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Abstract: Even today, techentium-99m represents the radionuclide of choice for diagnostic
radio-imaging applications. Its peculiar physical and chemical properties make it particularly
suitable for medical imaging. By the use of molecular probes and perfusion radiotracers, it provides
rapid and non-invasive evaluation of the function, physiology, and/or pathology of organs. The
versatile chemistry of technetium-99m, due to its multi-oxidation states, and, consequently, the ability
to produce a variety of complexes with particular desired characteristics, are the major advantages of
this medical radionuclide. The advances in technetium coordination chemistry over the last 20 years,
in combination with recent advances in detector technologies and reconstruction algorithms, make
SPECT’s spatial resolution comparable to that of PET, allowing 99mTc radiopharmaceuticals to have
an important role in nuclear medicine and to be particularly suitable for molecular imaging. In this
review the most efficient chemical methods, based on the modern concept of the 99mTc-metal fragment
approach, applied to the development of technetium-99m radiopharmaceuticals for molecular
imaging, are described. A specific paragraph is dedicated to the development of new 99mTc-based
radiopharmaceuticals for prostate cancer.
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1. Introduction

Molecular Imaging (MI) is a type of medical procedure that provides the visualization,
characterization, and measurement of biological processes at the molecular and cellular levels in living
systems [1].

Nuclear medicine is a branch of MI that, through the use of radiopharmaceuticals, allows
physicians to see and to measure functional, metabolic, chemical, and biological processes within the
body and/or to treat malignant tumours, cancer, and other diseases [2–5].

In general, a radiopharmaceutical is a medicinal product that is, usually, administered
intravenously to the patient. The radiopharmaceutical is the result of the linkage of two elements,
a carrier and at least one radioactive atom that, with its nuclear properties, defines the diagnostic
and/or therapeutic nature of the radioactive compound. The carrier plays an important role in the
selective transport of the radionuclide to a specific biological target (Figure 1).

Appl. Sci. 2019, 9, 2526; doi:10.3390/app9122526 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6382-1944
https://orcid.org/0000-0002-1490-0718
https://orcid.org/0000-0002-4059-4814
http://www.mdpi.com/2076-3417/9/12/2526?type=check_update&version=1
http://dx.doi.org/10.3390/app9122526
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2526 2 of 16

Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 16 

Radioactive atoms decay through a nuclear process that leads to the production of γ-rays used 
in the diagnostic imaging field. In this case, the radioactivity coming from the radiopharmaceutical, 
carrying the diagnostic information outward from the body, is detected and transformed in a very 
precise picture of the radiopharmaceutical’s distribution in the body by means of so-called “gamma 
cameras” working with sophisticated computerized algorithms. On the contrary, radionuclides 
decaying through the emission of massive particles, such as electrons or alphas, can be used in 
nuclear medicine for radionuclide therapy to treat certain types of cancer and other diseases [6–8]. 

 

 
Figure 1. Schematic representation of linkage of the carrier and the radioactive atom to form the 
radiopharmaceutical that interacts with a specific biological target. 

Ideally, for diagnostic nuclear medicine imaging applications, each nuclear decay should yield 
a monochromatic gamma-ray in the energy range 100–600 keV, and the half-life of the radionuclide 
should be on the order of a few hours to avoid unnecessary exposure to radiation. 
Radiopharmaceuticals for single-photon computed tomography (SPECT) are generally composed of 
single small molecules (the size can range from 10−12 to 10−6 m) radiolabelled with a gamma-emitting 
isotope, such as indium-111, iodine-123, gallium-67, or technetium-99m. 

Advanced methods to specifically and selectively incorporate medical radionuclides, such as 
radiometals, into targeting vectors, based on an improved understanding of their coordination 
chemistry and the development of creative labelling strategies, are the core of modern 
radiopharmaceutical research [9–11]. 

