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Abstract

The Semantic Web introduced a new vision of the World Wide Web where
the information resources published on the Internet are readable and un-
derstandable by machines. However, incompleteness and/or uncertainty are
intrinsic to much information, specially when it is collected from different
sources. Thus we need a way to manage this kind of data.

In this thesis we address this problem and we present a complete framework
for handling uncertainty in the Semantic Web. Description Logics (DLs) are
the basis of the Semantic Web. DL knowledge bases (KBs) contains both asser-
tional and terminological information regarding individuals, classes of individ-
uals and relationships among them. We first defined a probabilistic semantics
for DLs, called DISPONTE. It is inspired by the distribution semantics, a well
known approach in probabilistic logic programming. DISPONTE permits to
associate degrees of belief to pieces of information and to compute the proba-
bility of queries to KBs.

The thesis then proposes a suite of algorithms for reasoning with KBs
following DISPONTE:

• BUNDLE, for “Binary decision diagrams for Uncertain reasoNing on
Description Logic thEories”, computes the probability of queries w.r.t.
DISPONTE KBs by means of the tableau algorithm and knowledge com-
pilation. BUNDLE is based on Pellet, a state of the art reasoner, and is
written in Java.

• TRILL, for “Tableau Reasoner for descrIption Logics in Prolog”, performs
inference over DISPONTE KBs with the tableau algorithm implemented
in the declarative Prolog language. Prolog is useful for managing the
non-determinism of the reasoning process.

• TRILLP , for “TRILL powered by Pinpointing formulas”, differs from
TRILL because it encodes the set of all explanations for queries with
a more compact Boolean formula.



A second problem to address is the fact that the probability values are diffi-
cult to set for humans. However, usually information is available which can be
leveraged for tuning these parameters. Moreover, terminological information
in KBs may be incomplete or poorly structured. We thus need of learning
systems able to cope with these problems. We present two learning systems,
one for each problem:

• EDGE, for “Em over bDds for description loGics paramEter learning”,
learns the parameters of a DISPONTE KB.

• LEAP, for “LEArning Probabilistic description logics”, learns termino-
logical axioms together with their parameters by using EDGE.

However, the size of the data is constantly increasing, leading to the so-
called Bid Data, Dataset are often too huge to be handled by a single machine
in a reasonable time. Modern computing infrastructures such as clusters and
clouds must be used where the work is divided among different machines.
We thus extended both EDGE and LEAP to exploit these facilities by imple-
menting EDGEMR and LEAPMR that distribute the work using a MapReduce
approach.

All systems were tested on real life problems and their performances was
comparable or superior to the state of the art.



Sinossi

Il Semantic Web è basato su una nuova visione del World Wide Web in cui le
informazioni contenute nelle risorse pubblicate sono leggibili e gestibili dalle
macchine. Tuttavia, queste informazioni sono spesso incomplete e/o incerte,
specialmente quando vengono raccolte da diverse sorgenti. Risulta quindi nec-
essario gestirle in maniera appropriata.

In questa tesi ci siamo concentrati su questo problema, presentando un in-
sieme completo di strumenti per gestire l’incertezza nel contesto del Semantic
Web. Le logiche descrittive (LD) rappresentano la base del Semantic Web. Le
basi di conoscenza espresse con le LD contengono informazioni sia asserzionali
sia terminologiche riguardanti individui, classi di individui e le relazioni che
intercorrono fra loro. Il primo passo è stato la definizione di una semantica
probabilistica per LD, chiamata DISPONTE. Essa è ispirata alla semantica dis-
tributiva, molto diffusa nel campo della programmazione logico-probabilistica.
DISPONTE permette di associare gradi di fiducia a porzioni di informazione e
di calcolare la probabilità delle interrogazioni basandosi su basi di conoscenza
probabilistiche.

La tesi propone inoltre un insieme di algoritmi capaci di ragionare su basi
di conoscenza che seguono DISPONTE:

• BUNDLE, acronimo di “Binary decision diagrams for Uncertain reasoN-
ing on Description Logic thEories”, calcola la probabilità di interrogazioni
rispetto ad una base di conoscenza DISPONTE sfruttando l’algoritmo
tableau e tecniche di knowledge compilation. BUNDLE è basato sul noto
ragionatore Pellet ed è interamente scritto in Java.

• TRILL, acronimo di “Tableau Reasoner for descrIption Logics in Prolog”,
esegue inferenza su basi di conoscenza DISPONTE sfruttando un’imple-
mentazione dell’algoritmo tableau scritta in Prolog, utile per gestire il
non-determinismo intrinseco nel processo di inferenza.



• TRILLP , acronimo di “TRILL powered by Pinpointing formulas”, dif-
ferisce da TRILL nella codifica dell’insieme di spiegazioni che risulta
essere, in questo secondo algoritmo, più compatta.

Un secondo problema risiede nel fatto che i valori di probabilità sono
difficili da definire per gli esseri umani. Normalmente però si hanno a dis-
posizione informazioni sul dominio che possono essere sfruttate per definire
questi parametri. Inoltre, le informazioni terminologiche contenute nelle basi
di conoscenza sono spesso incomplete e scarsamente strutturate. In questa
tesi vengono presentati due sistemi di apprendimento che risolvono i problemi
sopra citati:

• EDGE, acronimo di “Em over bDds for description loGics paramEter
learning”, apprende i parametri di una base di conoscenza DISPONTE.

• LEAP, acronimo di “LEArning Probabilistic description logics”, apprende
assiomi terminologici insieme ai parametri associati usando EDGE.

Va inoltre notato che negli ultimi anni la quantità di dati da gestire sta
costantemente e rapidamente crescendo, portando alla nascita del concetto di
Big Data. La quantità di dati risulta troppo grande per poter essere gestita
da una singola macchina in tempi ragionevoli. Le moderne infrastrutture di
calcolo come i cluster e il cloud devono essere sfruttati per poter dividere il
carico di lavoro su più nodi. Abbiamo quindi esteso EDGE e LEAP per utiliz-
zare queste infrastrutture implementando EDGEMR e LEAPMR che impiegano
un approccio MapReduce per distribuire il lavoro.

Tutti i sistemi sono stati testati su problemi reali e le loro prestazioni sono
risultate comparabili o superiori agli approcci considerati lo stato dell’arte.
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Introduction
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Chapter 1

Semantic Web

The term Semantic Web was coined by Tim Berners Lee and specifies an evo-
lution of the World Wide Web in which the published documents (HTML
pages, files, etc.) are associated with metadata. Metadata are information
which specifies the semantic context following a format suitable for automatic
querying, elaboration and interpretation. Hence, the focus has moved to the
description of the meaning of information contained in the resources and how
these resources are related to each other. In this way, the Web may be pro-
cessed independently by machines, without help from human users.

The evolution of the Web in the Semantic direction started in 1999 when the
Word Wide Web Consortium (W3C) defined the standards Resource Descrip-
tion Framework (RDF) and RDF Schema (RDFS). Both RDF and RDFS are
based on XML and prescribe a way to define relationships between information
by taking inspiration from predicate logic (or first order logic) and by exploit-
ing typical Web’s and XML’s standards such as URI and namespaces. RDF
and RDFS are languages that have a limited expressiveness. RDF is based on
triples <subject, predicate, object> or <resource, attribute, value>,
therefore it allows only the definition of binary predicates over terms of the
domain of discourse. For example, if want to state that “Yoda is a Jedi Mas-
ter”, the corresponding RDF representation is <Yoda, type, Jedi Master>.
In particular, in this example “Jedi Master” is a class that represents a set of
objects of the domain but it can be seen also as an object itself of the domain,
while “type” is a built-in predicate of RDF indicating that an object belongs to
a class. The corresponding binary predicate is type(‘Yoda’,‘Jedi Master ’). Do-

3



User interface and applications

Trust

Proof

Unifying logic

Taxonomies: RDFS

Rules: RIF/SWRL
Querying:

SPARQL

Data interchange: 

RDF
Syntax: XML+NS

Identi ers: URI/IRI Character set: UNICODE

C
e
rti

c
a
tio

n

C
ry

p
to

g
ra

p
h
y

Figure 1.1: W3C Semantic Web Layer Cake.

main specific predicates, which link together two objects, can be defined too.
They are also called properties. An example of a triple using a domain specific
predicate is <Rocky, calls, Adrian>, where “Rocky” and “Adrian” are two
individuals while the property “calls” means that an individual, in the example
“Rocky”, calls out repeatedly a second individual, “Adrian”. In this case, the
corresponding binary predicate is calls(‘Rocky ’,‘Adrian’). RDFS allows the
definition of hierarchies between classes and properties and of constraints on
the range and the domain of properties.

To overcome the limitations of RDF and RDFS, in 2004 the W3C for-
mulated a new standard, richer and more expressive than RDF, called Web
Ontology Language (OWL for short). OWL is part of a stack of W3C recom-
mendations concerning the Semantic Web, shown in Figure 1.1.

The basis of the stack is formed by the naming mechanism (URI and IRI),
the character encoding (Unicode) and the basic languages (such as XML and
Namespaces), which specify the basic syntax. The third layer describes the
information of the domain by means of RDF. Above, we can find query lan-
guages such as SPARQL, which allows querying data stored in different data
sources modeled as RDF or viewed as RDF via middleware. SPARQL can ex-
tract data and perform queries that are typical of databases query languages.

4



Above SPARQL, RDF Schema defines RDF vocabularies. Further above we
can find OWL together with languages for allowing extensions permitting the
association of rules to data, i.e., if-then-else rules. The next layer offers rea-
soning systems to find new implicit information from the explicit one, also
providing proofs for the inferred new knowledge. The layer above provide
security mechanisms for encryption and data certification available across all
the underlying layers. Finally, the topmost layer contains applications for final
users.

1.1 Description Logics and Semantic Web

Formalisms for modeling information of a domain are used for formulating
ontologies or knowledge bases (KBs), which group information from the domain
of interest. Usually, KBs in the Semantic Web are formulated in OWL which
is based on expressive Description Logics (DL). OWL was defined to provide a
first-order formalism that is decidable and that allows associating a simple well-
established declarative semantics to structured representations of knowledge.

Informally, a KB consists of a hierarchical description of concepts of the
domain, together with the description of the properties of each concept and of
the objects that belong to the concepts together with relations among them.
Thus, KBs are crucial in the vision of the Semantic Web because they allow
sharing terms among web resources in order to pave the way for the exploita-
tion of (automatic) navigation, information discovery and retrieval and data
integration.

KBs were used for modeling a wide variety of domains. Nowadays we can
find standard KBs in fields such as chemistry, medicine, business, etc.

1.2 The Current Vision of the Semantic Web

Originally, each KB modeled a specific domain and was independent form
the others. In the last few years, linking KBs, even from different areas of
expertise, has become of foremost importance. This idea originated a huge net
of information, called Linked Open Data Cloud, shown in Figure 1.2, in which
each node is a KB and each link between nodes stands for all the relationships

5



between concepts from different KBs.
Recently, the definition of Big Data has appeared. Big Data indicates in-

formation whose size is too large for being processed and stored using standard
approaches. The use of Big Data forces the adoption of distributed approaches
using many workers, often located in different machines.
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Chapter 2

Probability

The Semantic Web aims at modeling domains from the real worlds. In such
scenarios much information has intrinsic uncertainty. This requires studying
formalisms able to combine probability theory with logics and, in the case of
the Semantic Web, with DLs.

Real data, such as images and structured and non-structured texts, comes
from many different sources which are in most cases of varying trustworthiness,
therefore information can be unsure or incorrect.

All these aspects require algorithms able not only to execute inference, but
also to execute probabilistic inference, i.e., computing the probability of the
truth of the inferred information, and to execute (probabilistic) learning. In
this field learning takes two different connotations: (1) learning the parameters,
i.e., the value of the probabilities associated with information and (2) learning
new information or repairing already known information. The first is called
parameter learning, while the second is named structure learning. Usually
structure learning systems use parameter learning as a subroutine.

First it is of foremost importance to formally define probabilistic extensions
for DLs which are applicable to OWL and, thus, to the Semantic Web.

In the past few decades, many probabilistic knowledge representation for-
malisms have been developed to cope with uncertainty. For example, in the
last 20 years, significant advantages have been achieved in the field of Prob-
abilistic Logic Programming (PLP) and many languages have been proposed
that combine probability with logic programming. Since the beginning, to-
gether with the problem of performing inference, much attention was focused
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on the problem of learning probabilistic logic programs. Learning these pro-
grams constitutes a whole subfield of Logic Programming, called Probabilistic
Inductive Logic Programming (PILP).

Despite the large number of PLP proposals, the combination of probability
theory and DLs is a young field. Given the connections between Logic Pro-
gramming (LP) and DLs we believe that the results of PLP can be exploited
for DLs. In this vain, we proposed DISPONTE.

DISPONTE applies the distribution semantics [129], one of the most com-
mon approaches in PLP, to DLs. The distribution semantics defines a proba-
bility distribution over normal logic programs, called worlds. Then, the distri-
bution is extended to a joint distribution over worlds and a query from which
the probability of a query can be obtained by marginalization.

In DISPONTE, each axiom can be annotated with a probability that spec-
ifies a degree of belief in the corresponding axiom. Therefore, a probabilistic
DISPONTE KB defines a distribution over worlds obtained by including an
axiom in a world with the probability given by the annotation.

The main issue is that performing inference by listing all the possible worlds
is unfeasible since their number is exponential. Hence, it is necessary to study
other techniques to compute the probability of queries.

2.1 Probabilistic Inference

In the last few years, many approaches have been presented to perform infer-
ence. One of the most used is the tableau algorithm. It starts from a graph
that represents the set of individuals of the domain together with information
of them. This graph is then expanded using a set of consistency preserving
expansion rules. The tableau algorithm can be modified to return explana-
tions for the query and knowledge compilation can be applied on it to com-
pute the probability of queries from the explanations. Knowledge compilation
transforms a Boolean formula into a circuit language such as Binary Decision
Diagrams (BDDs). A BDD is a rooted graph where every node corresponds
to a Boolean variable and has two children, one per Boolean value.

This approach has the problem that some of the tableau expansion rules are
non-deterministic, so reasoners have to implement a search strategy in an or-
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branching space to find all the possible explanations. These requires developing
solutions to cope with backtracking because the algorithms have to explore all
the non-deterministic choices done during the inference process. One possible
solution is given by the Hitting Set algorithm [112] that repeatedly removes
an axiom from the KB and then computes again a new explanation. Another
solution consists in the use of declarative languages, such as Prolog, that have
built-in backtracking facilities.

The possibility of using LP for implementing reasoners has been observed
by many researchers. Some of them proposed, as we do, approaches exploit-
ing LP-based implementations of the tableau [94, 59, 10]. Other proposals
make use of inference methods based on standard LP resolution (e.g., in the
DLog system by [86]), bottom-up inference methods, e.g., based on Answer Set
Programming (e.g., ontoDLP, and its reasoner ontoDLV [115] ), or the chase
algorithm for Datalog± [19].

2.2 Probabilistic Learning

One of the main problems to solve in probabilistic knowledge representation
is that defining the values of the probabilities contained in the KBs is difficult
for humans. However, usually we have information on the modeled domain
that can be leveraged to automatically tune these parameters. Moreover, in-
formation contained in KBs is often poorly structured or incomplete. There is
thus the need to develop algorithms that can learn also the structure of KBs.

Finally, the widespread adoption of the Internet and the increasing number
of resources available on the Web (also due to the so-called Internet of Things)
provide the opportunity to gather huge sets of data. The ability to process and
perform learning and inference over massive data is one of the major challenges
of the current decade. Big data is strictly intertwined with the availability of
scalable and distributed algorithms that exploit high performance computing
infrastructures, such as clusters and clouds.

11



12



Chapter 3

Aims of the Thesis

The Semantic Web is constantly evolving and many efforts have been made to
define standards for representing knowledge. What is missing in this context
is a standard way to represent uncertain information. Many approaches have
been presented, but most of them extend actual standards by introducing new
formalisms.

This thesis aims at providing a complete framework for managing uncer-
tainty in the Semantic Web, first by defining a probabilistic semantics and
then by presenting algorithms able to handle it.

The proposed semantics, called DISPONTE, is based on the distribution
semantics, presented in 1995 by Sato and applied by many Logic Programming
languages. This approach is particularly appealing for its intuitiveness and
because practical inference algorithms have been developed, which use Binary
Decision Diagrams for the computation of the probability of queries.

The systems presented can be divided into inference and learning algo-
rithms. For reasoning, three systems will be presented: (1) BUNDLE, a Java
application, and (2) TRILL and (3) TRILLP , written in Prolog in order to
exploit Prolog management of non-determinism. For learning, we will present
(1) EDGE, for learning the parameters of probabilistic KBs and (2) LEAP,
for learning also the structure of probabilistic KBs. In this way we can repair
incorrect and incomplete KBs and automatically set their parameters.

The goals of this thesis is on one hand to show that Prolog is a viable
language to implement reasoning algorithms and on the other hand that, fol-
lowing the way paved by the diffusion of Big Data and Linked Open Data,
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the need of distributed techniques are of foremost importance, leading to the
implementation of parallelized and distributed inference and learning systems.

The effectiveness of the developed algorithms was tested on many tasks and
on different datasets. All the algorithms show good performances, comparable
or superior to the state of the art.
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Chapter 4

Structure of the Thesis

The thesis is divided into six parts: Introduction, preliminaries of Description
Logics, Probabilistic Description Logics, where a new semantics is proposed,
Probabilistic Reasoning and Probabilistic Learning, where our algorithms are
presented, Summary and Future works.

Part I starts with introductory chapters clarifying the nature, motivations,
context and goals of this thesis. Chapter 5 lists the publications related to the
thesis and the awards won.

Part II recalls basic concepts on knowledge bases and Description Logic
(DL) languages. In particular, Chapter 6 describes the foundation of DLs
which will be used throughout the thesis as the representation language. Chap-
ter 7 discusses about the characteristics of DLs, their expressive powers and
semantics. Chapter 8 shows significant examples of DLs, which will be further
referred in the thesis. Chapter 9 defines the Web Ontology Language (OWL),
which is the standard recommended by the W3C for the modelization of KBs.
Chapter 10 presents the inference problem for DLs and possible solutions.

Part III discusses about probabilistic DLs and describes our probabilistic se-
mantics DISPONTE. Chapter 11 illustrates the basis semantics of DISPONTE,
the distribution demantics, also giving an introduction on Logic Programming,
the field where this semantics born. Here, the problems of inference and of pa-
rameter and/or structure learning are discussed and the Prolog language is pre-
sented. This language will be used in the following for studying new approaches
to inference for DLs. Chapter 12 formally defines the DISPONTE semantics,
while Chapter 13 discusses probabilistic DLs alternative to DISPONTE.
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Part IV covers probabilistic inference. Chapter 14 shows probabilistic in-
ference techniques. Chapters 15, 16 and 17 present our inference algorithms:
the first the system BUNDLE, the second the system TRILL and the last its
evolution TRILLP . Chapter 18 discusses about the complexity of the infer-
ence problem. Chapter 19 illustrates related work for (probabilistic) inference,
while Chapter 20 describes the experiments made for BUNDLE, TRILL and
TRILLP .

Part V is dedicated to probabilistic learning problem. In particular, Chap-
ter 22 presents EDGE by first describing the Expectation Maximization algo-
rithm exploited by EDGE. Chapter 23 describes the system LEAP together
with CELOE algorithm integrated in it. Chapter 24 discusses about the prob-
lem of distributing learning process and presents the evolutions of EDGE and
LEAP to cope with parallelization, EDGEMR and LEAPMR. Chapter 25 covers
related learning systems and Chapter 26 illustrates the experiments made for
our learning algorithms.

Part VI summarizes the research work conducted in this dissertation and
presents directions for future work.
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Chapter 5

Publications and Awards

Papers containing the work described in this thesis were presented in various
venues:

• Awards

– RR 2013 Best Paper Award for the paper:
Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi, and Riccardo Zese
BUNDLE: A reasoner for probabilistic ontologies
7th International Conference on Web Reasoning and Rule Systems,
volume 7994 of Lecture Notes in Computer Science, pages 183-197,
2013.

– Premio per tesi di innovazione tecnologica in ambito open
source AA 2012/2013 for the master thesis:
Probabilistic Reasoning on Ontologies, regarding first implementa-
tion of BUNDLE.

• Journal papers

1. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese, and
Giuseppe Cota
Probabilistic Logic Programming on the Web
Software: Practice and Experience, 2015. DOI: 10.1002/spe.2386

2. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese
Probabilistic description logics under the distribution se-
mantics
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Semantic Web - Interoperability, Usability, Applicability, 6(5):447-
501, 2015.

3. Fabrizio Riguzzi, Elena Bellodi, and Riccardo Zese
A history of probabilistic inductive logic programming
Frontiers in Robotics and AI, 1(6):1-5, 2014.

4. Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, Vitor Santos Costa,
and Riccardo Zese
Lifted variable elimination for probabilistic logic program-
ming
Theory and Practice of Logic Programming, 14(Special issue 4-5 -
ICLP 2014):681-695, 2014.

• Book Chapters

1. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese, and
Giuseppe Cota
Learning probabilistic description logics
Uncertainty Reasoning for the Semantic Web III, volume 8816 of
Lecture Notes in Computer Science, pages 63-78. Springer Interna-
tional Publishing.

2. Riccardo Zese, Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, and
Fabiano Aguiari
Semantics and inference for probabilistic description logics
Uncertainty Reasoning for the Semantic Web III, volume 8816 of
Lecture Notes in Computer Science, pages 79-99. Springer Interna-
tional Publishing.

• Conference and Workshop papers

1. Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi,
Riccardo Zese, and Giuseppe Cota
An abductive framework for Datalog +/- ontologies
Technical Communications of the 31st International Conference on
Logic Programming (ICLP 2015), 2015.

2. Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi,
Riccardo Zese, and Giuseppe Cota
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Abductive logic programming for Datalog+/- ontologies
Proceedings of the 30th Italian Conference on Computational Logic
(CILC2015), 2015.

3. Giuseppe Cota, Riccardo Zese, Elena Bellodi, Fabrizio Riguzzi, and
Evelina Lamma
Distributed parameter learning for probabilistic ontologies
25th International Conference on Inductive Logic Programming (ILP
2015), 2015.

4. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese, and
Giuseppe Cota
Probabilistic inductive constraint logic
25th International Conference on Inductive Logic Programming (ILP
2015), 2015.

5. Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, and
Evelina Lamma
Structure learning of probabilistic logic programs by mapre-
duce
25th International Conference on Inductive Logic Programming (ILP
2015), 2015.

6. Riccardo Zese
Inference and Learning for Probabilistic Description Logics
Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI 2015), pages 4411-4412, 2015.

7. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese
Reasoning with probabilistic ontologies
Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence (IJCAI 2015), pages 4310-4316, 2015.

8. Riccardo Zese, Elena Bellodi, Evelina Lamma, and Fabrizio Riguzzi
Logic programming techniques for reasoning with proba-
bilistic ontologies
International Workshop on Ontologies and Logic Programming for
Query Answering, 2015. PDF: http://ontolp.lsis.org/files/
pdf/proc-ontolp.pdf#page=13
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9. Riccardo Zese, Elena Bellodi, Evelina Lamma, and Fabrizio Riguzzi
Logic programming techniques for reasoning with proba-
bilistic ontologies
Proceedings of the Joint Ontology Workshops 2015 Episode 1: The
Argentine Winter of Ontology co-located with the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2015), 2015.
PDF: http://ceur-ws.org/Vol-1517/JOWO-15_ontolp_paper_3.
pdf

10. Giuseppe Cota, Riccardo Zese, Elena Bellodi, Evelina Lamma, and
Fabrizio Riguzzi
Structure learning with distributed parameter learning for
probabilistic ontologies
Doctoral Consortium of the European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases,
pages 75–84, 2015.

11. Riccardo Zese
Learning Probabilistic Description Logics Theories
Proceedings of the Second Doctoral Workshop in Artificial Intelli-
gence (DWAI 2014), 13th Symposium of the Italian Association for
Artificial Intelligence "Artificial Intelligence for Society and Econ-
omy", number 1334 in CEUR Workshop Proceedings, pages 13-22,
Aachen, Germany, 2014.

12. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese
Learning the parameters of probabilistic description logics
Late Breaking papers of the 23rd International Conference on In-
ductive Logic Programming, volume 1187 of CEUR Workshop Pro-
ceedings, pages 46-51, 2014.

13. Riccardo Zese
Reasoning with Probabilistic Logics
ArXiv e-prints 1405.0915v2. An extended abstract / full version of
a paper accepted to be presented at the Doctoral Consortium of the
30th International Conference on Logic Programming (ICLP 2014),
2014.
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14. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese
Computing instantiated explanations in OWL DL
Proceedings of the 13th Conference of the Italian Association for
Artificial Intelligence, 4-6 December 2013, volume 8249 of Lecture
Notes in Artificial Intelligence, pages 397-408, 2013.

15. Riccardo Zese, Elena Bellodi, Evelina Lamma, and Fabrizio Riguzzi
A description logics tableau reasoner in Prolog
Proceedings of the 28th Italian Conference on Computational Logic,
number 1068 in CEUR Workshop Proceedings, pages 33-47, 2013.

16. Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi, and Riccardo Zese
BUNDLE: A reasoner for probabilistic ontologies
7th International Conference on Web Reasoning and Rule Systems,
volume 7994 of Lecture Notes in Computer Science, pages 183-197,
2013.

17. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese
Parameter learning for probabilistic ontologies
7th International Conference on Web Reasoning and Rule Systems
(RR 2013), Mannheim, Germany, July 27-29 2013, volume 7994 of
Lecture Notes in Computer Science, pages 265-270, 2013.

18. Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo Zese
Epistemic and statistical probabilistic ontologies
Proceedings of the 8th International Workshop on Uncertain Rea-
soning for the Semantic Web, number 900 in CEUR Workshop Pro-
ceedings, pages 3-14, 2012.

19. Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi, and Riccardo Zese
Semantics and inference for probabilistic ontologies
Popularize Artificial Intelligence. Proceedings of the AI*IA Work-
shop and Prize for Celebrating 100th Anniversary of Alan Tur-
ing’s Birth, volume 860 of CEUR Workshop Proceedings, pages
41-46,2012.
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Description Logics
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Chapter 6

Foundations of Description Logics

Knowledge Representation (KR) aims at representing domains (even very com-
plex) in a form that is easily manageable by intelligent systems, i.e. reasoning
or learning algorithms, systems able to extract implicit information starting
from the explicit one.

In the 70s, work in KR could be divided in two different branches: logic-
based formalisms and non-logic-based formalisms. The former exploited logic
principles and the predicate calculus for modeling the domain, while the latter
described the data by means of ad-hoc representation systems, which were
often graphical.

The most common approaches exploited semantic networks or frames,
where the knowledge of the domain was modeled via network-shaped struc-
tures, in which sets of individuals and their relations were represented by
nodes and edges of a graph.

In the following years, network-based systems were prominent, due to
their better human-appealing and easier visualization than logic-based sys-
tems. Typically, in network-based representations, nodes correspond to con-
cepts (sometimes called frames), that are sets of individuals, while edges depict
connections and relationship between concepts. Some systems allow the assign-
ment of attributes to concepts (nodes) or the use of specific nodes to represent
complex relationships or particular individuals.

However, they often did not follow precise semantics. This led to systems
which behave completely different form each other even though they represent
the same information.
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The attention gradually shifted to logic systems, in particular based on
First Order Logics (FOL for short), for their more precise semantics charac-
terization. By taking advantage of predicate logics, one can effectively repre-
sent graphical systems, for example using unary predicate for modeling sets of
individuals and binary predicates for representing relationships between indi-
viduals. The systems based on networks can be seen as fragment of first order
logic and, thus, reasoning processes can be executed exploiting specialized
techniques, without necessarily using FOL theorem provers.

The name terminological systems appeared for indicating the use of mod-
eling languages for specifying the terminology of the domain of interest. Here-
after, the focus shifted to constructors, which enable to model complex de-
scriptions of concepts. These languages took the name of concept languages.
Finally, the attention moved more towards the properties of the underlying
logic. In these years, the name Description Logics (DLs for short) appeared,
in order to emphasize the increased attention to logic [3].

In a graphical system, typically the relationships between concepts are
is-a relations and define a hierarchy of concepts. “A is-a B” means that
every individual a of A belongs also to B. DL can go beyond these relations
and represent more complex relationships between concepts. With respect to
properties, also named roles, DLs show more expressive power, for example by
allowing the representation of cardinality restrictions or the definition of the
range and the domain of the roles.

DLs are a fragment of FOL, thus they can exploit inference techniques that
are more performing than those developed for reasoning on FOL. Decidability
is a very desirable properties for DLs, which are usually decidable fragments of
FOL. DLs are very useful in many domains, such as software engineering, med-
ical diagnosis, digital libraries, databases and Web based informative systems,
and generally in all the fields where it is necessary to represent information
and to perform inference on it, since they possess nice computational properties
such as decidability and/or low complexity.

In the following, Chapter 7 introduces the main characteristics of DLs while
Chapter 8 describes the DLs ALC, SHOIN (D) and SROIQ(D) showing the
differences between them. ALC is referred as the basis DL while SHOIN (D)

and SROIQ(D) are the DLs exploited in OWL language. Finally, Chapter 9
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briefly describes OWL language and Chapter 10 discusses inference techniques
for DLs.
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Chapter 7

Description Logics’ Characteristics

Description Logics can be defined and classified with respect to three different
characteristics:

1. Basic syntactic units :

• primitive concepts (also called classes or terms) are abstract groups,
sets or collections which gather objects that have common features.
They are the fundamental elements and can constitute a hierarchy,
where there are super-classes and sub-classes, e.g., Cat and Pet

where Cat is the sub-class and Pet is the super-class.

• atomic roles (also named relations) are used for expressing relation-
ships between objects belonging to two possibly different concepts,
which represent the domain, the first, and the range, the second.

• individuals (also known as instances) model a specific object of the
domain.

2. Expressiveness : or expressive power, is determined by the set of con-
structors allowed for specifying complex concepts and roles.

3. The availability of inference procedures : implicit knowledge about con-
cepts, individuals and roles can be automatically inferred by exploiting
inference procedures. Especially, subsumption relations between con-
cepts and roles and the “instance-of ” relations between individuals and
concepts are extremely important. An “instance-of ” relation defines the
belonging of an individual to a concept.
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DLs detail which kind of axioms can be specified. An axiom is expressed for
imposing constraints on concepts, instances and roles. The axioms are used
during the inference processes for verifying the consistency of the knowledge
and for performing inference on it.

7.1 Concept and Role Constructors

The expressiveness of the language determines which constructors are permit-
ted.

Regarding concepts, the most common constructors allowed are conjunc-
tion (t), intersection (u) and negation (¬). For negation a differentiation
is made between simple concept negation and complex concept negation. A
complex concept is a concept defined by a set of concepts (simple or not)
combined by constructors. Many DLs define two specific concepts, the uni-
versal top concept (>), which represents the set of all the individuals and is
equivalent to A t ¬A, and the inconsistent bottom concept (⊥), which repre-
sents the empty concept, to which no individuals belong, which is equivalent
to A u ¬A. Then, quantification constructors can be added to those already
presented. These operators can be classified in unqualified and qualified and
are called existential role restrictions (∃R and ∃R.C unqualified and qualified
respectively) and universal role restrictions (∀R e ∀R.C). In particular, the
unqualified constructors correspond to the qualified ones in which the range
concept is the top concept, e.g. ∃R.> e ∀R.>. In some languages, there is also
the possibility to define concepts by enumeration, i.e., by listing the admitted
individuals, and to define cardinality restrictions (again, unqualified and/or
qualified). Cardinality restrictions bound the number of individuals related
with those contained in the concept under definition. There can be minimum
cardinality restrictions (≥ nR and ≥ nR.C), maximum cardinality restrictions
(≤ nR and ≤ nR.C) and exact cardinality restrictions, often defined in term
of the previous two. As for universal and existential qualified role restrictions,
in qualified cardinality restrictions the range of the role is constrained. These
constructors model the fact that there is a bound on the cardinality of the set
of individuals belonging to the specified concept linked to individuals belong-
ing to the complex concept defined by the qualified cardinality restriction. For
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example, a truck can be defined as a means of transport with at least four
wheels:

MeansOfTransportu ≥ 4 equippedWith.Wheels

Some DLs, those that have (D) in their name, permit the use of datatype
roles, i.e., roles that map an individual to an element of a datatype such as
integers, floats, etc. These DLs assume a set of data values, and a set of
elementary datatypes. A datatype is an elementary datatype or a finite set
of data values. They assume also a set of datatype predicates, which present
a predefined arity n ≥ 1. For example, over the integers, ≤ 20 is a unary
predicate denoting the set of integers less or equal to 20, and thus Elephant u
∃age. ≤20 describes elephants younger than 20 years old.

Assuming all the constructors mentioned, we can inductively define com-
plex concepts. Let A, RA, RD and I be disjoint sets of atomic concepts,
abstract roles, datatype roles and individuals, respectively, then the following
are concepts:

• >

• ⊥

• every A ∈ A

• for every finite set {a1, ..., an} ∈ I of individuals names, {a1, ..., an} is a
concept called nominal

If C and B are concepts and R ∈ RA then the following are concepts as well:

• (C uB), the intersection of two concepts

• (C tB), the union of two concepts

• ¬C, the complement of a concept

• ∃R and ∃R.C, the unqualified and qualified existential restriction on a
role

• ∀R and ∀R.C, the unqualified and qualified universal restriction of a
concept by a role
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• ≥ nR and ≤ nR for an integer n ≥ 0, unqualified number restriction on
a role

• ≥ nR.C and ≤ nR.C for an integer n ≥ 0, qualified number restriction
on a role

If D is an n-ary datatype predicate and T ∈ RD, then:

• ∃T.D, the datatype existential restriction of a concept by a role

• ∀T.D, the datatype universal restriction of a concept by a role

Some logics with high expressive power allow also role constructors, such as
union, composition (◦) for defining chains of roles, transitive closure, functional
roles and inverse roles.

7.2 Family of DLs

The expressiveness is indicated using a well-established naming convention
which specifies what is allowed and what is not allowed in the DL. The naming
scheme can be summarized as follows:

((ALC | FL | EL | S) [H] | SR) [O] [I] [F | E | U | N | Q] (D)

where

• ALC is the abbreviation of attributive language with complements. It is
often considered as the base language and allows atomic negation (¬),
conjunction (t) and intersection (u) as well as universal (∀R.C) and
(limited) existential (∃R.C) quantifiers. It allows also the negation of
complex concepts (C).

