
Development of an Event Builder

software based on InfiniBand network

for the LHCb experiment

Matteo Manzali

Department of Mathematics and Computer Science

University of Ferrara

This dissertation is submitted for the degree of

Doctor of Philosophy

Tutor

Luca Tomassetti

Co-Tutors

Francesco Giacomini

Umberto Marconi





Abstract

The LHCb experiment is one of the four main experiments operating at the Large Hadron

Collider at CERN. Its main goals are to make precise measurements of CP violation and to

study rare decays of b and c-quark hadrons. The LHCb experiment will undergo a major

upgrade during the second long shutdown (2018 - 2019), aiming at collecting an order of

magnitude more data the possible with the present detector. The upgraded detector foresees

a full software trigger, running at the LHC bunch crossing frequency of 40 MHz. A new

high-throughput PCIe Generation 3 based read-out board has been designed on this purpose.

The read-out board will allow an efficient and cost-effective implementation of the Data

Acquisition System by means of high-speed PC networks.

The aim of this thesis is to study, design and implement an efficient Event Builder (EB)

software for the LHCb upgrade. The Event Builder will run on a 500 infrastructure. Each

server of the EB relies on two distinct logical components: the Readout Unit (RU) and the

Builder Unit (BU). The RU packs the event fragments from the detector, and ship it to a

receiving BU in a many-to-one pattern. Each BU gathers the event fragments to assemble

them in the full events, which is sent out afterwards for filtering to a specific trigger farm

unit. For these reasons I choose InfiniBand as network technology to build up the Event

Builder implementation. I developed the EB Communication Layer software, to be used

for data transfer among different nodes of the EB exploiting InfiniBand verbs, which is a

library that offers an user space API to access the RDMA capabilities of the network device.

The InfiniBand network standard is currently the most commonly used interconnection

technology in supercomputers. It provides the best performances among the open-standard

I/O technologies.
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On top of the Communication Layer I created the Logic Layer of the Event Builder, a

software that performs the event-building in a realistic way. This software implements a push

approach with custom dispatching policies, minimizing the risk of traffic congestion. I also

avoided the adoption of a central scheduler, preferring a predefined scheduling strategy. The

Event Builder software was tested on different clusters in order to prove its performance

and scalability. Finally, I performed preliminary studies on the possibility to use low power

architectures for high-throughput data acquisition purposes, using the Event Builder software

as use case.
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Introduction

The aim of my PhD thesis is to study, design and implement an efficient Event Builder

software for the LHCb upgrade. The LHCb experiment is one of the four major experiments

running at the Large Hadron Collider (LHC) at CERN and it will undergo a major upgrade

during the second long shutdown (2018 - 2019). This upgrade will concern both the detector

and the Data Acquisition (DAQ) system to be rebuilt in order to optimally exploit an expected

collision rate of about 40 MHz.

The Event Builder is the component of the DAQ system that receives data incoming from

the detector and performs the event composition. Consequently to the increased acquisition

frequency foreseen in the upgrade of the experiment, the Event Builder network has to be

able to manage a bandwidth of 32 Tb/s with a cardinality of 500 nodes. The first chapter of

this thesis deeply describes the LHCb experiment and the readout system foreseen for the

upgrade.

In order to achieve these requirements, I decided to rely on the InfiniBand technology

for the implementation of the Event Builder network. In the second chapter I compare the

most used network technologies in the field of High Performance Computing, describing the

reasons that led me to choose InfiniBand. Before taking decisions about the event-building

logic, I designed and implemented a software layer that allows to perform connections

and communications abstracting the low-level functionalities of InfiniBand. This work is

described in the first part of the third chapter.

Then I started to develop an Event Builder software that relies on that software layer

to perform the communications. I took several implementation choices to design a proper

event-building strategy, including the adopted readout protocol and the related scheduling
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and dispatching policies. I also developed a software component that simulates the incoming

data from the detector with a reasonable data format, which allows to test the Event Builder

software in a simulated environment. A detailed description of this work can be found in the

second part of the third chapter.

Finally I had the opportunity to run the developed Event Builder on different clusters

in order to test the performance and scalability of the software. Moreover, I performed

preliminary studies on the possibility to use low power architectures for high-throughput

data acquisition purposes, using the Event Builder software as use case. The result of the

tests and the testbeds are presented in the fifth chapter.



Chapter 1

The LHCb experiment and its upgrade

In this chapter the reader will find a brief introduction to the LHCb experiment, which is

currently taking data at the CERN Large Hadron Collider, and a description of the LHCb

detector upgrade plans, foreseen by 2018-19. As a consequence of the upgrade the new

detector will yield an order of magnitude more data than the present detector. The improved

performance will be obtained operating the event selection by means of an innovative full-

software trigger system, and by exploiting a new readout system, which are both entirely

based on a high-bandwidth network of commodity PCs.

1.1 CERN

CERN (French acronym for European Organization for Nuclear Research) is the world’s

largest center for physics research and an unique experimental ground in the field of ele-

mentary particle physics. It is located west of Geneva (Switzerland), on the Franco–Swiss

border and at the foot of the Jura mountain range (Fig. 1.1), where the geologic and seismic

conditions are suitable for a large particle accelerator construction.

The proposal to establish CERN was first sounded by the French physicist and Nobel

laureate Louis de Broglie in 1949 at the European Conference on Culture in Lausanne

(Switzerland). He proposed the creation of an international organization for fundamental

research of such a scale, which would not be feasible by a single national institution alone.
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Fig. 1.1 Aerial view of CERN

He was supported by European governments and in 1954 the European Centre for Nuclear

Research was born [1]. The initial number of 12 countries which signed the Convention on

CERN’s membership, today has grown up to 20 member states. About 7000 scientists from

approximately 500 research centers and universities in 80 different countries from around the

world use CERN as the experimental grounds.

1.2 The Large Hadron Collider

The Large Hadron Collider (LHC) [2], is the particle accelerator with which physicists are

able to penetrate as deeply into the matter as never before. Its construction was proposed in

1984 and it was planned that it would operate at a significantly increased, with respect to all

previous accelerators, center-of-mass energy of 14 TeV.

The name "Large" comes from the fact that it is the largest and most complicated machine

ever built by humanity. In order to save on building costs, the collider was installed in the 27

km underground tunnel at a depth of about 100 meters, which previously hosted the LEP

accelerator (Fig. 1.2). The "Hadron" part reflects the fact that the colliding particles are

hadrons, i.e. protons and heavy nuclei. Unlike it is predecessor, the LEP project, which
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Fig. 1.2 Schematic view of the LHC underground structure

accelerated electrons and positrons, LHC chose to work with proton beams. The reason

for that was the aim to reach the maximum possible energy in a given accelerator ring, and

the motion of charged particles in a circular orbit is accompanied by energy losses, due

to the synchrotron radiation. One can estimate how much higher these losses are during

acceleration of electrons in the same ring taking into account that the electron mass is almost

2000 times smaller than the proton’s mass, knowing that the intensity of such radiation is

inversely proportional to the fourth power of the mass of the accelerated particle. Finally, the

"Collider" part of the name points out that it has two beams of particles circulating in opposite

directions, which then intersect in special points for particles collisions. In comparison to

fixed target experiments, the benefit of such a construction is the higher center-of-mass

energy of the colliding particles.

1.2.1 How LHC works

The LHC is indeed a very complex machine. Inside it, the two beams of protons circulate

with opposite directions and their speed is close to the speed of light in vacuum. To keep

the beam of these energetic particles on a circular track, the accelerator requires magnetic

fields which are stronger than at any other accelerator. The technology for generating such
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magnetic fields, by means of superconducting magnets, has been used before, but there was

never an attempt to construct a superconducting apparatus of such a great scale. There are

more than 1200 superconducting dipole magnets which are placed along the ring and deflect

the particle beams. The maximum value of the magnetic field created by these magnets

reaches up to around 8 Tesla. There is yet another category of superconducting magnets:

about 400 quadrupole magnets help to optimally focus the two beams along the accelerator

ring and in the four collision points where the main detector experiments are located. All

of these superconducting magnets operate at a temperature as low as 1.9 K and to cool

them down to such a low temperature, nearly 96 tons of superfluid helium circle through the

accelerator’s ring.

Since the LHC accelerates two beams of particles which move in opposite directions, in

reality it consists of two accelerators in one, and before the beams are injected into the main

ring, they are accelerated in several sequentially connected machines. Initially, protons reach

the energy of 50 MeV in the linear accelerator (LINAC), from which they are rerouted into

the Proton Synchrotron Booster (PBS), where they acquire an energy of 1 GeV. Afterwards

they travel to the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) in which

they are boosted to energies of 26 GeV and 450 GeV respectively. And only after all these

intermediate steps the beams of protons reach the main ring of the LHC, where they are

accelerated to the much higher energy of 6,5 TeV per beam, which was achieved in spring of

2015.

1.2.2 The Second Long Shutdown

The LHC has been delivering data to the physics experiments since the first collisions in

2009. After 4 years of data taking, a first Long Shutdown (LS1), which started in February

2013, was triggered by the need to consolidate the magnet interconnections to allow the

LHC to operate at the design energy of 14 TeV in the centre-of-mass and has required a

2-years stop [3]. After a second period of operation of more than 3 years, the accelerator

complex will be stopped for about 18 months, from July 2018. The main purpose of the Long

Shutdown 2 (LS2) is the LHC injectors upgrade. Nevertheless LHC will profit from this
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period to perform full maintenance of all the equipment, to consolidate part of the machine

and to anticipate activities, where possible, of LHC future projects (Fig. 1.3) [4].

Fig. 1.3 Timeline of the LHC activities

1.2.3 Experiments at the LHC

There are actually seven experiments at the LHC that use detectors to analyse the particles

produced by collisions in the accelerator. These experiments are run by collaborations of

scientists from institutes all over the world. Each experiment is distinct, and characterized

by its detectors. The biggest of these experiments, ATLAS and CMS, use general-purpose

detectors to investigate the largest range of physics possible. Having two independently

designed detectors is vital for cross-confirmation of any new discoveries made. ALICE and

LHCb have detectors specialized for focussing on specific phenomena. These four detectors

sit underground in huge caverns on the LHC ring. The smallest experiments on the LHC are

TOTEM and LHCf, which focus on "forward particles" – protons or heavy ions that brush

past each other rather than meeting head on when the beams collide. TOTEM uses detectors

located on either side of the CMS interaction point, while LHCf is made of two detectors

which sit along the LHC beamline, at 140 metres either side of the ATLAS collision point.

MoEDAL uses detectors deployed near LHCb to search for a hypothetical particle called the

magnetic monopole. In the next section an overview of the LHCb experiment will be given.
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1.3 The LHCb experiment

The LHCb experiment explores the difference between matter and antimatter. For this it

analyses the difference between mesons that contain a b (beauty) quark and antimesons that

contain an anti-b quark. B quarks are used because their difference (asymmetry) between

quark and anti-quark is larger than with ordinary matter. Just after the big bang, matter and

antimatter were evenly distributed. When the universe started to expand, the composition

changed such that matter dominated. The LHCb experiment is devoted to the study of the so

called CP violation that can account for matter/antimatter asymmetry.

Fig. 1.4 Schematic view of the LHCb detector

The LHCb detector [5] is a forward spectrometer and measures consequently particles

moving only in one direction. It consists of many sub detector layers, which are responsible

to find the properties and trajectories of particles (Fig. 1.4). The sum of all information

allows the particle identification. A very detailed description of the detector can be found on

the official LHCb website [6]. The Vertex Locator (VELO) surrounds the collision point and

it is responsible for measuring the trajectories of particles close to the interaction point. It

allows the separation of primary and secondary vertices. A vertex is the point from where
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particles emerge, either from a collision (primary vertex) or from the decay of a short lived

particle like the B mesons. The Rich-1 detector is located behind the Vertex Locator and

allows to identify low-momentum particles. RICH stands for Ring Imaging Cherenkov. Such

detectors use the Cherenkov radiation of particles going through a dielectric medium which

allows to determine the speed of particles. Rich-1 is followed by the Tracker Turicensis

(TT) which is part of the Main Tracker and measures the transverse-momentum of particles.

The three Tracking Stations (T1-T3) which are also part of the Main Tracker are located

behind the large LHCb dipole magnet. They locate charged particle tracks and can measure

their momentum using the bending by the magnetic field. Another Rich detector is located

behind the Main Tracker and in contrast to Rich-1, it is responsible to identify particles with

high momentum. The next layer consists of the electromagnetic and hadronic calorimeters

(ECAL/HCAL), which stop particles and measure their energy. The last layers are the

Muon detector stations, that identify Muons, the only charged particles not stopped by the

calorimeters. The detection of Muons is important since they are part of many B meson

decays.

