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Abstract

Region-of-interest Computed Tomography (ROI CT) is an X-ray based incomplete
data imaging acquisition mode. Currently, it is among the “hot topics” in the
field of X-ray tomographic imaging, due to its potential to lower exposure to X-
ray radiation and to reduce the scanning time. This is particularly appealing,
especially for the medical imaging community, due to a wide range of applications
in biomedical imaging, such as contrast-enhanced cardiac imaging or positioning
of intracranial stents.

However, this problem is rather challenging because of the truncation of pro-
jections, i.e., of the acquired data. CT is in general an ill-posed problem, and the
ill-posedness becomes severe due to incompleteness of the ROI CT dataset, even
more as the ROI size gets smaller. Therefore, one of the major issues is that tra-
ditional or naive local reconstruction algorithms may be very unstable and might
produce unreliable reconstructions, when applied directly to incomplete data, set-
ting missing projections to zero. So far, both ad hoc analytic formulae and iterative
numerical schemes have been proposed in the literature to address this problem,
but typically rely on restrictive assumptions.

This thesis addresses the connection of the reconstruction problem and the
incompleteness of the ROI CT data. The main goal is to obtain a stable and
feasible reconstruction, possibly under reliable noise circumstances, and without
any assumptions either on the size or on the location of the ROI. This would be
impossible due to non-uniqueness of the interior problem.

To this end, we formulate the ROI CT reconstruction problem as a convex
optimization problem with different regularization levels. A regularized functional
based on shearlets, a new multiscale method whose main features are relevant
in CT-like applications, is possibly coupled with a Total Variation regularization
term. Both a smooth and a nonsmooth version of this convex problem are inves-
tigated.

An accurate and flexible forward projection technique, called distance-driven,
is considered to study the problem, and an efficient implementation is developed
to provide a faster digital reconstruction framework. This original contribution
goes beyond the ROI CT problem and applies to more general CT problems.
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Two iterative approaches are proposed and analyzed to face the numerical so-
lution of the derived convex optimization problem. A scaled gradient projection
method for the smooth approach and a variable metric inexact line-search algo-
rithm for the nonsmooth case. Both methods have been proposed very recently,
and, to the best of our knowledge, it is the first time that their performance is
investigated in CT-like applications.

All experimental studies presented make use of simulated data, in the case
of 2D fan-beam CT. The numerical tests illustrated in this thesis show that our
approach is insensitive to the location of the ROI and remains very stable also
when the ROI size is rather small.

The findings and conclusions of this work have a number of important impli-
cations for future research. Therefore, suggestions for further work will be given
for each addressed topic.



Sommario

La tecnica di Tomografia Computerizzata ristretta a regioni-di-interesse (ROI CT)
rientra tra le modalità di acquisizione di immagini tomografiche, mediante raggi
X, da dati incompleti. Attualmente, è tra i “temi caldi” nel campo dell’imaging
tomografico, poiché offre al contempo la possibiltà di diminuire l’esposizione a
radiazioni derivanti dai raggi X e ridurre il tempo di scansione. Per la comunità
medica, ROI CT riveste un ruolo di particolare interesse, grazie al gran numero di
applicazioni in imaging biomedico, tra cui l’imaging cardiaco con intensificazione
di contrasto e il posizionamento di stent intracranici.

Tuttavia, si tratta di un problema piuttosto difficile a causa del troncamento
delle proiezioni, cioè dei dati acquisiti. CT è in generale un problema mal posto
e, a causa dell’incompletezza dei dati, la mal posizione tende a peggiorare, sem-
pre più con il diminuire della dimensione della regione-di-interesse. Perciò, uno
dei principali problemi è che gli algoritmi classici o ricostruzioni locali naive pos-
sono rivelarsi estremamente instabili, restituendo ricostruzioni inaffidabili, quando
applicati ai dati incompleti, ponendo a zero le proiezioni mancanti. A oggi, per
affrontare questo problema, sono stati proposti in letteratura sia formule analitiche
ad hoc sia schemi numerici iterativi, ma tipicamente si basano su ipotesi restrittive.

Questa tesi si propone di investigare la connessione tra il problema di ri-
costruzione e l’incompletezza dei dati derivanti dal problema ROI CT. L’obiettivo
principale è di ottenere una ricostruzione stabile e ammissibile, possibilmente sotto
ipotesi realistiche per il rumore e senza nessun tipo di ipotesi sulla dimensione o
posizione della ROI. Ciò sarebbe impossibile a causa della non-unicità dell’interior
problem.

A tal fine, ROI CT viene formulato come problema convesso di ottimizzazione,
con diversi livelli di regolarizzazione. Si considera un funzionale di regolarizzazione
basato sulle shearlets, un metodo multiscala introdotto di recente le cui caratteris-
tiche sono rilevanti in applicazioni tomografiche, eventualmente combinato con un
termine di tipo Variazione Totale. Di questo problema convesso vengono investi-
gate sia una versione differenziabile sia una non differenziabile.

Per lo studio del problema, viene considerata una tecnica accurata e flessibile
per la proiezione in avanti, chiamata distance-driven, per la quale è stata sviluppata

iii



iv

un’implementazione efficiente in grado di fornire un ambiente di ricostruzione più
veloce. Si tratta di un contributo originale che va al di là del solo problema ROI
CT e si applica in generale a tutti i problemi di tipo CT.

Per la soluzione numerica del problema convesso di ottimizzazione vengono
proposti e analizzati due approcci iterativi. Per la formulazione differenziabile
viene considerato il metodo del gradiente scalato proiettato, mentre per la versione
non differenziabile si considera l’algoritmo a metrica variabile inesatta con ricerca
in linea. Entrambi i metodi sono stati proposti molto recentemente e, per quanto
si è a conoscenza, è la prima volta che queste tecniche vengono investigate in
applicazioni di tipo CT.

Tutti gli studi sperimentali che vengono presentati fanno uso di dati simulati nel
caso della geometria 2D a ventaglio. I test numerici che vengono illustrati nella tesi
mostrano che l’approccio presentato non è influenzato dalla posizione della ROI e
rimane molto stabile anche quando la dimensione della ROI è piuttosto piccola.

I risultati e le conclusione di questo lavoro hanno importanti implicazioni per le
ricerche future: per ciascun argomento trattato verranno dati spunti per il lavoro
futuro.



Acronyms

1D 1-dimensional
2D 2-dimensional
3D 3-dimensional
ART algebraic reconstruction technique
BB Barzilai-Borwein (steplength updating rules)
CBGP cyclic scaled gradient projection
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DBP differentiated back-projection
EM expectation maximization
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FBP filtered back-projection
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GPU graphics processing unit
IRR iterative reconstruction-reprojection
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MAP maximum a posteriori
MART multiplicative ART
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ML maximum likelihood
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MRI magnetic resonance imaging
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PET positron emission tomography
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a scaling parameter (unless otherwise specified)
a = (au, av) detector offset
A generic point on the object – Chapter 3
A set of rotation angles
Aa scaling matrix depending on the scaling parameter a
An n-dimensional full affine group of motions
α steplength (unless otherwise specified)
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b pixels or voxels basis function for object discretization
bi i-th (generic) basis function for object discretization
B2(0, r) 2D euclidean ball centered in 0 with radius r
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B linear operator for proximal inexact computation (VMILA)
β elevation angle of a cone-beam system– Chapter 3
β backtracking parameter – Chapters 5, 6
cx, cy, c1 flags in distance-driven vectorized approach
c(n) vector of the center coordinates of the object voxel n
C isocenter – Chapter 3
C (generic) convex set
Cn unit cylinder in Rn

C centered cube of the shearlets 3D frequency domain parti-
tion

Ci i-th cone of the shearlets 2D frequency domain partition
C n(·) class of functions differentiable with continuity up to order

n
C ∞(·) class of infinitely differentiable functions
C ∞
0 (·) C ∞ functions with bounded support

γ aperture angle of a cone-beam system – Chapter 3
γ backtracking parameter – Chapters 5, 6
Γ (generic) objective function
Γ0 smooth part of an objective function Γ
Γ1 nonsmooth part of an objective function Γ
dAB distance ∥B − A∥2 between the points A and B
dS(·) distance from the source – Chapter 3
dσ(·) distance-like function
d descent direction
d(k) descent direction at iteration k
D scaling matrix in SGP and VMILA
Dk scaling matrix at iteration k
DM dilation operator associated to the matrix M
DL compact set of the symmetric positive definite matrices D

with threshold L
D (discrete) derivative approximation for TV definition
δ TV smooth parameter
δ(·) Dirac δ function
δ grid increment vector for detector grid
∆ grid increment for “equilateral” pixel or voxel grid
∆ grid increment vector for object grid
∇ discrete gradient operator
∇i i-block of the discrete gradient operator
en n-th versor of the canonical basis
E{Y} expected value of the random variable Y
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E cartoon-like images
η parameter of η-approximation (VMILA)
θ angle associated to the direction of the ray, i.e., rotation

angle
Θ (generic) low pass operator
ζmin, ζmax lowermost and the uppermost z coordinates of the projec-

tions of the endpoints of all the vertical edges of the voxels
midway slices

f object (attenuation or density) function
f̄ ML or MAP reconstruction
fJ best J-term approximation (shearlets)
f column vector representing the object to reconstruct (dis-

cretization of the attenuation or density function f)
f̄ ML or MAP estimate
f∗ ML or MAP solution
f (k) ML or MAP estimate at iteration k
F analysis operator
F ∗ synthesis operator
ϕ scaling function
φi element of a frame sequence
Φ shearlet matrix in ROI CT objective function formulation
ΦT transpose of the matrix Φ
ψ mother wavelet or shearlet
ψa,t element of a 1D continuous wavelet system
ψj,m element of a 1D discrete wavelet system
ψM,t element of a nD wavelet system
ψLM Lemariè-Meyer wavelet
ψa,s,t element of a 2D shearlet system
ψj,k,m element of a 2D discrete shearlet system
ψMa,s,t element of a nD shearlet system
g (generic) measured data
gσ (generic) noisy measured data
g∗ conjugate function of a (generic) function g
gLL
i , gRL

i , gLR
i , gRR

i column vectors containing all the overlap differences
hσ(·) function that defines the primal variable in VMILA
hH,i column vector containing all the horizontal overlaps
hV,j column vector containing all the vertical overlaps
hH,i,1,hH,i,2,hH,i,3 column vector containing the horizontal overlaps corre-

sponding to pH,i,1,pH,i,2,pH,i,3, respectively
Hobj scaling matrix for object reference system
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Hdtc scaling matrix for detector reference system
Hσ(·) dual formulation corresponding to hσ(·) (VMILA)
H (generic) Hilbert space
istart, iinc integers for handling “reversed ordering” in distance-driven

vectorized approach
I identity operator (unless otherwise specified)
I (generic) indices set
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Iyz set of rotation angles for which πprj = Oyz

IH,i
vxl indices set for horizontal overlap computation
IH,i
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IH,i,1
vxl , IH,i,2

vxl , IH,i,3
vxl indices set for overlap computation, subsets of IH,i

vxl
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IH,idx,i
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IH,idx,i
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Iαf Riesz potential
ιA indicator function of the set A
k index for third dimension – Chapter 3
k discrete (sampling for the) shearing parameter – Chapter 4
k iteration – Chapters 5, 6
κ memory for the nonmonotone line search
K (generic) linear continuous operator between Hilbert spaces
K system matrix, i.e., discretization of an operator K
l dual iteration – Chapters 5, 6
ℓ angle index – Chapter 3
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L detector reference point – Chapter 3
L threshold for the set DL – Chapters 5, 6
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y (·) likelihood function

Lmax maximum pixel value
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slices projections at layer k

pH,left,pH,right column vectors of the indices of all the leftmost and right-
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pV,j column vector of the voxel indices whose projections have a
nonempty vertical overlap with the projections of the j-th
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Chapter 1

Introduction

Computed tomography (CT) was historically the first method to allow the possi-
bility to acquire images of the inner structure of an object non-invasively, namely
without penetrating or cutting into pieces the object. CT has been a major break-
through in diagnostic medicine, where, thanks to a non-biased superposition of
anatomical features, the internal structures of the human body could be seen dis-
tinctly. This opened new opportunities in the recognition and understanding of
human diseases without exploratory surgery. Nowadays, CT is used routinely in
medicine for diagnostic purpose, thanks to the clarity and accuracy of images pro-
duced by CT scanners. Although magnetic resonance imaging (MRI) and positron
emission tomography (PET) have been widely installed in worldwide medicine de-
partments, CT is, to date, the most widely used imaging diagnostic device in
hospital departments and trauma clinic [23].

However, the revolution brought by CT does not end with radiology and nuclear
medicine. In fact, the very first application of CT in 1956 took place in radio
astronomy, and was due to Ronald Bracewell [20]. Later on, diverse technical,
anthropomorphic, forensic, archeological, as well as paleontological, applications
of CT have been developed [23]. The underneath leitmotif is to provide a generic
industrial diagnostic tool for nondestructive material testing (NDT).

Up to date, it has been about 130 years, counting from the discovery of X-rays
by Wilhelm C. Röntgen in 1895, of active research in the field of X-ray tomographic
imaging. Nevertheless, research in the field of CT is still as exciting as at the
beginning of its development during the 1960s and 1970s.

The focus of this thesis is region-of-interest tomography (ROI CT), a limited
data tomographic acquisition mode, that will be described in Section 1.3. After
a long period, from the late 1970s to the early 1990s, during which the ROI CT
problem was believed to be insolvable, the intensive research in the last decade not
only revealed the reconstruction from incomplete data possible but also counted
ROI CT in the “hot topics” in the field of X-ray tomographic imaging [33]. The
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primary interest lays in the possibility to reduce the scanning time and lower the
X-ray radiation dose, while maintaining the possibility to handle large object, in
high resolution.

1.1 A brief historical overview

The history of X-ray imaging starts in 1895 with the discovery of a new kind of
radiation called “X-rays” by its finder Wilhelm C. Röntgen. Between 1895-1896
Röntgen conducted a series of experiments to show that there existed, indeed, a
technique able to take “X-ray photographs” of the internal features of a person
without any surgical intervention [141, 140]. Quickly, his technique found justified
recognition among doctors and spread worldwide: for this, he was awarded the
Nobel prize in 1901.

By the 1930s, the design of X-ray equipment was refined. Simple radiographs of
early attempts contained the 2D shadow deriving from the superposition of all 3D
structures in the object. Thus, it was impossible to recover precise informations
concerning any particular feature of interest. At the beginning of the 1920s, there
were many attempts to erase superimposed shadows from X-ray images. The goal
was to display sharply the plane in focus and to blur the out of focus planes.
This resulted in a number of patent applications (e.g., A.E.M. Bocage in 1922
[12] and E. Pohl in 1927 [133]) and a number of papers published by researchers
from different countries that were rediscovering similar concepts: all those works
dealt with the same geometry technique, in which the X-ray tube and the detector
moved along two parallel planes. As a consequence, the technique became known
under several names: it was called stratigrafia by A. Vallebona [153], laminography
by J. Kieffer [93] and planigraphy by A.E.M. Bocage and B.G. Ziedses des Plantes
[171].

The discovery of X-rays was a necessary but non-sufficient condition for the rise
of CT. Indeed, modern imaging techniques rely on computers. The second part of
the story take off, therefore, from the development of computational techniques.
In the early 1960s, while observing the planning of radiotherapy treatments, Allan
Cormack posited that, by taking X-ray images from multiple directions, one should
be able to piece together the internal structure of the body. To give a proof of con-
cept, he built a prototype scanner that it is perhaps the first CT scanner actually
built [37, 38]. As a theoretical physicist, Cormack was slightly concerned about the
practical application of his research. It was the work of the electrical engineering
Godfrey N. Hounsfield, while employed at the Central Research Laboratories of
EMI Ltd., which led to the construction of the first clinical CT scanner. The scan-
ner was installed in 1971 at the Atkinson MorleyÕs Hospital in Wimbledon and in
1972 Hounsfield and J. Ambrose gave a talk on “Computerised Axial Tomography”
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at the 32nd Congress of the British Institute of Radiology [81]. By the end of 1973,
the first commercial CT scanner was on the market and Hounsfield, along with
Cormack, received the 1979 Nobel Prize in Medicine. In 1976 the first whole body
fan-beam CT scanner appeared and Kalender published the first clinical helical
CT (also referred to as spiral CT) in 1989. From the early 1990s, demonstrations
of cone-beam and multislice CT come to appear. Nowadays, CT images are also
used with other modalities, such as SPECT-CT and PET-CT. A more detailed
overview of the generations of CT scanners is summarized in Chapter 3

Since the introduction of the first clinical scanner, tremendous advancements
have been made in CT technology. Contemporary CT scanners can scan in a
few hundred milliseconds and reconstruct a square image of 2048 pixels, which
is incredible compared to performance of Hounsfield’s first CT: a square image
of 80 pixels required a scan time of about 4.5 minutes and 20 seconds for the
reconstruction phase, with a cross-section of 13mm thickness.

However, there are still many active research directions to investigate. Recent
trends in CT scanner design look at three aspects: thinner slices for scanning;
awareness of patient dose; increased use of 3D visualization devices as the primary
diagnostic tools.

More information about the history of CT can be found, e.g., in [23, 32, 155].

1.2 The mathematical viewpoint

The fundamental process at the basis of CT is the different levels of X-ray absorp-
tion by materials, in an object, or the human body. Basically, a CT apparatus
consist of a single X-ray source and an array of X-ray detectors. The CT modality
requires that the object is kept stationary while the tube and the detector array
rotate together around it. By rotating, the CT system collects measurements,
usually addressed to as projections, which represents the “shadow” of the object
onto the detector, for a number of fixed positions of the source and detector, called
views. The resulting collected data are referred to as sinogram.
From a mathematical point of view, the absorption is described by a function,
generally called linear attenuation function, that represents the object to be im-
aged by the CT imaging system. Each intensity in the sinogram is proportional
to the line integrals of the X-ray attenuation function between the corresponding
source and detector positions. The problem, therefore, consist in reconstructing
the linear attenuation function, with adequate accuracy, starting from the acquired
sinogram. The described scenario belongs to class of inverse problems and the so-
lution is generally complex and involves techniques in physics, mathematics, and
computer science [9, 77].

The solution of the inverse problem in CT had already been published in 1917,
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many years prior to the advent of computers and CT. The mathematician Jo-
hann Radon published a paper entitled “On the determination of functions from
their integrals along certain manifolds”, where he introduced the mathematical
relation called Radon transform [139]. Due to the complexity and depth of the
mathematical publication and the fact that was written in German, the impor-
tant applications that were to come from his work were hardly foreseen until late
mid-20th century [135, 23].

During the boom in the 1970s which brought to the development of classical
CT, it was noticed that the reconstruction techniques independently produced by
its early inventors were, indeed, equivalent to the work of J. Radon. Bracewell’s
approach used the method of back projections [20], based on the inversion of the
Radon transform: nowadays, the Filtered Back-Projection (FBP) is probably the
most famous among the analytic or transform-based methods. Roughly, FBP
combines the back projection phase with a ramp filtering to denoise [76]. On the
other hand, the original EMI machine prototyped by Hounsfield used an iterative
algorithm universally known as Algebraic Iterative Technique (ART), among the
class of iterative methods [82].

At the early 1970s, both iterative and analytic methods were successfully used
in the first clinical CTs. Later on, evolution and innovation in CT reconstruction
techniques were mainly driven by advances in CT system designs. Namely, ana-
lytical algorithms aim at formulating the solution in a closed-form equation, while
iterative algorithms generates a sequence of improving approximate solutions. As
a consequence, analytical reconstructions are considered computationally more ef-
ficient, while iterative reconstructions usually require much higher computational
demands but result in an improvement of the image quality. For this reason, af-
ter the enthusiasm of early 1970s, when iterative reconstruction were employed
since relatively small amounts per scan of measured data were generated, until the
1990s analytical methods had a prominent role. To this class belongs the algo-
rithm published in 1984 by Feldkamp, Davis, and Kress [53], usually referred to
as FDK, for circular cone-beam tomography, which is still widely used in state-
of-the-art cone-beam scanning devices. It can be understood as an extension of
exact 2D reconstruction algorithms for fan-beam projections to the 3D case by
properly adapting the weighting factors. With the introduction of helical CT, the
most exciting development was probably the extension of the FBP algorithm to
the helical case, due to A. Katsevich [89, 90]. Beside this major contribution, there
exist other approaches derived from the original FDK algorithm and adapted to
the helical CT case.

Thanks to the ever-increasing growth of computer technology, in terms of com-
putational capacities available in modern processors (central processing unit, CPU)
and graphics adapter (graphics processing unit, GPU), the employment of iterative
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reconstruction methods for clinical workflow has become a realistic option. One
main reason to prefer iterative techniques over analytical ones is the possibility to
include various physical models and prior information as a constraint for recon-
struction. The simplest form of iterative reconstruction is the above-mentioned
ART [62], based on Kaczmarz method for solving linear systems of equations of
the form Ax = b [87]. One variant of ART is the simultaneous ART (SART)
[2], which performs updates for complete raw data projections instead of process-
ing a single pixel at the time. The simultaneous iterative reconstruction technique
(SIRT) [60], with its variant ordered subsets SIRT (OS-SIRT) [161], and the multi-
plicative algebraic reconstruction technique methods (MART) [5]Êare other ART-
based methods. They are non-statistical and, in general, are able to model the
geometry of the acquisition process better than common analytical methods based
on FBP since can better deal with sparse data and irregular samplings of acqui-
sition positions. Among the iterative methods, the family of statistical methods
comprehend two main groups: maximum likelihood (ML) principle based meth-
ods and least squares (LS) principle based methods. The maximum likelihood
expectation-maximization (ML-EM) algorithm [109] is one of the most popular
among the ML class. It consists of two alternating steps: the E-step computes the
expected log-likelihood, and the M-step finds the next estimate by maximizing the
finding at the previous step. Diverse variant of these methods exist, introduced
to speed convergence and allows for easy parallelization: the convex algorithm,
the OS-EM [122], and a combination of this two, the ordered subset convex al-
gorithm (OSC) [88, 51, 7]. The class of LS methods counts in the LS conjugate
gradient (LSCG) method [117, 118, 55], the iterative coordinate descent (ICD)
[144, 18, 150] and its faster variant OS-ICD [112, 169]. These methods are usually
harder to parallelize since single pixels or coordinates are iteratively updated to
minimize a cost function. Finally, the family of iterative methods comprehends
the model-based iterative reconstruction (MBIR) [150, 166], whose main concern is
to model the acquisition process as accurately as possible, namely including both
photon statistics and geometry modelling. A more consistent review on analytical
and iterative reconstruction techniques, with a detailed comparison of pros and
cons, can be found in [46, 8, 84].

To date, four major CT vendors have presented their iterative reconstruction
products: two of these, VEO introduced by GE Healthcare in 2009 and SAFIRE
(Sinogram affirmed iterative reconstruction) developed by Siemens in 2010, have
received clearance released by the Food and Drug Administration of the USA, once
certified the considerable X-ray dose reduction possibilities of these technologies
[8]. Especially when dealing with clinical CT, this is a prime target, which argues
in favor of iterative techniques. In fact, already shortly after the discovery of X-
rays, the radiation injuries caused by the harmful effect of ionizing radiation were
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observed [152]. However, despite all the risks, the X-ray imaging still offered very
attractive opportunities in medical imaging and NDT and that is why the research
in this field never stopped.

At the turn of the century, classical 2D and 3D CT technologies are considered
mature fields. Beside this, the above-mentioned concern in industrial CT testify
that there is an ever-growing interest in CT techniques that allows a lower X-
ray radiation dose. This motivates the renewed interest in problems of limited or
incomplete data tomography. Intuitively, it is clear that when not all lines are
measured or not all views are considered, there is a reduction of the X-ray dose.
Moreover, in many important tomography problems complete data can not be
obtained [98].
It is not a “new problem”, though. At the end of the 1970s the research interest had
already turned to the study of limited and incomplete data problems, to finally
conclude, in the late 1980s, that no reliable solution could be ever be obtained.
Discovering that accurate and robust reconstructions from incomplete data were,
indeed, possible revived the interest in this topic, abetted also by the possibility
to reduce the scanning time [33].

All this prompt us to focus on the resolution of ROI CT, an incomplete data
problem, by employing more sophisticated algorithms, compared to the state-of-
the-art methods presented in this Section. This required a sound understanding
of the mathematical modeling of the problem and of its geometry. In the next
Sections we present an overview of all classified limited and incomplete data prob-
lems. Next, a brief presentation of inverse problems as a general framework for
ROI CT is given and the Chapter concludes with an outline of the thesis, pointing
out the original contributions of this work.

1.3 Limited data tomography problems
We deal with limited or incomplete data problems when only a proper subset of
all lines crossing the object is measured or a limited range of views is considered.
According to T. Quinto [98], there exist four types of limited data problems.

(a) Exterior CT. In this case, only the data for lines outside an excluded re-
gion (usually a circle) are measured and the goal is to recover the object
outside this region, as depicted in Figure 1.1a. This problem dates back to
the early days of CT, when a single scan of a planar cross section required
several minutes: the movements of a beating heart would create artifacts in
the scan, unless a sufficient large region containing the moving heart could
be consider, leaving outside a region that would not move. The advance
in technology made this problem obsolete. Nowadays, exterior CT is fun-
damental for imaging large objects, e.g., rocket shells, whose center is too
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?

(a) Exterior CT. (b) Limited angle CT.

?

?

(c) Region-of-interest CT.

?

?

(d) Limited angle ROI CT.

Figure 1.1: Types of limited data problems.

thick to penetrate. Finally, there exist a mathematical result proving that
compactly supported functions can be uniquely reconstructed outside the
excluded region from exterior data and several effective inversion methods
have been developed [137, 98].

(b) Limited angle CT. Here, data are given only over all lines within a limited
angular range, as in Figure 1.1b. Like exterior CT, it is a classical prob-
lem from the early days of CT and, currently, limited angle data are being
employed in important applications, such as breast tomosynthesis, luggage
scanners and dental X-ray scanning. Mathematically, a unique solution ex-
ists for compactly supported functions but it is, in general, very unstable.
Many algorithms were developed to address this problem (see [113, 136] and
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the reference therein).

(c) Region-of-interest CT. In this modality measurements are taken only within
a limited region-of-interest (generally, a circle) strictly inside the object sup-
port (interior ROI), as illustrated in Figure 1.1c. The problem consist in
reconstructing the structure of the ROI only from these data. Notice that,
because of the overlapping principle of the CT measurements, the contribu-
tion from the object outside the ROI is also included into the measured data.
This problem comes up, e.g., in biomedical applications of CT or micro-CT,
where information is required only about some ROI, or in high-resolution
tomography problems of small parts of objects, for which it is difficult or
impossible to get complete high-resolution CT data.
Since this is the main topic of this thesis, more details will be discussed
throughout the thesis (see Chapter 2).

(d) Limited angle ROI CT. This is a combination of the second and the third
type, namely data are given over lines in a limited angular range with the
additional constraint to pass through a given ROI, as shown in Figure 1.1d
This problem is encountered, e.g., in electron microscopy [137, 138].

1.4 Inverse problems
CT images provide the very first example of images obtained by solving a math-
ematical problem which belongs to the class of the so-called inverse problems.
Nowadays, inverse problems are ubiquitous in physics (actually, science in gen-
eral), mathematics engineering and industry, and, within the past decades, they
received a great deal of attention by (applied) mathematicians, statisticians, and
engineers. This is mainly due to the rise of large and powerful computers, the
reliable numerical methods to face them and, first and foremost, the importance
of its applications, that range from geophysics to biomedicine, to economy and
finance, astronomy, and life science in general.

According to J.B. Keller, “we call two problems inverses of one another if the
formulation of each involves all or part of the solution of the other”, and, he states
further, “for historical reasons, one of the two problems has been studied exten-
sively for some time, while the other has never been studied and is not so well
understood. In such cases, the former is called the direct problem, while the latter
is the inverse problem” [92]. Roughly, the duality that links a direct and the corre-
sponding inverse problem is that one can be obtained from the other by switching
the role of the data and the unknowns. In other words, a direct problem is a
problem oriented along a cause-effect sequence while the inverse problem implies
a reversal of the cause-effect sequence.

Thus, the mathematical viewpoint in inverse problems consist in using the
results of actual observations or indirect measurements to infer the model or an
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estimation of certain values of the parameters characterizing the system under
investigation. For instance, in radio astronomy one aims at determine the shape
of celestial objects emitting radio waves, from the radio waves received by radio
telescope on the surface of the Earth. In groundwater flow modeling, one estimates
material parameters of an aquifer from measurements of pressure of a fluid that
immerses the aquifer. In life sciences, inverse protein folding problems are examples
of classical inverse problems, and, in finance, a central problem is the calibration
of the volatility of the stock price, the main parameter which governs the models
of derivates based on stock prices and can not directly read off of the market data.

In many instances, this estimation process is ill-posed, in the sense that noise
(understood as “unwanted electrical fluctuations”) in the data may give rise to
significant errors in the estimate. More precisely, an ill-posed problem do not
fulfill Hadamard’s postulates of well-posedness, i.e., a solution may not exists or
the solution might not be unique and/or might not depend continuously on the
data. On the other hand, many inverse problems can be formulated as linear
problems, which frequently lead to integral equations of the first kind, even if
many basic inverse problems are inherently nonlinear albeit the corresponding
direct problem is linear. As we shall see in Chapter 2, this is also the case of CT,
in general, and ROI CT, in particular: CT is a linear inverse problem and, when
the projections are truncated, as in ROI CT, ill-posedness is even more severe.

How to deal with ill-posedness is still an open research field and it is gen-
erally problem-dependent. However, a new mathematical technique proposed in
1963 [151], called regularization theory, has dominated and is still dominating the
scene of inverse problems. With this approach, an ill-posed problem is approxi-
mated by exploiting a family of well-posed ones. This technique relies on another
well-established principle in inverse problems solution, namely, the relevance of ad-
ditional information on the solution. As we shall see in Chapter 5, in regularization
theory the additional information reappears in a statistical form.

To this framework belongs the ROI CT problem, for which will be investigated
a regularization approach based on shearlets, a multiscale method whose optimally
sparse approximation properties are potentially relevant in CT-like applications,
as we will see in Chapter 4.

There is a vast literature on inverse and ill-posed problems, including books,
reference proceedings and dedicated journals. Seminal works are, e.g., [9, 50, 64,
73, 157] and more references can be found therein, while the recent [145] gives an
overview on the solution of inverse problems from applied and industrial research
applications.
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1.5 Thesis outline and original contributions

This thesis consists of seven chapters and an appendix. This Chapter serves as an
introduction to this doctoral dissertation. It includes an extensive summary on
the historical development of CT and its reconstruction algorithms, an overview
on the theoretical aspects of image reconstruction from limited or incomplete data,
and a brief presentation of inverse problems as a general framework for the ROI
CT problem.

The ROI CT problem formulation, both in the continuous and the discrete set-
tings, is addressed in Chapter 2. Afterwards, the problem is stated as a convex ob-
jective function, which exploits different levels of regularization, and a nonsmooth
version. Chapter 2 is also comprehensive of a literature review on reconstruction
strategies for the ROI CT problem.

Chapter 3 is devoted to a brand new and effective vectorized approach to a
state-of-the-art technique, called distance-driven, for a faster discretization of the
forward projection operator. The proposed approach applies to both the 2D fan-
beam and the 3D cone-beam CT geometries. A literature review on the different
generations of CT scanners and on the existing forward models for the projection
matrix is given, first.

The mathematical background on the theory, application and implementation
of shearlets, a recent multiscale method for the representation of multivariate data,
is reiterated in Chapter 4. In this thesis, shearlets are used as a regularization tool
to address the ROI CT problem. Since this topic is self-contained and stand-alone,
and belongs primarily to the field of harmonic analysis, some background material
on frame theory and locally compact groups is summarized in Appendix A.

To face the numerical solution of the ROI CT problem, two iterative algorithms
are proposed and analyzed in Chapter 5, within the framework of a statistical ap-
proach for image reconstruction. The former one is the scaled gradient projection
method and belongs to the class of first-order descent methods. It mainly applies
to smooth, possibly constrained, problems with “simple” feasible regions. The lat-
ter one is the variable metric inexact line-search algorithm, a proximal-gradient
method suitable for minimizing the sum of a differentiable, possibly nonconvex,
function plus a convex, possibly not differentiable, function. Their practical im-
plementation to the ROI CT problem is thoroughly investigated.

Numerical experiments and results are given in Chapter 6, once the general
setup for the simulated data has been described. The numerical simulations are
performed by exploiting the different levels of regularization enabled by the objec-
tive function designed in Chapter 2. In the last Section, a final discussion compares
the results achieved with the findings obtained with a traditional technique.

The last Chapter summarizes the conclusions and gives suggestions for further
work and perspectives.
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The main original contributions of this thesis are the following:

• the study and the proofs on the vectorized approaches to the distance-driven
method for the forward CT projection operator;

• an efficient implementation of the forward projection matrix for the 2D fan-
beam and the 3D cone-beam circular geometries;

• the arrangement of the scaled gradient projection method and the variable
metric inexact line-search algorithm for the ROI CT problem setting, with
a parameter optimization analysis;

• the use of shearlets as regularization tool in the ROI CT problem;

• a topical review which includes a thorough literature review on CT and
ROI CT problems, shearlets and state-of-the-art techniques for the forward
projection operator.
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Chapter 2

Region-of-interest tomography

As outlined in the Introduction, the impact of CT has been enormous in diverse
areas, including industrial NDT, security screening and forensic, archeological and
medical diagnostics even though, in this last application, exposure to X-ray ra-
diation comes with health hazards for patients. Luckily, in many biomedical
situations, such as contrast-enhanced cardiac imaging or some surgical implant
procedures, e.g., the positioning of intracranial stents [164], one is interested in
examining only a small ROI with high resolution. Hence, there is no need to ir-
radiate the entire body but only a smaller region, with the advantage of reducing
radiation exposure and shortening the scanning time.

In this Chapter we setup the ROI CT reconstruction problem, formulating it as
a convex optimization problem with a regularized functional based on shearlets (in-
troduced in Chapter 4). The numerical solution of this problem will be addressed
in Chapter 5, using the iterative minimization techniques presented therein. Part
of this Chapter is based on [22, 21].

2.1 State-of-the-art

The goal of ROI CT is to reconstruct an object only within a limited region of
interest, starting from the data projection acquired only for those rays meeting
the ROI. From the mathematical point of view, classical CT reconstruction is an
inverse and ill-posed problem. We recall that, according to Hadamard’s definition,
in an ill-posed problem the solution does not exists, or it is not unique, or there
is lack of continuous dependence of the solution on the data. When one attempts
to solve the reconstruction problem from incomplete or truncated projections, as
in the case of ROI CT, the ill-posedness is even more severe [127].

For over two decades, from the late 1970s to early 2000s, it has been widely
believed that theoretically exact local reconstruction of ROIs can not be obtained,

13
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abetted by the construction of a counterexample showing the nonuniqueness of
the solution to the interior problem. Unexpectedly, in 2002, the first examples
of accurate partial reconstructions from incomplete data, in 2D, appeared. This
contradicted the general understanding that incomplete or truncated projections
must inevitably generate artifacts throughout the image: incomplete was no longer
synonymous with insufficient, when talking about CT data [33].

Soon it was established that ROI CT requires ad hoc approaches to ensure
reliable reconstruction. Indeed, traditional CT algorithms, such as FBP or the
FDK algorithms, straightforwardly applied to the interior reconstruction problem
may create unacceptable artifacts overlapping features of interest, being more and
more unstable to noise as the size of the ROI decreases, rendering the image
inaccurate or useless [128].

To address the problem of ROI reconstruction from truncated projections a
number of analytic and iterative methods has been proposed, during the last
decade. A first attempt was provided by Lambda tomography, a gradient-like
nonquantitative technique that gives the values and locations of jumps but does
not allow to reconstruct the attenuation function pointwise [52, 136]. Next, it was
shown that it was possible to derive analytic ROI reconstruction formulae from
truncated data, even though such formulae usually require restrictive assumptions
on the location of the ROI and depend on the acquisition setting [131, 34, 173].
For example, initial Differentiated Back-Projection (DBP) methods could be ap-
plied only if there existed at least one projection view in which the complete (i.e.,
non-truncated) projection data are available. Later on, many others DBP meth-
ods, also based on the projection onto convex sets, were proposed, in which the
above restriction was substituted with the requirement of a known subregion inside
the ROI, that is usually available when air gaps, water or blood landmarks are
at disposal [130, 35, 167]. DBP methods relies on the inversion of the so-called
truncated Hilbert transform. As an alternative, an SVD-based DBP approach
was proposed by A. Katsevich et al., where the inversion of the truncated Hilbert
transform is performed by means of the singular value decomposition transform
[85]. Finally, using the compressive sensing theory, it was proved that exact in-
terior reconstruction can be theoretically achieved, provided that the attenuation
function is piecewise polynomial on the ROI [165, 162]. This result was comple-
mented by the one of A. Katsevich et al., in [91], for function that are polynomial,
rather than piecewise polynomial, on the ROI: this is viewed by the authors as a
first step towards a general proof of the stability for the piecewise polynomial case.
However, the impact of noise on the stability of the analytic ROI CT methods has
not been fully examined, and such methods might indeed become unstable in the
presence of noise, according to the literature available to date.

Next to analytic methods, some common iterative algorithms have been adapted
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to ROI tomography. It has already been pointed out that methods belonging to
this class are generally more flexible, since they can be applied to essentially any
type of acquisition mode, also including several physical processes in the mod-
eling, like noise or scattering. Iterative algorithms are usually computationally
more demanding, but advances in high-performance computing make them more
and more competitive [70, 8]. The ML expectation-maximization (MLEM) algo-
rithm [147], SIRT [78], and the least-squares Conjugate Gradient (LSCG) method
[80] have been applied to ROI tomography by several authors. The idea of iterative
reconstruction-reprojection (IRR), first introduced for traditional CT in [126], has
also been adapted to the ROI CT problem. These approaches typically involve
some form of prior knowledge on the object attenuation function, such as the pilot
reconstruction of the full object in [71], or the transition zone between the ROI and
the non-ROI in [172], or a regularization term to ensure a stable ROI reconstruc-
tion, as the Total Variation term in [163]. For all these methods, the performance
is usually rather sensitive to the ROI size and the presence of noise. In [149],
the algorithm by Chambolle and Pock [28] is applied to an optimization problem
expressed by means of a data fidelity term, which compares a derivative of the esti-
mated data with the available projection data. This approach is somehow related
to Lambda tomography. A Bayesian multiresolution method for local tomography
reconstruction in dental X-ray imaging is proposed in [129], using a wavelet basis
for the representation of the dental structures, with a high resolution inside the
ROI and coarser resolution outside the ROI. Their approach is closely related to
the one recently proposed in [97]. A wavelet-based regularization algorithm based
on IRR is proposed in [4], with a variant that employs a smoothing convolution
operator for the re-projecting phase. Also the regularity-inducing convex opti-
mization (RICO) algorithm employs a wavelet-based regularization. However, in
their work the authors explicitly account for the presence of noise by leveraging
data fidelity, data consistency and sparsity-based regularization [61].

The approach presented in this thesis basically relies on the setup in [61]. Any-
how, a slightly different objective function will be investigated, including a shearlet
term, possibly coupled with Total Variation. Moreover, the numerical assessment,
in place of a (split) augmented Lagrangian, exploits algorithms belonging to the
class of gradient projected-type methods, and its generalization to the nonsmooth
case.

2.2 From CT to ROI CT: continuous setup

The general framework introduced in this Section works even for dimensions higher
than two and applies to different projection geometries, including fan-beam and
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cone-beam. However, since the numerical assessment presented in Chapter 6 is
carried out with 2D objects, the ROI CT setup will be focused on the 2D case.

2.2.1 A unique solution for the ROI CT problem

As already pointed out in the Introduction, the CT reconstruction problem con-
sists in reconstructing a density function from a set of projections, obtained by
measuring attenuation over straight lines. Mathematically, this is understood as
a “line-integral model" by means of the X-ray transform notion.

Let Sn−1 represent the unit sphere in Rn, with n ≥ 2. A straight line ℓ(ω, ξ)
in Rn is represented by a direction ω ∈ Sn−1 and a point ξ ∈ ω⊥, that is:

ℓ(ω, ξ) = {ξ + tω : t ∈ R}.

where ω⊥ = {ξ ∈ Rn : ⟨ξ, ω⟩ = 0} denotes the subspace orthogonal to ω and ⟨·, ·⟩
is the usual scalar product in Rn.

Definition 2.1 ([128]). Let f ∈ L1(Rn). The X-ray transform X : L1(Rn)→ T n
of the function f is the line integral of f along the lines ℓ(ω, ξ):

(X f)(ω, ξ) =
∫
ℓ(ω,ξ)

f(x) dx =

∫
R
f(ξ + tω) dt,

where T n = {(ω, ξ) : ω ∈ Sn−1, ξ ∈ ω⊥} is the tangent bundle to Sn−1.

There is another fundamental definition in traditional CT theory, the Radon
transform.

Definition 2.2 ([128]). Let f ∈ L1(Rn). The Radon transform R : L1(Rn)→ Cn
of the function f is the line integral of f over the hyperplanes H (ω, τ):

(Rf)(ω, τ) =
∫

H (ω,τ)

f(x) dx =

∫
ω⊥
f(ξ + τω) dξ,

where H (ω, τ) = {x ∈ Rn : ⟨x, ω⟩ = τ} is a hyperplane perpendicular to ω ∈
Sn−1 with (signed) distance τ ∈ R from the origin and Cn = {(ω, τ) : ω ∈ Sn−1, τ ∈
R} is the unit cylinder in Rn.

Therefore, in 2D, the Radon transform and the X-ray transform differ from each
other only in the parameterization, i.e., they are both defined as a line integral,
while in 3D the Radon transform is an integral over a plane. That is why the
X-ray transform is chosen over the Radon transform to model the tomographic
acquisition when n ≥ 3.
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Hereafter, we will restrict ourselves to the 2D case, namely n = 2. Let ω be
a function of a polar angle θ ∈ R, i.e., ωθ =

(
cos(θ), sin(θ)

)T ∈ S1, f ∈ L1(R2)
and x ∈ R2. The X-ray transform (or, equivalently, the Radon transform) of f at
(θ, τ) is the line integral of f over the lines (or rays) ℓ(θ, τ) perpendicular to ωθ
with signed distance τ ∈ R from the origin:

X f(θ, τ) =
∫
ℓ(θ,τ)

f(x) dx =

∫
R2

δ(τ − ⟨x, ωθ⟩) f(x) dx, (2.1)

where ℓ(θ, τ) = {x ∈ R2 : ⟨x, ωθ⟩ = τ}. The underlying physics relation is
the Beer’s Law [84], stating that the decrease in intensity at x is proportional to
the intensity I(x), understood as “number of photons”, with the opposite of the
attenuation coefficient −f(x) as proportionality constant:

dI

dx
= −f(x) I(x).

Heuristically, the meaning is that the more dense the material is at x, the more
the beam is attenuated and the greater is the decrease of I at x. By using the
separation of variables integration technique, one gets exactly relation (2.1):

log

(
I0
I1

)
=

∫ x1

x0

f(x) dx =

∫
ℓ

f(x) dx,

where ℓ is a line along which X-rays travel, from the source point x0 ∈ ℓ, with
X-ray emitter intensity I0, to the detector cell point x1 ∈ ℓ, whose intensity is I1.

In what follows, we will refer to the X-ray projections as the full sinogram and
we shall denote it by:

y(θ, τ) = X f(θ, τ), θ ∈ [0, 2π), τ ∈ R. (2.2)

Notice that T = {(θ, τ) : θ ∈ [0, 2π), τ ∈ R} is the tangent space of the circle.
Also, we will address the domain of (2.2) as the projection domain and the domain
of the density or attenuation function as the image domain.

In the ROI tomography problem, projections are collected only for those rays
meeting a region of interest inside the field of view. The goal is to recover the
density function inside the ROI only, while the rest of the function is essentially
ignored, even if the contribution from the object outside the ROI is included into
the measured data, because of the overlapping principle of the CT measurements.
By denoting with S ⊂ R2 the ROI, the set of ROI-truncated projections is identi-
fied to be the set

P(S) = {(θ, τ) ∈ T : ℓ(θ, τ) ∩ S ̸= ∅} ⊂ T .
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X f(θ, τ)

θ

τ

S

f(θ, τ)

(a) Image (object) domain.

P(S)

θ

τ

(b) Projection domain.

Figure 2.1: Illustration of the ROI S in the image domain, on the left (a), and the
corresponding ROI-truncated projections P(S), on the right (b).