• FL is the contraction of frame based description language. It allows
concept intersections, universal restrictions, limited existential quantifi-
cations and role restrictions. FL has two sublanguages: FL−, obtained
by disallowing the use of role restrictions, and FLo, that is a sublanguage
of FL− obtained by disallowing limited existential quantifications.
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• EL allows the use of existential quantifiers, concept intersections and the
> (top) concept. It disallows unions, complements, universal quantifiers
and axioms regarding roles such as role subsumptions. EL+ is an ex-
tention which permits the use of role inclusion axioms together with the
concept inclusion axioms already allowed by EL. EL++ is an alias for
ELRO.

• S denotes the logicALC extended with the possibility to define transitive
roles.

• H extends ALC and S by role hierarchies, thus it allows role inclusion
axioms.

• SR extends S by allowing the definition of complex role inclusions, i.e.
hierarchies between complex roles.

• O allows the use of enumerations in the definition of concepts, i.e. the
use of nominals in the definition of concepts, for example the definition
of Beatles can be {john, paul, ringo, george}.

• I enables the definition of inverse roles.

• F indicates the possibility of defining functional role statements.

• E means that the DL features full existential quantifications.

• U allows union between concepts.

• N means that the definition of unqualified cardinality restrictions is al-
lowed, i.e., ≤ R and ≥ R.

• Qmeans that qualified cardinality restrictions can be defined, i.e., ≤ R.C

and ≥ R.C.

• (D) allows datatype properties.

7.3 Knowledge Base

In systems where the knowledge management is one of the main objectives, it
is necessary to bear in mind two important aspects:
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• the characterization and the definition of the knowledge base, which has
to be formally and precisely specified;

• the definition of environments and frameworks which allow processing,
querying and management of the knowledge base.

These two features are interconnected, as the choice of how to define knowledge
base must take into account which reasoning services ought to be provided,
insofar as they depend on how the knowledge is specified.

A knowledge base (KB for short) contains two kinds of information, inten-
sional knowledge and extensional knowledge. The first, generally, is divided
into Terminological Box (TBox) and Role Box (RBox) and models general in-
formation about the domain, normally contains immutable information and is
built through statements which describe the main properties of roles and con-
cepts. The latter, called Assertional Box (ABox), contains information that is
specific to the problem, that may change over time and that is related to the
individuals of the domain.

7.3.1 TBox

The TBox contains axioms regarding concepts. They can be grouped into
definitions and subsumptions.

Definitions assert equality between two concepts. Definitions are often used
to associate a symbolic name to complex concepts. In these cases a single
definition for a symbolic name is admitted in the TBox. For example,
we can define the concepts Parent as the union between the concepts
Mother and Father as

Parent ≡Mother t Father

Subsumptions introduce a hierarchy among concepts. These axioms are also
called concept inclusion axioms and specify a is-a relationship between
two different concept. For example, we can state that a man is a person
as

Man v Person
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Definition can be expressed as subsumptions as C ≡ D is equivalent to C v D

and D v C. A TBox T is a finite set of concept inclusion axioms C v D,
where C and D are concepts.

7.3.2 RBox

The RBox is a set of axioms that describes the roles contained in the KB.
A role is either an atomic role R ∈ RA or the inverse R− of an atomic role
R ∈ RA. We use RA

− to denote the set of all inverses of roles in RA.
An RBox R consists of a finite set of role inclusion axioms, roles chain

axioms, plus axioms that define the characteristics of roles such as transitivity
axioms and functional axioms.

Role inclusion axioms are of the form R v S, where R, S ∈ RA ∪RA
− or

R, S ∈ RD. We call role equivalence axiom the statement R ≡ S, which
is an abbreviation for R v S and S v R

Role chain axioms are of the form R1 ◦R2 v R3, where R1, R2, R3 ∈ RA ∪
RA

−. For example, to model the fact the father of the father of an
individual is a grandparent the following axiom can be used:

fatherOf ◦ fatherOf v grandParentOf

Transitivity axioms are of the form Trans(R), where R ∈ RA or R ∈ RD.
They mean that if x is related to y and y is related to z with role R, then
x is R-related to z. For example, if the role brotherOf is transitive and
the axioms brotherOf(luca, andrea) and brotherOf(andrea, giovanni)

are given, then we can conclude that brotherOf(luca, giovanni) is also
true.

Functional axioms are of the form Funct(R). They mean that, for each ob-
ject x, there can be only one object y in relation with x through R. There
cannot be two distinct y1 and y2 such that we have R(x, y1) and R(x, y2).
For example, consider the relation childOfFather, and consider the kid
luca. If we have childOfFather(luca, f1) and childOfFather(luca, f2),
then we can conclude:
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1. f1 and f2 are the same person, i.e. the father of luca

2. if f1 6= f2 is also stated that, then the KB is inconsistent

Which axioms may be present in an RBox depends on the expressive power
of the Description Logic, in some cases the KB does not contain RBox, e.g.
ALC.

7.3.3 ABox

An ABox (Assertional Box) contains information about the specific domain of
the problem. It introduces the individuals, that are instances of classes in the
domain, and specifies the properties of the individuals in terms of concepts
and roles. It defines which classes each individual belongs to and how the
individuals are related to each other.

Let a, b be individuals and v be a data value, an ABox A is a finite set of
concept membership axioms, role membership axioms, datatype role member-
ship axioms, equality axioms and inequality axioms.

Concept membership axioms are of the form a : C, where C is a concept.
They state that a belongs to C.

Role membership axioms are of the form (a, b) : R, where R ∈ RA. They
state that b is R-related to or is a filler of the role R for a.

Datatype role membership axioms are of the form (a, v) : T , where T ∈
RD. They state that v is T-related to a.

Equality axioms are of the form a = b. They state that a and b define the
same individual.

Inequality axioms are of the form a 6= b. They state that a and b are
different individuals.

7.4 Semantics

Generally a DL is assigned a semantics following a set-theoretic approach where
every concept is interpreted as a set of individuals and every role as a set of
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pairs of individuals. A knowledge base K is usually assigned a semantics in
terms of interpretations I = (∆I , ·I), where

• ∆I is a non-empty domain, which contains all the individuals of the
domain,

• ·I is the interpretation function, that assigns an element aI ∈ ∆I to
each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I × ∆I to
each R ∈ R, where I, A and R are respectively the set of individuals,
concepts and roles.

If the DL allows the use of datatypes, then the definition of interpretation given
above must be extended to take into account also a datatype theory which is
associated to I. A datatype theory D = (∆D, ·D) is defined by

• a non-empty datatype domain ∆D,

• a mapping function ·D which assigns to each data value an element of
∆D, to each elementary datatype a subset of ∆D, and to each datatype
predicate of arity n a relation over ∆D of arity n.

Let I, A, RA and RD be respectively the set of individuals, atomic concepts,
abstract roles and datatype roles, which are pairwise disjoint. An interpreta-
tion I = (∆I , ·I) relative to a datatype theory D = (∆D, ·D) is composed of a
non-empty domain ∆I that is disjoint from ∆D, and an interpretation function
·I which maps each a ∈ I to an element of ∆I , each C ∈ A to a subset of ∆I ,
each R ∈ RA to a subset of ∆I ×∆I , each T ∈ RD to a subset of ∆I ×∆D,
and every data value, datatype, datatype predicate to the same value assigned
by ·D.
The mapping ·I is extended to complex concepts (where RI(x) = {y|(x, y) ∈
RI}, RI(x,C) = {y|〈x, y〉 ∈ RI , y ∈ CI}), #X denotes the cardinality of the
set X and T I(x) = {y|y ∈ ∆D, (x, y) ∈ T I}) as follows:

• >I = ∆I , the set of all the individuals of the domain

• ⊥I = ∅, the empty concept

• (C1 u C2)
I = CI1 ∩ CI2 , each individual is a member of both C1 and C2
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• (C1 tC2)
I = CI1 ∪CI2 , each individual is a member of at least one of the

concepts C1 and C2

• (¬C)I = ∆I \CI , the set of individuals that do not belong to the concept
C

• (∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}, each individual that belongs to this
concept is related by the role R only to individuals that belong to concept
C

• (∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}, each individual that belongs to
this concept is related through R to at least one individual that belongs
to C

• (R−)I = {(y, x)|(x, y) ∈ RI}

• (R1 ◦ ... ◦Rn)I = RI1 ◦ ... ◦RIn

• {a}I = {aI}

• (≥ nR)I = {x ∈ ∆I |#RI(x) ≥ n}

• (≥ nR.C)I = {x ∈ ∆I |#RI(x,C) ≥ n}

• (≤ nR)I = {x ∈ ∆I |#RI(x) ≤ n}

• (≤ nR.C)I = {x ∈ ∆I |#RI(x,C) ≤ n}

• (∀T.D)I = {x ∈ ∆I |T I(x) ⊆ DI}

• (∃T.D)I = {x ∈ ∆I |T I(x) ∩DI 6= ∅}

Given a specific interpretation I, we can determine the satisfaction of an axiom
E, i.e. whether the axiom holds (is true) with respect to I. The satisfaction,
denoted by I |= E, is defined as follows:

1. A concept inclusion axiom I |= C v D is satisfied in I iff CI ⊆ DI ,

2. A concept assertion axiom I |= a : C is satisfied in I iff aI ∈ CI ,

3. A role assertion axiom I |= (a, b) : R is satisfied by I iff (aI , bI) ∈ RI ,
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4. An equality axiom I |= a = b holds in I iff aI = bI ,

5. A inequality axiom I |= a 6= b is satisfied by I iff aI 6= bI ,

6. A transitivity axiom I |= Trans(R) is satisfied by I iff RI is transitive,

7. A role inclusion axiom I |= R v S is satisfied by I iff RI ⊆ SI , this
condition can be generalized for role chains as follows

(a) I |= R1 ◦ ... ◦Rn v S is satisfied by I iff (R1 ◦ ... ◦Rn)I ⊆ SI ,

8. A datatype role assertion axiom I |= (a, v) : T for a data value v is
satisfied by I iff (aI , vD) ∈ T I .

I satisfies a set of axioms E , denoted by I |= E , iff I |= E for all E ∈ E . An
interpretation I satisfies a knowledge base K, denoted I |= K, iff I satisfies
all the boxes contained in K, i.e. if K = (T ,A), then I |= K iff I satisfies T
and A, while if K = (T ,R,A), then I have also to satisfy R. In this case we
say that I is a model of K. A knowledge base K is satisfiable iff there exists
an interpretation I that satisfies K. An axiom E is entailed by K, denoted
K |= E, iff every interpretation that satisfies K satisfies also E. For example,
a concept C is satisfiable relative to K iff there exists an interpretation I such
that CI 6= ∅.

A translation of DL into First-Order Logic with Counting Quantifiers is
given in the following as an extension of the one given in [132]. The translation
uses two functions πx and πy that map concept expressions to logical formulas,
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Table 7.1: Correspondence between DL axioms and their translation into pred-
icate logic. Functions πx and πy are exploited to translate the concepts con-
tained in the axioms.

Axiom Translation
C v D ∀x.πx(C)→ πx(D)
a : C C(a)

(a, b) : R R(a, b)
a = b a = b
a 6= b a 6= b
R v S ∀x, y.R(x, y)→ S(x, y)

R1 ◦ ... ◦Rn v S ∀xi, 0 ≤ i ≤ m.R1(x0, x1) ∧ ... ∧Rn(xm−1, xm)→ S(x0, xm)
Trans(R) ∀x, y, z.R(x, z) ∧R(z, y)→ S(x, y)

where πx is given by

πx(A) = A(x)

πx(¬C) = ¬πx(C)

πx(C uD) = πx(C) ∧ πx(D)

πx(C tD) = πx(C) ∧ πx(D)

πx(∃R.C) = ∃y.R(x, y) ∧ πy(C)

πx(∃R−.C) = ∃y.R(y, x) ∧ πy(C)

πx(∀R.C) = ∀y.R(x, y)→ πy(C)

πx(∀R−.C) = ∀y.R(y, x)→ πy(C)

πx({a}) = (x = a)

πx(≥ nR.C) = ∃≥ny.R(x, y) ∧ πy(C)

πx(≥ nR−.C) = ∃≥ny.R(y, x) ∧ πy(C)

πx(≤ nR.C) = ∃≤ny.R(x, y) ∧ πy(C)

πx(≤ nR−.C) = ∃≤ny.R(y, x) ∧ πy(C)

and πy is obtained from πx by replacing x with y and vice-versa. Table 7.1
shows the translation of the most used axiom types of DL knowledge bases.

Each DL is decidable if the problem of checking the satisfiability of a KB is
decidable. In particular, a DL is decidable iff there are no number restrictions
on transitive roles and on roles that has transitive subroles.

Role chains introduce some issues too:
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• Arbitrary property chain axioms lead to undecidability. For ensuring
decidability the following restriction must be imposed: the set of property
chain axioms must be regular, i.e., the set has to contain only property
chain axioms of the following forms:
R ◦R v R

S− v R

S1 ◦ S2 ◦ ... ◦ Sn v R

R ◦ S1 ◦ S2 ◦ ... ◦ Sn v R

S1 ◦ S2 ◦ ... ◦ Sn ◦R v R

in which, given a strict linear order ≺, Si ≺ R for all i = 1, 2, ..., n.

• The combination of property chain axioms with cardinality constraints
may lead to undecidability. For ensuring decidability, only simple prop-
erties are allowed in cardinality expressions. A property is simple iff it is
not a super property of a property chain, i.e., R is simple iff there is not
any property chain axiom of the form S1 ◦ S2 ◦ ... ◦ Sn v R with n > 1,
nor any subproperty axiom S v R with S non simple.

41



42



Chapter 8

Significant Examples of
Description Logics

DLs differ for the set of constructors they admit, both for roles and for con-
cepts. In this chapter we will show, in the light of what has already been
said, the difference between three different DLs that are relevant for the work
presented in this Thesis: ALC, SHOIN (D) and SROIQ(D).

As seen before, ALC is an alias for Attributive Language with Comple-
ment. It features negation, conjunction, intersection and both universal and
existential quantification, together the universal top concept > and the incon-
sistent bottom concept ⊥. It allows concept inclusion axioms, concept and
role membership axioms, equality and inequality axioms. ALC DL does not
permit the definition of axioms concerning roles, therefore, a knowledge base K
consists only of a TBox T and an ABox A, i.e. K = (T ,A), where the ABox
does not contain datatype role membership axioms.

The interpretation function ·I for ALC maps the following complex con-
cepts: (1) >, (2) ⊥, (3) C1 uC2, (4) C1 tC2, (5) ¬C, (6) ∀R.C and (7) ∃R.C.
The satisfaction of an axiom E is defined in Section 7.4 in points 1-5, thus
without definitions concerning roles since the absence of the RBox.

The DL SHOIN (D) underlies the first definition of OWL DL. It adds to
ALC role transitivity (denoted by the S), role hierarchy (H), nominals (O),
role inverses (I), unqualified number restrictions (N ) and datatype roles (D).
Together with the constructor that ALC permits, SHOIN (D) also adds roles
axioms on abstract and datatype roles. A SHOIN (D) KB K = (T ,R,A)
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consists of a TBox T , an RBox R and an ABox A, where the RBox R consists
of a finite set of transitivity axioms and role inclusion axioms, while the ABox
is a finite set of axioms as specified in Subsection 7.3.3.

The mapping ·I for SHOIN (D) is extended to all new complex concepts
accepted, that are: (8) R−, (9) {a}, (10) ≥ nR, (11) ≤ nR and (12) ∀T.D and
∃T.D for datatype roles. The satisfaction of an axiom E takes into account
the definitions given for ALC plus the ones regarding RBox axioms except for
the general definition of roles chain inclusion axioms (Section 7.4, point 7.a).
SHOIN (D) is decidable iff there are no number restrictions on transitive roles
and on roles that has transitive subroles.

Finally, SROIQ(D) [62] adds to SHOIN (D) qualified cardinality re-
strictions and complex role inclusions, plus some new features such as roles
disjunction, reflexive, irreflexive and antisymmetric roles and the definition of
a universal role, similar to > for the concepts. The interpretation function and
the definition of satisfiability correspond to those described in Section 7.4.

Example 1. We would like to model the class of individuals who love Italian
cars, named ItalianCarsLover . Using ALC, we give the following definition of
the concept: “an Italian cars lover is a person who has bought for himself at
least an Italian car and all cars he has bought are Italian cars”. In ALC, this
sentence can be represented as:

ItalianCarsLover ≡ ∃hasBoughtForHimself .ItalianCars u

∀hasBoughtForHimself .ItalianCars (8.1)

where the class ItalianCar can be modeled as the union of cars branded “Fiat”
and cars branded “Alfa Romeo”:

ItalianCar ≡ FiatBrandedCars t AlfaRomeoBrandedCars

We know that Mario loves Italian cars, in fact all cars he has possessed are
Italian, but his first car was a present from his parents. Thus

mario : ∃hasPossessed .ItalianCars u ∀hasBoughtForHimself .ItalianCars

u ∀hasPossessed .ItalianCars
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Following the definition of (8.1), mario is not an Italian branded cars lover.
For solving this problem we could note that if one buys something, he/she owns
it. With ALC we cannot specify this kind of information, we have to use more
expressive languages, such as SHOIN (D), where we can specify that

hasBoughtForHimself v hasPossessed

and so modify (8.1) to:

ItalianCarsLover ≡ ∃hasPossessed .ItalianCars u

∀hasPossessed .ItalianCars (8.2)

In this way Mario : ItalianCarsLover now is true. We also know that Mauro

loves Italian cars too, in fact he has owned more than 5 Italian cars, but one of
his first cars was not an Italian car. In order to include Mauro in the class of
ItalianCarsLover we could change the definition of Italian branded cars lover
as “the set of individuals who have owned at least 5 Italian cars”, therefore
(8.2) becomes:

ItalianCarsLover ≡ ≥ 5 hasPossessed .ItalianCars (8.3)

Note that in (8.3) we need qualified number restrictions, allowed by SROIQ(D)

but not by SHOIN (D).
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Chapter 9

OWL: the Web Ontology
Language

In 2004, the W3C standardized a language that is more expressive and richer
than RDF and RDFS, called Web Ontology Language, abbreviated in OWL.
There are many stories behind the choice of this acronym, which does not
correspond to the extended name. It was hypothesized that the acronym was
a reference to an Artificial Intelligence project called One World Language, an
early attempt studied in the 70s for defining a universal language for encoding
information for computers. Another legend has it that the choice was due to
the character Owl from Winnie the Pooh, who misspells his name as “WOL”,
the real acronym for Web Ontology Language. But the most accredited was
due to Guus Schreiber, one of the co-chairs of the Web Ontology Work Group of
the W3C created to standardize OWL. Guus Schreiber, regarding the acronym,
asserted “Why not be inconsistent in at least one aspect of a language which
is all about consistency?”.

The first version of OWL defines three different sublanguages of increasing
complexity and with different level of expressiveness:

OWL Lite based on the Description Logic SHIF(D), supports classification
hierarchies and simple constraints. For example, it admits cardinality
restrictions with cardinality values of 0 or 1 only. OWL Lite was intended
to be easily computable since it is targeted to thesauri and taxonomies.

OWL DL originally based on SHOIN (D), it allows all the constructors and
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the axioms permitted by that DL. OWL DL is a language meant to be
decidable and computationally complete while maintaining the maximum
expressiveness possible.

OWL Full a highly expressive semantics. For example, classes can be seen as
both collections of individuals and single individuals. OWL Full is not
decidable and the support to complete reasoning is unlikely.

In 2008 the W3C OWL Working Group published the specifications of the
follower of OWL, called OWL2, based on SROIQ(D) [60]. OWL2 is also
equipped with three different profiles:

• OWL 2-EL, it was expressly defined for application with very large
numbers of classes and/or properties. It corresponds with EL++ for
which basic reasoning problems can be preformed in polynomial time
in the size of the ontology. The definition of this profile was motivated
by the need to model large medical and biochemical ontologies, such as
Gene Ontology1 or SNOMED-CT2 where there are thousands of classes
defined.

• OWL 2-QL, a fragment offering a simplified support to queries in order
to manage large number of instance data. It allows to maintain data in
relational databases where reasoning can be performed by means of query
languages. This profile allows defining herarchies between classes and
properties together with inverse properties but disallows, for example,
the use of universal quantifiers.

• OWL 2-RL, an OWL subset meant to handle rules, such as if-then-
else constructs. This profiles makes use of standard rule languages and
queries can be solved using rule-based reasoning engines. It was defined
for introducing more expressivity in RDF(S) applications without the
need to re-define data exploiting other DL languages.

1http://geneontology.org/
2http://www.ihtsdo.org/snomed-ct
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Chapter 10

Inference in Description Logics

In the previous chapter we presented languages for modeling information and
defining Knowledge Bases (KBs). After the creation of a KB, it is important
to provide systems able to execute inference over the modeled information and
systems able to automatically learn or repair the specified knowledge. In this
chapter the inference problem is addressed, which aims at extracting implicit
information from those explicit in the KBs. Usually, inference systems are able
to answer queries given by users by testing whether the queries hold w.r.t. the
input information and in many cases also to provide explanations for the result.

Here we concentrate on the problem of finding explanations for a query that
has been investigated by various authors [56, 68, 70, 71, 133]. Also called axiom
pinpointing by Schlobach and Cornet [133], it is considered as a non-standard
reasoning service useful for tracing derivations and debugging ontologies. In
particular, the authors of [133] define minimal axiom sets or MinAs for short.

Definition 1 (MinA). Let K be a knowledge base and Q an axiom that follows
from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or MinA for
Q in K if M |= Q and it is minimal w.r.t. set inclusion. A MinA corresponds
to an explanation for the query Q.

The problem of enumerating all MinAs is called min-a-enum in [133]. All-

MinAs(Q,K) is the set of all MinAs for query Q in the knowledge base K.
Problem: min-a-enum

Input : A knowledge base K, and an axiom Q such that K |= Q.
Output : The set All-MinAs(Q,K) of all MinAs for Q in K.
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Instead of finding All-MinAs(Q,K) for queries, in [4, 5] Baader and Peñaloza
presented the problem of finding a pinpointing formula which compactly en-
codes the set of all MinAs. The pinpointing formula is a monotone Boolean
formula built using Boolean variables corresponding to an axiom of the KB
and the conjunction and disjunction connectives. Let assume that each axiom
E of a KB K is associated with a propositional variable, indicated with var(E).
The set containing all propositional variables is indicated with var(K) while
the set of propositional variables that are true is indicated with ν, which is
called valuation of a monotone Boolean formula. For a valuation ν ⊆ var(K),
let Kν := {t ∈ K|var(t) ∈ ν}.

Definition 2 (Pinpointing formula). Given a query Q and a KB K, a mono-
tone Boolean formula φ over var(K) is called a pinpointing formula for Q if
for every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

In Lemma 2.4 of [5], the authors proved that we can obtain all MinAs from
a pinpointing formula by transforming the formula into Disjunctive Normal
Form (DNF) and removing disjuncts implying other disjuncts.
The example below illustrates the difference between All-MinAs(Q,K) and
the pinpointing formula.

Example 2 (Pinpointing formula). The following KB is inspired by the on-
tology people+pets [101]:

∃hasAnimal.Pet v NatureLover

fluffy : Cat

tom : Cat

Cat v Pet

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

It states that every individual that owns an animal that is a pet is a nature
lover and that fluffy and tom are cats. Moreover, all cats are pets and kevin
owns the animals fluffy and tom. We associate Boolean variables with axioms
as follows: F1 = ∃hasAnimal.Pet v NatureLover, F2 = (kevin,fluffy) :

hasAnimal, F3 = (kevin, tom) : hasAnimal, F4 = fluffy : Cat, F5 = tom :

Cat and F6 = Cat v Pet. Let Q = kevin : NatureLover be the query, then
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All-MinAs(Q,K) = {{F2, F4, F6, F1}, {F3, F5, F6, F1}}, while the pinpointing
formula is ((F2∧F4)∨(F3∧F5))∧F6∧F1. It is easy to see that the pinpointing
formula is equivalent to ((F2∧F4∧F6∧F1)∨(F3∧F5∧F6∧F1)) that corresponds
to All-MinAs(Q,K).

In the following we define how the two different approaches can be imple-
mented by considering a state-of-art system, called Pellet [136], which is at
the basis of BUNDLE, one of the system presented in this Thesis presented in
Chapter 15.

10.1 Approaches to Compute Explanations

The most common approach to solve min-a-enum problem uses a tableau al-
gorithm [134] to decide whether an axiom is entailed or not by a KB. Such
an algorithm works by refutation: it tries to prove whether a concept C is
unsatisfiable by showing that the assumption of non-empty C leads to contra-
diction. This is done by assuming that C has an instance and by trying to
build a model for the KB. If no model can be built, then C is unsatisfiable,
otherwise the model is a counter example for the unsatisfiability of C.

The algorithm works on completion graphs also called tableaux. A tableau
represents an ABox in which each node a represents an individual a, labeled
with the set of concepts L(a) it belongs to. Each edge 〈a, b〉 in the graph is
labeled with the set of roles L(〈a, b〉) to which the couple (a, b) belongs. The
reasoner starts from a tableau that contains the information of the ABox of
the KB and the negation of the query axiom. To prove the unsatisfiability
of a concept C, an anonymous individual a is assumed to be in C, thus C is
assigned to the label of a. The entailment of any type of axiom by a KB can
be checked by means of the tableau algorithm. For example, the axiom C v D

can be proved by showing that C u ¬D is unsatisfiable. Similarly, checking
whether a : C holds can be done by asserting that a is an instance of ¬C and
then showing that this leads to contradiction.

After the initialization of the tableau, the algorithm repeatedly applies a set
of consistency preserving tableau expansion rules until a contradiction, usually
called clash, is detected or a clash-free graph is found to which no more rules
are applicable. Some of the rules are non-deterministic, i.e., they generate
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a finite set of tableaux. Thus the algorithm keeps a set of tableaux that is
consistent if there is any tableau in it that is consistent, i.e., that is clash-free.

Following [70], min-a-enum can be solved either with reasoner dependent
(glass-box) approaches or reasoner independent (black-box) approaches. Glass-
box approaches are built on existing tableau-based decision procedures and
modify the internals of the reasoner. Black-box approaches use the DL reasoner
solely as a subroutine and the internals of the reasoner do not need to be
modified.

The techniques of [56, 69, 70, 71] for axiom pinpointing have been integrated
into the Pellet reasoner [136]. By default, Pellet solves min-a-enum with a
hybrid glass/black-box approach: it finds all the MinAs by starting from a
single MinA found using a modified tableau algorithm (glass-box) and then
running a black box method, the hitting set tree algorithm, exploiting in turn
the modified tableau. Roughly speaking, the hitting set algorithm recursively
selects an axiom of the MinA, removes it from the KB and looks for alternative
explanations. It repeats this process until the query is not entailed, building
the set of all explanations.

Differently, in [5] Baader and Peñaloza illustrated how a standard tableau
algorithm can be modified to build a pinpointing formula instead of MinAs.

Both approaches were implemented in the three different systems presented
in Part IV of this Thesis. BUNDLE is based on Pellet and uses it for solving the
min-a-enum problem, TRILL implements BUNDLE’s tableau algorithm by
exploiting a different programming paradigm, and finally TRILLP implements
the approach of [5]. In the following, we illustrate the two different approaches
to solve min-a-enum.

10.1.1 Solving min-a-enum: The Standard Definition

In this Section we present the solution for min-a-enum that exploits a tableau
algorithm.

In the following we describe the tableau algorithm used by Pellet for solving
min-a-enum. The algorithm is shown in Algorithm 1. Pellet finds a MinA by
modifying the tableau expansion rules so that a tracing function τ is updated
as well [56, 68, 69]. τ associates sets of axioms with events in the derivation.

Formally, a completion graph for a knowledge base K is a tuple G =
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Algorithm 1 Tableau algorithm executed by Pellet.
1: function Tableau(C,K)
2: Input: C (the concept to be tested for unsatisfiability)
3: Input: K (the knowledge base)
4: Output: S (a set of axioms) or null
5: Let G0 be an initial completion graph from K containing an anonymous individual
a and ¬C ∈ L(a)

6: T ← {G0}
7: repeat
8: Select a rule r applicable to a clash-free graph G from T
9: T ← T \ {G}
10: Let G = {G′1, ..., G′n} be the result of applying r to G
11: T ← T ∪ G
12: until All graphs in T have a clash or no rule is applicable
13: if All graphs in T have a clash then
14: S ← ∅
15: for all G ∈ T do
16: let sG the result of τ for the clash of G
17: S ← S ∪ sG
18: end for
19: S ← S \ {¬C(a)}
20: return S
21: else
22: return null
23: end if
24: end function

(V,E,L, ˙6=) in which (V,E) is a directed graph. Each node a ∈ V is la-
beled with a set of concepts L(a) and each edge e = 〈a, b〉 is labeled with a set
L(e) of role names. The binary predicate ˙6= is used to specify the inequalities
between nodes.

In order to manage non-determinism, the algorithm keeps a set T of com-
pletion graphs. T is initialized with a single completion graph G0 that contains
a node for each individual a asserted in the knowledge base, labeled with the
nominal {a} plus all concepts C such that a : C ∈ K, and an edge e = 〈a, b〉
labeled with R for each assertion (a, b) : R ∈ K.

At each step of the algorithm, an expansion rule is applied to a completion
graph G from T : G is removed from T , the rule is applied and the results are
inserted in T . The rules used by Pellet are shown in Figure 10.1. For example,
if the rule → u is applied, a concept C uD in the label of a node a causes C
and D to be added to L(a), because the individual that a represents must be
an instance of both C and D.
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If a non-deterministic rule is applied to a graph G in T , then G is replaced
by the resulting set of graphs. For example, if the disjunction C tD is present
in the label of a node, the rule → t generates two graphs, one in which C

is added to the node’s label and the other in which D is added to the node’s
label.

An event during the execution of the algorithm can be:

1. Add(C, a), the addition of a concept C to L(a);

2. Add(R, 〈a, b〉), the addition of a role R to L(〈a, b〉);

3. Merge(a, b), the merging of the nodes a, b;

4. ˙6=(a, b), the addition of the inequality a ˙6=b to the relation ˙6=;

5. Report(g), the detection of a clash g

We use E to denote the set of events recorded during the execution of the
algorithm. A clash is either:

• a couple (C, a) where C and ¬C are present in the label of a node, i.e.
{C,¬C} ⊆ L(a);

• a couple (Merge(a, b), ˙6=(a, b)), where the eventsMerge(a, b) and ˙6=(a, b)

belong to E .

When a clash is detected in a completion graphG, the algorithm stops applying
rules to G. The algorithm terminates when every completion graph in T

contains a clash or no more expansion rules can be applied to it. At this
point, the algorithm checks all the completion graphs in the final set T , if all
of them contain a clash, the algorithm cannot find a model for the concept
and returns unsatisfiable. Otherwise, it collect all the models from all the
clash-free completion graph in T and returns satisfiable. Both soundness and
completeness of the algorithm rely in these observations.

The tracing function τ maps each event ε ∈ E to a fragment of K. For ex-
ample, τ(Add(C, a)) is the set of axioms needed to explain the event Add(C, a)

while τ(Add(R, 〈a, b〉)) explains the event Add(R, 〈a, b〉). For the sake of
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Deterministic rules:
→ unfold (∗): if A ∈ L(a), A atomic and (A v D) ∈ K, then

if D /∈ L(a), then
Add(D,L(a)), τ(D, a) := (τ(A, a) ∪ {A v D})

→ CE (∗): if (C v D) ∈ K, with C not atomic, a not blocked, then
if (¬C tD) /∈ L(a), then

Add((¬C tD), a), τ((¬C tD), a) := {C v D}
→ u (∗): if (C1 u C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} 6⊆ L(a), then
Add({C1, C2}, a), τ(Ci, a) := τ((C1 u C2), a)

→ ∃ (∗): if ∃S.C ∈ L(a), a is not blocked, then
if a has no S-neighbor b with C ∈ L(b), then

create new node b, Add(S, 〈a, b〉), Add(C, b)
τ(C, b) := τ((∃S.C), a), τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀ (∗): if ∀(S.C) ∈ L(a), a is not indirectly blocked and
there is an S-neighbor b of a, then

if C /∈ L(b), then
Add(C, b), τ(C, b) := τ((∀S.C), a) ∪ τ(S, 〈a, b〉)

→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked and
there is an R-neighbor b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then
Add(∀R.C, b), τ((∀R.C), b) := τ((∀S.C), a) ∪ τ(R, 〈a, b〉) ∪ {Trans(R)} ∪ {R v S}

→≥: if (≥ nS) ∈ L(a), a is not blocked, then
if there are no n safe S-neighbors b1, ..., bn of a with bi 6= bj , then

create n new nodes b1, ..., bn, Add(S, 〈a, bi〉); 6=(bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a), τ(6=(bi, bj)) := τ((≥ nS), a)

→ O: if, {o} ∈ L(a) ∩ L(b) and not a6=b, then Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a) then

τ(Add(Ci,L(b))) := τ(Add(Ci,L(a))) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

Non-deterministic rules:
→ t (∗): if (C1 t C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} ∩ L(a) = ∅, then
Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a), τ(Ci, a) := τ((C1 t C2), a) in Gi for each i ∈ {1, 2}

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked,
and there are m S-neighbors b1, ..., bm of a with m > n, then
For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j then

Generate a graph G′

τ(Merge(bi, bj)) := τ((≤ nS), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉)
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)
else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in bj
if merged into bi)

Figure 10.1: Pellet tableau expansion rules; the subset of rules marked by (∗)
is employed by TRILLP presented in Chapter 17.
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brevity we define τ for couples (concept, individual) and (role, couple of indi-
viduals) as τ(C, a) = τ(Add(C, a)) and τ(R, 〈a, b〉) = τ(Add(R, 〈a, b〉)) respec-
tively. The function τ is initialized as the empty set for all the elements of
its domain except for τ(C, a) and τ(R, 〈a, b〉) to which the values {a : C} and
{(a, b) : R} are assigned if a : C and (a, b) : R are in the ABox respectively.
The expansion rules (Figure 10.1) add axioms to values of τ .