The detector is specialised for hadron physics and the main goal is to search for CP

violation in B meson decays. B physics is term for the study of behaviour of B mesons. B

stands for Beauty (quark) and the assumption is that the difference between matter and anti-

matter can be understood by evaluating the differences between the beauty and its anti-beauty

quark. B mesons consist of a beauty, also known as bottom quark, and either an up-, down-,

strange- or a charm-quark. The LHCb detector is designed to record exactly these kind of

particles. CP stands for conjugation symmetry parity and it basically defines the difference of

behaviour between a particle and its anti-particle. The CP violation is the broken symmetry

between them. In 1964, James W. Cronin and Val L. Fitch were the first ones who observed

such a violated symmetry in the decay of strange particles (containing a strange quark). They

analysed neutral kaons, which were generated at the Alternating Gradient Synchrotron in the

Brookhaven Laboratory. They could observe that a certain amount of kaons did not decay

like predicted by the CP symmetry. In 1999, the KTEV experiment at Fermilab and the

NA48 experiment at CERN could also prove the CP violation of neutral kaons. CP violation
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can also be observed for B mesons which are heavier than kaons. In 2004, this has been

proven for the first time in the BaBar experiment at the Stanford Linear Accelerator Center

and Belle experiment at KEK (Japan).

1.4 The LHCb upgrade

One of the main limitations of the current LHCb detector is that the collision rate must be

reduced to match the maximum readout rate of 1.1 MHz. The rate reduction is achieved by

the Level-0 hardware trigger, which uses the basic events signatures available (calorimeters

and muon system objects), operating within a fixed latency of few micro-seconds. Owing to

its implementation the Level-0 causes the largest inefficiencies in the entire trigger chain,

especially for purely hadronic decays of beauty and charm hadrons. Therefore, one of the

main objectives of the LHCb upgrade, planned during the Long Shutdown 2 by 2018-2019,

is to remove the hardware trigger bottleneck.

In the foreseen upgraded detector the event yields useful for physics will be maximised

by operating a synchronous readout of each bunch-crossing. No more trigger decision is

sent to the front-end electronics, making the upgraded LHCb readout completely trigger-free.

This requires a change of all the front-end electronics of all the detectors. Also, several

detectors will be replaced or upgraded. The upgraded LHCb will operate with a constant

instantaneous luminosity five times higher the current value. The luminosity will be kept

constant during the fill using the levelling scheme that was successfully operated during Run

1. At this luminosity the expected inelastic collision rate of about 40 MHz, will be processed

entirely by the software trigger, which will run on the dedicated Event Filter Farm (EFF). The

software trigger selections will be as similar as possible to those applied in offline analyses

to maximise trigger efficiencies and to minimise systematic uncertainties.
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1.5 The upgraded readout-system design

The main challenge for the trigger-less readout is to build a cost-effective system that can

handle the high throughput foreseen by the upgraded detector. As defined in the Letter of

Intent (LOI) for the LHCb upgrade [7], the event size will be of the order of 100 KB. At an

expected collision rate of 40 MHz the data rate through the Event Builder network will be

about 32 Tb/s. The Event Builder described in the Framework TDR [8] is similar to the one

used during Run 1 but with a much larger bandwidth. Since the Framework TDR, a new

approach has been developed. A new building at the surface will house the core routers and

the EFF. This permits utilizing a cost-effective solution in which the readout board, the router

and the EFF are located in close proximity. Long distance optical links of 300 meters will

be required between the front-end electronics located underground and the readout boards

located at the surface. This new design makes it possible to use high-bandwidth cost-effective

data-centre link-technology for the Event Builder (Fig. 1.5).

Fig. 1.5 The architecture of the upgraded LHCb readout-system
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The central part of the Event Builder in such an architecture consists of dedicated PC

servers. These servers interface the front-end electronics via a PCI Express (PCIe) based

readout board embedded in each PC server. The input is realised via serial optical links

running the GBT protocol [9], while the output is directed to the PC motherboard using

the PCI Express protocol (more details can be found in section 1.5.1). All the PC servers

involved in the event-building are connected by a large-scale dedicated network. This allows

the exchange of event fragments between PC servers, with one of the servers collecting the

fragments that belong to the same collision. The PC servers are also connected to the EFF

that runs the trigger algorithms. After an extensive R&D program, this architecture was

chosen by the collaboration in March 2014 [10].

1.5.1 The readout boards

PCI Express is the high-speed serial computer expansion bus standard designed to replace

the older PCI bus [11]. PCIe devices communicate via point-to-point serial links between

PCIe ports allowing both to send/receive requests and interrupts. The physical level of the

link is composed of one or more lane. Each lane is composed of two differential signaling

pairs: one pair for receiving the other for transmitting. Low-speed peripherals use a single-

lane link, while, for instance, a graphics adapter board (GPU) typically uses a much wider

16-lane link. PCIe communication is encapsulated in transaction layer packets (TLP) and

the Data Link Layer ensure reliable delivery of the TLP between two endpoints via an

acknowledgement protocol. Like other high data rate serial interconnect systems, PCIe has a

protocol and processing overhead due to the additional CRC and acknowledgements. The

nowadays available standard PCIe Gen 3 (PCIe-3) carries a bit rate of 8 Gbit/s per lane, with

an overhead of about 2%, due to a 128b/130b encoding scheme.

The readout solution based on PCIe-3 consists of developing the LHCb readout boards

as PCIe-3 standard boards, named PCIe40, which act as add-on cards in the motherboards

of the servers of the Event Builder. In this approach, represented schematically in Figure

1.6, data from the front-end electronics are transmitted over the GBT-links directly to the

event-builder PCs RAM via the PCIe40. Consecutive event fragments transmitted from the
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front-end electronics are received and buffered at the PCIe40 in Multi Event Packets (MEP)

of suitable size and then copied into the event-builder server RAM by means of DMA through

PCIe. The proposed PCIe40 is equipped with 24 GBT-links and it is directly connected to the

motherboard through 16-lane edge-connector. The PCIe readout requires therefore about 500

PCIe40 cards to read out the whole detector and the same number of Event Builder servers,

assuming to have just one PCIe40 card connected to one server [12]. In order to acquire at

the desired bandwidth of 32 Tb/s with an Event Builder network composed of 500 nodes,

each PCIe40 cards will write at an expected bandwidth of 100 Gb/s.

Fig. 1.6 The PCIe based readout system: the PCIe40 readout boards are directly connected
to the event-builder PCs through 16-lane PCIe edge-connector

Several studies and tests have proven the compatibility of PCIe-3 technology with the

very high performance targets demanded by the future upgrade of the LHCb experiment. This

design allows the implementation of a data acquisition system that is scalable, cost-effective

and able to pervasively leverage commercial off-the shelves solutions. This strategy allows

the development of custom electronics to be kept to a minimum. The PCIe40 will be a

common platform for all data acquisition and experiment control tasks within LHCb [13].





Chapter 2

Network Technologies

The event-building requires to bring data from all the readout boards into a single PC server at

an estimate bandwidth of about 100 Gb/s, this requires a network able to reach an extremely

high bandwidth compared to current standards. Nowadays there are only two network

technologies that dominate the High Performance Computing (HPC) market, as can be seen

from the TOP500 ranking [14]. The TOP500 project ranks and details the 500 most powerful

(non-distributed) computer systems in the world and its chart of interconnect trends shows

that the InfiniBand and Ethernet network technologies are widely used compared to the other

solutions (Fig. 2.1). In this chapter is explained why InfiniBand is the most suitable candidate

as network technology for the event-building. Moreover, it is described how InfiniBand

works and its main features.

2.1 Ethernet and InfiniBand roadmaps

At the time of writing both Ethernet and InfiniBand do not reach the bandwith required for

the event-building but, according to their roadmaps, there will be versions with an acceptable

speed grade in time for the Second Long Shutdown.

The roadmap for Ethernet (Fig. 2.2) is maintained by the Institute of Electrical and

Electronic Engineers (IEEE) and is designed to suit the needs of a broad range of applications

ranging from home networks to corporate LANs to data center interconnects and even wide
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Fig. 2.1 TOP500 Interconnect Trends

area networking. Naturally, each type of application has unique requirements and different

speed requirements. For example, client networking does not have the speed requirements

that are typical of a data center application. Of this wide range of applications the Ethernet

roadmap naturally tends to reflect the bulk of its intended market, even though speed grades

more representative of data center needs (40 and 100 GbE) have already been introduced and

the 400 GbE is expected in December 2017 [15].

Fig. 2.2 Ethernet Roadmap

The InfiniBand roadmap (Fig. 2.3) is maintained by the InfiniBand Trade Association

(IBTA) and has one focus, which is to be the highest performance data center interconnect
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possible. Commodity InfiniBand components (NICs and switches) at 40 Gb/s and 56 Gb/s

have been in wide distribution for years now, the 100 Gb/s speed grade has been introduced

last year and the 200 Gb/s speed grade has been announced in the 2017 timeframe [16].

Fig. 2.3 InfiniBand Roadmap

Historically, next generation Ethernet has been deployed first as a backbone (switch-to-

switch) technology and eventually trickled down to the end nodes. 10GbE was ratified in

2002, but until 2007 almost all servers connected to the Ethernet fabric using 1 GbE, with 10

GbE reserved for the backbone. The same happened for 40 and 100 GbE: although the specs

were ratified by the IEEE in 2010, only from 2014 onwards the first NICs were available. On

the other hand, server adapters for InfiniBand are ordinarily available coincident with the

next announced speed bump, allowing servers to connect to an InfiniBand network at the very

latest speed grades right away. Although the InfiniBand and Ethernet roadmaps are slowly

converging, it is still true that Ethernet has a slow adoption curve compared to InfiniBand,

making InfiniBand the most suitable candidate as network technology for the event-building.
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2.2 Remote Direct Memory Access

The "Remote Direct Memory Access" (RDMA) is the ability to transfer data directly between

applications over the network with no operating system involvement and while consuming

negligible CPU resources on both sides (zero-copy transfers) [17]. RDMA is quickly

becoming a necessity in performance-critical networking: modern HPC interconnects make

use of RDMA to achieve throughput approaching hardware bandwidth. The use of RDMA

reduces the cost of data movement by eliminating redundant copies throughout the network

path and reduces overall resource utilization (Fig. 2.4).

Fig. 2.4 Traditional Interconnect vs RDMA Interconnect

Without the use of RDMA methods, network transfers compete with the local system

for the available memory bandwidth. For these transfers, each local copy requires traversing

the memory bus twice. Typically, data is received and copied into a device buffer, then

copied into an operating system buffer, then finally copied into the application memory.

These multiple memory copies are a large bottleneck in HPC systems especially, because

memory speeds have not increased at the same rate as CPU and interconnect speeds. For this

reason non-RDMA network transfers consume significant amounts of the available memory

bandwidth and result in the system CPU(s) stalling on memory accesses.
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Fig. 2.5 The OFED Stack

2.2.1 A common software for RDMA

The OpenFabrics Alliance (OFA) is an open source-based organization that develops, tests,

licenses, supports and distributes the OpenFabrics Enterprise Distribution software (OFED).

The vision of the OpenFabrics Alliance is to deliver a unified, cross-platform, transport-

independent software stack for RDMA and kernel bypass. Transport independence means that

users can utilize the same OpenFabrics RDMA and kernel bypass API to run their applications

agnostically over every RDMA-aware technology. To that end, the OFA provides tools and

development resources to code, refine and publish standards-based, open-source software

with the scalability and performance necessary to support mission-critical applications (Fig.

2.5).

The OFED package includes many components to allow the support of RDMA and it is

structured in several layers:
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• Application Level: This layer contains fabric-specifc software such as tools for

debugging and diagnostics in an InfiniBand fabric and Open SM, a program that

manages and configures an InfiniBand network. In the Application Level there are also

various Message Passing Interface (MPI) packages and different high-level applications

and access methods for using OFED stack.

• User APIs: These are user space APIs that allow development of RDMA enabled

applications. This layer also contains the user space API of the RDMA Communication

Manager (CMA), a library for setting up RDMA connections.

• Upper Layer Protocol: Protocols that facilitate standard data networking, storage

and file system applications to operate over InfiniBand. Except for IPoIB, which

provides an encapsulation of TCP/IP data streams over InfiniBand, the other upper

level protocols (ULPs) transparently provide RDMA and hardware based transport

technologies to existing legacy applications.

• Mid-Layer: Kernel modules that enables the RDMA support for both user and kernel

level.

• Provider: Low level driver for the RDMA devices of various vendors such as Mellanox

Technologies, Qlogic, Chelsio Communications, IBM and Intel.

The OFED stack offers several ways to build an application that make use of RDMA,

such as the ULPs, MPI or uDAPL, but all of these are based on the OpenFabric User/Kernel

Level Verbs (or simply "verbs"). The verbs are intentionally not designed as a conventional

API. Rather, they are a set of functions and data structures that can be used to build various

high-level APIs. They are not oriented toward user applications, because they require

knowledge of the internal workings of RDMA hardware and its interactions with the OFED

stack. However, any other level of abstraction over verbs may harm the performances, so if

the target is to reach the maximum performances allowed by the fabric, the best approach is

to develop the application directly on top of verbs.
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2.2.2 RDMA-aware technologies

As mentioned above, the work of OFA is not specifically oriented on InfiniBand but more

generally on all those technologies that make use of RDMA. Currently, besides InfiniBand,

there are two other network technologies that support both RDMA and verbs: RDMA

over Converged Ethernet (RoCE) and the internet Wide Area RDMA Protocol (iWARP).