Thus, the ROI reconstruction problem can be formulated as the problem of recon-
structing the density function f restricted to the ROI S from the truncated X-ray
projections. The geometrical set-up is illustrated in Figure 3.3. Mathematically,
this reads as:

y0(θ, τ) =M(θ, τ)X f(θ, τ) with M(θ, τ) = 1P(S)(θ, τ) (2.3)

where M is the mask function on T and 1A is the characteristic function of the
set A, defined by

1A(x) =

{
1 if x ∈ A
0 if x ̸∈ A

. (2.4)

We will refer to y0(θ, τ) as the truncated sinogram. In the following, we will assume
that the ROI S is a disk in R2, since it is the more natural choice, due to the circular
trajectory of the X-ray source. If pROI ∈ R2 denoted the center of the ROI and
rROI ∈ R its radius, it is clear that

P(S) = {(θ, τ) ∈ T : |τ − pROI · ωθ| < rROI}.

More general convex ROIs can be taken into account by finding the minimal en-
closing disk for such a ROI and reconstructing the image for this disk.

A natural approach for obtaining a stable reconstruction of f from equation
(2.3) is by computing the least squares solution f̄ :

f̄ = argmin
f
∥MX f − y0∥22. (2.5)
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The least squares approach is a state of the art method to solve linear inverse
problems of the form (2.2), which can often be motivated for statistical reasons
(see Chapter 5 for more details). It can be understood as a data mismatch term
since, in general, it accounts for the discrepancy between the actual measurements
and the ideal measurements.
However, it is known that the solution of the ROI problem, in general, is not
guaranteed to be unique [127] and also the minimizer of problem (2.5) is not
unique, since the set of solutions is the affine subspace

V = {f ∈ L2(R2) : y = X f and My = y0},

given that the kernel of MX is not trivial, i.e., ker(MX ) ̸= {0}, due to the
truncation mask operator M . Moreover, even when the uniqueness is ensured, we
already remarked that the inversion of the X-ray transform is an ill-posed problem,
with the ill-posedness becoming more severe when the projections are truncated,
as in the case of the ROI CT problem.

A classical approach to achieve uniqueness is to use the Tikhonov regulariza-
tion method [151]. The basic idea of the Tikhonov method is to search for the
minimum-norm solution, having incorporate a certain a priori assumptions about
the smoothness of the solution by adding an additional norm condition. In details,
one seek for the solution of the following minimization problem:

argmin
f

{
∥Kf − g∥22 + µ ∥f∥22

}
, (2.6)

where K : H1 → H2 is a linear continuous operator between the Hilbert spaces H1

and H2, g ∈ H2 is the measured data and µ ∈ R+, which is usually referred to as
penalty or regularization parameter, controls the weight given to minimization of
the additional norm term. Clearly, K =MX and g = y0 according to the notation
introduced in this Chapter. It can be shown that for each µ ∈ R+ the minimum
problem 2.6 is equivalent to the Euler equation(

K∗K + µI
)
f = K∗g

where K∗ denotes the adjoint operator and I is the identity operator. The impor-
tance of the Tikhonov method relies in the following fundamental result.

Theorem 2.3 ([9, 50]). The one-parameter family of operator {Rµ}µ∈R+ defined
by

{Rµ}µ∈R+ =
(
K∗K + µI

)−1
K∗

is a linear and regular regularization algorithm, in the sense specified by Definition
2.4.
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Definition 2.4 ([9, 50]). Let K : H1 → H2 be a linear continuous operator. A
regularization algorithm is the one-parameter family of operator {Rµ}µ∈R+ such
that

1. Rµ : H1 → H2 is bounded for every µ ∈ R+;

2. lim ∥Rµg − υ∥X = 0 for every g ∈ H2 such that Pg ∈ range(K), where
P is the linear projection onto the closure range(K). Here, υ denotes the
generalized solution of the problem.

The regularization algorithm {Rµ}µ∈R+ is said linear if Rµ is linear for each value
of the regularization parameter µ. The algorithm is also regular if for a given noise
variance σ → 0, the optimal choice of the regularization parameter µopt(σ) → 0
and Rµopt(σ)gσ → υ, where gσ is the noisy measurements.

Similarly to the least squares approach, the Tikhonov method can be motivated
for statistical reasons (see Chapter 5), whence the definition of regular algorithm
that accounts for noisy measurements.

In principle, the norm condition in the Tikhonov method can be applied in the
image domain or in the projection domain, leading in general to different solutions.
In details, this yields:

argmin
f

{
∥Kf − g∥22 + µ∥Θ(f)∥22

}
, (2.7)

where Θ shall incorporate a low pass operators (e.g., difference operator or wavelets-
shearlets operator) to enforce smoothness or to induce a sparse solution. Finally,
notice that, under mild condition [159], the Tikhonov regularization (2.6)-(2.7) is
equivalent to the Morozov regularization:

argmin
f
∥Θ(f)∥22 s. t. Kf = g,

where the constraint equality can be relaxed by requiring ∥Kf − g∥22 ≤ σ, with σ
denoting the noise variance.
To define a suitable norm condition for the ROI CT problem in the projection
domain, we recall the following definition.

Definition 2.5 ([128]). Let h ∈ L2(T ). The Riesz potential operator I−α of the
function h is defined by:

(̂Iαh)(θ, ξ) = |ξ|−αĥ(θ, ξ), α < 2, (2.8)

where the hat symbol ·̂ denotes the Fourier transform [58, 143].
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Using (2.8), the L2-norm of f can equivalently be computed in the projection
domain. Indeed, the following formula, remarkable for its role in local tomography
[98], holds true:

Lemma 2.6 ([128]). Let f ∈ S (Rn). Then for α < n

f =
(2π)1−n

2
I−αX ∗ Iα−n+1X f,

where X ∗ is the adjoint operator of X , usually referred to as backprojection oper-
ator, and S (Rn) denotes the Schwartz space on Rn [58, 143].

We are interested in the special case where n = 2 and α = 0. This choice leads
to:

f =
1

4π
X ∗I−1X f, (2.9)

Hence, we have:

∥f∥22 =
1

4π
⟨f,X ∗I−1X f⟩ =

1

4π
⟨X f, I−1X f⟩

=
1

4π
⟨I−

1
2X f, I−

1
2X f⟩ =

1

4π

I− 1
2X f

2
2

(2.10)

Thus, we are lead to the following optimization problem:

f̄ = argmin
f

I−1/2X f
2
2

s. t. y = X f and My = y0, (2.11)

where the equivalence between Tikhonov and Morozov regularization has been
used, with Θ = I−1/2X . By analogy, we set

Υp(f) =
I− 1

2X f
p
p

with 1 ≤ p ≤ 2.

because in the following (see Chapter 5) we will not only consider the traditional
case p = 2, but also a sparsity promoting modification of this minimization condi-
tion using the functional Υp(f) with p = 1. Notice that the use of the 1-norm in
place of the 2-norm is a state-of-the-art approach, well investigated in literature
in a number of applications, including compressive sensing, image deblurring and
deconvolution, as convex approximation of the so-called ℓ0-norm [49]. Roughly, we
are looking for a solution which is sparse in the ℓ1-sense in the transform domain.

Finally, the following remark will also be useful to design the objective function.
It is easy to see that

y = y0 + (I −M) y, (2.12)

indicating that the ROI reconstruction problem can be viewed as an extrapolation
problem where y0, given on P(S), is to be extrapolated outside P(S). Clearly,
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not any extrapolated function y outside P(S) can be chosen, since, due to the
overlapping principle of the CT measurements, the following global constraint is
needed

X f = y. (2.13)

Equation (2.13) ensures that y belongs to range of the X-ray transform of the
density function f ∈ L1(R) ∩ L2(R). By applying M and I −M to the left-hand
and right-hand sides of (2.13), respectively, we obtain the following equations:

MX f =M y = y0 (data fidelity) (2.14)
(I −M)X f = (I −M) y (data consistency) (2.15)

The data fidelity equation defines a constraint inside the ROI while the data con-
sistency equation enforces accurate reconstruction inside the ROI. These equations
can be combined with regularization to obtain a suitable objective function for the
ROI CT problem, as we shall see in section 2.3.

2.3 Discrete framework: explicit and implicit for-
mulation of the objective function

To derive a discrete formulation for the ROI CT reconstruction framework, we
need first to discretize equations (2.14) and (2.15). Given a projection geometry,
the forward problem is discretized by means of a matrix W sized NθNdtc × N2,
that represents the map from the image domain to the projection domain. Here,
Nθ denotes the number of projection angles and Ndtc the number of detector cells
(i.e., samples along the detector array). The construction of the matrix W is
carried out in Chapter 3. The mask identifying the ROI is the diagonal matrix
M sized NθNdtc × NθNdtc whose entries are either 0 or 1. The unknown discrete
density function f to be reconstructed is represented as a vector f of length N2 in
which the entries are stacked column by column. Here, N is both the width and
the height in pixels (see Section 3.2) of the object to reconstruct. Similarly, the
full sinogram y and the truncated sinogram y0 are represented as vectors y and y0,
respectively, of length NθNdtc, obtained by stacking the entries column by column.
We recall that y and y0 are related to each other by the data fidelity equation

y0 = My = MWf ,

and the data consistency equation, that sets the extrapolation scheme outside the
ROI, reads as

(1NθNdtc
−M)Wf = (1NθNdtc

−M)y,
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where 1NθNdtc
is the NθNdtc × NθNdtc identity matrix. In particular, the data

consistency equation yields

y = (1NθNdtc
−M)Wf + y0. (2.16)

As indicated above, data fidelity and data consistency equations need to be coupled
with regularization to yield a unique solution. Thus, similarly to (2.11), we obtain
the following discrete optimization problem:

f̄ = argmin
f
∥ΦWf∥pp s. t. y = Wf and My = y0 (2.17)

where p = 1, 2 and the matrix Φ sized NθNdtc ×NθNdtc is a discrete filter corre-
sponding to the Riesz potenzial operator I− 1

2 . Indeed, in place of considering a
straightforward matrix discretization of the Riesz potential operator, we will ap-
proximate it by using the discrete shearlet transform, a multiscale method which
refines the conventional wavelet framework by combining multiscale analysis and
directional sensitivity [102]. Thanks to their properties, shearlets are potentially
relevant in CT-like applications, since point-like structures in the image domain
map onto sine-shaped curvilinear structures in the projection domain. A self-
contained overview about shearlets main ideas is presented in Chapter 4. In par-
ticular, notice that when p = 1, the use of the 1-norm asks for the suppression
of the smallest coefficients in favor of the largest ones, that should be the most
significant. Instead, when p = 2 and Φ is a frame or an orthonormal base, we are
simply aiming at a Tikhonov-like regularization with the norm condition applying
in the projection domain.

Now, rather than requiring the exact equalities stated by data fidelity and data
consistency equations, we shall minimize the L2-norm error associated to them,
according to a maximum likelihood approach and the equivalence between the
Tikhonov and Morozov minimization. By exploiting this idea, we can state two
different optimization problems and objective functions. On the one hand, we can
consider the L2-norm error of the data fidelity equation only and incorporate the
data consistency information in the regularization term. In this case, the only
variable we are minimizing onto is the image f to be reconstructed. This approach
yields:

f̄ = argmin
f∈Ωf

O(f)

with

O(f) =
1

2

MWf − y0

2
2
+ µ

Φ((1NθNdtc
−M)Wf + y0)

p
p
, (2.18)

where the expression for the regularization term µ ∥Φ((1NθNdtc
−M)Wf + y0)∥pp

derives from (2.16)-(2.17). We will refer to (2.18) as the implicit formulation, since
the full sinogram y does not appear explicitly.
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On the other hand, we can consider both the data fidelity and the data consis-
tency L2-norm errors into the objective function to assess if, by explicitly incorpo-
rating the extrapolation scheme in the minimization problem, we achieve a more
accurate reconstruction. In this case, the image f to be reconstructed and the full
sinogram y are both unknowns. This second approach yields:(

f̄ , ȳ
)
= argmin

f∈Ωf
y≥0

O(f ,y)

where

O(f ,y) =
1

2

MWf − y0

2
2
+

1

2

(1NθNdtc
−M)(Wf − y)

2
2

+ µ
Φ((1NθNdtc

−M)y + y0)
p
p
.

(2.19)

In contrast with the above formulation, we will refer to (2.19) as the explicit
formulation. In both cases, µ denotes the regularization parameter, p = 1, 2, and
the feasible region Ωf is either defined as the non-negativity constraint f ≥ 0 or
the box constraint 0 ≤ f ≤ Lmax, where Lmax is the maximum pixel value of the
image, and the inequalities are meant component-wise. In the explicit formulation,
the full sinogram y is subject to a non-negativity constraint, too. We point out
that the non-negativity constraint must be introduced in the formulation of the
previous minimization problems. Indeed, the image and the full sinogram are non-
negative given that the image f is understood as a measure of attenuation and,
hence, measures the incoming “number of photons”, and the full sinogram y should
preserve the non-negativity under the action of the matrix W. We also notice that,
in both formulations, each term of the objective function is convex with respect
to the unknowns (it is strictly convex for p > 1, and this is particularly relevant
when p = 2).

Notice that the usefulness of two different objective functions relies on the
image reconstruction formulation as a statistical problem (see Chapter 5), whose
underlying principle is the presence of noise. Indeed, in the absence of noise, the
solution f̄ is the same for both the implicit and the explicit formulations (up to a
vector in the kernel of W). However, in the presence of noise, the explicit formula-
tion should benefit from the presence of the norm ∥(1NθNdtc

−M)Wf −y∥22 that is
in general non-zero (and can be controlled using an appropriate stopping criterion,
typically depending on the noise variance), forcing a more accurate reconstruction
inside the ROI.

Finally, we take into account a slightly different formulation of both the implicit
and the explicit objective function, since it will be considered in the numerical ex-
perimentation presented in Chapter 6. To this end, we recall another regularization
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tool: the Total Variation (TV) functional, with its smoothed version (smooth TV)
[142], that is widely used in image reconstruction [27, 108, 16]. In a continuous
model, TV is given by the following Definition 2.7.

Definition 2.7 ([1]). Given a differentiable function f defined on a bounded open
set A ⊂ Rn, with n ≥ 2, the total variation of f has the following expression:

TV(f) =

∫
A
|∇f(x)| dx.

A more general definition of TV, valid even when f is nonsmooth, can be found,
e.g., in [1]. If we restrict ourselves to the n = 2 case, TV(f) can be interpreted
geometrically as the lateral surface area of the graph of f . Clearly, if f has many
large amplitude oscillations, then it has large lateral surface area, and hence TV(f)
is large. As a consequence, with TV one can effectively reconstruct functions with
jump discontinuities, by controlling oscillatory features.
According to the approach used by Vogel [157], TV can be discretize in the 2D
case by means of the discrete gradient. Since we still meant the object f to be a
vector, our approach combines Vogel’s and the one proposed in [16]. The discrete
gradient of f at the pixel i = (jcol − 1)N + jrow, with jcol, jrow = 1, . . . , N can be
defined by the forward finite difference formula by:

(∇f)i =
(
f(jcol−1)N+mod(jrow,N)+1 − fi
fmod(jcol,N)N+jrow − fi

)
= ∇if , (2.20)

where ∇i ∈ R2×N2 , with i = 1, . . . , N2, is a matrix with only two nonzero entries
on each row, equal to −1 and 1. The smoothed version of TV is accomplished by
taking into account a small quantity δ to to remove the singularity of the discrete
gradient in pixels where ∇i = 0:

TVδ(f) =
1

2

N2∑
i=1

(∇if
δ

)
2
=

1

2

N∑
jrow,jcol=1

qδ(D
2
jrow,jcol

) (2.21)

where
qδ(x) = 2

√
x+ δ2 , q′δ(x) =

1√
x+ δ2

,

and
D2
jrow,jcol

= (fjrow+1,jcol − fjrow,jcol)2 + (fjrow,jcol+1 − fjrow,jcol)2.

Thus, when δ = 0, we are dealing with the unsmoothed version of the TV. Notice
that when ∇i is (much) smaller then δ, the regularization provided by the TV
functional approximates Tikhonov regularization in terms of the ℓ2-norm of the
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modulus of the discrete gradient. Hence, smooth TV not only works as a edge pre-
serving functional, but the presence of δ also incorporates some information about
the smoothness of the object inner surface. Finally, observe that, the TV gradient
operator can be understood as a sparsifying transformation, which transforms the
original image into an edge map.

In conclusion, our objective functions reads as:

O(f) =
1

2

MWf − y0

2
2
+ µ

Φ((1NθNdtc
−M)Wf + y0)

p
p
+ ρTVδ(f) (2.22)

for the implicit formulation and

O(f ,y) =
1

2

MWf − y0

2
2
+

1

2

(1NθNdtc
−M)(Wf − y)

2
2

+ µ
Φ((1NθNdtc

−M)y + y0)
p
p
+ ρTVδ(f)

(2.23)

for the explicit one. In both formulations, ρ is a regularization parameter.
In Chapter 5, we will investigate and analyze two different approaches (one

for p = 2 and the other for the nonsmooth case corresponding to p = 1) for the
solution of the minimization problems introduced in this Chapter.



Chapter 3

Effective distance-driven vectorized
computation of the CT forward
operator

As pointed out in Chapter 2, the mathematical model of the physical data acqui-
sition process in CT can be discretized, yielding the so-called forward projection
matrix. This matrix is a key element in the reconstruction algorithm, and a fast,
accurate and memory efficient implementation is necessary since it comes into play
at each iteration.

In this Chapter, we address how to give a discrete representation of the object,
how to model the forward operator, by exploiting a state-of-the-art algorithm
called distance-driven and, lastly, how to practically implement it in an efficient
and accurate way. A new (and still unpublished) vectorized implementation will
be proposed for the 3D cone-beam CT geometry, which applies also to the 2D fan-
beam CT geometry, with the necessary arrangements. Before that, the Chapter
opens with a literature review on the different generations of CT scanners and on
the existing forward models for the forward projection matrix.

To the best of our knowledge, a description of a vectorized computation of the
distance-driven technique is not available in the literature, nor a package providing
it. Besides this, the few available non-vectorized presentations are in general poor
in details and lack of a formal and rigorous mathematical description, which is
instead the backbone of this Chapter.

3.1 Generations of CT scanners

The aim of this section is a self-contained overview on the evolution of CT tech-
nology. The main reference is [83]. We will provide a general panel of the different

27
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generations of CT scanners, focusing mainly on fan-beam and cone-beam geome-
tries, that are at the core of the numerical assessment in Chapter 6. Here, “genera-
tion” relies on both the order in which CT scanner design has been introduced and
the arrangement of components and mechanical motion required to collect data.

In the original EMI scanner built by Hounsfield in 1971, only one pencil-like
X-ray beam was measured at a time by a single detector cell. The X-ray source and
the detector were linearly translated to acquire individual measurements and then
rigidly rotated to the next angular position, to acquire the next set of measure-
ments (see Figure 3.1a). In this very first generation of CT, the average duration
to collect around 160 measurements across the scan field was about 25-30 minutes,
thus producing very poor resolution images due to the patient motion during the
acquisition.

The need to reduce the scanning time, led to a second generation of CT
scanners. The X-ray source and the detector were still moved according to a
translation-rotation dynamics, but the number of rotation steps was reduced by
the use of multiple pencil beams, i.e., by adding detectors angularly displaced to
obtained several projections in a single translation (see Figure 3.1b). This is the
first model of fan-beam geometry for a CT scanner, even if it was not able to
cover the whole filed of view (FOV). Second generation CTs raged from the early
versions with three detectors, each displaced by one degree, to the last ones, with
up to 53 detectors, acquisition during a single breath hold and scans of the trunk.

In the third generation of CT scanner, many detector cells (from the initial
288 to the over 700 of the newer ones) are located on an arc concentric to the
X-ray source. Thus, the X-ray source and the detector are kept stationary to each
other while the entire apparatus rotates around the patient, and no linear motion
is performed. Moreover, each detector FOV is sufficiently large to image the entire
object at all times. This is a rotate-rotate dynamics with a fan-beam geometry
(see Figure 3.2a). The main breakthrough of the third generation of CT scanner
was the introduction of a slip ring technology for the gantry, that accounts for the
power and data transmission process, in place of the traditional cables. The slip
ring technology not only reduced to around 0.5 sec the scan time but was also a
key step to the advent of helical CT. Nowadays, nearly all of the state of the art
scanners on the market are third generation.

However, in the third generation, very high performance detectors are needed
to avoid ring artifacts and the system is more sensitive to aliasing than the first
or second generation scanners. To overcome this limitation, in the fourth gener-
ation the detector (with more than 2000 cells) is arranged in an outer ring and
remains stationary during the entire scan, while the X-ray tube rotates around
the patient (see Figure 3.2b). Unlike the third generation scanner, a projection is
measured on a single detector as the X-ray beam sweeps across the object. Thus,
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Figure 3.1: Generations of CT scanners. The yellow spot is the X-ray source, the
red lines are the detector arrays.

the geometry is still fan-beam but the dynamics is rotate-fixed and the average
duration of a full scan is few seconds. The main advantages of the fourth gener-
ation scanners are two. On one hand, potential aliasing artifacts are eliminated
due to the spacing between adjacent samples in a projection determined only by
the measurements rate, in contrast to the third generation in which the sample
spacing is determined by the detector cell size. On the other hand, the detector
can be recalibrated dynamically during the scan, since during every rotation, at
some point, each detector cell is exposed directly to the X-ray source without any
attenuation. Nevertheless, fourth generation scanners are almost unachievable due
to economical and practical reasons. Indeed, the number of detectors required to
form a complete ring, and the associated data acquisition electronics, is quite large
and no effective scatter rejection can be performed. This drawbacks are likely to
worsen with the introduction of multislice or volumetric CT.

There exists several other CT scanner geometries that do not precisely fit the
above categories. The “cine CT” belongs to the fifth generation: here, instead
of the mechanical motion of the X-ray tube, the source rotation is provided by
the sweeping motion of the electron beam. The core idea is not allowing any
mechanical moving parts to “freeze” cardiac motion. This way, a complete set
of projections can be collected within 20ms to 50ms. Even if multiple scans are
often needed to average the produced final image, due to noise, cine CT systems
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Figure 3.2: Generations of CT scanners. The yellow spot is the X-ray source, the
red curvilinear paths are the detector arrays.

are ideal for some clinical application, including cardiac imaging with and without
the use of contrast agents, lung imaging, and pediatric studies.

With the advent of sixth generation CT scanners from the 1990s, the advance
in technology allows 3D image acquisition within a single breath hold: first and
foremost, helical CT. In the sixth generation CTs the X-ray tube rotates as the
patient is moved smoothly into X-ray scan field: thus, as the source rotates, the
table translates, simultaneously to the data acquisition. The advent of helical
CT improved speed, detections, contrast, manipulation and image reconstruction
quality.

The seventh generation saw the advent of multiple detector array scanners, still
preserving a single X-ray tube, but with a widened X-ray beam in the z-direction
to acquire multiple slices simultaneously, with the slice thickness determined by
detector size. The geometry is cone-beam: the X-ray source and the detector are
mechanically joined and rotate around the object, while multiple sequential planar
projection images of the FOV are acquired in a complete arc. While reducing the
scanning time, this technique provides double or triple the volume per slice, and
each rotation produces its own bank of raw data. Thus, the image quality can
be improved, e.g., reducing motion artifacts by averaging data of the multiple
rotations. However, the whole machinery is quite expensive and suffer from a less
scatter rejection compared to single slice.
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3.2 Object discretization by means of series expan-
sion

The first step towards the digital implementation of the forward operator is to
choose how to approximate the real, or continuous, object. This is a crucial point
because it influences the accuracy of the reconstructed object and, potentially, the
speed and computational complexity of the algorithm.

A classical approach is to regard the object as a collection of pixels (voxels in
3D), by sampling the object at evenly spaced points. Generally, this corresponds to
approximate the continuous object f with a, possibly linear, series expansion, i.e.,
with a linear combination of a finite number of basis functions bi, with i = 1, . . . , r
[74]:

f(x) ≈ f(x) =
r∑
i=1

fibi(x− xi),

where {fi}ri=1 is a set of expansion coefficients, not necessary equal to the sampling
values of the function f , depending this on the choice for the basis functions. The
vectors x and xi denote the current spatial position and the center of the i-th basis
function, respectively.

Desirable properties of basis functions include linear independence, shift and
rotational invariance, degree of sparsity and small or local support. Clearly, linear
independence is necessary to identify uniquely the expansion coefficients while the
shift and rotational invariance ensures the independence of the object from the
orientation of the underlying grid. The last two desiderata are more subtle.The
degree of sparsity concerns the number of basis functions required. Intuitively, a
high number of coefficients results in a better approximation than a low number of
basis functions, but requires a larger amount of computer storage and computation
speed. In practice, one seeks for a tradeoff between accuracy and computational
demands.The type of spatial support is closely related to the degree of sparsity.
Global basis functions have an unlimited support: this is the case of Fourier se-
ries, used, e.g., by A. Cormack [37] in his early work, and of the natural pixels
introduced in [24]. Local basis functions, on the contrary, are zero-valued out-
side a limited support and, hence, are localized in space and typically give rise
to sparser approximation than the non-local approach. For this reason local basis
functions are usually preferable and different choices exist, including the above
mentioned pixels and voxels [11, 146], generalized Kaiser-Bessel functions, also
known as blobs [114] and B-splines [74]. Also, the local nature of the basis func-
tions reduces the difficulties associated with applying possible local constraint and
the computational effort can be minimized by using tabulated values.

In the following, we will only consider the pixels and the voxels basis function
for the 2D and the 3D case, respectively. A pixel basis function has a value equal
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to one inside a local region, described by the corresponding spatial location, and
zero outside. That is:

b(x) =

⎧⎨⎩1 x <
∆

2
0 otherwise

where ∆ denotes a grid increment on a regular uniform Cartesian grid. Clearly,
they are not permitted to overlap. The definition of voxel is given by analogy in
the 3D regular uniform Cartesian grid. It is clear that a function approximated
by pixels or voxels is piece-wise constant. Observe that, with this choice for the
basis function, rotational invariance is not preserved, but it is quite unlikely that
a single set of local basis functions can meet all the above mentioned desiderata.
Also, notice that the choice of the basis function is always a compromise between
simplicity, accuracy and complexity of practical implementation, since this affects
also the choice of the model for the forward operator.

To date, pixels and voxels are still the easiest and most popular choice of basis
functions for the object representation, notwithstanding the existence of other
attractive alternatives, most notably blobs.

3.3 State-of-the-art approaches for the forward op-
erator

The discretization of the mathematical model of the physical data acquisition pro-
cess (the “line integral model”) is a crucial point in the design of the digital coun-
terpart of the ROI CT problem. There exist many methods for the implementation
of the forward projection matrix, based on pixels and voxels basis functions, all
of which provide some sort of tradeoff between accuracy and computational com-
plexity.

Notice that, in all approaches, the real-world physical effects are neglected
since, in in many practical cases of interest, the complex physical model can be
approximated by taking the collections of line integrals and combining them in
appropriate ways, thus reducing the problem to the calculation of line integral
[45].

Most of method mentioned in the literature can be subdivided into two main
categories, that date back to the early days of CT and remained at the basis of all
subsequent versions. These are the pixel-driven and the ray-driven approaches.

(a) Pixel-driven. In this approach, the center of each pixel, visited in a loop,
is projected onto the detector, and the contribution of each pixel is split
between two neighboring detector cells by using interpolation, as shown in
Figure 2.1a. Observe that, when the detector cell size is much smaller than
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(a) Pixel-driven (b) Ray-driven

Figure 3.3: State-of-the-art approaches for the forward operator.

the pixel element size, it is highly likely that in some detector cells no value
is written. This results in high-frequency artefacts, and this is the main
reason why pixel-driven approaches are rarely used [45]. These artefacts
can be prevented by using, e.g., a smooth footprint for each pixel as in the
splatting technique [124], or enabling higher accuracy by subdividing each
pixel in smaller parts. However, all modifications introduced into the original
algorithm are generally at the expense of an increased computational com-
plexity, and even pre-calculating and storing the weights becomes impractical
for large datasets [54]. Notice that the pixel-driven principle is the simplest
approach and it is the one typically implemented for FBP reconstructions
[76, 132, 170].

(b) Ray-driven. This method works by connecting the X-ray source to the cen-
ter of each detector cell, as depicted in Figure 2.1b. The projection value is
calculated essentially by discretizing the line integral directly, i.e., each line
integral is approximated with a weighted sum of all image pixels that lie close
to the ideal line. Among the many different techniques to select and calcu-
late these weights, there are two classical ray-driven approaches. In Joseph’s
algorithm [86], each weight results from the intersection length of the ray
with the corresponding pixel, while Siddon’s algorithm [148] performs linear
interpolation between two pixels in a row (or column) that intersects the pro-
jection line. In contrast to pixel-driven methods, ray-driven approaches tend
to introduce artefacts, the so-called Moiré patterns, in the backprojection
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(a) Distance-driven (b) Separable footprint

Figure 3.4: State-of-the-art approaches for the forward operator.

operation. A variant of ray-driven approaches, in which the ray is assumed
to have a width usually equal to the detector cell size, is called strip-integral
method. In this technique, the contribution from a pixel to the detector cell
corresponds essentially to the integral over the “true” strip area that results
from the intersection between the ray and the pixel [116].

Many variants of pixel-driven and ray-driven approaches have been suggested,
such as nearest-neighbour based methods or the shear-warp volume rendering algo-
rithm [107]. Also, Fourier-based projection methods, that exploits the fast Fourier
transform and then interpolates the Fourier samples onto a polar grid, has been
proposed [123, 168]. All these approaches are conceptually straightforward to gen-
eralize to the 3D voxel case.

Recently, methods with a fundamentally different approach have been intro-
duced, namely the distance-driven [44, 45] and the separable trapezoid footprints
algorithms [119, 120]. In these methods, the pixel and detector boundaries are
considered instead of the pixel and detector center, and the pixel footprint is
approximated by a rectangle, in the distance-driven method, and by a trapezoid
footprints, to shape a more accurate pixel footprint, in the separable footprint tech-
nique. This is illustrated in Figure 3.4. These approaches have a low arithmetic
cost and avoid high-frequency artifacts in both the forward and backprojector
operators.

Since the distance-driven method is the main topic of this Chapter and the
numerical experiments reported in Chapter 6 are performed by using an efficient
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Figure 3.5: The distance-driven method as a 1D re-sampling problem.

implementation of the distance-driven approach for the forward projection matrix,
we present in detail the main ideas of the method in the next Subsection.

3.3.1 The distance-driven technique

The distance-driven method is essentially based on converting the projection prob-
lem into a 1D re-sampling problem (see Figure 3.5). There are two main ingredi-
ents. The former one is the kernel operation:

dm =
∑
n

wmnsn with

wmn =

[
min(ξm+1, νn+1)−max(ξm, νn)

]
+

ξm+1 − ξm
, [x]+ = max(x, 0) ,

(3.1)

which allows one to compute the destination signal values {dj}j from the sample
values {si}i of a source signal, the sample source locations {ξj}j and the sample
destination locations {νi}i. The second element of the method is that there is a
(possibly zero) length of overlap between each image pixel and each detector cell
due to the bijection between the position on the detector and the position within
an image row (or column). Thus, every point within an image row is uniquely
mapped onto a point on the detector, and vice versa. In practice, to compute the
overlap length, all pixel boundaries in an image row and all detector cell boundaries
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are mapped onto a common line, e.g., a line parallel to a coordinate axis. That
is, each length of overlap is the interval length between two adjacent intersections,
obtained by connecting the boundaries midpoints of all detector cells and pixels
in a image row to the X-ray source and by computing the intercepts of these lines
with the common axis. The final weights are achieved by normalizing the overlap
length by the detector cell width. This corresponds exactly to apply the kernel
operation from equation (3.1).

For instance, in the ROI CT problem, dj is the theoretical (unblurred and
noiseless) value measured at the j-th detector cell and si is the estimate of the i-th
pixel attenuation function. Hence, if the (m+1)-th detector cell is “shadowed” by
only two pixels in a row, equation (3.1) reads as:

dm+1 =
νn+1 − ξm+1

ξm+2 − ξm+1

sn +
ξm+2 − νn+1

ξm+2 − ξm+1

sn+1.

The distance-driven technique can be extended quite naturally to the 3D case.
The key element is still an overlap between a point in the object and a point on the
detector, but the bijection is now between a position on the 2D detector and the
position within each object slab. It still holds that every point within an object
slab is mapped uniquely onto a point on the detector, and vice versa. In practice,
all the horizontal and vertical midpoint boundaries of the object voxels and of
the detector cells are mapped onto a common plane (e.g., a plane parallel to a
coordinate plane) and this determines an area of overlap. Then, one calculates the
lengths of overlap along the directions in an object slab (as in the 2D case) and
multiplies them to get the area of overlap.

In the next Section we shall see that an efficient implementation of the distance-
driven method can be achieved by using a vectorized approach instead of processing
one pixel or voxel at a time. The possibility to avoid (nested) loops makes the
method faster.

Finally, notice that the distance-driven method is somehow a special case of
separable footprint approach, that occurs when the generic trapezoids footprint is
a rectangle. However, in the latter, the footprint functions are approximated as
2D separable functions and this simplifies the calculation of their integrals. This
is a “hot topic” in the field of X-ray tomographic imaging and there is a lot of
ongoing research [160, 94, 95].

3.4 Vectorized approach to the distance-driven tech-
nique

In this Section we describe how the forward projection matrix can be built up
by means of a vectorized approach. Here, we describe the more demanding and
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burdening 3D case since the 2D case can be easily retrieved by simply discarding
the third (second, respectively) dimension for the object (detector, respectively).
The main result, which states that is possible to vectorize the distance-driven
technique, is Theorem 5, reported at the end of this Section.

3.4.1 Cone-beam 3D circular geometry

In this Subsection we analyze the geometry of the 3D projection system. These
geometrical preliminaries are fundamental to clarify the general setup, because
the mathematical results on the vectorization of the distance driven technique we
propose, rely on it. To this end, we start by introducing a sufficiently general
formal geometric definition (see Figure 3.7).

Definition 3.1. Given two points C, S ∈ R3 and the real numbers d, γmin, γmax,
βmin and βmax with d ≥ 0, −π/2 < γmin ≤ 0 ≤ γmax < π/2 and −π/2 < βmin ≤ 0 ≤
βmax < π/2, a cone-beam circular rotation system RC

(
C, S, d, γmin, γmax, βmin, βmax

)
is a set such that:

a) S rotates on a circular trajectory with center C and radius ∥S − C∥2;

b) a plane πdtc, orthogonal to the rotation plane of S and to the radius through
S, rotates on another coplanar circular trajectory with the same center C
and radius d, rigidly joined to S on the diametrically opposite position with
respect to C;

c) a rectangular cone C is considered, having its vertex at S, its axis matching
the diameter from S to πdtc, the two faces orthogonal to the trajectory plane
located at angles γmin and γmax from its axis, and the two faces parallel to
the trajectory plane located at angles βmin and βmax from its axis.

The point S is called beam source (or simply source), the point C is the rotation
center or isocenter, d is the center-to-detector distance, and πdtc is the detector
plane. The angles γmin, γmax are the minimum and the maximum aperture angle,
respectively, and βmin, βmax are the minimum and the maximum elevation angle,
respectively.

A cone-beam circular rotation system with −γmin = γmax = γ is called an
aperture-omogeneous system, and shall be denoted by Rao

C
(
C, S, d, γ, βmin, βmax

)
=

RC
(
C, S, d, γ, γ, βmin, βmax

)
. Analogously, when −βmin = βmax = β the cone-beam

circular rotation system is called elevation-omogeneous and shall be denoted by
Reo

C
(
C, S, d, γmin, γmax, β

)
= RC

(
C, S, d, γmin, γmax, β, β

)
. A cone-beam circular ro-

tation system Rrct
C
(
C, S, d, γ, β

)
= RC

(
C, S, d, γ, γ, β, β

)
which is both aperture-

omogeneous and elevation-omogeneous is called a rectangular system. Finally,
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a rectangular cone-beam circular rotation system with γ = β is called a square
system and shall be indicated with Rsqr

C
(
C, S, d, γ

)
.
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Figure 3.6: 2D geometric representation of the generic point Q on the detector,
for a given position of the source S.

Starting from Definiton 3.1, we can set up the coordinate systems in RC. We
consider a general cone-beam circular rotation system with the standard Cartesian
coordinate system Oxyz as main system, the center located at the main origin O,
and the source S running on a circle on the Oxy plane. In the following, this main
system shall be also referred to as inertial system.

The detector is a 2D rectangular subset of a plane πdtc orthogonal to the
source rotation plane Oxy. By definition, this orthogonal plane rotates rigidly
fixed to the source and it is always positioned at the opposite side with respect
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Figure 3.7: 3D geometric representation of the generic point P on the detector,
for a given position of the source S.

to the z axis, at a constant distance from S. We consider a second 3D Carte-
sian coordinate system O′utv, rigidly joined to the detector plane, which shall
be referred to as the roto-translated coordinate system. This coordinate system
has its center O′ positioned on the line going from S through O, at distance
dOO′ = ∥O′ − O∥2 from O. Hence, by using the notation introduced in Definiton
3.1, RC = RC

(
O, S, dOO′ , γmin, γmax, βmin, βmax

)
. Notice that the axes orientation

of the roto-translated system are such that the v axis is parallel and concordant
to the z axis, whilst the u and t axes belong to the source rotation plane, with t
going from O′ to O and u on the rotated plane πdtc. The versus of u makes the
roto-translated system a right-handed one, i.e., when t overlaps y, u is concordant
with x. For simplicity, in the following we consider on πdtc the 2D (sub)system
O′uv, as depicted in Figure 3.7, given that all the points on the detector have t = 0
in the roto-translated coordinate system. It is clear from above that the source
position is the point S with coordinates (xS, yS, 0)T in the main coordinate system.
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Its distance from O, which is also the rotation radius, is dOS = ∥S −O∥2, under a
rotation angle θ measured counter-clockwise from the x axis. In a standard polar
coordinate system Oρϕψ, where ϕ ∈ [0, 2π[ denotes the azimuth angle (measured
counter-clockwise from the positive x axis) and ψ ∈ [0, π[ the polar angle (mea-
sured starting from the positive z axis), the polar coordinates of the source are
(ρS, ϕS, ψS)

T = (dOS, θ, π/2)
T .

Now, consider a generic ray SP from the source S to a generic point P =
(uP , vP )

T on the detector plane πdtc (see Figure 3.7). We aim at identifying the
relations connecting the coordinates of P and S, by following an approach similar
to the one proposed in [120]:

(
xS
yS

)
= dOS

(
cos(θ)
sin(θ)

)
zS = 0,(

xO′

yO′

)
= dOO′

(
cos(θ + π)
sin(θ + π)

)
= dOO′

(
− cos(θ)
− sin(θ)

)
zO′ = 0,(

xP
yP

)
=

(
xO′

yO′

)
+ uP

(
cos(θ − π/2)
sin(θ − π/2)

)
=

(
− cos(θ) sin(θ)
− sin(θ) − cos(θ)

)(
dOO′

uP

)
zP = vP ,

where we exploited the addition and subtraction rules for the sine and the cosine
of a given angle. The angles of interest for the ray SP from S to the generic point
P on the detector are the following:

γP = γ(uP ) = arctan

(
uP
dSO′

)
φP = φ(uP , θ) = θ + γ(uP )

βP = β(uP , vP ) = arctan

(
vP√

d2SO′ + u2P

)

where γP ∈ [γmin, γmax] is the ray aperture angle, namely the angle between the ray
SP and the line SO′ through S orthogonal to the detector (it is positive counter-
clockwise); φP is the ray rotation angle in the Oxy plane, measured counter-
clockwise starting from the x axis, as the angle θ of the source trajectory; βP
is the ray elevation angle, i.e., the angle between the ray SP and its projection
onto the Oxy plane, with βP ∈ [βmin, βmax], measured from the Oxy plane with
positive direction matching the positive direction of the z axis. Observe that βP
is connected to the polar angle of P by the equivalence ψP = π/2− βP . The unit
(direction) vector w, from the source S to the generic point P on the detector, is
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given by:

w =
P − S
∥P − S∥2

=
1

dSP

⎧⎨⎩
⎛⎝(− cos(θ) sin(θ)
− sin(θ) − cos(θ)

)(
dOO′

uP

)
vP

⎞⎠− dOS
⎛⎝cos(θ)
sin(θ)
0

⎞⎠⎫⎬⎭
=

1

dSP

⎛⎝−dSO′ cos(θ) + uP sin(θ)
−dSO′ sin(θ)− uP cos(θ)

vP

⎞⎠ ,

where dSO′ = dOS + dOO′ = ∥O′ − S∥2 and dSP = ∥P − S∥2. Now, observe that

cos(γP ) =
dSO′

dSQ
=

dSO′

dSP cos(βP )
⇒ dSO′

dSP
= cos(βP ) cos(γP )

sin(γP ) =
uP
dSQ

=
uP

dSP cos(βP )
⇒ uP

dSP
= cos(βP ) sin(γP )

tan(βP ) =
vP√

d2SO′ + u2P
⇒ sin(βP ) =

vP cos(βP )√
d2SO′ + u2P

=
vP cos(βP )

dSQ
=

vP
dSP

where dSQ = ∥Q− S∥2 = dSP cos(βP ). This yields:

1

dSP

⎛⎝−dSO′ cos(θ) + uP sin(θ)
−dSO′ sin(θ)− uP cos(θ)

vP

⎞⎠ =

⎛⎝− cos(βP ) cos(γP ) cos(θ) + cos(βP ) sin(γP ) sin(θ)
− cos(βP ) cos(γP ) sin(θ)− cos(βP ) sin(γP ) cos(θ)

sin(βP )

⎞⎠
By recalling that φP = θ + γP , one has:

cos(θ) cos(γP )− sin(θ) sin(γP ) = cos(θ + γP ) = cos(φP )

sin(θ) cos(γP ) + cos(θ) sin(γP ) = sin(θ + γP ) = sin(φP ),

that finally yields:

w =
P − S
∥P − S∥2

=

⎛⎝− cos(βP ) cos(φP )
− cos(βP ) sin(φP )

sin(βP )

⎞⎠ .

Notice that the above computations can be easily generalized to the case in which
the source S lies on a plane parallel to Oxy. In this case, we simply have that
zS ̸= 0, and, according to Definition 3.1, also zO′ ̸= 0. Now, consider a 3D object
located in the coordinate systems RC between the source S and the detector plane
πdtc and a generic point A on this object. We aim at computing the coordinates of
the generic point A with respect to a rotated system Ou′t′v′, which is the detector
coordinate system O′utv shifted to the main origin O. By observing Figure 3.8,
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it is clear that u′A = uA, v′A = vA = zA and t′A = dOO′ − tA for every point A in
the domain, where D is the projection of the point A onto the Oxy-Ou′t′ plane.
Hence, it is clear that the change of coordinates is the following:(

u′A
t′A

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
xA
yA

)
,

where the matrix is the usual (planar) coordinate system rotation matrix from the
inertial system Oxy to the only rotated one Ou′t′. If we now consider the similar
rectangular triangles SO′T and SFD in Figure 3.8, the following relations hold
true:

O′T : FD = SO′ : SF ⇒ uP (θ, xA, yA) : u
′
A = dSO′ : (dOS − t′A)

⇒ uP (θ, xA, yA) = dSO′
u′A

dOS − t′A
= dSO′

u′A
dS(θ, xA, yA)

where dS(θ, xA, yA) = dOS − t′A is the distance from the source S of the orthogonal
projection F of the point E (and thus of A) onto the ray SO′ from the source S
through the rotation center C to the detector. By observing that AD = EF = zA,
PT = UO′ = vP and that the two rectangular triangles SFE and SO′U are
similar, we can derive the coordinate of vP :

UO′ : EF = SO′ : SF ⇒ vP (θ, xA, yA, zA) : zA = dSO′ : dS(θ, xA, yA)

⇒ vP (θ, xA, yA, zA) = dSO′
zA

dS(θ, xA, yA)
(3.2)

Thus, with the source in position S, the generic point A = (xA, yA, zA)
T on the ob-

ject is projected onto the point P = (uP , 0, vP )
T =

(
uP (θ, xA, yA), 0, vP (θ, xA, yA, zA)

)T
of the detector, with respect to the coordinates system O′utv. The angles of inter-
est for the ray SP going from the source to the detector through the object point
A are the following:

φA = φ(θ, xA, yA) = θ + γA = θ + arctan

(
FD

SF

)
= θ + arctan

(
u′A

dS(θ, xA, yA)

)
βA = β(θ, xA, yA, zA)

= arctan

(
AD

SD

)
= arctan

⎛⎝ zA√
SF

2
+ FD

2

⎞⎠ = arctan

(
zA√

d2S(θ, xA, yA) + (u′A)
2

)

From the previous discussion, it is easy to show that the following result holds
true.
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Figure 3.9: 3D geometric representation of the projected segment PQ of an object
segment AB, for a given position of the source S, when the detector plane is not
parallel to AB.
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Figure 3.10: 3D geometric representation of the projected segment PQ of an object
segment AB, for a given position of the source S, when the detector plane is parallel
to AB.
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Proposition 1. Let RC
(
O, S, dOO′ , γmin, γmax, βmin, βmax

)
be a generic cone-beam

circular rotation system, endowed with a main coordinate system Oxyz and a
rotating coordinate system O′utv. Then, the projection onto the detector plane
πdtc of a line segment AB parallel to the u axis is a line segment PQ in the O′uv
plane which is still parallel to the u axis.