For ensuring the termination of the algorithm, a special condition known
as blocking [68] is used. In a tableau a node x can be a nominal node if
its label L(x) contains a nominal or a blockable node. If there is an edge
e = 〈x, y〉 then y is a successor of x and x is a predecessor of y. Descendant
is the transitive closure of successor while ancestor is the transitive closure of
predecessor. A node y is called an R-neighbor of a node x if y is a successor
of x and R ∈ L(〈x, y〉), where R ∈ R. An R-neighbor y of x is safe if

• x is blockable, or

• x is a nominal node and y is not blocked

Finally, a node x is blocked if it has ancestors x0, y and y0 such that all the
following conditions are true:

1. x is a successor of x0 and y is a successor of y0,

2. y, x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x0) = L(y0),

4. L(〈x0, x〉) = L(〈y0, y〉).

In this case, we say that y blocks x. A node is blocked also if it is blockable and
all its predecessors are blocked; if the predecessor of a safe node x is blocked,
then we say that x is indirectly blocked.

For a clash of the form (C, a), τ(Report(g)) = τ(Add(C, a))∪τ(Add(¬C, a)).
For a clash of the form (Merge(a, b), ˙6=(a, b)), τ(Report(g)) = τ(Merge(a, b))∪
τ( ˙6=(a, b)).

If g1, ..., gn are the clashes, one for each of the elements of the final set
of tableaux and τ(Report(gi)) = sgi , the output of the algorithm Tableau

is S =
⋃
i∈{1,...,n} sgi \ {¬C(a)} where a is the anonymous individual initially
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Algorithm 2 Black-Box pruning algorithm.
1: function BlackBoxPruning(C, S)
2: Input: Q (the concept to be tested for satisfiability)
3: Input: S (the set of axioms to be pruned)
4: Output: S (the pruned set of axioms)
5: for all axiom E ∈ S do
6: S ← S − {E}
7: if C is satisfiable w.r.t. S then
8: S ← S ∪ {E}
9: end if
10: end for
11: return S
12: end function

Algorithm 3 SingleMinA algorithm.
1: function SingleMinA(C,K)
2: Input: Q (the concept to be tested for satisfiability)
3: Input: K (the knowledge base)
4: Output: S (a MinA for the unsatisfiability of Q w.r.t. K) or null
5: S ←Tableau(C,K)
6: if S = null then
7: return null
8: else
9: return BlackBoxPruning(C, S)
10: end if
11: end function

assigned to ¬C. However, this set may be redundant because additional axioms
may also be included in τ , e.g., during the→≤ rule, where axioms responsible
for each of the successor edges are considered.

Thus S is pruned using a black box approach [68] called BlackBoxPrun-

ing and shown in Algorithm 2. This algorithm executes a loop on S: in each
iteration it removes an axiom from S and checks whether the concept C turns
satisfiable w.r.t. the reduced verison of S. If the concept turns satisfiable,
the axiom is reinserted into S as the axiom extracted is responsible for the
unsatisfiability of C. Vice-versa, if the concept still remains unsatisfiable, the
removed axiom is irrelevant and can be removed from S. Once all axioms in S
have been tested the process terminates and returns S. Thus the algorithm for
computing a single MinA SingleMinA, shown in Algorithm 3, first executes
Tableau and then BlackBoxPruning.

The output S of SingleMinA is guaranteed to be a MinA, as established
by the following theorem, where All-MinAs(Q,K) stands for the set of MinAs
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for Q in which the corresponding concept C is unsatisfiable:

Theorem 1. [68] Let Q be a query and C be the unsatisfiable concept w.r.t.
K corresponding to Q and let S be the output of the algorithm SingleMinA

with input C, K, then S ∈ All-MinAs(Q,K).

Proof. We need to prove that the output of Tableau S (before it is pruned)
includes at least one explanation, i.e., C is unsatisfiable w.r.t. S. Let E be the
sequence of events generated by Tableau with inputs C and K. Now suppose
Tableau is used with input C and S and let T ′, E ′ be the corresponding sets
of completion graphs and events generated. For each event εi ∈ E , it is possible
to perform εi in the same sequence as before. This is because, for each event
εi, the set of axioms in K responsible for εi have been included in the output S
by construction of the tracing function τ in Figure 10.1. Thus, given E ′ = E ,
a clash occurs in each of the completion graphs in T ′ and the algorithm finds
C unsatisfiable w.r.t. S.

SingleMinA returns a single MinA. To compute all MinAs, Pellet uses
Reiter’s hitting set algorithm [112]. In [112], Reiter developed a general theory
of diagnosis where a system to be diagnosed is a pair (SD,COMPONENTS)

where SD is a set of first-order sentences which describe the system and
COMPONENTS is a finite set of constants. A set of observation OBS is then
associated to the system. An observation is finite set of first-order sentences
which describe the behavior of the system. In a system there can be some com-
ponents that are abnormal, i.e. components whose behavior is not correct. Re-
iter defined a diagnosis for a system as a minimal set ∆ ⊆ COMPONENTS

such that

SD ∪OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|(c) ∈ COMPONENTS −∆}

is consistent, where AB is a predicate that indicates whether a component is
abnormal. This means that a diagnosis is the minimal set of faulty compo-
nents which combined with the other components, which are normal, make the
system consistent. A diagnosis can be defined in terms of conflict sets, that
are sets {c1, ...cn} ⊆ COMPONENTS s.t.

SD ∪OBS ∪ {¬AB(c1), ...,¬AB(cn)}
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is inconsistent. A conflict set is minimal iff no proper subset of it is a conflict
set for the observed system. In this characterization, a diagnosis ∆ is aminimal
set s.t. COMPONENTS −∆ is not a conflict set for the system.

Let us consider a universal set U and a set of conflict sets CS ⊆ PU , where
P denotes the powerset operator. The set HS ⊆ U is a hitting set for CS if
each Si ∈ CS contains at least one element of HS, i.e. if Ci ∩HS 6= ∅ for all
1 ≤ i ≤ n (in other words, HS ‘hits’ or intersects each set in CS). HS is a
minimal hitting set for CS if HS is a hitting set for CS and no HS ′ ⊂ HS is
a hitting set for CS.

The hitting set problem with input CS, U is to compute all the minimal
hitting sets for CS. The set of all minimal conflict sets, which correspond to
the explanations for unsatisfiability, can be found by exploiting an algorithm
that generates minimal hitting sets [68, 70]. The universal set corresponds to
the total set of axioms in the KB, and an explanation (for a particular concept
unsatisfiability) corresponds to a single conflict set.

Reiter’s algorithm constructs a labeled tree called Hitting Set Tree (HST).
In a HST a node v is labeled with OK, with X or with a set L(v) ∈ CS and
an edge e is labeled with an element of U . Let H(v) be the set of edge labels
on the path from the root of the HST to node v. For each element E ∈ L(v), v
has a successor w connected to v by an edge with E in its label. If L(v) = OK,
then H(v) is a hitting set for CS.

The algorithm, described in detail in [68] and shown in Algorithm 4, starts
from a MinA S and initializes an HST T = (V,E,L) with S as the label of its
root node, i.e. V = {v}, E = ∅,L(v0) = S. Then it selects an arbitrary axiom
E in S, it removes it from K, generating a new knowledge base K′ = K−{E},
and it tests the unsatisfiability of C w.r.t. K′ by invoking SingleMinA. If C
is unsatisfiable, we obtain a new explanation for the unsatisfiability of C that
is a new explanation for the corresponding query Q. A new node w labeled
with this new explanation and a new edge 〈v, w〉 labeled with the axiom E are
added in the tree. When the unsatisfiability test returns negative (the concept
turns satisfiable), the algorithm terminates to repeat this process and labels
the new node w with OK, making it a leaf. H(w) represents a hitting set
and the path from the root to w is a hitting set path. The algorithm also uses
previous results to eliminate useless unsatisfiability tests: once a hitting set

59



Algorithm 4 Hitting Set Tree Algorithm.
1: procedure HittingSetTree(Q,K, CS,HS,w, α, p)
2: Input: Q (the query (a concept) to be tested for satisfiability)
3: Input: K (the knowledge base)
4: Input/Output: CS (a set of conflict sets, initially containing a single explanation)
5: Input/Output: HS (a set of Hitting Sets)
6: Input: w (the last node added to the Hitting Set Tree)
7: Input: E (the last axiom removed from K)
8: Input: p (the current edge path)
9: if there exists a set h ∈ HS s.t. (L(p) ∪ {E}) ⊆ h then
10: L(w)← X
11: return
12: else
13: if Q is unsatisfiable w.r.t. K then
14: m←SingleMinA(Q,K)
15: CS ← CS ∪ {m}
16: create a new node w′ and set L(w′)← m
17: if w 6= null then
18: create an edge e = 〈w,w′〉 with L(e) = E
19: p← p ∪ e
20: end if
21: loop for each axiom F ∈ L(w′)
22: HittingSetTree(A, (K − {F}), CS,HS,w′, F, p)
23: end loop
24: else
25: L(w)← OK
26: HS ← HS ∪ L(p)
27: end if
28: end if
29: end procedure

path is found any superset of that path is guaranteed to be a hitting set as
well, and thus no additional unsatisfiability test are needed for that path. In
this case, the algorithm labels the node with a X and makes it a leaf. When
the HST is fully built, all leaves of the tree are labeled with OK or X. The
set All-MinAs(Q,K) for the unsatisfiability of concept Q is represented by
all distinct non leaf nodes of the tree.

Example 3 ([68]). In order to describe the algorithm, let us consider a knowl-
edge base K with ten axioms and an unsatisfiable concept C, corresponding to
the query Q. For the purpose of the example, we denote the axioms in K with
natural numbers. Suppose All-MinAs(Q,K) is

All-MinAs(Q,K) = {{1, 2, 3}, {1, 5}, {2, 3, 4}, {4, 7}, {3, 5, 6}, {2, 7}}
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Figure 10.2 shows the HST that is generated by the algorithm. It starts by
computing a single explanation that returns S = {2, 3, 4}. In the next step, it
initializes a hitting set tree HST in which the root node v is labeled with S.
Then, the algorithm selects an arbitrary axiom in S, say 2, generates a new
node w and a new edge 〈v, w〉 with axiom 2 as its label. The algorithm tests
the unsatisfiability of Q w.r.t. K−{2}. If it is unsatisfiable, as in our case, we
obtain a new explanation for unsatisfiability of Q w.r.t. K − {2}, say {1, 5}.
We add this set to CS and also assign it to the label of the new node w.

The algorithm repeats this process, i.e. removing an axiom, adding a node
and checking unsatisfiability, until the unsatisfiability test turns negative, in
which case we mark the new node with OK. Then, it recursively repeats these
operations until the HST is fully built.

The correctness of this approach relies on the following key observations:

1. If a node is not a leaf of HST, then its label is an element of the set
All-MinAs(Q,K)

2. If one takes the union of the labels of the edges in any path from the
root of HST to a leaf node marked with OK, then a hitting set for All-

MinAs(Q,K) w.r.t. K is obtained. In fact, all the minimal hitting sets
for All-MinAs(Q,K) are obtained when all the paths from the root to
a leaf in HST are considered.

Formally, the correctness and completeness of the hitting set algorithm is given
by the following theorem.

Theorem 2 ([68]). Let Q be a query and C be the unsatisfiable concept w.r.t. K
corresponding to Q and let ExpHST(Q,K) be the set of explanations returned
by the hitting set algorithm, then ExpHST(Q,K) is equal to the set of all
explanations of unsatisfiability of the concept Q w.r.t. K, so

ExpHST(Q,K) ≡ All-MinAs(Q,K)

Proof. We divide the proof of equivalence in two parts showing that:

1. ExpHST(Q,K) ⊆ All-MinAs(Q,K)
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2. ExpHST(Q,K) ⊇ All-MinAs(Q,K)

(⊆ part)
Let S ∈ ExpHST(Q,K), then S belongs to the label of some non-leaf node w
in the hitting set tree HST generated by the algorithm. In this case, L(w) ∈
All-MinAs(Q,K′), for some K′ ⊆ K. Therefore, S ∈ All-MinAs(Q,K).

(⊇ part)
Suppose, by contradiction, there exists a set M ∈ All-MinAs(Q,K), but
M /∈ ExpHST(Q,K). In this case, M does not coincide with the label of
any node in HST. Let v0 be the root of HST, with L(v0) = {E1, ..., En}, if
M = L(v0) then there is a contraction, otherwise there must be a Ei /∈M and
an edge of the graph whose label is Ei from which a path with a node labeled
withM in it must be present. Since in the HST such a condition is not verified
we have a contradiction.

10.1.2 Resolving min-a-enum: Pinpointing Formula

In [5] the authors consider the problem of finding a pinpointing formula instead
of All-MinAs(Q,K). Thus, they propose a different extension to the tableau
algorithm in which the tracing function τ associates a pinpointing formula to
the labels of nodes and edges instead of explanations in the form of set of sets
of axioms.

We recall here some terminology for the sake of simplicity. Each axiom E

of a KB K is associated with a propositional variable, indicated with var(E).
The set of all propositional variables is indicated with var(K).

Given a KB K, the modified algorithm associates a monotone Boolean
formula lab(a) over var(K) to every assertion a. The insertability of the new
assertion is tested in order to decide whether a rule is applicable. Let A be a
set of labeled assertions and ψ a monotone Boolean formula, the assertion a is
ψ−insertable into A if either a /∈ A, or a ∈ A but ψ 2 lab(a). Given a set B of
assertions and a set A of labeled assertions, the set of ψ−insertable elements
of B into A is defined as insψ(B,A) := {b ∈ B|b is ψ−insertable into A}.
For deciding the applicability of a rule we need also to give the definition of
substitution. A substitution is a mapping ρ : V → D, where V is a finite set
of variables and D is a countably infinite set of constants containing all the
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individuals in the KB and all the fresh individuals created by the application
of the rules. Variables are seen as placeholder for individuals in the assertions.
For example, an assertion can be C(x) or R(x, y) where C is a concept, R is
a role and x and y are variables. In this case, let C(x) be an assertion with
the variable x and ρ : x→ a a substitution, then C(x)ρ denotes the assertion
obtained by replacing the variable with its ρ−image, i.e. C(a). Each expansion
rule is of the form (B0, S)→ {B1, ..., Bm} where Bi are finite set of assertions
and S is a finite set of axioms. A rule is applicable with a substitution ρ

on the variables occurring in B0 if S ⊆ K, B0ρ ⊆ A, where A is the set of
assertions contained in the ABox and found during inference, and, for every
1 ≤ i ≤ m and every substitution ρ′ on the variables occurring in B0 ∪ Bi,
we have insψ(Biρ

′, A) 6= ∅, where ψ :=
∧
b∈B0

lab(bρ) ∧
∧
s∈S lab(s). Moreover,

except for the unfold rule, the node N to which the rule is applicable is not
(indirectly) blocked. When the tableau is fully built, the algorithm conjoins
the labels of each clash for building the final pinpointing formula.

This approach is limited to the use of ALC description logics KBs as de-
scribed in Section 6 of [5]. In Figure 10.1, the symbol (∗) denotes the rules
relevant for ALC. In these rules, the operator ∪ for τ means union between
two sets for the approach of Section 10.1.1, while for axiom pinpointing it
joins two Boolean formulas with the OR Boolean operator. Moreover, when a
concept is already present in a node label, while the approach of the previ-
ous section checks whether to update the tracing function by verifying that
the corresponding set of axioms is not a subset of τ , the pinpointing based
approach performs a ψ−insertability test.
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Part III

A Probabilistic Semantics for
Description Logics
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Chapter 11

Distribution Semantics

Description Logics (DLs) are useful for modeling real world domains but they
do not model uncertainty. Hence, their semantics must be extended in order
to allow the definition and the management of uncertain information. To rep-
resent vague and uncertain information, DLs were extended by introducing
probabilistic [58, 65, 77, 88, 99, 155] (overviewed in Chapter 13), possibilistic
[61, 110] and fuzzy logics [139, 140, 142]. Our proposal is an extension of DLs,
called DISPONTE for “DIstribution Semantics for Probabilistic ONTologiEs”
(Spanish for “get ready”), which is based on the distribution semantics [129],
a probabilistic semantics of logic programming. In the following, we focus
only on probabilistic extensions because they are the most similar to our pro-
posal. In this Chapter we give the formal definition of distribution semantics.
Since it was first defined for (Probabilistic) Logic Programming, also a brief
introduction on these languages together with several examples will be given
in order to better understand this approach. After that, Chapter 12 presents
DISPONTE while Chapter 13 discusses related works. Thus, let us start first
with a discussion about some works on Probabilistic Logic Programming.

The diffusion of Logic Programming (LP) techniques made clear that an
integration with probability theory was necessary to correctly model domains
from the real world, where the information is often uncertain. Thus, in the
early 90’s many proposals [30, 97, 105, 129] have appeared that presented
different probabilistic semantics for LP languages. Among them, two differ-
ent approaches emerged, one that makes use of variants of the distribution
semantics [129] and one that exploits Knowledge Base Model Construction
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(KBMC) [152, 8].
While in the second approach a graphical model, usually a Bayesian net-

work or a Markov network, is generated from the program for modeling the
probabilistic information and computing the probability of queries, the first
approach defines a probability distribution over normal logic programs, also
called worlds. This distribution is then extended to a joint distribution over
worlds and queries, from which the probability of a query, i.e. a ground fact,
is computed by marginalization, i.e., by summing out the worlds.

Languages that apply a KBMC approach include Probabilistic Knowledge
Bases [98], Bayesian Logic Programs [72], CLP(BN) [126] and the Prolog Fac-
tor Language [52]. These approaches specify a model through features that
are associated with a real value, i.e. the probability value.

In Probabilistic Logic Programming (PLP), the distribution semantics un-
derlies many languages such as Probabilistic Logic Programs [30], Proba-
bilistic Horn Abduction [105] and its expansion Independent Choice Logic
(ICL) [107], PRISM [129], pD [46], Logic Programs with Annotated Disjunc-
tions (LPADs) [150], ProbLog [34], P-log [9] and CP-logic [149]. Despite the
large number of different distribution semantics languages, each language can
be translated into the others using transformation algorithms which have lin-
ear complexity. Moreover, these languages are Turing complete, hence they
are very expressive.

As already said, all these logics exploit a semantics which defines a probabil-
ity distribution over possible worlds and allow probabilistic choices in clauses.
What differs in each logics is the definition of the distribution over logic pro-
grams.

11.1 Formal Definition

The Distribution Semantics was first presented by Sato in 1995 [129]. He
presented a semantics applicable to general logic programming languages and
defined the basis for probabilistic inference and learning.

Given a first order language, let F be a set of facts and R be a set of definite
rules. DB = F ∪ R is a definite program for which the following conditions
are verified: (1) DB is ground or it can be reduced to the set of all possible
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Table 11.1: MDB1 for the finite program DB1 = F1 ∪ R1, with F1 = {A1, A2}
and R1 = {B1 ← A1, B1 ← A2, B2 ← A2}.

ω = 〈x1, x2〉 F1ω MDB1(ω)
〈0, 0〉 {} {}
〈1, 0〉 {A1} {A1, B1}
〈0, 1〉 {A2} {A2, B1, B2}
〈1, 1〉 {A1, A2} {A1, A2, B1, B2}

ground instantiations of the clauses, (2) it is denumerably infinite and (3) it
satisfies the disjoint condition which imposes that no atom in F unifies with
the head of a rule in R.

Each ground atom A is associated to a Boolean random variable which
takes value 1 if A is true and takes value 0 otherwise. An interpretation
ω for F is an assignment of truth to atoms Ai in F , ΩF is the set of all
interpretations ω = 〈x1, x2, ...〉, where xi is the truth value of Ai. Now we
can define a basic distribution PF for F that is a probability measure on the
algebra of the sample space ΩF . The corresponding distribution function is
P

(n)
F (A1,= x1, ..., An = xn).

Each interpretation ω = 〈x1, x2, ...〉 ∈ ΩF defines a set Fω ⊂ F of true
ground atoms, thus we can define a logic program Fω ∪R and its least model
MDB(ω) which decides all truth values of atoms in DB. For example, given
the finite program DB1:

DB1 = F1 ∪R1

F1 = {A1, A2}
R1 = {B1 ← A1, B1 ← A2, B2 ← A2}

we have ΩF = {0, 1}1×{0, 1}2 and ω = 〈x1, x2〉 ∈ ΩF means that Ai takes the
truth value xi (i = 1, 2). MDB is shown in Table 11.1.

PF is then extended to define the probability measure PDB over ΩDB. ΩDB

represents the set of all possible interpretations for ground atoms appearing in
DB and ω ∈ ΩDB determines the truth value of every ground atom. Given a
sample ωF ′ from PF and the set F ′ of atoms made true by ωF ′ , we can define the
least model MDB(ω)F ′ of the definite program F ′ ∪ R. MDB(ω)F ′ determines
the truth value of every ground atom. Therefore, PF can be extended to PDB,
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thus the mass PF on an interpretation ωF ′ is put by PDB on the least model
MDB(ω)F ′ . The infinite joint distribution PDB = (A1 = x1, ..., An = xn) on the
probabilistic ground atoms A1, ..., An appearing in DB for all n and xi ∈ {0, 1}
identifies PDB1 [130].

Let G an arbitrary formula without free variables whose predicates are
among DB’s, [G] is defined as

[G] = {ω ∈ ΩDB|ω � G}

Then the probability of G is defined as PDB([G]), which represents the proba-
bility mass assigned to the set of interpretations satisfying G. [G] contains all
the possible worlds where G is satisfied.

Considering the program DB1, ω = 〈x1, x2, y1, y2〉 ∈ ΩDB1 indicates that xi
is the value of Ai and yj is the value of Bj, where i, j = 1, 2. PDB1(x1, x2, y1, y2)

can be computed from PF1(x1, x2).

11.2 PLP Languages under the Distribution Se-

mantics

In the following we analyze two significant examples of distribution semantics
PLP languages: LPAD and ProbLog. Before that, a description about Logic
Programming, which is at the basis of PLP languages, is given.

11.2.1 Logic Programming

Work on Logic Programming (LP for short) started in the 70’s, in particular,
in 1974, Kowalski [79] first formalized a logic programming language. From
this point, much work has followed and several extensions were presented in
order to consider different type of knowledge.

One of these extensions is disjunctive logic programming, in which a pro-
gram is a finite set of implicitly universally quantified clauses of the form

a1, ..., an ← b1, ...bm (11.1)

where n > 0 and m ≥ 0. A clause can be intuitively read as “if the conjunction
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of all bjs is true, then the disjunction of all ais is true”, i.e. a1 or ... or an.
Atoms bj form the body, while atoms ai form the head of the clause. The head
cannot be empty, while the body can, in this case a clause is called fact.

In 1976, van Emden and Kowalski [147] formalized a special case of dis-
junctive logic programming, where a definite logic program requires clauses to
have a single atom in the head. Formally, a definite logic program clause is a
program clause of the form:

a← b1, ..., bm (11.2)

where m ≥ 0, a is an atom and b1, ..., bm are atoms.
In [147] the authors presented model-theoretic, procedural and fixpoint se-

mantics. The Model-theoretic semantics exploits the Herbrand model intersec-
tion property and defines the model of a logic program as the intersection of all
Herbrand models of the logic program. Then, van Emden and Kowalski showed
a procedural semantics in which one can use a proof procedure called linear
resolution with selection function for definite logic programs (SLD-resolution)
that succeeds for the atoms true in the logic program. Finally, the fixpoint
semantics is defined using the TP operator, a mapping from Herbrand inter-
pretations to Herbrand interpretations. All these semantics compute the same
set of ground atoms that are logical consequences of the logic program.

Prolog

Prolog was the first logic programming language and was born in 1972 at the
University of Marseille. The name Prolog is the contraction of “PROgramma-
tion en LOGique” (PROgramming in LOGic). This language is based on the
ideas of Kowalski and van Emdem and was implemented by Alain Colmerauer
and Philippe Roussel.

Prolog implements SLD resolution. In the following we provide an informal
description of SLD resolution, please refer to [79, 147] for a formal treatment.

First, let us define some concepts useful for following the example. In
clauses, atoms can contain variables, a clause is called ground if it does not
contain variables. A substitution θ is an assignment of variables to some value
θ = {V1/v1, ..., Vn/vn}, where Vi are variables and vj are the values associated
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with the variables. The application of a substitution to clause C (atom a),
indicated with Cθ (aθ), is the replacement of the variables appearing in C (a)
with the corresponding values as specified in θ. Given two atoms a and b and
a substitution θ, if aθ and bθ are identical we say that a and b can be unified.

SLD resolution starts form a clause called goal or query that we want to
test.

← a1, a2, ..., an (n > 0)

Then, it iteratively selects a subgoal, which is an atom of the clause, and
replaces this subgoal with the body of a new clause contained in the program
which head unifies the selected subgoal. For example, if the new clause is

b0 ← b1, ..., bm (m ≥ 0)

where b0 can be unified with a1 through the substitution θ1, then the goal
becomes

← (b1, ..., bm, a2, ..., an)θ1

The substitution θ1 is the most general unifier, i.e. there is not a more general
substitution ω such that θ1 = ωσ, where σ is a substitution. The execution
ends when no more resolutions can be done, and in this case the query fails,
or when the goal is empty, and in this case the query succeeds.

The results of SLD-resolution’s refutation process are correct, i.e. the con-
clusions returned by the algorithm are logical consequences of the program,
and therefore the approach is sound. SLD-resolution itself is also complete. If
a goal G is a logical consequence of a program P , then there is a refutation of
P ∪{G} by SLD resolution. Conversely, Prolog’s SLD-resolution is incomplete
because the leftmost order in the choice of the next subgoal to prove can lead
to infinite derivations.

Example 4. Consider the following program:

sibling(X, Y )← sibling(Y,X). (11.3)

sibling(a, b). (11.4)

with query ← sibling(a,X). The goal is unified with the head of rule (11.3)
creating a new goal that is equal to the query. At this point, an infinite ap-
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← capital(roma)

← governmentSeat(roma), settlement(roma)

← settlement(roma)

← city(roma) ← village(roma)

�

Figure 11.1: Prolog SLD resolution tree for← capital(roma) w.r.t. the theory
of Example 5.

plication of resolution will be performed. In Prolog, this inconvenience can
be avoided by moving rule (11.3) textually after the fact (11.4), so that all
refutations are found before going into an infinite loop.

In the following example, we graphically show the resolution of a query
following Prolog SLD-resolution.

Example 5. Consider the following Prolog program

capital(X)← governmentSeat(X), settlement(X). (11.5)

settlement(X)← city(X). (11.6)

settlement(X)← village(X). (11.7)

city(roma). (11.8)

governmentSeat(roma). (11.9)

For answering the query ← capital(roma), first the goal is rewritten using
(11.5). Then, governmentSeat(roma) is removed from the goal using clause
(11.9). At this point, the truth of settlement(roma) must be proved. Here two
possible ways can be tested, but only one results in the empty clause. All these
steps are shown in Figure 11.1.

73



11.2.2 LPAD

A Logic Program with Annotated Disjunction (LPAD) [150] is composed of a
finite set of annotated disjunctive clauses of the form

hi1 : pi1; ...;hini : pini : −bi1, ..., bimi .

where pi1, ..., pini are real numbers in the interval [0, 1] such that
∑ni

k=1 pik ≤ 1,
hi1, ..., hini are logical atoms and bi1, ..., bimi are logical literals. hi1 : pi1; ...;hini :

pini is called head, while bi1, ..., bimi is called body. Here, it is important make
two observations:

• if ni = 1 and pi1 = 1, then the clause is a non-disjunctive clause;

• if
∑ni

k=1 pik < 1, then the head implicitly contains an extra atom, called
null that does not appear in the body of any clause and whose annotation
is 1−

∑ni
k=1 pik.

For obtaining a world from an LPAD we first need to ground all the different
clauses, then a head atom must be chosen for each ground rule and the normal
clauses with that atom only in the head form the world. In other words, for
each ground clause hi1θj : pi1; ...;hiniθj : pini : −bi1θj, ..., bimiθj, where θj is
the grounding substitution, only one hikθj is chosen and the clause hikθj :

−bi1θj, ..., bimiθj is included in the world. The probability of a world is given
by the product of the probabilities associated with the selected head atoms.
Finally, the probability P (Q) of a query Q, i.e., a ground atom, is computed
by marginalization, i.e., by summing out the worlds, as shown in following:

P (Q) =
∑
w∈WK

P (Q,w) =
∑
w∈WK

P (Q|w)P (w) =
∑

w∈WK:w|=Q

P (w)

where P (Q|w) = 1 if w |= Q and 0 otherwise.

Example 6. The following LPAD encodes a very simple model of the devel-
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opment of an epidemic or pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.

C2 = cold : 0.7.

C3 = flu(david).

C4 = flu(robert).

This LPAD models the fact that if somebody has the flu and the climate is
cold, there is the possibility that an epidemic arises with probability of 0.6, a
pandemic arises with probability of 0.3 or no event (the implicit atom null)
happens with probability of 0.1. We are uncertain about the climate since there
is a probability of 0.7 that it is cold but we know for sure that David and Robert
have the flu.

This LPAD defines 18 possible worlds: the first rule has three atoms and
two possible groundings (X = david and X = robert), while the second rule
has two head atoms, thus 3 · 3 · 2 = 18. The query is true only in 5 of them,
therefore the probability of epidemic is P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 ·
0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588. For instance, the first
term is obtained from the following ground LPAD:

epidemic : 0.6 : −flu(david), cold.

epidemic : 0.6 : −flu(robert), cold.

cold : 0.7.

f lu(david).

f lu(robert).

while the second from the following:

epidemic : 0.6 : −flu(david), cold.

pandemic : 0.3 : −flu(robert), cold.

cold : 0.7.

f lu(david).

f lu(robert).
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11.2.3 ProbLog

ProbLog [34] is the language with the simplest syntax within the list presented
in the introduction of this chapter.

A ProbLog program T consists of a normal logic program TC , i.e. a finite set
of clauses, and a set of independent probabilistic facts TP . Each probabilistic
fact is of the form

pi :: Fi.

where pi is a probability, i.e. pi ∈ [0, 1], and Fi is an atom. This means that
every grounding Fiθ of Fi is true with probability pi and false with probability
1− pi.

For obtaining a world from a ProbLog program, we include in the world
TC and a subset TGP that contains a selection of ground probabilistic facts
chosen within the set of all the grounding of the probabilistic facts in TP . The
probability of a world is the product of every pi associated to the (ground)
probabilistic facts included in the world with a factor 1−pi for each grounding
of a probabilistic fact not included in the world. The probability of a query Q
is computed by marginalization as for LPADs.

Example 7. The following ProbLog program T corresponds to the LPAD of
Example 6:

C1 = epidemic : −flu(X), epid(X), cold.

C2 = pandemic : −flu(X), \+epid(X), pand(X), cold.

C3 = flu(david).

C4 = flu(robert).

F1 = 0.7 :: cold.

F2 = 0.6 :: epid(X).

F3 = 0.3 :: pand(X).

In this program, epid(X) and pand(X) can be considered as ”probabilistic ac-
tivators” of the effects in the head given that the causes, i.e. flu(X) and cold,
are present. \+epid(X) means the negation of epid(X).

Fact F1 has only one grounding, while facts F2 and F3 have two ground-
ings obtained by assigning to X the value david or robert. From F2 we ob-
tain epid(david) and epid(robert), while from F3 we obtain pand(david) and
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pand(robert). T has 5 different ground probabilistic facts and thus 32 worlds.
The query epidemic is true in 12 of them and its probability is P (epidemic) =

0.588. For the sake of brevity, we do not report here the formula with the prob-
ability of all the worlds where the query is true, but we show two examples of
possible worlds, as in Example 6. One world where the query is true is (note
that we show only the probabilistic facts):

{cold, epid(david), epid(robert), pand(david), pand(robert)}

whose probability is 0.7 · 0.6 · 0.6 · 0.3 · 0.3 = 0.02268.

Another different world in which the query is true is:

{cold, epid(david), pand(robert)}

whose probability is 0.7 · 0.6 · 0.3 = 0.126.

11.3 Inference in Probabilistic Logic Program-

ming

In PLP the term inference refers to the problem of computing the probability of
queries. In the previous section we presented two examples of the computation
of the probability of a query, where all the possible worlds are considered. In
real applications this approach is unfeasible as the number of possible worlds is
exponential in the number of ground probabilistic choices. An approach that
was found to have good performances is that of knowledge compilation [31],
where the theory and the query are compiled to a target language in which
computing the probability has polynomial complexity. Many target languages
have been proposed with different compactness and compilation algorithms,
which are the computational bottleneck of the inference process.

In PLP, the inference problem can be divided in exact inference, approxi-
mate inference and lifted inference.

The first approach aims at computing the exact value of probability. An
early attempt to exact inference compiles Relational Bayesian Networks, which
extends Bayesian Networks with the possibility of defining relations between
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objects, into arithmetic circuits [24]. Then the focus shifted on languages based
on the distribution semantics. First the set of all the explanations for the query
is found. An explanation is a minimal set of probabilistic facts that is sufficient
for entailing the query. Then this set is encoded in a target language, such
as Binary Decision Diagrams (BDD) or deterministic Decomposable Negation
Normal Form diagrams (d-DNNF). BDDs and d-DNNFs are rooted graphs
with different properties and restrictions. In particular BDDs form a subclass
of d-DNNFs. Some examples of this approach are ProbLog [34] which exploits
BDDs, PITA [124] which translates a general PLP program into a normal
program and uses BDDs as well, and ProbLog2 [43] which converts the theory
and the evidence into Boolean formulas in conjunctive normal form (CNF),
i.e. conjunctions of disjunctions of literals. The Boolean formulas are then
compiled to d-DNNFs. The probability is computed from BDDs and d-DNNFs
by Weighted Model Counting (WMC). WMC is linear in the size of the graph.

In the approximate inference approach, the cost of the inference process is
reduced by computing the probability only approximately. In one approach, a
lower bound and an upper bound of the value of the probability are computed
[73, 113]. A different approximate inference approach tests the truth of the
query in normal programs sampled from the probabilistic program. The prob-
ability of the query is given by the fraction of the sampled programs in which
the query succeeds [73]. In [119] the correspondence between LPADs and nor-
mal clauses is exploited to draw the samples, while tabling avoids sampling
twice the same atom. Another possible approach is [26], where exact models
are approximated by relaxing equality constraints and then improved by com-
pensation and recovering of some equality constraints in order to reduce the
approximation.