Among the SPECT isotopes currently in use, technetium-99m has become the workhorse of 
diagnostic nuclear medicine and technetium-99m-based radiopharmaceuticals are still the most used 
radioactive chemical compounds in hospitals’ clinical practice [12–15]. The main reasons for 99mTc’s 
continuing usage are its ideal nuclear properties and its convenient supply method through a 
commercial generator system. Techentium-99m decays through the emission of 140 keV γ-rays (89% 
abundance), which is ideal for imaging with medical gamma cameras, and can be administered to 
patients in low-radiation doses. Moreover, its 6-h half-life is sufficient for the preparation of 99mTc 
radiopharmaceuticals (in hospitals or centralized radiopharmacies), their possible distribution, the 
performance of quality controls, administration to the patient, accumulation in the target organ, and 
image acquisition. Even if the use of radiopharmaceuticals labelled with positron emitters 
radionuclides challenged the field of SPECT tracers, over 70% of diagnostic investigations are still 
performed with this single isotope for imaging of bone, renal, hepatic, hepatobiliary, cardiac, and 
oncological diseases or other pathologies. Until some years ago, the inferior sensitivity, temporal and 
spatial resolution of SPECT cameras compared to positron emission tomography (PET) cameras, 
together with the complex and contrived inorganic chemistry of this metal, were considered key 

Figure 1. Schematic representation of linkage of the carrier and the radioactive atom to form the
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Radioactive atoms decay through a nuclear process that leads to the production of γ-rays used
in the diagnostic imaging field. In this case, the radioactivity coming from the radiopharmaceutical,
carrying the diagnostic information outward from the body, is detected and transformed in a very
precise picture of the radiopharmaceutical’s distribution in the body by means of so-called “gamma
cameras” working with sophisticated computerized algorithms. On the contrary, radionuclides
decaying through the emission of massive particles, such as electrons or alphas, can be used in nuclear
medicine for radionuclide therapy to treat certain types of cancer and other diseases [6–8].

Ideally, for diagnostic nuclear medicine imaging applications, each nuclear decay should yield a
monochromatic gamma-ray in the energy range 100–600 keV, and the half-life of the radionuclide should
be on the order of a few hours to avoid unnecessary exposure to radiation. Radiopharmaceuticals for
single-photon computed tomography (SPECT) are generally composed of single small molecules (the
size can range from 10−12 to 10−6 m) radiolabelled with a gamma-emitting isotope, such as indium-111,
iodine-123, gallium-67, or technetium-99m.

Advanced methods to specifically and selectively incorporate medical radionuclides, such as
radiometals, into targeting vectors, based on an improved understanding of their coordination chemistry
and the development of creative labelling strategies, are the core of modern radiopharmaceutical
research [9–11].

Among the SPECT isotopes currently in use, technetium-99m has become the workhorse of
diagnostic nuclear medicine and technetium-99m-based radiopharmaceuticals are still the most
used radioactive chemical compounds in hospitals’ clinical practice [12–15]. The main reasons for
99mTc’s continuing usage are its ideal nuclear properties and its convenient supply method through a
commercial generator system. Techentium-99m decays through the emission of 140 keV γ-rays (89%
abundance), which is ideal for imaging with medical gamma cameras, and can be administered to
patients in low-radiation doses. Moreover, its 6-h half-life is sufficient for the preparation of 99mTc
radiopharmaceuticals (in hospitals or centralized radiopharmacies), their possible distribution, the
performance of quality controls, administration to the patient, accumulation in the target organ, and
image acquisition. Even if the use of radiopharmaceuticals labelled with positron emitters radionuclides
challenged the field of SPECT tracers, over 70% of diagnostic investigations are still performed with
this single isotope for imaging of bone, renal, hepatic, hepatobiliary, cardiac, and oncological diseases
or other pathologies. Until some years ago, the inferior sensitivity, temporal and spatial resolution of
SPECT cameras compared to positron emission tomography (PET) cameras, together with the complex
and contrived inorganic chemistry of this metal, were considered key problems in the development of
new technetium-99m compounds for the imaging of more specific molecular targets [16].
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Advances in technetium chemistry over the last 20 years have facilitated the development of new
technetium radiopharmaceuticals with great potential in clinical practice. In addition, recent advances
in detector technologies and reconstruction algorithms clearly showed that the spatial resolution od
SPECT is approaching that of PET without a concomitant decrease in sensitivity. In particular, novel
multi-pinhole collimators, coupled with cadmium zinc telluride (CZT) solid-state photon detectors to
further improve image quality and reduce scanner size, reduce the imaging time and radiation dose.
The new SPECT scanners have demonstrated up to a 7-fold increase in photon sensitivity and an up to
2-fold improvement in image resolution. Furthermore, the adoption of CZT involves a superior energy
resolution compared to a conventional gamma camera [17].