Proof. The thesis immediately follows from equation (3.2) for vP and vQ. Indeed,
given that, by hypothesis, t′A = t′B, one has

dS(θ, xA, yA) = dOS − t′A = dOS − t′B = dS(θ, xB, yB),

that yields

vP (θ, xA, yA, zA) = dSO′
zA

dS(θ, xA, yA)
= dSO′

zB
dS(θ, xB, yB)

= vQ(θ, xB, yB, zB),

(3.3)
given that zA = zB by hypothesis.

The equivalence (3.3) from Proposition 1 does not hold true in general, i.e.,
when the projection plane is not parallel to the projecting object segment, even
if its endpoints have the same elevation. This can be easily observed by simply
comparing Figure 3.9 and Figure 3.10.

Corollary 3.2. Retaining the hypothesis of Proposition 1, let AB be a line segment
parallel to the u axis. Then, its projection onto every projection plane parallel to
the plane containing the object segment (and parallel to the detector plane πdtc) is
a line segment that is still parallel to the u axis.

Proof. Observe that vP and vQ in equation (3.3) depend on zA, zB and t′A, t′B,
but do not dependent on u′A, u′B. In addition, the distance dSO′ remains constant
for A and B, and, actually, for all the points on the line through them. Then, it
is clear that the parallel condition of a segment and its projection holds true on
every projection plane parallel to the plane containing the object segment.

This final result will be crucial in the following. Indeed, Corollary 3.2 is the
reason why projecting onto a plane parallel to the faces and the edges of the
object discretization grid is preferable to projecting onto the detector plane, as it
is usually the case.

3.4.2 3D vectorized generation of the distance-driven pro-
jection matrix

We now describe how the projection matrix W of the discretized volume enclosing
the object can be built up using a vectorized approach, by means of Matlab vector
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instructions. As outlined in Subsection 3.3.1, each element of the CT forward
projection matrix is proportional of the “overlap area” between the projections of
a given detector cell (which provides the row index) and a given voxel in the object
space (which provides the column index), at a given system rotation angle. As we
shall see, by choosing a parallelepipedal voxel discretization for the object space,
a rectangular grid discretization for the detector cells, and a coordinated plane as
common projection plane, we can suitably approximate the voxel projection, as
well as the detector cell projection, by means of rectangular areas. In this way,
also the approximate projections overlaps are rectangular areas (possibly empty
or degenerate), being intersections of rectangular areas. The baseline idea of our
vectorized implementation is to construct, for each system rotation angle, two
matrices with as many rows as the number of detector cells, and as many columns
as the number of object space voxels: the matrix WH of the “horizontal” edges
of the overlap areas, and the matrix WV of their “vertical” edges. Both matrices
are efficiently built in a vectorized fashion. At the very end, each element of
the CT forward projection matrix W is computed by a simple component-wise
multiplication of WH and WV, that, afterwards, it is positioned correspondingly
to the current rotation angle. All these matrices are sparse arrays, and both WH

and WV are overwritten at each angle step.
In this Subsection, sometimes arithmetic operations and elementary functions

involving arrays operands are intended in the Hadamard sense, i.e., component-
wise: when it is not clear from the context, it is explicitly stated. To address
subarrays, in place of a subscript index we use the symbol “ :” to select all the
indices in that dimension; the notation “i1 : i2”, i1, i2 ∈ N, shall be used to select
all the contiguous, sorted indices {i1, i1+1, i1+2, . . . , i2−1, i2} in that dimension;
finally, we use the subset notation I ⊂ {1, . . . , n} to select non-contiguous, and
possibly unsorted, indices in that dimension, where n denotes the number of array
elements in that dimension. Clearly, if i1 > i2 or I = ∅ in all the previous cases,
the resulting subarray is meant to be empty.

Remark 3.3. Notice that, to perform effective computations, we essentially need
to “vectorize” the arrays containing points of interest in the object volume and
the detector, as well as their projections onto πprj. It is well known that, usually,
there are two ways to do it, generally referred to as column-major and row-major
reorderings, respectively1. If we consider a generic 3D array A =

(
aijℓ
)

sized

1Column-major and row-major reorderings are historically connected with the way in which
the elements of a multidimensional array A are stored in the computer memory, depending on
the computer language used to write the program. All versions of Fortran use a column-major
reordering, while all versions of C/C++ use the row-major reordering. For this reason, they
are sometimes referred to as Fortran-like and C-like reorderings, repsectively. In the early days,
Matlab was built on top of the traditional Fortran BLAS and LAPACK (LINPACK + EISPACK)
routines packages, so it came with column-major array vectorization. In the latest versions of
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m × n × k, for each ℓ-th layer, ℓ = 1, . . . , k, the column-major reordering stacks
in the column vector b the (j + 1)-th column under the j-th one, for j = 1, . . . , n,
while the row-major reordering stacks the (i + 1)-th row, transposed, under the
i-th row, transposed. Recall that the connections between the subscripts i, j and
ℓ of the generic element aijℓ and its “linear index” p in b are the following:

• column-major reordiering:

p = (ℓ− 1)mn+ (j − 1)m+ i

ℓ = [p/(mn)] + 1, j = [p/m]− (ℓ− 1)n+ 1, i = rem(p,m)
(3.4)

• row-major reordiering:

p = (ℓ− 1)mn+ (i− 1)n+ j

ℓ = [p/(mn)] + 1, i = [p/n]− (ℓ− 1)m+ 1, j = rem(p, n)
(3.5)

where [x] is the integer part of x and the rem(q, d) function returns the remainder of
the integer division of q by d. Given that Matlab uses the column-major reordering,
in the following we assume the vect(·) operator is compliant with (3.4).

General setup and initialization

As geometric environment, we consider a cone-beam circular rotation system where
the object is assumed to be completely embedded in a rectangular parallelepipedal
volume, whose barycenter is the rotation center (in the following also referred
to as isocenter) C of the acquisition system. The source S, emitting X-rays, is
assumed to move on a planar circular trajectory around the object volume, at a
distance dSC from the isocenter, with the rotational axis parallel to one of the
three parallelepiped axes, usually the largest one, according to Definition 3.1. The
X-ray source is located at the distance dSO′ from a flat detector, where O′ is the
center of the 3D roto-translated coordinate detector system. The object inertial
orthogonal 3D reference system Oxyz is assumed to be fixed in such a way that
the Oxy plane is parallel to the source rotational plane, the z axis is parallel to
the rotational axis, the Oxz plane and the Oyz plane are parallel to two adjacent
faces of the parallelepipedal volume, and the origin O is positioned in such a way
that the isocenter C is located at C = 0.5 + n/2.

The object volume is discretized by means of a volumetric uniform rectangular
grid of voxels, each sized ∆ = (∆x,∆y,∆z)

T ∈ R3
+ in some measure of length, e.g.,

millimeters. The number of object discretization voxels is n = (nx, ny, nz)
T ∈ N3.

Matlab the kernel has been completely re-written in C++ (including BLAS and LAPACK), but
it still preserve the column-major array vectorization.
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Analogously, we assume that the flat detector is discretized by means of a uniform
rectangular grid of pixels, each sized δ = (δu, δv)

T ∈ R2
+ in the same measure of

length as voxels. The number of detector discretization pixels is m = (mu,mv)
T ∈

N2. The rotational path of the source S is discretized by uniformly sampling [0, 2π[
with Nθ angles A = {θ1, . . . , θNθ

}.
The reference axes are scaled by the corresponding voxel size), so that the

centers of all the voxels have positive integer coordinates, with the center c(n) =
(1, 1, 1)T of the front-lower-left voxel n = (1, 1, 1) in the grid, and, in general,
c(i1, i2, i3) = (i1, i2, i3)

T , for all i1 ∈ {1, . . . , nx}, i2 ∈ {1, . . . , ny}, i3 ∈ {1, . . . , nz}.
We also introduce the two following scaling matrices, which depends on the voxel
and pixel pitch:

Hvxl =

⎛⎝∆x

∆y

∆z

⎞⎠ and Hdtc =

⎛⎝δu 0
0 0
0 δv

⎞⎠ . (3.6)

Hobj and Hdtc accounts for the conversion factor from the usual to the scaled
coordinates system.

Finally, since in many real world CT systems offsets are usually considered
to allow flexibility in handling objects, we additionally consider a possible offset
a = (au, av)

T ∈ R2 of the detector grid.

As outlined in Subsection 3.3.1, the distance-driven method allows some degree
of freedom, mostly related to the choice of the common projection plane. For the
vectorized approach we propose, the following choices have been made:

• the common projection plane πprj is one of the coordinate planes Oxz or
Oyz, selected by the condition

wπprj = argmax
e1,e2

{⏐⏐s(θ)Tei⏐⏐} (3.7)

where e1, e2 are the first and second versors of the canonical basis, that is
the versors of the Oyz and Oxz coordinate planes, respectively, and s(θ) is
the versor of the ray going from the source S through the rotation center C;

• for each n in the object, we project onto the common projection plane the
slab corresponding to the “midway slice” of the voxel, whose versor e(n, θ)
satisfies the condition

e(n, θ) = argmax
e1,e2

{⏐⏐wxy(n)
Tei
⏐⏐}

with wxy(n) = argmin
w∈R2,∥w∥=1

w(n)Tw
(3.8)
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where w(n) is the versor of the ray from the source to the detector going
through the center c(n) of the voxel n in the object volume and wxy(n) is
its projection onto the Oxy plane.

Condition (3.7) essentially means that the coordinated plane selected to be the
common projection plane is the one having its versor making an angle with mod-
ulus not greater than π/4 with the source-through-rotation-center ray. In such a
way, too “stretched” projections of (some part of) the object volume and/or of the
detector cells shall be avoided. Condition (3.8) means that the voxel contribution
to a given projection is approximated by computing the shadow onto the com-
mon projection plane of the middle (slice) parallel to πprj, as the distance-driven
technique requires. Clearly, the projection of this “midway slice” of the voxel is
completely determined by the projections of its four vertices, which are the mid-
dle points of the four voxel edges orthogonal to πprj. This fact is crucial for two
reasons:

1) the relative positions of the projections of these middle points is sufficient to
determine the overlap areas between the voxel projections and the detector
projections onto πprj;

2) this approximation avoids the aliasing problem of the voxels belonging to the
same layer.

Clearly, also the projection of each detector cell is completely determined by pro-
jecting its four vertices. Thus, analogously to the object voxel case, we project
onto πprj only the four vertices of each detector cell.

Conditions (3.7) and (3.8) imply that the selected common projection plane is
the Oyz plane for source rotation angles −π/4 < θ < π/4 or 3π/4 < θ < 5π/4,
while for π/4 ≤ θ ≤ 3π/4 or 5π/4 ≤ θ ≤ 7π/4 the selected common projection
plane is the Oxz plane. Clearly, the choice of the common projection plane impacts
on the choice of the midway slice to be projected for each voxel, since it follows
immediately from conditions (3.7) and (3.8) that the midway slice selected is always
parallel to the selected common plane πprj. It is then easy to determine the four
vertices of interest that identify such midway slices. Indeed, in the scaled main
reference system, each voxel center is located at positive integer coordinates, and,
obviously, inner adjacent voxels share one or two vertices. Thus, whatever common
projection plane is selected between the Oxz and the Oyz planes, the vertices to
be located are the middle points of all the voxel edges orthogonal to πprj. Hence,
when πprj = Oxz the vertices to be projected have coordinates

vvxl(i, j, k) =

⎛⎝xiyj
zk

⎞⎠ =

⎛⎝0.5 + i
j

0.5 + k

⎞⎠ , i = 0, . . . , nx+1, j = 1, . . . , ny, k = 0, . . . , nz+1.

(3.9)
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On the other hand, when πprj = Oyz the vertices to be projected have coordinates

vvxl(i, j, k) =

⎛⎝xiyj
zk

⎞⎠ =

⎛⎝ i
0.5 + j
0.5 + k

⎞⎠ , i = 1, . . . , nx, j = 0, . . . , ny+1, k = 0, . . . , nz+1.

(3.10)
Initially, i.e., when θ = 0, the system is assumed to be positioned with the

source located at S = C + (dSC/∆x)e1, namely S is only displaced in the positive
x direction, with respect to C. According to Definiton 3.1, the detector is located at
the diametrically opposite position with respect to the object and it is orthogonal
to the ray from S through C. We identify the lower-right corner L of the detector,
when looking at it from the source, as its “reference point”. Thus, the numbering
of the detector cells follows the same direction as the u axis, that is, it increases
along the positive u axis. The position of the reference point L determines the
detector position in the inertial coordinate system Oxyz. At the initial position
θ = 0, the roto-translated coordinate system O′utv has the t axis oriented as the
x axis and the u axis opposite to the y axis, whilst at θ = π/2 both the u and the
t axes are oriented exactly as the main inertial axes x and y, respectively. Hence,
with respect to the scaled main coordinate system, the detector reference point at
θ = 0 is located at

L = C +
dSC − dSO′

∆x

e1 +
au − δumu/2

∆y

e2 +
av − δvmv/2

∆z

e3

where a = (au, av)
T ∈ R2 accounts for a possible offset of the detector with respect

to its reference point L. Given that the offset is only a translation inside πdtc, for
sake of simplicity, in the following we assume a = 0. Additionally, for object
voxels and detector cells, “equilateral” grids are in general considered, yielding
∆x = ∆y = ∆z = ∆ and δu = δv = δ.

In the 2D reference system Luv of the detector plane, we can easily identify
the vertices of the detector cells by (ui, vj)

T = (iδu, jδv)
T , i = 0, . . . ,mu, j =

0, . . . ,mv. With respect to the scaled main reference system Oxyz, these vertices
have coordinates vdtc(i, j) = L+

(
ui/∆x 0 vj/∆z

)T .
For sake of computational convenience, it can be useful to take into account

also some extra “virtual” detector cells, around the detector area. The vertices of
these extra virtual cells are characterized by having subscripts index i ∈ Z− or
i > mu, and j ∈ Z− or j > mv. Notice that the chosen positioning of the Luv
scaled coordinate system implies that the “spatial”, i.e., non-scaled, coordinates
(ui, vj) of each detector cell vertex vdtc(i, j) are stored in the same position (j, i)
(actually, (j+1, i+1) because Matlab array indices starts from 1 and not from 0)
of two matrices Uu, for the ui coordinates, and Uv, for the vj coordinates. Indeed,
the row index i increases with the v coordinate, while the column index j increases
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Figure 3.11: representation of the detector cell vertices numbering scheme. The
red dot is the X-ray source, the yellow plane is the common projection plane.

with the u coordinate. In particular, this implies that the uppermost rows of the
two matrices contain the coordinates of the bottom vertices (i.e., those having the
smallest vj), whilst the lowermost matrices rows contain the coordinates of the top
vertices (i.e., those having the largest vj). On the other hand, the leftmost columns
of the two matrices always contain the coordinates of the vertices with the small-
est ui, while the rightmost columns contain the coordinates of the vertices with
the largest ui. This is clear bearing in mind how the Matlab meshgrid function
works. The main advantage of this approach is that it makes the following matrix-
vector computations consistent. In fact, before performing any computation, the
two matrices Uu and Uv are vectorized into two column vectors udtc = vect(Uu)
and vdtc = vect(Uv), by column-major reordering. As a consequence, the linear
index spanning udtc and vdtc determines a consistent ordering of the cell vertices.
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The first vertex, i.e., vdtc(0, 0), is the bottom-right corner of the detector grid (by
looking at it from the source, as already specified), namely L when a = 0. After-
wards, the numbering increases with the vertices vdtc(0, j), j = 1, . . . ,mv, aligned
on top of vdtc(0, 0) along the v direction. Next, the numbering proceeds with the
second vertex vdtc(1, 0) on the bottom edge of the detector and continues with the
vertices vdtc(1, j), j = 1, . . . ,mv on top of it. The last vertices are those on top
of vdtc(mu, 0). The last vertex vdtc(mu,mv) have thus index (mv + 1)(mu + 1). It
follows that contiguous detector vertices from bottom to top on each line parallel
to the v axis have consecutive linear indices, while contiguous detector vertices
on each line parallel to u have linear indices with a stride of exactly mv + 1. A
clarifying representation of the detector cell vertices numbering scheme is depicted
in Figure 3.11.

Remark 3.4. Notice that, so far, we made use of two kinds of coordinates in both
the main inertial and the roto-translated reference systems: the usual coordinates
are lengths, while the scaled coordinates have to be intended as (possibly noninte-
ger) multiples of the voxel size, in the case of the object space, or of the detector
cell size, in the case of the detector plane.

For instance, the generic point (x, y, z)T in the object space has scaled coordi-
nates (x̃, ỹ, z̃)T = (x/∆x, y/∆y, z/∆z)

T , and the generic point (u, v)T ∈ πdtc has
scaled coordinates (ũ, ṽ)T = (u/δu, v/δv)

T in the detector plane.
Clearly, when converting the coordinates of a point from, e.g., the scaled de-

tector system to the scaled object system, one has also to multiply by a conversion
factor, which depends on the voxel and pixel sizes, in addition to the coordinates
transformation. For instance, the conversion of the scaled detector plane coordi-
nates (ũ, ṽ)T to the scaled inertial reference system is

vdtc(ũ, ṽ) =

⎛⎝x̃ỹ
z̃

⎞⎠ = L+H−1
vxl

(
Rθ 0
0T 1

)
Hdtc

(
ũ
ṽ

)

where Hvxl, Hdtc are the scaling matrices defined in (5.9) and Rθ = R(θ) is the
rotation matrix associated to the source and the inertial system, as defined in
(3.15). In particular, at the initial position θ = 0, since the positive u axis is
rotated by −π/2 with respect to the positive x axis, the coordinates of the detector
cell vertices with respect to the scaled main reference system are

v
(0)
dtc(i, j) = vdtc(i, j)

θ=0

= L+H−1
vxl

⎛⎝ 0
−ui
vj

⎞⎠ , (3.11)

with i = 0, . . . ,mu, j = 0, . . . ,mv.
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Running on the source trajectory

Having stated the general setup and the necessary initialization, we can now de-
scribe the main loop over the projection angles θℓ = 2π(ℓ− 1)/Nθ, ℓ = 1, . . . , Nθ.
As we shall see, we can reduce the computation cost by “subgrouping” the projec-
tion angles, once πprj and the coordinates of the points to project onto it has been
identified. Indeed, notice that:

(i) the vertices of the voxels slices remain the same if the common projection
plane does not change;

(ii) the coefficients computed for different source rotation angles fill disjoint parts
of the final CT projection matrix;

(iii) the projection computations for a given rotation angle does not impact on
those of any other rotation angles.

As a consequence, it is easy to save some computation by changing the order
in which the source rotation angles are considered. Indeed, we can first group
together all the rotation angles for which πprj = Oxz, that is

Ixz =
{
ℓ ∈ {1, . . . , Nθ}

⏐⏐⏐ π/4 ≤ θℓ ≤ 3π/4 or 5π/4 ≤ θℓ ≤ 7π/4
}

(3.12)

and then we group together all the rotation angles for which πprj = Oyz, namely

Iyz = {1, . . . , Nθ} \ Ixz
=
{
ℓ ∈ {1, . . . , Nθ}

⏐⏐⏐ 0 ≤ θℓ < π/4 or 3π/4 < θℓ < 5π/4 or 7π/4 < θℓ < 2π
}
.

(3.13)
In such a way, we need to compute the vertices of the voxels slices only twice:
once for ℓ ∈ Ixz and once for ℓ ∈ Iyz. Moreover, we can identify in advance the
“switching indices”, as the following proposition states.

Proposition 2. Let RC
(
O, S, dCO′ , γmin, γmax, βmin, βmax

)
be a cone-beam circular

rotation system endowed with the main coordinate systems Oxyz. Given a uniform
partition A of [0, 2π], with #A = Nθ, the two sets Ixz and Iyz in (3.12) and (3.13),
respectively, are identified by exactly four integers ℓj ∈ {1, . . . , Nθ}, j = 1, . . . , 4.

Proof. Let us consider the four odd multiples αj of π/4, namely αj = (2j − 1)π/4
for j = 1, . . . , 4. Now, let ℓj = ℓαj

be the four largest indices such that θℓj < αj
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for i = 1, 3 and θℓj ≤ αj for j = 2, 4. This yields the following four conditions:

j = 1, α1 = π/4 :
2(ℓ1 − 1)π

Nθ

<
π

4
⇒ ℓ1 <

Nθ

8
+ 1 ⇒ ℓ1 = ⌈Nθ/8⌉ ,

j = 2, α2 = 3π/4 :
2(ℓ2 − 1)π

Nθ

≤ 3

4
π ⇒ ℓ2 ≤

3

8
Nθ + 1 ⇒ ℓ2 =

⌊
3

8
Nθ + 1

⌋
,

j = 3, α1 = 5π/4 :
2(ℓ3 − 1)π

Nθ

<
5

4
π ⇒ ℓ3 <

5

8
Nθ + 1 ⇒ ℓ3 =

⌈
5

8
Nθ

⌉
,

j = 4, α4 = 7π/4 :
2(ℓ4 − 1)π

Nθ

≤ 7

4
π ⇒ ℓ4 ≤

7

8
Nθ + 1 ⇒ ℓ4 =

⌊
7

8
Nθ + 1

⌋
,

where ⌈·⌉ and ⌊·⌋ denote the ceil and floor functions, respectively. As a conse-
quence, one immediately has

Ixz = {ℓ1 + 1, . . . , ℓ2} ∪ {ℓ3 + 1, . . . , ℓ4} ,
Iyz = {1, . . . , ℓ1} ∪ {ℓ2 + 1, . . . , ℓ3} ∪ {ℓ4 + 1, . . . , Nθ} .

Proposition 2 shows that identifying Ixz and Iyz is, on a computational level,
very cheap. Indeed, it requires only one division and three multiplications, and
four sums and four thresholding, which are both negligible operations. Thus, there
is no need to compare θ against π/4 during the main loop on the angles. Even if
this does not seem a great saving, it allows to know in advance the exact indices
of the positions projecting onto Oxz and of those projecting onto Oyz, as well as
their amount.

Projecting the detector cells

Once ℓ, and hence θℓ, is fixed, we should handle how to compute the projections
onto πprj of the detector cells vertices. By construction, the unit vector sℓ =

s(θℓ) =
(
cos(θℓ), sin(θℓ), 0

)T is parallel to the Oxy plane and it is orthogonal to
the detector plane πdtc. The unit vector uℓ = u(θℓ) =

(
sin(θℓ),− cos(θℓ), 0

)T
belonging to πdtc is always parallel to the u axis of the roto-translated reference
system and it is oriented from the detector reference point towards the opposite
side of the detector. Now, the coordinates of the scaled detector cells vertices
in the Oxyz scaled reference system can be easily computed starting from their
“initial” positions v

(0)
dtc defined in (3.11):

v
(ℓ)
dtc(i, j) =

(
Rℓ 0
0T 1

)⎛⎝v
(0)
dtc(i, j)−

⎛⎝xCyC
0

⎞⎠⎞⎠+

⎛⎝xCyC
0

⎞⎠ (3.14)
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where Rℓ is the counter-clockwise rotation matrix of the Oxy plane around the z
axis, at the angle θℓ:

Rℓ = R(θℓ) =

(
cos(θℓ) − sin(θℓ)
sin(θℓ) cos(θℓ)

)
(3.15)

These operations can be easily vectorized by using the Matlab repmat function to
replicate the rotation center coordinates:
DetPixBoundary_start = ...

[ ([ x_DetPixBoundary y_DetPixBoundary] ...
- repmat(Isocenter (1:2),prod(detsize +1) ,1)) * Rot_src

...
+ repmat(Isocenter (1:2),prod(detsize +1) ,1), ...

z_DetPixBoundary ];

where x_DetPixBoundary = vect
(
(v

(0)
dtc)x

)
is the column vector containing all the

x coordinates of v(0)
dtc(i, j) for all i = 0, . . . ,mu and j = 0, . . . ,mv, and, analogously,

y_DetPixBoundary = vect
(
(v

(0)
dtc)y

)
and z_DetPixBoundary = vect

(
(v

(0)
dtc)z

)
. Also,

Rot_src = RT
ℓ and detsize is the row vector (mu,mv). Clearly, the same affine

transformation (3.14) is applied to the extra virtual cells, if any, and even the
source S is rotated according to (3.14).

Now, notice that, for certain rotation angles, the orientation of the u axis of the
roto-translated reference system O′utv is reversed with respect to the orientation
of the axis which is the intersection of the common projection plane πprj and the
Oxy plane, namely the x axis for ℓ ∈ Ixz and the y axis for ℓ ∈ Iyz. This impacts
on the order of the distance-driven operations, which determine the overlap area
on πprj between the projections of the detector cells and the projections of the
object voxels, approximated by the projection of their midway slice. To take this
“reversed order” into account, we define two additional integers:

istart =

{
0 for ℓ ∈ I+xz ∪ I+yz
Ndtc −mu for ℓ ∈ I−xz ∪ I−yz

iinc =

{
+1 for ℓ ∈ I+xz ∪ I+yz
−1 for ℓ ∈ I−xz ∪ I−yz

(3.16)

where Ndtc = mumv is the total number of detector cells and

I+xz =
{
ℓ ∈ Ixz

⏐⏐ ℓ1 < ℓ ≤ ℓ2
}
, I−xz = Ixz \ I+xz =

{
ℓ ∈ Ixz

⏐⏐ ℓ3 < ℓ ≤ ℓ4
}
, (3.17)

I+yz =
{
ℓ ∈ Iyz

⏐⏐ ℓ2 < ℓ ≤ ℓ3
}
, I−yz = Iyz \ I+yz =

{
ℓ ∈ Iyz

⏐⏐ 1 ≤ ℓ < ℓ1 or ℓ4 < ℓ ≤ Nθ

}
.

(3.18)

Afterwards, the following two “flags” will come into play:

cx =

{
1 if πprj = Oxz

0 if πprj = Oyz
cy = 1− cx . (3.19)



3.4. VECTORIZATION OF THE DISTANCE-DRIVEN TECHNIQUE 57

The definitions in (3.16) can be summed up as follows:{
istart = 0, iinc = +1 for ℓ such that ℓ1 < ℓ ≤ ℓ3

istart = Ndtc −mu, iinc = −1 for ℓ ∈ {1, . . . , ℓ1} ∪ {ℓ3 + 1, . . . , Nθ}
(3.20)

Additionally, we set c1 = 0 in the first case of (3.20) and c1 = 1 in the second
one, where c1 is another “flag” that takes memory of the reversed orientation.
Indeed, given that the column index of the detector cells always increases with the
positive direction of the u axis, the previous machinery handles the following two
situations:

c1 = 0: the column index of the detector cells (and hence that of their projections)
increases in the same direction of the first axis of the common projection
plane, i.e., it is concordant with x if πprj = Oxz, or concordant with y if
πprj = Oyz;

c1 = 1: the column index of the detector cells (and hence that of their projections)
increases in the opposite direction of the x axis, if πprj = Oxz, or of the y
axis, if πprj = Oyz.

We are now ready to compute the projections of the detector cells vertices v(ℓ)
dtc and

of the voxels midway slices vertices v
(ℓ)
vxl onto the common projection plane πprj.

To this end, observe that for a given position θℓ of the source S, the projection
onto πprj of a vertex v

(ℓ)
dtc(i, j) of a detector cell is the intersection of the line going

from S to v
(ℓ)
dtc(i, j) with πprj. As a consequence, one has:

• case πdtc = Oxz (cx = 1):

xprj
dtc(i, j) = xS − yS

xS −
(
v
(ℓ)
dtc(i, j)

)
x

yS −
(
v
(ℓ)
dtc(i, j)

)
y

,

zprj
dtc(i, j) = zS − yS

zS −
(
v
(ℓ)
dtc(i, j)

)
z

yS −
(
v
(ℓ)
dtc(i, j)

)
y

;

(3.21)

• case πdtc = Oyz (cy = 1):

yprj
dtc(i, j) = yS − xS

yS −
(
v
(ℓ)
dtc(i, j)

)
y

xS −
(
v
(ℓ)
dtc(i, j)

)
x

,

zprj
dtc(i, j) = zS − xS

zS −
(
v
(ℓ)
dtc(i, j)

)
z

xS −
(
v
(ℓ)
dtc(i, j)

)
x

.

(3.22)
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Notice that, to have the coordinates of the projections of all the detector vertices,
we do not need to explicitly compute them all. Indeed:

1) consider one single column of detector cells and their vertices aligned on the
same “vertical” side (i.e., on the the same edge parallel to the z axis), that
is, v(ℓ)

dtc(i, :) for each fixed i ∈ {0, . . . ,mu}. Clearly, all these vertices have
the same x and the same y coordinate:(
v
(ℓ)
dtc(i, j)

)
x
=
(
v
(ℓ)
dtc(i, 0)

)
x

and
(
v
(ℓ)
dtc(i, j)

)
y
=
(
v
(ℓ)
dtc(i, 0)

)
y
∀j = 1, . . . ,mv .

(3.23)
Hence, we only need to compute the projections onto πprj of the vertices on
the same “horizontal” line. We choose the very bottom detector edge and
use (3.21) or (3.22), depending on which is the common projection plane. In
either case, we define one column vector containing such projections:

xprj
dtc,0 = vect

((
xprj

dtc(i, 0)
)
i=0,...,mu

)
if πdtc = Oxz , or

yprj
dtc,0 = vect

((
yprj

dtc(i, 0)
)
i=0,...,mu

)
if πdtc = Oyz ;

(3.24)

2) consider one single row of detector cells and their vertices aligned on the
same “horizontal” side (i.e., on the the same edge parallel to the Oxy plane),
namely v

(ℓ)
dtc(:, j) for each fixed j ∈ {0, . . . ,mv}. All these vertices have the

same z coordinate, that is,(
v
(ℓ)
dtc(i, j)

)
z
=
(
v
(ℓ)
dtc(0, j)

)
z
∀i = 1, . . . ,mu . (3.25)

Hence, we only need to compute the projections onto πprj of the vertices on
one “vertical” line. We choose the leftmost (or the rightmost) detector edge
and use (3.21) or (3.22), depending on which is the common projection plane.
We then define the following column vector containing such projections:

zprj
dtc,0 = vect

((
zprj
dtc(0, j)

)
j=0,...,mv

)
. (3.26)

It follows that, to have the coordinates in πprj of the projections of all the detector
vertices, we just need to appropriately replicate the vectors xprj

dtc,0 (or yprj
dtc,0) and

zprj
dtc,0 containing the projections. Because of the detector cells vertices ordering

described above, two consecutive vertices horizontally aligned (that is, with con-
stant v coordinate) have linear indices with stride mv + 1, while two consecutive
vertices vertically aligned (i.e., with the same u coordinate) have consecutive lin-
ear indices. Hence, the two vectors xprj

dtc (or yprj
dtc) and zprj

dtc of the projections of all
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the detector vertices at the angle θℓ can be expressed by means of the following
Knonecker products:

xprj
dtc = xprj

dtc,0 ⊗ 1(mv+1) or yprj
dtc = yprj

dtc,0 ⊗ 1(mv+1) (3.27)

and

zprj
dtc = 1(mu+1) ⊗ zprj

dtc,0 (3.28)

where 1(mv+1) and 1(mu+1) are the column vectors of all 1, with mv+1 and mu+1

elements, respectively. In particular, consecutive elements of xprj
dtc,0 and yprj

dtc,0 are
mapped to positions with stride mv+1 in xprj

dtc and yprj
dtc, respectively. We can easily

save computations by using, once more, the matrix replication Matlab function
repmat:

u = repmat( uproj ’, detsize (1)+1, 1);
DetProj (:,1) = [ u(:) ];
DetProj (:,2) = [ repmat( vproj , detsize (2)+1, 1)];

where uproj = xprj
dtc,0 or uproj = yprj

dtc,0, and vproj = zprj
dtc,0. The array DetProj

contains in its first column the x (or the y) coordinates and in its second column the
corresponding z coordinates of the projections of the vertices of all the detector
cells, for the given rotation angle θℓ. The array DetProj has exactly Nprj

dtc =
(mu + 1)(mv + 1) rows.

Finally, if on the detector plane πdtc extra virtual cells are considered, the
projections of their vertices are computed analogously, by using (3.21) or (3.22).

Notice that, since we choose a uniform rectangular grid for the detector cells,
the horizontal and vertical coordinates of their vertices remains equally spaced for
all rotation angles θℓ, ℓ ∈ {0, . . . , Nθ}, as expected. Indeed, starting from (3.11)
and (3.14):

v
(0)
dtc(i, j)− v

(0)
dtc(i, j − 1) =

⎛⎝ 0
0

δv/∆z

⎞⎠ , (3.29)

v
(0)
dtc(i, j)− v

(0)
dtc(i− 1, j) =

⎛⎝ 0
−δu/∆y

0

⎞⎠ , (3.30)

v
(ℓ)
dtc(i, j)− v

(ℓ)
dtc(i, j − 1) =

(
Rℓ 0
0T 1

)(
v
(0)
dtc(i, j)− v

(0)
dtc(i, j − 1)

)
=

⎛⎝ 0
0

δv/∆z

⎞⎠ , (3.31)
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v
(ℓ)
dtc(i, j)− v

(ℓ)
dtc(i− 1, j) =

(
Rℓ 0
0T 1

)(
v
(0)
dtc(i, j)− v

(0)
dtc(i− 1, j)

)
=

δu
∆y

⎛⎝ sin(θℓ)
− cos(θℓ)

0

⎞⎠ (3.32)

for all i = 1, . . . ,mu + 1 and j = 1, . . . ,mv + 1. In particular, relation (3.31) and
(3.29) follows also from Proposition 3, while (3.32) and (3.30) do not. Moreover,
we have

v
(ℓ)
dtc(i, j) =

(
Rℓ 0
0T 1

)⎛⎝L+

⎛⎝ 0
−iδu/∆y

jδv/∆z

⎞⎠−
⎛⎝xCyC

0

⎞⎠⎞⎠+

⎛⎝xCyC
0

⎞⎠
= L(ℓ) +

(
Rℓ 0
0T 1

)⎛⎝ −xC
−(iδu/∆y + yC)

jδv/∆z

⎞⎠+

⎛⎝xCyC
0

⎞⎠ (3.33)

(
v
(ℓ)
dtc(i, j)

)
x
= L(ℓ)

x +
(
1− cos(θℓ)

)
xC +

(
iδu/∆y + yC

)
sin(θℓ) (3.34)(

v
(ℓ)
dtc(i, j)

)
y
= L(ℓ)

y − xC sin(θℓ)−
(
iδu/∆y

)
cos(θℓ) +

(
1− cos(θℓ)

)
yC (3.35)(

v
(ℓ)
dtc(i, j)

)
z
= L(ℓ)

z + jδv/∆z (3.36)

where
L(ℓ) =

(
Rℓ 0
0T 1

)
L.

Equations (3.34) and (3.35) show that
(
v
(ℓ)
dtc(i, j)

)
x

and
(
v
(ℓ)
dtc(i, j)

)
y

depend on i,

but not on j, while (3.36) shows that
(
v
(ℓ)
dtc(i, j)

)
z

depends on j, but not on i. The
previous equations can be used to prove the above mentioned properties of the
detector cells projections.

From (3.35) we have that
(
v
(ℓ)
dtc(i, j)

)
y
=
(
v
(ℓ)
dtc(i, j−1)

)
y
, and from (3.21) (case

πdtc = Oxz) we have:

zprj
dtc(i, j)− z

prj
dtc(i, j − 1) = yS

⎛⎝−zS − (v(ℓ)
dtc(i, j)

)
z

yS −
(
v
(ℓ)
dtc(i, j)

)
y

+
zS −

(
v
(ℓ)
dtc(i, j − 1)

)
z

yS −
(
v
(ℓ)
dtc(i, j − 1)

)
y

⎞⎠
= yS

−L(ℓ)
z + jδv/∆z + L

(ℓ)
z − (j − 1)δv/∆z

yS −
(
v
(ℓ)
dtc(i, j)

)
y

= ρ
(ℓ)
x,i

δv
∆z

(3.37)
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with

ρ
(ℓ)
x,i =

yS(
yS − L(ℓ)

y + xC sin(θℓ) +
(
iδu/∆y

)
cos(θℓ)−

(
1− cos(θℓ)

)
yC

) . (3.38)

Analogously, from (3.34) we have that
(
v
(ℓ)
dtc(i, j)

)
x
=
(
v
(ℓ)
dtc(i, j − 1)

)
x
, and from

(3.22) (case πdtc = Oyz) we have:

zprj
dtc(i, j)− z

prj
dtc(i, j − 1) = xS

(
−
zS −

(
v
(ℓ)
dtc(i, j)

)
z

xS −
(
v
(ℓ)
dtc(i, j)

)
x

+
zS −

(
v
(ℓ)
dtc(i, j − 1)

)
z

xS −
(
v
(ℓ)
dtc(i, j − 1)

)
x

)

= xS
−L(ℓ)

z + jδv/∆z + L
(ℓ)
z − (j − 1)δv/∆z

xS −
(
v
(ℓ)
dtc(i, j)

)
x

= ρ
(ℓ)
y,i

δv
∆z

(3.39)

with

ρ
(ℓ)
y,i =

xS(
xS − L(ℓ)

x −
(
1− cos(θℓ)

)
xC −

(
iδu/∆y + yC

)
sin(θℓ)

) . (3.40)

All together, (3.37)–(3.40) show that, for each column of detector cells vertices,
their projections are (vertically aligned and) are equally spaced.

Projecting the voxels midway slices

Once the detector cells vertices projections have been computed, we shall handle
how to compute the projections of the object grid vertices, at the same angle ℓ. We
assume to have the set Vvxl = {vvxl(i, j, k)} of the slices vertices to be projected
onto πprj already available form (3.9) or (3.10).

Analogously to the detector cell vertices case, we need to vectorize the arrays of
the spatial components of the voxels slices vertices. This yields a “linear” index that
allows to correctly browse the corresponding vectors. In this, we shall have three
3D arrays Ux, Uy and Uz containing the coordinates xi, yj and zk, respectively, of all
the vvxl(i, j, k) vertices, for i = 1− cx, . . . , nx, j = 1− cy, . . . , ny and k = 0, . . . , nz.

The chosen positioning of the main inertial coordinate system Oxyz implies
that, in the three arrays, the coordinates of the voxels slices vertices on the bottom
layer are stored first, followed by those of the other layers, with the layer index k
increasing as z increases. Within each fixed k-th layer, the vertices vvxl(i, j, k) are
stored in the same position (j, i, k) (actually, (j+1, i+1, k+1) because of Matlab
rules for array indices) of the three arrays Ux, Uy and Uz.
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Indeed, the row index i increases with the y coordinate, while the column index
j increases with the x coordinate. It follows that the uppermost row of each k-th
page of the three arrays contains the coordinates of the vertices on the “front”
face of the voxels slices grid, i.e., the face nearest (and parallel) to the Oxz plane.
Here, the coordinates of the bottom vertices (i.e., those with the smallest z values)
appear in the first row of the first page of each array, and the coordinates of the
vertices at the top of that grid face (i.e., those with the largest z) appear in the
first row of the last page of the arrays. On the other hand, the last row of each
page of the three arrays Ux, Uy and Uz contains the coordinates of the vertices
belonging to the face of the voxels slices grid located further (and parallel) with
respect to Oxz, with the coordinates of the vertices with the smallest zk appearing
in the first page and those of the vertices with the largest zk appearing in the last
page of each array. Similarly, the coordinates of the vertices on the face of the
voxels slices grid nearer to the Oyz plane appear in the first column of each page
of the three arrays, while the coordinates of the vertices on the voxels slices grid
face further from the Oyz plane appear in the last column of each page of the
three arrays.

This is clear bearing in mind how the Matlab meshgrid function works, and,
once more, provides consistent computations. Indeed, before performing any com-
putation, the three arrays are vectorized in three column vectors xvxl = vect(Ux),
yvxl = vect(Uy) and zvxl = vect(Uz) by column-major reordering. As a con-
sequence, the linear index vvxl(i, j, k) spanning these three vectors determines a
consistent ordering of the voxels slices vertices. The first one is the vertex nearest
to O, that is vvxl(0, 1, 0) or vvxl(1, 0, 0) according to (3.9) or (3.10), respectively.
Afterwards, the numbering increases with the vertices vvxl(0, j, 0) (or vvxl(1, j, 0)),
for j = 1, . . . , ny, i.e., the vertices in the lowest layer that are aligned along the
leftmost edge of the slices grid (which is parallel to Oyz). Next, the numbering
proceeds with the second vertex vvxl(1, 1, 0) (or vvxl(2, 0, 0)) in the x direction,
followed by vvxl(1, j, 0) (or vvxl(2, j, 0)) for j = 1, . . . , ny, until the last vertex of
the first layer, which is vvxl(nx, ny, 0), in both cases. Notice that vvxl(nx, ny, 0) has
index (nx+1)ny, if πprj = Oxz, or nx(ny +1), if πprj = Oyz. The same ordering is
repeated in each next k-th layer, for k = 1, . . . , nz, as it is clear from Figure 3.12.
As a consequence, the coordinates of contiguous vertices aligned in the y direction
in a given layer have consecutive indices, while those of contiguous vertices on each
line parallel to the x axis have indices with a stride of ny or ny + 1, depending
on whether πprj = Oxz or πprj = Oyz, respectively. Lastly, the coordinates of
contiguous vertices in adjacent layers in the z direction have indices with a stride
of (nx + 1)ny, if πprj = Oxz, or nx(ny + 1), if πprj = Oyz.

Now, the total number of slices vertices to be projected for each voxel layer
depends on whether πprj = Oxz or πprj = Oyz. Indeed, the midway slices are taken
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Figure 3.12: representation of the voxels slices vertices numbering scheme. The
red dot is the X-ray source, the yellow plane is the common projection plane.
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on planes that are parallel to the selected projection plane. These parallel planes
contain the centers of the voxels belonging to a same object grid layer parallel to
πprj. By construction, when cy = 1 these parallel planes have positive integer x
coordinate, while, when cx = 1, they have positive integer y coordinate:{

y = j ∀j = 1, . . . , ny, if πprj = Oxz ,

x = i ∀i = 1, . . . , nx, if πprj = Oyz .

Hence, in the orthogonal direction with respect to the common projection plane,
we have as many slice planes, and, consequently, aligned slices vertices, as the
number of object voxels in that direction. On the other hand, in the other two
coordinate directions, parallel to the common projection plane, in each layer we
must take into account one more vertex than the number of voxels in each row
and one more vertex than the number of voxels in each column. This results in
the following total number of voxels slices vertices to be projected:

Nprj
vxl = (nz + 1)N lyr

vxl,vrt with N lyr
vxl,vrt =

{
ny(nx + 1) if πprj = Oxz

nx(ny + 1) if πprj = Oyz
(3.41)

where N lyr
vxl,vrt is the number of voxels slices vertices in each object grid horizontal

(i.e., parallel to Oxy) layer. The projection of a single vertex of any voxel slice
can be easily computed similarly to the detector vertices case, hence analogously
to (3.21) or (3.22):

• case πdtc = Oxz (cx = 1):

xprj
vxl(i, j, k) = xS − yS

xS −
(
v
(ℓ)
vxl(i, j, k)

)
x

yS −
(
v
(ℓ)
vxl(i, j, k)

)
y

,

zprj
vxl(i, j, k) = zS − yS

zS −
(
v
(ℓ)
vxl(i, j, k)

)
z

yS −
(
v
(ℓ)
vxl(i, j, k)

)
y

;

(3.42)

• case πdtc = Oyz (cy = 1):

yprj
vxl(i, j, k) = yS − xS

yS −
(
v
(ℓ)
vxl(i, j, k)

)
y

xS −
(
v
(ℓ)
vxl(i, j, k)

)
x

,

zprj
vxl(i, j, k) = zS − xS

zS −
(
v
(ℓ)
vxl(i, j, k)

)
z

xS −
(
v
(ℓ)
vxl(i, j, k)

)
x

.

(3.43)
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Once more, these computations can be easily performed by using the vectorized
syntax of Matlab. For instance, in the case πprj = Oxz, we can compute the
projections of the voxels slices vertices as follows:

VoxProj (:,1) = [ Srcpos_start (1) - Srcpos_start (2) .* ...
(Srcpos_start (1) - x_ObjVoxelBoundary (:))...
./ (Srcpos_start (2) - y_ObjVoxelBoundary (:))

];
VoxProj (:,2) = [ Srcpos_start (3) - Srcpos_start (2) .* ...