Lifted inference performs inference without first grounding the model, in
order to treat indistinguishable individuals as a whole. In [11] the authors
applied Lifted Variable Elimination [109] to PLP by adding two new operators
to the Prolog Factor Language. A different approach for lifted inference in
PLP is [146] in which a program is transformed into a d-DNNF from which
the WMC is computed.

In the following we briefly describe two systems for probabilistic inference
in PLP: ProbLog and PITA.
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11.3.1 ProbLog Inference System

As seen in Section 11.2.3, ProbLog [34] is the simplest probabilistic extension of
LP languages. A ProbLog program corresponds to a standard Prolog program
in which some facts are associated with the probability that they are true.
These facts are mutually independent.

In [34], the authors presented two practical approaches for Probabilistic
inference, the first performs exact inference while the second approximate in-
ference.

Both the approaches first compute the proofs of the query, then translate
them into a Disjunctive Normal Form (DNF) Boolean formula and finally
compute the probability of the DNF formula. The first step is executed by
means of Prolog SLD-resolution. As seen in Section 11.2.1, SLD-resolution
proofs can be represented using a tree where the paths from the root to the
leaves are either successful or failed proofs. In particular, each path which
ends to leaf whose label is the empty set represents a proof for the query. If a
Boolean random variable is associated to each probabilistic fact, the probability
of a single proof is the probability of the conjunctive formula built using the
corresponding Boolean variables. The probability of a set of proofs is given
by the probability of a DNF formula in which each conjunctive subformula
represents a proof for the query.

Computing the probability of a DNF formula is a NP-hard problem. Thus
knowledge compilation is exploited in order to translate the DNF formula into
a BDD, form which the probability can be computed by WMC with a cost
linear in the size of the graph.

ProbLog’s exact approach builds a DNF formula which represents all the
proofs, while the approximate approach exploits iterative deepening for build-
ing the SLD-resolution tree and two DNF formulas. These formulas can be
used to compute upper and lower bounds of the probability of the query.

11.3.2 PITA

PITA [124], for “Probabilistic Inference with Tabling and Answer subsump-
tion”, is a PLP inference system also able to reason with different measures of
uncertainty. PITA translates a general PLP program (an LPAD) into a normal

79



LP program and evaluates it by means of resolution with tabling. The tabling
system is based on the use of a data structure in which each subgoal solved
during the evaluation of the query is saved together with the answer of the
subgoal, so that each time the subgoal is encountered again, instead of solving
it, the information contained in the table is used. The tabling system is proved
to be terminating and to achieve the optimal complexity for query evaluation
for a wide class of programs and queries. It is used to evaluate programs with
negation according to the Well-Founded Semantics. The answer subsumption
extension of the basic tabling system is adopted in PITA in which each answer
for a subgoal is combined with the others in table.

PITA is contained in cplint1, a suite of programs for both inference and
learning with ICL [107], LPADs [150] and CP-logic programs [149]. cplint

can be tested online at http://cplint.lamping.unife.it/.

Regarding the inference problem, cplint includes along with PITA the
following systems:

• lpadsld: uses a top-down procedure based on SLDNF resolution. It is
able to deal with extensions of LPADs and CP-logic which allow repre-
senting CLP(BN) programs and Probabilistic Relational Models [50]

• picl: performs inference on ICL programs.

• lpad: uses a top-down procedure based on SLG resolution [25] to solve
queries w.r.t. any sound LPADs, i.e., any LPAD such that each of its
instances has a two-valued well founded model.

• cpl: uses a top-down procedure based on SLG resolution and moreover
checks that the CP-logic program is valid, i.e., that it has at least an
execution model.

• Modules for approximate inference which performs several different tech-
niques, such as (dynamic) iterative deepening, k-Best, Monte Carlo [17].

1https://sites.google.com/a/unife.it/ml/cplint
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11.4 Learning in Probabilistic Logic Program-

ming

The learning problem can be described as:

Problem:
Input : Background knowledge as a probabilistic logic program B, a set of pos-
itive and negative examples E+ and E−, and a language bias L.
Output : A probabilistic logic program P such that the probability of positive
examples according to P ∪ B is maximized and the probability of negative
examples is minimized.

This problem has two variants: parameter learning and structure learning.
The first aims at learning the parameters of a fixed probabilistic logic pro-
gram P . The examples can be given in the form of (partial) interpretations,
ground atoms or (partial) proofs. Parameter learning for languages follow-
ing the distribution semantics has been performed by using the Expectation
Maximization (EM) algorithm or by gradient descent.

The use of combining rules in PLP under the distribution semantics leads
to the presence of unobserved variables. In this case, the EM algorithm is
useful given its capability to estimate the probability of models containing
random variables that are not observed in the data. The EM algorithm con-
sists of a cycle in which two steps, called Expectation and Maximization, are
repeatedly performed. In the Expectation step, the distribution of the hidden
variables is computed according to the current values of the parameters, while
in the Maximization step the new values of the parameters are computed for
the next iteration. EM is exploited in many systems such as PRISM [131],
LFI-ProbLog [42], EMBLEM [13] and RIB [122]. In particular, LFI-ProbLog
and EMBLEM use knowledge compilation for computing the distribution of
the hidden variables, while RIB uses a special EM algorithm called information
bottleneck that was shown to avoid some local maxima of EM. CEM (cplint
EM) is an implementation of EM for learning parameters based on lpadsld

reasoning module [122]. EMBLEM, CEM and RIB are included in the frame-
work cplint.

Gradient descent methods compute the gradient of the target function and
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iteratively modify the parameters moving in the direction of the gradient. An
example of such systems is LeProbLog [55] that uses a dynamic programming
algorithm for computing the gradient exploiting BDDs.

In structure learning, we are interested in inferring both the structure and
the parameters of a probabilistic logic program P . An early work [78] appeared
in 1997 where the authors generated an underlying graphical model using a
Knowledge-Based Model Construction on which EM was applied for learning
the structure of first-order rules and the associated probabilistic uncertainty
parameters.

In [33] the authors presented an algorithm which, instead of adding clauses,
removes as many clauses as possible from the theory in order to maximize the
probability. This approach is called theory compression and works on ProbLog
programs.

SEM-CP-logic [93] learns parameters and structure of ground CP-logic pro-
grams. It performs learning by considering the Bayesian networks equivalent to
CP-logic programs and by applying the Structural Expectation Maximization
(SEM) algorithm [45]. SEM iteratively generates refinements of the equiva-
lent Bayesian network and it greedily chooses the one that maximizes the BIC
score [135].

As seen above and in Section 11.3.2, cplint is an inference and learning
framework which contains different systems. For solving the structure learning
problem it includes the systems SLIPCASE, SLIPCOVER, CEM and LEMUR.
SLIPCASE [12] iteratively refines probabilistic theories and optimizes the pa-
rameters of each theory with EMBLEM performing a beam search in the space
of LPADs. SLIPCOVER [14] is an evolution of SLIPCASE that uses bottom
clauses generated as in Progol [96] to guide the refinement process. In this
way it is able to reduce the number of revisions thus it explore more effectively
the search space. Moreover, in SLIPCOVER the space of clauses is explored
with a beam search, while the space of theories is searched greedily. Both sys-
tems maximize the log likelihood of the data, which is evaluated by EMBLEM
during the optimization of the parameters. The use of EMBLEM is possible
because parameter learning is usually fast. LEMUR (LEarning with a Monte
carlo Upgrade of tRee search) [37] is an algorithm for learning the structure
of programs by searching the clause space using Monte-Carlo tree search.
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Chapter 12

DISPONTE

As seen in the previous chapter, a program following the distribution semantics
[129] defines a probability distribution over normal logic programs also called
worlds. Then the distribution is extended to queries and the probability of
a query is obtained by marginalizing the joint distribution of the query and
the programs. Sections 11.3 and 11.4 shown that many work has been done
regarding inference and learning techniques under this semantics, since it is
one of the most used in PLP field.

Borrowing from distribution semantics and work done in PLP, here we
describe in detail DISPONTE (DIstribution Semantics for Probabilistic ON-
TologiEs), which assigns a meaning to probabilistic DL knowledge bases using
approach similar to the distribution semantics of PLP.

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms
and/or probabilistic axioms.

• Certain axioms take the form of regular DL axioms.

• Probabilistic axioms take the form

p :: E (12.1)

where p is a real number in [0, 1] and E is any DL axiom of the TBox,
ABox or RBox.

The probability p of a probabilistic axiom can be interpreted as an epis-
temic probability, i.e., as the degree of our belief in axiom E. For example, a
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probabilistic concept membership axiom of the form

p :: a : C

means that we have degree of belief p in C(a). The statement that “Tweety
flies with probability 0.9” of [57] can be expressed as

0.9 :: tweety : Flies

A probabilistic concept inclusion axiom

p :: C v D (12.2)

represents the fact that we believe in the truth of C v D with probability p.
For example, the axiom

0.9 :: Bird v Flies (12.3)

means that birds fly with a 90% probability. This is different from expressing
statistical information such as the degree of overlap of C and D as in Type 1
probability of [57]. Axiom (12.2) does not mean that a fraction p of individuals
from C belongs to D and axiom (12.3) does not mean that 90% of birds fly.

For defining the semantics of DISPONTE we follow the approach of [108]
and first give some definitions. An atomic choice is a couple (Ei, k) where Ei
is the ith probabilistic axiom and k ∈ {0, 1}. k indicates whether Ei is chosen
to be included in a world (k = 1) or not (k = 0). A set of atomic choices
κ is consistent if only one decision is taken for each probabilistic axiom, i.e.,
(Ei, k) ∈ κ, (Ei,m) ∈ κ ⇒ k = m; we assume independence between the
different choices. A composite choice κ is a consistent set of atomic choices.
The probability of a composite choice κ is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1−pi),

where pi is the probability associated with axiom Ei.

A selection σ is a total composite choice, i.e., it contains an atomic choice
(Ei, k) for every probabilistic axiom of the theory. A selection σ identifies a
theory wσ called a world in this way: wσ = C ∪{Ei|(Ei, 1) ∈ σ} where C is the
set of certain axioms. Let us indicate with SK the set of all selections and with
WK the set of all worlds. The probability of a world wσ is P (wσ) = P (σ) =∏

(Ei,1)∈σ pi
∏

(Ei,0)∈σ(1 − pi). P (wσ) is a probability distribution over worlds,
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i.e.,
∑

w∈WK P (w) = 1.

A world therefore is a non-probabilistic KB that can be assigned a semantics
in the usual way. A query is entailed by a world if it is true in every model of
the world.

We can now assign probabilities to queries. Given a world w, the probability
of a query Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The
probability of a query can be obtained by marginalizing the joint probability
of the query and the worlds:

P (Q) =
∑
w∈WK

P (Q,w) (12.4)

=
∑
w∈WK

P (Q|w)P (w) (12.5)

=
∑

w∈WK:w|=Q

P (w) (12.6)

where (12.4) and (12.5) follow for the sum and product rule of probability
theory respectively and (12.6) holds because P (Q|w) = 1 if w |= Q and 0
otherwise.

Example 8. Consider the following KB, a probabilistic version of that of Ex-
ample 2 and inspired by the people+pets ontology proposed in [101]:

0.5 :: ∃hasAnimal.Pet v NatureLover (12.7)

fluffy : Cat

tom : Cat

0.6 :: Cat v Pet (12.8)

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

The KB indicates that the individuals that own an animal which is a pet have
a 50% probability of being nature lovers and that fluffy and tom are cats.
Moreover, cats have a 60% probability of being pets and that kevin has the
animals fluffy and tom. The KB has four possible worlds, corresponding to
the selections (each pair in the selections contains the axiom identifier and the
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value of its selector k):

{((12.7), 1), ((12.8), 1)}
{((12.7), 1), ((12.8), 0)}
{((12.7), 0), ((12.8), 1)}
{((12.7), 0), ((12.8), 0)}

The query axiom Q = kevin : NatureLover is true only in the first of them,
while in the remaining ones it is false, thus the probability of the query is
P (Q) = 0.5 · 0.6 = 0.3.

Example 9. Let us consider a slightly different knowledge base:

∃hasAnimal.Pet v NatureLover

0.4 :: fluffy : Cat (12.9)

0.3 :: tom : Cat (12.10)

0.6 :: Cat v Pet (12.11)

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

Here individuals that own an animal which is a pet are surely nature lovers but
we are not sure about the fact that fluffy and tom are cats and that cats are
pets, thus we believe in this information with a certain probability. However,
we know for sure that kevin has the animals fluffy and tom.

This KB has eight worlds and the query axiom Q = kevin : NatureLover

is true in three of them, those corresponding to the following selections:

{((12.9), 1), ((12.10), 0), ((12.11), 1)}
{((12.9), 0), ((12.10), 1), ((12.11), 1)}
{((12.9), 1), ((12.10), 1), ((12.11), 1)}

so the probability is

P (Q) = 0.4 · 0.7 · 0.6 + 0.6 · 0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348.

86



Example 10. Consider a different KB:

kevin : ∀friend .P erson

(kevin, robert) : friend

(robert, david) : friend

0.4 :: Trans(friend) (12.12)

Here we know that all individuals in the friend relationship with kevin are
persons. Moreover, kevin is a friend of robert, that is in turn a friend of
david and that, given three individuals a, b and c, there is a 40% probability
that if a is a friend of b and b is a friend of c then a is a friend of c. In this
particular case, this means that we have a 40% probability that, if kevin is a
friend of robert and robert is a friend of david, then kevin is a friend of david.
Since the first two are certain facts, then kevin is a friend of david with a 40%
probability and david is a person also with a 40% probability. This KB has two
worlds, one which does not contain axiom (12.12) and one that contains it.
Both the two queries are true in only the world that contains axiom (12.12).

In DISPONTE, apparently contradictory probabilistic information is al-
lowed. For example, the KB

0.9 :: Bird v Flies

0.1 :: tweety : Flies

tweety : Bird

states that the probability of flying for a bird is 0.9 and the probability of
flying for tweety, a particular bird, is 0.1. The two probabilistic statements
are considered as independent evidence for tweety flying and are combined
giving the probability 0.91 for the query tweety : Flies. In fact, this KB
has four worlds and tweety : Flies is true in three of them, giving P (Q) =

0.9 · 0.1 + 0.9 · 0.9 + 0.1 · 0.1 = 0.91. Thus knowledge about instances of the
domain may reinforce general knowledge and vice-versa.

However, note that if the regular DL KB obtained by stripping the proba-
bilistic annotations is inconsistent, then there will also be worlds that are in-
consistent. These worlds will entail the query trivially, as does the regular KB.
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An inconsistent DISPONTE KB should not be used to derive consequences,
just as a regular inconsistent DL KB shouldn’t.

In 2007, W3C formed the Uncertainty Reasoning for the World Wide Web
Incubator Group (URW3-XG) in order to specify requirements for managing
uncertain information in the World Wide Web. In 2008, the URW3-XG pro-
duced a final report [144] where it discusses the challenges of reasoning with
uncertain information on the World Wide Web by highlighting several use
cases for the representation of uncertainty:

• combining knowledge from multiple, untrusted sources;

• recommending items or services to users in the presence of uncertain
information on the requirements;

• using services in the presence of uncertain information on the service
descriptions;

• extracting and annotating information from the web;

• automatically performing tasks for users such as making an appointment,
and handling healthcare and life sciences information and knowledge.

DISPONTE is a candidate formalism for tackling these problems since it intro-
duces probability in general expressive description logics such as SROIQ(D)

that is one of the bases of OWL. In the following example we show how
DISPONTE can handle information coming from different untrusted sources.

Example 11. Consider a KB similar to the one of Example 9. Suppose the
user has the knowledge

∃hasAnimal.Pet v NatureLover

(kevin,fluffy) : hasAnimal

Cat v Pet

In this example we consider a single cat, fluffy, and are two sources of infor-
mation with different reliability that provide the information that fluffy is a
cat. On one source the user has a degree of belief of 0.4, i.e., he thinks it is
correct with a 40% probability, while on the other source he has a degree of
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belief 0.3, i.e., he thinks it is correct with a 30% probability. The user can
reason on this knowledge by adding the following statements to his KB:

0.4 :: fluffy : Cat (12.13)

0.3 :: fluffy : Cat (12.14)

The two statements represent independent evidence on fluffy being a cat. The
query axiom Q = kevin : NatureLover is true in three out of the four worlds,
those corresponding to the selections:

{((12.13), 1), ((12.14), 1)}
{((12.13), 1), ((12.14), 0)}
{((12.13), 0), ((12.14), 1)}

So P (Q) = 0.4 · 0.3 + 0.4 · 0.7 + 0.6 · 0.3 = 0.58. This is reasonable if the two
sources can be considered as independent. In fact, the probability comes from
the disjunction of two independent Boolean random variables with probabilities
respectively 0.4 and 0.3:

P (Q) = P (X1 ∨X2)

= P (X1) + P (X2)− P (X1 ∧X2)

= P (X1) + P (X2)− P (X1)P (X2)

= 0.4 + 0.3− 0.4 · 0.3 = 0.58

Assumption of Independence The assumption of the independence of the
axioms may seem restrictive. However, any probabilistic relationship between
assertions that can be represented with a Bayesian network can be modeled
in this way. For example, suppose you want to model a general dependency
between the assertions A(i) and B(i) relating classes A and B to individual i.
This dependency can be represented with the Bayesian network of Figure 12.1.

The joint probability distribution P (A(i), B(i)) over the two Boolean ran-
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A(i)

��

B(i)

Prob. Table 1: P (A(i))
HHH

HHHA(i)
0 1− p1
1 p1

Prob. Table 2: P (B(i)|A(i))
PPPPPPPPB(i)

A(i) 0 1

0 1− p2 1− p3
1 p2 p3

Figure 12.1: Bayesian Network representing the dependency between A(i) and
B(i).

dom variables A(i) and B(i) is

P (0, 0) = (1− p1) · (1− p2)
P (0, 1) = (1− p1) · (p2)
P (1, 0) = p1 · (1− p3)
P (1, 1) = p1 · p3

This dependence can be modeled with the following DISPONTE KB:

p1 :: i : A (12.15)

p2 :: ¬A v B (12.16)

p3 :: A v B (12.17)

We can associate the Boolean random variables X1 with (12.15), X2 with
(12.16) and X3 with (12.17), where X1, X2 and X3 are mutually independent.
These three random variables generate 8 worlds. ¬A(i) ∧ ¬B(i) is true in the
worlds

w1 = {}, w2 = {(12.17)}
Let us call P ′ the probability distribution defined by the above KB. Then the
probabilities of w1 and w2 are

P ′(w1) = (1− p1) · (1− p2) · (1− p3)
P ′(w2) = (1− p1) · (1− p2) · p3

so P ′(¬A(i),¬B(i)) = (1−p1)·(1−p2)·(1−p3)+(1−p1)·(1−p2)·p3 = P (0, 0).
We can prove similarly that the distributions P and P ′ coincide for all joint
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states of A(i) and B(i).
Modeling the dependency between A(i) and B(i) with the KB above is

equivalent to represent the Bayesian network of Figure 12.1 with the Bayesian
network of Figure 12.2.

X1

��

A(i)

��

X2

��

X3

yy
B(i)

Prob. Table 3: P ′′(X1) Prob. Table 4: P ′′(X2)
HHH

HHHX1

0 1− p1
1 p1

HHH
HHHX2

0 1− p2
1 p2

Prob. Table 5: P ′′(A(i)|X1) Prob. Table 6: P ′′(X3)
H
HHH

HHA(i)
X1 0 1

0 1 0
1 0 1

H
HHH

HHX3

0 1− p3
1 p3

Prob. Table 7: P ′′(B(i)|X1, X2, X3)XXXXXXXXXXXB(i)
X1, X2, X3 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

0 1 1 0 0 1 0 1 0
1 0 0 1 1 0 1 0 1

Figure 12.2: Bayesian Network modeling the distribution over A(i), B(i), X1,
X2, X3.

It can be easily checked that the distributions P and P ′′ of the two networks
agree on the variables A(i) and B(i), i.e., that P (A(i), B(i)) = P ′′(A(i), B(i))

for any value of A(i) and B(i). From Figure 12.2 is also clear that X1, X2 and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependence with independent random variables. Therefore
we can model general dependencies among assertions with DISPONTE.
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Chapter 13

Probabilistic Description Logics

A classification between different types of first-order logics of probability was
first presented by Bacchus [7] and then by Halpern [57]. It defines different
types of probability:

Type 1 allows the definition of statistical information about the world. It
puts probability on entities of the domain and permits the definition of
statements such as “The probability of a randomly chosen individual in
the domain which is a bird flies with a probability of 0.9”. It means that
the 90% of the birds in a population have the property of flying.

Type 2 allows the definition of epistemic information which defines a degree
of belief. It puts probability on possible worlds where statements such
as “The probability that Tweety flies is 0.9” can be asserted.

In [57] the authors proposed a probabilistic extension of OWL for combining
the two types of probability in one framework where statements such as “The
probabilities that Tweety flies is greater than the probability that a randomly
chosen bird flies” can be expressed. DISPONTE allows defining only “Type
2” statements since the probability associated with an axiom represents the
degree of belief in that axiom as a whole.

Prob-ALC [92] derives directly from Halpern’s probabilistic first order logic
and considers only “Type 2” statements. It follows a possible world semantics
and allows the definition of concept expressions of the form P≥nC which express
the set of individuals that belong to C with probability greater than n, and
∃P≥nR.C which models set of individuals a connected to at least another
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individual b of C by role R such that the probability of R(a, b) is greater than
n. Prob-ALC allows also expressions of the form P≥nC(a) and P≥nR(a, b)

directly expressing degrees of belief, as well as P≥nA where A is an ABox.
Prob-ALC is complementary to DISPONTE ALC as it allows new concept
and assertion expressions while DISPONTE allows probabilistic axioms.

Heinsohn [58] extended the DL ALC in order to allow the definition of
statistical information of the form P (C|D) = [pl, pu] called probabilistic termi-
nological axioms, where C,D are concept descriptions and 0 ≤ pl ≤ pu ≤ 1 are
real numbers. It states that the conditional probability for an object belonging
to D of belonging also to C is in the interval [pl, pu]. The formal semantics
of the extended language is defined in terms of probability measures on the
set of all concept descriptions. Given a finite interpretation I, it satisfies
P (C|D) = [pl, pu] iff

|(C uD)I |
|DI |

= [pl, pu]

A knowledge base K consists of probabilistic terminological axioms. Given
K, the main inference task is to find an interval [p, q], with p maximal and q
minimal, such that in all the probability measures satisfying K the conditional
probability P (C|D) belongs to the interval [p, q], denoted by K � P (C|D) ∈
[p, q]. Thus, the aim of inference is to derive optimal bounds for additional
conditional probabilities. Heinsohn introduced local inference rules for deriving
bounds but its approach is not complete, hence the rules are not sufficient
to derive optimal bounds. Heinsohn does not allow probabilistic assertional
knowledge about concept and role instances.

Jaeger [65] extended [58] by allowing the definition of probabilistic asser-
tion of the form P (C(a)) = p, where C is a concept, a is an individual and
p ∈ [0, 1] a real number. The definition of the formal semantics makes use
of probability measures on the set of all concept descriptions, one for each
individual name. Given a knowledge base K, the inference problem is to de-
rive optimal bounds for additional probabilistic assertions, thus the approach
presented by Heinsohn must be extended to take into account the connection
between the probability measures of the terminological part and those of the
assertional part. Jaeger describes two approaches, a naive method for com-
puting optimal bound using cross-entropy minimization and one that reduces
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the inference problem to a linear optimization problem. Both approaches do
not allow “Type 2” statements as DISPONTE.

Moreover, DISPONTE differs from [58, 65] because it provides a unified
framework for representing different types of probabilistic knowledge: from
assertional to terminological degree of belief knowledge.

PR-OWL [21, 28] is a probabilistic extension for OWL that consists of a
set of classes, subclasses and properties that collectively form a framework for
building probabilistic ontologies. It allows the use of the first-order probabilis-
tic logic MEBN [81] for representing uncertainty in ontologies. DISPONTE
differs from [21, 28] because it does not resort to a full-fledged first-order prob-
abilistic language, allowing the reuse of inference technology from DLs.

A different approach to the combination of DLs with probability is taken
in [51, 87, 88] where authors presented P-SHIQ(D), a DL probabilistic se-
mantics that exploits probabilistic lexicographic entailment from probabilis-
tic default reasoning. P-SHIQ(D) allows both terminological probabilistic
knowledge as well as assertional probabilistic knowledge about instances of
concepts and roles. Terminological probabilistic knowledge is expressed us-
ing conditional constraints of the form (D|C)[l, u] as in [58] and of the form
(∃R.{a}|C)[l, u] that states that an arbitrary instance of a concept C is R-
related to the individual a with probability in the interval [l, u]. Assertional
probabilistic knowledge is expressed using contraints of the form (C|{a})[l, u]

and (∃R.{b}|{a})[l, u], which represent respectively that the individual a be-
longs to C and a is R-related to b with a probability in the interval [l, u]. Simi-
larly to [65], the terminological knowledge is interpreted statistically while the
assertional knowledge is interpreted in an epistemic way by assigning degrees
of beliefs to assertions. Therefore, while assertional probabilistic knowledge in
P-SHIQ(D) corresponds to that of DISPONTE, terminological probabilistic
knowledge refers to Type 1 probabilistic information. Moreover P-SHIQ(D)

also allows expressing default knowledge about concepts that can be overrid-
den in subconcepts and whose semantics is given by Lehmann’s lexicographic
default entailment [82]. These works are based on Nilsson’s probabilistic logic
[100], where a probabilistic interpretation Pr defines a probability distribution
over the set of interpretations Int, i.e.,

∑
Int Pr(Int) = 1. The probability of

a logical formula F according to Pr, denoted Pr(F ), is the sum of all Pr(I)
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such that I ∈ Int and I |= F . A probabilistic knowledge base K is a set of
probabilistic formulas of the form F ≥ p. A probabilistic interpretation Pr

satisfies F ≥ p iff Pr(F ) ≥ p. Pr satisfies K, or Pr is a model of K, iff Pr

satisfies all F ≥ p ∈ K. Pr(F ) ≥ p is a tight logical consequence of K iff
p is the infimum of Pr(F ) in the set of all models Pr of K. Tight logical
consequences from probabilistic knowledge bases can be computed by solving
a linear optimization problem.

Nilsson’s probabilistic logic considers sets of distributions, differently, the
distribution semantics computes a single distribution over possible worlds, thus
they allow different conclusions. Consider for example a probabilistic theory
composed of C(a) ≥ 0.4 and C(b) ≥ 0.5 and a DISPONTE KB composed
of the axioms 0.4 :: a : C and 0.5 :: b : C; with Nilsson’s probabilistic logic
allows to conclude the lowest p such that Pr(C(a) ∨ C(b)) ≥ p holds is 0.5,
while DISPONTE allows to state that P (a : C ∨ b : C) = 0.7. This is due to
the fact that differently from the Nilsson’s logic, where no assumption about
the independence of the statements is made, in the distribution semantics the
probabilistic axioms are considered as independent. While independencies can
be encoded in Nilsson’s logic by carefully choosing the values of the parameters,
reading off the independencies from the theories becomes more difficult.

The work reported in [67] presents an approach for computing answer prob-
abilities to conjunctive queries w.r.t. probabilistic databases in the presence of
an OWL2 QL ontology. Each assertion is assumed to be stored in a database
and associated with probabilistic events. Probabilities can occur only in the
data, but neither in the ontology nor in the query and all atomic events are
assumed to be probabilistically independent, resulting in a semantics very sim-
ilar to the distribution semantics. The authors proposed two distinct types of
ABoxes where events can be seen as Boolean combinations of atomic events
or only as atomic events. For Boolean conjunctive queries, the latter setting
is subsumed by DISPONTE. Only very simple conjunctive queries in the lat-
ter setting can be answered in PTime, while most queries are #P-hard. The
authors underline the general interest and usefulness of the approach for a
wide range of applications including the management of data extracted from
the web, machine translation, and dealing with data that arise from sensor
networks.
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EL++-LL [99] presents the combination of DLs EL++ with probabilistic
log-linear models. Every axiom can be probabilistic, in this case the axiom
is associated with a real-valued weight which defines a degree of confidence
(Type 2). The higher the value, the higher the confidence of its truth. The
semantics is defined by a log-linear probability distribution over consistent
ontologies, i.e., a joint distribution over consistent sets of concept and role
inclusion axioms. The probabilistic KB is mapped to a set of (instantiated)
first-order formulas. After the mapping, the KB is queried by transforming
the inference problem into an integer linear program, thus inference is seen as
an optimization problem. This approach differs from DISPONTE mainly in
the probabilistic distribution.

Other approaches exploit the use of graphical models. In [38] the au-
thors proposed a probabilistic extension of OWL that admits a translation
into Bayesian networks. The semantics defines a probability distribution P (a)

over individuals and assigns a probability to a class C as P (C) =
∑

a∈C P (a).
DISPONTE differs from [38] because it specifies a distribution over worlds
rather than individuals.

Koeller et al. [77] presented a probabilistic description logic based on
Bayesian networks that deals with statistical terminological knowledge. They
specify a unique probability distribution on the set of all concept descriptions.
They exploit Bayesian networks to specify the distribution because the set of
descriptions is infinite, therefore a way to define a finite specification is needed.
The probability P (C) of a concept description can be computed by means of a
Bayesian network inference algorithm. DISPONTE differs from this approach
because it allows representing different types of probabilistic knowledge in a
unified way. A different combination of Bayesian network with DLs is pre-
sented in [155] where, instead of extending DLs, the focus is on the extension
of Bayesian networks. In this way, the restrictions on the network imposed
by [77] are avoided.

Another extension of ALC is crALC [91]. It adopts a semantics based
on interpretations and, differently form DISPONTE, allows the expression of
both probability types. Type 1 axioms are of the form P (C|D) = p which
means that for any element of the domain, the probability that an individual
is in C given that it is in D is p, and of the form P (R) = p, which means that
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for each pair of elements of the domain, the probability that they are linked
by the role R is p. A crALC KB K can be represented as a directed acyclic
graph G(K) in which a node represents a concept, a role or a restriction ∃R.C
and ∀R.C and the edges represent the relations between them: (1) if a concept
C directly uses concept D, then D is a parent of C in G(K), (2) if a node is a
restriction, G(K) contains an edge from R to each restriction directly using it
and from each restriction to the concept C appearing in it. G(K) is then used
together with the domain for generating a ground graph in which each node
represents an instantiated logical atom C(a) or R(a, b). Inference is performed
by means of a first order loopy belief propagation algorithm on the ground
graph.

In [29], DL-Lite is combined with Bayesian networks while in [53] Datalog±

is combined with Markov networks such that a KB is composed of a set of anno-
tated axioms and a graphical model. The annotations are sets of assignments
of random variables from the graphical model. The semantics is assigned by
considering the possible worlds of the graphical model and by stating that an
axiom holds in a possible world if the assignments in its annotation hold. The
probability of a query is computed by summing out the probabilities of the
possible worlds where the query holds. DISPONTE represents a special case
of [29, 53] in which each probabilistic axiom is annotated with a single random
variable and the graphical model encodes independence among the random
variables. This special case is of interest as inference technology from DLs can
be directly employed.

Similar to [29], in [22] a KB is associated with a Bayesian network with
variables V . Axioms take the form E : X = x where E is a DL axiom
and X = x is an annotation with X ⊆ V and x a set of values for these
variables. The Bayesian network assigns a probability to every assignment of
V , called a world. The authors show that the probability of a query Q = E :

X = x is given by the sum of the probabilities of the worlds where X = x

is satisfied and where E is a logical consequence of the theory composed of
the annotated axioms whose annotation is true in the world. DISPONTE is
a special case of these semantics where every axiom Ei : Xi = xi is such that
Xi is a single Boolean variable and the Bayesian network has no edges, i.e., all
the variables are independent. This is an important special case that greatly
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simplifies reasoning, as computing the probability of the worlds takes a time
linear in the number of variables. However, in case the added expressiveness
of these formalisms is needed, the Bayesian network could be translated into
an equivalent one with only mutually unconditionally independent random
variables.

An even different approach is given by the combination between DLs and
logic programs. In [20], ontologies are integrated with rules and a tightly
coupled approach to (probabilistic) disjunctive description logic programs is
used. Under this semantics, a description logic program as a pair (L, P ), where
L is a DL KB and P is a disjunctive logic program which contains rules on
concepts and roles of L. P may contain probabilistic alternatives in the style of
ICL [107]. Interpretations assign a probability to ground atoms, in the style of
Nilsson probabilistic logic [100]. Queries can be answered by finding all answer
sets. Differently from [20], in DISPONTE interpretations are not probabilistic
and they are assigned a probability, instead of being a mapping from atoms to
probabilities.
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Part IV

Inference in Probabilistic DLs
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Chapter 14

Inference

In Chapter 12 we have seen that for computing probability of queries we can
list the possible worlds in which the query is true. Generally this is not fea-
sible since the number of worlds is exponential in the number of probabilistic
axioms. We propose an approach for performing inference over DISPONTE
DLs in which we first find explanations for the given query and then com-
pute the probability of the query from them. In the following we discuss
the approach and we present three algorithms, named BUNDLE, TRILL and
TRILLP , which are able to execute probabilistic inference, thus they are able
to find explanations for queries and compute their probabilities. The three sys-
tems are presented in chapters 15, 16 and 17 respectively. Then, Chapter 18
discusses the complexity of the approach presented here, while Chapter 19 de-
scribes related works. Finally, Chapter 20 shows the experiments done to test
our algorithms.

In order to discuss the approach for probabilistic inference, we recall some
useful definitions.

A composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ SK, σ ⊇ κ},
the set of worlds whose selection is a superset of κ, i.e., the set of worlds
“compatible” with κ. We define the set of worlds identified by a set of composite
choices K as ωK =

⋃
κ∈K ωκ.

