(C) ⊂ P3 is the classical Kummer surface. It is a quartic surface whose singular
locus consists of 16 singular points of type A1. Remark 5.4 above recovers the group of automorphisms
of P3 stabilizing Kum(C):

Aut(P3,Kum(C)) ∼=

(

Z
2Z

)4

.

Remark 5.6. When n = 2g+1 ≥ 5 is odd, there is a similar isomorphism as in (5.1). In this case, in
addition to the parabolic points p1, . . . , pn ∈ P1, we pick an extra general point p2g+2 ∈ P1. As before,
we let π : C −→ P1 be the 2 : 1 cover branched over the points p1, . . . , p2g+2, and set ci = π−1(pi) ∈ C.
We denote by Minv

C/P1 the coarse moduli space of rank two semistable involutional vector bundles on

C with determinant OC(c2g+2), such that tr(jci) = 0 for 1 ≤ i ≤ n, and jc2g+2
= (−1)(g−1)Id. Then

MAF
∼= Minv

C/P1 .

By Theorem 1.2, their automorphism groups are isomorphic to
(

Z
2Z

)2g
. As before, they can be naturally

identified with the group of 2-torsion points of Jac(C).
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