Developing an application based on verbs has the considerable advantage of being able to be

executed on different network technologies transparently, without being bounded to a single

solution.

RoCE

RoCE is a network protocol that allows RDMA operations over an Ethernet network. There

exist two RoCE versions, namely RoCE v1 and RoCE v2. RoCE v1 is a link layer protocol

and hence allows communication between any two hosts in the same Ethernet broadcast

domain. RoCE v2 is an internet layer protocol which means that RoCE v2 packets can be

routed. Although the RoCE protocol benefits from the characteristics of a converged Ethernet

network, the protocol can also be used on a traditional or non-converged Ethernet network.

The RoCE specifications can be found as an annex to the InfiniBand specifications [18] [19].

iWarp

iWarp is an RDMA implementation on top of existing Internet protocols, namely TCP or

SCTP on IP, giving it the major advantage of being compatible with the existing Internet

infrastructure. iWarp uses both RDMA and OS bypass to move data without the CPU

or operating system being involved: in order to facilitate this, a RDMA-capable network

adapter is required to handle all network processing, similar to a TCP Offload Engine (TOE).

Specifications for the iWarp protocol and software stack exist as IETF RFCs [20]. Currently

Chelsio is the only vendor that supports iWarp in its products.
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2.3 InfiniBand

InfiniBand (IB) is a high-speed, low latency, low CPU overhead, highly efficient and scalable

server and storage interconnect technology. One of the key capabilities of InfiniBand is its

support for native RDMA (see section 2.2). InfiniBand efficiency and scalability have made

it an optimal performance and cost/performance interconnect solution for the world’s leading

high-performance computing and storage data centers. InfiniBand is an industry-standard

technology and its specifications can be found in the documents "InfiniBand Architecture

Specification" [21] [22], which are maintained by the InfiniBand Trade Association.

2.3.1 The InfiniBand architecture

The smallest complete InfiniBand Architecture (IBA) unit is a subnet (Fig. 2.6). A subnet

consists of end nodes (e.g. servers), switches, copper or fibre links and a subnet manager.

Each end node must have a Host Channel Adapter to set up and maintain the link with the host

device. Switches contain more than one InfiniBand port and forwards packets from one port

to another to continue the transmission of the packet within a subnet. Subnet management

is handled through Software Defined Networking, which controls the network’s physical

elements and introduces traffic engineering features, often via open and industry-standard

interfaces [23].

Links

Links are bidirectional point-to-point communication channels and may be either copper and

optical fibre. They can operate at various signaling rates and can then be bundled together

to achieve higher throughput: the typical implementation is to aggregate four-link units

(4X). The raw signaling rate is coupled with an encoding scheme, resulting in an effective

transmission rate. The encoding minimizes the error rate for data sent across the copper or

fiber wires and adds some overhead (for example 10 bits transmitted for every 8 bits of data).

Currently, InfiniBand systems offer different throughput data rates, as shown in Tab. 2.1.
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Fig. 2.6 InfiniBand Subnet

Table 2.1 InfiniBand Data Rates

Name Acronym
Raw
Signaling
Rate

Applied
Encoding

Aggregated
Throughput
(4x)

Year

Single Data Rate SDR 2.5 Gb/s 8b/10b 8 Gb/s 2001
Double Data Rate DDR 5 Gb/s 8b/10b 16 Gb/s 2005
Quad Data Rate QDR 10 Gb/s 8b/10b 32 Gb/s 2007
Fourteen Data Rate FDR 14 Gb/s 64b/66b 54.3 Gb/s 2011
Enhanced Data Rate EDR 25 Gb/s 64b/66b 96.97 Gb/s 2014
High Data Rate HDR 50 Gb/s 64b/66b 193.94 Gb/s 2017

Host Channel Adapters (HCA)

The Host Channel Adapter (HCA) is an interface card or controller that bridges the InfiniBand

wire and the host system bus. Each end node must have an HCA, which sets up and maintains

the link between the host device and the rest of the entities on the network. HCAs provide

port connections to other devices. An HCA can be connected to another HCA, to a target

device through a Target Channel Adapter (TCA), or to a switch.
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Switches

A switch is used to physically connect devices within a network and forward incoming data

traffic toward its destination. Switches have multiple ports that process and forward data

across cables to the specific device for which it is intended, regulating the flow of traffic

within the network. In an InfiniBand fabric, the switch is a crucial piece of the architecture.

In fact, InfiniBand is called a "switched fabric" or "switch-based interconnect" because when

traffic is forwarded there is a logical connection from one port to another. As more switches

are added to the system, there are even more possible paths between devices.

Subnet Managers (SM)

The Subnet Manager (SM) is a software entity that configures its local subnet and ensures

its continued operation. It sets up primary and secondary paths between every end point

so that traffic flow forwarding decisions are preprogrammed and data arrives in the least

amount of time. There must be at least one SM present in a subnet in order to manage all

switch and router setups, and to reconfigure the subnet when a link goes down or a new link

comes up. The SM can reside on any of the devices within the subnet. All devices in the

subnet must contain a dedicated Subnet Management Agent (SMA), which is used by the

SM to communicate with the various InfiniBand components. There can be multiple SMs in

a subnet, as long as only one is active at any moment. Non-active SMs, known as Standby

Subnet Managers, keep copies of the active SM’s forwarding information and verify that the

active SM is operational. If an active SM goes down, a standby SM takes over responsibilities

to ensure that the entire fabric continues with its operation. Software-Defined Networking

(SDN) has emerged as a primary means of subnet management, not only controlling the

network devices and the data traffic between them, but also adding network flexibility and

scalability.
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Routers

A router is used to physically connect devices between separate computer networks. When

data reaches a router, it reads the address information in the packet and determines the

ultimate destination. In Ethernet networking, large subnets are not efficient due to the

flooding mechanism and the spanning tree. A router is therefore required to bridge between

various smaller subnets. These issues do not exist in InfiniBand, in which large subnets of up

to approximately 40,000 nodes can run efficiently. There is no need to divide into smaller

subnets, so a router is not a necessity. However, with the ever-growing demands on data

centers, InfiniBand router technology is available should there be a need for a subnet of more

than 40,000 nodes [24].

Gateways

A gateway is a device within a subnet that serves as a bridge between two protocols. This

allows, for example, an InfiniBand cluster to access Ethernet network management or storage

interfaces. This allows a company to implement an InfiniBand network with a dedicated

interface to existing legacy equipment that runs on other protocols. Gateways are not required

to connect InfiniBand clusters with Ethernet networks. Some or all of the compute nodes can

have Ethernet access by utilizing Ethernet adapters in addition to their InfiniBand HCAs.

2.3.2 Communication service types

The IBA provides several different types of communication services between endnodes:

• Unreliable Connection (UC): a connection is established between endnodes and

messages are sent (transmission is not guaranteed).

• Reliable Connection (RC): a connection is established between endnodes and mes-

sages are reliably sent between them.

• Unreliable Datagram (UD): a single packet message can be sent to an endnode

without first establishing a connection (transmission is not guaranteed).
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• Reliable Datagram (RD): a single packet message can be reliably sent to any endnode

without a one-to-one connection.

In the above, "reliably send" means the data is guaranteed to arrive in order, checked for

correctness, with its receipt acknowledged. The classes of service, with the exception of the

RD one, are strongly reminiscent of similarly-named networking communication services,

such as those provided by IP. This is intentional, since they provide essentially the same

services. However, these are designed for hardware implementation, as required by a high-

performance I/O system. The UC and RD classes are optionally implemented by vendors

and currently the RD class is not implemented by any hardware vendor [25].

2.3.3 Queue Pairs and HCA operations

For all the service types, HCAs communicate using special communication channels called

Queue Pairs (QP), each of them composed of a Send Queue and a Receive Queue (generically

called work queues). A single HCA can own multiple QPs and each QP has a port associated,

that is an abstraction of the connection of an HCA to a link (Fig. 2.7). The QP needs to

be initialized on both sides of the connection and, in order to allow this, a Communication

Manager (CM) component can be used to exchange information about the QP prior to actual

QP setup.

Fig. 2.7 Queue Pairs and ports

Once a QP is established, it can be used to perform RDMA operations such as Send,

Receive, RDMA Read, RDMA Write and atomic operations. All of the HCA operations

have a similar workflow: each Work Request (WR) is placed on a Send or Receive Queue, it



2.3 InfiniBand 27

is processed by HCA hardware and consumed, and when processing is completed an entry is

optionally placed on the Completion Queue associated (Fig. 2.8).

Fig. 2.8 Work Request Processing

SEND / SEND WITH IMMEDIATE

The SEND operation allows to send data to a remote QP’s receive queue. The receiver must

have previously posted a receive buffer to receive the data. The sender does not have any

control over where the data will reside in the remote host. Optionally, an immediate 4 byte

value may be transmitted with the data buffer. This immediate value is presented to the

receiver as part of the receive notification and is not contained in the data buffer.

RECEIVE

This is the corresponding operation to a SEND. The receiving host is notified that a data

buffer has been received, possibly with an inline immediate value. The receiving application

is responsible for receive buffer maintenance and posting.

RDMA READ

A section of memory is read from the remote host. The caller specifies the remote virtual

address as well as a local memory address to be copied to. Prior to performing RDMA

operations, the remote host must provide appropriate permissions to access its memory.

Once these permissions are set, RDMA READ operations are conducted with no notification

whatsoever to the remote host. For both RDMA READ and RDMA WRITE, the remote side
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is not aware that this operation being done (other than the preparation of the permissions and

resources).

RDMA WRITE / RDMA WRITE WITH IMMEDIATE

Similar to RDMA READ, but the data is written to the remote host. RDMA WRITE

operations are performed with no notification to the remote host. RDMA WRITE WITH

IMMEDIATE operations, however, notify the remote host of the immediate value.

ATOM FETCH AND ADD / ATOMIC COMPARE AND SWAP

These are atomic extensions to the RDMA operations. The ATOMIC FETCH AND ADD

operation atomically increments the value at a specified virtual address by a specified amount.

The value prior to being incremented is returned to the caller. The ATOMIC COMPARE

AND SWAP will atomically compare the value at a specified virtual address with a specified

value and if they are equal, a specified value will be stored at the address.

2.3.4 Memory Model

Control of memory access by and through an HCA is provided by three primary objects:

memory regions, memory windows, and protection domains. The relationship among regions,

windows, and the underlying virtual memory system is illustrated in Fig. 2.9 and explained

in the following.

Memory Regions

Memory regions provide the basic mapping required to operate with virtual addresses. A

memory region is created registering a segment of memory with the HCA. This causes the

operating system to provide the HCA with the virtual-to-physical mapping of that region

and pins the memory (prohibits swapping it out in virtual memory operations). Registration

creates an object called L_Key, which must be used with each access to that memory region;

it authenticates the use of that region by a QP and specifies access rights. If remote access



2.3 InfiniBand 29

Fig. 2.9 Window - Region - Virtual Memory Relationship

to memory by another endnode is desired for RDMA, a different object called R_Key must

be created and used; it must be sent to the endnode performing the memory access and

then passed back to the local endnode by the remote one as part of an RDMA request. It

is an opaque object that indicates to the HCA which virtual address map must be used and

authenticates the requestor.

Memory Windows

Memory registration is necessarily a time-consuming operation: it is likely to be done

just once for large segments of memory at a time. Finer-grain and much lower overhead

protection is provided by memory windows, so that individual operations can be restricted

to refer only to the specific data they would access. A memory window is created within

an already-registered region: it specifies a contiguous virtual memory segment with byte

granularity. The bounds of a window’s segment of memory are re-registered using a work

request. Using memory windows is not mandatory but when it is done, subsequent work

requests on that work queue must adhere to the memory bounds specified by the window.
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Protection Domains

Protection domains effectively glue QPs to memory regions and windows. They are opaque

objects, but are expected to correspond roughly to operating system processes or groups of

processes which, for example, might share a memory segment. A protection domain is first

created and then used when creating a QP, region or window. When applying or using a

window or region, the protection domain of the window (region) and the QP using it must

match, or an error is raised.



Chapter 3

Design and implementation of the Event

Builder

This chapter focuses on the development of the Event Builder software designed for In-

finiBand networks and called Large Scale Event Builder (LSEB) [26]. In order to keep

separated the communication management from the logic of the event-building, LSEB can

be nominally split into two distinct layers, namely the Communication Layer and the Logic

Layer. The implementation of the Communication Layer, that relies on the verbs library,

and related implementation choices are discussed in sections 3.3 and 3.4. In section 3.2

is introduced the architecture of the Event Builder. Finally in section 3.5 is described the

implementation of the Event Builder as the Logic Layer of the LSEB.