The above considerations lead us to believe that 99mTc-radiopharmaceuticals will continue to play
an important role in nuclear medicine and MI. The versatile chemistry of technetium-99m is a major
advantage in radiopharmaceutical development.

The aim of this review is to describe and report the most efficient labelling methods to produce
modern technetium-99m radiopharmaceuticals for nuclear medicine. Highly specific activities needed
for targeting low-concentration targets are easily achievable through advanced chemical procedures
involving the 99mTc-metal fragment approach. A section is dedicated to the development of new
99mTc-based radiopharmaceuticals for prostate cancer.

2. Techentium-99m Production Routes

Techentium-99m is easily produced by the decay of the parent molybdenum-99 by eluting
compact and transportable 99Mo/99mTc generator systems that are almost always available in nuclear
medicine departments. The generator system is a simple apparatus composed of an alumina column
on which the 99Mo is absorbed in the chemical form of molybdate [99Mo]MoO4

2−. The 99Mo decay
into 99mTc leads to the formation of pertechnetate [99mTc]TcO4

−, which is less tightly bound to the
alumina column because of its single negative charge compared to the double negative charge of
molybdate. [99mTc]NaTcO4 can be easily eluted from the column with a saline solution thanks to the
depression caused by an under-vacuum vial appositely inserted in the pertechnetate collecting area
(Figure 2). The obtained sodium 99mTc-pertechnetate is ready for injection or for the preparation of
other radiopharmaceuticals [18,19].
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The worldwide demand for molydbenum-99 is satisfied by nuclear reactors via the 235U(n,f)99Mo
fission route on Highly Enriched Uranium targets (HEU, enrichment over 80% in 235U). Alternatively,
molibdenum-99 can be produced by bombarding molybdenum-98 with high-intensity neutrons to
generate sufficient amounts of molybdenum-99 [20].

Nuclear reactors involved in the supply of this isotope are listed in Table 1. In the last decade,
they have suffered planned and unplanned shutdowns for maintenance or breakdowns, causing,
first in 2009 and then in 2012 and 2013, a shortage in Mo-99 production and therefore in Tc-99m’s
availability for clinical studies. Recently, significant interruptions in the supply of technetium-99m
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occurred in 2016 and 2018, the years when the French OSIRIS and Canadian NRU reactors, respectively,
stopped operating.

Table 1. Nuclear reactors involved in 99Mo supply for generator medical devices.

Reactors Countries Six-Day GBq/Mo-99 GBq/year Start of Service End of Service

LVR-15 Czech Republic 3330000 1957 2028
MARIA Poland 3515000 1974 2030
OPAL Australia 3420650 2007 2055
HFR The Netherlands 8946600 1961 2024
BR2 Belgium 6060600 1961 >2026
RA-3 Argentina 680800 1967 2027

SAFARI-1 South Africa 4835900 1965 2030

In addition to the reactors reported in Table 1, smaller amounts of molybdenum-99 are produced
in the RBT-6 and RBT-10 reactors in Russia: irradiating HEU targets have a production capacity of
37,000 GBq/week, and WWR-c has an available production capacity of 12,950 GBq/week. All Mo-99
suppliers except those in Russia produce molybdenum-99 using LEU targets or are in the final stages
of converting production from HEU to LEU (Low Enriched Uranium, enrichment below 20% in 235U)
targets [21].

The supply of molybdenum-99 and technetium-99m is particularly sensitive to reactor shutdowns
because, after production, they cannot be stored for future needs due to their short half-lives. Several
alternative production routes have been evaluated and some of them have become reliable thanks to
the worldwide research efforts of the last 10 years [22–25]. Alternative strategies for the production of
molybdenum-99 include the use of linear accelerators, where a molybdenum-100 source is irradiated
with gamma rays, as the 100Mo(γ,n)99Mo reaction [26].

The direct production of 99mTc on cyclotrons, involving the proton bombardment of a solid 100Mo
source in the 100Mo(p,2n)99mTc reaction, is now a reality [23,27,28].

A list of various cyclotron and non-cyclotron production routes is given in Table 2.

Table 2. Tc-99m alternative production routes.