A composite choice κ is an explanation for a query Q if Q is entailed by
every world of ωκ. A set of explanations, corresponding to a set of composite
choices K, is covering with respect to Q if every world wσ ∈ WK in which Q
is entailed is included in ωK .
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Two composite choices κ1 and κ2 are incompatible if their union is incon-
sistent. For example, given a probabilistic axiom Ei, the composite choices
κ1 = {(Ei, 1)} and κ2 = {(Ei, 0)} are incompatible. A set K of composite
choices is pairwise incompatible if for all κ1 ∈ K,κ2 ∈ K,κ1 6= κ2 implies κ1
and κ2 are incompatible. For example

K = {κ1, κ2} (14.1)

with
κ1 = {(Ei, 1)}

and
κ2 = {(Ei, 0), (El, 1)} (14.2)

is pairwise incompatible.
We define the probability of a pairwise incompatible set of composite choices

K as
P (K) =

∑
κ∈K

P (κ) (14.3)

Two sets of composite choices K1 and K2 are equivalent if ωK1 = ωK2 , i.e., if
they identify the same set of worlds. For example, K in (14.1) is equivalent to

K ′ = {κ′1, κ′2} (14.4)

with
κ′1 = {(Ei, 1)}

and
κ′2 = {(El, 1)} (14.5)

14.1 Splitting Algorithm

Let κ be a composite choice and E be an axiom such that κ∩{(E, 0), (E, 1)} =

∅, the split of κ on E is the set of composite choices Sκ,E = {κ ∪ {(E, 0)}, κ ∪
{(E, 1)}}. It is easy to see that κ and Sκ,E identify the same set of possible
worlds, i.e., that ωκ = ωSκ,E . For example, the split of κ′2 in (14.5) on Ei

contains κ2 in (14.2) and {(Ei, 1), (El, 1)}.
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Theorem 3 ([108]). Given a finite set K of finite composite choices, there
exists a finite set K ′ of pairwise incompatible finite composite choices such
that K and K ′ are equivalent.

Proof. Given a finite set of finite composite choices K, in order to form a new
set K ′ of composite choices equivalent to K two possibilities are given:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, let K ′ =

K \ {κ2}.

2. splitting elements: if κ1, κ2 ∈ K are compatible and neither is a su-
perset of the other, there is a (E, k) ∈ κ1 \κ2. We replace κ2 by the split
of κ2 on E. Let K ′ = K \ {κ2} ∪ Sκ2,E.

In both cases ωK = ωK′ . A splitting algorithm, shown in Algorithm 5, repeat-
edly executes these two operations until no one can be applied. Since K is
a finite set of finite composite choices, the algorithm terminates. The result-
ing set K ′ is pairwise incompatible and is equivalent to the original set. For
example, the splitting algorithm applied to K ′ in (14.4) can results in K in
(14.1).

Algorithm 5 Splitting Algorithm.
1: procedure split(K)
2: Input: set of composite choices K
3: Output: pairwise incompatible set of composite choices equivalent to K
4: loop
5: if ∃κ1, κ2 ∈ K and κ1 ⊂ κ2 then
6: K ← K \ {κ2}
7: else
8: if ∃κ1, κ2 ∈ K compatible then
9: choose (E, k) ∈ κ1 \ κ2
10: K ← K \ {κ2} ∪ Sκ2,E

11: else
12: exit and return K
13: end if
14: end if
15: end loop
16: end procedure

Theorem 4 (Lemma A.8, [106]). If K1 and K2 are both mutually incompat-
ible finite sets of finite composite choices such that they are equivalent, then
P (K1) = P (K2).
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Proof. Let D be the set of all axioms appearing in an atomic choice in either
K1 or K2. The set D has the following properties: (1) is finite and (2) each
composite choice in K1 and K2 has atomic choices for a subset of D. For each
composite choice κ of both K1 and K2, we repeatedly replace κ with its split
Sκ,E on an axiom E from D that does not appear in κ. This procedure does
not change the total probability since the sum of probabilities of (E, 0) and
(E, 1) is 1. At the end of this procedure the two sets of composite choices
will be identical. In fact, any difference can be extended into a possible world
belonging to ωK1 but not to ωK2 or vice versa, contradicting the hypothesis.

For example, K in (14.1) and K ′′ = {κ′′1, κ′′2} with κ′′1 = {(Ei, 1), (El, 0)}
and κ′′2 = {(El, 1)} are equivalent and are both pairwise incompatible. Their
probabilities are

P (K) = pi + (1− pi) · pl = pi + pl − pi · pl

and
P (K ′′) = pi · (1− pl) + pl = pi + pl − pi · pl

Note that if we compute the probability of K ′ in (14.4) with formula (14.3)
we would obtain pi + pl which is different from the probabilities of K and K ′′

above, even if K ′ is equivalent to K and K ′′. This is due to the fact that K ′

is not pairwise incompatible. Thus the probability P (K) of a generic set of
composite choices K is P (K) = P (K ′), where K ′ is a mutually incompatible
set of composite choices that is equivalent to K, i.e., such that ωK′ = ωK .
Given a query Q, the set KQ = {σ|σ ∈ SK ∧ wσ |= Q} is a set of pairwise
incompatible composite choices. Since P (Q) =

∑
σ∈KQ P (σ), then P (Q) =

P (KQ). If K ′ is a covering set of explanations for Q, then K ′ and KQ are
equivalent so P (Q) = P (KQ) = P (K ′). This proves that in order to compute
the probability of a query we do not have to generate all worlds where a query
is true, instead finding a mutually incompatible covering set of explanations is
enough. Moreover, an additional result is given by the following theorem.

Theorem 5. Given two finite sets of finite composite choices K1 and K2, if
K1 ⊆ K2, then P (K1) ≤ P (K2).

Proof. LetK ′1 andK ′2 be the result of the application of the splitting algorithm
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to K1 and K2 respectively. During the application of the splitting algorithm
to K2 we obtain, in an intermediate step, K = K ′1 ∪K ′ for a certain K ′. In
the continuation of the algorithm the steps below will be executed:

• If there exists a κ ∈ K and a κ′ ∈ K such that κ′ ⊆ κ, at least one of
κ and κ′ must not belong to K ′1, otherwise κ would have been removed
when splitting K ′1. In this case, κ is removed from K while κ′ remains.

• If there is a compatible couple κ1 and κ2 in K, we can assume that one
of the two, say κ2, does not belong to K ′1, since otherwise it would have
been split before. We add to K the split of κ2 on an atomic choice in κ1
but not in κ2.

At the end of the execution, for each element κ1 of K ′1, K ′2 contains an element
κ2 such that κ2 ⊆ κ1. Therefore, in the summation in (14.3), for each term in
P (K ′1) there will be a term in P (K ′2) with a larger or equal value so P (K ′1) ≤
P (K ′2).

Theorem 5 implies that if K is a finite set of finite explanations for a query Q
that is not covering, i.e., K does not contain all possible explanations for Q,
then P (K) will be a lower bound of P (Q). Starting from this lower bound and
considering an increasing set of explanations, we can compute progressively
more accurate estimates of P (Q). When K contains all possible explanations,
then P (K) = P (Q).

The problem of computing the probability of a query can thus be reduced
to finding a covering set of explanations K and then making it pairwise in-
compatible, so that the probability can be computed with the summation of
(14.3). To obtain a mutually incompatible set of explanations, the splitting
algorithm can be applied.

Example 12. Let us consider the KBs of Example 8 and Example 10. Re-
garding the first, for the query Q = kevin : NatureLover there is only one
explanation, thus the covering set if K = {{((12.7), 1), ((12.8), 1)}}. Hence we
can directly compute the probability of the query P (Q) = 0.5 · 0.6 = 0.3 which
corresponds to the probability given by the semantics.

Analogously, in Example 10 for the query Q1 = (kevin, david) : friend and
the query Q2 = david : Person the covering sets of explanations are equal for
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both queries and contain only one explanation, thus the probability of the two
queries is the same, i.e., P (Q1) = P (Q2) = 0.4.

Example 13. Let us now consider the KB of Example 9. A covering set of
explanations for the query axiom Q = kevin : NatureLover is K = {κ1, κ2}
where κ1 = {((12.9), 1), ((12.11), 1)} and κ2 = {((12.10), 1), ((12.11), 1)}.

In this example K contains more than one explanation thus splitting al-
gorithm must be executed to make explanations mutually incompatible. An
equivalent pairwise incompatible set K ′ of explanations is K ′ = {κ′1, κ′2} where

κ′1 = {((12.9), 1), ((12.11), 1), ((12.10), 0)}

κ′2 = {((12.10), 1), ((12.11), 1)}

So P (Q) = 0.4 · 0.6 · 0.7 + 0.3 · 0.6 = 0.348 which corresponds to the probability
given by the semantics.

14.2 Binary Decision Diagrams

Given a covering set of explanationsK (not necessarily mutually incompatible)
for a query Q, we can define the Disjunctive Normal Form (DNF) Boolean
formula fK as

fK(X) =
∨
κ∈K

∧
(Ei,1)∈κ

Xi

∧
(Ei,0)∈κ

Xi (14.6)

The variables X = {Xi|(Ei, k) ∈ κ, κ ∈ K} are independent Boolean random
variables. The probability of being true for variable Xi is pi, where pi is the
probability associated with axiom Ei. The probability that fK(X) assumes
value 1 is equal to the probability of Q. Following the approaches seen in
Section 11.3, we can now apply knowledge compilation to the propositional
formula fK(X) [31] in order to translate it into a target language that allows
answering queries in polynomial time. Many proposals of target languages have
been presented, we use here Binary Decision Diagrams (BDDs) that was found
to give good performances. From a BDD we can compute the probability of the
query with weighted model counting, performed by a dynamic programming
algorithm that is linear in the size of the BDD [34]. This method performs
better than the splitting algorithm in practice [73, 118].
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A BDD is a rooted, directed acyclic graph in which

• there is one level for each Boolean variable,

• each node n in a BDD is associated with a Boolean variable

• each node n has two outgoing edges: one corresponding to the 1 value of
the variable associated with the level of n, indicated with child1(n), and
one corresponding to the 0 value of the variable, indicated with child0(n).
When drawing BDDs, the 0-branch - the one going to child0(n) - is
distinguished from the 1-branch by drawing it with a dashed line.

• the leaves store either 0 or 1

BDDs can be built by combining simpler BDDs using Boolean operators.
While building BDDs, simplification operations can be applied that delete
or merge nodes. Merging is performed when the diagram contains two iden-
tical sub-diagrams, while deletion is performed when both arcs from a node
point to the same node. In this way a reduced BDD is obtained, often with
a much smaller number of nodes with respect to the original BDD. The size
of the reduced BDD highly depends on the order of the variables. A BDD is
ordered if in all paths through the graph the variables respect a given linear
order X1 < X2 < ... < Xn, i.e., if we take two paths there are not two or more
variables in a different order. Finding an optimal order is an NP-complete
problem [16] and several heuristic techniques are used in practice by highly ef-
ficient software packages such as CUDD1. Alternative methods involve learning
variable orders from examples [54].

Since BDDs represents Boolean formulas, given an assignment for all the
variables, a BDD can be used to compute the value of the formula by traversing
the graph starting from the root to a leaf. The traversal is done on the basis
of the value of the variable corresponding to the node. When a leaf is reached
the value associated is returned. For instance, a BDD for the function

f(X) = (X1 ∧X3) ∨ (X2 ∧X3) (14.7)

is shown in Figure 14.1.
1Available at http://vlsi.colorado.edu/~fabio/CUDD/
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X1 n1

X2 n2

X3 n3

1 0

Figure 14.1: BDD for function (14.7).

A BDD performs a Shannon expansion of the Boolean formula fK(X), so
that, if X is the variable associated with the root level of a BDD, the formula
fK(X) can be represented as fK(X) = X ∧ fXK (X)∨X ∧ fXK (X) where fXK (X)

(fXK (X)) is the formula obtained by fK(X) by setting X to 1 (0). Now the two
disjuncts are pairwise exclusive and the probability of fK(X) can be computed
as P (fK(X)) = P (X) ·P (fXK (X))+(1−P (X)) ·P (fXK (X)). In this way, BDDs
make the explanations pairwise incompatible. Given the BDD, we can use the
function Prob shown in Algorithm 6 for performing weighted model counting.
This dynamic programming algorithm traverses the diagram from the leaves
and computes the probability of a formula encoded as a BDD.

The function stores the value of already visited nodes in a table so that, if
a node is visited again, its probability can be retrieved from the table. This
optimization is fundamental to achieve linear cost in the number of nodes, as
without it the cost of the function Prob would be proportional to 2n where n
is the number of Boolean variables.

Let us discuss inference on some examples.

Example 14 (Example 13 cont.). Instead of the splitting algorithm, here we
use BDDs to compute P (Q). We first recall the covering set K = {κ1, κ2} of
explanations for the query axiom

κ1 = {((12.9), 1), ((12.11), 1)}

κ2 = {((12.10), 1), ((12.11), 1)}

If we associate the random variables X1 to (12.9), X2 to (12.10) and X3 to
(12.11), fK(X) is shown in (14.7) and the BDD associated with the set K
of explanations is shown in Figure 14.1. By applying the function Prob in
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Algorithm 6 Function Prob: it takes a BDD encoding a formula and com-
putes its probability.
1: function Prob(node, nodesTab)
2: Input: a BDD node node
3: Input: a table containing the probability of already visited nodes nodesTab
4: Output: the probability of the Boolean function associated with the node
5: if node is a terminal then
6: return value(node) . value(node) is 0 or 1
7: else
8: scan nodesTab looking for node
9: if found then
10: let P (node) be the probability of node in nodesTab
11: return P (node)
12: else
13: let X be v(node) . v(node) is the variable associated with node
14: P1 ←Prob(child1(node))
15: P0 ←Prob(child0(node))
16: P (node)← P (X) · P1 + (1− P (X)) · P0

17: add the pair (node,P (node)) to nodesTab
18: return P (node)
19: end if
20: end if
21: end function

Algorithm 6 to this BDD we get

Prob(n3) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n2) = 0.4 · 0.6 + 0.6 · 0 = 0.24

Prob(n1) = 0.3 · 0.6 + 0.7 · 0.24 = 0.348

and therefore P (Q) = Prob(n1) = 0.348, which corresponds to the probability
given by the semantics.
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X1 n1

X4 n2

X2 n3

X3 n4

1 0

Figure 14.2: BDD for Example 15.

Example 15. Let us now consider a slightly different knowledge base:

∃hasAnimal.Pet v NatureLover

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Dog (14.8)

0.3 :: tom : Cat (14.9)

0.6 :: Cat v Pet (14.10)

0.5 :: Dog v Pet (14.11)

A covering set of explanations for the query axiom Q = kevin : NatureLover

is K = {κ1, κ2} where κ1 = {((14.8), 1), ((14.11), 1)} and κ2 = {((14.9), 1),

((14.10), 1)}. If we associate the random variables X1 to (14.8), X2 to (14.9),
X3 to (14.10) and X4 to (14.11), the BDD associated with the set K of expla-
nations is shown in Figure 14.2.
By applying the function Prob in Algorithm 6 we get

Prob(n4) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n3) = 0.3 · 0.6 + 0.7 · 0 = 0.18

Prob(n2) = 0.5 · 1 + 0.5 · 0.18 = 0.59

Prob(n1) = 0.4 · 0.59 + 0.6 · 0.18 = 0.344

so P (Q) = Prob(n1) = 0.344.
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Chapter 15

BUNDLE

The problem of finding explanations for a query has been investigated in Chap-
ter 10 where we called it axiom pinpointing and we defined it as the prob-
lem min-a-enum which concern the computation of the set of all possible
MinAs All-MinAs(Q,K), i.e., the set of all possible explanations. All-

MinAs(Q,K) is a covering set of explanations.

In Section 10.1.1 we described how the Pellet reasoner [136] solves min-

a-enum. It implements a hitting set tree algorithm which repeatedly calls a
modified tableau algorithm that builds a MinA from a KB from which some
axioms are removed depending on the previously found explanations.

BUNDLE is based on Pellet and uses it for solving the min-a-enum prob-
lem. BUNDLE algorithm computes the probability of queries from a prob-
abilistic knowledge base that follows DISPONTE by first finding a covering
set of explanations for the query and then making the explanations pairwise
incompatible by using BDDs. Finally, it computes the probability from the
BDD by using function Prob of Algorithm 6.

The main procedure, shown in Algorithm 7, first builds a data structure
PMap that associates each probabilistic DL axiom Ei with its probability pi
[line 8]. In case Ei is associated with more than a probability value, BUNDLE
first aggregates all the values following the semantics (see Example 11), the
resulting probability is inserted in PMap. This will improve the performances
of the computation of the probability from the BDD. Then it uses Pellet’s
ExpHST function [line 9] which executes the HittingSetTree procedure,
shown in Algorithm 4, to compute the MinAs for the query Q. These MinAs
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Algorithm 7 Function Bundle: computation of the probability of a query
Q given the (probabilistic) KB K.
1: function Bundle(Q,K,maxEx,maxTime)
2: Input: Q (the query (a concept) to be tested for satisfiability)
3: Input: K (the knowledge base)
4: Input: maxEx (the maximum number of explanations to find)
5: Input: maxTime (the time limit for the inference)
6: Output: the set of explanations (MinAs) found for the unsatisfiability of Q w.r.t. K
7: Output: the probability of the query Q w.r.t. K
8: Build Map PMap with sets of pair (axiom, probability)
9: MinAs←ExpHST(Q,K,maxEx,maxTime)
10: Initialize V arAx to empty . V arAx is an array of pairs (axiom, probability)
11: BDD ←BDDZero
12: for all MinA ∈MinAs do
13: BDDE ←BDDOne
14: for all Ax ∈MinA do
15: if Ax in K is a certain axiom then
16: BDDA←BDDOne
17: else
18: p← PMap(Ax)
19: Scan V arAx looking for Ax
20: if !found then
21: Add to V arAx a new cell containing (Ax, p)
22: end if
23: Let i be the position of (Ax, p) in V arAx
24: BDDA← BDDGetIthVar(i)
25: end if
26: BDDE ←BDDAnd(BDDE,BDDA)
27: end for
28: BDD ←BDDOr(BDD,BDDE)
29: end for
30: queryProb←Prob(BDD, ∅) . V arAx is used to compute P (X) in Prob
31: return (MinAs, queryProb)
32: end function

correspond to all conflict sets found by the Hitting Set Algorithm. Pellet’s
ExpHST can also take as input several parameters such as the maximum
number of explanations to be generated and the time limit for the inference
process. If one of the limits is reached during the execution of the hitting set
algorithm, Pellet stops and returns the set of explanations found so far.

Two data structures are initialized: V arAx is an array that contains the
association between Boolean random variables (whose index is the array index)
and pairs (axiom, probability), and BDD stores a BDD. BDD is initialized
to the zero Boolean function [lines 10-11].

Then BUNDLE builds a BDD representing the set of explanations by means
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of two nested loops [lines 12-29]. JavaBDD1 is exploited to manipulate BDDs,
it is an interface to a number of underlying BDD manipulation packages. The
underlying package to use can be dynamically chosen by means of a specific
argument, by default BuDDy is used.

In the inner loop, BUNDLE generates the BDD for a single explanation,
indicated as BDDE, which is initialized to the one Boolean function [lines 14-
27]. The axioms of each MinA are considered one by one. If the axiom is
certain, then the one Boolean function is stored in BDDA [line 16]. Otherwise,
the axiom Ax is searched for in PMap and the associated probability value
p is extracted. The axiom is also searched for in V arAx to check whether a
random variable has already been assigned to it [lines 18-19]. If not, a cell is
added to V arAx to store the pair [line 21]. At this point we know the position i
of the pair (Ax, p) in the array V arAx, that is the index of its Boolean random
variable Xi. We obtain a BDD representing Xi = 1 with BDDGetIthVar in
BDDA [line 24]. BDDA is finally conjoined with the current BDDE to get
the BDD representing a single explanation [line 26].

In the outermost loop, BUNDLE combines BDDs for different explana-
tions through disjunction between BDD and the current explanation BDDE
[line 28].

After the two cycles, function Prob of Algorithm 6 is called over BDD to
return the probability of the query to the user.

We now prove BUNDLE correctness.

Theorem 6 (BUNDLE correctness). Given a DISPONTE knowledge base
K, a query Q and one or both limits maxEx and maxTime for the number
of explanations to find and for the inference time respectively, the probability
returned by BUNDLE, Bundle(Q,K,maxEx,maxT ime) is:

• a lower bound on P (Q) if a maximum number of explanations to compute
and/or a time limit are set and at least one of the limits is reached, i.e.,
Bundle(Q,K,maxEx,maxT ime) ≤ P (Q)

• equal to P (Q), i.e., Bundle(Q,K,maxEx,maxT ime)= P (Q) otherwise

1Available at http://javabdd.sourceforge.net/
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Proof. Let K be ExpHST(Q,K,maxEx,maxT ime). By Theorem 2

K ⊆ All-MinAs(Q,K)

if at least a limit is set and reached and

K = All-MinAs(Q,K)

otherwise. Since BUNDLE computes P (fK(X)) for the Boolean function

fK(X) =
∨
κ∈K

∧
(F,1)∈κ

XF

the theorem holds.

Example 16 (Example 14 cont.). Let us consider the KB presented in Example
9 and the query Q = kevin : NatureLover. We have already seen in Example
14 how BDDs are used for computing the probability of Q. In order to show how
BUNDLE implements this approach first let us also consider the corresponding

PMap = {(fluffy : Cat, 0.4), (tom : Cat, 0.3), (Cat v Pet, 0.6)}

V arAx = ∅

We recall the covering set of explanations K = {κ1, κ2} where, by restricting
explanations to contain only probabilistic axioms for the sake of simplicity, the
explanations are

κ1 = {(fluffy : Cat, 1), (Cat v Pet, 1)}

κ2 = {(tom : Cat, 1), (Cat v Pet, 1)}

Initially, BUNDLE initializes BDD to the zero Boolean function and starts
to loop over the two explanations. It enter in the inner loop considering the ex-
planation κ1 and initializes BDDE to the one Boolean function. Since V arAx
is empty, (fluffy : Cat, 0.4) is not associated with a random variable, thus the
variable X1 is created and the pair (fluffy : Cat, 0.4) is added to V arAx in
position 1. Function BDDGetIthVar is called to return in BDDA a BDD
corresponding to the expression X1 = 1 which is then combined with BDDE us-
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ing the and operator. Now, the computation continues by analyzing the second
axiom of κ1. The axiom Cat v Pet does not have a random variable associated
with it yet, so the new variable X2 is created and the pair (Cat v Pet, 0.6)

is added to V arAx in position 2. The corresponding BDDA is then gener-
ated and combined with the BDDE which model the current explanation using
the and operator. Now all the axioms in κ1 have been considered, so the final
BDDE is combined with BDD with the or operator.

Then BUNDLE considers κ2 and BDDE is initialized to one. V arAx does
not contain the axiom Tom : Cat so variable X3 is created and associated to
the pair (Tom : Cat, 0.3) and BDDA, representing X3 = 1, is joined with
BDDE. The axiom Cat v Pet is found in V arAx in position 2, so the
function BDDGetIthVar returns in BDDA the BDD representing X2 = 1,
which is finally combined with the current BDDE. BDDE corresponding to
the second explanation is completed so it is combined with BDD obtaining the
one shown in Figure 14.1. Now BUNDLE calls function Prob which computes
the probability and returns P (C) = 0.348.
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Chapter 16

TRILL

In Section 10.1.1 we showed that some tableau expansion rules are
non-deterministic. When solving min-a-enum, this requires the implemen-
tation of a search strategy in an or-branching search space, because all the
non-deterministic choices done by the tableau algorithm must be explored for
finding all the possible explanations. In Section 10.1.1 we saw an example of
such backtracking algorithm, implemented in the reasoner Pellet. However,
this type of procedure must be developed in every reasoner implemented in
a procedural language such as C/C++ or Java. In order to experiment with
other ways to manage this non-determinism, we developed the system TRILL.

TRILL (“Tableau Reasoner for descrIption Logics in Prolog”) implements
a tableau algorithm in the declarative language Prolog, so the management of
the rules’ non-determinism is delegated to the backtracking facilities built-in
in the language. TRILL is able to compute the set of all the explanations of
queries w.r.t. both probabilistic and non-probabilistic KBs, and in case of a
probabilistic DISPONTE KB it is able to compute the probability of queries.
This is done by converting the generated explanations into a Binary Decision
Diagram (BDD) which is exploited to efficiently compute the probability of the
query as for BUNDLE. TRILL can answer concept membership queries and
subsumption queries, and can find explanations both for the unsatisfiability of
a concept contained in the KB or for the inconsistency of the entire KB.

To perform inference with TRILL, we have to convert OWL DL KBs into
Prolog. To do so, we exploit a modified version of the Thea2 library [148].
Thea2 performs a direct translation of the OWL axioms into Prolog facts. For

119



Table 16.1: Correspondence between an OWL axiom containing a complex
concept and its Prolog translation.

OWL forebrain_neuron ≡ neuron u ∃partOf .forebrain

Prolog equivalentClasses([forebrain_neuron,
intersectionOf([neuron,someValuesFrom(partOf,forebrain)])])

example, a simple subclass axiom between two named classes Cat v Pet is
written using the subClassOf/2 predicate as subClassOf(‘Cat’,‘Pet’). For
more complex axioms, Thea2 exploits the list Prolog construct, so the axiom

NatureLover ≡ PetOwner tGardenOwner

becomes
equivalentClasses([‘NatureLover’,

unionOf([‘PetOwner’,‘GardenOwner’])]).

Complex classes are represented by means of function symbols, as shown in
Table 16.1. We modified Thea2 with respect to the management of annota-
tions, which are used for associating probability values with axioms. When
a probabilistic KB is given, for each probabilistic axiom of the form Prob ::

Axiom, two facts are asserted, the axiom itself and an annotation assertion of
the form annotationAssertion(ProbAnnot,Axiom,literal(Prob)), where
ProbAnnot is the name of the annotation1, Axiom is the probabilistic axiom
and Prob is the probability value.

In order to represent the tableau, TRILL uses a pair Tableau = (A, T ),
where

• A is a list containing information about class and role assertions with
the corresponding explanation. Moreover, during initialization, for each
individual ind in the ABox, we add the atom nominal(ind) to handle
nominal individuals. An example of the list A is

[ (classAssertion(person,kevin),

[subClassOf(man,person),classAssertion(man,kevin)]),

(classAssertion(man,kevin),[classAssertion(man,kevin)]),

nominal(kevin) ]

1For DISPONTE: https://sites.google.com/a/unife.it/ml/disponte#probability
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safe(Ind,R,(ABox,(T,RBN,RBR))):-
rb_lookup(R,V,RBR),
member((X,Ind),V),
blockable(X,(ABox,(T,RBN,RBR))),!.

safe(Ind,R,(ABox,(T,RBN,RBR))):-
rb_lookup(R,V,RBR),
member((X,Ind),V),
nominal(X,(ABox,(T,RBN,RBR))),!,
\+ blocked(Ind,(ABox,(T,RBN,RBR))).

Figure 16.1: Code of the predicates safe/3. An R-neighbor Ind of X is safe if
(1) X is blockable or if (2) X is a nominal node and Ind is not blocked.

stating that kevin is a nominal and that it belongs to concept man since
there is a class assertion asserting that and to concept person since in it
belongs to man and man is a sub class of person.

• T is a triple (G, RBN , RBR) in whichG is a directed graph that contains
the main structure of the tableau, RBN is a red-black tree (a key-value
dictionary) in which a key is a pair of individuals and its value is the
set of the labels of the edge between the two individuals, and RBR is a
red-black tree in which a key is a role and its value is the set of pairs of
individuals that are linked by the role.

This representation allows TRILL to quickly find the information needed dur-
ing the execution of the tableau algorithm. For managing the blocking sys-
tem we use a predicate for each blocking state: nominal/2, blockable/2,
blocked/2, indirectly_blocked/2 and safe/3. Each predicate takes as ar-
guments the individual Ind and the tableau (A, T); safe/3 takes as input also
the roleR. If they succeed, the corresponding state holds in the tableau. Figure
16.1 shows the code of safe/3 while Figure 16.2 shows indirectly_blocked/2,
where rb_lookup/3 looks for a pair of individuals connected by the role R,
transpose/2 builds a transposed version T1 of the tableau and neighbors/3

returns the list of neighbors of Ind in N.
Tableau expansion rules are implemented following an interface; this will

facilitate the insertion of new rules in the future. Non-deterministic rules are
implemented following the interface rule_name(Tab0, TabList), thus they
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indirectly_blocked(Ind,(ABox,(T,RBN,RBR))):-
transpose(T,T1),
neighbors(Ind,T1,N),
member(A,N),
blocked(A,(ABox,(T,RBN,RBR))),!.

Figure 16.2: Code of the predicates indirectly_blocked/2. An individual
Ind is indirectly blocked if it has at least one blocked predecessor.

take as input the current tableau Tab0 and return the list of tableaux TabList

created by the application of the rule to Tab0. Deterministic rules are imple-
mented by a predicate rule_name(Tab0,Tab) that, given the current tableau
Tab0, returns the tableau Tab obtained by the application of the rule to Tab0.

Figure 16.3 shows the code of the non-deterministic rule → t defined in
Figure 10.1, which takes a node whose label contains a complex concept de-
fined as a union of different concepts and creates a new tableau for each of
these concepts by adding them to the label of the corresponding individual,
one for each new tableau. The predicate or_rule/2 searches in the tableau
Tab0, which corresponds to the pair (ABox0,Tabs0), for an individual to which
the rule can be applied and unifies L with the list of new tableaux created by
scan_or_list/6. find/2 implements the search for a class assertion. Since
the data structure that stores class assertions is currently a list, find/2 simply
calls member/2. absent/3 checks if the class assertion axiom with the asso-
ciated explanation is already present in ABox, and in this case it checks the
applicability of the expansion rule.

Figure 16.4 shows a snippet of the code of the deterministic rule→ unfold,
defined in Figure 10.1, which looks for subclass and class equivalence axioms
in order to add information to individuals. The predicate unfold_rule/2

searches (ABox0,Tabs0), corresponding to Tab0, for an individual to which the
rule can be applied and calls the predicate find_sub_sup_class/3 in order
to find the class to be added to the label of the individual. add_nominal/4

handles nominal individuals in case D is a nominal concept.

Expansion rules are applied in order by apply_all_rules/2, first the non-
deterministic ones and then the deterministic ones, as shown in Figure 16.5.
The apply_nondet_rules(RuleList,Tab0,Tab) predicate takes as input the
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or_rule((ABox0,Tabs0),L):-
find((classAssertion(unionOf(LC),Ind),Expl),ABox0),
\+indirectly_blocked(Ind,(ABox0,Tabs0)),
findall((ABox1,Tabs0),scan_or_list(LC,Ind,

Expl,ABox0,Tabs0,ABox1),L),
dif(L,[]),!.

scan_or_list([],_Ind,_Expl,ABox,_Tabs,ABox).

scan_or_list([C|_T],Ind,Expl,ABox,Tabs,
[(classAssertion(C,Ind),Expl)|ABox]):-
absent(classAssertion(C,Ind),Expl,(ABox,Tabs)).

scan_or_list([_C|T],Ind,Expl,ABox0,Tabs,ABox):-
scan_or_list(T,Ind,Expl,ABox0,Tabs,ABox).

Figure 16.3: Code of the → t rule. See Figure 10.1 for formal definition.

unfold_rule((ABox0,Tabs0),([(classAssertion(D,Ind),[Ax|Expl])|ABox],
Tabs0)):-

find((classAssertion(C,Ind),Expl),ABox0),
find_sub_sup_class(C,D,Ax),
absent(classAssertion(D,Ind),[Ax|Expl],(ABox0,Tabs0)),
add_nominal(D,Ind,ABox0,ABox).

find_sub_sup_class(C,D,subClassOf(C,D)):-
subClassOf(C,D).

find_sub_sup_class(C,D,equivalentClasses(L)):-
equivalentClasses(L),
member(C,L),
member(D,L),
dif(C,D).

Figure 16.4: Code of the → unfold rule. See Figure 10.1 for formal definition.
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list of non-deterministic rules and the current tableau and returns a tableau
obtained by the application of one of the rules. apply_nondet_rules/3 is
called as apply_nondet_rules( [or_rule, max_rule], Tab0, Tab).

If a non-deterministic rule is applicable, the resulting tableau list is returned
by the predicate corresponding to the applied rule, a cut avoids backtracking
to other possible choices for the non-deterministic rules and the member/2

predicate is used to non-deterministically choose a tableau from the list.

If no non-deterministic rule is applicable, deterministic rules are tried se-
quentially by the predicate apply_det_rules/3, shown in Figure 16.5, that
is called as apply_det_rules(RuleList,Tab0,Tab). This predicate takes as
input the list of deterministic rules in RuleList and the current tableau and
returns a tableau obtained by the application of one of the rules. After the
application of a deterministic rule, a cut is performed to avoid backtracking to
other rule choices. If no rule is applicable, the input tableau is returned and
rule application stops, otherwise a new round of rule application is executed.

In each rule application round, the applicability of a rule is checked by
looking whether its result is not already present in the tableau. This avoids
both infinite loops in rule application and considering alternative rules when
a rule is applicable. In fact, if a rule is applicable in a tableau, it will also be
so in any tableau obtained by its expansion. In this case, the choice of which
expansion rule to apply introduces “don’t care” non-determinism. Differently,
“don’t know” non-determinism is introduced by non-deterministic rules, since
a single tableau is expanded into a set of tableaux. We use Prolog search only
to handle “don’t know” non-determinism.

Once the set of explanations is found, TRILL executes the compute_prob/2
predicate, shown in Figure 16.6, which takes the set of explanations and builds
the BDDs by using the build_bdd/3 predicate, shown in Figure 16.6. The
build_bdd/3 predicate scans each explanation and, for each variable in the
current explanation, searches for the corresponding probabilistic axiom us-
ing the predicate get_prob_ax/3. Finally, it computes the probability of the
query from the BDD so built using ret_prob/3. one/2 and zero/2 return
BDDs representing the Boolean constants 1 and 0; and/4 and or/4 execute
Boolean operations between BDDs. get_var_n/5 returns the random vari-
able V associated with axiom AxN and the list of probabilities [Prob,ProbN],
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apply_all_rules(Tab0,Tab):-
apply_nondet_rules([or_rule,max_rule],Tab0,Tab1),
(Tab0=Tab1 ->

Tab=Tab1
;

apply_all_rules(Tab1,Tab)
).

apply_nondet_rules([],Tab0,Tab):-
apply_det_rules([o_rule,and_rule,
unfold_rule,add_exists_rule,
forall_rule,forall_plus_rule,
exists_rule,min_rule],Tab0,Tab).

apply_nondet_rules([H|T],Tab0,Tab):-
call(H,Tab0,L),!,
member(Tab,L),
dif(Tab0,Tab).

apply_nondet_rules([_|T],Tab0,Tab):-
apply_nondet_rules(T,Tab0,Tab).

apply_det_rules([],Tab,Tab).

apply_det_rules([H|_],Tab0,Tab):-
call(H,Tab0,Tab),!.

apply_det_rules([_|T],Tab0,Tab):-
apply_det_rules(T,Tab0,Tab).