3.1 Language, libraries and development environment

Before going through the details of the implementation of LSEB, an introduction to the chosen

programming language, libraries and development tools is required. LSEB is developed

using the C++ language [27], adopting the C++11 standard and the Boost libraries [28]. C

and C++ languages are widely used in High Energy Physics (HEP) and HPC fields for data

acquisition and computing purposes, due to the features of flexibility, efficiency, performance,

and closeness to the hardware of these languages. In contrast with C, the C++ programming
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language provides object-oriented functionality keeping a C-like syntax. C++ adds greater

typing strength, scoping, and other tools useful in object-oriented programming, and permits

generic programming via templates. C++ supports most of C, with a few exceptions such

as implicit conversions [29]. The C++ standard template library gives immediate access to

very efficient data structures that are not natively present in C and would be complicated to

implement. Moreover, using a modern C++ standard, such as C++11, allows the compiler

to generate faster and more optimized code. Regarding the development environment, the

project makes use of CMake [30] to easily build software and run unit tests in a compiler-

independent fashion. The Git versioning system [31] has been adopted to keep track of the

software changes and evolution and to facilitate a collaborative software development. A

more detailed description of these tools can be found in appendix A.

3.2 The Event Builder architecture

Different dataflow schemas for the upgraded readout-system design have been studied by

the LHCb collaboration, analyzing size, complexity and cost in order to establish the most

effective one [32]. As introduced in section 1.5, the event-building process is composed by

three distinct logical units:

• The Readout Unit (RU) acquires a fragment from the detector and sends it to an

assigned Builder Unit.

• The Builder Unit (BU) collects fragments from all Readout Units which belong to

the same collection of bunch-crossings and assembles them into a complete event. It

sends complete events to the Filter Unit.

• The Filter Unit (FU) receives complete events and selects events for permanent

storage.

The core of the Event Builder is formed by all the Readout Units and Builder Units connected

with the dedicated network. Moreover, the Filter Units form the Event Filter Farm and are

connected to the Event Builder through an additional network.
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The chosen dataflow schema, illustrated in Figure 3.1, is called "bi-directional data-flow

with combined RU and BU" and has been adopted for the development of LSEB. Such

approach foresees combining Readout Units and Builder Units in the same device: for each

event a node is selected to be the Builder Unit, it will have one fragment from its own

Readout Unit and gets or requests the other fragments from all the other Readout Units to

build a complete event. The complete event is then sent to the Event Filter Farm.

Fig. 3.1 Bi-directional data-flow with combined RU and BU

This dataflow ensures a very powerful separation between the technologies for the fast

event-building network and the event-distribution network. The FUs are typically CPU-

limited and do not need a high-speed network, so a 10 Gbit/s connection is sufficient for this

purpose [32].

3.2.1 The readout protocol

Several studies and simulations have been made by the LHCb community in the last few

years in order to identify feasible readout protocols for the upgraded DAQ system [33] [34].



34 Design and implementation of the Event Builder

There are mainly two different protocols that depict the communication between Readout

Units and Builder Units:

• Push. The Push protocol is the simplest solution for data readout and it is used by

the LHCb DAQ system today. In this protocol, the Readout Units know wich Builder

Unit has been assigned to a specific event and they send packets without waiting for a

request from the Builder Units.

• Pull. In the Pull protocol the assignment between Builder Units and events is made as

soon as the events are ready in the Readout Units. After the assignment has been made,

the elected Builder Unit sends a request to the Readout Units for a specific event, then

each Readout Unit responds to that Builder Unit with the required event.

The Pull protocol may ensure more flexibility in case of failure of one or more Builder

Units but introduces extra latency and complexity due to the data request stage. With the

high data rates expected with the upgrade, a multi-stage dispatching protocol could become a

critical component and may lead to a performance degradation. On the other hand, the Push

protocol allows a linear and simple dataflow but there is the risk that all the Readout Units

send fragments to the same Builder Unit almost at the same time, as illustrated in Figure

3.2. This may produce a congestion somewhere in the switch hierarchy or, more likely, the

software on the receiving side may not be fast enough to post ready Work Requests on the

Receive Queue.

Fig. 3.2 Schematic view of the Push protocol: the Readout Units are concurrently sending
fragments to the same Builder Unit
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One possible solution to these limits of the Push protocol is to introduce a traffic-shaping

like strategy, with the basic idea of having at a certain moment in time all Readout Units

sending fragments to mutually exclusive Builder Units. Therefore LSEB implements the

Push protocol with a custom dispatching policy: all nodes hosting a Readout Unit - Builder

Unit pair have an unique identifier; each Readout Unit can then start to send fragments to

the Builder Unit with the subsequent identifier and follows a round-robin order, sending

fragments to its local Builder Unit at last, as illustrated in Figure 3.3. The drawback of this

approach is that even if a Readout Unit has fragments ready to be sent, it may have to wait in

order to respect the adopted dispatching policy, leading to more memory usage respect to the

simple Push protocol. However, considering that the average size of an event is about 100

KB and that the PCIe40 readout boards can handle up to 4 GB of memory [35], the needed

fragment buffering is still acceptable.

Fig. 3.3 Schematic view of the Push protocol with simple traffic-shaping: the Readout Units
are concurrently sending fragments to different Builder Units

3.3 Options for RDMA programming

User-level RDMA programming offers many more options and is more complex than tra-

ditional sockets programming, as it requires the programmer to directly manipulate data

structures defined by the network interface in order to directly control all aspects of RDMA

message transmission. Therefore, the programmer must take decisions which may drastically

affect performance. The following sections explain which implementation choices have

been taken in order to develop the Communication Layer, a verb based API fitting the Event

Builder design.
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3.3.1 Completion detection strategy

The basic principle of RDMA is the ability of accessing memory on a remote machine

without involving the CPU, leaving it free to perform other tasks. The verbs implement

this principle and they are designed to be asynchronous. This means that each transfer

call performed with verbs returns immediately instead of waiting for the completion of the

requested operation. There are two ways for an application to know about the completion of

a work request:

• Busy polling. The first completion detection strategy, called "busy polling", is to poll

the Completion Queue for a work completion. If it is empty, the function returns the

appropriate code for an empty Completion Queue. Otherwise, the function returns the

work completion, removing it from the Completion Queue.

• Event notification. The second strategy, called "event notification", is to set up a

Completion Channel that allows an application to wait until a notification is signaled

on this channel. After the notification, the application can obtain the work completion

from the Completion Queue.

Repeatedly polling the Completion Queue allows immediate reaction to completions at

the cost of full CPU utilization, but requires no operating system intervention. On the other

hand, the event notification approach is somewhat less efficient than the polling approach

since it introduces the overhead of an interrupt handler and context switches between user

and kernel modes [36]. Furthermore, the second strategy forces to adopt an event oriented

design for the whole application in order to avoid a busy waiting call somewhere in the logic

of the program.

The main aim of the Readout Units in the Event Builder design is to send data to the

Builder Units as soon as it is available. When all the send operations are started, the

Readout Units cannot do anything but wait for a work completion and, with the high data

rates expected, it is likely that the poll operation is almost always successful. Thus, the

Communication Layer implements the busy polling strategy, privileging the performance

and keeping a linear and simple design.
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3.3.2 Communication service type

The verbs allow to establish the connection between two endpoints through the exchange of

information that univocally identifies a Queue Pair:

• LID. The LID is the "Local Identifier" and it is a unique number given to each port

when it becomes active.

• QPN. The QPN is the Queue Pair Number and it is the identifier assigned to each

queue on the HCA.

• PSN. The PSN stands for Packet Sequence Number. In a reliable connection it is used

by the HCA to verify that packets are coming in order and that packets are not missing.

• GID. The GID is a 128-bit identifier used to identify an endnode, port, switch, or

multicast group. It allows routing between different subnets.

This approach forces the developer to implement an out-of-band mechanism in order to

collect and share this information before establishing the connections.

An alternative and simpler approach is to establish the connection using the RDMA

CM library, that is included in the OFED package. The RDMA CM is a communication

manager used to setup reliable connected, unreliable connected and unreliable datagram

data transfers. It provides a RDMA transport neutral interface for establishing connections.

The API concepts are based on sockets, but adapted for queue pair (QP) based semantics:

communication must be over a specific RDMA device, and data transfers are message based.

The RDMA CM only provides the communication management (connection setup and

teardown) portion of an RDMA API. It works in conjunction with the verbs API for data

transfers. The RDMA CM relies on the operating system’s network configuration tables to

map IP addresses to RDMA devices. This mapping is provided by the IPoIB Upper Layer

Protocol, also included in the OFED package, as shown in Figure 3.4.

IPoIB is a protocol that defines how to send IP packets over InfiniBand; the Linux kernel

has a driver, called "ib_ipoib", that implements this protocol [37]. The driver creates a

network interface for each InfiniBand port on the system, which makes an HCA acts like an
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Fig. 3.4 Interfacing between IP-based Ethernet and InfiniBand hardware

ordinary NIC. IPoIB does not make full use of the HCAs capabilities: network traffic goes

through the normal IP stack, which means that a system call is required for every message and

the host CPU must handle breaking data up into packets. However it means that applications

that use normal IP sockets will work on top of the InfiniBand link (although the system is not

be able to run the IP stack fast enough to use all the available bandwidth).

Therefore, the Communication Layer relies on the RDMA CM for connection establish-

ment, allowing an easy and socket-like connection approach based on IP addresses.

3.3.3 Work request type

The verbs implement all the work request types foreseen by the InfiniBand Architecture and

described in section 2.3.3. Starting from those request types, two different paradigms have

been identified for implementing the data transfer logic foreseen by the Event Builder:

• SEND / RECEIVE: In the SEND/RECEIVE paradigm a receiver first posts a RE-

CEIVE work request that describes a virtual memory area into which the adapter should

place a single message. The sender then posts a SEND work request which refers to a

virtual memory area containing the message to be sent. The network adapters transfer

data directly from the sender’s virtual memory area to the receiver’s virtual memory

area without any intermediate copies. Since both sides of the transfer are required to
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post work requests, this is called a "two-sided" transfer. The SEND / RECEIVE is

illustrated in Figure 3.5.

Fig. 3.5 Schema of a SEND / RECEIVE operation

• RDMA WRITE (WITH IMMEDIATE) / RECEIVE: The second paradigm is a

"one-sided" transfer in which a sender posts a RDMA WRITE request that pushes

a message directly into a virtual memory area that the receiving side previously

communicated to the sender. The receiving side is completely passive during the

transfer. The RDMA WRITE operation is schematically shown Figure 3.6. When the

sender needs to notify the receiver, it posts a RDMA WRITE WITH IMMEDIATE

request to push a message directly into the receiving side’s virtual memory, as for

RDMA WRITE, but in this case the work request also includes 4 bytes of immediate

(out-of-band) data that is delivered to the receiver on completion of the transfer. The

receiving side needs to post a RECEIVE work request to catch these 4 bytes, and the

work completion for the RECEIVE indicates the status and the amount of data written

with the RDMA WRITE WITH IMMEDIATE operation.

In the Event Builder logic each Builder Unit needs to know the address and the size of each

fragment (or collection of fragments) sent by the Readout Units in order to build complete

events. With the SEND / RECEIVE paradigm each Builder Unit implicitly obtains such

information, being notified of the memory address and the transferred size of each transfer.

With the RDMA WRITE (WITH IMMEDIATE) / RECEIVE paradigm the immediate data
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Fig. 3.6 Schema of a RDMA WRITE operation

can be used to communicate the address, but this requires to post a RECEIVE work request

by the Builder Unit for each data transfer. Moreover, using this second paradigm requires the

Readout Units to be aware of the remote memory in order to write only on those memory

areas no longer used by the Builder Units.

Efficiency studies have shown that the performance of these two approaches are essentially

equal [38]. However, the use of the first paradigm has the advantage of avoiding the

implementation of memory management and synchronization mechanisms. For these reasons

the Communication Layer implements the SEND / RECEIVE paradigm to perform RDMA

data transfers.

3.3.4 Memory management

The DMA engine responsible for transferring data from main memory to the HCA handles

only physical addresses. Thus, the virtual addresses of the communication buffer have

to be translated into physical ones and it is also important to ensure that every page of

the communication buffer is pinned to prevent swapping. This process is called memory

registration.

Registering a Memory Region is a very time-consuming process which requires several

operations to be performed by the OS and the driver [39]. In order to avoid registration and

deregistration of memory for every transfer, it is preferable to use designated memory buffers,
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which are registered only once. Furthermore, registering physical contiguous memory can

allow the low-level drivers to perform optimizations since lower amount of memory address

translations will be required [40]. Thus, it is a good practice to register a large Memory

Region and to access to a subset of it each time.