Reactor Based Accelerator Based

LEU-235U(n,f)99Mo 238U(γ,f)99Mo
nat,98Mo(n,γ)99Mo 96Zr(α,n)99Mo

100Mo(γ,n)99Mo
100Mo(p,pn)99Mo
100Mo(p,2n)99mTc

3. Chemical Approaches to Bioactive Molecule Labelling with Technetium-99m

In the last decay, the labelling of targeting vectors has become the main object of modern
radiopharmaceutical research. Technetium is a transition metal and, as such, presents a major
disadvantage with respect to other radionuclides in combining with biologically active molecules. For
example, 99mTc cannot be a substitute for a carbon or a hydrogen atom in a targeting molecule, as
happens for the labelling with carbon-11, or fluorine-18 and iodine-123 respectively. The development
of technetium imaging agents requires both a familiarity with the coordination chemistry of the group
7 metals and an understanding of the design of suitable ligands that provide robust molecular imaging
probes. Deep knowledge of inorganic chemistry allows for developing convenient approaches to
introduce stable technetium-99m into a bioactive molecule with the aim of not affecting its bioactivity. A
number of inorganic technetium functional groups, also called “cores” or “metal fragments,” have been
identified so far (Figure 3). These groups are chemical motifs comprising a characteristic arrangement
of atoms bonded to the metallic centre and determining the formation of a variety of coordination
complexes and molecular geometries. They can be prepared in physiological solution, have technetium
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in a reduced oxidation state, and have labile coordination positions, which can be conveniently
exploited to introduce the selected bioactive molecule. As previously described, technetium-99m,
whether produced by a 99Mo/99mTc generator or by a cyclotron, is obtained as [99mTc]NaTcO4 in a
physiological solution. Consequently, in order to link the radionuclide to a bioactive molecule, the
Tc(VII) metal must be reduced to a suitable oxidation state in the presence of appropriate ligands.
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Figure 3. Inorganic technetium functional groups useful for labelling bioactive molecules.
HYNIC=6-hydrazinonicotinamide.

The metal fragments reported in Figure 3, in combination with an appropriate set of coordinating
atoms, provide an effective strategy for tethering a biologically active moiety with a technetium-99m
complex. The metal fragment strategy mainly involves a two-component system composed of (1) the
radioactive metal fragment and (2) an appropriate chelating group eventually bound to the selected
bioactive molecule through a spacer group. The high affinity of the precursor metal fragment for the
specific binding sites on the bioactive ligand allows for obtaining a conjugate complex resulting from
the fitting of the two carefully selected molecular building blocks (Figure 4).
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In the following section, descriptions of complexes containing the most important technetium
functional groups are given. Some of these complexes are also examples of 99mTc-radiopharmaceuticals
that have been employed in clinical studies or are currently used as diagnostic agents in clinical practice.

3.1. The 99mTc(V)-Oxo Core

The 99mTc(V)-oxo core represents the most extensively studied metal fragment. Complexes based
on this core are generally pentacoordinated, adopting square pyramidal geometry with the π-bonding
oxo-group in the apical position. Due to the strong trans influence of the oxo-group, six coordinated
technetium-oxo compounds are relatively uncommon. The oxo-core is stabilized by σ- and π-donating
atoms coming from amino, amido, and thiolate ligands, as well as the tetradentate ligands of the
N4-xSx class [29–32].

These ligands are extremely efficient at forming more stable 99mTc-oxo complexes compared with
those derived from bidentate ligands. These compounds can be prepared through the direct reduction
of the 99mTc-pertechnetate anion in the presence of tin chloride, which is the ubiquitous preliminary
step in the preparation of conventional 99mTc-radiopharmaceuticals, or via a ligand exchange reaction
with [99mTc]Tc-glucoheptonate (Figure 5).
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A representative example is provided by the complex technetium-99m N,N-1,2-ethylene
diylbis-L-cysteine diethyl ester dihydrochloride (l,l-[99mTc]Tc-ECD), a brain perfusion imaging agent
on the market with the name Neurolite®. The complex is neutral and formed by multiple Tc≡O
bonds coordinated by a tetradentate ligand with two nitrogen and two sulphur donor atoms in a
square/pyramidal arrangement. The high symmetry makes the complex hydrophobic. Because of its
lipophilicity, it can cross the blood-brain barrier (BBB). The mechanism of brain localization is based on
the transformation by esterase enzymes of one of the lateral ester groups (–COOEt) in a carboxylic
group (–COOH), with the subsequent formation of a negatively charged more hydrophilic compound
that is unable to cross the BBB and thus is trapped. It is important to note that only 99mTc-ECD having
a l,l configuration undergoes ester hydrolysis, making this compound a true metabolic marker of the
brain’s esterase enzymes.