Figure 16.5: Application of the expansion rules: predicates
apply_all_rules/2, apply_nondet_rules/3 and apply_det_rules/3.

125



compute_prob(Expl,Prob):-
retractall(v(_,_,_)),
retractall(na(_,_)),
retractall(rule_n(_)),
assert(rule_n(0)),
init_test(_,Env),
build_bdd(Env,Expl,BDD),
ret_prob(Env,BDD,Prob),
end_test(Env), !.

build_bdd(Env,[X],BDD):- !,
bdd_and(Env,X,BDD).

build_bdd(Env, [H|T],BDD):-
build_bdd(Env,T,BDDT),
bdd_and(Env,H,BDDH),
or(Env,BDDH,BDDT,BDD).

build_bdd(Env,[],BDD):- !,
zero(Env,BDD).

bdd_and(Env,[X],BDDeq):-
get_prob_ax(X,AxN,Prob),!,
ProbN is 1-Prob,
get_var_n(Env,AxN,[],[Prob,ProbN],V),
equality(Env,V,0,BDDeq),!.

bdd_and(Env,[_X],BDDX):- !,
one(Env,BDDX).

bdd_and(Env,[H|T],BDDAnd):-
get_prob_ax(H,AxN,Prob),!,
ProbN is 1-Prob,
get_var_n(Env,AxN,[],[Prob,ProbN],V),
equality(Env,V,0,BDDeq),
bdd_and(Env,T,BDDT),
and(Env,BDDeq,BDDT,BDDAnd).

bdd_and(Env,[_H|T],BDDAnd):- !,
one(Env,BDDH),
bdd_and(Env,T,BDDT),
and(Env,BDDH,BDDT,BDDAnd).

Figure 16.6: Code of the predicates compute_prob/2 and build_bdd/3.
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where ProbN = 1 − Prob. equality/4 returns the BDD BDDeq associated
with the expression V = val where V is a random variable and val is 0 or 1.
The ret_prob/3, one/2, zero/2, and/4, or/4 and equality/4 predicates are
imported from a foreign Prolog library of the cplint suite [118].

TRILL is available for Yap Prolog2 [127] and SWI-Prolog3 [154]. In particu-
lar, SWI-Prolog is the basis of the TRILL on SWISH web application described
in Section 16.1. Using SWI-Prolog, TRILL can be installed by the user with
the goal pack_install(trill). After this call, TRILL can be loaded with the
command use_module(library(trill)). The code of TRILL is available at
https://sites.google.com/a/unife.it/ml/trill.

16.1 TRILL on SWISH

In order to popularize TRILL, we implemented a Web application which em-
beds the reasoner and allows users to try it and collaborate using a Web
browser, without the need to install anything on the client machine. The
application is called “TRILL on SWISH” and is available at http://trill.

lamping.unife.it.
TRILL on SWISH is based on SWISH4 [80], a web application using vari-

ous features and packages of SWI-Prolog that allows the users to write Prolog
programs and ask queries through the browser. The SWISH page allows the
insertion of Prolog programs and queries via a text editor, then, it collects
the text in the program editor and the query and sends this information to
the server, which creates a Pengine (Prolog Engine). The Pengine initializes
a temporary private module in which the program is compiled, then it checks
whether the query execution is safe. If executing the query may compromise
the system, an error is returned, otherwise the query is computed in a “sand-
boxed” environment and the results are returned to the user through JSON
messages. Sandboxing ensures that only predicates that do not have side ef-
fects, such as accessing the file system or loading foreign extensions, are called.

SWISH uses the SWI-Prolog Pengines library [80], which allows creating
Prolog engines from either an ordinary Prolog thread, another Pengine, or

2http://www.dcc.fc.up.pt/~vsc/Yap/
3http://www.swi-prolog.org/
4http://swish.swi-prolog.org/
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Figure 16.7: “TRILL on SWISH” web interface.

JavaScript running in a web client. Each Pengine is associated with a Prolog
thread with two private message queues, one for incoming requests and one
for outgoing responses, and a private dynamic clause database.

The SWISH web server is implemented by the SWI-Prolog HTTP package,
a series of libraries for serving data on HTTP [153].

For TRILL on SWISH we used the version of SWISH included in ClioPa-
tria5, a Semantic Web server based on SWI-Prolog which offers features that
allow handling RDF.

TRILL on SWISH, whose interface is shown in Figure 16.7, allows the
user to write a KB in the RDF/XML format in the left panel and write a
query in the bottom right panel. Both the KB and query editor have syntax
highlighting. Moreover, URIs in queries can be written without the base URI
or using a namespace defined in the RDF/XML file: the system checks for
possible misspellings of URIs that are reported to the user.

In case one needs KB serializations different from RDF/XML or prefers a

5http://cliopatria.swi-prolog.org/home
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GUI to build the KB, it is possible to use WebProtégé [143] to develop the
KB, then download it in RDF/XML and upload it into TRILL on SWISH.
Currently, we are working on the integration of the two systems in order to
allow users to modify the KB in both systems moving from one to the other
by just pressing a button.

We tested the robustness of the application by running two different stress
tests. First, we submitted queries without imposing a time limit for the exe-
cutions. The queries and the KBs were chosen in order to saturate the main
memory. Then, we set the time limit to 300 seconds, and we ran again all
the queries. In both cases, the serves simply kills or interrupts the thread
that exhausts the memory or that reaches the time limit, without affecting
the executions of other threads. An error message is returned to the client
regarding the motivation for the execution interruption. What is important to
bear in mind is that TRILL on SWISH is a testing tool useful for developing
and experimenting also in a collaborative way, but it is not befitting heavy
computations, for which a local installation should be used. For these reasons,
and to ensure the server responsiveness, we imposed a time limit of 300 sec-
onds on query execution. These tests show that the system is robust and can
manage high loads even in case of errors in some threads.

129



130



Chapter 17

TRILLP

TRILLP (for “Tableau Reasoner for descrIption Logics in Prolog powered by
Pinpointing formula”) is based on the reasoner TRILL but, differently from
it, TRILLP solves the min-a-enum problem following the approach shown in
Section 10.1.2. Therefore, TRILLP builds a pinpointing formula representing
the set of explanations for the query. Then the pinpointing formula can be
directly translated into a BDD.

Since TRILLP is based on TRILL, it inherits all its features. Thus, the
representation of the tableau and the management of the blocking system is the
same of TRILL with some minor differences due to the different representation
of the explanations. For example, in the representation of the tableau by a
pair (A, T ), the list A contains for each class assertion the pinpointing formula
instead of the list of explanations. In TRILLP the pinpointing formula is
encoded by means of the combination of the predicates and/1 and or/1. For
example, the Boolean formula ((F2 ∧ F4)∨ (F3 ∧ F5))∧ F6 ∧ F1 from Example
2 is modeled as and([or([and([F2,F4]),and([F3,F5])]),F6,F1]).

As seen in Section 10.1.2, the algorithm for computing the pinpointing for-
mula is limited to ALC DL KBs, thus TRILLP uses a subset of the rules im-
plemented in TRILL. apply_nondet_rules/3 and apply_det_rules/3 pred-
icates are called as shown in Figure 17.1 which contains a snippet of the code
for executing the tableau expansion rules. For the sake of simplicity the fig-
ure contains only the definition of the predicates that have been modified in
TRILLP .

In Figure 10.1, the symbol (∗) denotes the rules used by TRILLP . In these
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apply_all_rules(Tab0,Tab):-
apply_nondet_rules([or_rule],Tab0,Tab1),
(Tab0=Tab1 ->

Tab=Tab1
;

apply_all_rules(Tab1,Tab)
).

apply_nondet_rules([],Tab0,Tab):-
apply_det_rules([and_rule,unfold_rule,
add_exists_rule,forall_rule,
exists_rule],Tab0,Tab).

Figure 17.1: A snippet of the code for the application of the expan-
sion rules by means of apply_all_rules/2, apply_nondet_rules/3 and
apply_det_rules/3. What one should note is the difference in the rule lists
with those of TRILL, shown in Figure 16.5

rules, τ associates the pinpointing formula to label of the class assertion, while
the operator ∪ for τ joins two Boolean formulas with the OR Boolean operator.
Moreover, when a concept is already present in a node label, TRILLP checks
whether to update the tracing function by performing a ψ−insertability test.
This test is done by means of a satisfiability solver. In particular, TRILLP

conjoins the negation of the pinpointing formula contained in the label of
the individual in the tableau with the Boolean formula we want to add to
the label and tests the satisfiability of such formula. This step is performed
by the test/2 predicate shown in Figure 17.2. The predicate test/2 first
calls build_f/3 which takes two Boolean formulas L1 and L2 and creates the
conjunction that will be tested by means of the satisfiability solver. Predicates
cnf/2 and sat/1 are defined in Prolog built-in libraries providing the interface
to a SAT solver. These libraries were originally presented in [27], where the
authors described the implementation of an interface between Prolog and the
MiniSat SAT solver [39], a small (about 1200 lines of C code) and efficient
SAT solver. Predicate cnf/2 converts a propositional formula F, in which the
Boolean operators and, or and not are represented by *, + and - respectively,
into a conjunctive normal form Cnf. Finally, sat/1 takes as input such a
conjunctive normal form formula and succeeds if it is satisfiable. If the test
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test(L1,L2):-
build_f(L1,L2,F),
cnf(F,Cnf),
sat(Cnf).

build_f([L1],[L2],(F1*(-F2))):-
build_f1(L1,F1,[],Var1),
build_f1(L2,F2,Var1,_Var).

Figure 17.2: Definition of the predicates test/2 and build_f/3.

returns true, TRILLP combines the two Boolean formulas with the OR Boolean
operator.

TRILLP , differently from TRILL, computes directly a pinpointing formula
which is a monotone Boolean formula that represents the set of all MinAs.
Once the pinpointing formula is built, we can apply knowledge compilation
and directly transform it into a Binary Decision Diagram (BDD), from which
we can compute the probability of the query in a way similar to that of TRILL
shown in Figure 16.6. In TRILLP the predicates bdd_or/3 and bdd_and/3 in
order to convert general pinpointing formulas to BDDs.

TRILLP is available for Yap Prolog1 [127]. The code can be obtained from
https://sites.google.com/a/unife.it/ml/trill.

1http://www.dcc.fc.up.pt/~vsc/Yap/
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Chapter 18

Complexity of Inference

We start the discussion about the complexity of the algorithms presented in
this Part from the results of Jung and Lutz [67] on the problem of computing
the probability of conjunctive queries to probabilistic databases in the presence
of an ontology. In their settings, the TBox is certain while the ABox can con-
tain probabilistic axioms which are then associated with pairwise independent
Boolean random variables. Even in the presence of an ELI non-probabilistic
TBox (less expressive than DL-Lite), only very simple conjunctive queries can
be answered in PTime, while most queries are #P-hard.

The class #P [145] describes counting problems associated with decision
problems in NP. More formally, #P is the class of function problems of the
form “compute f(x)”, where f is the number of accepting paths of a non-
deterministic Turing machine running in polynomial time. A prototypical #P
problem concerns the computation of the number of satisfying assignments of
a conjunctive normal form (CNF) Boolean formula. #P problems were shown
very hard. First, a #P problem must be at least as hard as the corresponding
NP problem. Second, [141] showed that a polynomial-time machine with a #P
oracle (P#P) can solve all problems in PH, the entire polynomial hierarchy.

In DISPONTE, if we restrict to probabilistic axioms in the ABox only we
are same settings considered in [67], thus these complexity results, provide a
lower bound for DISPONTE.

In order to investigate the complexity of the three systems presented in
the previous chapters, we can consider the two problems that they solve for
answering a query separately. The first one is axiom pinpointing in both its ver-
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sions, i.e., finding the set of all MinAs or finding the pinpointing formula. The
computational complexity of the first version has been studied in a number of
works [102, 103, 104]. Baader et al. [6] showed that there can be exponentially
many MinAs for a very simple DL that allows only concept intersection.

Example 17. Given an integer n ≥ 1, consider the TBox

Tn = {Bi−1 v Pi uQi, Pi v Bi, Qi v Bi|1 ≤ i ≤ n}

The size of Tn is linear in n and Tn |= B0 v Bn. There are 2n MinAs for
B0 v Bn since, for each i, 1 ≤ i ≤ n, it is enough to have Pi v Bi or Qi v Bi

in the set.

The number of explanations for SROIQ(D) may be even larger. Given this
fact, we do not consider complexity with respect to the input only. Corollary
15 in [104] shows that min-a-enum cannot be solved in output polynomial
time for DL-Litebool TBoxes unless P = NP . An algorithm runs in output
polynomial time [66] if it computes all the output in time polynomial in the
overall size of the input and the output. If we consider SROIQ(D), the results
obtained for DL-Litebool also hold, since it is a sublogic of SROIQ(D). When
explicitly considering the problem of finding a pinpointing formula, Corollary
3 in [4] shows that a pinpointing formula for the unsatisfiability of a concept
w.r.t. an ALC KB can be computed in time exponential in the size of the
input.

The second problem to be solved is computing the probability of a query.
This problem can be reduced to computing the probability of a sum-of-

products.

Definition 3 (sum-of-products). Given a Boolean expression S in disjunctive
normal form (DNF) or a sum-of-products in the variables {V1, . . . , Vn} and
P (Vi), the probability that Vi is true with i = 1, . . . , n, compute the probability
P (S) of S, assuming all variables are independent.

We have already seen that the input of the sum-of-products problem is of
at least exponential size in the worst case, moreover sum-of-products was
shown to be #P-hard (see e.g. [111]), hence computing the probability of an
axiom from a SHOIN (D) knowledge base is intractable.
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However, the algorithms proposed for solving the two problems were shown
to be able to work on inputs of real world size. For example, all MinAs have
been found for various entailments over many real world ontologies within a
few seconds [68, 70]. As regards the sum-of-products problem, algorithms
based on BDDs were able to solve problems with hundreds of thousands of
variables (see e.g. the works on inference on probabilistic logic programs [34,
117, 118, 123, 73, 125, 124, 119, 120]). Also methods for weighted model
counting [128, 23] can be used to solve the sum-of-products problem.

Moreover, Section 20 shows that in practice our algorithms can compute
the probability of entailments on KBs of real-world size.
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Chapter 19

Related Inference Systems

Despite the large number of proposals for combining probability and DLs and
the even larger availability of DL reasoner systems, there is a lack of systems
that perform probabilistic inference on probabilistic DLs. One of the first
probabilistic reasoners is PRONTO [74]. Similarly to BUNDLE, this system
is based on Pellet, but differently from it, PRONTO exploits also a linear pro-
gram solver such as GLPK1 in order to execute inference on P-SHIQ(D) [88]
KBs. In these KBs, as already seen in Chapter 13, the probabilistic part
contains conditional constraints of the form (D|C)[l, u] that informally mean
“generally, if an object belongs to C, then it belongs to D with a probability in
the interval [l, u]”. PRONTO performs probabilistic lexicographic entailment
by means of solving Probabilistic Satisfiability problems (PSATs) and tight
logical entailments. Pellet is used to help the generation of linear programs
given as input to the linear program solver.

ELOG [99] is a reasoner for the log-linear DL EL++-LL. As seen in Chap-
ter 13, this semantics combines DLs with probabilistic log-linear models to
associate a real-valued weight, which defines a degree of confidence, to any
axiom of a EL++-LL KB. ELOG casts inference as an optimization problem,
similarly to PRONTO it first transforms the inference problem into an integer
linear program. Then it applies cutting plane inference in order to restrict the
optimization problem: first it solves the optimization problem without some
constraints and then it iteratively adds the constraints that are violated by the
previously found solution until no more constraints can be added.

1https://www.gnu.org/software/glpk/
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BUNDLE differs from these systems in the probabilistic semantics consid-
ered and in the fact that it does not exploit linear program solvers.

Looking beyond the combination of probability theory with DLs,
fuzzyDL [15] is a DL reasoner supporting fuzzy logic reasoning implemented in
Java. It combines a tableaux algorithm and a Mixed Integer Linear Program-
ming (MILP) optimization problem to execute inference on fuzzy DLs [139,
140], which are extensions to classical DLs for allowing the specification of
fuzzy (or vague, imprecise) concepts. For a survey on fuzzy DLs we refer the
reader to [89]. This system differs from BUNDLE not only in the use of a lin-
ear program solver, but also because it performs inference on fuzzy KBs whose
underlying uncertainty basis is completely different from those of DISPONTE.

Differently from BUNDLE and from the systems presented above, reasoners
written in Prolog can exploit Prolog’s backtracking facilities for performing the
search in presence of non-deterministic operations. This has been observed in
various works. Beckert and Posegga [10] proposed a tableau reasoner in Prolog
for First Order Logic (FOL). It is based on free-variable semantic tableaux but
it is not tailored to DLs.

In [63] the authors presented the KAON2 algorithm. It exploits a refuta-
tional theorem proving method for FOL with equality, called basic superpo-
sition, and a new inference rule, called decomposition, in order to reduce a
SHIQ KB into a disjunctive datalog program.

DLog [86] is able to execute ABox reasoning for the SHIQ language. It
allows storing the content of the ABox externally in a database and answering
instance check and instance retrieval queries by transforming the KB into a
Prolog program.

Meissner [94] presented the implementation of a Prolog reasoner for the
DL ALCN . This work was extended by the work of Herchenröder [59], which
considered ALC and improved the work of Meissner by implementing heuristic
search techniques to reduce the running time. Faizi [40] added to [59] the pos-
sibility of returning information about the steps executed during the inference
process but still handled only ALC.

A different approach is the one of Ricca et al. [115] that presented On-
toDLV, a system for reasoning on a logic-based ontology representation lan-
guage called OntoDLP. This is an extension of (disjunctive) Answer Set Pro-
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gramming (ASP) and can interoperate with OWL. OntoDLV, after rewriting
the OWL KB into the OntoDLP language, can retrieve information directly
from external OWL Ontologies and uses ASP to answer queries.

In [49] and [48], we addressed representation and reasoning for Datalog±

ontologies in an Abductive Logic Programming framework, with existential
and universal variables, and Constraint Logic Programming constraints in rule
heads. The underlying abductive proof procedure can be directly exploited as
an ontological reasoner for query answering and consistency check.

All these systems do not return the set of explanations, thus they cannot be
applied to our problem. Moreover, TRILL differs from the previous works for
the target description logics (ALC). Finally, both TRILL and TRILLP differ
from DLog for the possibility of answering general queries instead of instance
check and instance retrieval only. Note that all the above mentioned logic
programming systems are not probabilistic reasoners, hence they are not able
to compute probability of queries and for this reasons they require extensions
to deal with uncertainty.

FOProbLog [18] is an extension of ProbLog. Similarly to our systems, it
follows the distribution semantics and exploits BDDs to compute the proba-
bility of queries. Nonetheless, FOProbLog is a reasoner for FOL not tailored
to DLs, so the algorithm could be suboptimal for them. Moreover it cannot
manage probabilistic facts which are annotated with more than one probability
value.
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Chapter 20

Experiments

In order to test the performance of our reasoning systems we performed several
experiments. All the experiments have been performed on Linux machines with
a 3.10 GHz Intel Xeon E5-2687W. For BUNDLE we allotted 2GB memory to
Java. In the following, each section presents a different test. At the end,
Section 20.6 discusses the results.

20.1 BUNDLE: Comparison with PRONTO

We compared BUNDLE with PRONTO by running queries w.r.t. increasingly
complex ontologies.

In the first experiment, following the approach shown in [75], we generated
the test ontologies by randomly sampling axioms from a large probabilistic
ontology that models breast cancer risk assessment (BRCA). The main idea
behind the design of the ontology was to reduce risk assessment to probabilistic
entailment in P-SHIQ(D). The BRCA ontology contains a certain part and a
probabilistic part. The tests were defined by randomly sampling axioms from
the probabilistic part of this ontology which were then added to the certain
part in order to create samples which are probabilistic KBs containing the full
certain part of the BRCA ontology and a subset of the probabilistic constraints.
The number of these constraints varied from 9 to 15, and, for each number,
we generated 100 different consistent ontologies.

In order to generate a query, we added an individual a to the ontology that
is randomly assigned to each class that appears in the sampled conditional
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constraints with probability 0.6. If the class is composite, as for example Post-
menopausalWomanTakingTestosterone, a is assigned to the component classes
rather than to the composite one. In the example above, a will be added to
PostmenopausalWoman and WomanTakingTestosterone.

The ontologies were translated into DISPONTE by replacing each con-
straint (D|C)[l, u] with the axiom u :: C v D. For instance, the statement
that an average woman has up to 12.3% chance of developing breast cancer in
her lifetime expressed by

(WomanUnderAbsoluteBRCRisk|Woman)[0, 0.123]

is translated into

0.123 :: WomanUnderAbsoluteBRCRisk v Woman

For each ontology, we randomly selected a class C among those that represent
women under increased and lifetime risk such as WomanUnderLifetimeBR-
CRisk and WomanUnderStronglyIncreasedBRCRisk and performed the query
a : C. We then applied both BUNDLE and PRONTO to each generated test
and we measured the execution time for inference and the memory used. Fig-
ure 20.1a shows the execution time averaged over the 100 KBs as a function
of the number of probabilistic axioms and, similarly, Figure 20.1b shows the
average amount of memory used. As one can see, inference times are simi-
lar for small knowledge bases, while the difference between the two reasoners
rapidly increases for larger knowledge bases. The memory usage for BUNDLE
is always less than 53% that of PRONTO.

A second test was performed over larger KBs, following the method of [76].
We considered three different datasets:

• an extract from the Cell1 ontology which represents cell types of the
prokaryotic, fungal, and eukaryotic organisms;

• an extract from the NCI Thesaurus2 that describes human anatomy;

1http://cellontology.org/
2http://ncit.nci.nih.gov/
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(a) Average execution time (s) for inference.
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(b) Average memory consumption (Kb) for inference.

Figure 20.1: Comparison of average execution time and memory consumption
between BUNDLE and PRONTO on the BRCA KB.
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Table 20.1: BUNDLE’s average execution time and number of executions ter-
minated with a time-out (TO) for the queries to the Cell, Teleost and NCI
KBs. The first column reports the expressiveness of each KB and the size of
the non-probabilistic TBox.

Size of the Probabilistic TBox
Dataset & Infos 0 250 500 750 1,000
Cell runtime (s) 0.76 2.84 3.88 3.94 4.53
ALE+, 1,263 TBox axioms TO 0 28 39 50 55
Teleost runtime (s) 2.11 8.87 31.80 33.82 36.33
ALEI+, 3,406 TBox axioms TO 0 7 32 32 44
NCI runtime (s) 3.02 11.37 11.37 16.37 24.90
ALE+, 5,423 TBox axioms TO 0 1 24 23 36

• an extract from the Teleost_anatomy3 ontology (Teleost for short) that
is a multi-species anatomy ontology for teleost fishes.

For each of these KBs, we considered the versions of increasing size used by [76]:
they add 250, 500, 750 and 1,000 new probabilistic conditional constraints to
the publicly available non-probabilistic version of each ontology. We converted
these KBs into DISPONTE in the same way as for the BRCA ontology and
we created a set of 100 different random subclass queries for each KB. The
generation of the queries was made by building the hierarchy of each KB
and randomly selecting two classes connected in the hierarchy, so that each
query had at least one explanation. We imposed a time limit of 5 minutes for
BUNDLE to answer each query. If this limit is reached, BUNDLE’s answer is
“time-out”.

In Table 20.1 we report, for each version of the datasets, the average exe-
cution time and the number of queries that terminated with a time-out (TO)
for BUNDLE. The averages are computed on the queries that did not end
with a time-out. In addition, we report the expressiveness and the number
of non-probabilistic TBox axioms of each KB. In all these cases, PRONTO
terminates with an out-of-memory error.

As can be seen, BUNDLE can manage larger KBs than PRONTO due to
the lower amount of memory needed, as confirmed by the previous tests on

3http://phenoscape.org/wiki/Teleost_Anatomy_Ontology
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Table 20.2: BUNDLE’s average execution time for the queries without expla-
nations to the Cell, Teleost and NCI KBs.

Size of the Probabilistic TBox
Dataset 0 250 500 750 1,000
Cell runtime (s) 0.47 1.52 2.43 2.52 3.14
Teleost runtime (s) 1.15 4.51 12.76 14.69 15.27
NCI runtime (s) 1.42 4.15 5.99 7.41 7.63

BRCA. Moreover, BUNDLE answers most queries in a few seconds. However,
some queries have a very high complexity that causes BUNDLE to reach the
time-out, confirming the complexity results. In these cases, since the time-out
is reached during the computation of the explanations, limiting the number
of explanations is necessary, obtaining a lower bound on the probability that
becomes tighter as more explanations are allowed.

20.2 BUNDLE: Not Entailed Queries

Regarding BUNDLE, in a further test we investigated cases for which sub-
sumption does not hold. Thus, for the same versions of increasing size of the
Cell, NCI and Teleost KBs we randomly created 100 different subclass queries
that do not have explanations. In Table 20.2 we report, for each KB, the run-
time in seconds. As for the previous test, we set a time-out of 5 minutes but
this limit was never reached.

20.3 BUNDLE: Inference with Limited Number

of Explanations

We studied how the execution time and the probability of queries vary when
imposing a limit on the number of explanations.

We chose the Grid4 KB that is part of the myGrid project. The Grid
KB has already been used for testing the performances of Pellet in [70]. It

4http://www.myGrid.org.uk/
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belongs to the bioinformatics domain and contains concepts at a high level of
abstraction. For the test, we used a version of the Grid KB with SHOIN
expressiveness that contains 2,838 axioms, 550 atomic concepts, 69 properties
and 13 individuals, downloaded from the Tones repository5. We associated
a probability of 0.5 to each axiom of the KB and then we ran 100 different
subclass queries. The queries were created as in the previous sections, first the
hierarchy of the KB was computed and then concepts were randomly selected
in order to create queries with at least one explanation.

We first computed the correct probability of each query by using BUNDLE
without a limit on the number of explanations. Then we ran each query
several times, each time with an increasing limit. The maximum number of
explanations is 16: there were 20 queries with 16 explanations but most of
the queries have a number of explanations between 1 and 5. The value of the
limit was varied from 2 to 16 with step 2. We computed the relative error e
between the correct probability p of a query and the probability p′ returned
by BUNDLE with a limit on the number of explanations with the formula
e = p−p′

p
. Then we averaged the relative error over all the queries.

In Figure 20.2 we show how the mean relative error varies with respect to
the limit on the number of explanations. As can be seen, the quality of the
answer increases as the limit on the number of explanations increases. Table
20.3 reports the execution times, averaged over all the 100 queries. The row of
Table 20.3 with “–” in the first column contains the average execution time for
BUNDLE without a limit on the number of explanations. Figure 20.3 shows
the execution time as a function of the limit on the number of explanations,
based on the values of Table 20.3.

20.4 BUNDLE: Scalability

For testing the scalability of BUNDLE, we considered two different KBs: the
full version of the NCI Thesaurus (NCI_full for short) with SH expressive-
ness that contains 3,382,017 axioms, and the Foundational Model of Anatomy
Ontology (FMA for short)6 with ALCOIN (D) expressiveness. FMA is a KB

5http://rpc295.cs.man.ac.uk:8080/repository/browser
6http://sig.biostr.washington.edu/projects/fm/index.html
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Figure 20.2: Mean relative error of the probability of queries computed with
BUNDLE as a function of the limit on the number of explanations for the Grid
KB.

Table 20.3: BUNDLE’s average execution time depending on the limit on the
number of explanations for the Grid KB. The last row reports the execution
time spent for finding the set of all explanations when no limits are imposed.

Limit on the
explanations Runtime (s)

0 0.81
2 1.40
4 1.44
6 1.46
8 1.49
10 1.52
12 1.55
14 2.10
16 9.36
– 18.44
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Figure 20.3: BUNDLE’s average execution time (s) as the limit on the number
of explanations to the queries varies for the Grid KB.

for biomedical informatics that models the phenotypic structure of the human
body anatomy. It contains 88,252 axioms in the TBox and RBox and 237,382
individuals.

For NCI_full we generated 10 ontologies of increasing size that contain
10%, ..., 100% of the axioms. Then we randomly selected an increasing num-
ber of certain axioms from these subontologies and made them probabilistic.
We sampled 5,000, 10,000, 15,000, 20,000, 25,000 different probabilistic ax-
ioms, obtaining 50 different probabilistic KBs with total size from 338,201 to
3,382,017 axioms. Then we randomly created 100 subclass queries for each of
the 50 subontologies and ran them. Figure 20.4 shows the trend of the runtime
averaged over the queries with respect to the total size of the ontologies and
the subset of probabilistic axioms. The maximum time spent for computing
the probability of a query is 266.24 seconds with the KB that contains 90% of
the axioms.

Finally, we exploited the FMA ontology for running a scalability test where
only the size of the ABox varies. We generated versions of the ontology that
contain the entire TBox and RBox, 500 probabilistic axioms and an increasing
number of individuals. The size of the ABox varies between 50,000 and all
the axioms contained in the full ABox with a step of 50,000. We generated
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Figure 20.4: BUNDLE’s average execution time (s) for the queries to the
NCI_full KB on versions of increasing size of the ontology and of the proba-
bilistic part. The x axis contains the total number of axioms of the KB (includ-
ing the probabilistic ones) while the y axis contains the number of probabilistic
axioms.

100 instance-of queries by randomly selecting an individual and a class among
those to which it belongs. Figure 20.5 shows how the runtime averaged over
the queries varies with respect to the size of the ABox. With 237,382 individ-
uals, which correspond to the entire ABox, BUNDLE raises an out-of-memory
error. The maximum inference time reached is 298.98 seconds with 200,000
individuals.

20.5 TRILL, TRILLP & BUNDLE: Comparing

Different Approaches

In order to evaluate the performances of TRILL and TRILLP , we compared
them with BUNDLE. We used four different knowledge bases of various com-
plexity:

• BRCA7 used in the comparison with PRONTO;

7http://www2.cs.man.ac.uk/~klinovp/pronto/brc/cancer_cc.owl
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Figure 20.5: BUNDLE’s average execution time (s) for the queries to the FMA
KB with respect to the increasing size of the ABox. BUNDLE cannot manage
the entire ABox (237,382 individuals).

• an extract of the DBPedia8 ontology obtained from Wikipedia;

• Biopax level 39, which models metabolic pathways;

• Vicodi10, which contains information on European history.

For the tests, we used a version of the DBPedia and Biopax KBs without
the ABox and a version of BRCA and of Vicodi with an ABox containing 1
individual and 19 individuals respectively. We added 50 probabilistic axioms
to each KB. The probability values were learned using EDGE (see Section
22.2), a system that computes the probability associated with axioms starting
from a set of positive and negative examples.

For each dataset we randomly created 100 different queries. In particular,
for the DBPedia and Biopax datasets, we created 100 subclass-of queries, while
for the other KBs we created 80 subclass-of and 20 instance-of queries. For
generating the subclass-of queries, we randomly selected two classes that are
connected in the hierarchy of classes, so that each query had at least one

8http://dbpedia.org/
9http://www.biopax.org/

10http://www.vicodi.org/
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Table 20.4: Expressiveness, average number of MinAs and average time (in
seconds) for computing the probability of queries with the reasoners TRILL,
TRILLP and BUNDLE.

avg. n. TRILL TRILLP BUNDLE
Dataset Expres.ness of MinAs time (s) time (s) time (s)
BRCA ELH 6.49 27.87 4.74 6.96
DBPedia EL 16.32 51.56 4.67 3.79
Biopax level 3 SHOIN (D) 3.92 0.12 0.12 1.85
Vicodi ALH(D) 1.02 0.19 0.19 1.12

explanation. For the instance-of queries, we randomly selected an individual
a and a class to which a belongs by following the hierarchy of the classes,
starting from the classes to which a explicitly belongs in the KB.

Table 20.4 shows, for each ontology, the average number of different MinAs
computed and the average time in seconds that TRILL, TRILLP and BUNDLE
take for computing the probability of the queries. In particular, BRCA and the
version of DBPedia used contain a large number of subclass axioms between
complex concepts.

20.6 Discussion

BUNDLE has been compared with the probabilistic reasoner PRONTO and
tested for scalability on several real world KBs. The experiments show that
BUNDLE is able to deal with ontologies of significant complexity due to the
low amount of memory needed. Moreover, BUNDLE answers most queries in
a few seconds. In case of high complexity queries, a limit on the running time
or on the number of explanations to find can be set, in this case BUNDLE
returns an approximate value of the probability of the query. The value is a
lower bound that becomes tighter as more explanations are found.

Encouraged by the good results obtained by BUNDLE, we compared its
performances with those of TRILL and TRILLP in order to evaluate them.
The results of the comparison show that the performances of TRILL and
TRILLP are comparable with and sometimes better than those of BUNDLE,
even if they lack all the optimizations that BUNDLE inherits from Pellet. In
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particular, when a KB is relatively simple, BUNDLE’s higher cost is due to
its expensive initialization phase that is not present in TRILL and TRILLP ,
while this initialization phase becomes more effective in case of more com-
plex KBs. These results represent evidence that a Prolog implementation of
Semantic Web tableau reasoners is feasible and that may lead to practical sys-
tems. Moreover, TRILLP provides an improvement of the execution time with
respect to TRILL when more MinAs are present.
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Part V

Learning in Probabilistic DLs
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Chapter 21

Learning

In Chapter 11 we have discussed the problem of learning in probabilistic logic
programming (PLP). We have seen that the learning problem can be divided in
two different sub-problems: (1) parameter learning and (2) structure learning.

Parameter learning takes as input a KB and a set of positive and negative
examples and returns the parameters for the axioms in the KB such that they
maximize a scoring function, while structure learning, given the same inputs,
returns a new KB containing new axioms together with their parameters which
maximizes the scoring function.