These considerations fit well with the design of the Event Builder, in which a large and

contiguous memory area of the Readout Units is written by the readout boards and subsets

of it are sent remotely to the Builder Units. Therefore, the Communication Layer allows

the registration of a single Memory Region, keeping all the memory contiguous, and avoids

temporary registrations/deregistrations. In the Communication Layer the use of the Memory

Windows (section 2.3.4) is also avoided, because there is no need of a finer granularity with

respect to the Memory Regions.

3.4 The Communication Layer

The Communication Layer is the lowest layer of LSEB and it makes use of verbs to perform

RDMA operations and implements all the strategies discussed in the previous section. The

Communication Layer exposes a simplified API to the overlying Logic Layer: it handles

connections in a TCP like way, using the so called RDMA Connection Manager, and

implements one-way communications has foreseen by the Event Builder design. The detailed

API of the Communication Layer can be found in the appendix C.1.

3.4.1 Adopted workflow

The Communication Layer follows the so called Acceptor-Connector design pattern [41].

The objects that compose the Communication Layer are:

• Acceptor. The Acceptor is the object used to listen for incoming connections and to

accept them.

• Connector. The Connector is the object used to ask for a new connection.
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• SendSocket. The SendSocket represents one-way communication channel and it is

created by an Acceptor or a Connector when a connection is established. It performs

data transfer from the local endpoint to the remote connected one.

• RecvSocket. The RecvSocket represents one-way communication channel and it is

created by an Acceptor or a Connector when a connection is established. It allows to

receive data sent from the remote connected endpoint to the local one.

The Communication Layer foresees two different approaches depending on who performs

the send operations between the Acceptor side and the Connector side, as shown in Fig. 3.7.

(a) Send performed by the Connector side (b) Send performed by the Acceptor side

Fig. 3.7 The different approaches allowed by the Communication Layer

These two approaches follow similar steps, regardless of who performs the send opera-

tions. A graphical view of the resulting workflow is shown in Fig. 3.8, assuming that the send

operations are performed by the Connector side. The following is a step-by-step description

of the workflow of the Communication Layer:

1. The Acceptor initiates a listen for incoming connections. Before performing the

real listen, the Acceptor creates a Protection Domain, a Queue Pair with Reliable

Connection transport type and the related Completion Queues.

2. The Connector tries to connect to the specified endpoint. Before performing the

real connect, the Connector creates a Protection Domain, a Queue Pair with Reliable

Connection transport type and the related Completion Queues.
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Fig. 3.8 Detailed description of the Communication Layer workflow

3. The Acceptor waits for an incoming connection.

4. Once the connection is established, the Connector returns a SendSocket object that

allows to communicate with the connected endpoint through the created Queue Pair.

5. Once the connection is established, the Acceptor returns a RecvSocket object that

allows to communicate with the connected endpoint through the created Queue Pair.

6. The SendSocket registers a memory area creating a Memory Region over it. This

allows to perform RDMA operations on the registered memory.

7. The RecvSocket registers a memory area creating a Memory Region over it. This

allows to perform RDMA operations on the registered memory.

8. The RecvSocket posts a memory buffer where data will be received. The memory

buffer needs to be within the boundaries of a previously registered memory area and

it cannot be modified until the receive operation is completed. Each operation of this

type adds a Work Request to the Receive Queue of the RecvSocket’s Queue Pair.
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9. The SendSocket posts a memory buffer that will be remotely sent. This memory buffer

needs to be within the boundaries of a previously registered memory area and it can

not be modified until the send operation is completed. Each operation of this type adds

a Work Request to the Send Queue of the SendSocket’s Queue Pair.

10. The SendSocket polls the Send Completion Queue for completed send operations.

Each operation of this type retrieves all the Work Completions present in the Send

Completion Queue of the SendSocket.

11. The RecvSocket polls the Receive Completion Queue for completed receive operations.

Each operation of this type retrieves all the Work Completions present in the Receive

Completion Queue of the RecvSocket.

Steps 8 and 9 can be performed repeatedly without waiting for previous completions.

When a send/receive operation is started by an HCA, a Work Request is automatically

consumed from the Send/Receive Queue Pair and once an operation is completed a Work

Completion is automatically added to the Send/Receive Completion Queue. The overlying

software using the Communication Layer needs to take into account these mechanisms in

order to find a balance, avoiding to empty or overfill Queue Pairs and Completion Queues.

3.4.2 TCP-based version

Performing RDMA operations needs specific RMDA-aware hardware which is not a com-

modity technology but it is available on HPC clusters only. This can complicate development

and testing of applications that make use of verbs. In order to allow the execution of LSEB

in any environment (virtual nodes, cluster with ethernet network, etc.) a TCP-based version

of the Communication Layer has also been developed.

The API remains the same in both the versions of the Communication Layer, because all

the RMDA concepts like Queue Pairs, Completion Queues, etc. are masked by the API itself.

It is possible to choose which implementation to use at compile time between "TCP" and

"VERBS" through the definition of a parameter named "TRANSPORT" passed to the cmake

command.
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The TCP-based version of the Communication Layer relies on the Boost.Asio library to

perform network operations. Using an Acceptor-Connector like approach allows an easy

adoption of the Boost.Asio Library, being itself based on that design pattern. Boost.Asio is

a cross-platform C++ library mainly for networking and some other low-level input/output

programming [42]. It has successfully abstracted the concepts of input and output that

work not just for networking but for serial ports, files, and so on. On top of these, the

developer can do input or output programming synchronously or asynchronously. The

library is portable and works across most operating systems, scaling well over thousands of

concurrent connections. The networking part was inspired by Berkeley Software Distribution

(BSD) sockets; it provides an API that deals with Transmission Control Protocol (TCP)

sockets, User Datagram Protocol (UDP) sockets and Internet Control Message Protocol

(ICMP) sockets.

3.5 The Logic Layer

The Logic Layer is the upper layer of LSEB and it implements the design of the Event Builder

discussed in section 3.2. It integrates the Readout Unit and the Builder Unit (described in

sections 3.5.4 and 3.5.5 respectively) in a single process, running each unit as a separate

thread. Referring to the Communication Layer design, the Readout Unit acts as the Connector

and sends data through a SendSocket to the Builder Unit, that acts as the Acceptor and

receives data through a RecvSocket. Besides the Readout Unit and the Builder Unit, the

Logic Layer foresees other two components called Generator and Controller (section 3.5.3)

for the generation and control of simulated fragments. These are required in order to allow

the simulation of the PCIe40 readout boards during development and testing phases. A

simplified schema of the separation between the two layers is shown in Fig. 3.9.

A special mention is deserved for the local communication, that is the the communication

between the Readout Unit and its local Builder Unit. In LSEB both the Readout Unit and

the Builder Unit belong to the same process: this means that they can communicate without

relying on the network or even without an Inter Process Communication (IPC) mechanism. To
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Fig. 3.9 Separation of Communication Layer and Logic Layer in LSEB

exploit the benefits of multithreading the Logic Layer implements the local communication

in a different way, bypassing the Communication Layer and using two shared queues in order

to exchange fragments between the Readout Unit and the Builder Unit.

Fig. 3.10 Logic Layer workflow

The workflow of the Logic Layer, shown in Fig. 3.10, foresees the following steps:

1. The program parses the command line parameters. The only required parameter is the

path of the configuration file. It is also possible to set parameters such as the directory

where the log will be saved (the default behaviour is to log on standard output), the

label that uniquely identify in the configuration file the node where the program is
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running (the default one is the hostname) and the duration of the run in seconds (the

default behaviour is an infinite run).

2. The program parses the configuration file. The configuration file specifies all the

information needed to configure the Generator, the Controller, the Readout Unit and

the Builder Unit. An example can be found in appendix B.1.

3. The Generator, the Controller, the Readout Unit and the Builder Unit are initialized.

4. The Readout Unit, running in a separated thread, starts to establish the connections

with all the Builder Units.

5. The Builder Unit, running in a separated thread, starts to accept all the connections

from the Readout Units.

6. The program waits until all the connections are established.

7. The Readout Unit, running in a separated thread, starts to acquire and send fragments.

A more detailed description of this step can be found in section 3.5.4.

8. The Builder Unit, running in a separated thread, starts to receive fragments. A more

detailed description of this step can be found in section 3.5.5.

9. The program waits the end of the run.

3.5.1 Scheduling strategy

In both Pull and Push protocols a supervisor may be present for deciding how to assign events

to the Builder Units. Alternatively, a predefined scheduling strategy may be adopted by all

the Readout Units or all the Builder Units (depending on the protocol). In the case of LSEB,

that implements a Push protocol, a possible supervisor would need to continuously contact

the Readout Units for communicating which Builder Unit has been elected for each event.

This can cause on overhead in terms if software complexity, latency and network traffic. This

overhead can be decreased assigning to each Builder Unit a set of events rather than a single

one each time.
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In the first implementation of LSEB it was decided to avoid the use of a central supervisor,

preferring a predefined scheduling strategy shared by all the Readout Units. The adopted

strategy is a round-robin pattern, in which the ith fragment is sent to the jth Builder Unit with

j = (i mod N), where N is the number of nodes of the Event Builder. This choice reduces

the points of failure and ensures more reactivity by the Readout Units, that do not need to

wait a communication from the supervisor in order to know whom to send the fragments.

Anyway, this does not preclude the adoption of a central supervisor in the future, in case a

load balancing mechanism will be desired.

Fault tolerance

The fault tolerance is a property that enables a system to continue operating properly in the

event of the failure of some of its components. Failures in the Readout Unit are a critical

aspect and cannot be easily managed due to the physical connection of the PCIe40 cards. In

this case the part of data coming from the detector to the failed node is lost until the failure

is recovered. On the other hand, a failure of a Builder Unit can be managed more easily.

A central supervisor can notice the failure of a Builder Unit, avoiding to communicate to

the Readout Units to send events to that Builder Unit. However, the adoption of a central

supervisor adds a single point of failure to the system that needs to be handled. The previously

described round-robin pattern does not allow to dynamically change the policy of scheduling,

in order to avoid sending events to unavailable Builder Units. Thus, in case of failure of a

Builder Unit the Event Builder loses those events that should be sent to that Builder Unit. As

an example in a 500-node Event Builder the failure of one node implies that:

• 1/500 of the all events is lost due to the unavailable Builder Unit

• for each event 1/500 of fragments is lost due to the unavailable Readout Unit

3.5.2 Data format

As soon as the Event Builder goes into production, each Readout Unit will read data written

directly in RAM by the PCIe40 cards. At the time of writing the data format has not yet
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been defined and both the PCIe40 card and its driver are still in development [13]. Thus, in

LSEB a plausible data format has been adopted. In this data format each event fragment is

composed by:

• ID. The ID field contains the event identifier and it is common to all the fragments

belonging to the same event.

• LENGTH. The LENGTH field represents the length of the fragment.

• FLAGS. The FLAGS field has a debugging purpose.

• DATA. The DATA field represents the real fragment that is the data coming from the

detector and it has a variable length.

All the ID, LENGTH and FLAGS form the header of the fragment. In order to facilitate

the identification of fragments performed by each Readout Unit a further data structure

called metadata as been added. Each metadata element refers to a specific fragment and it is

composed by:

• ID. The ID field is the same as the ID contained in the fragment header.

• LENGTH. The LENGTH field represent the length of the fragment.

• OFFSET. The OFFSET field is the distance in bytes from the beginning of the memory

buffer to the beginning of the fragment.

Figure 3.11 shows the relationship between fragments and metadata: the metadata allows to

easily identify the beginning and the end of a fragment or even a bulk of fragments without

accessing the data in memory for reading each fragment’s header.

Metadata size

The metadata size needs to be small enough to not affect the data transfer from the PCIe40 to

the Readout Unit.

The event identifier should be unique within a single acquisition run. With an ID field of

48 bits at an acquisition rate of 40 MHz the event identifier will wrap after about 81 days,
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Fig. 3.11 Relation between fragments and metadata

that is an acceptable maximum duration for a run. The size of the event identifier can be

further reduced assuming that an identifier must be unique inside the event-building process

instead of the whole run. In this case 32 bits can be enough, because the event identifier

will wrap after about 107 seconds, and it is not expected that an event will remain inside the

event-building process for so long. However, this solution requires an external mechanism

that adds the remaining bits to the event identifier in order to allow to uniquely identify it

within the run.

The data alignment of the fragments written by the PCIe40 is not yet defined. In reference

[43] a data alignment of 32 bytes has been recently presented. Assuming this data alignment,

the LENGTH field can safely represent the length of a fragment (about 200 bytes) using 4

bits. The OFFSET instead needs to be big enough to cover the whole memory buffer written

by the PCIe40. In the current implementation of the PCIe40 this memory buffer is of 4 GB

[35]. Thus, a possible size for the OFFSET field is 28 bits. The resulting metadata size is of

80 bits, or 10 bytes, that is about 5% of a single fragment. The metadata entry size can be

further reduced incrementing the data alignment dimension, with the drawback of an increase

of data fragmentation and wasted memory due to data padding.