Mixed aminothiol-based chelators, most notably N2S2 [e.g., bis(aminoethanethiol) (BAT)] and
N3S [e.g., mercaptoacetylglycylglycylglycine (MAG3)], have been used to label a selected bioactive
molecule with technetium-99m [33–37]. These tetradentate chelating systems allow us to produce
more stable Tc(V)–oxo complexes in comparison with those produced with similar bidentate chelators.

Representative examples from this class of compounds are 99mTc-TRODAT-1, a probe for the
diagnosis of Parkinson’s disease, and 99mTc-Depreotide (P829), a Tc(V)-oxo somatostatin analogue
complex [38–42]. TRODAT-l (Figure 6) is currently considered a useful imaging agent for the early
detection of Parkinson’s disease, where a phenyltropanepharmacophore is used as a targeting vector
for specific monoamine transporter proteins, and the N2S2 chelate system, connected to the tropane
molecule, has been introduced to coordinate the technetium-oxo core without affecting the affinity for
the biological target.
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Likewise, a tripeptide chain provides a N3S binding group for (Tc≡O)3+ core in the
99mTc-Depreotide radiopharmaceutical (Figure 6) and the bioactive part of the original octreotide
structure has been modified to eliminate the disulphide bridge, which would be reduced during the
formation of the (Tc≡O)3+ core from the generator-eluted 99mTc-pertechnetate.
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3.2. The 99mTc(V)- Hydrazido Metal Fragment

Metalorganohydrazine chemistry is an alternative approach to the design of radiopharmaceuticals
based on a stable and substitution inert 99mTc-metal fragment [43]. 99mTc- hydrazido metal fragment is
formed by a technetium-HYNIC (HYNIC = 6-hydrazinonicotinamide) core composed of the metal
in the V oxidation state and occupying the ligand one or two coordination sites. HYNIC ligands
are particularly convenient for radiolabelling biomolecules, with 99mTc being the active ester most
readily combined with small molecules, proteins, or different targeting vectors. However, even if the
metal-organohydrazino unit can be easily prepared from the metal-oxo core by a simple condensation
reaction, the intimate details of the chemistry are more complex and dependent upon reaction conditions
and the presence of co-ligands, which can influence the stability, hydrophilicity, and pharmacokinetics
of the resulting 99mTc-compounds [44].

A large number of co-ligands have been tested, including ethylenediaminediacetic acid (EDDA),
tricine, glucoheptonate, mannitol, thiolates, glucamine, and phosphines forming different binary
and ternary systems [45]. The EDDA co-ligand is in general preferred to tricine when preparing
99mTc-HYNIC complexes with higher stability in vivo and fewer isomeric forms. Unfortunately, while
many efforts have been made to completely establish the identities of these complexes, the chemistry
remains unclear. The dependence of the coordination chemistry on the reaction condition of this
technology has led to a certain difficulty in the development of 99mTc-HYNIC radiopharmaceuticals;
moreover, the increasing regulators’ requirements of providing fully characterized products does not
seem to have promoted HYNIC inclusion in clinical practice. Nevertheless, a wide range of bioactive
molecules have been labelled with the HYNIC strategy, among which the most investigated are
undoubtedly the somatostatin derivatives for neuroendocrine tumour (NETs) imaging. Most published
data concern the commercially available 99mTc-[HYNIC, Tyr(3)]octreotide (99mTc-HYNIC-TOC, Figure 7)
prepared through a two-vial kit formulation containing EDDA as a co-ligand [46–48].Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 16 
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Figure 7. The figure illustrates the chemical structure of the complex 99mTc-HYNIC-TOC, an imaging
agent for neuroendocrine tumours.

The complex is formed by a technetium atom bound to a ligand composed of two functional
parts, and a HYNIC group linked to an octapeptide. The EDDA ancillary ligand is required to
stabilize the coordination geometry. 99mTc-HYNIC-TOC represents a selective receptor imaging agent
for neuroendocrine tumours and, even if the true molecular structure of 99mTc-HYNIC-TOC is not
exactly determined, its biological properties can be understood by considering the bioactive group
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octreotide and selectively targeting the somatostatin receptors (SSR) overexpressed on the membranes
of neuroendocrine tumours.