Probabilistic logics are of foremost importance also in the Semantic Web
since uncertain information is ubiquitous in real world domains and in the
resources available on the Web, due to methods used for collecting data and to
the inherently distributed nature of the data sources. It is thus very important
to develop probabilistic DLs so that the uncertainty is directly represented
and managed at the language level. For this reason, taking inspiration from
PLP, we developed the DISPONTE semantics, discussed in Chapter 12. In
DISPONTE, axioms are labeled with numeric parameters representing their
probability. However these parameters are difficult to set for humans. On the
other hand, data is usually available that can be leveraged for tuning them. We
are thus interested in systems that automatically learn the probability values
starting from the information available in the KB.

However, despite the adoption of the Semantic Web, knowledge bases are
costly to manually update and so many are incomplete or incorrect. Moreover,
a well specified KB can speed up the process of inference by avoiding false
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information, useless subsumptions, etc. Therefore, there is a need of algorithms
able to correct and/or improve the quality of the information modeled in KBs.
In Chapter 22 we present EDGE, a system for learning the parameters of
probabilistic KBs. EDGE is based on EMBLEM [13], a PLP learning system
developed for learning the parameters for probabilistic logic programs under
the distribution semantics. This can aid the creation of better KBs, but if we
want to correct or improve information we need also algorithms able to learn
the structure. The field of DLs structure learning is relatively recent and not
many such algorithms exist. In Chapter 23 we present LEAP, an algorithm
that combines parameter and structure learning in order to induce DISPONTE
KBs.

In the last few years, the amount of data to process has exponentially
increased. This led to the need of algorithm able to scale to large datasets.
One of the possible solution to allowing that is the exploitation of parallelized
and distributed approaches exploiting clusters and clouds. In Chaper 24 we
show how EDGE and LEAP have been extended to cope with this necessity.

The tests described in Chapter 26 demonstrate the effectiveness of our
approaches.
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Chapter 22

EDGE: Parameter Learning

In this chapter, we present a supervised machine learning approach, imple-
mented in the system EDGE (“Em over bDds for description loGics paramEter
learning”). It is based on the algorithm EMBLEM [13] which is adapted to the
case of probabilistic DLs under the DISPONTE semantics, thus it learns the
parameters of DLs following the DISPONTE semantics from the information
available in the domain. EDGE takes as input a KB and a number of exam-
ples of instances and non-instances of concepts that represent the queries. For
each query, it generates the BDD encoding its explanations from the theory
by means of BUNDLE (Chapter 15). Queries are divided into positive and
negative examples: positive examples represent information that we regard as
true and for which we would like to get high probability, while negative exam-
ples represent information that we regard as false and for which we would like
to get low probability. The parameters are then tuned using an Expectation-
Maximization (EM) algorithm [36] in which the required expectations are com-
puted directly on the BDDs in an efficient way.

In the following, Section 22.1 describes in detail the EM algorithm used by
EDGE. After that, Section 22.2 presents the learning algorithm.

22.1 Expectation Maximization Algorithm

EM [36] is an iterative algorithm in which two steps, called expectation and
maximization, are repeated until the log-likelihood (LL) of the examples reaches
a local maximum. At each iteration, the log-likelihood of the example in-
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creases, i.e., the probability of positive examples increases and the one of neg-
ative examples decreases. The EM algorithm is guaranteed to find a local
maximum, which however may not be the global maximum.

Given the examples in the form of BDDs, let us now present the formulas
for the expectation and maximization phases:

• Expectation: for each query Q, EDGE computes E[ci0|Q] and E[ci1|Q]

for all axioms Fi where cix is the number of times variable Xi takes value
x for x ∈ {0, 1}:

E[cix|Q] = P (Xi = x|Q).

Then it sums up the contributions of the different examples

E[cix] =
∑
Q

E[cix|Q]

• Maximization: EDGE computes pi for all axioms Ei:

pi =
E[ci1]

E[ci0] + E[ci1]

P (Xi = x|Q) is given by P (Xi=x,Q)
P (Q)

. Suppose for the moment that the BDD has
been built without simplifying it with the deletion rule, i.e., each path from
the root to the leaves contains one node for every variable. Then

P (Xi = x,Q) =
∑

ρ∈R(Q)

P (Xi = x|ρ)
∏
d∈ρ

p(d)

where ρ is a path, R(Q) is the set of paths in the BDD for query Q that lead
to a 1 leaf, P (Xi = x|ρ) = 1 if Xi = x is in ρ and 0 otherwise, d is an edge
of ρ and p(d) is the probability associated with the edge: if d is the 1-branch
from a node associated with a variable Xi, then p(d) = pi, if d is the 0-branch,
then p(d) = 1− pi. P (Xi = x,Q) can be rewritten as

P (Xi = x,Q) =
∑

ρ∈R(Q)∧(Xi=x)∈ρ

∏
d∈ρ

p(d)

where (Xi = x) ∈ ρ means that ρ contains an x-edge from a node associated
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with Xi. We can then write

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi∧ρn∈Rn(Q)∧ρn∈Rchildx(n)(Q)

pix
∏
d∈ρn

p(d)
∏
d∈ρn

p(d)

where N(Q) is the set of nodes of the BDD, v(n) is the variable associated
with node n, Rn(Q) is the set containing the paths from the root to n, Rn(Q)

is the set of paths from n to the 1 leaf and where pix is pi if x=1 and (1− pi)
if x=0. So

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi

∑
ρn∈Rn(Q)

pix
∏
d∈ρn

p(d)
∑

ρn∈Rchildx(n)(Q)

∏
d∈ρn

p(d)

=
∑

n∈N(Q)∧v(n)=Xi

F (n)B(childx(n))pix

where

F (n) =
∑

ρn∈Rn(Q)

∏
d∈ρn

p(d)

is the forward probability [64], the probability mass of the paths from the root
to n, while

B(n) =
∑

ρn∈Rn(Q)

∏
d∈ρn

p(d)

is the backward probability [64], the probability mass of paths from n to the
1 leaf. If root is the root of a tree for a query Q then B(root) = P (Q) and
F (root) = 1, while for terminal node B(1) = 1 and B(0) = 0.

The expression F (n)B(childx(n))pix represents the sum of the probabilities
of all the paths passing through the x-edge of node n and is indicated with
ex(n). Thus

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi

ex(n) (22.1)

So P (Xi = x,Q) is a sum of a contribution for each node associated with
Xi, so all the nodes at the level of the Xi BDD variable. For the case of a
fully simplified BDD, i.e., a diagram obtained by applying also the deletion
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rule, Formula 22.1 is no longer valid since also paths where there is no node
associated with Xi can contribute to P (Xi = x,Q). Let Delx(X) be the set
of nodes n such that the level of X is below that of n and is above that of
childx(n), i.e., X is deleted between n and childx(n). These paths might have
been obtained from a BDD having a node m associated to variable Xi that is
a descendant of n along the 0-branch and whose outgoing edges both point to
child0(n). The correction of formula (22.1) to take into account of this aspect
is applied in the Expectation step.

In fact, suppose that a node n associated to variable Y has a level higher
than variable Xi and suppose that child0(n) is associated to variable W that
has a level lower than variable Xi. The nodes associated to variable Xi have
been deleted from the paths from n to child0(n). One can imagine that the
current BDD has been obtained from a BDD having a node m associated to
variable Xi that is a descendant of n along the 0-branch and whose outgo-
ing edges both point to child0(n). The original BDD can be re-obtained by
applying a deletion operation that merges the two paths passing through m.
The probability mass of the two paths that were merged was e0(n)(1− pi) and
e1(n)pi for the paths passing through the 0-child and 1-child of m respectively.

Formally

P (Xij = 0, Q) =
∑

n∈N(Q)∧v(n)=Xij

ex(n) +

(1− pi)

 ∑
n∈Del0(Xij)

e0(n) +
∑

n∈Del1(Xij)

e1(n)


P (Xij = 1, Q) =

∑
n∈N(Q)∧v(n)=Xij

ex(n) +

pi

 ∑
n∈Del0(Xij)

e0(n) +
∑

n∈Del1(Xij)

e1(n)



22.2 EDGE

EDGE performs supervised parameter learning. It is implemented in Java and
is available at https://sites.google.com/a/unife.it/ml/edge. It takes as
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Algorithm 8 Function EDGE: learning parameters of a (probabilistic) KB
K given positive (E+) and negative (E−) examples.
1: function EDGE(K, E+, E−, ε, δ,NL, TL)
2: Input: a knowledge base K
3: Input: a set of positive examples E+

4: Input: a set of negative examples E−
5: Input: a threshold ε for the difference between LLs
6: Input: a threshold δ for the fraction of the difference between LLs
7: Input: the maximum number of explanations to find for each example NL
8: Input: the time limit for the inference process for each example TL
9: Output: the final LL
10: Output: probabilities pi of the probabilistic axioms
11: Build BDDs . BUNDLE builds all the BDDs according to the limits NL and TL
12: LL = −inf
13: repeat
14: LL0 = LL
15: LL = Expectation(BDDs)
16: Maximization
17: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
18: return (LL, pi)
19: end function

input a DL theory, a number of positive examples (set E+) and a number of
negative examples (set E−).

EDGE’s main procedure, shown in Algorithm 8, first computes, for each
example, the BDD encoding its explanations using BUNDLE [line 11]. A limit
on the maximum number of explanations to be found (NL) or a time limit for
the search for explanations (TL) can be optionally set. For a positive example
of the form a : C, EDGE looks for the explanations of a : C and encodes them
in a BDD. For negative examples of the form a : ¬C, EDGE first looks for
the explanations of a : ¬C, if one or more are found it encodes them into a
BDD, otherwise it computes the explanations of a : C, builds the BDD and
then negates it with the NOT BDD operator.

Then EDGE enters in the EM cycle in which the procedures Expectation

and Maximization are repeatedly called [lines 15-16]. The first one returns
the log likelihood LL of the data that is used in the stopping criterion [line 17]:
EDGE stops when the difference between the LL of the current iteration and
the one of the previous iteration (LL0) drops below a threshold ε or when this
difference is below a fraction δ of LL. Finally, EDGE returns LL and the
probabilities pi of the probabilistic axioms.
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Algorithm 9 Function Expectation
1: function Expectation(BDDs)
2: Input: the set of BDDs for the queries BDDs
3: Output: the computed LL
4: LL = 0
5: for all i ∈ Axioms do
6: E[ci0] = E[ci1] = 0
7: end for
8: for all BDD ∈ BDDs do
9: for all i ∈ Axioms do
10: η0(i) = η1(i) = 0
11: end for
12: for all variables X do
13: ς(X) = 0
14: end for
15: GetForward(root(BDD))
16: Prob=GetBackward(root(BDD))
17: T = 0
18: for l = 1 to levels(BDD) do
19: Let Xi be the variable associated with level l
20: T = T + ς(Xi)
21: η0(i) = η0(i) + T · (1− pi)
22: η1(i) = η1(i) + T · pi
23: end for
24: for all i ∈ Axioms do
25: E[ci0] = E[ci0] + η0(i)/Prob
26: E[ci1] = E[ci1] + η1(i)/Prob
27: end for
28: LL = LL+ log(Prob)
29: end for
30: return LL
31: end function

Function Expectation (Algorithm 9) This function takes as input a
list of BDDs, one for each example Q, and computes the expectations E[ci0|Q]

and E[ci1|Q] for all axioms Ei directly over the BDDs. Then it sums up the
contributions of all examples E[cix].

In Algorithm 9 we use ηx(i) to indicate P (Xi = x,Q). Expectation

first calls GetForward and GetBackward [line 15-16] that compute the
forward and the backward probability of nodes and ηx(i) for non-deleted paths
only. These are the paths that have not been deleted when building the BDDs.
Then it updates ηx(i) to take into account deleted paths, using the array ς.
The expectations are updated in this way: for each axiom Ei, E[cix] = E[cix]+

ηx(i)/P (Q), where P (Q) is the backward probability of the root [lines 24-27].
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Algorithm 10 Procedure GetForward: computation of the forward prob-
ability F (n) in all BDD nodes n.
1: procedure GetForward(root)
2: Input: the root node root of a BDD
3: F (root) = 1
4: F (n) = 0 for all nodes
5: for l = 1 to levels do
6: Nodes(l) = ∅
7: end for
8: Nodes(1) = {root}
9: for l = 1 to levels do
10: for all node ∈ Nodes(l) do
11: Let Xi be v(node), the variable associated with node
12: if child0(node) is not terminal then
13: F (child0(node)) = F (child0(node)) + F (node) · (1− pi)
14: Add child0(node) to Nodes(level(child0(node))) . level(node) returns

node’s level
15: end if
16: if child1(node) is not terminal then
17: F (child1(node)) = F (child1(node)) + F (node) · pi
18: Add child1(node) to Nodes(level(child1(node)))
19: end if
20: end for
21: end for
22: end procedure

Procedure GetForward, shown in Algorithm 10, initializes table F , where
F (n) = 1 when n = root and 0 otherwise [lines 3-4]. It also initializes table
Nodes [lines 5-7] that associates levels of the BDD with the nodes they contain.
Then, it traverses the diagram one level at a time starting from the root level
and for each node n it computes its contribution to the forward probabilities
of its children [lines 9-19].

Function GetBackward, shown in Algorithm 11, computes the backward
probability of nodes by traversing recursively the tree from the leaves to the
root. When the calls of GetBackward for both children of a node n return
[lines 8-9], we have all the information that is needed to compute the ex values
and the value of ηx(i) for non-deleted paths [lines 10-13]. Array ς stores, for
every level-variable l, an algebraic sum of ex(n): those for nodes in upper
levels that do not have a descendant in level l minus those for nodes in upper
levels that have a descendant in level l. In this way it is possible to add
the contributions of the deleted paths by starting from the root level and
accumulating ς(l) for the various levels in a variable T : an ex(n) value which
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Algorithm 11 Procedure GetBackward: computation of the backward
probability, updating of η and of ς
1: function GetBackward(node)
2: Input: a BDD node node
3: Output: the backward probability of node
4: if node is a terminal then
5: return value(node)
6: else
7: Let Xi be v(node)
8: B(child0(node)) =GetBackward(child0(node))
9: B(child1(node)) =GetBackward(child1(node))
10: e0(node) = F (node) ·B(child0(node)) · (1− pi)
11: e1(node) = F (node) ·B(child1(node)) · pi
12: η0(i) = η0(i) + e0(node)
13: η1(i) = η1(i) + e1(node)
14: V Succ = succ(v(node)) . succ(X) returns the variable following X in the order
15: ς(V Succ) = ς(V Succ) + e0(node) + e1(node)
16: ς(v(child0(node))) = ς(v(child0(node)))− e0(node)
17: ς(v(child1(node))) = ς(v(child1(node)))− e1(node)
18: return B(child0(node)) · (1− pi) +B(child1(node)) · pi
19: end if
20: end function

is added to the accumulator T for level l means that n is an ancestor for nodes
in this level. When the x-branch from n reaches a node in a level l′ ≤ l, ex(n)

is subtracted from the accumulator, as it is not relative to a deleted node on
the path anymore [lines 14-18].

Computing the forward and the backward probabilities of BDD nodes re-
quires two traversals of the graph, so the cost is linear in the number of nodes.

Example 18. Suppose you have the program of Example 9 and you have the
single example kevin : NatureLover. The BDD of Figure 14.1 (also shown in
Figure 22.1) is built and passed to Expectation in the form of a pointer to
its root node n1. After initializing the η counters to 0, GetForward is called
with argument n1. Table F for n1 is set to 1 since this is the root. Then F is
computed for the 0-child, n2, as 0 + 1 · 0.6 = 0.6 and n2 is added to Nodes(2),
the set of nodes for the second level. Then F is computed for the 1-child,
n3, as 0 + 1 · 0.4 = 0.4, and n3 is added to Nodes(3). In the next iteration,
level 2 is considered and node n2 is fetched from Nodes(2). The 0-child is a
terminal so it is skipped, while the 1-child is n3 and its F value is updated as
0.4 + 0.6 · 0.3 = 0.58. In the third iteration, node n3 is fetched but since its
children are leaves, F is not updated. The resulting forward probabilities are
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X1 n1
F = 1
B = 0.348
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F=0.6
B=0.18
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0.6

0.4

1 0

Figure 22.1: Forward and backward probabilities (indicated respectively by F
and B) of each node of the BDD of Example 9.

shown in Figure 22.1.

Then GetBackward is called on n1 which is not a terminal node, hence
the function calls GetBackward(n2) that in turn calls GetBackward(0).
The latter call returns 0 because it is a terminal node. After that, the func-
tion calls GetBackward(n3) on node n3 whose children are both termi-
nal: GetBackward(1) returns 1 and GetBackward(0) returns 0. Then
GetBackward(n3) computes e0(n3) and e1(n3) in the following way:

e0(n3) = F (n3) ·B(0) · (1− p3) = 0.58 · 0 · 0.4 = 0

e1(n3) = F (n3) ·B(1) · (π21) = 0.58 · 1 · 0.6 = 0.348

where B(n) and F (n) are respectively the backward and forward probabilities
of node n. Now the counters for clause C3, are updated:

η0(3) = 0

η1(3) = 0.348

while we do not show the update of ς since its value for the level of the leaves is
not used afterwards. GetBackward(n3) now returns the backward probability
of n3 B(n3) = 0·0.4+1·0.6 = 0.6. GetBackward(n2) can proceed to compute

e0(n2) = F (n2) ·B(0) · (1− p2) = 0.6 · 0.0 · 0.7 = 0

e1(n2) = F (n2) ·B(n3) · (p2) = 0.6 · 0.6 · 0.3 = 0.216

and η0(2) = 0, η1(2) = 0.216. The variable following X2 is X3 so ς(X3) =

e0(n2) + e1(n2) = 0 + 0.216 = 0.216. Since X2 is also associated to the 1-child
n3, then ς(X3) = ς(X3)− e1(n2) = 0. The 0-child is a leaf so we do not show
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the update of ς .
GetBackward(n2) then returns B(n2) = 0 · 0.7 + 0.6 · 0.3 = 0.18 to

GetBackward(n1) that calls GetBackward(n3) that computes e0(n1) and
e1(n1) as

e0(n1) = F (n1) ·B(n2) · (1− p1) = 1 · 0.18 · 0.6 = 0.108

e1(n1) = F (n1) ·B(n3) · (p1) = 1 · 0.6 · 0.4 = 0.24

and updates the η counters as η0(1) = 0.108, η1(1) = 0.24.
Finally ς is updated:
ς(X2) = e0(n1) + e1(n1) = 0.108 + 0.24 = 0.348

ς(X2) = ς(X2)− e0(n1) = 0.24

ς(X3) = ς(X3)− e1(n1) = −0.24

GetBackward(n1) returns B(n1) = 0.18 · 0.6 + 0.6 · 0.4 = 0.348 to Ex-

pectation, which adds the contribution of deleted nodes by cycling over the
BDD levels and updating T . Initially T is set to 0, then, for variable X1, T is
updated to T = ς(X1) = 0 which implies no modification of η0(1) and η1(1).
For variable X2, T is updated to T = 0 + ς(X2) = 0.24 and table η is modified
as

η0(2) = 0 + 0.24 · 0.7 = 0.168

η1(2) = 0.216 + 0.24 · 0.3 = 0.288

For variable X3, T becomes 0.24+ς(X3) = 0 so η0(3) and η1(3) are not updated.
At this point the expected counts for the three axioms can be computed:

E[c10] = 0 + 0.108/0.348 = 0.310

E[c11] = 0 + 0.24/0.348 = 0.690

E[c20] = 0 + 0.168/0.348 = 0.483

E[c21] = 0 + 0.288/0.348 = 0.828

E[c30] = 0 + 0/0.348 = 0

E[c31] = 0 + 0.348/0.348 = 1

Procedure Maximization (Algorithm 12) This procedure computes
the parameters values pi for the next EM iteration by relative frequency using
the values of the expected counts.

Example 19 (Example 18 cont.). The expected counts have been computed by
the expectation step, thus EDGE can execute the maximization step to tune the
parameters of the probabilistic axioms.
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Algorithm 12 Procedure Maximization
1: procedure Maximization
2: for all i ∈ Axioms do
3: pi = E[ci1]/(E[ci0] +E[ci1])
4: end for
5: end procedure

p1 = E[c11]/(E[c10] + E[c11]) = 0.690/(0.310 + 0.690) = 0.690

p2 = E[c21]/(E[c20] + E[c21]) = 0.828/(0.483 + 0.828) = 0.632

p3 = E[c31]/(E[c30] + E[c31]) = 1/(0 + 1) = 1

We remind that previous parameter values were p1 = 0.4, p2 = 0.3 and
p3 = 0.6. As expected, since we have only a single positive example whose
explanations contain all the probabilistic axioms, their parameters increase.
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Chapter 23

LEAP: Structure Learning

In this chapter we present LEAP (“LEArning Probabilistic description log-
ics”), an algorithm able to learn both parameters and structure of DISPONTE
KBs. LEAP combines two algorithms, CELOE [83] and EDGE, as shown in
Figure 23.1. It first finds good candidate axioms (subsumption axioms) by
means of CELOE, then it performs a greedy search in the space of theories by
exploiting EDGE for learning the parameter of the probabilistic KB.

probabilistic 

component

non-probabilistic 

component

a
d
d
 a

x
io

m

L
L

CELOE

EDGE

BUNDLE

Figure 23.1: LEAP’s architecture.

LEAP is written in Java and is available at https://sites.google.com/
a/unife.it/ml/leap.

In the following, Section 23.1 presents CELOE and gives an overview of
class expression learning for DLs, while Section 23.2 shows LEAP’s code and
describes the algorithm.
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23.1 CELOE

CELOE [83] stands for “Class Expression Learning for Ontology Engineering"
and is available in the Java open-source framework DL-Learner1 for OWL and
DLs.

Suppose you are given a knowledge base K and that we want to learn a
formal description for a class Target which has (inferred or asserted) instances
in K. CELOE takes as input a target class and a set of positive and negative
(or only positive) examples (i.e. individuals) and solves one of Class Learning
Problem or Learning from Examples Problem.

If Target is already described by a class expression C, i.e., there are already
axioms such as Target v C or Target ≡ C in K, it is possible to learn a
description for Target by refining C or by relearning it from scratch, as stated
in Definition 4.

Definition 4 (Class Learning Problem). Let an existing named class Target
be in a knowledge base K. Let RK(C) be a retrieval reasoner operation that
returns the set of all instances of C. The class learning problem is to find an
expression C such that RK(Target) = RK(C).

CELOE creates a set of n class expressions Ci (1 ≤ i ≤ n) and serts them
according to a heuristic. Such expressions are candidates for adding axioms of
the form Target ≡ Ci or Target v Ci.

Otherwise, if a set of positive and negative examples or a set of positive
only examples is available, CELOE can exploit them to solve a problem of
learning from examples, as described in Definition 5.

Definition 5 (Learning from Examples Problem). Given:

• a concept name Target;

• a knowledge base K not containing Target;

• a space of possible concepts C;

• a set of positive examples E+ with elements of the form a : Target

(a ∈ I);
1http://dl-learner.org/Projects/DLLearner
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• a set of negative examples E− with elements of the form a : Target

(a ∈ I);

Find a concept expression C ∈ C such that:

• Target does not occur in C (acyclic definition);

• ∀e+ ∈ E+, the concept C covers the example e+, i.e., K ∪ {Target ≡
C} |= e+;

• ∀e− ∈ E−, the concept C does not cover the example e−, i.e., K ∪
{Target ≡ C} 6|= e−.

Here, if both sets E+ and E− of individuals are given the problem takes
the name of Positive and Negative Examples Learning Problem, while if only
the set E+ is available it is called Positive Examples Learning Problem.

A learning algorithm can be built as a combination of a refinement operator
and a search algorithm. The former determines how the search tree can be
built, the latter controls how the tree is traversed.

CELOE is a top-down algorithm that starts from the > class expression
and uses the ALCQ refinement operator defined in [84]. Each generated class
expression is evaluated using one of five available heuristics, whose value is
used to guide the search. All these heuristics need a set of examples in order
to be computed; in the case the algorithm is solving a class learning problem
where no examples are given, we can consider as positive examples the existing
instances (inferred or asserted) of the target class and the remaining instances
in the KB as negative examples.

Performing instance retrieval RK can be very expensive for large ontolo-
gies. In order to make CELOE scalable, three performance optimizations are
provided:

Reduction of instance checks: it exploits background knowledge in order
to reduce the number of considered individuals. If we know that class
Target has a super class A, top-down search looks for individuals be-
longing to A instead of >. In this way the number of negative examples
is lower.
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Approximate and closed world reasoning: it consists of using reasoners
specifically designed for performing a high number of instance checks in
the lowest time by partially following the closed world assumption.

Stochastic coverage computation: randomly drawn objects are tested un-
til a fixed width of the interval of confidence is reached. The confidence
interval is computed by using the improved Wald method defined in [2].
See [83] and [2] for further details.

23.2 LEAP

In order to learn the structure of a KB, LEAP first finds good candidate
subsumption axioms by means of CELOE, then it performs a greedy search in
the space of theories.

LEAP main procedure, shown in Algorithm 13, takes as input the KB
K and the type of learning problem LPtype; the maximum number of class
expressions NC and the time limit TLC for CELOE; the values of ε and δ,
the maximum number of explanations NL and the time limit TLE for the
computation of the BDDs for each example for EDGE2.

In the first phase, a set of class expressions is generated by using CELOE
[line 11], then the sets of positive (PI) and negative (NI) individuals are ex-
tracted depending on the learning problem LPtype:

• if LPtype = Positive and Negative Examples Learning Problem, then no
extraction is necessary since a set of positive and negative individuals
has been given;

• if LPtype = Positive Examples Learning Problem), then only the set of
negative examples must be created. In this case this set will contain all
the individuals of K except the positive ones;

• if LPtype = Class Learning Problem (cf. Definition 4) where only the tar-
get class has been given, then we consider the existing instances (inferred
or asserted) of the target class as positive individuals and the remaining
instances as negative individuals.

2Default values are: NC = 10, TLC = 10 seconds and NE = TLE =∞
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Algorithm 13 Function LEAP.
1: function LEAP(K, LPtype, NC, TLC, ε, δ,NL, TLE)
2: Input: a knowledge base K
3: Input: the type LPtype of learning problem
4: Input: the maximum number of class expressions to find NC
5: Input: the time limit for the inference for CELOE TLC
6: Input: a threshold ε for the difference between LLs
7: Input: a threshold δ for the fraction of the difference between LLs
8: Input: the maximum number of explanations to find for each example NL
9: Input: the time limit for the inference process for each example TLE
10: Output: the learned knowledge base K
11: ClassExpressions = up to NC or until TLC is reached . generated by CELOE
12: (PI , NI) = ExtractIndividuals(LPtype) . LPtype: specifies how to extract

(PI , NI)
13: for all ind ∈ PI do . PI : set of positive individuals
14: Add ind : Target to E+ . E+: set of positive examples
15: end for
16: for all ind ∈ NI do . NI : set of negative individuals
17: Add ind : Target to E− . E−: set of negative examples
18: end for
19: (LL0,K) = EDGE(K, E+, E−, ε, δ,NL, TLE)
20: for all CE ∈ ClassExpressions do
21: Axiom = p :: CE v Target

22: K′ = K ∪ {Axiom}
23: (LL,K′) = EDGE(K′, E+, E−, ε, δ,NL, TLE)
24: if LL > LL0 then
25: K = K′
26: LL0 = LL
27: end if
28: end for
29: return K
30: end function

After the extraction, the assertional axioms, which represent the examples
(i.e. queries) for EDGE, are created [lines 13-18]. Then EDGE is applied to
the KB to compute the initial value of the parameters and of the log-likelihood
LL [line 19].

In the second phase, LEAP performs a greedy search in the space of theories
[lines 20-28]. For each element CE of the class expressions set, one probabilistic
subsumption axiom at a time of the form p :: CE v Target is added to the
ontology K where p is either a random probabilistic value or the accuracy
returned by CELOE. After each addition, EDGE is run on the extended theory
to compute the log-likelihood of the data LL and the updated parameters
[line 23]. If LL is better than the current best LL0, the new axiom is kept in the

175



knowledge base, otherwise the new axiom is discarded [lines 24-27]. The final
theory, obtained from the union of the initial ontology and the probabilistic
subsumption axioms learned, is returned to the user.
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Chapter 24

Distributed Learning

In the last few years, the pervasiveness of Internet, the availability of sen-
sor data, the dramatically increasing storage and computational capabilities
provided the opportunity to gather exponentially increasing sets of data, the
so-called Big Data. The Semantic Web paved the way to the creation of Big
Data in the form of Open Linked Data where information is often distributed
on many different nodes. In previous chapters we presented two approaches
for learning from data. The main issue is given by the running time, the algo-
rithms may take hours on datasets of the order of MBs, depending on many
aspects such as the type of examples, the level of complexity of the KBs, etc.
In a field where the amount of data to be processed is large, it is of foremost
importance to develop approaches with the ability to scale, for taking into ac-
count more data. One solution is to distribute algorithms exploiting modern
high performance computing infrastructures, such as clusters and clouds.

Between 2004 and 2008 Google, guided by its needs to process large amounts
of raw data, presented and then extended a framework, called MapReduce [35],
for handling data of the order of Terabytes. In this model the work load is
distributed among mapper and reducer workers which execute map and re-
duce operations that aggregate data. MapReduce was inspired by the Message
Passing Interface (MPI) standard, developed in the 1995, which has reduce
and scatter operations.

In order to adapt our learning algorithms to the management of Big Data,
we implemented a parallelized version of EDGE, called EDGEMR. It was then
integrated into LEAP, leading to the implementation of LEAPMR. Various

177



MapReduce frameworks are available, such as Hadoop1. However, standard
MapReduce frameworks require purely functional operations, which may not
be optimal for our algorithms. Hence we chose not to use any framework and
to implement a basic MapReduce approach for EDGEMR based on MPI.

In the following, in Section 24.1 we give an introduction on MapReduce and
briefly discuss why it may not be optimal for our purposes while in Section
24.2 we present the MPI standard. Finally, Section 24.3 describes EDGEMR

and Section 24.4 discusses LEAPMR.

24.1 Map Reduce Approach

The name MapReduce [35] was inspired by two standard functions of many
functional programming languages such as LISP, namely map() and reduce().
MapReduce adds a variety of optimizations to make the functions scalable and
fault-tolerant. These two aspects are extremely important since MapReduce
is based on a distributed paradigm.

A MapReduce program is composed of two main steps:

Map Step: the data is taken in input, divided into chunks and distributed
among workers by a master process. In this phase, each worker processes
input data using a function map() defined by the user. The map() func-
tion takes on pair (key, value), produces one or more (stack_key , value′)

pairs and saves them to a shared file, usually in a distributed file system,
in a location known by all the nodes involved in the process.

Reduce Step: it is divided in two sub-steps: the shuffle step, where the mas-
ter collects the files created by the mappers and combines pairs with the
same key. The result is a set of pairs (stack_key , list_of _values), which
is the input for the reduce step. The reduce step executes a reduce() func-
tion, also written by the user, which produces one or more output results
- typically (stack_key , agg_value). The output is saved to a shared file.

In many applications, the map and reduce phases are iteratively called, in these
cases the output of the reduce function is used as input for a new execution of
the map function.

1https://hadoop.apache.org/
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Figure 24.1: Overall flow of a MapReduce operation (from [35]).

Figure 24.1 shows the general flow of a single iteration of MapReduce.
Usually, for each step shown in the figure, several different parameters can
be set to improve performances. First, all workers are initialized [steps 1-2]
and the input files are split. Here, the partitioning of the output is usually
done using hashing, but different partitioning function can be used. Then
each worker (mapper) reads its input [step 3], elaborates it and produces a file
containing the results [step 4]. Afterwards, the reducers read these files and
aggregate the pairs, producing the output files [step 6].

Nowadays there are many different implementations of MapReduce. One
of the most used is Hadoop, an open-source framework implemented by the
Apache Software Foundation. Usually, MapReduce frameworks exploit HDFS
as distributed file systems.

In our algorithm, we would like to keep in main memory information such as
the BDDs of the examples because building a BDD from the set of explanations
is very expensive (cf. Chapter 18). We think that keeping in memory such
information can improve significantly the running time of the algorithm. For
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these reasons, we decided not to exploit MapReduce frameworks, but we used
a simpler implementation of a MapReduce algorithm using MPI which is at
the basis of most of the available frameworks.

24.2 The Message Passing Interface Standard

The MPI protocol was standardized in 1994 after four years of work by the MPI
Forum2, a group of 80 people from 40 organizations, universities, governments
and industries. In the following years, the MPI Forum updated the protocol.
Today, the last version is MPI-3, approved in 2012.

The MPI standard defines the syntax and semantics of a core library of
routines for implementing distribute programs using mainly Fortran or C. One
of the most used implementation of the MPI protocol is OpenMPI3, which
permits the use of MPI also with Java by providing an interface to the native
library (JNI).

MPI processes can be assigned to a different CPU or a different machine.
The assignment is done at run-time, when a first initialization of all the pro-
cesses assigns a rank to each of them and creates communication worlds. The
rank is a number greater or equal to 0 used to identify every process. Typ-
ically, the rank 0 process is the master. Communication worlds are used to
group processes that can communicate with each other. Every time a pro-
cess sends a message, it has to specify which communicator should be used
for the communication, i.e., which group of processes can receive the message.
Each process is assigned to the MPI_COMM_WORLD communicator, which
groups all the processes, and can be assigned to other different application
specific communication worlds. Communications can be of many types such
as synchronous or asynchronous, one-to-one, one-to-many, many-to-many or
broadcast.

MPI also defines many functions for synchronizing nodes, dividing and
sending data (scattering), aggregating and combining (partial) results (gath-
ering and reducing), recovering information from the network, etc.

2http://www.mpi-forum.org/
3http://www.open-mpi.org/
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24.3 EDGEMR

EDGEMR uses MPI to distribute the computational load of EDGE following
an approach similar to MapReduce. As discussed in Section 24.1, the processes
of EDGEMR are not purely functional, as required by standard MapReduce,
because they have to retain in main memory BDDs during the whole execution.