(Srcpos_start (3) - z_ObjVoxelBoundary (:))...
./ (Srcpos_start (2) - y_ObjVoxelBoundary (:))

];

where the array VoxProj contains, in its first column, the x (or the y) coordinates
and, in its second column, the corresponding z coordinates of the projections of
the vertices of all the voxels slices, for the given rotation angle θℓ. If, in analogy
with (3.27) and (3.28), we define:

xprj
vxl,k = vect

((
xprj

vxl(i, j, k)
)
i=(1−cx),...,nx,j=(1−cy),...,ny

)
(3.44)

yprj
vxl,k = vect

((
yprj

vxl(i, j, k)
)
i=(1−cx),...,nx,j=(1−cy),...,ny

)
(3.45)

zprj
vxl,k = vect

((
zprj
vxl(i, j, k)

)
i=(1−cx),...,nx,j=(1−cy),...,ny

)
(3.46)

for all k = 0, . . . , nz, and

xprj
vxl = vect

((
xprj

vxl,k

)
k=0,...,nz

)
(3.47)

yprj
vxl = vect

((
yprj

vxl,k

)
k=0,...,nz

)
(3.48)

zprj
vxl = vect

((
zprj

vxl,k

)
k=0,...,nz

)
. (3.49)

we have precisely VoxProj(:,1) = xprj
vxl (or VoxProj(:,1) = yprj

vxl) and VoxProj(:,2) =
zprj

vxl. The array VoxProj has exactly Nprj
vxl rows.

Computing projection overlaps

To compute the 3D distance-driven coefficients we need to handle how to compute
the extension of the overlapping area of the projections onto πprj of each voxel
midway slice and each detector cell.

Notice that the chosen projection strategy implies that the projections of each
voxel midway slice onto the common projection plane have always a rectangular
shape. Moreover, also the projections of each detector cell have always a rectangu-
lar shape. Hence, the overlapping area of any voxel projection with any detector
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cell projection is either empty, or has a rectangular shape (possibly degenerate,
i.e., a line segment or a single point). This fact is crucial and, surely, gives reason
for choosing one of the coordinated planes Oxz or Oyz as the common projection
plane. For this reason, it is sufficient to determine the overlapping segments in
the “horizontal” direction and in the “vertical” direction, and then multiply them
suitably. Despite its apparent simplicity, this procedure is not trivial at all, and
implies the following tasks:

A) efficiently compute the “horizontal” projections overlaps and associate them
to the right areas;

B) efficiently compute the “vertical” projections overlaps and associate them to
the right areas;

C) efficiently determine which are the projected segments to be multiplied and
properly assign the result to the correct position of the CT projection matrix.

The designation “vertical” refers to (possible) overlaps of the segments belonging
to πprj which are all parallel to the z axis. By contrast, the designation “horizontal”
refers to (possible) overlaps of the segments belonging to πprj that are all orthogonal
to the z axis, i.e., parallel to the x or the y axis, depending on the selected
projection plane.

We first describe how to manage task A, then we handle task B, and, at last,
we deal with task C.

A. Computing horizontal projections overlaps

The idea for the computation of horizontal projections overlaps is essentially bor-
rowed from the 2D fan-beam circular distance-driven projection strategy, and it is
improved to make it effective.

To fix ideas, and without any loss of generality, consider the case πprj = Oxz
and take any horizontal line of πprj. Let us denote by zprj

vxl,min and zprj
vxl,max the

minimum over all and the maximum over all z coordinates of the voxels slices
projections onto πprj, respectively, that is:

zprj
vxl,min = min

i,j,k
zprj
vxl(i, j, k) and zprj

vxl,max = max
i,j,k

zprj
vxl(i, j, k) .

Analogously, let us denote by zprj
dtc,min and zprj

dtc,max the minimum over all and the
maximum over all z coordinates of the detector cells projections onto πprj, respec-
tively, namely:

zprj
dtc,min = min

i,j
zprj
dtc(i, j) and zprj

dtc,max = max
i,j

zprj
dtc(i, j) .
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Lastly, let us define the two quantity zprj
min and zprj

max:

zprj
min = min

{
zprj
dtc,min, z

prj
vxl,min

}
and zprj

max = max
{
zprj
dtc,max, z

prj
vxl,max

}
.

Evidently, every line on πprj having equation z = ζ with ζ < zprj
min or ζ > zprj

max has
no intersection at all neither with the whole object grid projection, nor with the
whole detector grid projection. Hence, there is nothing to compute in this case. If
either zprj

min ≤ ζ < max
{
zprj
dtc,min, z

prj
vxl,min

}
, or min

{
zprj
dtc,max, z

prj
vxl,max

}
< ζ ≤ zprj

max, then
we have a special situation where the line intersects the projections of either the
detector or the voxels slices, but not both of them. Clearly, there can not be any
projections overlap on the line, so, even in this case, there is nothing to compute.
As a consequence, we shall consider only horizontal lines of πprj having intersections
with both the detector cells projections and the voxels slices projections.

Then, let us consider one such line λ. The intersections are segments, whose
endpoints are uniquely identified by the projections onto this line of the edges of
the detector cells and the voxels midway slices. The set of endpoints related to
the detector cells projections is clearly sorted as the corresponding detector cells,
and the same holds true for the set of endpoints related to the voxels slices, even if
the two orderings could be opposite to each other. The latter case appears when
the u detector axis is not concordant with the x or the y axis of the common
projection plane: this happens when 5π/4 ≤ θ < 9π/4, i.e., when the projection
angle index ℓ satisfies ℓ ∈ I−xz ∪ I−yz = {1, . . . , ℓ1} ∪ {ℓ3 + 1, . . . , Nθ}, according
to (3.16). However, the endpoints in the two sets are usually interleaved, as it is
sketched in Figure 3.5. As a consequence, regardless of their ordering in the two
sets, the endpoints of a given i-th detector cell, temporarily addressed to as νi−1

and νi, and those of a specific j-th voxel slice, temporarily denoted by ξj−1 and ξj,
can appear in only one out of four configurations:

1. the endpoints of the detector cell projection are both comprised between
those of the voxel slice projection:

ξj−1 ≤ νi−1 < νi ≤ ξj ;

2. the endpoints of the voxel slice projection and those of the detector cell
projection are alternated:

(a) νi−1 ≤ ξj−1 < νi ≤ ξj or (b) ξj−1 ≤ νi−1 < ξj ≤ νi ;

3. the endpoints of the voxel slice projection are both comprised between those
of the detector cell projection:

νi−1 ≤ ξj−1 < ξj ≤ νi ;
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4. the two projections are disjoint or share at most one endpoint:

(a) νi−1 < νi ≤ ξj−1 < ξj or (b) ξj−1 < ξj ≤ νi−1 < νi .

The four configurations above identified correspond to the cases where the voxel
slice projection segment completely overlaps the detector cell projection segment
(case 1), or where there is only a partial overlap (case 2), or where the voxel slice
projection segment is completely “inside” the detector cell projection segment (case
3), or where there is no overlap at all between the segments (case 4). All these
four cases can be easily handled by the formula (3.1).

We remind that each coefficient of the CT forward operator measures, in some
way, the contribution that a given voxel of the object grid provides to the signal
received by a specific detector cell, by means of a percentage. Indeed, the weight
wij in (3.1) satisfies 0 ≤ wij ≤ 1. This is the overlap coefficient we need to compute
for every voxel-detector pair.

Now, we show how the computation of such overlaps can be effectively vector-
ized. In practice, we need the relative positions of the endpoints of the projection
segments for all the voxel slices and all the detector cells. These endpoints are the
components of xprj

vxl or yprj
vxl, for the voxel grid, and the components of xprj

dtc or yprj
dtc

for the detector grid. Clearly, such endpoints only depends on the source rotation
angle θℓ. If we retain the notation of cases 1–4, νi−1 and νi are generic contiguous
components of xprj

dtc or yprj
dtc, while ξi−1 and ξi are generic contiguous components

of xprj
vxl or yprj

vxl.
The crucial point is that we only need to identify the indices of the compo-

nents of these column vectors corresponding to horizontally adjacent vertices of
the voxel grid and the detector grid. This can be easily done by using both the ma-
trix replication and the Kronecker matrix product, and by exploiting the vertices
numbering explained before.

To fix ideas, suppose πprj = Oxz: in this case, the voxels midway slices are
parallel to Oxz and their vertices are located as in (3.9). Remember that the
column-major vectorization ordering implies that

• the components of the projections of all the (nx + 1)ny vertices vvxl(i, j, k)

of the k-th horizontal layer are located in N lyr
vxl,vrt = (nx + 1)ny contiguous

positions of xprj
vxl starting from (k − 1)(nx + 1)ny + 1;

• inside each k-th horizontal layer, the components corresponding to adjacent
vertices along edges parallel to the y axis have consecutive indices in xprj

vxl,
whilst the components corresponding to adjacent vertices along edges parallel
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to the x direction have indices with a stride of ny in xprj
vxl:

vvxl(i, j, k)→ pijk = p̃H
k + iny+ j ⇒

{
vvxl(i, j + 1, k)→ pi,j+1,k = pijk + 1

vvxl(i+ 1, j, k)→ pi+1,j,k = pijk + ny
(3.50)

for all i = 0, . . . , nx and j = 1, . . . , ny, where p̃H
k = (k − 1)(nx + 1)ny is the

displacement in xprj
vxl of the positions related to the k-th layer.

Let us consider first the vertices belonging to the lowest layer (i.e., k = 0). We need
to identify the pair of endpoints of each segment to project. For sake of simplicity,
we refer to the endpoints having the smallest x component in each pair as leftmost
endpoints, and as rightmost endpoints to those having the largest x component.
For instance, when we are projecting the lowest edge of the midway slice of voxel
n = (i, j, 0) parallel to Oxz, its endpoints are vvxl(i, j, 0) and vvxl(i + 1, j, 0), so
the leftmost endpoint is vvxl(i, j, 0) and the rightmost one is vvxl(i+1, j, 0). Then,
it is clear that all the vertices with i = 0, . . . , nx− 1 and j = 1, . . . , ny are leftmost
endpoints, while all the vertices with i = 1, . . . , nx and j = 1, . . . , ny are rightmost
endpoints. The former are all the vertices of layer 0, except for those farthest
from the Oyz plane (with the largest x components), while the latter are all the
vertices of layer, 0 except for the nearest to the Oyz plane (with the smallest x
components).

Now, let pH,left
0 and pH,right

0 be the column vectors of the indices of all the left-
most endpoints and the rightmost endpoints of layer k = 0, respectively, namely:

pH,left
0 =

(
1, 2, . . . , nxny

)T
,

pH,right
0 =

(
ny + 1, ny + 2, . . . , (nx + 1)ny

)T
= pH,left

0 + ny .
(3.51)

Given that the vertices ordering in the other layers proceeds exactly in the same
way as in layer 0, it immediately follows that the positions of the components
belonging to the k-th layer are simply displaced by p̃H

k from those of layer 0, that
is:

pH,left
k = p̃H

k +pH,left
0 and pH,right

k = p̃H
k +pH,right

0 ∀ k = 1, . . . , nz . (3.52)

Notice that, for all k = 0, . . . , nz, pH,left
k and pH,right

k are column vectors with
N lyr

vxl = nxny elements.
Clearly, the same reasoning can be applied to the πprj = Oyz case, but it is

not straightforward. Now, the slices edges are parallel to the y axis, the vertices
are positioned according to (3.10), and the number of vertices in each k-th layer
is nx(ny + 1), so that the layer displacement becomes p̃H

k = (k − 1)nx(ny + 1).
In this case, the leftmost endpoint of each segment to be projected is the one
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having the smallest y coordinate, while the rightmost endpoint has the largest
component in the pair. While the definition is completely similar to the previous
case, due to (3.50) the “neighboring” relations are quite different. Indeed, when we
are projecting the lowest edge of the midway slice of voxel n = (i, j, 0) parallel to
Oyz, its endpoints are vvxl(i, j, 0) and vvxl(i, j+1, 0), where the leftmost endpoint
is vvxl(i, j, 0) and the rightmost one is vvxl(i, j +1, 0). It immediately follows that
all the vertices with i = 1, . . . , nx and j = 0, . . . , ny − 1 are leftmost endpoints,
while all the vertices with i = 1, . . . , nx and j = 1, . . . , ny are rightmost endpoints.
The former are all the vertices of layer 0 except for those farthest from the Oxz
plane (with the largest y components), while the latter are all the vertices of layer
0 except for those nearest to the Oxz plane (with the smallest x components).
We can still define the column vectors pH,left

0 and pH,right
0 , but in this case the

indices of the leftmost endpoints are grouped in nx groups of exactly ny consecutive
indices, each group having its starting position with a stride of ny + 1 from the
previous,while the index of each rightmost endpoint is exactly the subsequent one
of the corresponding leftmost endpoint. Hence, the analogue of (3.51) reads as:

pH,left
0 =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

nx elements

⊗

⎛⎜⎜⎜⎝
1
2
...
ny

⎞⎟⎟⎟⎠+ (ny + 1)

⎛⎜⎜⎜⎝
0
1
...

nx − 1

⎞⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

ny elements

,

pH,right
0 = pH,left

0 + 1 ,

(3.53)

where “⊗” is the Kronecker product, while (3.52) remains the same. Again, for
each k-th horizontal layer, k = 0, . . . , nz, pH,left

0 and pH,right
0 are column vectors

with N lyr
vxl elements.

Equations (3.51) and (3.53) may appear quite dissimilar from each other, but,
actually, they are not so different. Indeed, notice that⎛⎜⎜⎜⎝

1
2
...

nxny

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

nx elements

⊗

⎛⎜⎜⎜⎝
1
2
...
ny

⎞⎟⎟⎟⎠+ ny

⎛⎜⎜⎜⎝
0
1
...

nx − 1

⎞⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

ny elements

. (3.54)

and observe that (3.53) can be obtained from (3.54) by simply replacing ny with
ny+cy as coefficient for the second Kronecker product. Moreover, even if the total
number N lyr

vxl,vrt of vertices in each layer changes, as well as the layer displacement
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p̃H
k , both can be easily obtained by using the following relations:

N lyr
vxl,vrt = (ny + 1− cx)(nx + 1− cy) = (ny + cy)(nx + cx),

p̃H
k = (k − 1)N lyr

vxl,vrt .
(3.55)

Thus, we are able to provide a unified formula for the linear indices of all the
leftmost and the rightmost endpoints, which holds true for both the πprj = Oxz
and the πprj = Oyz cases:

pH,left
0 =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

nx elements

⊗

⎛⎜⎜⎜⎝
1
2
...
ny

⎞⎟⎟⎟⎠+ (ny + cy)

⎛⎜⎜⎜⎝
0
1
...

nx − 1

⎞⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

ny elements

,

pH,right
0 = pH,left

0 + cxny + cy.

(3.56)

In particular, the vectors pH,left
0 and pH,right

0 have as many elements as the number
N lyr

vxl of voxels in the layer (not as the number of slices vertices). Finally, it is now
easy to build the two column vectors pH,left and pH,right collecting the vectors pH,left

k

and pH,right
k for all k = 0, . . . , nz:

pH,left =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

nz + 1 elements

⊗ pH,left
0 +N lyr

vxl,vrt

⎛⎜⎜⎜⎝
0
1
...
nz

⎞⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠
  

N lyr
vxl elements

(3.57)

and the same formula holds true for pH,right, with pH,right
0 replacing pH,left

0 . Both
pH,left and pH,right have length

N ′
vxl = (nz + 1)N lyr

vxl = Nvxl +N lyr
vxl. (3.58)

Thus, in their first Nvxl elements, pH,left and pH,right are indexed as the voxels (not
as the slices vertices), and the last N lyr

vxl positions refers to a “virtual” layer of voxels
on the top of the object volume (whose midway slices lower vertices v(ℓ)

vxl(:, :, nz) are
the vertices of the uppermost layer). The need to consider these “virtual” voxels
shall be clarified later (see page 82).
Remark 3.5. Notice that the Kronecker operations in (3.56) and (3.57) are formally
correct, but they are unnecessary from a computational point of view: indeed,
they are essentially vector replications, and, thus, can be efficiently implemented
in Matlab via the repmat function, saving computational time.
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Because of (3.42) and (3.43), each element in v
(ℓ)
vxl is uniquely related to its

projection onto πprj, which is the homologous element in xprj
vxl or yprj

vxl, depending
on the common projection plane. Hence, we actually have the indices that address
correctly in xprj

vxl or yprj
vxl the elements that are endpoints of the horizontal segment

on πprj, which is the projection of exactly one horizontal edge of each given voxel
midway slice. Recall that for the rotation angles θℓ with ℓ ∈ I−xz ∪ I−yz the voxel
index increases in the reversed direction with respect to any horizontal axis of πprj.
In practice, this implies that, for these source positions, the length of the horizontal
projected segment we want to compute is given by the difference between the pro-
jection of the leftmost endpoint of the segment and the projection of its rightmost
endpoint, instead of the other way round, since, for those ℓ, the former is larger
than the latter. Hence, both situations can be handled at the same time by always
taking the difference between the largest projection and the smallest projection, in
magnitude, of the endpoints pair of each voxel slice horizontal edge. Bearing in
mind this, we finally end up with the vectorized definition of the distance-driven
voxels projections to be used in the formula (3.1):

ξ =

{
xprj

vxl if πprj = Oxz

yprj
vxl if πprj = Oyz

and

⎧⎨⎩ ξmin = min
{
ξ
(
pH,left), ξ(pH,right)}

ξmax = max
{
ξ
(
pH,left), ξ(pH,right)} (3.59)

where “min” and “max” are Hadamard operators, i.e., they are intended to be
simultaneously applied to homologous elements when their arguments are arrays
of the same size (we stress that this is not the usual behavior of min and max
functions of Matlab). All vectors in (3.59) are column vectors. In particular, ξ
has Nprj

vxl elements and both ξmin and ξmax have N ′
vxl components (i.e., they are

linearly indexed as the voxels, except for the last N lyr
vxl positions). Notice that ξ(p)

is the column vector whose elements are the components of ξ having the indices
specified in the index vector p (this is usually referred to as indirect indexing).

Let us now see how to compute the overlaps between the horizontal projections
of the voxels slices and the detector cells.

First, suppose πprj = Oxz and ℓ ∈ I+xz, so that the horizontal u axis on the
detector is concordant with the x axis of πprj.

We start by considering what happens for the first row of detector cells vertices,
i.e., the detector vertices v

(ℓ)
dtc(i, 0) with linear index q = i(mv + 1) + 1 for i ∈

{0, . . . ,mu}. Consider the lowest edge of the generic i-th horizontal cell of this
row: its endpoints are v

(ℓ)
dtc(i − 1, 0) and v

(ℓ)
dtc(i, 0) and their projections are the

corresponding elements of xprj
dtc,0, i.e., its i-th and (i+ 1)-th elements (since array

indices start from 1). For any given voxel, we need to manage the four intersection
cases 1–4 between the horizontal projections of its midway slice and the projection
of the detector segment. The following result is crucial for what follows.
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Proposition 3. Let RC
(
O, S, dCO′ , γmin, γmax, βmin, βmax

)
be a cone-beam circular

rotation system endowed with the main coordinate systems Oxyz, and consider a
parallelepipedal voxel discretization of the object volume with all boundary faces
parallel to the coordinate planes. Suppose the common projection plane is either
πprj = Oxz or πprj = Oyz. Then:

1. the horizontal coordinates of the projections of the midway slice vertices of
all the voxels are independent of z and equal to the horizontal coordinate of
the projections of the homologous vertices in the lowest horizontal layer (i.e.,
with minimum z);

2. the horizontal coordinates of the projections of all the detector cells vertices
are independent of z and are equal to the horizontal coordinate of the pro-
jections of the homologous vertices in the lowest horizontal detector border
(i.e., with minimum z);

3. the horizontal lengths of the possible overlaps of voxels slices projections and
detector cells projections are independent of z.

Proof. First, we prove item 1. Because of the choice of the common projection
plane, each vertical layer of midway slices (all of them belonging to the same plane
containing the centers c(n) of a single vertical layer of voxels, i.e., the centers of
the voxels n(:, j, :) for a fixed j when πprj = Oxz, or the voxels n(i, :, :) for a fixed i
when πprj = Oyz) is always parallel to πprj. Moreover, all the slices vertices aligned
along the same line parallel to the z axis have the same x and y coordinates,
i.e.,

(
vvxl(i, j, k)

)
x
=
(
vvxl(i, j, 0)

)
x

and
(
vvxl(i, j, k)

)
y
=
(
vvxl(i, j, 0)

)
y

for all
k = 1, . . . , nx. Hence, because of (3.42) and (3.43), also the horizontal coordinates
of their projections, which are elements of xprj

vxl (or yprj
vxl), are all equal. It follows

that, for each vertical layer of slices (parallel to πprj) the horizontal lengths of the
possible overlaps of voxels slices projections and detector cells projections can be
computed for the vertices of the lowest horizontal voxels layer only. In all the other
horizontal layers of voxels, the horizontal lengths of the overlapping areas remain
the same.

To show item 2 we recall that, for any given angle index ℓ, we already observed
in (3.23) that the x and y coordinates of the detector cell vertices aligned along
the same vertical line on πdtc are all the same. Then, it follows from (3.24) that
also the horizontal coordinate on πprj of their projections (which is an element of
xprj

dtc or yprj
dtc) is constant. Hence, because of (3.27), for each i-th column of detector

cells the horizontal lengths of the overlapping areas between their projections and
the projections of all the voxels can be computed only once, for just one detector
row.

The last item follows immediately from items 1 and 2.
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Even if it is formally indifferent which row of the i-th column of detector cells
is considered for the horizontal overlap lengths calculation, it is computationally
convenient to consider the very first row of detector cells and, hence, the lowest
row of cell vertices, i.e., v(ℓ)

dtc(:, 0). Their projections are all the elements of xprj
dtc,0

(or yprj
dtc,0).

Notice that it will be crucial to be able to correctly associate to each voxel-cell
pair the right horizontal length of projections overlap. The strategy proposed will
be able to ensured this safely without any additional hypothesis, by simply using
the defined indexing machinery.

To compute the horizontal lengths, we need to fix a positive direction: the most
natural choice is the positive direction of the horizontal axis of πprj, that is, the x
axis, if πprj = Oxz, or the y axis, if πprj = Oyz.

Remark 3.6. Once more, our choice of the common projection plane gives the
additional advantage that the horizontal lengths of voxels slices projections are
always given by ξmax − ξmin, and this is independent of the source position.

On the contrary, at certain (known) positions of the source S, i.e., ℓ ∈ I−xz∪I−yz,
according to (3.17)–(3.18), the orientation of the u axis of the detector is reversed
with respect to that of the horizontal axis of πprj.

From Remark 3.6 it follows that, for some positions, we must take into ac-
count the reversed ordering of the detector cells. As a consequence, the detector
projection νmin with minimal horizontal coordinate in πprj is decided as follows:

(i) when ℓ ∈ I+xz ∪I+yz, νmin is the projection of the leftmost lowest vertex of the
very first detector cell, that is the projection of v(ℓ)

dtc(0, 0);
(ii) when ℓ ∈ I−xz ∪ I−yz, νmin is the projection of the rightmost lowest vertex of

the last cell of the first detector row, i.e., the projection of v(ℓ)
dtc(mu, 0).

The situation is clearly reversed for the detector projection νmax with maximal
horizontal coordinate in πprj.

Both cases i–ii can be addressed exactly as in the case of voxel slices vertices
projections, that is, by simply working with an indices vector q with

Ndtc,vrt = (mu + 1)(mv + 1) (3.60)

elements. However, as we already stressed, to compute the horizontal lengths of
overlap we need to work only with the vertices of the lowest detector layer. Given
that the horizontal coordinates of the projections of these vertices are the elements
of xprj

dtc,0 or yprj
dtc,0, both column vectors sized mu+1, we shall consider an auxiliary

indices vector q̂H such that

q̂H
i = qj with j = (i− 1)(mv + 1) + 1 .
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The horizontal overlap length of the projection of a given i-th detector cell in
the first row (i = 1, . . . ,mu) is always given by the difference of the horizontal
projections on πprj of its lowest vertices v(ℓ)

dtc(i− 1, 0) and v
(ℓ)
dtc(i, 0), by subtracting

the projection with smaller horizontal coordinate from the projection with larger
horizontal coordinate. As already pointed out, which one is the largest and which
one is the smallest depends on the rotation angle θℓ. Similarly to the voxels
slices vertices case, we shall define a column vector q̂H,left containing the indices of
the “leftmost” projected endpoints, i.e., the indices of the endpoints with smaller
horizontal coordinate of the projections of the lowest horizontal edge of each cell in
the first row of the detector, and a column vector q̂H,right containing the indices of
the “rightmost” projected endpoints, i.e., the indices of the endpoints with larger
horizontal coordinate of the same projected edge. Both column vectors q̂H,left and
q̂H,right have mu elements. According to (i)–(ii), we immediately have that

for ℓ ∈ I+xz ∪ I+yz : q̂H,left = (1, 2, . . . ,mu)
T , q̂H,right = q̂H,left + 1 ; (3.61)

for ℓ ∈ I−xz ∪ I−yz : q̂H,left = (2, 3, . . . ,mu + 1)T , q̂H,right = q̂H,left − 1 . (3.62)

Notice that, to compute the horizontal overlaps, it does not matter the order in
which we consider the projections of the cells of the first detector row. Indeed, in
the latter case there is no need to reverse also the indices, in order to start again
from the cell nearest to the detector reference point L, as it happens in the former
case. The setting in (3.62) simply implies that we start the overlap computations
always from the first cell of the detector, which in this case is the farthest from L.
By using (3.17)–(3.18), (3.20) and the constant c1 (defined right after (3.20)), we
can express both (3.61) and (3.62) by means of a unified formula:

q̂H,left = (1, 2, . . . ,mu)
T + c1 and q̂H,right = q̂H,left + iinc . (3.63)

Once more, because of (3.21) and (3.22), each element in v
(ℓ)
dtc(:, 0) is uniquely

related to its projection onto πprj, which is the homologous element in xprj
dtc,0 or

yprj
dtc,0. As a consequence, we know precisely the indices that correctly address in

xprj
dtc,0 or yprj

dtc,0 the elements that are endpoints of the horizontal segment on πprj,
which is the projection of the lowest horizontal edge of each cell in the first detector
row. Thanks to (3.63), and regardless of the rotation angle θℓ, the length of the
horizontal projected segment we want to compute is always given by the difference
between the largest and the smallest coordinates of the projected endpoints pair
of the lowest horizontal edge of the cell:

ν0 =

{
xprj

dtc,0 if πprj = Oxz

yprj
dtc,0 if πprj = Oyz

and

{
νmin
0 = ν0

(
q̂H,left) ,

νmax
0 = ν0

(
q̂H,right) . (3.64)
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Notice that νmax
0 and νmin

0 have one less element than ν0, i.e., they have as many
elements as the numbermu of cells in a detector row (not as the number of vertices).
Clearly, we can extend the reasoning to the vertices v(ℓ)

dtc(:, j) of each j-th detector
vertices row, for all j = 1, . . . ,mv. By recalling the ordering of the detector cells
vertices, we simply have:

qH,left =
(
1, 2, . . . ,mu(mv + 1)

)T
+ c1(mv + 1),

qH,right = qH,left + iinc(mv + 1).
(3.65)

Both qH,left and qH,right are column vectors with

N ′
dtc = mu(mv + 1) = Ndtc +mu (3.66)

components. These last relations allow us to give the vectorized definition of the
distance-driven detector cells projections which we shall use in the formula (3.1):

ν =

{
xprj

dtc if πprj = Oxz

yprj
dtc if πprj = Oyz

and

{
νmin = ν

(
qH,left) ,

νmax = ν
(
qH,right) . (3.67)

Notice that νmax and νmin have exactly mv +1 less elements than ν, i.e., they are
linearly indexed as the detector cells, not as their vertices (except for the last mu

positions, which refer to a “virtual” additional row of cells on top of the detector
grid, whose lower vertices v(ℓ)

dtc(:,mv) are the upper vertices of the uppermost row).
Analogously to the voxels slices projections case, the settings in (3.67) implies that
the horizontal lengths of detector cells projections are always given by νmax−νmin,
and this is independent of the source position.

Essentially, the previous machinery, which leads to the definition of ξmax, ξmin

and νmax,νmin, gives the proof of the following Proposition.

Proposition 4. Retaining the hypothesis of Proposition 3, the horizontal lengths
of the projections onto πprj are given by:

all object voxels: ξmax − ξmin , all detector cells: νmax − νmin ,

where the vectors ξmax, ξmin are defined as in (3.59) and the vectors νmax,νmin are
defined as in (3.67). This is independent of the source rotation angle θ.

Remark 3.7. Observe that the above machinery accounts automatically for the
correct mutual orientation of voxels slices projections and detector cells projec-
tions, and there is no need at all to define any sort of “reference line”, usually seen
in some non-vectorized approaches to the distance-driven operator computation.
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Despite Proposition 4, from a practical point of view, we only need (3.64) to
compute the horizontal overlap lengths of voxels and detector cells in a vectorized
fashion.

Now, consider the generic i-th cell of the first detector row and the projection
of its lowest horizontal edge: the endpoints of the projected edge are always νmin

0,i <
νmax
0,i . Consider also a generic p-th voxel slice: the projections of the endpoints of

its lower horizontal edge are always ξmin
p < ξmax

p . Define also the following four
differences:

gLL
pi = ξmin

p − νmin
0,i , gRL

pi = ξmax
p − νmin

0,i , (3.68)

gLR
pi = ξmin

p − νmax
0,i , gRR

pi = ξmax
p − νmax

0,i . (3.69)

Roughly, the previous four differences have the following meaning:
• gLL

pi : difference between the leftmost horizontal projection of the p-th voxel
slice and the leftmost horizontal projection of the j-th detector cell in the
first row;
• gRL

pi : difference between the rightmost horizontal projection of the p-th voxel
slice and the leftmost horizontal projection of the j-th detector cell in the
first row;
• gLR

pi : difference between the leftmost horizontal projection of the p-th voxel
slice and the rightmost horizontal projection of the j-th detector cell in the
first row;
• gRR

pi : difference between the rightmost horizontal projection of the p-th voxel
slice and the rightmost horizontal projection of the j-th detector cell in the
first row.

Here, as already pointed out, “leftmost” means “with the smallest horizontal coor-
dinate” and “rightmost” means “with the largest horizontal coordinate”. By using
(3.68)–(3.69), we can quickly identify the overlap cases 1–4:(

gLL
pi < 0

)
∧
(
gRR
pi > 0

)
⇒
[
ξmin
p , ξmax

p

]
⊇
[
νmin
0,i , ν

max
0,i

]
full overlap
(case 1) (3.70)(

gLL
pi ≥ 0

)
∧
(
gLR
pi < 0

)
⇒ ξmin

p ∈
[
νmin
0,i , ν

max
0,i

[
partial overlap
(cases 2a, 3) (3.71)(

gRL
pi > 0

)
∧
(
gRR
pi ≤ 0

)
⇒ ξmax

p ∈
]
νmin
0,i , ν

max
0,i

]
partial overlap
(cases 2b, 3) (3.72)(

gLR
pi > 0

)
∨
(
gRL
pi < 0

)
⇒
[
ξmin
p , ξmax

p

]
∩
[
νmin
0,i , ν

max
0,i

]
= ∅ no overlap

(case 4) (3.73)

Notice that case 3 is the “intersection” of cases 2a and 2b, i.e., ξmin
p , ξmax

p ∈
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νmin
0,i , ν

max
0,i

]
. By recalling that ξmin

p < ξmax
p it immediately follows that:(

gLL
pi ≥ 0

)
∧
(
gRR
pi ≤ 0

)
⇒

[
ξmin
p , ξmax

p

]
⊆
[
νmin
0,i , ν

max
0,i

]
partial overlap (case 3)

(3.74)
that is, the horizontal voxel projection is completely comprised in the horizontal
detector cell projection. This is a subcase of both 2a and 2b. Finally, relations
(3.70)–(3.74) imply that the necessary and sufficient condition for the p-th voxel
midway slice horizontal projection to have a (strictly) positive overlap length with
the horizontal projection of the i-th cell of the detector first row is the following:(

gLR
pi < 0

)
∧
(
gRL
pi > 0

)
⇒

]
ξmin
p , ξmax

p

[
∩
[
νmin
0,i , ν

max
0,i

]
̸= ∅ . (3.75)

Now, we see that, for every fixed i ∈ {1, . . . ,mu}, all the differences (3.68)–
(3.69) can be computed, and all the conditions (3.70)–(3.75) can be checked for
all voxels simultaneously. To this end, we play once more with a suitable indexing.
Let us define the following column vectors of differences, each vector having N ′

vxl
elements:

gLL
i = ξmin − νmin

0,i , gRL
i = ξmax − νmin

0,i , (3.76)

gLR
i = ξmin − νmax

0,i , gRR
i = ξmax − νmax

0,i . (3.77)

We define also the following subsets of the indices set I ′vxl =
{
1, 2, . . . , N ′

vxl

}
(also

referred to as the extended set of voxels indices), and their corresponding column
vectors:

IH,i
vxl =

{
p ∈ I ′vxl

⏐⏐⏐ (gLR
pi < 0

)
∧
(
gRL
pi > 0

)}
, pH,i = vect

(
IH,i

vxl

)
, (3.78)

IH,i,1
vxl =

{
p ∈ IH,i

vxl

⏐⏐⏐ (gLL
pi < 0

)
∧
(
gRR
pi > 0

)}
, pH,i,1 = vect

(
IH,i,1

vxl

)
, (3.79)

IH,i,3
vxl =

{
p ∈ IH,i

vxl

⏐⏐⏐ (gRL
pi > 0

)
∧
(
gRR
pi ≤ 0

)}
, pH,i,3 = vect

(
IH,i,3

vxl

)
, (3.80)

IH,i,2
vxl =

{
p ∈ IH,i

vxl

⏐⏐⏐ (gLL
pi ≥ 0

)
∧
(
gLR
pi < 0

)}
\ IH,i,3

vxl , pH,i,2 = vect
(
IH,i,2

vxl

)
, (3.81)

where the vect(·) operator applied to a numeric set B means that we build the
column vector by stacking the elements of the set. Usually, there is no no particular
order for the elements in B, but if the set is a set I of indices, then we usually
suppose to stack them sorted in ascending order. We underline that this sorting is
not at all relevant, neither in the following, nor for computational reasons. It just
helps a little in following the reasoning. Finally, we define the following indices
set:

ÎH,i
vxl =

{
1, 2, . . . , NH,i

vxl

}
, where NH,i

vxl = #IH,i
vxl . (3.82)

The following result, which has a straightforward proof, basically says that (3.78)–
(3.81) are well defined.
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Lemma 3.8. For all i ∈ {1, . . . ,mu}, the three sets IH,i,1
vxl , IH,i,2

vxl , and IH,i,3
vxl defined

in (3.79), (3.81), and (3.80), respectively, are a partition of the set IH,i
vxl , i.e., they

are mutually disjoint and satisfy

IH,i,1
vxl ∪ I

H,i,2
vxl ∪ I

H,i,3
vxl = IH,i

vxl .

Proof. The second conditions in (3.79) and (3.80) are mutually exclusive, so IH,i,1
vxl ∩

IH,i,3
vxl = ∅. The first conditions in (3.79) and (3.81) are mutually exclusive, thus
IH,i,1

vxl ∩ I
H,i,2
vxl = ∅. From the definition in (3.81) it follows IH,i,2

vxl ∩ I
H,i,3
vxl = ∅. The

last condition in the Lemma is an immediate consequence of the four definitions
(3.79)-(3.81) and (3.78).

We are now ready to piece together everything and compute in a vectorized
fashion the horizontal overlaps between all voxels projections and the projection
of the i-th detector cell:

hH,i,1 =

{
gH
i 1NH,i

vxl ×1 if IH,i,1
vxl ̸= ∅

∅ otherwise
(3.83)

hH,i,2 =

{
min

{
ξmax

(
pH,i,2

)
, νmax

0,i

}
− ξmin

(
pH,i,2

)
if IH,i,2

vxl ̸= ∅
∅ otherwise

(3.84)

hH,i,3 =

{
ξmax

(
pH,i,3

)
−max

{
ξmin

(
pH,i,3

)
, νmin

0,i

}
if IH,i,3

vxl ̸= ∅
∅ otherwise

(3.85)

where
gH
i = νmax

0,i − νmin
0,i

is the horizontal length of the projection onto πprj of the i-th cell of the first
detector row. Once again, the min and max operators applied to vector arguments
are intended to work component-wise. Lastly, we reorder the components in pH,i:

pH,i ← vect
(
pH,i,1,pH,i,2,pH,i,3) (3.86)

and we finally set
hH,i = vect

(
hH,i,1,hH,i,2,hH,i,3) . (3.87)

Once again, notice that the elements of pH,i span in I ′vxl, so the indexing of hH,i

follows the same indexing of the (extended) voxels set, not the one of the slices
vertices.

This is a first milestone in the computation process: for the given i-th detector
cell in the first row, the vector pH,i contains the indices of all the object voxels
whose projections onto πprj have a horizontal overlap of non null length with the
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projection of the i-th cell. However, as we already pointed out in (3.23), all the
othermv detector cells in the same i-th column have the same horizontal projection
as the i-th cell in the first row, i.e., xprj

dtc(i, j) = xprj
dtc(i, 0) (or yprj

dtc(i, j) = yprj
dtc(i, 0))

for all j = 1, . . . ,mv. As a consequence, for a fixed i-th column of detector cells,
in the column vector hH,i we have at disposal the horizontal length of the overlaps
of all and only those voxels whose projections overlap the projection of at least
one cell of the i-th column of the detector.

Now, for every fixed i-th column of detector cells, we need to assign correctly
the vertical position of each projected horizontal edge of voxels slices, in order to
exactly identify to which projected detector cell it belongs. The idea is to compare,
starting from the very bottom layer of voxels, the vertical coordinate of the voxels
vertices projections against the vertical coordinates of the projections of the cells
of the i-th detector column. For each voxel horizontal projection, this provides the
index of the detector row whose projection contains the given voxel projection.

The key for efficiency is to perform, for each fixed i, the above described com-
putations simultaneously for all the voxels with linear index in pH,i, i.e., by accom-
plishing this task in a vectorized fashion. Once again, this can be done by working
with a suitable indexing and using Proposition 3.

So, let us consider a given i-th column of detector cells, for a fixed i ∈
{1, . . . ,mu}. First of all, we define the index set IH,i

vxl,btm which contains the ele-
ments of pH,i which identify the projections of the voxels slices vertices belonging
to the lowest layer. Because of the numbering scheme, they are the elements of
pH,i which do not exceed N lyr

vxl:

IH,i
vxl,btm =

{
p ∈ IH,i

vxl

⏐⏐ p ≤ N lyr
vxl

}
pH,i

btm = vect
(
IH,i

vxl,btm

)
. (3.88)

The next step is to identify the voxels slices vertices of the other layers. Due to
item (1) in Proposition 3, we know that, if a vertex v

(ℓ)
vxl(i1, i2, 0) in the lowest

layer has the horizontal coordinate of its projection in a given position, also the
projections of all the vertices v(ℓ)

vxl(i1, i2, k), k = 1, . . . , nz, of the other layers having
the same horizontal position have the same horizontal coordinate. Here we use the
notation “i1, i2” in place of “i, j” just to avoid possible misunderstandings with the
rest of the discussion. Hence, once we know that the horizontal projection of a
voxel slice vertex of the lowest layer falls inside the projection of the i-th detector
cell, we only need to address the homologous voxels slices vertices aligned along
the same line parallel to the z axis. As we have already discussed in (3.55), the
linear indices of the projections of all these vertices have a stride of exactly N lyr

vxl,vrt
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positions. Hence, we define the column vector p̃H with nz + 1 elements:

p̃H =

⎛⎜⎜⎜⎝
p̃H
0

p̃H
1
...
p̃H
nz

⎞⎟⎟⎟⎠ = N lyr
vxl,vrt

⎛⎜⎜⎜⎜⎜⎝
0
1
2
...
nz

⎞⎟⎟⎟⎟⎟⎠ . (3.89)

Thus, for every p ∈ IH,i
vxl,btm the linear indices of all the contiguous voxels slices

vertices “stacked” on top of it in the other voxels layers can be immediately obtained
by p+ p̃H. However, this is not enough to correctly address the right elements in
xprj

vxl (or yprj
vxl), as the following remark points out.

Remark 3.9. Even if the total number of slices vertices in each voxels layer is equal
to N lyr

vxl,vrt, and N lyr
vxl,vrt > N lyr

vxl = nxny (i.e., the total number of slices vertices in
each voxels layer exceeds the number of voxels per layer) in both cases πprj = Oxz
and πprj = Oyz, in general the positions of the stored values differ in number and
position, depending on whether πprj = Oxz or πprj = Oyz:

• case πprj = Oxz (cx = 1):
in this case, the midway slices of the voxels are parallel to Oxz, hence for each
horizontal layer we have exactly ny vertices in the y axis direction and nx+1
vertices in the x axis direction. Because of the vectorization ordering, for
each horizontal layer, in xprj

vxl and zprj
vxl the projections of the first N lyr

vxl vertices
have contiguous positions with consecutive linear indices, then additional ny
elements follows for the same layer, corresponding to the projections of the
rightmost line of ny vertices, that is, those vertices with larger x coordinate
in the layer;

• case πprj = Oyz (cy = 1):
in this case, the planes of the voxels slices are parallel to Oyz, hence for
each horizontal layer we have exactly nx vertices in the x axis direction and
ny+1 vertices in the y axis direction. Because of the vectorization ordering,
for each horizontal layer, in yprj

vxl and zprj
vxl there is one additional element

after each column of ny contiguous positions, for a total of nx additional
elements for each layer. These additional elements are the projections of
the rightmost vertices with respect to the y axis, i.e., the vertices with the
largest y coordinate in the layer (those further from the Oxz plane).

In the following, to avoid confusion in the discussion, we shall use the term
“stack” for a vertical column of contiguous voxels (or vertices), i.e., contiguous
elements along the z direction.
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In practice, to correctly address the right elements in xprj
vxl, y

prj
vxl and zprj

vxl, we
need to convert voxels linear indices into vertices linear indices. This conversion
can be easily understood by means of an injective map which associates each voxel
to the lower-left vertex of its midway slice:

N ′
vxl −→ Vvxl

n = (i, j, k) ↦−→ v
(ℓ)
vxl(i, j, k)

(3.90)

for each i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny}, k ∈ {1, . . . , nz + 1}; N ′
vxl will be intro-

duced shortly. The map (3.90) leaves the rightmost vertices1 of each horizontal
layer “unassociated”, and this is consistent with the intention to avoid double as-
sociations of the rightmost voxels and explains why the map is not surjective.
However, the uppermost level of vertices would not be mapped, and this would be
wrong. For this reason, to make (3.90) consistent and well defined, we define the
extended set N ′

vxl of voxels by considering an additional layer of “virtual” voxels
(the (nz + 1)-th voxels layer), whose lower-left corners of the midway slices are
indeed the points of the uppermost vertices layer

(
i.e., v(ℓ)

vxl(:, :, nz)
)
.

Remark 3.9 suggests how to take into account these extra components, when
computing the indices of contiguous vertices in a stack. If πprj = Oxz, we need to
add ny to each voxel index p ∈ IH,i

vxl as many times as the number of horizontal
voxels layers below the layer containing the voxel itself. On the other hand, when
πprj = Oyz, we need to add to each voxel index p ∈ IH,i

vxl the total number of voxels
columns (counted over all horizontal layers) preceding the column containing the
voxel itself. Once we define the indices set

Iprj
vxl =

{
1, 2, . . . , Nprj

vxl

}
, (3.91)

we can set up the linear indices conversion. Given any voxel index p ∈ IH,i
vxl , the

linear index p ∈ Iprj
vxl of the corresponding element in xprj

vxl (or yprj
vxl) and zprj

vxl is:

p = p+

⎧⎨⎩ny
⌊
(p− 1)/N lyr

vxl

⌋
if cx = 1 (case πprj = Oxz)⌊

(p− 1)/ny

⌋
if cy = 1 (case πprj = Oyz)

(3.92)

By using the selection flags cx and cy, we are finally able to define the linear index
conversion as the following index map associated to (3.90):

I ′vxl −→ Iprj
vxl

p ↦−→ p = p+ cxny

⌊
(p− 1)/N lyr

vxl

⌋
+ cy

⌊
(p− 1)/ny

⌋ (3.93)

1Just remember that these are vvxl(nx + 1, :, :) when πprj = Oxz, and vvxl(:, ny + 1, :) when
πprj = Oyz.
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It follows immediately that we can apply the map (3.93) simultaneously to all
indices p ∈ IH,i

vxl , thus obtaining in a vectorized fashion the indices vector pH,i from
the vector pH,i:

pH,i = pH,i + cxny

⌊
(p− 1)/N lyr

vxl

⌋
+ cy

⌊
(p− 1)/ny

⌋
. (3.94)

The vector pH,i correctly addresses the components of xprj
vxl (or yprj

vxl) and zprj
vxl

corresponding to all those voxels slices vertices whose projections are involved in
the horizontal overlaps with the projection of the i-th column of detector cells. In
practice, we have a “pointer” from the elements of hH,i to the voxels projections.