This tracer showed greater sensitivity compared to 111In-octreotide, such as specific and high
receptor affinity, good biodistribution, faster renal excretion, lower radiation exposure, and high
imaging quality as well as the superior capability of 99mTc-TOC to visualize extrahepatic lesions [49].

3.3. The [99mTc(N)PNP]2+ Metal Fragment

The nitride technetium mixed ligand complexes [99mTc][Tc(N)(PNP)Cl2] provide a further example
of the metal fragment approach, where the Tc(N) group is coordinated to a chelating diphosphine
ligand of the PNP type and the pentacoordinated geometry is saturated by two chloride atoms. These
atoms can be easy replaced by bidentate ligands (Y~Z) having in their molecular structure electron-rich
coordinating atoms (Y, Z) highly reactive towards the electrophilic [99mTc(N)(PNP)]2+ metallic block to
afford the asymmetrical complexes [99mTc(N)(PNP)(Y~Z)]0/+ [50,51]. From this class of asymmetrical
complexes, a novel class of myocardial tracers exhibiting superior qualities was obtained, among
which 99mTc-N-DBODC and 99mTc-N-MPO are the most representative (Figure 8) [52,53].
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The first compound is prepared through a two-vial kit formulation following a two-step preparation
procedure. To the first vial, the generator eluted 99mTc-pertechnetate is added in the presence of SnCl2
and succinic dihydrazide (SDH), required to form the Tc≡N group. The second vial contains the
sodium salt of DBODC (bis-N-ethoxyethyl-dithiocarbamato), the bis(dimethoxypropylphosphinoethyl)-
ethoxyethylamine [PNP5; (CH3OC3H6)2P(CH2)2-N(C2H4-OCH2CH3)-(CH2)2P(C3H6OCH3)2], and
γ-cyclodextrin, used as a solubilizing agent for the diphosphine ligand. After the reconstitution of
the contents of the second lyophilized vial with saline, a part of the resulting solution is added to the
first vial and heated at 100 ◦C for 15 min to obtain the final 99mTc-N-DBODC compound with yield
>95%. A similar procedure is applied to the preparation of the cationic nitride complex Tc-N-MPO
([(99mTc-N(mpo)(PNP5)]+: mpo = 2-mercaptopyridine oxide). 99mTc-N-MPO showed favourable
biodistribution properties and myocardial uptake with rapid liver clearance in Sprague-Dawley
rats [52,53].

The [99mTc(N)PNP]2+ metal fragment has been efficiently employed for connecting a bioactive
molecule with technetium-99m, providing that the biomolecule includes the appropriate set of
coordinating atoms. In particular, it was found that the amino acid cysteine shows excellent coordinating
properties toward the electrophilic [99mTc(N)PNP]2+ metal fragment, either through the (NH2, S−) pair
or the (O−, S−) pair alternatively, giving rise to highly specific and quantitative reactions. Therefore, a
selected bioactive molecule, such as a peptide or a small protein, can be conveniently combined with a
cysteine residue through the terminal carboxylic group to form the corresponding COO-functionalized
N,S-cysteine ligand or through the terminal amino group to give an N- functionalized O,S-cysteine
ligand. The resulting bioactive cysteine derivative is then reacted with [99mTc(N)PNP]2+ to produce the
mixed [99mTc(N)PNP-cysteine-bioactive]0/+ complex. This approach has been used for the preparation
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of receptor-specific complexes for imaging benzodiazepine receptors and receptor-specific tracers for
5HT1A receptors [54,55].

3.4. The [99mTc][Tc(CO)3]+ Metal Fragment

The core [99mTc][Tc(CO)3]+ is a chemically robust organometallic moiety formed by technetium in
the I oxidation state coordinated to three carbonyl groups. The precursor [99mTc][Tc(CO)3(H2O)3]+ can
be readily prepared from the generator-eluted pertechnetate under the reducing conditions developed
by Alberto et al. [56–58].

A large number of different Tc(I) complexes can be prepared starting from this stable water-soluble
synthon, because the water ligands can be easily replaced by a variety of donor groups [59,60].

High yields of the [99mTc][Tc(CO)3(H2O)3]+ metal fragment are obtained in a single-step
procedure in the presence of the appropriate buffers, via the reduction of [99mTc]TcO4

− by potassium
boranocarbonate K2[BH3CO2], which also acts as a source of carbonyl ligands. With the aim
of making this labelling chemistry readily accessible, a kit-based formulation for producing
[99mTc][Tc(CO)3(H2O)3]+ synthon is available under the name IsoLink.