Like most MapReduce frameworks, the EDGEMR architecture follows a
master-slave model. For the communication between the master and the slaves,
OpenMPI is adopted. EDGEMR can be split into three phases: Initialization,
Query resolution and Expectation-Maximization. All these operations are ex-
ecuted in parallel and synchronized by the master.

Initialization During this phase the data is replicated and a process is created
on each machine. Then each process parses its copy of the probabilistic
KB and stores it in main memory. The master, in addition, parses files
containing positive and negative examples (the queries).

Query resolution The master divides the set of queries into chunks and dis-
tributes them among the workers. Each worker generates its private
subset of BDDs and keeps them in memory for the whole execution.
Two different scheduling techniques can be applied for this operation,
called single-step and dynamic.

Expectation-Maximization Once all nodes have built the BDDs for their
queries, EDGEMR starts the Expectation-Maximization cycle. During
the Expectation step all the workers traverse their BDDs and calculate
their local array η. Then the master gathers all the ηs from the workers
and aggregates them by summing the arrays component-wise. Then it
calls the Maximization procedure in which it updates the parameters and
sends them to the slaves. The cycle is repeated until one of the stopping
criteria is satisfied.

Scheduling Techniques In a distributed context, the scheduling strategy
influences significantly the performances. We developed two scheduling strate-
gies, single-step scheduling and dynamic scheduling. The scheduling technique
is chosen during the initialization phase and affects only the generation of the
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Dynamic Scheduling This method is more flexible and adaptive than single-
step scheduling. Handling each query chunk may require a different
amount of time. Therefore, with single-step scheduling, it could happen
that a slave takes much more time than another one to deal with its
chunk of queries. This may cause the master and some slaves to wait.
Dynamic scheduling mitigates this issue. At first, each machine is as-
signed one example of queries in order. When a worker finishes handling
the example, it takes the following. So if the master ends handling its
example, it just picks the next one, while if a slave ends handling its ex-
ample, it asks the master for another one. During this phase the master
runs a listener thread that waits for slaves’ requests of new examples. For
each request, the listener starts a new thread that sends an example to
the requesting slave (to improve the performances this is done through a
thread pool). When all the BDDs for queries are built, EDGEMR starts
the EM cycle. An example of dynamic scheduling with two slaves and a
chunk dimension of one example is displayed in Fig. 24.2b.

MapReduce View From a MapReduce point of view, after the initialization
phase, the map phase executes query resolution and the expectation step, while
the reduce phase concerns only maximization. In particular

Map This phase is performed by every process. First query resolution is per-
formed where each worker builds its private set of BDDs, then expectation
is executed where each worker calculates its local η. The output pairs
(key, value) contain an example identifier as key and the array η as value.

Reduce This phase is performed by the master (also referred to as the “re-
ducer”) and it can be seen as a function that returns pairs (i, pi), where
i is an axiom identifier and pi is its probability. The master executes
the maximization step, where it gathers all η arrays from the workers,
sums them component wise, performs the maximization step and sends
the newly updated parameters to the slaves.

The Map and Reduce phases implement the functions Expectation and Maxi-
mization respectively, hence they are repeated until a local maximum is reached.
It is important to notice that the Query Resolution step in the Map phase is
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executed only once because the workers maintain in memory the generated
BDDs for the whole execution of the EM cycle.

In EDGEMR’s main procedure, shown in Algorithm 14, first each process
reads the given input. Then the master, depending on the scheduling, sends the
examples to the slaves and builds its BDDs [lines 14-27]. Here, in particular, if
dynamic scheduling is chosen, the master initializes a thread listener [line 17]
which sends an example to the slaves at every request it receives. During
this time, the slaves, depending on the scheduling type, receive the examples
and build the corresponding BDDs [lines 40-49]. All the BDDs are built by
BUNDLE according to the limits NL and TL. After that, the master sends
the probability values pi to the slaves [line 31] which receive and store them
[line 51]. Now, the Expectation procedure (Algorithm 9) can be executed by
all the workers [lines 32 and 52]. Finally, all workers enter in the maximization
phase where the master collects all the values, executes the Maximization

procedure (Algorithm 12) and checks whether a new round of EM must be
performed [line 33-37], while the slaves only wait for a signal from master
which indicates whether to execute either Expectation or stop.

24.4 LEAPMR

LEAPMR is an evolution of the system LEAP presented in Section 23.2. While
the latter exploits EDGE, the first was adapted to perform EDGEMR.

Algorithm 15 shows LEAPMR’s main procedure, where the highlighted lines
are those which differ from the serial version of LEAP. It takes as input the
knowledge base K and configuration settings for CELOE and EDGEMR, then
generates at most NC class expressions by exploiting CELOE and the sets of
positive and negative examples which will be the queries for EDGEMR [lines
12-19]. A first execution of EDGEMR is applied to K to compute the initial
value of the parameters and of the LL [line 20]. Then LEAPMR adds to K
one probabilistic subsumption axiom at a time. After each addition, EDGEMR

is performed on the extended KB to compute the LL of the data and the
parameters [line 24]. If the LL is better than the current best, the new axiom
is kept in the knowledge base and the parameters of the probabilistic axioms
are updated, otherwise the learned axiom is removed from the ontology and
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Algorithm 14 Function EDGEMR

1: function EDGEMR(K, E+, E−, ε, δ,NL, TL, S)
2: Input: a knowledge base K
3: Input: a set of positive examples E+

4: Input: a set of negative examples E−
5: Input: a threshold ε for the difference between LLs
6: Input: a threshold δ for the fraction of the difference between LLs
7: Input: the maximum number of explanations to find for each example NL
8: Input: the time limit for the inference process for each example TL
9: Input: the scheduling method S
10: Output: the final LL
11: Output: probabilities pi of the probabilistic axioms
12: Read knowledge base K
13: if MASTER then
14: Identify examples E
15: if S == dynamic then . dynamic scheduling
16: Send an example ej to each slave
17: Start thread listener . Thread for answering query requests from slaves
18: c = m− 1 . c counts the computed examples
19: while c < |E| do
20: c = c+ 1
21: Build BDDc for example ec
22: end while
23: else . single-step scheduling
24: Split examples E into n subsets E1, . . . , En
25: Send Em to each worker m, 2 ≤ m ≤ n
26: Build BDDs1 for examples E1

27: end if
28: LL = −∞
29: repeat
30: LL0 = LL
31: Send the parameters pi to each worker m, 2 ≤ m ≤ n
32: LL = Expectation(BDDs1)
33: Collect LLm and the expectations from each worker m, 2 ≤ m ≤ n
34: Update LL and the expectations
35: Maximization
36: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
37: Send STOP signal to all slaves
38: return LL, pi for all i
39: else . the j-th slave
40: if S == dynamic then . dynamic scheduling
41: while c < |E| do
42: Receive ej from master
43: Build BDDj for example ej
44: Request another example to the master
45: end while
46: else . single-step scheduling
47: Receive Ej from master
48: Build BDDsj for examples Ej
49: end if
50: repeat
51: Receive the parameters pi from master
52: LLj = Expectation(BDDsj)
53: Send LLj and the expectations to master
54: until Receive STOP signal from master
55: end if
56: end function
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Algorithm 15 Function LEAPMR.
1: function LEAPMR(K, LPtype, NC, TLC, ε, δ,NL, TLE, S)
2: Input: a knowledge base K
3: Input: the type LPtype of learning problem
4: Input: the maximum number of class expressions to find NC
5: Input: the time limit for the inference for CELOE TLC
6: Input: a threshold ε for the difference between LLs
7: Input: a threshold δ for the fraction of the difference between LLs
8: Input: the maximum number of explanations to find for each example NL
9: Input: the time limit for the inference for each example TLE
10: Input: the scheduling method S
11: Output: the learned knowledge base K
12: ClassExpressions = up to NL or until TLC is reached . generated by CELOE
13: (PI , NI) = ExtractIndividuals(LPtype) . LPtype: specifies how to extract (PI , NI)
14: for all ind ∈ PI do . PI : set of positive individuals
15: Add ind : Target to + . E+: set of positive ex
16: end for
17: for all ind ∈ NI do . NI : set of negative individuals
18: Add ind : Target to E− . E−: set of negative examples
19: end for
20: (LL,K′) = EDGEMR(K′, E+, E−, ε, δ,NL, TLE, S) . Call to EDGEMR

21: for all CE ∈ ClassExpressions do
22: Axiom = p :: CE v Target

23: K′ = K ∪ {Axiom}
24: (LL,K′) = EDGEMR(K′, E+, E−, ε, δ,NL, TLE, S) . Call to EDGEMR

25: if LL > LL0 then
26: K = K′
27: LL0 = LL
28: end if
29: end for
30: return K
31: end function

the previous parameters are restored. The final theory is obtained from the
union of the initial ontology and the probabilistic axioms learned.
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Chapter 25

Related Learning Systems

In this chapter, we discuss the approaches which are close to our systems.

A work that integrates parameters and structure learning for the proba-
bilistic extension crALC, is [90, 114, 91]. As reported in Section 13, crALC
adopts an interpretation-based semantics and allows, besides ALC constructs,
the probabilistic axioms P (C|D) = α, meaning that for any element x of the
domain, the probability that it is in C given that is in D is α, and of the
form P (R) = β, meaning that for each couple of elements x and y in D, the
probability that x is linked to y by the role R is β.

The acyclicity assumption in crALC enables to represent any KB K as a
directed acyclic graph G(K) which is a template for generating a ground graph
given the domain in which each node represents an instantiated logical atom
C(a) or R(a, b).

The algorithm of [91] learns parameters and structure of crALC knowl-
edge bases. It starts from positive and negative examples for a single concept
and from the general concept > in the root of the search tree. The space of
possible concept definitions is explored by means of a revision operator in the
style of Inductive Logic Programming. For a set of candidate definitions of a
given length, their parameters are learned using an EM algorithm, since the
ground graph contains unobserved variables, as in EDGE. In particular, if the
best score in the tree is above a threshold, a deterministic concept definition
is returned, otherwise a probabilistic inclusion Ci is searched on a weighted
spanning tree, where the target concept is added as a parent of each vertex
and probabilities are learned as P (Ci|Parents(Ci)). Once the parameters for

187



the candidate definitions are learned, each definition is scored against the ex-
amples: the score is the product of the probability of the examples given the
background terminology and the definition. The definition with the highest
score is retained and the algorithm enters a new refinement iteration. The cy-
cle ends when the difference between two best scores is below a threshold. We
share the top-down procedure for building axioms (CELOE) but we exploit
BDD structures to compute the expected counts for EM instead of resorting
to inference in a graphical model.

The paper [95] presents a Statistical Relational Learning system for learning
terminological naïve Bayesian classifiers, which estimate the probability that
an individual a belongs to a certain target concept given its membership to
a set of induced DL (feature) concepts. The classifier consists of a Bayesian
Network (BN) modeling the dependency relations between the feature concepts
and the target one. The learning process handles three different assumptions
that can be made about the lack of knowledge (under OpenWorld Assumption)
regarding concept-membership, reflecting in the adoption of different scoring
functions and search strategies of the optimal network and parameters. Under
one of these assumptions - the probability of concept-membership of a depends
on the knowledge on a available in K - the EM method is proposed to train
the BN parameters. The classifier can be seen as a learner of probabilistic
assertional axioms, while LEAP learns probabilistic terminological axioms.
We exploit BDDs instead of BNs, while we share with them the use of EM.

Another approach is presented in [151, 44], where the authors introduce
an algorithm, called GoldMiner, that exploits Association Rules (ARs) for
building ontologies. GoldMiner extracts information about individuals, named
classes and roles using SPARQL queries. Then, starting from this data, it
builds two transaction tables : one that stores the classes to which each indi-
vidual belongs and one that stores the roles to which each pair of individuals
belongs. The first contains a row for each individual and a column for all
named classes and classes of the form ∃R.C for R a role and C a named class.
The cells of the table contain 1 if the individual belongs to the class of the
column and 0 otherwise. The second table contains a row for each pair of
individuals and a column for each named role. The cells contain 1 if the pair
of individuals belongs to the role in the column and 0 otherwise. Finally, the
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APRIORI algorithm [1] is applied to each table in turn in order to find ARs.
ARs are implications of the form A ⇒ B where A and B are conjunctions
of columns (and thus conjunctions of classes or roles). Each AR of the form
A⇒ B can thus be converted to the axiom A v B. So from the learned ARs
a knowledge base can be obtained. Moreover, each AR A ⇒ B is associated
with a confidence that is the fraction of transactions that satisfy B among
those that satisfy A. Thus the confidence can be interpreted as the probability
of the axiom p :: A v B. So, GoldMiner can be used to obtain a probabilistic
knowledge base.

The parameters learner EDGE is inspired by EMBLEM [13], an algorithm
developed to learn the parameters of probabilistic logic programs under the
distribution semantics, as seen at the beginning of Chapter 22. It shares with
EDGE the use of EM algorithm and the exploitation of knowledge compilation,
in particular BDDs, for computing the distribution of the hidden variables.

The structure learner LEAP is inspired by SLIPCOVER [14], an algorithm
proposed for learning probabilistic logic programs based on the distribution
semantics. LEAP shares with it the search strategy and the use of the log-
likelihood of the data as the score of the learned theories. Like SLIPCOVER, it
divides the search between learning promising axioms and building in a greedy
way a theory (KB) whose parameters are optimized by relying on a parameter
learning algorithm. A MapReduce approach was applied also to SLIPCOVER,
developing SEMPRE. As for LEAPMR, MapReduce was implemented by di-
rectly exploiting MPI. In SEMPRE, mapper workers keep in memory data
structures across MapReduce iterations and the reduce strategy is particularly
simple, being realized by a single reducer receiving the output from all mapper
jobs.
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Chapter 26

Experiments

In order to test the performances of our learning systems, we performed sev-
eral experiments, both on the quality of the results and on the improvement
introduced by the application of distributed approaches. In the following, each
section presents a different test. At the end, Section 26.6 discusses the results.
Experiments presented in Sections 26.1 and 26.2 have been performed on a
cluster of 64-bit Linux machines with 2 GB (max) memory allotted to Java
per node where each node of this cluster has 2-cores Intel E6550 2.33 GHz
CPUs. Experiments in Sections 26.3, 26.4 and 26.5 have been performed on
a cluster of 64-bit Linux machines with 8-cores Intel Haswell 2.40 GHz CPUs
and 2 GB (max) memory allotted to Java per node.

26.1 EDGE: Comparison with Association Rules

EDGE has been compared with Association Rules (ARs) over two real world
datasets from the Linked Open Data cloud: EDU-UK1, which contains infor-
mation about school institutions in the United Kingdom, and an extract of
DBPedia2 [85], a knowledge base obtained by extracting structured data from
Wikipedia. We took in consideration only ARs because in this test we focused
only on the parameter learning problem.

In the experiments, we wanted to simulate the situation in which an expert
provides the structure of the ontology together with information on a set of

1http://education.data.gov.uk/
2http://dbpedia.org/
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individuals. The ontologies were obtained with GoldMiner using the following
parameters for the APRIORI algorithm: 0.1 as the minimum support and 0.05
as the minimum confidence. We extracted 10,000 individuals and 5,545 axioms
for EDU-UK and 7,200 individuals and 6,228 axioms for DBPedia. Then we
learned ARs from the resulting transaction tables. Note that in this test we
considered only the ARs that can be converted into subclass axioms.

Then we selected positive and negative examples. We first randomly chose
individuals from the extracted ones. For each individual ind we identified two
named classes: A, that is randomly selected among the classes to which ind

belongs that do not have subclasses, and B, that is randomly selected from all
the classes to which ind belongs. We add the resulting triple (ind, A,B) to a
set P . Then, for each triple (ind, A,B) in P we added ind : A to the ontology
and ind : B to the set of positive examples.

Negative examples were selected in the following way:

1. we randomly chose individuals from the extracted ones;

2. for each selected individual ind, we randomly chose:

• a named class A from the list of classes to which ind belongs;

• a named class B appearing in the ontology for which we do not
know explicitly whether ind belongs to or not;

we test the satisfiability of the query ind : B w.r.t. the knowledge base
that contains the axiom ind : A. If the query is satisfiable, we add
(ind, A,B) to the set N .

Finally, for each triple (ind, A,B) in N we added ind : A to the ontology and
ind : B to the set of negative examples.

We used a 5-fold cross validation to test the system: we partitioned the set
of queries in five equally sized subsets and we performed five experiments in
which we used four subsets for training and one for testing.

In the training phase, we ran EDGE on the ontology obtained by Gold-
Miner where we considered all the axioms as probabilistic. We randomly set
the initial values of the parameters. EDGE, for handling 5,000 examples,
took about 15,000 seconds in average for DBPedia, about 3 seconds per ex-
ample, and about 173,000 seconds in average for EDU-UK, about 34 seconds
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Table 26.1: Areas under the ROC and PR curves with standard deviation,
execution times and p-value of a paired two-tailed t-test at the 5% significance
level for EDGE and Association Rules.

Datasets EDGE ARs p-value

EDU-UK
PR 0.9702± 0.0289 0.8804± 0.0165 0.0051
ROC 0.9796± 0.0166 0.9158± 0.0171 0.0093
Time (s) 173,528 10,490

DBPedia
PR 0.9784± 0.0483 0.5916± 0.0999 0.0013
ROC 0.9902± 0.0219 0.4346± 0.1319 0.0007
Time (s) 14,883 578,420

per example. Most of the runtime was spent in finding the explanations and
building the BDDs, while the execution of the EM iterations took only about
6 seconds for DBPedia and about 2 seconds for EDU-UK. For computing ARs’
confidence, for each AR (that corresponds to the subclass axiom A v B) two
SPARQL queries have been executed over the training KBs, one for finding all
the individuals that belong to AuB and one for those that belong to A. The
confidence is then given by the ratio of the number of individuals in A u B
over those in A. GoldMiner needed 330 different SPARQL queries for EDU-
UK and 2,243 for DBPedia and took about 10,500 seconds for the first dataset
and more than 578,000 seconds for the latter.

In the testing phase, we computed the probability of the queries using
BUNDLE, according to the theory learned by EDGE and to the theory com-
posed of the ARs with the confidence as probability. For a negative example
of the form a : C, we computed the probability p of a : C and we assigned
probability 1− p to the example.

We drew the Precision-Recall (PR) and the Receiver Operating Character-
istics (ROC) curves and computed the Area Under the Curve (AUCPR and
AUCROC) following the methods of [32, 41]. Table 26.1 shows the AUCPR,
the AUCROC together with the standard deviation, the execution times aver-
aged over the five folds and the p-value of a paired two-tailed t-test at the 5%
significance level of the difference in AUCROC and AUCPR. The times are
referred to the learning time for EDGE and to the SPARQL queries execution
time for ARs.

Note that the elapsed time for EDGE depends on the number of executed
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queries and the number of different explanations involved in each query, while
the elapsed time for ARs depends on the number of classes in the KB. EDGE
achieves greater areas in a time that is of the same or lower order of magnitude
with respect to ARs. For both areas and KBs, the differences are statistically
significant at the 5% level.

26.2 LEAP & EDGE: a Comparison Between

Different Learning Problems

LEAP has been evaluated on three KBs:

• Carcinogenesis3 [137] describing the carcinogenicity of more than 300
chemical compounds. It contains 22,372 individuals and 74,409 axioms.

• The SoftWiki Ontology for Requirements Engineering (SWORE) [116]
defining core concepts of requirements engineering and the way they are
interrelated. It contains 107 individuals and 926 axioms.

• The Moral4 KB that qualitatively simulates moral reasoning. It contains
202 individuals and 4710 axioms.

Regarding Carcinogenesis, we randomly selected 180 individuals, 103 of
which representing positive examples for the class Compound, i.e. individuals
that belong to the class Compound, and 77 representing negative examples,
i.e. individuals that do not belong to the class Compound. For SWORE, we
used all the 5 individuals that belong to the class CustomerRequirement as
positive examples and 30 representing negative examples. For the Moral KB
we selected all the 24 individuals for the class Vicarious as positive examples
and 175 individuals randomly selected among the remaining ones as negative
examples.

In the training phase, we first assigned a random probability to every axiom
of the KB and we applied a 5-fold cross validation. We ran EDGE on the orig-
inal KBs for learning the parameters associated with the probabilistic axioms,
with NE = 3 and TLE = ∞ for the call to BUNDLE (cf. Alg. 8) in order

3http://dl-learner.org/wiki/Carcinogenesis
4https://archive.ics.uci.edu/ml/datasets/Moral+Reasoner
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Table 26.2: Results of the experiments in terms of AUCPR and AUCROC
averaged over the folds. The first column shows the areas computed w.r.t.
the resulting KB after the execution of EDGE. Standard deviations are also
shown.

EDGE LEAP
AUCPR AUCROC AUCPR AUCROC

Carcinogenesis 0.534± 0.108 0.445± 0.051 0.801± 0.240 0.798± 0.246

SWORE 0.148± 0.063 0.453± 0.272 1± 0 1± 0

Moral 0.119± 0.009 0.5± 0 1± 0 1± 0

to limit the runtime. Then, we separately ran LEAP on the original KBs for
learning probabilistic subsumption axioms and the associated parameters for
the class: Compound for Carcinogenesis KB, for which LEAP learned 1 axiom
in every fold; CustomerRequirement for SWORE, for which LEAP learned 1
axiom in every fold and Vicarious for the Moral KB, where LEAP learned 9
axioms in three folds and 8 axioms in the others.

For CELOE, we set LPtype = Positive and Negative Examples Learning
Problem, for Carcinogenesis we set NC = 3 while for the others we set NC =

10 and timeout TLC for its execution of 120 seconds: when the timeout expires
or the maximum number of class expressions are found, the current set of them
is returned to the caller.

In the testing phase, we computed the probability of the examples (queries)
in the test set according to the KBs learned by LEAP and the original ones,
by applying BUNDLE. We drew the PR and ROC curves and computed the
AUCPR and AUCROC. Table 26.2 shows the AUCPR and the AUCROC
averaged over the folds together with the standard deviation for all the KBs.

Most of the learning time was spent for building the BDDs of the examples.
For instance, for the Carcinogenesis KB, on a total learning time of about 1,905
seconds, only 139 seconds was used by CELOE, while 1,765 seconds was used
for building BDDs. Only 0.206 seconds was spent for the initialization of the
systems.

The p-value of a paired two-tailed t-test of the difference in AUCPR and
AUCROC between the LEAP ontologies and the initial ones is 0.0603 and
0.0360 respectively for Carcinogenesis, 7.143·10−6 and 0.0109 for SWORE, and
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2.734·10−9 and 0 for Moral. The results show that LEAP is useful in achieving
better areas under both the PR and ROC curves, with statistically significant
difference at the 5% significance level except for AUCPR on Carcinogenesis.

26.3 EDGEMR: Parallelization Speedup

In order to evaluate the performances of EDGEMR, we selected four datasets:
three datasets from previous sections, i.e., Carcinogenesis, DBPedia and
EDU-UK, and Mutagenesis5 [138], containing information about a number of
aromatic and heteroaromatic nitro drugs, including their chemical structures
in terms of atoms, bonds and a number of molecular substructures.

For the generation of positive and negative examples, we followed the same
approach explained in the previous sections. Once generated, positive and
negative examples were split in five equally sized subsets and we performed
five-fold cross-validation for each dataset and for each number of workers.
Information about the datasets and training examples is shown in Table 26.3.

Table 26.3: Characteristics of the datasets used for evaluation.

Carcinogenesis DBPedia EDU-UK Mutagenesis
# of prob. axioms 186 1379 217 92
% of prob. axioms 0.2% (74409) 25% (5380) 3% (5467) 0.1% (48354)(# of axioms)
# of pos. examples 103 181 961 500
# of neg. examples 154 174 966 500
Fold size (MiB) 18.64 0.98 1.03 6.01

We performed the experiments with 1, 3, 5, 9 and 17 nodes, where the
execution with 1 node corresponds to the execution of EDGE. Furthermore,
we used both single-step and dynamic scheduling in order to evaluate the two
scheduling approaches. It is important to point out that the quality of the
learning is independent of the type of scheduling and of the number of nodes,
i.e. the parameters found with 1 node are the same as those found with n nodes.
Table 26.4 shows the running time in seconds for parameter learning on the

5http://www.doc.ic.ac.uk/ shm/mutagenesis.html
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four datasets with the different configurations. Figure 26.1 shows the speedup
obtained as a function of the number of machines (nodes). The speedup is the
ratio of the running time of 1 worker to the running time of n workers. We
can note that the speedup is significant even if it is sublinear, showing that
a certain amount of overhead (the resources, and therefore the time, spent
for the MPI communications) is present. The dynamic scheduling technique
achieves generally better performances than single-step scheduling.

Table 26.4: Comparison between EDGE and EDGEMR in terms of running
time (in seconds) for parameter learning.

Dataset EDGE
EDGEMR

Dynamic Single-step
3 5 9 17 3 5 9 17

Carcinogenesis 847 442 241 147 94 384 268 179 118
DBPedia 1552 1260 634 365 215 1156 724 453 373
EDU-UK 6924.2 3878 2157 1086 623 3612 2290 1332 749
Mutagenesis 1439.4 636 400 223 130 578 359 230 125
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Figure 26.1: Speedup of EDGEMR relative to EDGE with single-step and
dynamic schedulings.
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26.4 EDGEMR: Memory Consumption

We also tested memory consumption on Carcinogenesis, DBPedia, EDU-UK
and Mutagenesis. The configuration is as in Section 26.3. The results, shown in
Fig. 26.2, show that the allocated memory per node is almost always inversely
proportional to the number of nodes. There is no difference between Single-
step and Dynamic scheduling in terms of used memory.

Single−step total memory
Dynamic per−process memory
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Figure 26.2: Memory consumption of EDGEMR for different datasets.
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26.5 LEAPMR: Parallelization Speedup

In order to test how much the exploitation of EDGEMR can improve the per-
formances of LEAPMR, we did a preliminary test where we considered only
the Moral KB. We recall that it contains 202 individuals and 4710 axioms (22
axioms are probabilistic).

We allotted 1, 3, 5, 9 and 17 nodes, where the execution with 1 node cor-
responds to the execution of LEAP, while for the other configurations we used
the dynamic scheduling with chunks containing 3 queries. For each experi-
ment, 2 candidate probabilistic axioms were generated by using CELOE and
a maximum of 3 explanations per query was set for EDGEMR. Figure 26.3
shows the speedup obtained as a function of the number of machines (nodes).
As in Section 26.3, the speedup is sublinear but still quite good.
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Figure 26.3: Speedup of LEAPMR relative to LEAP for Moral KB.

26.6 Discussion

EDGE has been compared with ARs. In particular, each AR was regarded as
a subclass axiom where the confidence was its probability. The results show
that EDGE achieves larger areas both under the PR and the ROC curves with
respect to an algorithm based on ARs in a comparable or smaller time. These
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good results are partly due to the use of the BDDs built during inference, which
allow to efficiently compute the expectations for hidden variables. In fact,
these variables are not taken into account by ARs. Moreover, we found that
the learning time of the two systems are comparable but behave differently, as
shown in Table 26.1. This is due to the different operations executed: EDGE
builds BDDs from explanations, hence the time depends on the KB, while
ARs has to run a number of SPARQL queries depending on the number of
concepts, roles and individuals in the KB. Anyway, we found that EDGE is a
viable alternative to ARs.

In order to understand how structure learning algorithms can improve the
quality of KBs, we did a simple but effective test by comparing three different
KBs with their new versions returned by LEAP. The comparison was done
by means of PR and ROC curves, thus we first made probabilistic the KBs
through EDGE. The areas under both curves computed for LEAP were always
greater than those of EDGE. LEAP increased the areas up to ∼840%.

Encouraged by these results, we started to study improvements for EDGE
and LEAP, this led to the implementation of EDGEMR and LEAPMR. Tests
made on them show that the distribution of the computational load is effective,
since the speedup is always greater than 1. Finally, EDGEMR is equipped
with two different scheduling techniques of which dynamic scheduling usually
performs better. Memory consumption is comparable in the two scheduling
techniques and in many cases they need almost the same amount of memory.
In our tests, the difference on the values of the consumed memory always
remained under 67%.
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Part VI

Summary and Future Work
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Chapter 27

Conclusion

Recently, the Semantic Web has become a reality and many domains have
been modeled. The diffusion of the Semantic Web showed that coping with
uncertain information is of foremost importance. Thus Probabilistic Descrip-
tion Logics have received an increased attention. Various semantics have been
proposed but there is a lack of systems able to manage them.

The aim of this thesis was to provide a complete framework for managing
uncertainty in the Semantic Web, by giving the definition of a probabilistic
semantics and applications to work with it.

The proposed semantics, called DISPONTE, can be applied to every DL
language. It minimally extends the language and allows the representation
of epistemic probability, i.e., degrees of belief. DISPONTE is based on the
distribution semantics, a well-known semantics which underlies many Logic
Programming languages, and applies it to DLs. The distribution semantics
defines a probability distribution on possible worlds, the probability of a query
can be computed by finding a set of explanations, also called MinAs, which
are then made mutually incompatible by means of knowledge compilation and
in particular by building Binary Decision Diagrams (BDDs). A BDD permits
the computation of the probability of the query in a time linear in its size.
To be useful, a semantics also needs reasoning and learning systems. We thus
propose inference and learning approaches.

Reasoning The system BUNDLE computes the probability of queries from
a probabilistic KB following DISPONTE. It first finds the set of expla-
nations for the given query and then builds the corresponding BDD.
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The same approach is exploited in TRILL. Both implement a tableau
algorithm, but they differ in the programming paradigm used. While
BUNDLE is implemented in Java and has to handle non-determinism
through an ad-hoc algorithm, TRILL is completely written in Prolog,
thus the management of non-determinism is demandated to the Prolog’s
backtracking facilities.

Preliminary tests which compared BUNDLE and TRILL showed that a
Prolog implementation of a DL reasoner is feasible and may be a new
promising area to explore. Therefore, we continued on this line by im-
plementing a third reasoning system, TRILLP . It is written in Prolog
as TRILL but, differently from the other reasoners, TRILLP directly
builds a monotone Boolean formula, called pinpointing formula, which
compactly encodes the set of MinAs. Then, knowledge compilation by
means of BDDs is applied to the pinpointing formula to compute the
probability of queries.

The complexity of the three algorithms in the worst case is high since
explanations may grow exponentially and the computation of the prob-
ability through Binary Decision Diagrams has a #P-complexity in the
number of explanations. Nevertheless, experiments showed that domains
of significant size can be managed.

Learning We have presented the EDGE system, which learns probability pa-
rameters in DLs exploiting an Expectation Maximization algorithm. It
calls BUNDLE to build a BDD for each example, from which the values
of expectations are directly computed. Experimental results over sev-
eral real world datasets showed superior performances in term of quality
of the results than an approach using Association Rules. Starting from
these results, we developed LEAP, a supervised learning system able to
learn both the structure and the parameters of a DL KB. LEAP exploits
CELOE for creating descriptions of the target concept and EDGE to
both test the quality of the descriptions and learn/tune the parameters
of the resulting KB. We experimented whether a structure learning ap-
proach can improve the KBs. The tests showed that LEAP can achieve
better results than simply tuning the parameters of an existing KB.
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The diffusion of Big Data and the increased importance of Linked Open
Data imply that standard serial algorithms cannot manage such huge
amounts of data. Parallelization and distribution techniques must be
used to cope with these issues. EDGEMR takes inspiration from MapRe-
duce to distribute the computational load to different workers. In par-
ticular, building the examples’ BDDs and the expectation step are split
on the workers which run in parallel. The communication is performed
using the Message Passing Interface standard. MapReduce frameworks
such as Hadoop were not used since they commonly require purely func-
tional operations, while we believe that keeping in memory part of the
information is beneficial. The system LEAPMR exploits EDGEMR to
speed up the learning time.

Tests made on the two distributed systems show that the parallelization
is effective.

Overall, we believe that the interplay between the Semantic Web and
Machine Learning opens extremely promising direction for the evolution
of both.
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Chapter 28

Future Work

In the future, we paln to optimize, improve and add functionalities to the
inference systems, in particular

• develop a BUNDLE plug-in for the KB editor Protégé and a Web inter-
face for BUNDLE similar to TRILL on SWISH;

• optimize TRILL and TRILLP , for example by modifying the represen-
tation of the tableau by making use of dictionaries instead of red-black
trees and replace the list representing the ABox with a structured rep-
resentation such as a graph.

All the optimization will be evaluated to test the improvements produced.
In particular, TRILL and TRILLP might highly benefit from optimizations.
Moreover, we plan to also explore different approaches, such as abduction. In
preliminary works [49, 48], we considered an Abductive Logic Programming
framework named SCIFF, derived from the IFF abductive framework [47], able
to deal with existentially (and universally) quantified variables in rule heads,
and Constraint Logic Programming constraints. Forward and backward rea-
soning is naturally supported in SCIFF. We showed that SCIFF smoothly
supports the integration of rules, expressed in a Logic Programming language,
with Datalog± ontologies, mapped into SCIFF (forward) integrity constraints.
Datalog± can be used for representing lightweight ontologies, and is able to
express the DL-Lite family of ontology languages, with tractable query answer-
ing under certain language restrictions. Thus, a DL-Lite KB can be translated
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into a SCIFF program through Datalog± and abductive reasoning can be ap-
plied on it. Preliminary tests showed this is a viable approach which however
must be further investigated.

As regard learning, we would like to:

• improve even more the scalability of our algorithms, in order to handle
larger datasets;

• integrate our learning systems in well-known state-of-art learning frame-
works such as DL-Learner;

• allow our systems to automatically retrieve information on-line via public
end-points, such as SPARQL servers;

• better evaluate our algorithms, in particular with other real world case
studies.

Finally, we are also working in the area of Probabilistic Logic Programming
(PLP) because we are convinced that the two fields are strictly intertwined,
since the advances achieved in each of them can improve the other. There-
fore, we are studying also PLP learning algorithms, such as SLIPCOVER and
SEMPRE, mentioned in this thesis, or PASCAL (for “ProbAbiliStic inductive
ConstrAint Logic”) [121], where the distribution semantics was applied to In-
ductive Constraint Logic in order to learn (probabilistic) SCIFF constraints.
A probabilistic constraint logic models assign a probability of being positive to
interpretations. This probability can be computed in a time that is logarith-
mic in the number of ground instantiations of violated constraints. PASCAL
can learn both structure and parameters of these models. Some techniques
implemented in these algorithms may be applied also to the systems presented
in this thesis.
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