Now, we shall see how to correctly map each selected horizontal overlap in hH,i

to the right projection of the cells of the i-th detector column. To this end, we
need to consider the vertical coordinate of the projections.

We define an auxiliary matrix ZH,i, sized (nz + 1) × NH,i
vxl,btm, whose columns

contain the vertical coordinates of the projections of the voxels slices vertices with
linear index in IH,i

vxl . These are exactly the NH,i
vxl,btm vertical stacks of vertices whose

horizontal coordinates xprj
vxl(p

H,i) (or yprj
vxl(p

H,i)) of their projections falls inside the
horizontal interval

[
νmin
0,i ,ν

max
0,i

]
, i.e., inside the interval of the horizontal projection

of the cells of the i-th detector column. Recall that contiguous vertices aligned
along the same vertical line of voxels slices edges have their projection coordinates
stored in elements with a stride of exactly N lyr

vxl,vrt positions. Hence, to build each
column of ZH,i, we only need to start from the vertical projection of a vertex in the
bottom layer and then collect from zprj

vxl all the other nz projections with constant
stride N lyr

vxl,vrt. By using (3.89), this operations can be efficiently vectorized:

ZH,i(:, s) = zprj
vxl

(
pH,i(pH,i

btm(s)
)
+ p̃H

)
∀s = 1, . . . , NH,i

vxl,btm , (3.95)

where, for sake of clarity, we use the pair notation “(r, s)” in place of the subscripts
“rs” to address the elements of matrices and vectors.

Roughly, the matrix ZH,i collects the vertical coordinates of all the voxels pro-
jections with a nonzero horizontal overlap with the projection of the i-th detector
column. From a computational point of view, it is useful to pre-allocate the matrix
ZH,i before filling it up with the values.

Remark 3.10. Notice that the values stored in zprj
vxl, and hence in ZH,i, can be

smaller than min
{
zprj

dtc

}
or larger than max

{
zprj

dtc

}
(i.e., the minimum and the max-

imum vertical coordinates of the detector cells projections, respectively), namely
they can fall outside the projection of the detector. When this happens, we must
consider also these “outside” values, because they could be endpoints of vertical
edges of projected areas which overlap the detector projection. Whether this is
the case or not, will be decided by the next computations.
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Now, we need to switch from vertical coordinates to row indices for the i-th
detector column of cells. Recall that, because of (3.37)–(3.40), for each column
of detector cells vertices, their projections are equally spaced. Let us call τ (ℓ)i the
vertical gap:

τ
(ℓ)
i = zprj

dtc(i, 1)− z
prj
dtc(i, 0) . (3.96)

Then, the switch is easily accomplished by:
(i) subtracting the smaller vertical projection of the detector from all the ele-

ments of ZH,i,
(ii) dividing each r-th resulting row by τ (ℓ)i ,
(iii) take the floor of the result and add 1.
We get:

Z idx
H,i =

⌊(
ZH,i − zprj

dtc(i, 0)
)/
τ
(ℓ)
i

⌋
+ 1 (3.97)

where all these operations are Hadamard operations, i.e., they are performed
component-wise. The elements of Z idx

H,i are integer numbers, possibly negative
or even zero. Non-positive elements refer to positions below the projected bottom
edge of the detector, positive elements greater than mv refer to positions above
the projected top edge of the detector. In both cases, these voxels projections fall
outside the detector.

Now, we use the indices in Z idx
H,i to identify the voxels and the detector cells to

which each horizontal overlap refers. In practice, we need to find the right position
to which every given horizontal overlap contributes for the construction of the final
CT forward operator. The matrix Z idx

H,i has a key role for the identification of these
positions, as we shall see shortly.

We have a bunch of possible situations similar to those described in 1–4 for the
horizontal overlaps, but this time for the vertical direction. Indeed, the vertical
height of the projection of a voxel onto πprj can either:
5a) partially overlap the bottom row or the top row of detector cell projections;
5b) fall completely inside the projection of one single detector cell;
5c) have one of (or both) the horizontal edges overlapped to one of (or both) the

horizontal edges of the projection of a single detector cell;
5d) span the projections of exactly two adjacent detector cells in the same column;
5e) span the projections of more than two vertically adjacent detector cells;
5f) fall completely outside the projection of the whole column of detector cells.
All these situations can be addressed by using the indices in Z idx

H,i . In the follow-
ing, it is crucial to bear in mind that the length of the horizontal overlap of the
projections of all the voxels in a stack is the same as the one of the bottom voxel
in the stack. Thus, once we know the positions in which we shall store such a
length, we only need to replicate the overlap length of the very bottom voxel in
those positions.
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Consider the s-th stack of voxels slices vertices projections whose bottom ele-
ment has linear index belonging to IH,i

vxl,btm. The vertical coordinates of all their
projections constitute the s-th column of ZH,i (with the bottom value stored in
the first row and the top value stored in the last row). Thus, consider the s-th
column of Z idx

H,i and define two sets of row indices:

IH,idx,i
btm,s =

{
r ∈ {1, . . . , nz + 1}

⏐⏐Z idx
H,i(r, s) > 0

}
, (3.98)

IH,idx,i
top,s =

{
r ∈ {1, . . . , nz + 1}

⏐⏐Z idx
H,i(r, s) ≤ mv

}
. (3.99)

The set IH,idx,i
btm,s selects those rows in the s-th column of Z idx

H,i , and hence in the s-th
column of ZH,i, corresponding to voxels in the s-th stack whose midway slices have
the z coordinate of the projection of their lower horizontal edge greater than the
z coordinate of the projection of the bottom edge of the detector. The set IH,idx,i

top,s
selects the rows indices corresponding to voxels in the same s-th stack whose
midway slices have the z coordinate of the projection of their upper horizontal
edge not greater than the z coordinate of the projection of the detector top edge.
The intersection of these two sets provides indices somehow related to those voxels
in the s-th stack whose projection has a nonempty overlap with the projection of
the i-th detector column. The next step is to precisely identify these voxels. We
define two indices: (

pH,idx,i
min

)
s
= max

{
min

{
IH,idx,i

btm,s

}
− 1, 1

}
(3.100)(

pH,idx,i
max

)
s
= min

{
max

{
IH,idx,i

btm,s

}
, nz

}
(3.101)

The index
(
pH,idx,i
min

)
s
identifies, in the s-th column of ZH,i, the row index of the lower

voxel in the s-th stack, whose projection in vertical direction reaches (i.e., overlaps
from below, at least partially) the projection of the first cell in the i-th column of
the detector. Similarly, the index

(
pH,idx,i
max

)
s

identifies, in the same s-th column of
ZH,i, the row index of the higher voxel in the s-th stack, whose projection in vertical
direction reaches (again, overlaps from below, at least partially) the projection of
the last cell in the i-th column of the detector. Hence, the indices r such that(

pH,idx,i
min

)
s
≤ r ≤

(
pH,idx,i
max

)
s
+ 1 (3.102)

identify all and only those voxels2 in the s-th stack whose projection overlaps the
projection of the i-th column of the detector.
Remark 3.11. We stress that Z idx

H,i has a key relevance: it embeds, at the same
time, voxels and detector cells information, and connects them. Indeed, each s-
th column identifies a single voxel stack, the row index in the column identifies

2We just remind that the indices in (3.102) are actually vertices indices (of voxels slices), but
two adjacent such vertices identify a voxel.
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the r-th voxel in the stack and the value of the integer number j in the (r, s)-th
position identifies the (possibly “virtual”) cell in the i-th column of the detector,
whose projection has a nonempty intersection with the projection of the voxel.
The horizontal length of this nonempty intersection is stored in the corresponding
element of hH,i.

Now, we recover from Z idx
H,i all the information we need to store the correct value

in the right position of WH. First, we shall take into account the cases 5a–5f: this
is easily accomplished by computing the difference of consecutive elements of the
same s-th column. The components of the resulting vector tell us how many con-
secutive projected cells in the i-th column of the detector projection are overlapped
by the projection of the same voxel, in addition to the cell corresponding to the
first overlap. Clearly, this is meaningful only for those components corresponding
to nonempty overlaps, i.e., whose index is in the range (3.102). If the number of
additional cells spanned by the projection of the voxels is greater than zero, then
we have to replicate the corresponding horizontal overlap in consecutive rows of
the same column of WH. To this end, we define the vector σH,idx,i

s =
(
σH,idx,i
r,s

)
with

σH,idx,i
r,s = Z idx

H,i(r + 1, s)− Z idx
H,i(r, s) ∀r ∈

{(
pH,idx,i
min

)
s
, . . . ,

(
pH,idx,i
max

)
s

}
. (3.103)

Remark 3.12. Notice that the explicit construction of the matrix ZH,i is not needed:
all computations can be equally performed “in place” on the projection vectors,
by suitably using the indices vector pH,i. However, having at disposal the needed
stacks of vertical coordinates grouped together in the columns of ZH,i allows the
use of the effective Matlab function diff, in order to compute (3.103).

Next, we need to compute the right row and column indices to store the hor-
izontal overlap in WH. We remind that in the CT forward operator the column
index is the voxel linear index of the column-major vectorization of the voxels grid
(not that of the vertices), while the row index identifies the linear index of the
column-major vectorization of the detector cells (not that of their vertices) at the
given ℓ-th rotation angle.

So, we first have to map the stack row indices to the “global” linear indices.
In the s-th stack, the global linear index pvxl,H

r of each r-th voxel can be easily
obtained by computing the suitable displacement from the global linear index of
the voxel at the bottom of the stack, which is

pH,col,i
btm,s = pH,i(pH,i

btm,s

)
∀s ∈

{
1, . . . , NH,i

vxl,btm

}
, (3.104)

as we shown in (3.88). Hence, given that the row index in the stack identifies the
voxel horizontal layer, we have

pvxl,H
r = pH,col,i

btm,s + (r − 1)N lyr
vxl ∀r ∈

{(
pH,idx,i
min

)
s
, . . . ,

(
pH,idx,i
max

)
s

}
(3.105)
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Next, we have to map the integer values in Z idx
H,i , and the corresponding replications

in σH,idx,i, to “global” row indices of WH. We recall that, for the detector cells
projections at the current ℓ-th rotation angle, we proceeded along the u axis,
browsing in a vectorized fashion one i-th detector column at the time. Hence, all
row indices j involved in the computations for this i-th column of the detector
must be mapped to the row indices in WH with the usual offset given by

q̃ dtc
i = (i− 1)mv ∀i ∈ {1, . . . ,mu} . (3.106)

As we already pointed out, the projection of each given r-th voxel in the fixed s-th
stack overlaps (perhaps only partially) the projections of none, one or more than
one contiguous cells in the i-th column of the detector. According to (3.103), the
extended row indices (i.e., possibly smaller than one or greater than mv) of these
cells are in the range from Z idx

H,i(r, s) to Z idx
H,i(r, s) + σH,idx,i

r,s . However, to get the
right indices of actual cells we must threshold this range to the set {1, . . . ,mv}:

q dtc,i
min,r,s = max

{
1, Z idx

H,i

(
r, s
)}

, (3.107)

q dtc,i
max,r,s = min

{
mv, Z

idx
H,i

(
r, s
)
+ σH,idx,i

r,s

}
. (3.108)

It follows that the row indices of the column pvxl,H
r in WH in which replicating the

horizontal length of overlap are

q dtc,i
rs =

⎛⎜⎝q
dtc,i
min,r,s

...
q dtc,i
max,r,s

⎞⎟⎠+ q̃ dtc
i ∀r ∈

{(
pH,idx,i
min

)
s
, . . . ,

(
pH,idx,i
max

)
s

}
. (3.109)

Finally, we have at disposal everything we need to correctly fill the selected po-
sitions of WH with the right horizontal length of overlap between voxels projections
and detector cells projections for a fixed rotation angle index ℓ:

WH
(
q dtc,i
rs , pvxl,H

r

)
= hH,i(pH,i

btm,s

)
(3.110)

for all i ∈
{
1, . . . ,mu

}
, s ∈

{
1, . . . , NH,i

vxl,btm

}
, r ∈

{(
pH,idx,i
min

)
s
, . . . ,

(
pH,idx,i
max

)
s

}
.

Notice that, by construction, q dtc,i
rs has at least one element (which is q dtc,i

min,r,s), and
if it has more than one element, equation (3.110) means that the value on the
right-hand side (which is a single real number) is assigned simultaneously to all
those rows of the column pvxl,H

r .
The complete discussion we end up in this Subsection gives the constructive

proof of the following Proposition, which is the main result on the vectorized ap-
proach to the horizontal lengths computation of the overlaps of voxel and detector
cells projections.
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Proposition 3.13. Let RC
(
O, S, dCO′ , γmin, γmax, βmin, βmax

)
be a cone-beam cir-

cular rotation system endowed with the main coordinate systems Oxyz and with a
flat detector with rectangular cells. Consider a parallelepipedal voxel discretization
of the object volume with all boundary faces parallel to the coordinate planes. Let
the common projection plane πprj be the coordinated plane Oxz or Oyz, depending
on the rules in Proposition 2. Then, the computation of the horizontal lengths of
overlaps between the projections onto πprj of voxels and detector cells can be car-
ried out in a vectorized fashion, yielding a sparse matrix WH that collects all the
horizontal edges of the overlap areas.

Remark 3.14. We just point out that the previous Proposition holds true under
the hypothesis of Proposition 2, on which rely the entire construction in this Sub-
section. However, other rules can be considered, in principle, to select the common
projection plane, but with the following restrictions:

(i) the common projection plane shall be parallel to one of the coordinated planes
Oxz or Oyz, and

(ii) O′ − S ̸ ∥ πprj, i.e., there are not rays parallel to πprj, so that no projection is
lost.

For very small angles between O′−S and πprj, i.e., for s(θ) ≈ w⊥
πprj

(see (3.7)), even
if everything still works in theory, difficulties may arise from the computational
point of view, due to very large values appearing in the vectors of the projections
coordinates, which in turn could cause numerical instabilities (such as cancella-
tion errors, or quotients with very small denominators, or bad approximation of
trigonometric functions values).

B. Computing vertical projections overlaps

The same ideas described in the previous Subsection for vectorizing the compu-
tation of the horizontal lengths of overlap between voxel projections and detector
cell projections, can be applied to the computation of the vertical lengths of the
overlaps.

In this case, the idea is to proceed along the positive z axis, by considering the
vertical projection of the first cell of each j-th detector row, j = 1, . . . ,mv, and
then computing in a vectorized fashion the vertical lengths of overlap between all
voxels projections and the projections of the cells in the same j-th detector row.
So, everything is almost identical up to the computation of the “rightmost” and
the “leftmost” projections of voxels and detector cells. In this case, given a vertical
segment, we call “lowermost” and “uppermost” the segment endpoints having the
minimal and the maximal z coordinate, respectively.

Unlike the horizontal projections case, with the vertical projections we do not
have the problem of “reverse order”, because the vertical increasing of the number-
ing of both the voxels and the detector cells is always concordant with the positive
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z axis. In this case, we need to manage the analogous overlapping situations as
1–4. So, we name as ζmin, ζmax the two vectors containing the lowermost and
the uppermost z coordinates of the projections of the endpoints of all the vertical
edges of the voxels midway slices, while we call λmin and λmax the similar vectors
of the z coordinates of the projections of the vertical edges endpoints of all the
detector cells.

Associated to these vectors, with a reasoning similar to the one described for
the horizontal lengths, we introduce the indices vectors pV,low,pV,up for the vox-
els projections (similar to pH,left,pH,right) and qV,low, qV,up for the detector cells
projections (similar to qH,left, qH,right).

So we get the analogous of Proposition 4, with ζmin, ζmax replacing ξmin, ξmax

and λmin,λmax replacing νmin,νmin, respectively.
We have then the analogous of Lemma 3.8 and, by using zprj

dtc in place of xprj
dtc

or yprj
dtc, the corresponding vectors

pV,j ← vect
(
pV,j,1,pV,j,2,pV,j,3) (3.111)

and

hV,j = vect
(
hV,j,1,hV,j,2,hV,j,3) . (3.112)

With a similar reasoning to the one for the horizontal lengths, we define the
u coordinates matrix ZV,j and the indices matrix Z idx

V,j . The latter identifies the
(extended) column index of the projected cell of the j-th detector row whose
overlap with the projection of a given voxel is nonempty. These are determined
by simply looking at the projections of the rightmost column (or the leftmost,
depending on which is the nearest to the z axis) of the detector cells. We call
NV,j

vxl,brd the number of voxels whose projections has intersection with the projection
of the j-th cell of such a column and put in the column vector pV,row,j

brd the linear
indices of those voxels (these are the analogue of NH,i

vxl,btm and pH,i
btm, which we

defined for the horizontal lengths). NV,j
vxl,brd is the number of columns of ZV,j, while

the number of its rows depends on which is the common projection plane, namely
it is nx + 1 if πprj = Oyz, or ny + 1 if πprj = Oxz. By using the matrix Z idx

V,j ,
we define the column vector of column indices pV,idx,j

min , pV,idx,j
max , and the number of

rows in WV in which the vertical length of overlap of a given voxel (whose linear
index identifies the column) need to be replicated: these possible replications refer
to adjacent cells in the j-th detector row, so their row indices in WV have stride
mv.

Lastly, for any fixed j-th row the detector, the s-th column of Z idx
V,j provides the

column indices of detector cells whose projections have a nonempty intersection
with the projection of the voxels horizontally aligned to one specific voxel on the
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vertical layer nearest to πprj. The vertical lengths of these intersection is stored in
hV,j(pV,j

brd

)
. With this information, we can then “convert” row and column indices

to linear indices of voxels and detector cells. We are finally able to define the
column vectors q dtc,j

rs and pvxl,V providing the right positions in ZV,j in which to
store the overlaps vertical lengths:

WV
(
q dtc,j
rs , pvxl,V

s

)
= hV,j(pV,j

brd,r

)
. (3.113)

for all j ∈
{
1, . . . ,mv

}
, s ∈

{
1, . . . , NV,j

vxl,brd

}
, r ∈

{(
pV,idx,j
min

)
s
, . . . ,

(
pV,idx,j
max

)
s

}
.

Similarly to the horizontal case, we can state the following result.

Proposition 3.15. Let RC
(
O, S, dCO′ , γmin, γmax, βmin, βmax

)
be a cone-beam cir-

cular rotation system endowed with the main coordinate systems Oxyzand with a
flat detector with rectangular cells. Consider a parallelepipedal voxel discretization
of the object volume with all boundary faces parallel to the coordinate planes. Let
the common projection plane πprj be the coordinated plane Oxz or Oyz, depending
on the rules in Proposition 2. Then, the computation of the vertical lengths of
overlaps between the projections onto πprj of voxels and detector cells can be car-
ried out in a vectorized fashion, yielding a sparse matrix WV that collects all the
vertical edges of the overlap areas.

C. Computing the 3D CT distance-driven forward operator

Once the two matrices WH and WV have been computed for a given ℓ-th rotation
angle, it is very easy to build up the corresponding section (i.e., group of Ndtc

contiguous rows) of the whole CT forward projection matrix. We recall that W
is sized NθNdtc ×Nvxl, i.e., it has as many rows as the number of rotation angles
multiplied by the total number of detector cells, and as many columns as the total
number Nvxl of voxels (Nvxl = N3 in the 3D setting).

Theorem 5. Let RC
(
O, S, dCO′ , γmin, γmax, βmin, βmax

)
be a cone-beam circular ro-

tation system endowed with the main coordinate systems Oxyzand with a flat de-
tector with rectangular cells. Consider a parallelepipedal voxel discretization of
the object volume with all boundary faces parallel to the coordinate planes. Let
the common projection plane πprj be the coordinated plane Oxz or Oyz, depending
on the rules in Proposition 2. The 3D distance-driven approximation of the CT
forward operator can be computed in a vectorized fashion.

Proof. It is actually enough to simply multiply component-wise the matrices WH

and WV of Propositions 3.13 and 3.15, respectively, and store the result in the
right position of W. We denote by q dtc the rows displacement in the CT forward
matrix at each rotation angle step, namely:

q dtc
ℓ = (ℓ− 1)Ndtc .
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Hence, we have that, for any given ℓ ∈ {1, . . . , Nθ}, the corresponding section of
the CT forward projection matrix W is filled up by:

W
(
q dtc
ℓ : (q dtc

ℓ +Ndtc), :
)
= WH ·WV .

where the last product is meant component-wise, as already stated above.

Theorem 5 piece everything together and it is the main result of this Section.

We conclude with the following remark, which will be useful for further con-
siderations in the last Chapter of this thesis.

Remark 3.16. The computations of the horizontal and the vertical overlaps are
completely independent on each other: hence, on a multiprocessor system they
can be computed simultaneously in parallel.

Actually, other parts of the computations of both the horizontal and the vertical
lengths of overlapping areas can be computed in parallel (and asynchronously from
each other). However, this kind of parallelism is different form the previous because
the number of “items” to compute simultaneously changes quite often during the
main iteration, so it should be managed in a different way (by multithreading, for
instance).
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Chapter 4

Shearlets

In this Chapter we present a self-contained overview on the theory and applications
of shearlets, a multiscale method emerged in the last decade to overcome some
of the limitations of traditional multiscale methods, like wavelets. The interest
in shearlets lies primarily in their employment in several numerical applications,
including problems of denoising, deblurring, deconvolution and feature extraction,
in a variety of fields, such as medical imaging, astronomy, seismology, meteorology,
air traffic control, internet traffic and digital communications, to mention a few. In
particular, the shearlet representation has been used to invert the Radon transform
directly [36]. In this thesis, shearlets will be used as a regularization tool to address
the ROI CT problem.

The presentation aims primarily at introducing the 2D and 3D construction,
both in the continuous and the discrete setting. However, they are presented as a
special case of the more general theory in Rn, n ≥ 2. Some background material
from harmonic analysis is in Apprendix A.

4.1 From wavelets to shearlets

When wavelets emerged about 30 years ago, they literally “revolutionized” the
image and signal processing world by immediately gaining a prominent role in the
development of efficient encoding of piecewise regular signals. This was due not
only to their ability to provide optimally sparse approximations of a large class of
signals and to represent singularities much more efficiently than traditional Fourier
methods, but also to their rich mathematical structure and the existence of fast
algorithmic implementations.

However, wavelets lack of one key property, directional sensitivity, that it is cru-
cial to deal with anisotropic features or distributed discontinuities, that frequently
dominate multidimensional phenomena. To overcome this drawback, shearlets

93
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were derived by Guo, Kutyniok, Labate, Lim, and Weiss in [66, 106]. To ad-
dress the directional sensitivity issues, several variations of the wavelet scheme
had been proposed during the years, such as directional wavelets [3], complex
wavelets [96], ridgelets [25], bandelets [111] and contourlets [47] and the most fa-
mous curvelets by Candès and Donoho [26], but, unlike shearlets, none of them
was a truly multivariate extension of the wavelet framework. Indeed, as in classical
wavelet theory, shearlets share a unified treatment of the continuum and discrete
setting thanks to Multiresolution Analysis and the rich mathematical structure of
affine system permits to design families of shearlets from a single or a finite set of
generating functions. Fast algorithmic implementations are available and, unlike
classical wavelet, shearlets are able to provide optimally sparse approximations of
anisotropic features in multivariate data.

Since shearlets arise naturally from the general framework of wavelet analysis,
a deep understanding of shearlets can only be derived through a full understanding
of wavelets theory.

4.1.1 One-dimensional continuous wavelet transform

Let A1 be the affine group associated with R, consisting of all pairs (a, t), a, t ∈
R, a > 0, with group operation (a, t)(a′, t′) = (aa′, t+at′). The (continuous) affine
systems generated by ψ ∈ L2(R) are obtained from the action of the quasi-regular
representation π(a, t) of A1 on L2(R), that is{

ψa,t(x) = π(a, t)ψ(x) = TtDaψ(x) =
1√
a
ψ

(
x− t
a

)
: (a, t) ∈ A1

}
,

where Tt is the translation operator and Da is the dilation operator (see Appendix
A). It was observed by Calderòn that, if ψ satisfies the admissibility condition∫ ∞

0

|ψ̂(aξ)|2da
a

= 1 for a.e. ξ ∈ R, (4.1)

where ψ̂ denotes the Fourier transform of ψ, then any f ∈ L2(R) can be recovered
via the reproducing formula:

f =

∫
A1

⟨f, ψa,t⟩ ψa,t dµ(a, t),

where dµ(a, t) = dtda
a2

is the left Haar measure of A1 [58]. If ψ satisfies (4.1), ψ is
called a continuous wavelet, and the continuous wavelet transform of f ∈ L2(R) is
defined to be the map:

f −→ Wψf(a, t) = ⟨f, ψa,t⟩
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Figure 4.1: Daubechies scaling function (on the left) and Daubechies wavelet func-
tion (on the right) with 2 vanishing moments (and filter length 4).

with (a, t) ∈ A1. We refer to [158] for more details.
Discrete wavelets systems are derived by suitably “discretizing” the correspond-

ing continuous systems, i.e., by replacing the pairs (a, t) ∈ A1 with the discrete
set (2j, 2jm), with j, m ∈ Z. Thus, the discrete dyadic affine system is:{

ψj,m(x) = T2jmD
j
2ψ(x) = Dj

2Tmψ(x) = 2−j/2ψ(2−jx−m) : (j,m) ∈ Z
}
. (4.2)

The function ψ is called a wavelet if (4.2) is an orthonormal basis or, more gener-
ally, a Parseval frame for L2(R) (see Appendix A). The associated discrete wavelet
transform of f ∈ L2(R) is given by

f −→ Wψf(j,m) = ⟨f, ψj,m⟩, j, m ∈ Z.

It is possible to construct wavelets ψ which have compact support, with rapid decay
in the frequency domain, or band-limited wavelets, with rapid decay in the spatial
domain, or else well localized wavelets, in the sense that they have rapid decay
in both spatial and frequency domains. Notice that the localization properties of
wavelet bases play a fundamental role in their approximation properties and this
is a major differences with respect to Fourier bases.

For instance, Daubechies wavelets (see Figure 4.1) have compact support and
can be chosen to have high regularity, by prescribing an a priori number of contin-
uous derivative, leading to good decay in the frequency domain. The simplest of
this hierarchy of wavelets is the Haar wavelet ψD2, which is the only discontinuous
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one, defined by:

ψD2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 0 ≤ x <

1

2

−1 1

2
≤ x < 1

0 otherwise

By going up the hierarchy, it is not possible to write them down in a closed form,
but the interested reader can refer to [13, 79] for the construction.
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Figure 4.2: Lemariè-Meyer scaling function (on the left) and Lemariè-Meyer
wavelet function (on the right).

On the contrary, the Lemariè-Meyer wavelets ψLM are band-limited and C ∞ in
the frequency domain (see Figure 4.2), forcing rapid decay in the spatial domain.
They are defined ([79]) by ψ̂LM(ω) = eiπω b(ω), where

b(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sin

(
π

2
(3|ω| − 1)

)
1

3
≤ |ω| ≤ 2

3

sin

(
3π

4

(
4

3
− |ω|

))
2

3
≤ |ω| ≤ 4

3

0 otherwise

Many other choices exist and, in general, being a wavelet is by no means very
restrictive. In fact, there is a general machinery to construct orthonormal wavelet
bases called Multiresolution Analysis (MRA), due to Stéphane Mallat [121]. We
report the general definition in 1D, but it can be extended almost straightforward
to higher dimension.
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Definition 4.1 ([13]). Let Vj, j = . . . ,−2,−1, 0, 1, 2, . . . be a sequence of sub-
spaces of functions in L2(R). The collection of spaces {Vj, j ∈ Z} is called a
multiresolution analysis with scaling function ϕ if the following conditions hold:

1. Nested: Vj ⊂ Vj+1.

2. Density:
⋃
j∈Z Vj = L2(R)

3. Separation:
⋂
j∈Z Vj = {0}.

4. Scaling: the function f(x) belongs to Vj if and only if the function f(2−jx)
belongs to V0.

5. Orthonormal basis: there exists a function ϕ ∈ L2(R), called scaling function,
such that it belongs to V0 and the set {Tmϕ : m ∈ Z} is an orthonormal basis
for V0.

The spaces Vj are called approximation spaces. Provided that j is large enough,
every f ∈ L2(R) can be approximated as closely as one likes by a function in a Vj.
That is, a function fj ∈ Vj is decomposed as fj = fj−1+gj−1 ∈ Vj−1⊕Wj−1, where
Wj, j ∈ Z, is a so-called wavelet space. These spaces are defined by considering
the orthogonal complements

Wj−1 = Vj ⊖ Vj−1, j ∈ Z.

Roughly, fj−1 ∈ Vj−1 contains the lower frequency component of fj, and gj−1 ∈
Wj−1 its higher frequency component. It follows that L2(R) can be broken up as
a direct sum of wavelet spaces.

Also, given an MRA with scaling function ϕ, there always exists a function
ψ ∈ L2(R) such that {ψj,m : j,m ∈ Z} is an orthonormal basis for L2(R). In fact,
the MRA approach allows to introduce an alternative orthonormal basis of the
form

{ϕm = Tmϕ = ϕ(· −m) : m ∈ Z} ∪ {ψj,m : j ≥ 0,m ∈ Z}

that involves both the wavelet and the scaling function. In this case, the translates
of the scaling function take care of the low frequency region, namely the subspace
V0 ⊂ L2(R), and the wavelet terms account for the high frequency region, i.e., the
complementary space L2(R)⊖ V0. For additional information about the theory of
MRA see, e.g., [121] and [31].

4.1.2 Higher-dimensional continuous wavelet transform

The extension of wavelet theory to higher dimensions requires to extend the theory
of affine systems to higher dimensions. The natural way to do this is by replacing
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A1 with the full affine group of motions on Rn, An, n ≥ 2, consisting of the pairs
(M, t) ∈ GLn(R) ⋉ Rn with group operation (M, t) · (M ′, t′) = (MM ′, t +Mt′).
Similarly to the 1D case, the affine systems generated by ψ ∈ L2(Rn) are given by{

ψM,t(x) = TtDMψ(x) = | detM |−
1
2ψ(M−1(x− t)) : (M, t) ∈ An

}
, (4.3)

where the dilation operator DM is defined by

DMψ(x) = | detM |−
1
2 ψ(M−1x), (4.4)

and the translation operator is given by

Ttψ(x) = ψ(x− t). (4.5)

Observe that, as in the 1D case, the mathematical structure of the affine systems
can be expressed by means of the action of the unitary representation πM,t (see
Definition A.6), defined by:

πM,t : An −→ U(L2(Rn))

(M, t) −→ π(M, t) = TtDM .

Thus, the elements of a wavelet system in (4.3) can be written as ψM,t = π(M, t)ψ.
As far as reproducibility of functions in L2(Rn) concerns, the following result holds
true.

Theorem 4.2 ([101]). Retaining the notations introduced in this Section, let dµ
be a left-invariant Haar measure on G ⊂ GLn(R), and dλ a left Haar measure on
An. Suppose also that ψ ∈ L2(Rn) satisfies the admissibility condition∫

G

|ψ̂(MT ξ)|2 | detM | dµ(M) = 1.

Then, any function f ∈ L2(Rn) can be recovered via the following reproducing
formula, interpreted weakly:

f =

∫
An

⟨f, ψM,t⟩ ψM,t dλ(M, t).

When the conditions of Theorem 4.2 are satisfied, ψ ∈ L2(Rn) is called a
continuous wavelet. Given M, t ∈ An, the associated continuous wavelet transform
of f ∈ L2(Rn) is defined to be the map

f −→ Wψf(M, t) = ⟨f, ψM,t⟩.
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There is a special case that is worth mentioning, namely when G is the group
of isotropic dilations G = {a1n : a > 0}. In this case, the admissibility condition
for ψ reads as ∫ ∞

0

|ψ̂(aξ)|2da
a

= 1.

and the (isotropic) continuous wavelet transform is the map of f ∈ L2(Rn) into

Wψf(a, t) = a−n/2
∫
Rn

f(x)ψ(a−1(x− t))dx, a > 0, t ∈ Rn. (4.6)

The adjective isotropic stems from the fact that the dilation factor a acts in the
same way for each coordinate direction. Although the advantage of simplicity, the
isotropic wavelet transform has a main drawback: it lacks of directional sensitivity
and of some ability to detect the geometry of a function f (for more details, see
[102, 100, 103]). It is reasonable to expect that, by choosing more general dilation
groups G, one obtains wavelets with more interesting geometric properties, that
shall be able to capture the anisotropic features which frequently dominate mul-
tidimensional phenomena. However, considering wavelets with anisotropic scaling
is not enough to fix the situation. If a function f is understood as a curve, because
of the lack of control on the direction of the elements, an ideal waveform system
needs not only anisotropic elements but also a rotation parameter to align the
elongated elements in the direction of the curve, along with a location parameter
to locate the elements on the curve.

As we shall see in the next Section, this understanding was the real break-
through to truly extend the wavelet approach to the multidimensional case, giving
rise to shearlets.

4.2 Continuous shearlet systems
Before formally defining the (continuous) shearlet systems, it is convenient to
introduce intuitively the main ideas of its construction. In this regard, we first
restrict ourselves to the 2D case. Then, the fundamental results are presented
in the greatest generality, exploiting the 2D and 3D cases as examples. These
are indeed the two crucial situations, since all the others derive from the analysis
of these two. Once it is known how to handle anisotropic features of different
dimensions, the step from 3D to 4D can be dealt with in a similar way. The same
happens for the extension to even higher dimensions.

As pointed out in the previous Section, an ideal waveform system able to de-
tect anisotropic singularities, should consist of waveform elements ranging not only
over several scales and locations but also at various orientations, with the ability
to become increasingly elongated at finer scales. This requires a combination of
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a translation operator to displace these elements over the space, an appropriate
scaling operator to generate elements at different scales and an orthogonal opera-
tor to change their orientations.
As can be easily imagined, for the translation operator one can use the standard
operator Tt defined as in (4.5).
Next, a natural choice for a scaling operator that generates waveforms with anisotropic
support is the family of dilation operators DAa , a > 0, based on parabolic scaling
matrices Aa of the form

Aa =

(
a 0
0 a1/2

)
,

where the dilation operator is defined as in (4.4). In particular, Aa produces

parabolic scaling, that is f(Aax) = f

(
Aa

(
x1
x2

))
leaves invariant the parabola

x1 = x22. Notice that, rather than Aa, it can be used the more general matrices(
a 0
0 aα

)
,

where α ∈ (0, 1) controls the “degree of anisotropy”. However, parabolic scaling
is required to obtain optimally sparse approximations (see [103]) and, thus, has
a dominant role in literature. For this reason, we will restrict ourself to the case
α = 1/2 when dealing with the 2D case.
Finally, as far as the orthogonal transformation concerns, the most obvious choice
seems to be the rotation operator: this is indeed the core idea underneath curvelets
by Candès and Donoho [26]. However, this is not the most “practicable” choice
since, whenever the rotation angle is different from 0, ±π

2
, ±π, ±3π

2
, rotations

destroy the structure of the integer lattice Z2. This becomes a serious issue for the
transition from the continuum to the discrete setting. An alternative choice is the
shearing operator DSs , s ∈ R, associated with the shearing matrix Ss given by

Ss =

(
1 s
0 1

)
.

The main advantage of shearing matrices is the parametrization of orientations
by using the variable s associated with the slopes rather than the angles. In
particular, provided that s is an integer, the shearing matrix leaves the integer
lattice invariant.
Roughly, the operation of shearing is a translation along an axis (e.g., the abscissa
axis x) by an amount that increases linearly with another axis (the ordinate axis
y). Thus, fixed a point (x, y), the shear transformation leaves the y coordinate
unchanged, while the x coordinate is stretched in a linear way, based on the height
of the point above the x axis, i.e., on y. The result is a shape distortions as
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x
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y

P ′

γ

Figure 4.3: The shearing translation.

if objects were composed of layers that slide one over another. The change of
coordinates has the form: {

x′ = x+ sy

y′ = y

where s is the constant that measures the “degree of shearing”. Clearly, if s is
negative the shearing is in the opposite direction.

For example, in 2D a shear along the x direction changes a rectangle (with
lower right corner at the origin) into a parallelogram, as it is shown in Figure 4.3.
Here, the point P (0, H) is taken into the point P ′(sH,H). It follows that the
shearing angle γ (the angle through which the vertical edge is sheared) is given
by:

tan(γ) =
sH

H
= s.

So the parameter s is just the trigonometric tangent of the shearing angle.

In order to generalize these concepts to higher dimension, the first step is to
identify a suitable shear matrix. Next, a generalization of the parabolic dilation
matrix in Rn, n ≥ 3, is also needed. The approach we propose can be found in
[41].

Given a n-dimensional vector space V and a k-dimensional subspace W of V ,
a reasonable model for the shear matrix is that the shear operation should fix the
space W and translate all vectors parallel to W . Hence, for v = w + w′ ∈ V =
W
⨁

W ′, the shear operation S can be described as

S(v) = w + (w′ + s(w′)) = (w + s(w′)) + w′,

where s is a linear map from W ′ to W . Then, with respect to an appropriate basis
of V , the shear operation S corresponds to a block matrix of the form

S =

(
1k sT

O(n−k)×k 1n−k

)
, s ∈ R(n−k)×k,
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where 1n denote the n-dimensional identity matrix and On is n-dimensional zero
matrix. Now, the crucial point is how to choose the block s. Indeed, the goal is to
end up with a square integrable group representation, as in classical wavelet theory.
Usually, the number of parameters has to fit together with the space dimension,
otherwise the resulting group would be either too large or too small. Since we
have n degrees of freedom related to translation and 1 degree of freedom related
to dilation, n − 1 degrees of freedom for the shear component would be optimal.
Therefore, we take s ∈ R(n−1)×1, i.e., k = 1:

Ss =

(
1 sT

0n−1 1n−1

)
,

where s ∈ Rn−1, and 0n−1 is the vector with all the entries equal to zero.
As far as the dilation matrix concerns, we choose a diagonal matrix depending on
the parameter a ∈ R∗ = R \ {0}, namely:

Aa = diag (a1(a), . . . , ad(a)),

where a1(a) = a and aj(a) = aαj with αj ∈ (0, 1), j = 2, . . . , n. Since our aim is
directional sensitivity, the dilation factors on the diagonal of Aa should be chosen
in an anisotropic way, i.e., for each j = 2, . . . , n, |aj(a)| should increase less than
linearly in a as a → ∞. Clearly, as in the 2D case, αj = 1/2, j = 2, . . . , d, plays
a special role and, even in the 3D case, this will be our choice. Another possible
choice, which still preserve the interpretation of the shearlet transform as square
integrable group representation, is:

Aa =

(
a 0Tn−1

0n−1 sgn(a) |a| 1n1n−1

)
.

The definition of continuous shearlet systems in Rn, n ≥ 2, stems from the
combination of the three operators introduced, namely scaling, shearing and trans-
lation.

Definition 4.3 ([101]). For ψ ∈ L2(Rn), n ≥ 2, the continuous shearlet system
SH(ψ) is defined by

SH(ψ) =
{
ψa,s,t(x) = TtDSsDAaψ(x) : a > 0, s ∈ Rn−1, t ∈ Rn

}
. (4.7)

where

TtDSsDAaψ(x) = | detAa|−
1
2 ψ(A−1

a S−1
s (x− t)) = |a|

1
2n

−1 ψ(A−1
a S−1

s (x− t)).
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The associated continuous shearlet transform of f ∈ L2(Rn) is given by

f −→ SH ψf(a, s, t) = ⟨f, ψa,s,t⟩, (a, s, t) ∈ R+ × Rn−1 × Rn.

In other words, the continuous shearlet transform projects the function f onto
the functions ψa,s,t at scale a, orientation s and location t. The anisotropic dila-
tion Aa controls the shearlets scale, by applying a different dilation factor along
the different directions. This ensures that the frequency support of shearlets be-
comes increasingly elongated at finer scales: indeed, as a→ 0 we obtain needlelike
functions. The shear matrix Ss is non-expansive and determines the orientation
of shearlets using the shear parameter s to detect different directions by slope.
Finally, the location parameter t ensures position sensitivity.

4.2.1 The full shearlet group

One important structural property of the shearlet system (4.7) is that its elements
can be generated by using a representation of a (2n)-parameter group, the so-called
full shearlet group. Similarly to wavelets, the theory of continuous shearlet systems
can be developed within the theory of unitary representations of the affine group
An and its generalizations.

Proposition 4.4 ([41, 42]). The set R∗ × Rn−1 × Rn endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1−
1
n s′, t+ SsAat

′)

is a locally compact group, in the sense specified by Definition A.4. The left Haar
measure on this group is given by

dµ(a, s, t) =
1

|a|n+1
da ds dt.

The previous proposition allows us to give the following definition.

Definition 4.5 ([41, 42]). The full shearlet group S is defined to be the set R∗ ×
Rn−1 × Rn along with the multiplication law given by

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1−
1
n s′, t+ SsAat

′).

The following proposition states how the element of the shearlet system (4.7)
can be generated by using a unitary representation.

Proposition 4.6 ([41, 42]). Let π : S → U(L2(Rn)) be a map into the group
U(L2(Rn)) of unitary operators on L2(Rn) defined by

π(a, s, t)ψ(x) = ψa,s,t(x) = | detAa|−
1
2 ψ(A−1

a S−1
s (x−t)) = |a|

1
2n

−1 ψ(A−1
a S−1

s (x−t)).

Then π is a unitary representation of S on L2(Rn).
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For all f ∈ L2(Rn), the unitary representation π can be related to the contin-
uous shearlet transform likewise to the wavelets case, that is:

SH ψf(a, s, t) = ⟨f, ψa,s,t⟩ = ⟨f, π(a, s, t)ψ⟩.

Notice that, the continuous shearlet transform is nothing else but the contin-
uous wavelet transform associated with a special subgroup AS

n of the affine group
An. For a fixed α = (α1, . . . , αn−1), with αj ∈ (0, 1) and j = 1, . . . , n − 1, AS

n

consists of the elements (Ma,s, t), where t ∈ Rn and

Ma,s =

⎛⎜⎜⎜⎝
a aα1s1 . . . aαn−1sn−1

0 aα1 . . . 0
...

... . . .
...

0 0 . . . aαn−1

⎞⎟⎟⎟⎠
with a > 0 and s = (s1, . . . , sn−1) ∈ Rn−1. Clearly, each matrix Ma,s is the product
of the shear matrix Ss and the dilation matrix Aa:

Ss =

⎛⎜⎜⎜⎝
1 s1 . . . sn−1

0 1 . . . 0
...

... . . .
...

0 0 . . . 1

⎞⎟⎟⎟⎠ Aa =

⎛⎜⎜⎜⎝
a 0 . . . 0
0 aα1 . . . 0
...

... . . .
...

0 0 . . . aαn−1

⎞⎟⎟⎟⎠ .

Obviously, given a pair (Ma,s, t) ∈ AS
n, the continuous shearlet transform of f ∈

L2(Rn) is the map:
f −→ ⟨f, ψMa,s,t⟩,

and the analyzing elements ψMa,s,t are the affine functions defined by:

ψMa,s,t(x) = | detMa,s|−
1
2 ψ(M−1

a,s (x− t)).

Now, recall that, in general, a nontrivial function ψ ∈ L2(Rn) is called admis-
sible if ∫

S
|⟨ψ, π(a, s, t)ψ⟩|2 dµ(a, s, t) <∞.

Further, if π is irreducible and there exits at least one admissible function ψ ∈
L2(Rn), then π is called square integrable. The admissibility condition is really
important, since it is automatically associated with a reconstruction formula (see
Appendix A.2). The following result shows that the unitary representation π
defined above is, indeed, square integrable.



4.2. CONTINUOUS SHEARLET SYSTEMS 105

Theorem 4.7 ([41, 42]). A function ψ ∈ L2(Rn) is admissible if and only if it
fulfills the admissibility condition

Cψ =

∫
Rn

|ψ̂(ω)|2

|ω1|n
dω <∞. (4.8)

If ψ is admissible, then, for any f ∈ L2(Rn), the following equality holds true:∫
S
|⟨f, ψa,s,t⟩|2 dµ(a, s, t) = Cψ ∥f∥2L2(Rn).

In particular, the unitary representation π is irreducible and hence square inte-
grable.