3.5.3 Generator and Controller

In LSEB the data acquisition performed by the PCIe40 cards is currently simulated by a

software component called Generator. The Generator handles two distinct memory ring
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buffers, one for the fragments and one for the metadata. In order to avoid delays caused by

a slow runtime data generation, the Generator fills in advance the buffers with generated

fragments and metadata and then reserves and releases them on demand.

The real fragments coming from the detector will not have fixed sizes due to different

collisions and detected particles. The Generator simulates this behaviour assigning to each

fragment a size based on a Gaussian distribution with mean and standard deviation read from

a configuration file (appendix B.1). Also the maximum value of the fragment size can be

configured through the configuration file.

A feature that can be useful for testing purpose is the tunable frequency of fragment

generation. However, the Generator simply reserves and releases a requested number of

fragments, if available. In order to implement this feature the Generator has been incap-

sulated inside an object called Controller that asks for fragments at the desired frequency.

This frequency is read from the configuration file by the Controller. A second purpose of

the Controller is to isolate the changes needed to switch from simulation to a production

environment, once the readout boards will be ready. The design of LSEB foresees that only

the Controller needs to be modified to retrieve data from the PCIe40 driver instead of from

the Generator.

Fig. 3.12 Interactions between the Readout Unit, the Controller and the Generator
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Figure 3.12 shows the interactions between the Readout Unit, the Controller and the

Generator. Each time the Readout Unit asks for ready fragments to the Controller, this

calculates the expected number of fragments. In order to do so, the Controller multiplies the

total elapsed seconds from the beginning of the run with the expected frequency, obtaining

the total number of expected available fragments. Then it compares the number of expected

used fragments with the number of already generated fragments, asking to the Generator for

the difference. Finally the Controller returns the new fragments, if any. Once the Readout

Unit completes a send operation, it communicates to the Controller which fragments can be

released and this information is propagated to the Generator that can reuse that memory for

new available fragments.

3.5.4 The Readout Unit

The aim of the Readout Unit is to send ready fragments to the selected Builder Units at

the maximum speed allowed by the network. The minimum buffer size needed to saturate

the available bandwidth mostly depends on the network device. Different data rates and

even HCAs with the same data rate but provided by different vendors may require different

buffer sizes to saturate the bandwidth [44]. As an example, Figure 3.13 shows a benchmark

performed on two nodes connected back to back with Mellanox FDR InfiniBand cards. In

this configuration the minimum buffer size required is about 8 KB, far above the size of a

single fragment. More detailed tests can be found in chapters 4 and 5.

Thus, considering that the size of a single fragment may not be enough in order to saturate

the available bandwidth, the Readout Unit foresees to send fragments in bulks of configurable

cardinality. This approach is similar to that of the adopted scheduling strategy (see section

3.5.1), that foresees to send a range of fragments with contiguous IDs to the same Builder

Unit. The number of fragments that need to be sent to a specific Builder Unit and the number

of fragments that are sent in a single send operation can be specified with a single parameter

of the configuration file (appendix B.1).

The Readout Unit is aware of the memory areas containing metadata and fragments.

However, the information exchange between the Readout Unit and the Controller is limited
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Fig. 3.13 Example of bandwidth banchmark

to the metadata, avoiding the access to the whole fragments in memory with related latency.

This approach allows also a rapid identification of the beginning and the end of the memory

area containing the fragments to be sent to a Builder Unit, without reading the header of each

fragment. Despite that, the metadata are not sent to the Builder Unit. The Builder Unit needs

to distinguish every single fragment for building a complete event. The advantage of reading

consecutive metadata instead of not consecutive headers does not justify the overhead of

sending remotely the metadata. As shown in section 3.5.2 this overhead can be estimated as

at least about 5% of the throughput related to the fragments.

Fig. 3.14 Readout Unit workflow

The workflow of the Readout Unit, shown in Fig. 3.14, foresees the following steps:

1. The Readout Unit asks the Controller for ready fragments.
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2. The Readout Unit checks for completed send operations.

3. If there are send operations that are completed, the Readout Unit releases the memory

related to those fragments. The Generator can then reuse the released memory for new

fragments to be sent.

4. The Readout Unit sends all the ready fragments following the adopted dispatching

policy, until there are available fragments and connections with available work requests.

3.5.5 The Builder Unit

The aim of the Builder Unit is to receive fragments by all the Readout Units and to forward

them as completed events to the Event Filter Farm. In LSEB this last step is currently not

considered. Instead of sending the completed events to the Event Filter Farm, the Builder

Unit checks the correctness of the header of each fragment and then releases the events,

reusing the memory for next incoming fragments.

Fig. 3.15 Builder Unit workflow

The workflow of the Builder Unit, shown in Fig. 3.15, foresees the following steps:

1. The Builder Unit receives all the incoming fragments.

2. The Builder Unit checks if all the fragments of a given event have been received.
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3. If there are complete events, the Builder Unit validates the header of each fragment,

checking its fields.

4. The Builder Unit releases the memory related to the complete events. The Builder Unit

can then reuse the released memory for the reception of new fragments.

3.6 CPU usage

As described in section 3.3.2, connections in LSEB are performed with the RDMA CM

library that relies on blocking calls. A part from the connection phase, LSEB does not

perform further blocking calls. Therefore, this means that monitoring the CPU with standard

tools such as "top" results in a usage of 100% by each running unit. This does not mean that

those cores is effectively used for useful operations, the threads are more likely spending most

of the time waiting for data transfer completions. A profiling mechanism is implemented in

LSEB to provide a rough evaluation of the effective core usage by both the Readout Unit and

the Builder Unit. This mechanism measures the time spent by each unit performing useful

operations (i.e. without waiting for some completions). Then the ratio between the measured

time and the total elapsed time is logged together with other informations such as the average

bandwidth.





Chapter 4

Performance and scalability tests

In this chapter the tests performed in different HPC clusters in order to study the performance

and the scalability of the developed Event Builder software are described. Section 4.1

introduces those concepts that help to understand how performance can be typically improved

on modern architectures. The methodology adopted for the tests is described in section 4.2

while the tests performed and related results are reported in sections 4.3 and 4.4. Finally,

some considerations about the results obtained are given in section 4.5.

4.1 Relevant knowledge for system optimization

When running performance tests on modern servers several hardware features, such as the

CPU frequency, the power management tools and the process affinity, must be taken into

account in order to maximize the final attainable performance.

4.1.1 CPU Frequency Governor

One of the most effective ways to reduce power consumption and heat output on a system

is to use the CPU frequency governor (CPUFreq). CPUfreq, also referred to as CPU speed

scaling, allows the clock speed of the processor to be adjusted on the fly. This enables the

system to run at a reduced clock speed to save power. The rules for shifting frequencies,

whether to a faster or slower clock speed, and when to shift frequencies, are defined by the
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CPUfreq governor. The governor defines the power characteristics of the system CPU, which

in turn affects CPU performance. Each governor has its own unique behavior, purpose, and

suitability in terms of workload.

The default is the "ondemand" governor, a dynamic governor that allows the CPU to

achieve maximum clock frequency when system load is high, and also minimum clock

frequency when the system is idle. While this allows the system to adjust power consumption

according the system load, it does so at the expense of latency between frequency switching.

As such, latency can offset any performance/power saving benefits offered by the "ondemand"

governor if the system switches between idle and heavy workloads too often. For most

systems, the "ondemand" governor can provide the best compromise between heat emission,

power consumption, performance, and manageability. When the system is only busy at

specific times of the day, the "ondemand" governor will automatically switch between

maximum and minimum frequency depending on the load without any further intervention.

By contrast there is the "performance" governor, that forces the CPU to always use the

highest possible clock frequency. This frequency will be statically set, and will not change.

As such, this particular governor offers no power saving benefits. According to the "Mellanox

performance tuning guide" [45] the performance of the InfiniBand cards can be improved

setting the governor to "performance".

4.1.2 CPU idle states

The x86-architecture CPUs support various states in which parts of the CPU are deactivated

or run at lower performance settings. These states, known as c-states, are numbered from C0

upwards, with higher numbers representing decreased CPU functionality and greater power

saving. The c-states of a given number are broadly similar across processors, although the

exact details of the specific feature sets of the state may vary between processor families.

The more CPU units are stopped, reducing the voltage or even completely shutting down, the

more energy is saved, but more is the time required for the CPU to "wake up" and be again

100% operational. Thus, enabling c-states generally results in a higher latency.
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4.1.3 Non-Uniform Memory Access

Modern servers with two or more processors commonly have a Non-Uniform Memory

Access (NUMA) architecture [46]. This means that there are different memory performance

and latency characteristics when accessing memory directly attached to one processor, also

called NUMA node, than when accessing memory directly attached to another processor in

the same server (see Figure 4.1). Similarly, PCIe I/O devices are local to a specific processor

and "remote" with respect to the others. To access a remote NUMA node the memory request

must traverse the inter CPU link and use the memory controller associated to the remote

NUMA node. This incurs a latency penalty on remote NUMA node memory access.

Fig. 4.1 Example of a Non-Uniform Memory Access architecture

In order to run an application on a certain NUMA node, the process affinity should be set

using the "numactl" utility, which can control NUMA policy for processes or shared memory.

For example, if the PCIe adapter’s NUMA node is 1 and NUMA 1 cores are 8-15 then an

application should run with process affinity that uses 8-15 cores only.

4.2 Tests methodology

Two different tests were performed for each cluster. At first, the available bandwidth between

two nodes of the cluster is measured using a standard benchmark tool provided by the OFED
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package. After that, LSEB is run on a different number of nodes, depending on the size of

the clusters.

4.2.1 OFED benchmark

Generically speaking, before testing an application on one or more nodes, it is required to

execute standard benchmarks on those machines in order to establish how that application

performs and how it can be improved. In case of applications that make use of RDMA, there

is a set of micro benchmarks provided by the OFED package that allow to verify the effective

point-to-point network capacity. One of these micro benchmarks, the so called ib_write_bw,

was chosen and used to identify the real maximum bandwidth attainable between two random

nodes belonging to the cluster. The tests performed with ib_write_bw foresee the execution

of 5000 bidirectional RDMA write transactions for each different buffer size from 21 to 222

bytes.

4.2.2 Tests with LSEB

The second test foresees to run LSEB on the cluster; depending on the number of nodes,

several runs may be performed. The monitored parameters are the bidirectional bandwidth

for each node and the core usage of the Readout Unit and the Builder Unit (see section 3.6).

All the traffic related to the exchange of fragments between local Readout Units and Builder

Units is not included in the bandwidth measured. In all the tests LSEB runs with the same

fragment aggregation cardinality of 600 fragments, this implies that each data transfer has an

average size of about 128 KB. This size was chosen after several benchmarks with different

InfiniBand HCAs and is big enough to potentially saturate the bandwidth, as will be shown

by the following benchmarks.
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4.3 Cluster EDR InfiniBand at CERN

The LHCb experiment was able to test a first release of the ConnectX-4 adapter card [47],

which supports the EDR 100 Gb/s InfiniBand. The testbed is composed of 4 nodes, each one

connected through a ConnectX-4 adapter card to a EDR capable switch. Nodes are equipped

with 2 x Intel Xeon E5-2650 v3 CPU running at 2.30 GHz, each of the CPUs have 10 cores

and 20 threads and 64 GB of RAM. Each node is configured to get the best performance from

the InfiniBand cards, such as setting the CPUfreq governor to "performance" and disabling

c-states.

4.3.1 Standard benchmark

Benchmarks on this cluster have been made by the LHCb collaboration and presented during

the 77th LHCb Collaboration Week [48]. A bidirectional bandwidth of 165.56 Gb/s has been

obtained using the ib_write_bw tool. Given a theoretical bandwidth of 193.94 Gb/s foreseen

by the EDR InfiniBand cards, the measured bandwidth is at the 85.37% level.

4.3.2 Results with the Event Builder software

On this cluster LSEB was tested performing the event-building with 2- and 4-nodes setups.

The bandwidth as a function of time is plotted in Figure 4.2, showing a good stability over

time both with 2- and 4-nodes. The average bandwidth is 156.85 Gb/s for the 2-nodes setup

and 153.85 Gb/s for the 4-nodes setup, reaching 92.93% of the benchmarked bandwidth.

The measurements of the core usage performed by the internal profiler of LSEB demon-

strate a load of about 23.87% for the Readout Unit and a load of 11.17% for the Builder Unit,

as shown in Figure 4.3a and Figure 4.3b, respectively. Both these loads are stable over time

and indicates that most of the core capacity is not yet used by LSEB.
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Fig. 4.2 Bandwidth running LSEB on nodes with EDR cards

(a) Readout Unit core usage (b) Builder Unit core usage

Fig. 4.3 Builder Unit and Readout Unit core usage running LSEB on nodes with EDR cards
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4.4 Cluster QDR InfiniBand at CINECA

Thanks to the contribution of the Italian National Institute for Nuclear Physics (INFN)

[49], it was possible to perform scalability tests with LSEB on Galileo [50], one of the

supercomputers hosted in CINECA [51]. CINECA is a non profit Consortium, made up of

70 Italian universities, 4 Italian Research Institutions and the Italian Ministry of Education. It

offers support to the research activities of the scientific community through supercomputing

and its applications. Galileo is the Tier-1 system of CINECA, introduced in January 2015.