When the metal has a d6 low spin configuration, the complexes containing the [99mTc][Tc(I)(CO)3]+

core are typically inert and maintain their integrity under different reaction conditions. While the
robustness of complexes is purely kinetic, essentially all types of donor atoms have been used and
numerous examples of bidentate and tridentate chelators have been reported, including derivatives
that can be linked to targeting molecules [61]. As opposed to the traditional 99mTc(V)-oxo approach,
where the choice of ligand is quite limited, for [99mTc][Tc(I)(CO)3]+ almost any monodentate, bidentate,
ot tridentate donor ligands can be used. Among them, anionic bidentate ligands are more efficient
than neutral ones, and tridentate ligands react much faster than bidentate ones, providing the
additional advantage of shielding the metal centre from cross-reactions, as often occurs for the
[99mTc(CO)3(H2O)(B)]+ and [99mTc(CO)3Cl(B)]+ complexes (B, bidentate ligand). The most studied
tridentate ligands are aliphatic triamines, trithiacyclonane, bis-benzimidazole amine, pyrazolyl borates,
and histidine derivatives, which can be conveniently modified to provide complexes with an anionic,
cationic, or neutral overall charge and specific pharmacokinetic profiles to achieve the desired
biodistribution when the [99mTc][Tc(I)(CO)3]+ is incorporated into targeting vectors. Of these ligands,
the histidine (his) derivative can be easily connected to biomolecules through the introduction of
an acetic acid group at Nε in histidine to yield a Nα carboxylate histidine ready to be condensed
to a selected biomolecule. The use of histidine has the additional advantage of not being sensitive
to reduction and the resulting [99mTc][Tc(CO)3(his)] can be prepared in a single reaction step from
99mTc-pertechnentate.

4. The Metal Fragments Approach in the Development of New 99mTc-Based
Radiopharmaceuticals for Prostate Cancer

Prostate-specific membrane antigen (PSMA), a glutamate carboxypeptidase enzyme overexpressed
in 95% of advanced prostate cancer (PCa) cases, is a molecular target for the imaging and radionuclide
therapy of PCa using specific radiopharmaceuticals. In particular, the inhibition of its activity has been
attributed to the urea-based Lys(b-naphthyl alanine)-NH-CO-NH-Glu(Lys(Nal)-Urea-Glu fragment,
which, interacting electrostatically with the active peptide sites of the enzyme, has been shown to image
advantageously PSMA-expressing in PCa [62]. Furthermore, when the expression levels in healthy
tissue are low, PSMA has the potential for high-dose radiotherapeutic treatment, with minimized
radioactivity-related side effects. Recent studies on 177Lu-PSMA-617 have demonstrated a high tumour
to normal tissue uptake, with prolonged retention of radionuclides in tumour-bearing areas in men
with metastatic prostate cancer [63–66].

Before therapeutic treatment, the imaging of radiopharmaceutical uptake in tumours or metastases
is essential and can be performed by positron emitter or single-photon emitter compounds. For
these two categories of radiopharmaceuticals, β+ particle emitter [68Ga]Ga-DOTA derivatives for
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PET imaging have been developed [67,68], while in the case of γ-emitter compounds, different
99mTc-radiopharmaceuticals have been reported for SPECT PCa imaging. In this last case, the
possibility of choosing from different synthesis strategies to ensure robust radiolabelling has been the
driving force in the development of compounds with improved biodistribution properties. Based on
the chemistry of the organometallic fragment [99mTc][Tc(CO)3(H2O)3]+, two promising compounds,
MIP-1404 and MIP-1405, both based on an imidazole modification of the PSMA inhibitor, were
developed (Figure 9).
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The preparation of the metal complexes [99mTc][Tc(CO)3-MIP-1404, MIP-1405] was accomplished
using a standard methodology and commercially available IsoLink kits (Covidien, Dublin, Ireland)
and the imidazole chelator, which contains three nitrogen atom suitable for binding to the
99mTc(I)-tricarbonyl-core. The radiochemical yield of the final radiopharmaceuticals is only 70%
and post-labelling purification is needed [69]. Both compounds were used to visualize tumours in
PCa and metastases in lymph nodes and bones. In particular, the MIP-1404 compound, also known
as [99mTc]Tc-trofolastat, has demonstrated superior biodistribution properties with low uptake in the
kidney and more lesions than MIP-1405 in a phase II clinical trial [58]. The different pharmacokinetics
has been attributed to the carboxymethyl group attached to the imidazole. In the MIP-1405 compound
there is only a terminal carboxymethyl group on the imidazole moiety, while MIP-1404 has a
biscarboxymethyl amino-2-oxoethyl group linked to each imidazole (see Figure 9).