Definition 4.8 ([41, 42]). A function ψ ∈ L2(Rn) is called a continuous shearlet
if it satisfies the admissibility condition (4.8).

Notice that examples of admissible shearlets, possibly well localized, are easy
to construct. Essentially, any function ψ band-limited away from the origin is an
admissible shearlet, as the following examples show.

Example 4.9 (2D Classical Shearlet, [66, 106]). Let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2
ξ1

)
,

where ψ1 ∈ L2(R2) is a discrete wavelet in the sense that it satisfies the discrete
Calderòn condition, given by∑

j∈Z

|ψ̂1(2
−jξ)|2 = 1 for a.e. ξ ∈ R, (4.9)

with ψ̂1 ∈ C∞(R) and supp(ψ̂1) ⊆ [−1
2
,− 1

16
] ∪ [ 1

16
, 1
2
], and ψ2 ∈ L2(R) is a bump

function in the sense that

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1, 1], (4.10)

satisfying ψ̂2 ∈ C∞(R) and supp(ψ̂2) ⊆ [−1, 1]. Such a function ψ, which is
wavelet-like along one axis and bump-like along another one, is called a classical
shearlet.

As illustrated in Figure 4.4, each element ψa,s,t of classical shearlet system has
frequency support on a pair of trapezoids, symmetric with respect to the origin,
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ξ1

ξ2

dilation

dilation and
shearing

Figure 4.4: 2D Classical shearlets. Fourier domain support of several elements of
the shearlet system, for different values of a (dilation) and s (shearing).

oriented along a line of slope s. The support becomes increasingly thin as a→ 0,
given that

supp(ψ̂a,s,t) ⊂
{
(ξ1, ξ2) : ξ1 ∈

[
− 1

2a
,− 1

16a

]
∪
[

1

16a
,
1

2a

]
,

⏐⏐⏐⏐ξ2ξ1 + s

⏐⏐⏐⏐ ≤ √a}.
The specific choices for the supports of the functions ψ1, ψ2 have no deeper mean-
ing: all that is needed (for the detection of anisotropic structures) is that ψ̂1 is
supported away from zero (i.e., ψ1 is a wavelet) and ψ̂2 is supported around zero
[101].
Notice that there exist several choices of ψ1 and ψ2 satisfying conditions (4.9) and
(4.10). One possible choice is to set ψ1 to be a Lemariè–Meyer wavelet and ψ2 to
be a spline.

Finally, it is not difficult to prove that the shearlet transform associated with
a classical shearlet ψ ∈ L2(R2) is an isometry.
Example 4.10 (3D and nD Classical shearlet, [41]). In 3D, and more generally
in dimension n with n ≥ 3, an example of a continuous shearlet can be exhibited
using the same idea of the 2D case. Let ψ1 be an admissible wavelet (i.e., satisfying
the Calderòn condition) with ψ̂1 ∈ C∞(R) and supp(ψ̂1) ⊆ [−2,−1] ∪ [1, 2], and
let ψ2 be a bump function such that ψ̂2 ∈ C∞(Rn−1) and supp(ψ̂2) ⊆ [−1, 1]n−1.
Then, the function ψ ∈ L2(Rn) defined by

ψ̂(ω) = ψ̂(ω1, ω̃) = ψ̂1(ω1)ψ̂2

(
1

ω1

ω̃

)
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is a continuous shearlet.

As far as the 3D case concerns, the shearlet generator ψ ∈ L2(R3) reads as

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
ψ̂2

(
ξ3
ξ1

)
,

where ψ1 and ψ2 satisfy the assumptions above with n = 3. Notice that, in
the frequency domain, the band-limited function ψ ∈ L2(R3) is almost a tensor
product of one wavelet with two bump functions. This implies that the support in
frequency domain has a needle-like shape with the wavelet acting in radial direction
ensuring high directional selectivity, as can be observed in Figure 4.7b.

4.2.2 Cone-adapted and pyramid-based continuous shearlet
systems

Although the continuous shearlet systems defined above exhibit an elegant group
structure, there exists a certain directional bias related to the shear parameter.
By observing Figure 4.4, it is easy to see that the distribution of directions be-
comes infinitely dense as s grows. In general, if we consider a function f mostly
concentrated along the ordinate axis in the frequency domain, it is clear that its
energy is more and more concentrated in the shearlet components SHψf(a, s, t)
as s→∞. This can be a serious limitation for some practical applications.

In the 2D case, one way to address this problem is to partition the frequency
domain into four cones Ci, i = 1, . . . , 4, and the square R = {(ξ1, ξ2) : |ξ1|, |ξ2| ≤ 1}
centered around the origin to separate the low-frequency region. This yields a
partition of the frequency plane as illustrated in Figure 4.5, that leads to the
definition of a variant of the continuous shearlet systems, usually referred to as
cone-adapted continuous shearlets.

A similar construction can be convenient also in 3D, by following essentially
the same idea as the 2D construction: the 3D frequency domain is partitioned
into three pairs of pyramidal regions Pi, i = 1, 2, 3, and a centered cube C , as
illustrated in Figure 4.6. This leads to the definition of pyramid-based continuous
shearlets.
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C3

C1

C2

C4

R

Figure 4.5: 2D partition of the frequency domain into four cones Ci, i = 1, . . . , 4,
and a square R centered around the origin.
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ξ1

P1
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ξ3

P3
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C

ξ1

ξ2
ξ3

(d)

Figure 4.6: 3D partition of the frequency domain into three couple of pyramids
Pi, i = 1, 2, 3 and a centered cube surrounded by the three pairs of pyramids.
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Definition 4.11 ([101]). For ϕ, ψ, ψ̃ ∈ L2(R2), the 2D cone-adapted continuous
shearlet system SH(ϕ, ψ, ψ̃) is defined by

SH(ϕ, ψ, ψ̃) = Φ(ϕ) ∪Ψ(ψ) ∪ Ψ̃(ψ̃),

where

Φ(ϕ) = {ϕt = ϕ(· − t) : t ∈ R2},
Ψ(ψ) = {ψa,s,t = a−

3
4ψ(A−1

a S−1
s (· − t)) : a ∈ (0, 1], |s| ≤ 1 +

√
a , t ∈ R2},

Ψ̃(ψ̃) = {ψ̃a,s,t = a−
3
4ψ(Ã−1

a S−T
s (· − t)) : a ∈ (0, 1], |s| ≤ 1 +

√
a , t ∈ R2},

and Ãa =diag(a1/2, a).

Notice that, within each cone, the shearing variable s is only allowed to vary
over a finite range and consequently it is possible to detect only a certain subset of
all possible directions. Also, to ensure that the system Φ(ϕ) is associated with the
low frequency region R, the function ϕ will be chosen to have compact frequency
support near the origin.

Example 4.12 (2D cone-adapted classical shearlet, [101]). If ψ is a 2D classical
shearlet, the system Ψ(ψ) is associated with the horizontal cones

C1 ∪ C3 =
{
(ξ1, ξ2) :

⏐⏐⏐ξ2
ξ1

⏐⏐⏐ ≤ 1, |ξ1| > 1
}
.

Analogously, the shearlet ψ̃ can be chosen with the roles of ξ1 and ξ2 reversed, i.e.,
ψ̃(ξ1, ξ2) = ψ(ξ2, ξ1). Then the system Ψ̃(ψ̃) is associated with the vertical cones

C2 ∪ C4 =
{
(ξ1, ξ2) :

⏐⏐⏐ξ2
ξ1

⏐⏐⏐ > 1, |ξ2| > 1
}
.

In practice, the previous example suggest to imagine the function f splitted
into f = P (h)f + P (v)f , where P (h) is the frequency projection onto the cone with
slope s ≤ 1, and P (v) is the frequency projection onto the cone with slope 1

s
≤ 1.

Thus, fixed a shearlet ψ(h), we can analyze only P (h)f while P (v)f is analyzed by
defining ψ(v)(ξ1, ξ2) = ψ(h)(ξ2, ξ1).

Clearly, it is possible to extend the definition of 2D cone-adapted classical
shearlet to the 3D case, as a special case of 3D classical shearlets from example
4.10. Since the formal definition of 3D pyramid-based continuous shearlet systems
is generally given in this special case, we start by introducing the 3D pyramid-
based classical shearlet.
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Example 4.13 (3D pyramid-based classical shearlet, [67]). Analogously to the 2D
case, the 3D frequency domain is partitioned into the three pairs of pyramidal
regions P1, P2, and P3 given by

P1 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1| ≥ 1,

⏐⏐⏐⏐ξ2ξ1
⏐⏐⏐⏐ ≤ 1 and

⏐⏐⏐⏐ξ3ξ1
⏐⏐⏐⏐ ≤ 1

}
,

P2 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ2| ≥ 1,

⏐⏐⏐⏐ξ1ξ2
⏐⏐⏐⏐ ≤ 1 and

⏐⏐⏐⏐ξ3ξ2
⏐⏐⏐⏐ ≤ 1

}
,

P3 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ3| ≥ 1,

⏐⏐⏐⏐ξ1ξ3
⏐⏐⏐⏐ ≤ 1 and

⏐⏐⏐⏐ξ2ξ3
⏐⏐⏐⏐ > 1

}
,

and the centered cube

C =
{
(ξ1, ξ2, ξ3) ∈ R3 : ∥(ξ1, ξ2, ξ3)∥∞ < 1

}
.

Given ξ = (ξ1, ξ2, ξ3) ∈ R3 with ξ1 ̸= 0, each ψ(k), k = 1, 2, 3, is defined by

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2, ξ3) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
ψ̂2

(
ξ3
ξ1

)
,

ψ̂(2)(ξ) = ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ2) ψ̂2

(
ξ1
ξ2

)
ψ̂2

(
ξ3
ξ2

)
,

ψ̂(3)(ξ) = ψ̂(3)(ξ1, ξ2, ξ3) = ψ̂1(ξ3) ψ̂2

(
ξ1
ξ3

)
ψ̂2

(
ξ2
ξ3

)
,

where ψ1, ψ2 satisfy the same assumptions as in example 4.10.

Definition 4.14 ([103, 67]). For d = 1, 2, 3, let ψ(d) ∈ L2(R3) and Pd be de-
fined as in example 4.13. The 3D pyramid-based continuous shearlet systems
SH(ϕ, ψ(1), ψ(2), ψ(3)) for L2(Pd)

∨, generated by ϕ, ψ(1), ψ(2), ψ(3) ∈ L2(R3), is de-
fined by

SH(ϕ, ψ(1), ψ(2), ψ(3)) = Φ(ϕ) ∪ Ψ(1)(ψ(1)) ∪ Ψ(2)(ψ(2)) ∪ Ψ(3)(ψ(3)),

where

Φ(ϕ) = {ϕt = ϕ(· − t) : t ∈ R3},

Ψ(d)(ψ(d)) =

{
ψ

(d)
a,s1,s2,t : 0 ≤ a ≤ 1

4
, −3

2
≤ s1 ≤

3

2
, −3

2
≤ s2 ≤

3

2
, t ∈ R3

}
,

with
ψ

(d)
a,s1,s2,t(x) = | detM

(d)
a,s1,s2

|−
1
2 ψ(d)((M (d)

a,s1,s2
)−1(x− t)),



4.2. CONTINUOUS SHEARLET SYSTEMS 111

and

M (1)
a,s1,s2

=

⎛⎝a a1/2s1 a1/2s2
0 a1/2 0
0 0 a1/2

⎞⎠ , M (2)
a,s1,s2

=

⎛⎝ a1/2 0 0
a1/2s1 a a1/2s2
0 0 a1/2

⎞⎠ ,

M (3)
a,s1,s2

=

⎛⎝ a1/2 0 0
0 a1/2 0

a1/2s1 a1/2s2 a

⎞⎠ .

Notice that, similar to the 2D case, in each pyramidal region the shearing
variables s1, s2 are only allowed to vary over a compact set. This approach is,
indeed, what gives an almost uniform treatment of different directions, understood
as good approximation to rotation.

Similar to the continuous shearlet systems, an associated transform can be
defined for cone-adapted and pyramid-based continuous shearlet systems.

Definition 4.15 ([101, 67]). Set

Scone = {(a, s, t) : a ∈ (0, 1], |s| ≤ 1 +
√
a , t ∈ R2},

Spyr = {(a, s1, s2, t) : a > 0, s1, s2 ∈ R, t ∈ R3}.

For ϕ, ψ, ψ̃ ∈ L2(R2), the 2D cone-adapted continuous shearlet Transform of
f∈L2(R2) is the map

f → SH ϕ,ψ,ψ̃f(t
′, (a, s, t), (ã, s̃, t̃)) = (⟨f, ϕt⟩, ⟨f, ψa,s,t⟩, ⟨f, ψ̃ã,s̃,t̃⟩)

where (t′, (a, s, t), (ã, s̃, t̃)) ∈ R2 × S2
cone. In particular, for the 2D cone-adapted

classical shearlet, the 2D cone-adapted continuous shearlet Transform is the map:

f −→ SH ψf(a, s, t) =

⎧⎨⎩⟨f, ψ
(h)
a,s,t⟩ if |s| ≤ 1

⟨f, ψ(v)

a, 1
s
,t
⟩ if |s| > 1

Similarly, for ψ ∈ L2(R3), the 3D pyramid-based continuous shearlet transform of
f ∈ L2(R3) is the map

f −→ SH ψf(a, s1, s2, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨f, ψ(1)

a,s1,s2,t⟩ if |s1|, |s2| ≤ 1

⟨f, ψ(2)

a, 1
s1
,
s2
s1
,t
⟩ if |s1| > 1, |s2| ≤ |s1|

⟨f, ψ(3)

a,
s1
s2
, 1
s2
,t
⟩ if |s2| > 1, |s2| > |s1|

where (a, s1, s2, t) ∈ Spyr.
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Notice that, depending on the values of the shearing variables, the 2D (respec-
tively, 3D) continuous shearlet transform corresponds to one specific cone-adapted
(respectively, pyramid-based) shearlet system.

It can be shown that a result similar to Theorem 4.7 holds true. As a conse-
quence, under suitable conditions on the scaling function and the mother shearlet,
the map SH ψ is an isometry.

Finally, observe that the cone-adapted and pyramid-based continuous shearlet
transform can be used to provide a precise characterization of edge discontinu-
ities of a function f by analyzing the decay of its associated coefficients at fine
scales. Roughly, edges are associated to the largest shearlet coefficients, since the
continuous shearlet transform decays rapidly as a→ 0, namely satisfies

SH ψf(a, s, t) = O(ar), for every r ≥ 0,

unless t is at the singularity and s describes the direction that is perpendicular to
the discontinuity curve. This property is extremely useful in all those applications
in which an analysis or detection of edge discontinuities is required. By way of
example, the algorithm proposed in [36] to invert the Radon transform directly
uses a shearlet-based edge detection.

A more detailed analysis of the cone-adapted and pyramid-based continuous
shearlet transform can be found in [65, 67].

4.3 Discrete shearlet systems

Starting from continuous shearlet systems as defined in (4.7), several discrete ver-
sions of shearlet systems can be constructed by an appropriate sampling of the
continuous parameter set S, Scone or Spyr. Usually, the aim is to derive discrete
shearlet systems which preferably form an orthonormal basis or a tight frame (see
Appendix A.1) for L2(Rn), since this leads to orthonormal matrices that are fun-
damental, e.g., to simplify the numerical complexity in many applications.

4.3.1 Regular discrete shearlet systems

Discrete shearlet systems are formally defined by sampling continuous shearlet
systems on a discrete subset of the full shearlet group S.

Definition 4.16 ([101]). Let ψ ∈ L2(Rn), n ≥ 2, and Λ ⊆ S. An irregular discrete
shearlet system, associated with ψ and Λ and denoted by SH(ψ,Λ), is defined by

SH(ψ,Λ) =
{
ψa,s,t = a

1
2n

−1ψ(A−1
a S−1

s (· − t)) : (a, s, t) ∈ Λ
}
.
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A (regular) discrete shearlet system, associated with ψ and denoted by SH(ψ), is
defined by

SH(ψ) =
{
ψj,k,m = 2j

(
1
2n

−1
)
ψ(SkA2j · −m) : j ∈ Z, k ∈ Zn−1,m ∈ Zn

}
.

Observe that the regular versions of discrete shearlet systems are derived from
the irregular systems by choosing

Λ =
{
(2−j,−k2−j/2, S−k2−j/2A2−jm) : j ∈ Z, k ∈ Zn−1,m ∈ Zn

}
.

Indeed, keeping the greatest generality, we can choose an arbitrary set of scales
{aj}j∈Z ⊂ R+. Next, the shear parameters {sj,k}k∈Zn−1 ⊂ Rn−1 can be picked de-
pendent on j, so that the directionality of the representation is allowed to change
with the scale. Then, in order to provide a “uniform covering”, the location pa-
rameter is allowed to describe a different grid depending on j, and hence on k: a
possible choice is tj,k,m = Ssj,kAajm, where m ∈ Zn. Finally, the translation pa-
rameter can be chosen to belong to c1Z× . . .× cnZ for some (c1, . . . , cn) ∈ (R+)n.
This provides some additional flexibility which is useful for some constructions.
As far as the previous definition concerns, we pick the dyadic sampling for the
scaling parameter, i.e., aj = 2−j, j ∈ Z. Next, we set sj,k = −k2−j/2, k ∈ Zn−1, in
order to get a larger number of directions as j is getting smaller. Finally, the loca-
tion parameter is determined by adjusting the canonical grid Zn to the particular
scaling and shear parameter, i.e., tj,k,m = Ssj,kAajm = S−k2−j/2A2−jm, m ∈ Zn.
Combining all this and observing that A−1

2−jS
−1
−k2−j/2 = A2jSk2−j/2 = SkA2j , the

final result is the regular discrete shearlet system as defined above.

Similarly to the continuous case, the discrete shearlet transform, for the regular
case, can be defined as follows.

Definition 4.17 ([101]). For ψ ∈ L2(Rn) and (j, k,m) ∈ Z × Zn−1 × Zn, the
discrete shearlet transform of f ∈ L2(Rn) is the map defined by

f → SH ψf(j, k,m) = ⟨f, ψj,k,m⟩.

Thus, SH ψ maps the function f to the coefficients SH ψf(j, k,m) associated
with the scale index j, the orientation index k, and the position index m.
Clearly, the previous definition can be extended to the irregular shearlet systems
in the most natural way.

Being able to derive the condition under which a discrete shearlet system
SH(ψ) forms a basis or, more generally, a frame, is fundamental in order to apply
shearlet systems as analysis and synthesis tools, as pointed out in Appendix A.1.
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Notice that the analysis operator that associates a function to its frame coefficients
can be expressed by means of a matrix. Even if, in general, an explicit expression
for this matrix is useless, there exist some special cases in which it is needed: the
digital setting we propose for ROI CT is, indeed, one of these. Additional details
about this topic shall be given in Section 4.4.

Similarly to the classical wavelet case, we are interested in selecting a generator
ψ with special properties, e.g., regularity, well localization, vanishing moments,
and compact support, so that the corresponding basis or frame of shearlets has
satisfactory approximation properties. Toward this, the 2D classical shearlets from
Example 4.9 are particularly useful examples since, as stated in the following result,
they generate a Parseval frames for L2(R2). In Subsection 4.3.2, we shall see that
a similar result holds true for 3D pyramid-adapted discrete shearlet system.

Proposition 4.18 ([99]). Let ψ ∈ L2(R2) be a classical shearlet. Then SH(ψ) is
a Parseval frame for L2(R2).

In particular, the previous proposition implies that there exist Parseval frames
SH(ψ) of well localized discrete shearlets, being the classical shearlet ψ a well lo-
calized function. As one can easily imagine, it is possible to remove the assumption
of well localization for ψ, giving rise to other types of discrete shearlet systems,
which might form not only tight frames but also orthonormal bases. So far, it
seems that well localized shearlet orthonormal bases do not exist ([101]).
Finally, observe that the shearlet systems generated by classical shearlets are band-
limited, i.e., they have compact support in the frequency domain and, hence, can-
not be compactly supported in the spatial domain. However, compactly supported
discrete shearlet systems can be required, e.g., to achieve spatial domain localiza-
tion. Since this topic is far from the aim of this thesis, we refer [102] for more
details.

4.3.2 Cone- and pyramid-adapted discrete shearlet systems

Given that (ir)regualr discrete shearlet systems are derived by appropriately sam-
pling the continuous parameter set, they share the same biased treatment of the
directions of continuous shearlet systems. To address this problem, the frequency
domain can be partitioned into cones in 2D and pyramids in 3D.

In 2D, the definition is given for the regular parameter set, since it is much more
frequently used. Clearly, it can be extended to the irregular shearlet systems in
the most natural way. To allow more flexibility and enable changes to the density
of the translation grid, a sampling factor c = (c1, c2) ∈ (R+)2 in the translation
index is introduced.
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Definition 4.19 ([101]). For ϕ, ψ, ψ̃ ∈ L2(R2) and c = (c1, c2) ∈ (R+)2, the
(regular) cone-adapted discrete shearlet system SH(φ, ψ, ψ̃; c) is defined by

SH(φ, ψ, ψ̃; c) = Φ(ϕ; c1) ∪Ψ(ψ; c) ∪ Ψ̃(ψ̃; c),

where

Φ(ϕ; c1) = {ϕm = ϕ(· − c1m) : m ∈ Z2},
Ψ(ψ; c) = {ψj,k,m = 2

3
4
j ψ(SkA2j · −Mcm) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z2},

Ψ̃(ψ̃; c) = {ψ̃j,k,m = 2
3
4
j ψ̃(STk Ã2j · −M̃cm) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z2}.

with

Mc =

(
c1 0
0 c2

)
and M̃c =

(
c2 0
0 c1

)
.

Clearly, if c = (1, 1), the parameter c is omitted in the formulae above.

The generating functions ϕ will be referred to as shearlet scaling functions and
the generating functions ψ, ψ̃ as shearlet generators. Analogously to the contin-
uous case, the system Φ(ϕ; c1) is associated with the low frequency region, and
the systems Ψ(ψ; c) and Ψ̃(ψ̃; c) are associated with the conic regions C1 ∪C3 and
C2 ∪ C4, respectively, as depicted in Figure 4.5.

The restrictions for the shear parameter prescribed above apply also in the
3D case. The following definition is a (discrete) special case of the general setup
presented in Subsections 4.2.2.

Definition 4.20 ([103]). Let c = (c1, c2) ∈ (R+)2 and k = (k1, k2) ∈ Z2. The
pyramid-adapted discrete shearlet system SH(ϕ, ψ(1), ψ(2), ψ(3); c) generated by ϕ,
ψ(1), ψ(2), ψ(3) ∈ L2(R3) is defined by

SH(ϕ, ψ(1), ψ(2), ψ(3); c) = Φ(ϕ; c1) ∪ Ψ(1)(ψ(1); c) ∪ Ψ(2)(ψ(2); c) ∪ Ψ(3)(ψ(3); c),

where

Φ(ϕ; c1) = {ϕm = ϕ(· −m) : m ∈ c1Z3},
Ψ(d)(ψ(d); c) = {ψ(d)

j,k,m = 2j ψ(d)(S
(d)
k A

(d)

2j
· −m) : j ≥ 0, |k| ≤ ⌈2j/2⌉, m ∈M (d)

c Z3},

where d = 1, 2, 3, j ∈ N0, k ∈ Z2 and the vector notation |k| ≤ K for k = (k1, k2)

and K > 0 stands for |k1| ≤ K and |k2| ≤ K. Here, A(d)
2j , d = 1, 2, 3 are the

paraboloidal scaling matrices defined by:

A
(1)
2j =

⎛⎝2j 0 0
0 2j/2 0
0 0 2j/2

⎞⎠ , A
(2)
2j =

⎛⎝2j/2 0 0
0 2j 0
0 0 2j/2

⎞⎠ , A
(3)
2j =

⎛⎝2j/2 0 0
0 2j/2 0
0 0 2j

⎞⎠ .
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The shear matrices S(d)
k , d = 1, 2, 3, are given by:

S
(1)
k =

⎛⎝1 k1 k2
0 1 0
0 0 1

⎞⎠ , S
(2)
k =

⎛⎝ 1 0 0
k1 1 k2
0 0 1

⎞⎠ , S
(3)
k =

⎛⎝ 1 0 0
0 1 0
k1 k2 1

⎞⎠ .

The matricesM (1)
c = diag(c1, c2, c2),M

(2)
c = diag(c2, c1, c2), andM (3)

c = diag(c2, c2, c1)
define the translation lattices.

Notice that, beside the paraboloidal scaling matrix considered in Definition
4.20, there is another possibility:⎛⎝2j 0 0

0 2j/2 0
0 0 2j

⎞⎠ instead of

⎛⎝2j 0 0
0 2j/2 0
0 0 2j/2

⎞⎠ .

The former choice leads to needle-like shearlets, while the latter one to plate-
like shearlets. This distinction is essential to apply shearlets as a machinery to
distinguish different types of singularities (1D or 2D). Usually, which one is the
suitable choice is problem-dependent [101].

(a) (b)

Figure 4.7: (a) Tiling of the frequency plane induced by a cone-adapted Parseval
frame of shearlets in 2D. (b) Support of two shearlet elements ψj,k,m in the fre-
quency domain in 3D. The two shearlet elements have the same scale parameter
j, but different shearing parameters k = (k1, k2).

The discrete shearlet transform associated with cone and pyramid-adapted dis-
crete shearlet systems is stated in the following definition.
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Definition 4.21 ([66, 102]). Let Λ = N0×{⌈2j/2⌉, . . . , ⌈2j/2⌉}×Z2. For ϕ, ψ, ψ̃ ∈
L2(R2), the cone-adapted discrete shearlet transform of f ∈ L2(R2) is the map
defined by

f → SH ϕ,ψ,ψ̃f(m
′, (j, k,m), (j̃, k̃, m̃)) = (⟨f, ϕm′⟩, ⟨f, ψj,k,m⟩, ⟨f, ψ̃j̃,k̃,m̃⟩),

where (m′, (j, k,m), (j̃, k̃, m̃)) ∈ Z2×Λ2. For ψ ∈ L2(R3), the 3D pyramid-adapted
discrete shearlet transform of f ∈ L2(R3) is the map

f −→ SH ψf(j, k1, k2,m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨f, ψ(1)

j,k1,k2,m
⟩ if |k1|, |k2| ≤ 1

⟨f, ψ(2)

j, 1
k1
,
k2
k1
,m
⟩ if |k1| > 1, |k2| ≤ |k1|

⟨f, ψ(3)

j,
k1
k2
, 1
k2
,m
⟩ if |k2| > 1, |k2| > |k1|

where j ∈ N0, k1, k2 ∈ {⌈2j/2⌉, . . . , ⌈2j/2⌉} and m ∈ Z3.

Finally, our goal is to derive Parseval frames both in the 2D and in the 3D
case. First of all, the next proposition states that a 2D classical shearlet is a
shearlet generator of a Parseval frame for the subspace of L2(R2) of functions
whose frequency support lies in the union C1 ∪ C3 of the two cones C1 and C3.

Proposition 4.22 ([66]). Let ψ ∈ L2(R2) be a classical shearlet. Then the shearlet
system

Ψ(ψ) = {ψj,k,m = 2
3
4
j ψ(SkA2j · −m) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z2}

is a Parseval frame for L2(C1 ∪ C3)
∨ = {f ∈ L2(R2) : supp(f̂) ⊂ C1 ∪ C3}.

Clearly, by replacing ψ with ψ̃, a similar result to Proposition 4.22 holds true
for the subspace L2(C2 ∪C4)

∨. Thus, a Parseval frame for the whole space L2(R2)
can be build up by piecing together Parseval frames associated with different cones
on the frequency domain along with a coarse scale system which takes care of the
low frequency region. Hence, the following result holds true.

Theorem 4.23 ([66]). Let ψ ∈ L2(R2) be a classical shearlet, and let ϕ ∈ L2(R2)
be chosen so that, for a.e. ξ ∈ R2,

|ϕ̂(ξ)|2 +
∑
j≥0

∑
|k|≤⌈2j/2⌉

|ψ̂(ST−kAs−jξ)|21C +
∑
j≥0

∑
|k|≤⌈2j/2⌉

|ψ̂(ST−kÃs−jξ)|21C̃ = 1,

where 1C (respectively, 1C̃) is the characteristic function of the set C (respectively,
C̃). Let PCΨ(ψ) denote the set of shearlet elements in Ψ(ψ) after projecting their
Fourier transforms onto C =

{
(ξ1, ξ2) ∈ R2 :

⏐⏐⏐ ξ2ξ1 ⏐⏐⏐ ≤ 1
}
, and let PC̃Ψ̃(ψ̃), where

C̃ = R2 \ C, be defined analogously. Then, the modified cone-adapted discrete
shearlet system Φ(ϕ) ∪ PCΨ(ψ) ∪ PC̃Ψ̃(ψ̃) is a Parseval frame for L2(R2).
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In Figure 4.7a is illustrated the tiling of the frequency plane induced by a cone-
adapted Parseval frame of shearlets.
Notice that, when the cone-based shearlet systems are projected onto C and C̃,
the shearlet elements overlapping the boundary lines ξ1 = ±ξ2 in the frequency
domain are cut so that the “boundary” shearlets lose their regularity properties.
This main drawback can be avoided by redefining the “boundary” shearlets in such
a way that their regularity is preserved [68].

As far as the 3D case concerns, the first step toward a Parseval frame result is
the following Theorem.

Theorem 4.24 ([103]). Let ψ be a band-limited shearlet as defined in Example
4.10. Then the family of functions PP1Ψ(ψ) forms a tight frame for L2(P1)

∨ =
{f ∈ L2(R3) : supp(f̂) ⊂ P1}, where PP denotes the orthogonal projection onto
L2(P1)

∨ and

Ψ(ψ) =

{
ψj,k,m : j ≥ 0, |k| ≤ ⌈2j/2⌉, m ∈ 1

8
Z3

}
.

By Theorem 4.24 and a change of variables, it is possible to construct shearlet
tight frames for L2(P1)

∨, L2(P2)
∨ and L2(P3)

∨, respectively. By denoting with
PC the orthogonal projection onto the closed subspace L2(C)∨ for some measurable
set C ⊂ R3, any function f ∈ L2(R3) can be expressed by

f = PC f + PP1f + PP2f + PP3f

since R3 = C ∪P1 ∪P2 ∪P3 as a disjoint union. Here, ϕ ∈ L2(R3) is a wavelet
such that Φ(ϕ; 1

8
) forms a tight frame for L2(R). Then, the projection PP1f can

be expanded in terms of the corresponding tight frame PP1Ψ(ψ) and similarly for
the other three projections. Hence, the representation of f is the sum of these four
expansions.

In conclusion, notice that the discrete shearlet frame introduced in this sub-
section can be derived using a powerful methodology called Coorbit Theory. This
approach is used to derive different discretizations while ensuring frame properties.
More details about this topic can be found in [40, 41, 39].

4.3.3 Optimally sparse approximations

One of the main reason for the introduction of shearlets was the lack of directional
sensitivity of traditional multiscale methods, like wavelets. Indeed, shearlets have
been specially designed to account for the anisotropic features, like edges, that
frequently dominate multidimensional phenomena. This anisotropic nature allows
to obtain optimally sparse approximations, in the sense specified by the following
Definition 4.26.
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Definition 4.25 ([103]). For a fixed cE > 0, the class E 2(Rn) of cartoon-like
images is the set of functions f : Rn → C of the form

f = f0 + f1 1B,

where B ⊂ [0, 1]n and fi ∈ C 2(Rn) are functions with supp(fi) ⊂ [0, 1]n and
∥fi∥C 2 ≤ cE for each i = 0, 1.

Definition 4.26 ([103]). Let Φ = (ϕi)i∈I be a frame for L2(Rn) with n = 2 or
n = 3. We say that Φ provides optimally sparse approximations of cartoon-like
images if, for each f ∈ E 2(Rn), the associated J-term approximation fJ obtained
by keeping the J largest coefficients of (⟨f, ϕi⟩)i∈I satisfies

∥f − fJ∥22 < J− 2
n−1 as J →∞,

and
|(⟨f, ϕi⟩)∗l | < l−

n+1
2(n−1) as l→∞,

up to a log-factor.

The class of cartoon-like images is generally used to derive results in approxima-
tion theory since it provides a simplified model of natural images, which emphasizes
anisotropic features, in particular edges.

The following two results state that, by using cartoon-like images as model class
in 2D and in 3D, the approximation properties can be measured by considering
the decay rate of the L2-error of the best J-term approximation. Notice that, to
show the following results, a slightly different construction of shearlets tight frame
are needed, which can be found in [68].

Theorem 4.27 ([102]). Let Φ(ϕ) ∪ PCΨ(ψ) ∪ PC̃Ψ̃(ψ̃) be a Parseval frame for
L2(R2) as defined in Theorem 4.23, where ψ ∈ L2(R2) is a classical shearlet and
ψ̂ ∈ C ∞

0 (R2). Let f be a cartoon-like image and fJ be its best J-term approxima-
tion. Then there exists a constant C > 0, independent of f and J , such that

∥f − fJ∥2 ≤ C J−2 log3(J) as J →∞.

Theorem 4.28 ([103]). Assume that ϕ, ψ(1), ψ(2), ψ(3) ∈ L2(R3) are band-limited
and C ∞ in the frequency domain and that the shearlet system SH(ϕ, ψ(1), ψ(2), ψ(3); c)
forms a frame for L2(R3). For any cE > 0, the shearlet frame SH(ϕ, ψ(1), ψ(2), ψ(3); c)
provides optimally sparse approximations of functions f ∈ E 2(R3) in the sense of
Definition 4.26.

These results are fundamental and will be useful in the discussion of Chapter
6 about the results of the numerical assessment of the ROI CT problem. So far,
the only representation system able to provide optimally sparse approximations of
the class of cartoon-like images in 2D, as well as in 3D, are shearlets.
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4.4 Implementation and softwares

One main advantage of the shearlet approach is the unified treatment of the con-
tinuous and discrete settings that allow for numerical implementations which faith-
fully digitalize the discrete shearlet transform. So far, several numerical implemen-
tations of the discrete shearlet transform have been proposed. All the developed
approaches can be grouped into two main categories: Fourier-domain based and
spatial-domain based. The former relies on the fact that the cone-adapted and
pyramid-based discrete shearlet transform provides a particular decomposition of
the frequency plane. The Fourier-based approach aims to directly produce the
same frequency tiling. The latter, the spatial-domain based, is a method where
the filters associated with the transform are implemented by a convolution in the
spatial domain. The details of the implementations can be found in [48, 115, 105].
Finally, in order to develop MRA-based implementations, a multiresolution anal-
ysis similar to the one associated with wavelets has been proposed [69, 104, 72].

To date, different packages providing numerical shearlet algorithms, prototyped
in Matlab, are available. A first one is associated with [48] and can be downloaded
from www.math.uh.edu/~dlabate; a second one can be found at www.ShearLab.
org and is associated with [115, 105]; a last one is available at www.mathematik.
uni-kl.de/imagepro/software/ffst and related details can be found in [75]. All
packages enjoy 2D and 3D implementations, for both band-limited and compactly
supported shearlets. Also a CUDA based parallel implementation is available and
can be downloaded from www.math.uh.edu/~dlabate.

The Spot toolbox, an object-oriented Matlab package by Ewout van den Berg
and Michael P. Friedlander implementing linear operators, can be combined with
the above mentioned packages to provide an operator expression for the underlying
matrix that gives the shearlet coefficients. We already pointed out that, in general,
an explicit expression for this matrix is useless. However, one of the algorithms
we propose for the solution of the ROI CT problem requires an expression for
this matrix. The Spot toolbox is really useful in this sense, since a Spot operator
represents a matrix, and can be treated in a similar way, but it does not rely on the
matrix itself to implement most of the methods. This is helpful not only whenever
the explicit transform operator is needed and not available, but also when Matlab
provides an explicit expression for the matrix and it is not practical for some reason
(e.g., problems of large sizes). The latest release of Spot is available at the GitHub
page https://github.com/mpf/spot and it is constantly updated.

So far, various routines are available in Spot to obtain Daubechies wavelets
matrices. As far as the shearlets concern, Wang-Q Lim, co-author of the shearlets
package at www.math.uh.edu/~dlabate, kindly provided a Spot-compliant routine
to obtain the shearlet operator, that will be used in the numerical experimentation
in Chapter 6.

www.math.uh.edu/~dlabate
www.ShearLab.org
www.ShearLab.org
www.mathematik.uni-kl.de/imagepro/software/ffst
www.mathematik.uni-kl.de/imagepro/software/ffst
www.math.uh.edu/~dlabate
https://github.com/mpf/spot
www.math.uh.edu/~dlabate


Chapter 5

Iterative reconstruction techniques
for ROI CT

Nowadays, iterative techniques to address CT-type problems are going through
a revived interest, due to the technological advances in computer science [8, 84].
However, iterative methods, except in few special cases, have been an almost
compelling choice in many medical imaging, microscopy and astronomy image
reconstruction problems.

The aim of this Chapter is to put on two recently introduced iterative tech-
niques, the scaled gradient projection (SGP) [17] method and the variable metric
inexact line-search algorithm (VMILA) [14], with application to ROI CT data.
To this end, basic facts on statical approach and general iterative reconstruc-
tion schemes will be retrieved, following the approach of [9, 10]. Then, SGP and
VMILA main features will be investigated, discussing practical considerations for
the implementation to the ROI CT problem. Since all the details regarding the
general setup and convergence results are carried out in [17, 14], for simplicity the
following presentation is heuristic and implementation-oriented.

5.1 Statistical approach for image reconstructions

The CT problem as defined in (2.1) can be understood as a particular case of the
Fredholm integral equation of the first kind:

y(θ, τ) =

∫
Rd

K(x, θ, τ)f(x) dx,

where d = 2, 3 and the kernel K(x, θ, τ) is given by

K(x, θ, τ) = δ(τ − ⟨x, ωθ⟩).

121
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It is well known that the solution of the Fredholm integral equation in the discrete
domain leads to the following system of linear equations:

Kf = y, (5.1)

where f = {fi}ni=1 ∈ Rn is a discrete representation of the object to be imaged,
y = {yj}mj=1 ∈ Rm is a vector of the measured data and K ∈ Rm×n is the system
matrix, namely it describes the measurement process.
Retaining the notation introduced in Chapter 2, n = Nd, where d = 2, 3 is the
total number of pixels, resp. voxels; m is equal to the total number of detector
elements Ndtc multiplied by the number of views Nθ. The system matrix K models
the discrete forward operator as described in Chapter 3, i.e., each element wij of
K = W represents the contribution of the i-th pixel (resp., voxel) fi to the j-
th ray position yj. Notice that, in the ROI CT problem, the overall picture is
slightly different: the acquired projection data are the ROI sinogram y0 ∈ Rm

and a mask M ∈ Rm×m selects the rays meeting the ROI, hence premultiplies the
system matrix W. The goal is to recover f from y0.

In general, the matrix K is large and ill-conditioned: hence, the direct matrix
inversion in equation (5.1) is practically infeasible. To overcome this problem,
a statistical formulation of the image reconstruction problem can be profitable
and it is, indeed, quite natural. According to this approach, data are seen as
realizations of random variables: that is, each component yj of the measured data
is the realization of a random variable Yj, with Y = {Yj}mj=1 denoting the vector
valued random variable corresponding to the vector of measured data. In practice,
a modeling of this type accounts for the noise introduced by the detection system.
Reasonable assumptions for its probability density pY(y; f), that clearly depends
on the object to be reconstructed, are the following:

(A1) The random variables Yj and Yk associated to different elements of the de-
tector are statistically independent. Hence:

pY(y; f) =
m∏
j=1

pYj(yj; f).

(A2) The expected value of Yj is given by the exact value of the incoming radiation,
namely:

E{Y} =
∫

y pY(y; f) dy = Kf .

Thus, the problem now consist in finding an estimate f̄ of the object to be recon-
structed, that at this point appears as a set of unknown parameters, corresponding
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to the detected data y, whose probability density pY(y; f) is known. The standard
approach is to introduce the likelihood function, defined by

LY
y (f) = pY(y; f),

which depends only on f , and to look for its (possibly existing) maximum point:

f∗ = argmax
f∈Rn

LY
y (f).

This approach is called maximum likelihood (ML) estimation. In practice, it can
be convenient to consider the negative logarithm (usually addressed to as neglog)
of the likelihood function so that the maximization problem is transformed into a
minimization one, given that the neglog is strictly convex. The problem now reads
as:

f∗ = argmin
f∈Rn

ΥDM(f ;y). (5.2)

where
ΥDM(f ;y) = −A log

(
LY
y (f)

)
+B

with A and B suitable constants, introduced to simplify the expression of the func-
tional. The subscript index DM stands for data mismatch since, in general, this
terms accounts for the discrepancy between the detected data and ideal measure-
ments.

As an example, we consider in Examples 5.1 and 5.2 two classical types of
noise, which will be investigated in the numerical experiments in Chapter 6.

Example 5.1 (additive white Gaussian noise). In this case, Y is given by

Y = Kf + E.

Here, E is a vector-valued random variable whose components are statistically
independent, all having the same Gaussian distribution with expected value 0 and
variance σ2. Therefore, we have:

pY(y; f) =

(
1√
2πσ2

)m
e
−
∥y −Kf∥22√

2σ2 ,

and
ΥDM(f ;y) = ∥Kf − y∥22

by taking A = 2σ2 and B = −2σ2m log(
√
2πσ2 ). In this case the ML approach

coincides with the well-known least squares approach.
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Example 5.2 (Poisson noise). In such a case, each Yj is a Poisson random variable
with expected value given by (Kf)j, yielding:

pY(y; f) =
m∏
j=1

e−(Kf)j (Kf)
yj
j

(yj)!
,

and

ΥDM(f ;y) =
m∑
j=1

{
yj log

(
yj

(Kf)j
+ (Kf)j − yj

)}
is the so-called Kullback-Leibler (KL) divergence, a convex (strictly convex if the
equation Kf = 0 has only the solution f = 0), non-negative and locally bounded
functional. The constants A and B can be explicitly determined by approximating
the factorial (yj)! with Stirling’s approximation:

log((yj)!) = yj log(yj)− yj + log(
√
2πyj ).

Poisson noise is generally used to describe the noise affecting counting processes
and, for this reason, it is sometimes referred to as “photon noise”: the specific effect
arising in this problem is known as checkerboard effect.

Two comments are in order. First, notice that both minimization problems are
indeed ill-posed (motivations and clarifying examples can be found in [50, 125]).
As a consequence, the minimum points f∗ of the functionals corresponding to
the different noise models do not provide, in general, sensible estimates f̄ of the
unknown object and one is not interested in computing them.

Secondly, the minimization of the above functionals should be considered on
the non-negative orthant since objects are non-negative in many interesting cases
of object reconstruction, including ROI CT. This expresses the necessity of intro-
ducing some additional information on the object, e.g., in the form of statistical
properties of the object. This is a state-of-the-art approach, called Bayesian ap-
proach.
In other words, the unknown object f is also assumed to be a realization of a
vector-valued random variable F = {Fi}ni=1, whose probability density pF(f) is
given by

pF(f) =
1

Z
e−µΘ(f).

Here, Z is a normalization constant, µ is a positive parameter, usually referred
to as regularization parameter, and Θ(f) is a (possibly convex) functional. This is
generally called prior and the one introduced belongs to the Gibbs type.
Then, the probability density pY(y; f) can be understood as the conditional prob-
ability density of Y when the random variable F assumes the value f :

pY(y|f) = pY(y|F = f),
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and the joint probability density of the random variables F and Y is given by

pFY(f ,y) = pY(y|f) pF(f).

By employing the Bayes formula for the conditional probability, we obtain the a
posteriori probability density PF

y (f) of F:

PF
y (f) = pF(f |y) =

pY(y|f) pF(f)
pY(y)

= LY
y (f)

pF(f)

pY(y)
,

where pY(y) =
∫
pFY(f ,y) df is the marginal probability density of Y. Then, the

problem of finding an estimate f∗ of the unknown object reads as:

f∗ = argmax
f∈Rn

PF
y (f),

that is, f∗ is any object that maximizes the a posteriori probability density. This
is called maximum a posteriori (MAP) estimate. Similarly to the likelihood case,
it is convenient to consider the neglog function of PF

y (f). By assuming the Gibbs
prior, this yields:

f∗ = argmin
f∈Rn

Υ(f ;y)

where

Υ(f ;y) = −A logPF
y (f) +B − A log(Z)− A log(pY(y))

= ΥDM(f ;y) + µ ΥR(f ;y)

with ΥR(f ;y) = AΘ(f), conceived as a regularization functional, hence the sub-
script index R. Observe that when µ = 0 this is just the ML problem. Also,
the minimum points satisfying the non-negativity constraint should be taken into
account, leading to the general formulation:

f∗ = argmax
f≥0

ΥDM(f ;y) + µ ΥR(f ;y). (5.3)

Finally, notice that it is not obvious that a minimum point f∗ of Υ(f ;y) is a
sensible estimate f̄ of the unknown object. In fact, the parameter µ is a “degree of
freedom” and a wide literature exists on the problem of its optimal choice [50, 73].