It is devoted to scientific computing on the basis of national and European proposals. This

supercomputer is used to optimize and develop applications targeted at hybrid architectures,

leveraging software applications in the fields of computational fluid dynamics, material and

life science, and geophysics. The computing system is also available to European researchers

as a Tier-1 system of the PRACE infrastructure [52].

Galileo is composed by 516 compute nodes, each one containing 2 Intel Xeon Haswell

8-core E5-2630 v3 processors, with a clock of 2.40 GHz. All the compute nodes have 128

GB of memory. 384 compute nodes are equipped with 2 accelerators (Intel Xeon Phi 7120P)

for a total of 768 accelerators in the whole system. Each node is connected to a Infiniband

network through a QLogic Single-Port QDR InfiniBand HCA [53]. Table 4.1 summarizes

the system specific of Galileo.

Table 4.1 Galileo System Specific

Model IBM NeXtScale
Architecture Linux Infiniband Cluster
Nodes 516
Processors 2 x 8-cores Intel Haswell 2.40 GHz
Cores 16 cores/node, 8256 cores in total
Accelerators 2 Intel Phi 7120p per node on 344 nodes
RAM 128 GB/node, 8 GB/core
Internal Network Infiniband with 4x QDR switches
HCA QLogic Single-Port QDR InfiniBand

Due to the policies of the cluster it was not possible to perform all the fine-tuning

operations described in section 4.1 in order to achieve best performances. Indeed for reasons
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related to power consumption, in Galileo each node has the governor set to "ondemand" and

the c-states enabled. However, it was possible to take advantage of the process affinity using

the "numactl" utility.

4.4.1 Standard benchmark

In Figure 4.4 the average bandwidth obtained running 10 times the ib_write_bw tool on

two nodes of Galileo is plotted as a function of buffer size. It is important to note that the

averaged bandwidth is affected by a significant statistical error due to the fact that different

executions of ib_write_bw results in different measured bandwidths. Moreover, the average

bandwidth and the peak bandwidth differ of about 15%. These behaviours are a symptom of

a non-performant network, mostly caused by the constant presence of external jobs running

on the cluster and a missing optimization setting on the nodes. Considering the average

bandwidth, the benchmark reaches 42.88 Gb/s, that is the 78.82% of the maximum theoretical

bandwidth expected with QLogic QDR InfiniBand cards (54.4 Gb/s).

Fig. 4.4 Benchmark with ib_write_bw on Galileo: the blue line represents the resulting bidi-
rectional average bandwidth and the green line represents the bidirectional peak bandwidth

4.4.2 Results with the Event Builder software

As typical for clusters offering concurrent access to shared resources, Galileo computing

nodes are accessible exclusively through a job scheduler. So, job execution is allowed by
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providing a list of computational requirements on a limited set of resources. For example,

the requirements of a job can specify the number of needed cores to run on, with a maximum

limit of 1024. Thus, although 500 nodes are available in Galileo, not all of them can be

used concurrently by the same application. Even requiring 8 cores for each node instead of

the 16 available, the maximum number of allocable nodes is 128. Reducing the number of

required cores for each node may increase the number of allocable nodes but also increase

the possibility to have external jobs running on the same nodes at the same time.

Starting from a 2-nodes setup, several tests were performed redoubling each time the

number of nodes, up to the last test that involves 128 nodes. For the aims of the event-building

a minimum of two cores is required: one for the execution of the Readout Unit thread and

another one for the Builder Unit thread. However, in order to avoid the concurrent execution

of external processes that may affect the performances of the acquisition, it is desiderable

to reserve all the available cores on each node. For the 2-, 4-, 8-, 16- and 32-node tests the

allocation of the entire node (16 cores each) was managed. Instead, for the 64- and 128-node

tests only half of the available cores were allocated in each node.

The bandwidths measured running LSEB on Galileo in different nodes configuration

are reported in Figure 4.5a as a function of time, presenting good stability over time. The

scalability plot is shown in Figure 4.5b, where the average bandwidth is plotted as a function

of the number of nodes: the bandwidth slowly decreases as the number of nodes increases,

saturating at about the 58% of the benchmarked bandwidth 128 nodes.

The average core usage of the Readout Unit and the Builder Unit is plotted as a function

of the number of nodes in Figures 4.6a and 4.6b, respectively. The core usage of the Readout

Unit shows a decreasing trend as the number of nodes increases, which is caused by an

increment of time spent to wait for the completion of transfer operations. On the other hand

the core usage of the Builder Unit has an increasing trend, caused by an increment of the

number of fragments that needs to be received and checked for each event. However, the

Builder Unit does not saturate the core even with 128 nodes, reaching a load of about 30%.
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(a) Bandwidths measured (b) Bandwidth scalability

Fig. 4.5 Bandwidths measured running LSEB on a different number of nodes on Galileo

(a) Readout Unit core usage (b) Builder Unit core usage

Fig. 4.6 Builder Unit and Readout Unit core usage running LSEB on a different number of
nodes on Galileo
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4.5 Considerations

Two different clusters were used to test the Event Builder software. The first cluster is

composed of 4 nodes connected together with EDR InfiniBand cards. Due to the low number

of nodes, it is not the ideal candidate to test the scalability of LSEB. However, it allowed to

check the performance of LSEB with the latest InfiniBand data rate standard with promising

results. The second cluster is composed of about 500 nodes connected together with QDR

InfiniBand cards. This kind of interconnects are not as performant as the EDR InfiniBand

cards; moreover the cluster is tuned to save energy rather than to achieve best performance.

Nevertheless, the presence of 500 nodes allow to perform scalability tests with a cardinality

similar to that foreseen by the LHCb upgrade. Tests on this second cluster have shown that

the LSEB scales up to 128 nodes the 60% of the available point-to-point bandwidth. Finally

both the Readout Unit and the Builder Unit have most of the core capacity unused.





Chapter 5

Investigating low power architectures

With the increasing computer power consumptions and electricity costs, most data centers

already spend about half as much for the electricity to power and cool their infrastructure

as they do for the hardware itself, and this percentage can be expected to increase in the

coming years. Thus, there are continuously R&D studies ongoing on upcoming low-power

architectures. The work shown in this chapter is a very preliminary study in order to

investigate a possible use of these upcoming technologies for the event-building purpose

of LHCb and for high-throughput data acquisition in general. The section 5.1 describes

the testbed foreseen for this study. Two distinct low-power x86 architectures are tested,

comparing results to those obtained on a standard server. In sections 5.2 and 5.3 are shown

the test performed and related results. Finally some considerations about the work done can

be found in section 5.4.

5.1 Testbed setup

Measurements on low-power architectures are performed in collaboration with the Computing

On SoC Architectures project (COSA) [54], that provided the testbed. The tested architectures

are the Intel Xeon D-1540 [55] and the Intel Atom C2750 [56], two low-power x86 processors

designed by Intel for its server line. For each architecture, the testbed is composed of two

nodes of the same type connected back to back with InfiniBand HCAs. The available
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InfiniBand HCAs were the QLogic QDR InfiniBand HCA [53] and the Mellanox FDR

InfiniBand HCA [57]. The QLogic QDR InfiniBand HCA requires a PCI-2 slot with 8 lanes

and its datasheet declares a maximum bidirectional bandwidth of 54.4 Gb/s instead of the 64

Gb/s foreseen by the standard (32 Gb/s for each direction). The Mellanox FDR InfiniBand

HCA requires a PCIe-3 with 16 lanes and foresees a bidirectional bandwidth of 108.6 Gb/s.

Depending on the PCIe capacity of each architecture, different InfiniBand HCAs were used.

The results are compared to those obtained on a testbed composed of two Intel Xeon

based standard servers. These servers mount a dual socket Intel Xeon E5-2683 v3 [58],

that was released by Intel in the 3rd quarter of 2014. This processor has 14 cores (with 2

threads per core) and it supports PCIe Gen 3 interconnects with a maximum of 40 lanes.

The Thermal Design Power (TDP) of the Intel Xeon E5-2683 v3 is of 120 W. Due to the

high PCIe capacity of this kind of processor, the Xeon servers support both the two available

InfiniBand HCAs.

Tests performed in this study are similar to those described in section 4.2, with the

addition of the power consumption monitoring while running LSEB. These measurements

refer to the overall power consumption of each node including processor, motherboard,

memory, disk and InfiniBand network card. Moreover, the benchmarks with ib_write_bw are

performed using two different governor settings, the "ondemand" and the "performance" (for

more details about governors see section 4.1.1). The comparison between the two different

governors is needed to recognize if the change of the governor is affecting the performance

of the system. The c-states feature (see section 4.1.2) was active in all the performed test

because disabling it would result in a higher power consumption that is not in the aims of

this study.

5.2 Intel Atom C2750

The Intel Atom C2750 was released by Intel in the 3rd quarter of 2013. It is a low-power

System on Chip (SoC) designed for microservers and manufactured on 22nm technology. The

Intel Atom C2750 has 8 cores without multi-threading and it supports PCIe-2 interconnects



5.2 Intel Atom C2750 71

with a maximum of 16 lanes. The TDP of the Intel Atom C2750 is of 20 W. This processor is

mounted on a Super Micro A1SAi-2750F motherboard [59] that provides a slot PCIe-2 with

8 lanes, an example of the motherboard is illustrated in Figure 5.1a. In this testbed the two

Atom nodes are connected together with QLogic QDR InfiniBand cards (like the one shown

in Figure 5.1b), due to the missing PCIe-3 support required by the more powerful Mellanox

FDR InfiniBand cards.

(a) Super Micro A1SAi-2750F motherboard (b) QLogic InfiniBand QDR Host Channel
Adapter

Fig. 5.1 Development board with Atom processor and InfiniBand QDR card

5.2.1 Standard benchmark

The results obtained running ib_write_bw on the Xeon servers with QDR InfiniBand connec-

tivity are shown in Figure 5.2a, where the bandwidth is plotted as a function of the buffer

size for both the governor settings. This benchmark confirms the behaviour observed testing

LSEB on the Galileo cluster reported in section 4.4: setting the governor to "ondemand"

does not allow to reach best performance and a stable bandwidth. On the other hand, a

higher and more stable bandwidth is obtained setting the governor to "performance". In this

configuration the maximum average bandwidth reached is 50.82 Gb/s, that is the 93.42% of

the maximum theoretical bandwidth foreseen by this kind of interconnects.

On the Atom nodes the measured bandwidths present a relevant degradation with buffer

sizes greater than 32 KB using both the governor settings, as shown in Figure 5.2b. This
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behavior can be caused by several factors such as CPU inefficiencies or network card issues

with this platform. A further test with different network cards may help to fully understand

this degradation in performance.

(a) ib_write_bw on E5-2683v3 (b) ib_write_bw on C2750

Fig. 5.2 Benchmark with ib_write_bw on nodes with QDR cards

5.2.2 Results with the Event Builder software

Apart from the benchmarks, the performance inefficiency of the Atom nodes is unveiled also

running LSEB. Figure 5.3a shows that the Atom nodes reach an average bandwidth of 30.74

Gb/s with respect to the 46.38 Gb/s reached by the Xeon servers.

On the other hands the power consumption measurements turn the tables: the Atom nodes

consume about the 18,73% with respect to the Xeon servers (28.93 W against 154.44 W), as

illustrated in Figure 5.3b. A rough metric that could be used to compare these results is the

Energy Consumption Rate (ECR) expressed in W/Gbps, that is the power consumption in

Watt spent for each Gb/s of bandwidth. Following this metric the Atom nodes are three times

more performant with respect to the Xeon servers, showing a ECR of 0.94 W/Gbps and 3.33

W/Gbps, respectively.

Table 5.1 summarizes all the measurements performed in this testbed. Besides the

previously cited parameters, in the table are reported the power consumption in idle state and

the maximum temperature reached in each processor type.
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(a) Bandwidth (b) Power consumption

Fig. 5.3 Bandwidth and power consumption running LSEB on nodes with QDR cards

Table 5.1 Power consumption, temperature and bandwidth measured running LSEB on nodes
with QDR cards

E5-2683v3 C2750
Idle power
consumption 77.46 W 18.20 W

EB power
consumption 154.44 W 28.93 W

Max
temperature 52.0 C 37.0 C

Average
bandwidth 46.38 Gb/s 30.74 Gb/s
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5.3 Intel Xeon D-1540

The Intel Xeon D-1540, also called XeonD in the following, brings the performance of Intel

Xeon processors into a lower-power SoC. The Intel Xeon D-1540 was released by Intel

in the 1st quarter of 2015. It is a low-power SoC designed for servers and manufactured

on 14nm technology. The Intel Xeon D-1540 has 8 cores (with 2 threads per core) and it

supports PCIe-3 (with max 24 lanes) and PCIe-2 (with max 8 lanes) interconnects. Being

more a server than a pure low-power architecture, the Intel Xeon D-1540 has a higher power

consumption with respect to the Intel Atom C2750, with a TDP of 45 W. This processor is

mounted on a Super Micro X10SDV-F motherboard [60], that provides a PCIe-3 slot with 16

lanes, an example of the motherboard is illustrated in Figure 5.4a. In this testbed the two

XeonD nodes are connected together with Mellanox FDR InfiniBand cards (like the one

shown in Figure 5.4b).