The technology of 99mTc-hydrazinonicotinyl was also applied in the development of a PSMA
inhibitor for 99mTc-based SPECT. Ferro-Flores et al. [70] reported in vitro and in vivo studies of
99mTc–EDDA–HYNIC–iPSMA demonstrating that this radiopharmaceutical could detect tumour and
metastases of PCa as well as 68Ga–PSMA–617. 99mTc–EDDA–HYNIC–iPSMA was quickly prepared
from a kit with radiochemical yield >95%.

Recently, a new 99mTc radiopharmaceutical, known as 99mTc–PSMA–I&S (I&S = investigation
and surgery), is available for SPECT imaging and radio-guided surgery (RGS) for clinical application
in urology [71]. This compound can be produced through a robust and reliable freeze-dried
kit, facilitating the on-site production. The radiopharmaceutical is based on the molecule
DOTAGA-(3-iodo-y)-f-k-Sub(KuE), in which the DOTA chelator is present to coordinate indium-111.

Due to the limitations associated with the high cost, poor availability, and non-ideal nuclear
properties of this radionuclide, a technetium-99m analogue has been proposed. The DOTA chelator,
specifically used for indium-111 labelling, has been replaced with the hydrophilic MAG3- analogue
MAS3 (mercaptoacetyl triserina), with the aim of stably binding the technetium-99m in the V oxidation
state (Figure 10). At first, the use of the ease and efficient MAG3 labelling procedure allowed the
formation of the 99mTc–MAS3–y–nal–k(Sub–KuE) complex, where the 3–iodo–D–Tyr–D–Phe–sequence
in the linker moiety was replaced by a D–Tyr–D–2–Nal–sequence to enhance its interaction with a
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remote arene binding site. Then, a second, more stable compound, 99mTc–mas3–y–nal–k(Sub–KuE), was
developed, where all the L–serines in the chelator MAS3 (2–mercaptoacetyl–L–Ser–L–Ser–l–Ser–), more
susceptible to proteolytic degradation, have been replaced with the corresponding D–serine–(mas3)
(Figure 10). The high in vivo stability of the resulting 99mTc–PSMA–I&S compound represents a major
prerequisite for RGS clinical application performed on the day after the tracer injection for practical
reasons [71]. 99mTc–PSMA–I&S is a promising gamma probe that could potentially be used for in vivo
intraoperative measurements to facilitate localizing metastases and removing recurrent PCa lesions. A
very recent study also demonstrated the feasibility of using a 99mTc–PSMA–I&S radiopharmaceutical
to guide intraoperative identification and surgical removal of metastatic lymph nodes in PCa patients
scheduled for salvage surgery [72]. The PSMA radio–guided surgery essentially involves, first, the
selection of patients based on 68Ga–PSMA–PET results and clinical history, then the injection of
99mTc–PSMA–I&S and subsequent SPECT/CT imaging aiming to confirm the technetium uptake in
the same lesions of the preoperative gallium-68 compound. Finally, PSMA radio-guided surgery is
performed with in vivo and ex vivo gamma probes to reliably identify the metastatic prostate cancer
lesions. Figure 11 is a graphical representation of the steps of PSMA radio-guided surgery.
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5. Conclusions

The scientific advances of the last 20 years in the development of chemical approaches dedicated
to selectively introducing and stabilizing the metal technetium-99m into a bioactive construct, such
as the “99mTc-metal fragment approach,” have allowed the development of new technetium-99m
radiopharmaceuticals for tumour imaging, previously thought to be a prerogative of PET and other
radionuclides. The recent impressive results achieved with different PSMA target derivatives, in
combination with improvement of the SPECT technology, indicate that 99mTc radiopharmaceuticals are
far from obsolete and will continue to play an important and renewed role in nuclear medicine.
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