5.2 Scaled gradient projection method
As already pointed out, in ML problems one generally does not want to reach
the minimum, because of ill-posedness. Thus, ML problems are not treated as
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standard optimization problem. On the other hand, reaching the minimum is
exactly the goal in the case of MAP problems. Therefore, this problems are usually
addressed using different methods. In this section, we present an algorithm, the
scaled gradient projection (SGP) method proposed in [17], that can provide a
unified approach to both problems.

SGP is an iterative approach from the family of first-order descent methods that
applies to convex (and non-convex), differentiable and constrained problems with
“simple” feasible regions. This appealing features makes SGP perfectly suitable
for the ROI CT formulation, given that the feasible region in (2.22) and (2.23) is
usually either a box or a non-negativity constraint and, as already indicated, the in-
volved functionals are convex and differentiable (when the L2-norm is considered).
First, a general description of SGP, whose main steps are stated in Algorithm 1,
will be given and then some considerations for its practical implementation to the
ROI CT problem will be discussed.

The main feature of SGP is the combination of non-expensive diagonally scaled
gradient directions with steplength selection rules specially designed for these di-
rections, exploiting a decomposition of the gradient. The (k+1)-th iteration, with
k = 0, 1, 2, . . ., is

f (k+1) = f (k) + µk

[
PC,D−1

k

(
f (k) − αkDk∇Υ(f (k);y)

)
− f (k)

]
(5.4)

where µk, αk are suitable steplengths, Dk is a scaling matrix and PC,D−1
k

denotes
the projector onto a closed and convex set C:

PC,D(x) = argmin
z∈C

∥z− x∥D = argmin
z∈C

(1
2
zTDz− zTDx

)
. (5.5)

with ∥x∥D =
√
xTDx , i.e., ∥x∥D is the norm induced by the symmetric positive

definite matrix D. According to the formulation introduced in (5.3), C = {f ≥ 0}.
In details, the following (possibly not unique) decomposition of the gradient

[110] is considered:

−∇Υ(f ;y) = U(f ;y)− V (f ;y) U(f ;y) ≥ 0, V (f ;y) > 0. (5.6)

Clearly, such a decomposition always exists, since different choices of U and V can
satisfy the above requirement. Also, the non-uniqueness of the decomposition is
not a drawback: as a matter of fact, it reveals to be an advantage in some cases.
We will refer to V as the positive part of the gradient decomposition; consequently,
U will be addressed to as the negative part.
Next, any choice of the steplength αk in a closed interval [αmin, αmax] ⊂ R+ and
of the scaling matrix Dk in the compact set DL is allowed, where DL is the set of
the symmetric positive definite matrices D such that ∥D∥ ≤ L and ∥D−1∥ ≤ L,
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for a given threshold L > 1. This is very important from a practical point of view
because it makes their updating rules problem-related and performance-aware. In
particular, SGP is equipped with an adaptive steplength selection based on the
Barzilai-Borwein (BB) updating rules [6, 56]. In practice, by means of a variable
threshold, one of the two different selection strategies

αBB1
k = argmin

αk∈R

B(αk) s
(k−1) − ζ(k−1)

 (5.7)

αBB2
k = argmin

αk∈R

s(k−1) −B(αk)
−1ζ(k−1)

 (5.8)

is selected [59], whereB(αk) = (αkDk)
−1 approximates the Hessian matrix∇2Υ(f (k);y),

s(k−1) = f (k) − f (k−1) and ζ(k−1) = ∇Υ(f (k);y)−∇Υ(f (k−1);y).
As far as the scaling matrix concerns, the updating rule for each entry d(k)i is:

d
(k)
i = min

{
L,max

{
1

L
,

f
(k)
i

Vi(f (k);y)

}}
i = 1, . . . , n (5.9)

where L is an appropriate threshold and Vi is the i-th component of the positive
part of the gradient decomposition V . The global convergence properties of SGP
are ensured by exploiting a nonmonotone line-search strategy along the feasible
direction [63, 43]. Such a strategy ensures that Υ(f (k+1);y) is lower than the
maximum of the objective function on the last κ iterations by successive reductions
of µk. Of course, if κ = 1 then the strategy reduces to the standard monotone
Armijo rule.

For the sake of completeness, even if it is not the case of ROI CT, we observe
that in some fields of application, including Microscopy and Astronomy, an addi-
tional constraint in the formulation (5.3) is often assumed, yielding C = {f ∈ Rn :
f ≥ 0,

∑n
i=1 fi = c}, where the linear equation

∑n
i=1 fi = c is usually referred to

as flux condition. In such a case, the following modification of the scaling matrix
is considered:

Dk = diag

{
max

{
c1,

f
(k)
i

Vi(f (k);y)

}}
,

where c1 > 0 is a prefixed threshold such that c1∥x∥2 ≤ xTDx ≤ c2∥x∥2, for all
x ∈ Rn. The threshold c2 is chosen to be

c2 =
c

ν
with ν = min

i

{
min
f∈C
{Vi(f ;y)}

}
.

With this choice for the scaling matrix, the projection can obtained by solving
a separable quadratic program for which efficient linear-time solvers can be used
[17].
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Algorithm 1 Scaled Gradient Projection Method

Choose the starting point f (0) ∈ C, set the parameters 0 < αmin < αmax and
β, γ ∈ (0, 1). Fix a positive integer κ.
for k = 0, 1, 2, . . . do

Step 1. Choose the parameter αk∈[αmin, αmax] and the scaling matrix
Dk∈DL;

Step 2. Projection: z(k) = PC,D−1
k
(f (k) − αkDk∇Υ(f (k);y)).

if z(k) = f (k) then stop: f (k) is a stationary point; end if
Step 3. Descent direction: d(k) = z(k) − f (k);
Step 4. Set µk = 1 and Υmax = max0≤j≤min(k,κ−1)Υ(f (k−j);y);
Step 5. Backtracking loop:

if Υ(f (k−j);y) + µkd
(k)) ≤ Υmax + βµk∇Υ(f (k);y)Td(k) then

go to Step 6;
else

set µk = γµk and go to Step 5;
end if

Step 6. Set f (k+1) = f (k) + µk d
(k).

end for

Finally, notice that the SGP algorithm can be used as an iterative regularization
method applied to the ML problem (un-regularized functional), by means of an
early stopping technique. The above presentation ca be repeated almost verbatim
by considering the functional ΥDM(f ;y) in place of Υ(f ;y).

To conclude, we report the following important result, that ensures the con-
vergence of the method when applied to (5.3). A convergence analysis of the
SGP method for the general case of the minimization of differentiable functions
on closed convex sets is carried out in [17].

Proposition 5.3 ([17]). Let {f (k)} be the sequence generated by applying algorithm
SGP to problem (5.3). Every accumulation point f∗ of {f (k)} is a constrained
stationary point, that is

∇Υ(f∗;y)T (f − f∗) ≥ 0 ∀x ∈ C.

If Υ(f ;y) is a convex function, then every accumulation point of {f (k)} is a solution
of problem (5.3).



5.2. SCALED GRADIENT PROJECTION METHOD 129

5.2.1 Practical implementation of SGP to the ROI CT prob-
lem

When the objective function reads as in (2.18)-(2.22) with p = 2, the (k + 1)-th
iteration, with k = 0, 1, 2, . . ., is given by:

f (k+1) = f (k) + µk

[
PΩf ,D

−1
k

(
f (k) − αkDk∇O(f (k))

)
− f (k)

]
(5.10)

where µk, αk are the steplengths, Dk is the scaling matrix and PΩf
is the projector

onto the feasible region Ωf . In the remainder of this Chapter, we assume p = 2
with respect to the formulations (2.18)-(2.22) and (2.19)-(2.23).

The updating rules for the scaling matrix Dk depends on the formulation of the
objective function and exploits the decomposition (5.6) of the gradient. We report
in Table 5.1 the functions U and V for the different functionals that compose the
implicit and the explicit objective function. Notice that the computation of the
gradient takes advantage of the fact that we choose a shearlets tight frame, hence
the equivalence ΦTΦ = 1NθNdtc

holds true.
In particular, when (2.18) is considered, we choose the following scheme:

Dk = diag

{
min

{
L,max

{
1

L
,

f (k)

WT (M+ µ(1NθNdtc
−M))Wf (k)

}}}
,

where Vrec(f
(k)) = WT (M + µ(1NθNdtc

−M))Wf (k) is the positive part of the
gradient decomposition (first plus third row in Table 5.1).
When, instead, the objective function reads as in (2.22), the updating rule for the
scaling matrix becomes:

Dk = diag

{
min

{
L,max

{
1

L
,

f (k)

Vrec(f (k)) + ρ VTV(f (k))

}}}
,

where Vrec(f (k)) is defined as above and

VTV(f) = {2q′δ(D2
jrow,jcol

) + q′δ(D
2
jrow,jcol−1) + q′δ(D

2
jrow−1,jcol

)}fjrow,jcol

is the positive part on the gradient decomposition of the TV term only, given that
the negative part is:

UTV(f) = q′δ(D
2
jrow,jcol

)(fjrow+1,jcol + fjrow,jcol+1) + q′δ(D
2
jrow,jcol−1)fjrow,jcol−1

+ q′δ(D
2
jrow−1,jcol

)fjrow−1,jcol .

Notice that this term is calculated by exploiting the smooth discrete gradient
operator as described by the relation (2.21) with δ ̸= 0.
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V (f) U(f)

1

2
∥MWf − y0∥22 WTMWf WTMy0

1

2
∥(1NθNdtc

−M)(Wf − y)∥22 WT (1NθNdtc
−M)Wf WT (1NθNdtc

−M)y

µ∥Φ((1NθNdtc
−M)Wf + y0)∥22 µWT (1NθNdtc

−M)Wf µWT (1NθNdtc
−M)y0

TVδ(f) VTV(f) UTV(f)

Table 5.1: Positive and negative part of the decomposition of the gradient (with
respect to f) for the ROI CT functionals of the objective function.

Finally, when both the regularization term and the TV term are dropped in the
implicit formulation, the updating rule for the scaling matrix is given by:

Dk = diag

{
min

{
L,max

{
1

L
,

f (k)

WTMWf (k)

}}}
,

where VDM im(f (k)) = WTMWf (k) is the positive part of the gradient decompo-
sition for the data mismatch term (first row in Table 5.1). In all the formulae
above reported, the notation is consistent with the one introduced in Chapter 2,
L is a suitable threshold and the quotient of the two arrays is understood in the
Hadamard sense, i.e., component-wise.

As far as the steplength αk concerns, the strategy proposed in [59] consists in
an adaptive alternation between the values

ᾱk = max
{
αmin,min

{
αmax, α

BB1
k

}}
α̃k = max

{
αmin,min

{
αmax, α

BB2
k

}}
where αBB1

k and αBB2
k are defined as in (5.7)-(5.8). The details of the steplength

selection are given in Algorithm 2.
When the objective function reads as in (2.19)- (2.23), the SGP method needs

to be setup for the case of the “enlarged” variable
(
f
y

)
. This is accomplished

by exploiting “enlarged” variables s(k−1) and ζ(k−1) to update the steplength αk
and by tacking a block-diagonal scaling matrix Dk = diag(Df

k, D
y
k ). In details,

analogously to the implicit case, the blockDf
k corresponding to the image f depends

on the terms that appears in the objective function formulation, but the formulae



5.2. SCALED GRADIENT PROJECTION METHOD 131

Algorithm 2 Steplength selection
if k = 0 then

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a nonnegative integer κα;
else

if s(k−1)TD−1
k ζ(k−1) ≤ 0 then

α
(1)
k = αmax;

else
α
(1)
k = max

{
αmin,min

{
s(k−1)TD−1

k D−1
k s(k−1)

s(k−1)TD−1
k ζ(k−1)

, αmax

}}
;

end if
if s(k−1)TD−1

k ζ(k−1) ≤ 0 then
α
(2)
k = αmax;

else
α
(2)
k = max

{
αmin,min

{
s(k−1)TDkζ

(k−1)

ζ(k−1)TDkDkζ(k−1)
, αmax

}}
;

end if
if α(2)

k /α
(1)
k ≤ τk then

αk = min
{
α
(2)
j , j = max{1, k − κα}, . . . , k

}
;

τk+1 = τk ∗ 0.9;
else

αk = α
(1)
k ;

τk+1 = τk ∗ 1.1;
end if

end if

are slightly different from the implicit case. When the objective function reduces
to the data mismatch term, the updating rule for the scaling matrix is given by:

Df
k = diag

{
min

{
L,max

{
1

L
,

f (k)

WTWf (k)

}}}
,

where VDMex(f (k)) = WTWf (k) is the positive part of the gradient decomposition
for the explicit data mismatch term (first plus second row in Table 5.1). This
applies also when the objective function reads as in (2.19), since the shearlets-
based term now depends only on y. When the objective function reads as in
(2.23), the updating rule for the scaling matrix becomes:

Df
k = diag

{
min

{
L,max

{
1

L
,

f (k)

VDMex(f (k)) + ρ VTV(f (k))

}}}
,

where VDMex(f (k)) is defined as above and VTV(f
(k)) is, again, the positive part on

the TV gradient decomposition (fourth row in Table 5.1). Instead, for the block
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corresponding to the full sinogram y, we take Dy
k = 1NθNdtc

for each k = 0, 1, 2, . . .,
and regardless of the formulation of the objective function. Hence, the (k + 1)-th
iteration, with k = 0, 1, 2, . . ., is given by:

(
f (k+1)

y(k+1)

)
=

(
f (k)

y(k)

)
+ µk

⎛⎝PΩf

(
f (k) − αkDf

k∇fO(f (k),y(k))
)
− f (k)

Py≥0

(
y(k) − αk∇yO(f (k),y(k))

)
− y(k)

⎞⎠ .

The steplength selection is still performed as in Algorithm 2, but s(k−1) and ζ(k−1)

are now the following “enlarged” variables:

s(k−1) =

(
f (k) − f (k−1)

y(k) − y(k−1)

)
, ζ(k−1) =

(
∇fO(f (k),y(k))−∇fO(f (k−1),y(k−1))
∇yO(f (k),y(k))−∇yO(f (k−1),y(k−1))

)
.

Notice that there exists also a “block” version of SGP, called cyclic scaled gradient
projection (CBGP), whose convergence analysis is carried out in [134]. In this
approach, each (outer) iteration consists of alternating an update of the object
f and of the full sinogram y by means of fixed numbers of (inner) iterations of
SGP, also allowing a different number of (inner) iterations in the two cases. We
conjecture that this approach can be suitable to the ROI CT problem, but no
numerical experiments has been performed, yet.

Finally, notice that since the feasible region in (2.22) and (2.23) is either a
box or a non-negativity constraint, there is no need to solve a separable quadratic
program. The projection step in both versions of SGP is performed by simply
thresholding the values outside the feasible region.

5.3 Variable metric inexact line-search algorithm
In the previous section, a method belonging to the class of gradient projection
methods, SGP, has been introduced. In 2014, the convergence results of SGP have
been extended to the case of different metrics [15], in place of the scaled euclidean
projection defined in (5.2).
An additional step is provided by the variable metric inexact line-search algorithm
(VMILA), a proximal-gradient (or forward-backward) method, very recently pro-
posed in [14]. VMILA is suitable for minimizing the sum of a differentiable, possi-
bly nonconvex, function plus a convex, possibly non differentiable, function. The
ROI CT nonsmooth formulation (2.18) with p = 1 clearly belongs to this problem
class, making VMILA perfectly suitable.

Similarly to the SGP case, a general description of VMILA, whose main steps
are stated in Algorithm 4, will be given and, then, some considerations for its
practical implementation to the ROI CT problem will be discussed. First, we
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recall the fundamental definition of proximity operator, which will come into play
in the following.

Definition 5.4 ([19]). Let 𭟋 : Rn → R be a convex function and D a symmetric
positive definite matrix. The proximity operator associated to 𭟋 in in the metric
induced by D is defined to be:

proxD𭟋(x) = argmin
z∈Rn

{
𭟋(z) +

1

2
∥z − x∥2D

}
, ∀x ∈ Rn.

The general framework of VMILA applies to problems of the form

min
f∈Rn

Γ(f) = Γ0(f) + Γ1(f), (5.11)

where Γ1 is a proper, convex, lower semicontinuous function and Γ0 is smooth,
i.e., continuously differentiable, on an open subset C0 ⊂ Rn containing dom(Γ1) =
{f ∈ Rn : Γ1(f) < +∞}. Such a formulation includes also constrained problems
over convex sets, by consedering the indicator function ιC of the feasible set C into
Γ1:

ιC(x) =

{
0 if x ∈ C
+∞ if x ̸∈ C

.

Notice that, by adopting the usual conventions

a+ (+∞) = +∞, a(+∞) = +∞, 1

0
= +∞ and

1

+∞
= 0,

with a ∈ R ∪ {+∞}, the indicator function above defined and the characteristic
function defined in (2.4) are related by the equations

1C(x) =
1

1 + ιC(x)
and ιC(x) = (+∞)(1− 1C(x)).

Hence, one can freely convert between the two definitions, but the indicator func-
tion as defined above is better-suited to the methods of convex analysis.
The (k + 1)-th iteration, with k = 0, 1, 2, . . ., is given by:

f (k+1) = f (k) + µk (v
(k) − f (k))

where the steplength µk is determined by means of a backtracking loop until a
modified Armijo inequality is satisfied. The description of this rule is reported in
Algorithm 3. The term v(k) − f (k) is the descent direction, where

v(k) = argmin
v∈Rn

hσ(k)(v, f (k)) with

hσ(k)(v, f (k)) = ∇Γ0(f
(k))T (v − f (k)) + dσ(k)(v, f (k)) + Γ1(v)− Γ1(f

(k))

(5.12)
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Algorithm 3 Modified Armijo linesearch algorithm: computation of µk
Let {f (k)}k∈N, {v(k)}k∈N be two sequences of points in C, and {σ(k)}k∈N be a
sequence of parameters in Σ. Choose β, γ ∈ (0, 1).
for k = 0, 1, 2, . . . do

Step 1. Set µk = 1 and d(k) = v(k) − f (k).
Step 2. if Γ(f (k)+µkd

(k)) ≤ f (k)+βµk∆
(k), with ∆(k) = hσ(k)(v(k), f (k)) then

go to step 3.
else

set µk = γµk and go to Step 2.
Step 3. end if

end for

and dσ : Rn×Rn → R+ depends on the set of parameters σ ∈ Σ and is a distance-
like function, namely it is continuous, smooth, strongly convex and dσ(z, x) = 0 if
and only if z = x, where z, x ∈ Rn.

When dσ is the (scaled) euclidean distance, with σ = (α,D), where α > 0 and
D is a symmetric positive definite matrix:

dσ(v, f) =
1

2α
∥v − f∥2D, (5.13)

an easy computation yields

argmin
v∈Rn

hσ(v, f) = proxDαΓ1
(f − αD−1∇Γ0(f)) (5.14)

where proxDαΓ1
is the proximity or resolvent operator associated to the convex

function αΓ1, in the metric induced by the matrix D. Indeed,

proxDαΓ1
(f − αD−1∇Γ0(f)) = argmin

v∈Rn

{
Γ1(v) +

1

2α
∥v − (f − αD−1∇Γ0(f))∥2D

}
= argmin

v∈Rn

{
Γ1(v) +

1

2α
∥(v − f) + αD−1∇Γ0(f))∥2D

}
= argmin

v∈Rn

{
Γ1(v) +

1

2α
(v − f)TD(v − f)

+
α2

2α
(∇Γ0(f))

TD−1DD−1∇Γ0(f)

+ 2
α

2α
(v − f)TDD−1∇Γ0(f)

}
= argmin

v∈Rn

{
Γ1(v) +

1

2α
(v − f)TD(v − f) + (v − f)T∇Γ0(f)

}
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Algorithm 4 Variable Metric Inexact Line-search Algorithm
Choose 0 < αmin ≤ αmax, set the parameters β, γ ∈ (0, 1), η ∈ (0, 1] and the
starting point f (0) ∈ C.
for k = 0, 1, 2, . . . do

Step 1. Choose the parameter αk∈[αmin, αmax] and the scaling matrix
Dk∈DL;

Step 2. Compute ṽ(k): compute a dual vector υ(l) ∈ Rm̃ and the correspond-
ing

primal vector ṽ(k,l) such that (5.19) is satisfied, then set ṽ(k) = ṽ(k,l).
Step 3. Descent direction: d(k) = ṽ(k) − f (k);
Step 4. Compute the steplength parameter µk with Algorithm 3;
Step 5. Set f (k+1) = f (k) + µk d

(k).
end for

where, in the first equality, it has been used the general definition of the proximity
operator associated to a convex function, in the metric induced by a symmetric
positive definite matrix (see Definition 5.4). On the other hand, we have:

argmin
v∈Rn

hσ(v, f) = argmin
v∈Rn

{
∇Γ0(f)

T (v − f) +
1

2α
∥v − f∥2D + Γ1(v)− Γ1(f)

}
= argmin

v∈Rn

{
∇Γ0(f)

T (v − f) +
1

2α
(v − f)TD(v − f) + Γ1(v)− Γ1(f)

}
= argmin

v∈Rn

{
Γ1(v) +

1

2α
(v − f)TD(v − f) + (v − f)T∇Γ0(f)

}
whence the equality (5.14).

Other examples of distance-like functions are the Bregman distances associated
to a strongly convex function. In the following, it is assumed that dσ is the scaled
euclidean distance. Notice that α and D have exactly the same role as in SGP,
i.e., α is a steplength and D a scaling matrix. In particular, αk shall be chosen in
the closed interval [αmin, αmax] ⊂ R+, and the scaling matrix Dk in the compact
set DL, where DL is the set of the symmetric positive definite matrices D such
that ∥D∥ ≤ L and ∥D−1∥ ≤ L, for a given threshold L > 1. Therefore, the same
strategy used in SGP can be exploited (i.e., Algorithm 2 for α and relation (5.9)
for D).

It can be shown that f is a stationary point for (5.11) if and only if f =
argminv∈Rn hσ(v, f). Hence, the operator p : C0 → C associated to the function hσ,
defined by

p(f ;hσ) = argmin
z∈Rn

hσ(z, f),

plays exactly the same role that the projection operator PC,D, defined in (5.2),
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plays in SGP. Moreover, the general SGP formulation is a particular case of the
VMILA setup, which can be recovered by taking Γ1 = ιC, and dσ(v, f) equal to the
scaled euclidean distance, as defined in (5.13). Thus, VMILA can be understood
as a nonsmooth version of SGP.

The following proposition resumes a convergence result of VMILA when applied
to (5.11). A more general convergence analysis, even for the nonconvex case, also
accounting for the convergence rate under the assumption of Lipschitz continuity
for the smooth part of the objective function, is carried out in [14].

Proposition 5.5 ([14]). Let {f (k)}k∈N, {ṽ(k)}k∈N be two sequences of points in C,
and {σ(k)}k∈N ⊂ Σ. Assume that there exists a limit point f∗ of {f (k)}k∈N and let
K ′ ⊆ N be a subset of indices such that limk∈K′, k→∞ f (k) = f ∈ C. Assume that,
for any k ∈ N we have

Γ(f (k+1)) ≤ Γ(f (k) + µkd
(k)), d(k) = ṽ(k) − f (k),

where µk is computed by Algorithm 3, ṽ(k) satisfies hσ(k)(ṽ(k), f (k)) < 0 and there
exists K ′′ ⊆ K ′ such that

lim
k∈K′′, k→∞

{
hσ(k)(ṽ(k), f (k))− hσ(k)(v(k), f (k))

}
= 0, with v(k) = p(f (k);hσ(k)).

Then f∗ is a stationary point for problem (5.11).

In many common situation, including ROI CT, the proximity operator arising
from the minimization problem in (5.12) can not be computed in a closed-form
and therefore one aims for an approximation. In [14] two types of admissible
approximations are devised, but we will consider and introduce only the so-called
η-approximation. This approximation is based on the following definition:

Pη(f ;hσ) = {ṽ ∈ C : hσ(ṽ, f) ≤ η hσ(v, f), where v = p(f ;hσ)}

for some η ∈ (0, 1]. It can be shown that, if

ṽ ∈ Pη(f ;hσ),

then hσ(ṽ, f) ≤ 0 and hσ(ṽ, f) = 0 if and only if hσ(v, f) = 0, which implies
ṽ = v. Under the condition ṽ(k) ∈ Pη(f (k);hσ), the following convergence result
holds true.

Proposition 5.6 ([14]). Let η ∈ (0, 1], {σ(k)}k∈N ⊂ Σ and {f (k)}k∈N ⊂ C satisfying
the following condition:

Γ(f (k+1)) ≤ Γ(f (k) + µkd
(k)), with d(k) = ṽ(k) − f (k)

where µk is computed by Algorithm 3, with ṽ(k) ∈ Pη(f
(k);hσ). Then, either for

some k the iterate f (k) is stationary for problem (5.11), or any limit point f∗ of
{f (k)}k∈N is stationary for problem (5.11).
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The η-approximation can be practically computed when

Γ1(f) = g(Bf), (5.15)

where B ∈ Rm̃×n and g : Rm̃ → R is a proper, convex, lower semicontinuous func-
tion with an easy-to-compute resolvent operator. In this case, VMILA consists in a
double loop method, where the inner loop, designed to compute an approximation
of the proximity operator, is devised with a suitable stopping criterion.
In the η-approximation case, the minimization problem in (5.12) is written in an
equivalent dual form, namely:

min
v∈Rn

hσ(k)(v, f (k)) = max
υ∈Rm̃

Hσ(k)(υ, f (k))

with

Hσ(k)(υ, f (k)) = −
1

2αk

αkD−1
k BTυ − z(k)

2
Dk

− g∗(υ)− Γ1(f
(k))

− αk
2

∇Γ0(f
(k))
2
D−1

k

+
1

2αk

z(k)2
Dk

(5.16)

where z(k) = f (k) − αkD−1
k ∇Γ0(f

(k)), υ ∈ Rm̃ is the dual variable whose primal is
v ∈ Rn and g∗ is the conjugate function of g defined by [19]:

g∗(ξ) = sup
x∈Rm̃

{
xT ξ − g(x)

}
∀ξ ∈ Rm̃. (5.17)

Indeed, relation (5.17), that is g(Bv) = maxυ∈Rm̃ υTBv − g∗(υ), yields:

min
v∈Rn

hσ(k)(v, f (k)) = min
v∈Rn

{
(∇Γ0(f

(k)))T (v − f (k)) +
1

2αk
∥v − f (k)∥2Dk

+ Γ1(v)− Γ1(f
(k))
}

= min
v∈Rn

{
(∇Γ0(f

(k)))T (v − f (k)) +
1

2αk
∥v − f (k)∥2Dk

+ g(Bv)− Γ1(f
(k))
}

= min
v∈Rn

max
υ∈Rm̃

{ 1

2αk
∥v − f (k)∥2Dk

+ (∇Γ0(f
(k)))T (v − f (k))− Γ1(f

(k))

+ vTBTυ − g∗(υ)
}
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By adding and subtracting the term 1
2αk
∥αk∇Γ0(f

(k))∥2
D−1

k

, we get:

min
v∈Rn

hσ(k)(v, f (k)) = min
v∈Rn

max
υ∈Rm̃

{
vTBTυ − g∗(υ)− Γ1(f

(k)) +
1

2αk
∥v − f (k)∥2Dk

+ (∇Γ0(f
(k)))TDkD

−1
k (v − f (k)) +

1

2αk
∥αk∇Γ0(f

(k))∥2
D−1

k

− 1

2αk
∥αk∇Γ0(f

(k))∥2
D−1

k

}
= min

v∈Rn
max
υ∈Rm̃

{
vTBTυ − g∗(υ)− Γ1(f

(k))− αk
2
∥∇Γ0(f

(k))∥2
D−1

k

+
1

2αk

[
∥v∥2Dk

− 2vTDk

(
f (k) − αkD−1

k ∇Γ0(f
(k))
)]

+
1

2αk
∥f (k) − αkD−1

k ∇Γ0(f
(k))∥2Dk

}
= min

v∈Rn
max
υ∈Rm̃

{
vTBTυ − g∗(υ)− Γ1(f

(k))− αk
2
∥∇Γ0(f

(k))∥2
D−1

k

+
1

2αk

[
∥v∥2Dk

− 2vTDkz
(k)
]
+

1

2αk

z(k)2
Dk

}
where we used the equality z(k) = f (k) − αkD

−1
k ∇Γ0(f

(k)). By minimizing with
respect to v ∈ Rn (i.e., by posing the gradient with respect to v ∈ Rn equal to 0),
we get:

v = z(k) − αkD−1
k BTυ (5.18)

that expresses the relation between the primal and the dual variable. Observe
that:

− 1

2αk

αkD−1
k BTυ − z(k)

2
Dk

= −αk
2

BTυ
2
D−1

k

− 1

2αk

z(k)2
Dk

+ υTBz(k),

By using (5.18) and the previous relation we are led to:

min
v∈Rn

hσ(k)(v, f (k)) = max
υ∈Rm̃

{
(z(k) − αkD−1

k BTυ)TBTυ − g∗(υ)− Γ1(f
(k)) +

1

2αk

z(k)2
Dk

− αk
2
∥∇Γ0(f

(k))∥2
D−1

k
+

1

2αk
∥z(k) − αkD−1

k BTυ∥2Dk

− 1

αk

[
(z(k) − αkD−1

k BTυ)TDkz
(k)
]}

= max
υ∈Rm̃

{
− 1

2αk

αkD−1
k BTυ − z(k)

2
Dk

− g∗(υ)− Γ1(f
(k))

− αk
2

∇Γ0(f
(k))
2
D−1

k

+
1

2αk

z(k)2
Dk

}
= max

υ∈Rm̃
Hσ(k)(υ, f (k))
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Observe that formulation (5.15) includes also the case where Γ1(f) is defined
as

Γ1(f) =

q̃∑
j=1

gj(Bjf)

where Bj ∈ Rm̃j×n and gj : Rm̃j → R. In this case, formulation (5.15) is recovered
by setting

B = [BT
1 BT

2 . . . BT
q̃ ]
T ∈ Rm̃×n

with
∑q̃

j=1 m̃j = m̃. By analogy, the dual variable υ is partitioned ad υ =

[υT1 υ
T
2 . . . υTq̃ ], where υj ∈ Rm̃j and g∗(υ) =

∑q̃
j=1 g

∗
i (υi).

An approximation ṽ(k) ∈ Rn of v(k) ∈ Rn can be computed by applying a
suitable method for the solution of optimization problems to the dual problem

max
υ∈Rm̃

Hσ(k)(υ, f (k)),

generating a sequence {υ(l)}l∈N such that Hσ(k)(υ(l), f (k)) converges to the maxi-
mum ṽ(k,l) of the dual function Hσ(k)(·, f (k)). For instance, if the dual problem
is differentiable, as in the ROI CT case, SGP is a suitable choice. By exploiting
(5.18), namely

ṽ(k,l) = z(k) − αkD−1
k BTυ(l),

we set ṽ(k) = ṽ(k,l) (i.e., we stop the dual iterations) when the following inequality
is satisfied:

hσ(k)(ṽ(k,l), f (k)) ≤ η Hσ(k)(υ(l), f (k)), (5.19)

for a given η ∈ (0, 1]. Notice that any point ṽ(k,l) which satisfies (5.19) belongs to
the domain C of hσ(k)(·, f (k)). However, a very large number of inner iterations l
may be required to satisfy (5.19) and the primal sequence points ṽ(k,l) might be
feasible only in the limit. For this reason, it may be convenient to consider also
the sequence generated by projecting ṽ(k,l) onto the domain C of hσ(k)(·, f (k)), i.e.,
the sequence PC(ṽ

(k,l)), where PC denotes as usual the euclidian projection onto
the set C. Hence, to preserve feasibility, we can set ṽ(k) = PC(ṽ

(k,l)) if at some
iteration l of the inner loop the following inequality is satisfied:

hσ(k)(PC(ṽ
(k,l)), f (k)) ≤ η Hσ(k)(υ(l), f (k)).

Indeed, when ṽ(k,l) converges to v(k) as l diverges, also the sequence PC(ṽ
(k,l))

converges to v(k), whence the well-posedness of the above stopping criterion.
Finally, observe that, even if the presence of two nested loops might increase

the computational cost, in many practical case the inner loop requires only a few
number of iteration to satisfy (5.19). Also, the possibility to use at each iterate
an approximation of the proximity operator makes the method well suited for the
solution of a wide variety of structured problems.
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5.3.1 Practical implementation of VMILA to the ROI CT
problem

When the objective function reads as in (2.18), with p = 1, it is clear that VMILA
can be applied by posing:

Γ0(f) =
1

2

MWf − y0

2
2

and Γ1(f) = µ
Φ((1NθNdtc

−M)Wf + y0)

1
+ ιΩf

(f),

where ιΩf
is the indicator function of the feasible region Ωf . In the remainder of

this chapter, we assume p = 1 with the respect to formulations (2.18)-(2.22). The
(k + 1)-th iteration, with k = 0, 1, 2, . . ., is given by:

f (k+1) = f (k) + µk

[
prox

D−1
k

αkΓ1
(f (k) − αkDk∇Γ0(f

(k)))− f (k)
]

where µk, αk are the steplengths and Dk is the scaling matrix. The updating rule
for αk is the adaptive steplength selection given by Algorithm 2, while, for each
k = 0, 1, 2, . . ., we take

Dk = diag

{
min

{
L,max

{
1

L
,

f (k)

WTMWf (k)

}}}
,

where VDM(f (k)) = WTMWf (k) is the positive part of the gradient decomposition
for the smooth term of the the objective function (first row in Table 5.1). Here,
the proximity operator is computed by means of the η-approximation, by apply-
ing SGP with the scaling matrix equal to the identity matrix and the steplength
adaptively selected as described in Algorithm 2. Notice that, in this case, the
steplengths αBB1 and αBB2 reduce to the standard BB rules. The matrix B is ex-
pressed by means of blocks, i.e., B = [BT

1 BT
2 ]
T . The first block B1 ∈ RNθNdtc×N2

corresponds to the 1-norm term while the second one, B2 ∈ RN2×N2 accounts for
the indicator function. In details,

B =

(
Φ(1NθNdtc

−M)W
1N2

)
∈ R(NθNdtc+N

2)×N2

,

where, according to the notation introduced in Chapter 2, Φ is the shearlet matrix,
M is the mask and W is the forward projection matrix. Moreover, the dual variable
υ = [υT1 υ

T
2 ]
T belongs to RNθNdtc+N

2 , with υ1 ∈ RNθNdtc and υ2 ∈ RN2 . Next, g∗ =
g∗1(υ1)+g

∗
2(υ2), where g∗1 is the indicator function of the setB∞(0, 1)×. . .×B∞(0, 1),

being B∞(0, 1) ⊂ R the ball in the infinity-norm centered in 0 with radius 1, and
g∗2 is the indicator function of the set RN2

− . Notice that RN2

− accounts only for
the projection onto the nonnegative portion of the plane, by exploiting the dual
sequence υ(l) with l denoting the inner loop iteration. To preserve the feasibility
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of the box constraint Ωf , we consider the sequence generated by projecting the
corresponding primal sequence ṽ(k,l) onto Ωf .

As in the smooth case, a total variation term can be added to formulation
(2.18), yielding (2.22). This can be done in two ways:

• Add smooth TV. In this case, since we are dealing with the smoothed version
of TV, we simply add it to Γ0:

Γ0(f) =
1

2

MWf − y0

2
2
+ ρ TVδ(f)

Γ1(f) = µ
Φ((1NθNdtc

−M)Wf + y0)

1
+ ιΩf

(f).

The gradient of the smoothed TV term is computed by exploiting the smooth
discrete gradient operator as defined in (2.21), exactly as in SGP. In this case,
for each k = 0, 1, 2, . . ., the scaling matrix is given by:

Dk = diag

{
min

{
L,max

{
1

L
,

f (k)

WTMWf (k) + ρ VTV(f (k))

}}}
,

where VTV(f
(k)) is the positive part on the gradient decomposition of the TV

term only.

• Add nonsmooth TV. In this case, the TV term must be added to Γ1, yielding:

Γ0(f) =
1

2

MWf − y0

2
2

Γ1(f) = µ
Φ((1NθNdtc

−M)Wf + y0)

1
+ ιΩf

(f) + ρ TV(f).

As a consequence, the matrix B “gains” another block corresponding to the
TV term. By exploiting the discrete gradient operator ∇i ∈ R2×N2 at the
pixel i as defined in (2.20), B = [BT

1 BT
2 BT

3 ]
T becomes

B =

⎛⎝Φ(1NθNdtc
−M)W

1N2

∇

⎞⎠ ∈ R(NθNdtc+N
2+2N2)×N2

,

where B1 ∈ RNθNdtc×N2 , B2 ∈ RN2×N2 , and B3 = ∇ = (∇T
1 . . .∇T

N2)T ∈
R2N2×N2 . The dual variable υ = [υT1 υ

T
2 υ

T
3 ]
T belongs to RNθNdtc+N

2+2N2 and
g∗ = g∗1(υ1) + g∗2(υ2) + g∗3(υ3), where g∗1 is the indicator function of the set
B∞(0, 1)×. . .×B∞(0, 1), g∗2 is the indicator function of RN2

− and, finally, g∗3 is
the indicator function of the set B2(0, ρ)× . . .×B2(0, ρ), being B2(0, ρ) ⊂ R2

the 2D euclidean ball centered in 0 with radius ρ.
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The nonsmooth approach for total variation is still a work in progress, due to the
increased numerical difficulties and no numerical experiment has been performed,

yet. A version of VMILA for the “enlarged” variable
(
f
y

)
is also a work in progress:

the idea is to implement a block-cyclic version of VMILA, similar to CBGP [134].



Chapter 6

Numerical experiments

The goal of this Chapter is to validate by syntectic simulated data the ad hoc
algorithms developed and analyzed in Chapter 5. To this end, we present extensive
numerical results for both smooth and nonsmooth formulation of the ROI CT
reconstruction problem in the framework of 2D fan-beam geometry. Then, as
a benchmark comparison, we consider a traditional technique, that is the least
squares conjugate gradient (LSCG) method [80]. Discussions and remarks on the
results obtained conclude the Chapter.

6.1 Data simulation

To demonstrate and validate our approach, we use a synthetic data set known
as modified Shepp-Logan phantom (see Figure 6.1a), sized N × N pixels with
N = 128. It is available, for instance, in the Matlab Image Processing toolbox. All
phantom data are simulated using the geometry of a micro-CT scanner used for
real measurements (see Figure 6.1b). The 2D fan-beam data are simulated over
Nθ = 182 uniformly spaced angles over 2π. The detector consists of Ndtc = 130
elements with a pixel pitch of 0.8mm. The distance between tube and detector
is set to 291.20mm and the radius of rotation is 115.84mm. The detector is
offset by 1.5 pixels. The matrix W that represents a discretization of the 2D fan-
beam geometry, according to the above specifications, is implemented by using the
efficient vectorized implementation of the distance-driven technique presented in
Chapter 3.

The results reported in the following covers concentric ROI disks that, accord-
ing to the hypothesis of the interior tomography problem, are fully inside the object
being imaged, with decreasing ROI radius rROI, placed off-center with respect to
the FOV, namely, in pixels, pROI = (64, 80). Here, the Shepp-Logan phantom is
assumed to be placed in the first quadrant of the Cartesian coordinate system with

143
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(a) Modified Shepp-Logan phantom.
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(b) Corresponding sinogram.

Figure 6.1: The modified Shepp-Logan phantom, sized N×N pixels with N = 128,
and the corresponding noise free sinogram obtained according to a 2D fan-beam
geometry of a micro-CT scanner.

the image lower left corner at the origin. Also, a larger ROI radius that exceeds
the object along one coordinate axis, i.e., rROI = 0.5N , has been considered for
comparison. We report in Figure 6.2 the ROI with decreasing radii considered for
the numerical simulation: the ROI is identified with a dashed white circle. Trun-
cated projection data were obtained by discarding the samples outside the ROI
projection P(S) (see Figure 6.3). This, indeed, corresponds to a ROI disk in the
image domain, as outlined in Section 2.2.1. Here, we assume that the noise that
corrupts projection data is described by a white Gaussian process (see Example
5.1), with zero mean and a 5% variance (see Figure 6.4).

All numerical tests were compared against two state of the art figures of merit,
namely the peak-signal-to-noise ratio (PSNR) and the relative error. We recall
that the PSNR, measured in dB, is defined as follows:

PSNR = 10 log10

(
MPV2

eMSE

)

where MPV is the maximum pixel value and eMSE is the mean squared error. We
stress that both PSNR and relative error are evaluated inside the ROI S only.
This is consistent with the motivation of ROI CT, that aims to recover the image
inside the ROI only.

Notice that the measure of the relative error evaluated inside the ROI has been
used as a suitable criterion for stopping the iterations of the proposed algorithms,
namely, we stop the iterations when the difference between the values of the ROI
relative error of two consecutive iterations is smaller that a certain threshold τit.
Roughly, this means that the reconstructed solution does not change appreciably
after the threshold has been reached. A rule of thumb for choosing τit does not
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
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Figure 6.2: Decreasing ROI disk, identified with the dashed white circle, super-
imposed to the modified Shepp-Logan phantom. The aim is to recover the image
inside the ROI only.

exist, and its choice follows from our experience. In this thesis, we used τit =
10−7 for obtaining satisfactory reconstructions with SGP, and τit = 10−4 as a
reliable value for VMILA. The different threshold between the two approaches
only aims at obtaining more accurate reconstructions. Also, VMILA requires to
set an additional parameter η ∈ (0, 1], from Equation (5.19), that controls the
stopping criterion for the inner loop: this clearly needs to be tuned with the
threshold for the outer loop. In this thesis, we set η = 10−5. Further, a maximum
number of 200 inner iterations is also imposed. This is just a precaution, since,
in the results reported in Section 6.3, the criterion (5.19) is always met before
reaching the prefixed maximum number of iterations. We set a precautionary
maximum number of 7000 (outer) iterations also for SGP and VMILA, but in the
results reported throughout the Chapter it was never attained (i.e., iterations are
stopped on the threshold τit criterion).

The choice of the regularization parameters µ, ρ is also crucial for a good
restoration result. As we already stressed in Chapter 5, a general analytical method
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Figure 6.3: Simulated sinogram corrupted by white Gauss noise, with zero mean
and a 5% variance. The two sinusoidal dashed white lines identify the truncated
sinogram, according to the above specified RROI.

that applies to all the different formulations of the objective function (explicit and
implicit, smooth and nonsmooth), is not available, and it is even more difficult
when there is more than one parameter to assess. Since the original object was
available, we choose the values of µ and ρ providing the minimum ROI relative error
(and maximum ROI PSNR), by sampling the values 10ℓ, with ℓ = −4,−3, . . . , 4,
for the regularization parameter µ, and the values 10−2, 10−1, 1, 10 for the TV
parameter ρ. The TV smooth parameter δ is set equal to 10−4. Recall that SGP
works not only as a minimization method for a regularized objective functional but
also as an iterative regularization method applied to the not-regularized functional
by means of an early stopping technique. In the latter case the semi-convergent
behavior of the algorithm can be exploited to stop the iteration, and the number
of iteration required serves as regularization parameter for the method. The same
holds true for VMILA, but in the ROI CT case the not-regularized term, i.e.,
the discrepancy term, of the objective function is smooth: in this case, VMILA is
nothing but SGP.

As far as the Tikhonov-like regularization term concerns, the shearlet opera-
tor was obtained by using the Spot–A Linear-Operator Toolbox with the routine
kindly provided by Wang-Q Lim, co-author of one of available shearlets packages
(see Section 4.4 for more details about shearlets implementation and available soft-
wares). In details, the number of scales for the shearlet transform has been set
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(a) Noise-free sinogram.
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(b) Noisy sinogram.
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Figure 6.4: The noise-free full sinogram (left), the noisy sinogram (center) and
their difference (right), that reveals the amount of noise.

equal to 4 and the number of directions across the scales is set to (8, 8, 16, 16).
The threshold L for the scaling matrix Dk has been set equal to 105, and,

concerning the steplength αk defined by Algorithm 2, we set αmin = 10−5, αmax =
105 and α0 = 1.3 (see Section 5.2.1). For the line search parameters we used
γ = 0.4, β = 10−4, and κ = 10 for the nonmonotone version. These choices for the
scaling matrix, the steplength rule and the line search parameters apply to both
SGP and VMILA.