(a) Super Micro X10SDV-F motherboard (b) Mellanox InfiniBand FDR Host Channel
Adapter

Fig. 5.4 Development board with XeonD processor and InfiniBand FDR card

5.3.1 Standard benchmark

The benchmark performed shows that both the Xeon servers and the XeonD nodes can reach

the maximum bandwidth available when using the Mellanox FDR cards, as illustrated in

Figures 5.5a and 5.5b, respectively. The Xeon servers achieve the 99.57% of the theoretical
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bandwidth and the XeonD nodes reach the 99.35%. Furthermore, changing the governor

settings does not affect the performance. This behaviour is mostly related to the InfiniBand

cards, being the Xeon servers used in both the testbeds but with different interconnects.

(a) ib_write_bw on E5-2683v3 (b) ib_write_bw on D-1540

Fig. 5.5 Benchmark with ib_write_bw on nodes with FDR cards

5.3.2 Results with the Event Builder software

The measurements of the bandwidth running LSEB software include the same tests performed

with the Atom and an additional test which adds a pure computation process running over

4 cores on each node during the second half of the run. The aim of this added test is to

investigate the possibility of the Event Builder to perform computations such as a pre-analysis

of the events prior to send them to the Event Filter Farm.

The bandwidths as a function of time are shown in Figure 5.6a, where the black vertical

line indicates the computation process start time. Both the Xeon servers and the XeonD nodes

reach about the 99.12% of the theoretical bandwidth allowed by the FDR InfiniBand cards,

keeping the bandwidth stable even with a computation process running. These performances

were achieved with very different power consumptions, with the XeonD nodes that require

about a third of the energy consumed by the Xeon servers, as illustrated in Figure 5.6b. Table

5.2 summarizes all the measurements performed in this testbed. Besides the previously cited
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parameters, in the table are reported the power consumption in idle state and the maximum

temperature reached in each processor type.

(a) Bandwidth (b) Power consumption

Fig. 5.6 Bandwidth and power consumption running LSEB on nodes with FDR cards

Table 5.2 Power consumption, temperature and bandwidth measured running LSEB on nodes
with FDR cards

E5-2683v3 D-1540
Idle power
consumption 80.78 W 28.23 W

EB power
consumption 161.00 W 49.02 W

EB power consumption
with computation 176.54 W 79.12 W

Max
temperature 56.0 C 59.0 C

Average
bandwidth 107.63 Gb/s 107.65 Gb/s

5.4 Considerations

Each node of the Event Builder foreseen by the upgrade of the LHCb experiment requires at

least two PCIe-3 slots of 16 lanes, one for the PCIe40 readout board and the other one for the
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network card. At the time of writing, none of the tested low-power architectures is suitable

for the event-building of LHCb, due to the lack of enough PCI-e capability.

Despite that, the Intel Xeond D-1540 seems a really interesting processor for high-

throughput data acquisition purposes. It ensures all the functionalities of the Intel Xeon

family but reducing costs and power consumption. Tests show that with the adopted testbed

this processor achieves comparable results in terms of bandwidth with respect to the standard

server. Further studies on upcoming processors belonging to the Xeon D-1500 family should

be performed in case Intel will upgrade the PCIe capacity of these products.

On the other hand, the Intel Atom C2750 can’t compete with the high performance

provided by standard Intel Xeon processors. Aside from the missing PCIe-3 support, tests

show that this processor cannot achieve the maximum bandwidth allowed by the used HCA,

even with the right PCIe slot. For these reasons this processor family cannot be a suitable

candidate for the Event Builder. However, its extremely low power consumption makes

it still interesting for data acquisition purposes where the bandwidth and computational

requirements are less strict than those of the event-building of the LHCb experiment.





Conclusions

This thesis describes the study and implementation of an efficient Event Builder software for

the LHCb upgrade based on the InfiniBand network technology. The developed software

carries out the gathering of incoming data from a generator simulating the detector and

performs the event composition in a completely trigger-less manner.

The Event Builder was successfully tested on two different clusters. The first cluster is

composed of 4 nodes connected together with EDR InfiniBand cards. Due to the low number

of nodes, it is not the ideal candidate to test the scalability of LSEB. However, it allowed to

check the performance of LSEB with the latest InfiniBand data rate standard with promising

results. Bandwidths measured on this cluster were stable over time, reaching 92.93% of the

benchmarked bandwidth.

The second cluster is composed of about 500 nodes connected together with QDR

InfiniBand cards. This kind of interconnects are not as performant as the EDR InfiniBand

cards; moreover the cluster is tuned to save energy rather than to achieve best performance.

Nevertheless, the presence of 500 nodes allow to perform scalability tests with a cardinality

similar to that foreseen by the LHCb upgrade. Tests on this second cluster have shown that

the LSEB scales up to 128 nodes reaching the 60% of the available point-to-point bandwidth.

Finally both the Readout Unit and the Builder Unit have most of the core capacity unused.

A secondary activity related the study of the Event Builder is the investigation on x86

low-power architectures suitable for the event-building process foreseen by LHCb. Two

different architectures are tested: the Intel Atom C2750 and the Intel Xeon D1540. The

measured bandwidth and power consumption are compared with those obtained on standard

servers. At the time of writing none of these architectures is a suitable candidate for high-
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throughput data acquisition applications; however, the results are still interesting especially

when bandwidth and computational requirements are weaken and further investigations on

upcoming x86 low-power architectures should be performed.
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Appendix A

A.1 The C++ language and C++11 standard

C++ is a general-purpose programming language. It has imperative, object-oriented and

generic programming features, while also providing facilities for low-level memory manipu-

lation. It was designed with a bias toward system programming and embedded, resource-

constrained and large systems, with performance, efficiency and flexibility of use as its design

highlights. C++ has also been found useful in many other contexts, with key strengths being

software infrastructure and resource-constrained applications, including desktop applications,

servers (e.g. e-commerce, web search or SQL servers), and performance-critical applications

(e.g. telephone switches or space probes). C++ is a compiled language, with implementations

of it available on many platforms and provided by various organizations.

C++11 [61] is one of the latest versions of the standard of the C++ programming language.

It was approved by ISO on 12 August 2011, replacing C++03 [62], and superseded by C++14

[63] on 18 August 2014. The name follows the tradition of naming language versions by the

year of the specification’s publication, although it was formerly known as C++0x because

it was expected to be published prior to 2010. Although one of the design goals was to

prefer changes to the libraries over changes to the core language, C++11 does make several

additions to the core language. Areas of the core language that were significantly improved

include multithreading support, generic programming support, uniform initialization, and

performance. Significant changes were also made to the C++ Standard Library, incorporating

most of the C++ Technical Report 1 (TR1) libraries [64].
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A.2 The Boost libraries

The Boost C++ libraries are a collection of modern libraries based on the C++ standard

[65]. The source code is released under the Boost Software License, which allows anyone

to use, modify, and distribute the libraries for free. The libraries are platform independent

and support most popular compilers, as well as many that are less well known. The Boost

community is responsible for developing and publishing the Boost libraries. The community

consists of a relatively large group of C++ developers from around the world coordinated

through the web site www.boost.org as well as several mailing lists. The mission statement of

the community is to develop and collect high-quality libraries that complement the standard

library. Libraries that prove of value and become important for the development of C++

applications stand a good chance of being included in the standard library at some point.

The Boost community emerged around 1998, when the first version of the standard was

released. It has grown continuously since then and now plays a big role in the standardization

of C++. Even though there is no formal relationship between the Boost community and the

standardization committee, some of the developers are active in both groups. The current

version of the C++ standard includes libraries that have their roots in the Boost community.

The Boost libraries are a good choice to increase productivity in C++ projects when the

requirements go beyond what is available in the standard library. Because the Boost libraries

evolve faster than the standard library, developers have earlier access to new developments,

and they do not need to wait until those developments have been added to a new version of

the standard library.

A.3 CMake

CMake is an extensible, open-source system that manages the build process in an operating

system and in a compiler-independent manner [66]. Unlike many cross-platform systems,

CMake is designed to be used in conjunction with the native build environment. Simple

configuration files placed in each source directory (called CMakeLists.txt files) are used to

generate standard build files (e.g., makefiles on Unix and projects/workspaces in Windows
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MSVC) which are used in the usual way. CMake can generate a native build environment

that will compile source code, create libraries, generate wrappers and build executables in

arbitrary combinations. CMake supports in-place and out-of-place builds, and can therefore

support multiple builds from a single source tree. CMake also supports static and dynamic

library builds. Another nice feature of CMake is that it generates a cache file that is designed

to be used with a graphical editor. For example, when CMake runs, it locates include files,

libraries, and executables, and may encounter optional build directives. This information is

gathered into the cache, which may be changed by the user prior to the generation of the

native build files.

A.4 Git

Git is a widely used source code management system for software development [67]. It is a

distributed revision control system with an emphasis on speed, data integrity, and support for

distributed, non-linear workflows. Git was initially designed and developed in 2005 by Linux

kernel developers (including Linus Torvalds) for Linux kernel development. As with most

other distributed version control systems, and unlike most client–server systems, every Git

working directory is a full-fledged repository with complete history and full version-tracking

capabilities, independent of network access or a central server. Like the Linux kernel, Git is

free software distributed under the terms of the GNU General Public License version 2.
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B.1 Example of configuration file

The following is an example of a configuration file for the Large Scale Event Builder in the

JSON format.

1 {

2 "LOG_LEVEL": "NOTICE",

3 "GENERATOR":

4 {

5 "MEAN": "200",

6 "STD_DEV": "20",

7 "FREQUENCY": "40000000"

8 },

9 "GENERAL":

10 {

11 "MAX_FRAGMENT_SIZE": "240",

12 "BULKED_EVENTS": "600",

13 "CREDITS": "20"

14 },

15 "ENDPOINTS":

16 {
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17 "node001":

18 {

19 "HOST": "192.168.1.1",

20 "PORT": "7000"

21 },

22 "node002":

23 {

24 "HOST": "192.168.1.2",

25 "PORT": "7000"

26 }

27 }

28 }



Appendix C

C.1 The Communication Layer API

The following are the four objects that compose the Communication Layer with related API.

C.1.1 Acceptor

The Acceptor is the object used to listen for incoming connections and to accept them. Its

member functions are:

• Acceptor (int credits): The constructor requires the number of credits as parameter,

that is the maximum number of pending (not already completed) operations allowed.

• void listen (std::string hostname, std::string port): The method initiates a listen for

incoming connection requests to the locally bound source address and port.

• std::unique_ptr<T> accept (): The method retrieves the next connection request.

If no requests are pending, it will block until a connection request is received. The

returned value is a pointer to the newly created communication object (SendSocket or

RecvSocket).

C.1.2 Connector

The Connector is the object used to ask for a new connection. Its member functions are:
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• Connector (int credits): The constructor requires the number of credits as parameter,

that is the maximum number of pending (not already completed) operations allowed.

• std::unique_ptr<T> connect (std::string hostname, std::string port): The method

try to connect to the endpoint identified by address and port and return a pointer to the

newly created communication object (SendSocket or RecvSocket).

C.1.3 SendSocket

The SendSocket represents a one-way communication channel and it is created by an Acceptor

or a Connector when a connection is established. The SendSocket performs data transfer

from the local endpoint to the remote connected one. Its member functions are:

• void register_memory (void* buffer, size_t size): The method registers a memory

buffer for RDMA operations.

• std::vector<iovec> pop_completed (): The method return a vector of iovec that refer

to buffers of completed send operations.

• void post_send (iovec const& iov): The method starts a send operation and exits

immediately.

• int pending (): The method returns the number of send operations thar are currently

not completed.

C.1.4 RecvSocket

The RecvSocket represents a one-way communication channel and it is created by an

Acceptor or a Connector when a connection is established. The RecvSocket performs data

transfer from the remote connected endpoint to the local one.Its member functions are:

• void register_memory (void* buffer, size_t size): The method registers a memory

buffer for RDMA operations.
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• std::vector<iovec> pop_completed (): The method return a vector of iovec that refer

to buffers of completed receive operations.

• void post_recv (iovec iov): The method starts a receive operation and exits immedi-

ately.

• void post_recv (std::vector<iovec> iov_vect): The method starts several receive

operations (one for each iovec of the vector passed as parameter) and exits immediately.

• std::string peer_hostname (): The method returns the address of the connected peer.
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