Finally, the proposed methods imply the use of an iterative algorithm with an
initial guess f (0). We choose to use the vector of all zeros, as first estimate for
f (0). There is a vast literature about the influence of the choice of the initial guess
for diverse classes of algorithms, for instance [154]. However, as far as SGP and
VMILA concern, the line search strategy ensures global convergence. In VIMILA,
the initial guess of the inner loop at the first outer iterate is, likewise, the vector
of all zeros, while at all successive iterates a “warm start” is exploited, namely the
inner solver is initialized with the dual solution computed at the previous iterate.

All the algorithms were implemented in Matlab 8.1.0 and the experiments
performed on a dual CPU server, equipped with two 6-cores Intel Xeon X5690 at
3.46GHz, 188 GB DDR3 central RAM memory and up to 12 TB of disk storage.

6.2 SGP: smooth objective function

In this Section we present the results obtained using SGP on the modified Shepp-
Logan phantom previously described. For sake of convenience, the results are
organized in two different Subsections, depending on the implicit or explicit for-
mulation. At the end of the Section, pros and cons of the two approaches are
compared to assess the best approach with respect to both the objective function
and the regularization parameters.
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
iter value param iter value param iter value param

PSNR
Sh+TV 686 32.34 µ = 10−4 931 38.98 µ = 10−4 2986 41.35 µ = 10−4

ρ = 0.1 ρ = 1 ρ = 10
Sh 1308 23.95 µ = 10−2 1186 26.63 µ = 10−4 1544 26.09 µ = 10−4

TV 1341 32.12 ρ = 0.1 1845 40.22 ρ = 1 1661 44.09 ρ = 1
ES 156 31.12 45 34.68 36 38.37

Relative error
Sh+TV 686 0.12 µ = 10−4 931 0.12 µ = 10−4 2986 0.11 µ = 10−4

ρ = 0.1 ρ = 1 ρ = 10
Sh 2986 0.30 µ = 10−2 1186 0.50 µ = 10−4 1544 0.66 µ = 10−4

TV 1341 0.12 ρ = 0.1 1845 0.10 ρ = 1 1661 0.08 ρ = 1
ES 156 0.13 45 0.20 36 0.16

Table 6.1: Optimal results for all the formulation of the implicit objective function.
The corresponding reconstructed images are reported in Figure 6.6.
Sh+TV = shealerts and TV, (2.22). Sh = just shearlets, (2.18). TV = pure TV.
ES = early stopping.

6.2.1 Implicit formulation

Different versions of the SGP method have been designed to apply to the differ-
ent formulations of the implicit objective function, where “different” indicates the
variable level of regularization considered (see Section 5.2.1). Indeed, beside formu-
lations (2.18)-(2.22) with p = 2, we considered a pure TV approach and the early
stopping technique on the discrepancy term. In Tables 6.1 and 6.2 are reported
the optimal results for all the possible implicit formulation, and for decreasing ROI
radii, compared against the two state-of-the-art figures of merit specified in the
previous Section, namely the PSNR and the relative error, both evaluated inside
the ROI only. In both Tables, in each row, and for a fixed column (i.e., for a fixed
ROI radius rROI), it is reported the best value of the figure of merit (value), the
number of iteration at which was achieved (iter) and the corresponding optimal
regularization parameters (param). As already pointed out, for the early stopping
approach the number of iterations serves as regularization parameter.

The corresponding reconstructed images are reported in Figure 6.6 and 6.7,
respectively. In all the Figures, each row contains the ROI image reconstruction
obtained with a different formulations of the implicit objective function, while
each column contains the ROI image reconstructions obtained for a different ROI
radius. In all the Figures, the ROI is identified with a dashed white circle.

The results reported in Table 6.1, corresponding to the largest ROI radii rROI =
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rROI = 0.2N rROI = 0.15N rROI = 0.1N
iter value param iter value param iter value param

PSNR
Sh+TV 3071 39.89 µ = 10−4 2707 37.86 µ = 10−4 3296 36.51 µ = 10−4

ρ = 10 ρ = 10 ρ = 10
Sh 463 28.58 µ = 10−4 315 28.97 µ = 10−4 1347 28.10 µ = 10−4

TV 2257 45.86 ρ = 1 2236 47.87 ρ = 1 2038 51.28 ρ = 1
ES 46 40.61 36 42.47 46 45.58

Relative error
Sh+TV 3071 0.19 µ = 10−4 2707 0.35 µ = 10−4 3296 0.67 µ = 10−4

ρ = 10 ρ = 10 ρ = 10
Sh 463 0.69 µ = 10−4 315 0.97 µ = 10−4 1347 1.78 µ = 10−4

TV 2257 0.09 ρ = 1 2236 0.11 ρ = 1 2038 0.12 ρ = 1
ES 46 0.17 36 0.21 46 0.24

Table 6.2: Optimal results for all the formulation of the implicit objective function.
The corresponding reconstructed images are reported in Figure 6.7.
Sh+TV = shealerts and TV, (2.22). Sh = just shearlets, (2.18). TV = pure TV.
ES = early stopping.

0.5N, 0.3N, 0.25N , show that the best approaches are the ones that incorporate
the TV term in the formulation of the objective function (first and third rows).
The performance of the early stopping technique seems to be comparable, but with
a considerably lower number of iterations to converge, while the pure shearlets
approach shows increasing values for the ROI relative error and, correspondingly,
decreasing values for the ROI PSNR, as the ROI radius decreases. For the smallest
ROI radii, rROI = 0.2N, 0.15N, 0.1N , the situation is slightly different. As shown
in Table 6.2, the best approaches are pure TV and early stopping (third and fourth
rows). The shearlets plus TV approach exhibits worse values for both figures of
merit, but still acceptable, while the pure shearlets approach reaches unacceptable
values (the relative error is even ten times worse and the ROI PSNR loses out up
to 20 dB) as the ROI radius becomes smaller.

Except for the largest ROI radius rROI = 0.5N , the optimal value for the regu-
larization parameter µ is always equal to 10−4, the smallest one of the investigated
range, while the optimal value for the TV regularization parameter ρ is equal to
1, for the pure TV approach, and to 10, the largest one of the investigated range,
for the shearlets plus TV formulation.

The findings in Table 6.1 are confirmed by the corresponding reconstructed
images reported in Figure 6.6. Indeed, on a visual basis, the best reconstruction
are those whose corresponding approach includes the TV term. In these images
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Figure 6.5: Implicit formulation. Trend of the ROI PSNR (left) and the ROI
relative error (right) for decreasing ROI radii.

the contrast of the features inside the ROI is high and the transition between
the inside and the exterior of the ROI seems smooth (first and third rows in
Figure 6.6). The early stopping approach suffers from a mild checkerboard effect,
but all the fundamental features are still detected accurately (Figure 6.6, fourth
row). In the pure shearlets approach, the checkerboard effect is predominant,
namely many component of the ROI solution are zero, compromising an accurate
reconstruction of the smallest features on the bottom (Figure 6.6, second row).
For the smallest ROI radii rROI = 0.2N, 0.15N, 0.1N , the results in Table 6.2
are only partially confirmed by the corresponding reconstructed images reported
in Figure 6.7. Indeed, on a visual basis, the best approaches seem to be the
ones that incorporate the TV term in the objective function (first and third rows
in Figure 6.7), while the results reported in Table 6.2 select pure TV and early
stopping (third and fourth rows in 6.7). As a matter of fact, the shearlets plus TV
and the pure TV approach exhibits more accurate reconstructions: no artifacts
of any type are visible and the features are detected at high contrast. On the
contrary, the early stopping approach suffers from a mild checkerboard effect that,
anyway, does not compromise the detection of the main features. As for the largest
ROI radii, the pure shearlets approach (Figure 6.7, second row) suffers from a
prominent checkerboard effect and a ring artifact is evident on the boundary of
the ROI. However, even if panel (f) in Figure 6.7 corresponds to a definitely large
relative error (100%), the reconstruction is good enough to identify, on a visual
basis, the fundamental features. Such a large relative error is probably due to the
checkerboard effect, that results in a sub- or under-estimation of the pixel intensity.

In Figure 6.5 we report the trend of the ROI PSNR and the ROI relative error.
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(j) (k) (l)

Figure 6.6: Optimal reconstructions of the Shepp-Logan phantom for the implicit
formulation. rROI = 0.5N for (a), (d), (g) and (j), rROI = 0.3N for (b), (e), (h)
and (k), rROI = 0.25N for (c), (f), (i) and (l). First row: shealerts and TV. Second
row: just shearlets. Third row: pure TV. Fourth row: early stopping.
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Figure 6.7: Optimal reconstructions of the Shepp-Logan phantom for the implicit
formulation. rROI = 0.2N for (a), (d), (g) and (j), rROI = 0.15N for (b), (e), (h)
and (k), rROI = 0.1N for (c), (f), (i) and (l). First row: shealerts and TV. Second
row: just shearlets. Third row: pure TV. Fourth row: early stopping.
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
iter value param iter value param iter value param

PSNR
Sh+TV 249 32.48 µ = 10−3 2223 38.92 µ = 10−4 4366 40.23 µ = 10−4

ρ = 0.1 ρ = 1 ρ = 10
Sh 136 29.58 µ = 10−2 251 30.60 µ = 10−4 383 24.84 µ = 10−2

TV 1107 32.19 ρ = 0.1 912 38.73 ρ = 1 1283 42.22 ρ = 1
ES 105 30.81 71 34.67 45 35.84

Relative error
Sh+TV 249 0.11 µ = 10−3 2223 0.12 µ = 10−4 4366 0.13 µ = 10−4

ρ = 0.1 ρ = 1 ρ = 10
Sh 136 0.16 µ = 10−2 251 0.31 µ = 10−4 383 0.76 µ = 10−2

TV 1107 0.12 ρ = 0.1 912 0.12 ρ = 1 1283 0.10 ρ = 1
ES 105 0.14 71 0.20 45 0.22

Table 6.3: Optimal results for all the formulation of the explicit objective function.
The corresponding reconstructed images are reported in Figure 6.9.
Sh+TV = shealerts and TV, (2.23). Sh = just shearlets, (2.19). TV = pure TV.
ES = early stopping.

Overall these plots show that, for all ROI radii, the TV-based approaches (green
and blue lines) performs better, while the pure shearlets formulation (yellow line)
seems to perform significantly worse.

6.2.2 Explicit formulation

Similarly to the implicit case, different versions of the “enlarged” variable version
of SGP have been designed to apply to the different formulations of the explicit
objective function (see Section 5.2.1). Tables 6.3 and 6.4 summarize the optimal
results for all the possible explicit formulation (namely, formulations (2.23)-(2.19)
with p = 2, pure TV and early stopping), and for decreasing ROI radii, compared
against the ROI PSNR and the ROI relative error.

The corresponding reconstructed images are reported in Figure 6.9 and 6.10,
respectively. In all the Figures, a dashed white circle identifies the ROI. Figures
6.11, and 6.12 collects the corresponding reconstructed sinograms obtained for
the explicit formulation. Here, the truncated projections, that corresponds to the
circular ROI in the image domain, are marked by two sinusoidal dashed white
lines.

The results reported in Table 6.3 and 6.4 show that, for all ROI radii, the
best approaches are those coupled with the TV term in the formulation of the
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rROI = 0.2N rROI = 0.15N rROI = 0.1N
iter value param iter value param iter value param

PSNR
Sh+TV 1056 37.51 µ = 10−4 2474 36.40 µ = 10−4 626 30.86 µ = 10−4

ρ = 10 ρ = 10 ρ = 1
Sh 177 25.85 µ = 10−2 132 25.03 µ = 10−4 197 25.61 µ = 10−4

TV 1110 40.56 ρ = 1 1160 38.30 ρ = 1 2069 34.51 ρ = 1
ES 64 34.77 67 32.89 6 36.02

Relative error
Sh+TV 1056 0.25 µ = 10−4 2474 0.41 µ = 10−4 626 1.29 µ = 10−4

ρ = 10 ρ = 10 ρ = 1
Sh 177 0.95 µ = 10−2 132 1.53 µ = 10−2 197 2.37 µ = 10−2

TV 1110 0.17 ρ = 1 1160 0.33 ρ = 1 2069 0.85 ρ = 1
ES 64 0.34 67 0.62 6 0.71

Table 6.4: Optimal results for all the formulation of the explicit objective function.
The corresponding reconstructed images are reported in Figure 6.10.
Sh+TV = shealerts and TV, (2.23). Sh = just shearlets, (2.19). TV = pure TV.
ES = early stopping.

objective function (first and third rows). For the largest ROI radii (namely, rROI =
0.5N, 0.3N, 0.25N), the shearlets plus TV and the pure TV approaches exhibit
approximatively the same values, for both figures of merit, while for the smallest
ROI radii (i.e., rROI = 0.2N, 0.15N, 0.1N) the different performance between the
two approaches increases as the ROI radius decreases. The outcome of the early
stopping technique, that requires a considerably lower number of iterations to
converge, seems to be comparable, except for the smallest ROI radius. Indeed, the
early stopping technique seems to outperform all the other approaches when rROI =
0.1N . However, this is not confirmed on a visual basis, since the corresponding
reconstructed image (panel (f), Figure 6.10) is completely blurred and the features
of interest are poorly visible. Finally, the pure shearlets approach seems to perform
considerably worse than the others, reaching unacceptable values (the ROI relative
error is even ten times worse and the ROI PSNR loses out up to 15 dB), as the
ROI radius becomes smaller.

As far as the optimal values for the regularization parameter concern, the
optimal choice for µ, except for the largest ROI radius rROI = 0.5N , is always
10−4 in the shearlets plus TV approach, and µ equal to 10−2 for the pure shearlets
approach, except for rROI = 0.3N . In any case, the optimal values for µ are
among the smallest ones of the investigated range. On the contrary, the optimal
value for the TV regularization parameter ρ is either equal to 1, for the pure TV
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approach and for rROI = 0.3N, 0.1N with the shearlets plus TV formulation, or
to 10, the largest one of the investigated range, for rROI = 0.25N, 0.2N, 0.15N
with the shearlets plus TV approach. Lastly, the largest ROI radius rROI = 0.5N ,
requires a smaller TV regularization parameter, namely ρ = 0.1, and a slightly
bigger regularization parameter µ equal to either 10−3 or 10−2, depending on the
approach.

The results in Tables 6.1 and 6.2 are basically confirmed by the corresponding
reconstructed images reported in Figures 6.9 and 6.10, respectively. On a visual
basis, the best reconstruction for all ROI radii are those associated with a formu-
lation of the objective function that includes the TV term (first and third rows
in Figures 6.9 and 6.10). Indeed, the contrast of the features inside the ROI is
high and the transition between the inside and the exterior of the ROI appears
smooth. The early stopping approach suffers from a mild checkerboard effect, but
all the fundamental features are still detected accurately (Figures 6.9 and 6.10,
fourth row), except for the smallest ROI radius rROI = 0.1N , as already pointed
out. In the pure shearlets approach, the checkerboard effect is prominent, and, for
the largest ROI radii, an accurate reconstruction of the smallest features on the
bottom is compromised (Figures 6.9 and 6.10, second row). Also, the boundary
of the ROI contains a quite evident ring artifact. However, similarly to the im-
plicit case, even if panel (e) and (f) in Figure 6.10 corresponds to a definitely large
relative error (100%), the reconstruction is good enough to identify, on a visual
basis, the fundamental features. This is probably due to quantitatively inexact
reconstructed density values, because of the checkerboard effect.
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Figure 6.8: Explicit formulation. Trend of the ROI PSNR (left) and the ROI
relative error (right) for decreasing ROI radii.

In Figure 6.8 we report the trend of the ROI PSNR and the ROI relative error.
Similarly to the implicit case, these plots show that, for all ROI radii, the TV-
based approaches (green and blue lines) performs better, while the pure shearlets
formulation (yellow line) seems to perform significantly worse.
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Figure 6.9: Optimal reconstructions of the Shepp-Logan phantom for the explicit
formulation. rROI = 0.5N for (a), (d), (g) and (j), rROI = 0.3N for (b), (e), (h)
and (k), rROI = 0.25N for (c), (f), (i) and (l). First row: shealerts and TV. Second
row: just shearlets. Third row: pure TV. Fourth row: early stopping.
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rROI = 0.2N rROI = 0.15N rROI = 0.1N
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Figure 6.10: Optimal reconstructions of the Shepp-Logan phantom for the explicit
formulation. rROI = 0.2N for (a), (d), (g) and (j), rROI = 0.15N for (b), (e), (h)
and (k), rROI = 0.1N for (c), (f), (i) and (l). First row: shealerts and TV. Second
row: just shearlets. Third row: pure TV. Fourth row: early stopping.
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
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Figure 6.11: Optimal reconstructions of the sinogram of the Shepp-Logan phantom
for explicit formulation. rROI = 0.5N for (a), (d), (g) and (j), rROI = 0.3N for (b),
(e), (h) and (k), rROI = 0.25N for (c), (f), (i) and (l). First row: shealerts and
TV. Second row: just shearlets. Third row: pure TV. Fourth row: early stopping.
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rROI = 0.2N rROI = 0.15N rROI = 0.1N
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Figure 6.12: Optimal reconstructions of the sinogram of the Shepp-Logan phantom
for explicit formulation. rROI = 0.2N for (a), (d), (g) and (j), rROI = 0.15N for
(b), (e), (h) and (k), rROI = 0.1N for (c), (f), (i) and (l). First row: shealerts and
TV. Second row: just shearlets. Third row: pure TV. Fourth row: early stopping.
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6.2.3 Final Remarks

The numerical experiments reported in this Section show that all SGP-based algo-
rithms are satisfactory for all versions of the objective function and regardless of
the size and the location of the ROI. Except for the pure shearlets approach, in all
the other formulations the main structures are recovered very accurately, with no
ring artifacts and a sufficiently smooth transition from between the inside and the
exterior of the ROI, also for rather small ROI sizes. The implicit purely TV-based
approach performs slightly better than the shearlets plus TV approach, at least
for smaller ROI radii (i.e., when the ROI is fully inside the field of view). We
conjecture that this behavior might be dependent on the phantom features (which
is piecewise constant) and may not hold for more general data. We expect that,
using more realistic sinograms, the contribution of the shearlet term will become
more relevant for the regularization. Evidence of this can be found in [156].

6.3 VMILA: nonsmooth objective function
In this Section we present the results obtained using VMILA on the modified
Shepp-Logan phantom described in Section 6.1. So far, VMILA has been tested
only on the implicit formulation (2.18)-(2.22) with p = 1. A suitable version of
VMILA for the explicit formulation is a work in progress, as outlined in Chapter
5.

6.3.1 Implicit formulation

As already pointed out, when we drop the regularization term from the implicit
formulation, VMILA is nothing but SGP. For this reason, VMILA has been de-
signed to apply only to the two objective functions (2.18) and (2.22), with p = 1.
The optimal results for all these formulation are reported in Tables 6.5 and 6.6,
compared against the PSNR and the relative error, both evaluated inside the ROI
only, and for decreasing ROI radii. In both Tables, for a fixed ROI radius rROI

(i.e., for a fixed column), each row contains the best value for the figure of merit
(value), the number of iteration at which was achieved (iter) and the corresponding
optimal regularization parameters (param).

The corresponding reconstructed images are reported in Figure 6.14 and 6.15,
respectively. In both Figures, each row contains the ROI image reconstruction
obtained by exploiting a different formulations of the implicit objective function,
while each column contains the ROI image reconstructions obtained for different
ROI radii. In all the Figures, the ROI is identified with a dashed white circle.

The results reported in Table 6.5 and 6.6 show that the performance of the
two approaches is comparable. The shearlets plus TV approach performs slightly
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
iter value param iter value param iter value param

PSNR
Sh+TV 145 31.43 µ = 10−4 162 37.41 µ = 10−3 159 39.95 µ = 10−2

ρ = 1 ρ = 1 ρ = 1
Sh 68 29.36 µ = 10−3 91 33.91 µ = 10−4 83 36.94 µ = 10−4

Relative error
Sh+TV 145 0.13 µ = 10−4 162 0.14 µ = 10−3 159 0.13 µ = 10−2

ρ = 1 ρ = 1 ρ = 1
Sh 68 0.16 µ = 10−3 91 0.22 µ = 10−4 83 0.19 µ = 10−4

Table 6.5: Optimal results for all the formulation of the implicit objective function.
The corresponding reconstructed images are reported in Figure 6.14.
Sh+TV = shealerts and TV, (2.22). Sh = just shearlets, (2.18).

better than the purely shealets-based approach, and the quantitative difference
between the two is remarkable only for rROI = 0.3N and rROI = 0.1N . This is also
evident in Figure 6.13, where the trend of the ROI PSNR and the ROI relative
error is reported. Indeed, the shearlet plus TV approach (blue line) performs
better than the pure shearlets formulation (yellow line).

0.1 0.2 0.3 0.4 0.5
25

30

35

40

45

50

55

ROI radius

P
S

N
R

 (
d
B

)

 

 

Sh plus TV
Sh

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

ROI radius

R
e
la

ti
v
e
 E

rr
o
r

 

 

Sh plus TV
Sh

Figure 6.13: Implicit formulation. Trend of the PSNR (left) and the relative error
(right) for decreasing ROI radii.
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rROI = 0.2N rROI = 0.15N rROI = 0.1N
iter value param iter value param iter value param

PSNR
Sh+TV 143 43.17 µ = 10−3 131 44.72 µ = 10−4 213 50.48 µ = 10−4

ρ = 1 ρ = 1 ρ = 1
Sh 55 40.57 µ = 10−4 78 41.98 µ = 10−4 48 45.43 µ = 10−4

Relative error
Sh+TV 143 0.13 µ = 10−3 131 0.16 µ = 10−4 213 0.14 µ = 10−4

ρ = 1 ρ = 1 ρ = 1
Sh 55 0.17 µ = 10−4 78 0.22 µ = 10−4 48 0.24 µ = 10−4

Table 6.6: Optimal results for all the formulation of the implicit objective function.
The corresponding reconstructed images are reported in Figure 6.15.
Sh+TV = shealerts and TV, (2.22). Sh = just shearlets, (2.18).
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Figure 6.14: Optimal reconstructions of the Shepp-Logan phantom for the implicit
formulation. rROI = 0.5N for (a) and (d), rROI = 0.3N for (b) and (e), rROI =
0.25N for (c) and (f). First row: shealerts and TV. Second row: just shearlets.
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rROI = 0.2N rROI = 0.15N rROI = 0.1N
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Figure 6.15: Optimal reconstructions of the Shepp-Logan phantom for the implicit
formulation. rROI = 0.2N for (a) and (d), rROI = 0.15N for (b) and (e), rROI =
0.1N for (c) and (f). First row: shealerts and TV. Second row: just shearlets.

The optimal value for the TV regularization parameter ρ is always equal to
1, while for the regularization parameter µ optimal values are 10−2, 10−3 and
10−4 depending on the ROI radius and the approach. In details, the pure shearlet
approach selects µ = 10−4 for all the ROI radii except rROI = 0.5N , whose optimal
value is µ = 10−3. The shearlets plus TV, instead, needs µ = 10−4 for rROI =
0.5N, 0.15N, 0.1N , µ = 10−3 for rROI = 0.3N, 0.2N and µ = 10−2 for rROI =
0.25N . In any case, the optimal values for µ are among the smallest ones of the
investigated range, while for ρ among the biggest one.

The results in Tables 6.5 and 6.6 are essentially confirmed by the corresponding
reconstructed images reported in Figure 6.14 and 6.15. Indeed, on a visual basis,
the best reconstruction for all ROI radii is provided by the shearlets plus TV ap-
proach: the transition between the inside and the exterior of the ROI is smooth
and the features inside the ROI are detected at high contrast (Figures 6.14 and
6.15, first rows). The pure shearlets approach suffers from a mild checkerboard
effect, that is more evident for rROI = 0.3N, 0.25N , that corresponds to a higher
regularization parameter µ. Anyhow, this does not compromise the accurate re-
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
iter value maxit iter value maxit iter value maxit

PSNR
20 25.24 20 20 33.66 20 20 37.73 20

144 15.66 7000 155 21.34 7000 162 23.54 7000
Relative error

20 0.26 20 20 0.19 20 20 0.17 20
144 0.79 7000 155 0.91 7000 162 0.89 7000

rROI = 0.2N rROI = 0.15N rROI = 0.1N
iter value maxit iter value maxit iter value maxit

PSNR
20 40.41 20 19 42.93 20 19 45.97 20

168 26.85 7000 160 31.32 7000 177 36.68 7000
Relative error

20 0.18 20 19 0.19 20 19 0.23 20
168 0.85 7000 160 0.74 7000 177 0.66 7000

Table 6.7: Optimal results with the LSCG method. The corresponding recon-
structed images are reported in Figure 6.16.

construction of the smaller feature on the bottom (Figure 6.14, second row).
Notice that the reconstruction is qualitatively good for rather small ROI sizes,

with no ring artifacts.

6.4 Discussion

The numerical experiments summarized in this Chapter show that both SGP-
based and VMILA-based algorithms provide near-exact reconstructions inside the
ROI. Roughly, the fine-scale features of the image are the same as in case of
reconstruction from non-truncated data, even when the ROI size is rather small
compared to the size of the entire object. As a matter of fact, all the objective
functions considered are convex with respect to each variable, hence SGP and
VMILA are guaranteed to converge to the minimum of the objective function.
This occurs regardless of the size and the location of the ROI.

We recall that there is no interest in the reconstructed images outside the ROI.
Indeed, these are not reliable since, for every point outside the ROI, only a small
fraction of the rays meeting that point are in general available.
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Figure 6.16: Reconstruction of the Shepp-Logan phantom by using the LSCG
method. First and third row: maximum number of iteration set to 20. Second
and fourth row: maximum number of iteration set to 7000.
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Figure 6.17: Reconstruction of the Shepp-Logan phantom by using the LSCG
method. First row: threshold set to 10−5. Second row: threshold set to 10−7.

The goodness of some of the ROI reconstructions is highlighted by the difference
images collected in Figure 6.18. Here, black corresponds to a zero difference,
while over- and under-estimated intensities corresponds to warm colours and cool
colours, respectively.

For baseline comparison, we report in Figure 6.16 and in Table 6.7 the ROI
reconstruction, and the corresponding values for the figures of merit, obtained with
the LSCG approach applied to the system of the normal equation WTMWf =
WTy0 corresponding to the data mismatch functional ∥MWf − y0∥22. All the
experiments were performed by exploiting the Matlab default pcg function. We
investigated different threshold levels of the residual norm for stopping the itera-
tion, namely 10−4, 10−5 and 10−7, and both 20 and 7000 as maximum number of
iterations. We used the inverse of the diagonal matrix obtained by selecting the
diagonal of the system matrix as preconditioner. In Table 6.7 and Figure 6.16, we
report the results obtained with 10−4 as threshold level for the residual norm, for
both 20 and 7000 as maximum number of iterations. Notice that 10−4 is a thresh-
old on the residual norm, namely iterations are stopped when ∥res(k)∥2 < 10−4 is
met, where res(k) = WTMWf (k)−WTy0, for each iteration k = 0, 1, . . ., and the
returned solution is the one with minimum residual, according to the early stop-
ping technique for not-regularized functionals. This threshold criterion is different
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rROI iter best PSNR best Rel. Err. approach param
Smooth implicit - SGP

0.5 686 32.34 0.12 Sh+TV µ = 10−4, ρ = 0.1
0.3 1845 40.22 0.10 TV ρ = 1
0.25 1661 44.09 0.08 TV ρ = 1
0.2 2257 45.86 0.09 TV ρ = 1
0.15 2236 47.87 0.11 TV ρ = 1
0.1 2038 51.28 0.12 TV ρ = 1

Smooth explicit - SGP
0.5 249 32.48 0.11 Sh+TV µ = 10−3, ρ = 0.1
0.3 2223 38.92 0.12 Sh+TV µ = 10−4, ρ = 1
0.25 1283 42.22 0.10 TV ρ = 1
0.2 1110 40.56 0.17 TV ρ = 1
0.15 1160 38.30 0.33 TV ρ = 1
0.1 6 36.02 0.71 ES

Nonsmooth implicit - VMILA
0.5 145 31.43 0.13 Sh+TV µ = 10−4, ρ = 1
0.3 162 37.41 0.14 Sh+TV µ = 10−3, ρ = 1
0.25 159 39.95 0.13 Sh+TV µ = 10−2, ρ = 1
0.2 143 43.17 0.13 Sh+TV µ = 10−3, ρ = 1
0.15 131 44.72 0.16 Sh+TV µ = 10−4, ρ = 1
0.1 213 50.48 0.14 Sh+TV µ = 10−4, ρ = 1

Table 6.8: Overall best results for both implicit and explicit, smooth and non
smooth, approaches.

from the one used for SGP and VMILA, where the threshold is on the ROI relative
error. The results reported in Table 6.7 show that the ROI reconstructions ob-
tained with 20 as maximum number of iterations exhibit up to 20 dB improvement
for the ROI PSNR and a ROI relative error even five times better, especially for
the smaller radii, with respect to the ones obtained with 7000. This is confirmed by
the corresponding reconstructed images reported in Figure 6.16. However, even if
the values of ROI PSNR and ROI relative error could be considered acceptable for
the 20 iterations based reconstructions (clearly not for the 7000-based one), there
are evidences of checkerboard effect, that slightly compromise the sharp detection
of the smaller phantom features. The overall appearance is definitely not as good
as the SGP and VMILA TV-based reconstructions.

The 7000-based reconstructions suffer from such a prominent checkerboard
effect that the smaller features are indistinguishable. Even if ring artifacts are not
evident, the transition from the ROI to the non-ROI is not smooth.
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ROI reconstruction Absolute error Relative error
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Figure 6.18: Best reconstruction of the Shepp-Logan phantom (left), absolute error
(center) and relative error (right), for the ROI radius rROI = 0.25N , with respect
to the original object. First row: smooth implicit (SGP). Second row: smooth
explicit (SGP). Third row: nonsmooth implicit (VMILA).

The results obtained with 10−5 and 10−7 as threshold level for the residual
norm are utterly worse: the ROI PSNR values are negative and the ROI relative
error is 100% for all radii. We report in Figure 6.17 some of these images just to
give the idea. Notice that, since no projection onto the feasible set is performed,
the range for the reconstructed intensity of the images exceeds the proper one, and
this clearly influences the figures of merit values.

Overall, the performance of the LSCG approach is considerably worse than
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rROI = 0.5N rROI = 0.3N rROI = 0.25N
iter value param iter value param iter value param

PSNR
Implicit 99 30.90 µ = 10−2 55 34.90 µ = 10−4 83 35.86 µ = 10−4

Explicit 88 30.98 µ = 10−4 2 26.05 µ = 10−4 127 32.64 µ = 10−4

Relative error
Implicit 99 0.14 µ = 10−2 55 0.19 µ = 10−4 83 0.21 µ = 10−4

Explicit 88 0.14 µ = 10−4 2 0.53 µ = 10−4 127 0.31 µ = 10−4

rROI = 0.2N rROI = 0.15N rROI = 0.1N
iter value param iter value param iter value param

PSNR
Implicit 90 37.49 µ = 10−4 109 33.61 µ = 10−4 106 32.57 µ = 10−4

Explicit 49 34.04 µ = 10−4 92 32.07 µ = 10−4 71 36.02 µ = 10−4

Relative error
Implicit 90 0.25 µ = 10−4 109 0.57 µ = 10−4 106 1.06 µ = 10−4

Explicit 49 0.37 µ = 10−4 92 0.68 µ = 10−4 71 1.31 µ = 10−4

Table 6.9: Optimal results by exploiting the pure shearlet-based regularization,
with τit = 10−4. The corresponding reconstructed images are reported in Figure
6.19.

SGP and VMILA approaches. This is probably due to the lack of regularization
in the objective function.

In fact, the figures of merit from the numerical assessment presented in this
Chapter show that TV-based approaches yield the best results, among both im-
plicit and explicit, smooth and non smooth formulations, even if their performance
is only slightly better than some of the other approaches. We already pointed out
that this may depend on the piecewise constant nature of the phantom, which
consists of constant regions with sharp boundaries, and may not hold for more
general data. A comparison with a phantom composed by smoothing regions and
complex textures, or, even better, with real data, might lead to different results:
it is well known that high-resolution medical images are not of bounded variation.
A confirmation of this is provided by the analysis carried out in [156]. For the
reader’s convenience, the overall best results are resumed in Table 6.8.

Beside this, it is remarkable that VMILA applied to the implicit nonsmooth
shearlets-based approach (equation (2.18) with p = 1) outperforms the smooth
approach addressed with SGP (equation (2.18) with p = 2), and this is even more
evident for the smallest ROI radii rROI = 0.15N, 0.1N . Indeed, both the implicit
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Figure 6.19: Reconstruction of the Shepp-Logan phantom with pure shearlet-based
regularization with τit = 10−4. First and third row: smooth implicit. Second and
fourth row: smooth explicit.
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and the explicit smooth cases have a 100% ROI relative error (Tables 6.2 and
6.4), while the nonsmooth approach investigated with VMILA achieve 22% and
24%, respectively (Table 6.6). This is definitively confirmed by the correspond-
ing images, where no artifacts or even mild checkerboard effect is visible for the
nonsmooth reconstruction, while the smooth ones suffer from ring artifacts, low
contrast between features and prominent checkerboard effect. The significantly
worse performance of the pure shearlets-based approach for the smooth case, both
implicit and explicit, may depend on a too tight threshold τit, since we observed
that the relative error decreases up to a certain number of iterations and then
goes up steeply. In the results reported in Section 6.2 we set τit = 10−7 for the
smooth case, but we found out that by posing τit = 10−4 (as in VMILA) SGP is
able to stop at the right iteration. This provides better results for both the figures
of merit, and the image appearance is also improved, except for one case (smooth
explicit approach with rROI = 0.3N). These results are summarized in Table 6.9
and Figure 6.19.

A possible explanation for the superior performance of the nonsmooth approach
might be that the use of the 1-norm leads to the suppression of many small shearlet
coefficients in favor of few large shearlet coefficients, which are associated to edges.
This allows to separate the structural components of the image from the noise,
and this roughly corresponds to denoising. Overall, the results obtained for the
nonsmooth formulation, yielded by VMILA, are of great importance because the
primary goal of the ROI CT problem is to reconstruct ROIs as small as possible.

Notice also that, in general, VMILA requires a considerably lower number of
iterations to converge, especially with respect to the TV-based approaches. This
also may depend on the different threshold τit chosen for stopping the iterations,
but, by posing τit = 10−7 for VMILA, we get worse results for the pure shearlets-
based approach, and slightly better results for the shearlets plus TV approach, at
the cost of many more iterations.

Moreover, observe that the safeguard number of 200 inner iterations for VMILA
is unnecessary, since criterion (5.19) is always met in only one iteration. Roughly,
this means that the computation of the proximity approximation is nearly perfect
and the requirement of an inner solver does not compromise neither the conver-
gence speed nor the computational cost.

Finally, observe that the choice of the optimal values for both regularization
parameters is consistent to both approach. We found that, by increasing µ, the
reconstruction error inside the ROI increases, and, on a visual basis, the transi-
tion between the inside and the exterior of the ROI appears less smooth and the
features of interest are barely distinguishable. On the contrary, by decreasing ρ,
the checkeborad effect overwhelms the visual appearance of the reconstruction.
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Chapter 7

Conclusions

This thesis addresses the various aspects involved in the solution of the ROI CT
problem, an X-ray based incomplete data imaging acquisition modality. What
makes rather challenging this problem is the truncation of the acquired data,
that yields a severely ill-posed inverse problem that can not be treated by simply
applying CT state-of-the-art techniques.

We proposed two different objective functions, each one with a variable level of
regularization, and possibly with a nonsmooth variant to promote sparsity (Chap-
ter 2). Both formulations aim at ensuring a stable reconstruction from truncated
data. In particular, the (possibly nonsmooth) regularization term exploits shear-
lets, a multiscale method emerged in the last decade, for the representation of
multivariate data (Chapter 4). Indeed, shearlets enjoy many appealing features
that are relevant in CT-like applications, including well localization, accounting
for anisotropic structures (e.g., elongated structures such as (soft) edges), and
high directional sensitivity, that provide optimal sparsity for images which have
discontinuities (edges) along a C 2 curve.

The solution has been addressed within the framework of the statistical ap-
proaches for image reconstruction. A first-order iterative minimization method,
called SGP, and a proximal-gradient method, called VMILA, have been inves-
tigated for the smooth and the nonsmooth formulation, respectively. Both ap-
proaches use only the projections meeting the ROI, do not require any prior knowl-
edge of the values of the solution within the ROI or make any assumptions on either
the size or the location of the ROI (Chapter 5).

The numerical experiments show that our reconstruction algorithms are very
satisfactory for all versions of the objective function, provided an accurate setting
of the regularization parameters, notwithstanding the presence of noise. Also, the
main structures are recovered accurately, with minimal ring artifacts (Chapter 6).
In details, in terms of ROI PSNR and ROI relative error, the best quantitative
results are provided by SGP applied to the pure TV-based smooth implicit formu-
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lation. We already stressed that this behavior might be dependent on the piecewise
constant nature of the phantom and may not hold for more general data. However,
from a qualitative viewpoint, the most impressive results are those provided by
VMILA applied to the pure shearlet-based nonsmooth implicit formulation. This
latter approach is able to consistently outperform the corresponding smooth for-
mulation, both in the implicit and the explicit cases, especially for the smallest
radii. In particular, the ROI relative error is even ten times better and the ROI
PSNR achieves an improvement up to 15 dB. This is remarkable since the aim of
ROI CT is to provide stable and reliable reconstructions for as small as possible
radii, in order to consistently reduce the X-ray exposition and the scanning time.

A key element in the design of the digital setting is the forward projection
matrix that discretizes the mathematical model of the physical data acquisition
process in CT. The goal is a tradeoff between accuracy and computational com-
plexity to achieve a fast, accurate and memory efficient implementation. We pro-
posed a brand new vectorized approach of the state-of-the-art technique called
distance-driven, that applies to both the 2D fan-beam and the 3D cone-beam cir-
cular CT geometries (Chapter 3). This original contribution goes beyond the ROI
CT problem: roughly, every CT-based application can benefit from this approach.

The findings of this doctoral dissertation have a number of important implica-
tions for future research, most notably the following.

• An extension of the forward projection matrix implementation to the cone-
beam 3D helical geometry is an almost completed work in progress. Conse-
quently, all the machinery developed for ROI CT shall be applied and tested
on helical ROI CT problems, matching the possibility to reduce scanning
time and exposition to X-rays with the possibility to handle large objects.

• A Spot-compliant object-oriented implementation of the forward projection
matrix codes should be profitable to assess CT-like problems in all those
situations where the explicit transform operator is needed. Also, a paral-
lel implementation shall provide an effective tool for large scale problems,
particularly in the 3D setting.

• The smooth explicit formulation can be tested against the CBGP method.
This can be the first step towards the understanding of a new version of
VMILA, suitable for the nonsmooth explicit formulation: likely, a block-
cyclic nonsmooth version of CBGP. This is necessary to conclude the numer-
ical assessment of the ROI CT problem. The findings of these extensive nu-
merical experiments should enlighten if the 1-norm shearlet-based approach
always outperforms the corresponding smooth counterpart, and, possibly,
clarify why.
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• The case of data corrupted by Poisson noise can be investigated by sim-
ply extending the discrepancy term to the Poisson context by means of the
Kullback-Leibler divergence. This should be a more suitable model for CT-
like applications and both SGP and VMILA have already been extensively
tested on the Kullback-Leibler divergence.

• The numerical assessment presented in this work should be carried over to
3D cone-beam data with no further adjustments, since the optimization al-
gorithms used can be applied irrespectively from dimensionality. The only
subtle point is the increased computational complexity, for which the paral-
lel implementation of both the forward operator and the shearlet framework
shall provide an effective solution. This is a topic of ongoing research.

• In the forthcoming future, it might be interesting investigating whether and
how the machinery developed in this thesis works in the case of limited angle
ROI CT. This requires a deeper understanding on how the theoretical aspects
of the image reconstruction from the limited angle data combine with the
truncated data from ROI CT.
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Appendix A

Background material on harmonic
analysis

In this Appendix, we retrieve some background material from harmonic analy-
sis, including frame theory and representation of locally compact groups, for the
reader’s convenience. We will only give a glimpse of the general theory, recalling the
basic definitions. Most of the material presented here comes from [29, 30, 39, 57]
and the reader is referred to them for a deeper discussion on these topics.

A.1 Frame Theory

The first definition of frame draws back to 1952 and is due to Duffin and Schaeffer.
However, it took several years before the potential of this new theory was realized:
in the 1980s, Mallat, Daubechies and Mayer used frames, in place of the traditional
notion of orthonormal bases, to analyze wavelets. Indeed, a frame roughly allow a
redundant representation of a system of functions that guarantees stability while
allowing non-unique decompositions. Since then, frame theory is associated with
wavelets, signal and image processing, and data compression.

Definition A.1 ([30]). A sequence (φi)i∈I in H is called a frame for H, if there
exist constants 0 < A ≤ B <∞ such that

A∥x∥2 ≤
∑
i∈I

|⟨x, φi⟩|2 ≤ B∥x∥2 ∀x ∈ H.

The frame constants A and B are called lower and upper frame bound, respectively.
They are not unique. The optimal upper frame bound is the infimum over all upper
frame bounds, and the optimal lower frame bound is the supremum over all lower
frame bounds.
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Frames for which the optimal frame bounds coincide play a special role in
wavelet and shearlets theory:

Definition A.2 ([30]). A sequence (φi)i∈I in H is a tight frame if there exists a
constant A > 0 such that∑

i∈I

|⟨x, φi⟩|2 = A∥x∥2, ∀x ∈ H.

If A = 1, then (φi)i∈I is called Parseval frame. A frame is called equal-norm if
there exists some c > 0 such that ∥φi∥ = c for all i ∈ I, and it is unit-norm if
c = 1.

The most simple example of Parseval frame is the sequcence composed by three
vectors of the same length in R2 forming a Mercedes-Benz star, whence the name
“Mercedes-Benz frame”.

One of the main reasons for applying the frame concept to the wavelet and
shearlet theory is that frames serve as an analysis tool. That is, if (φi)i∈I in H is
a frame for H, then the so-called analysis operator F , defined by

F : H −→ ℓ2(I)
x −→ (⟨x, φi⟩)i∈I

allows the analysis of data through the study of the associated (⟨x, φi⟩)i∈I , usually
referred to as frame coefficients. The adjoint F ∗ of the analysis operator is called
synthesis operator and it is given by:

F ∗ : ℓ2(I) −→ H

(ci)i∈I −→
∑
i∈I

ciφi.

By composing F and F ∗ we obtain the main operator associated with a frame, the
so-called frame operator S, that basically provides a stable reconstruction process:

S = F ∗F : H −→ H

x −→
∑
i∈I

⟨x, φi⟩φi.

Because (φi)i∈I is a Bessel sequence, namely there exists a constant B > 0 such
that

∑
i∈I |⟨x, φi⟩|2 ≤ B∥x∥2 for all x ∈ H, the series that defines S converges

unconditionally for all x ∈ H (see corollary 2.4 in [30]). Moreover, S is a positive,
self-adjoint invertible operator on H and, in particular,

A · IH ≤ S ≤ B · IH,
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where A and B are the frame constants and IH denotes the identity operator on
H. Clearly, this yields S = IH, in the case of a Parseval frame.

The notion of frame operator allow to recover an element x ∈ H from its frame
coefficients through a so-called reconstruction formula, that is:

x =
∑
i∈I

⟨x, φi⟩S−1φi. (A.1)

Notice that one of the cases where this decomposition is very useful is when x ∈ H
represents a signal.
It can be shown that the canonical dual frame sequence (S−1φi)i∈I forms a frame
itself. Hence, regarding a frame as a means for expansion in the system (φi)i∈I ,
we are led to:

x =
∑
i∈I

⟨x, S−1φi⟩φi ∀x ∈ H. (A.2)

The frame decomposition (A.2) shows that if (φi)i∈I is a frame for H, then every
element in H has a representation as an infinite linear combination of the frame
elements. Thus, frames are somehow a “generalized basis”. In particular, when
the frame (φi)i∈I does not constitute a basis, i.e., it is redundant, the coefficient
sequence (⟨x, S−1φi⟩)i∈I of this expansion can not be unique. It is actually this
property that allows for much sparser expansions and, thus, represent a benchmark
in many signal processing applications.

Despite this, (A.1) and (A.2) are not practically useful, since this would require
either to find the operator S−1, or to compute its action on the whole (φi)i∈I .
One way to bypass this problem is to work only with tight frames, for which the
following result holds true:

Proposition A.3 ([30]). If (φi)i∈I is a tight frame with frame bound A, then the
canonical dual frame is (A−1φi)i∈I, and for all x ∈ H the following reconstruction
formula holds true:

x =
1

A

∑
i∈I

⟨x, φi⟩φi.

Tight frames have additional advantages. First and foremost, the canonical
dual frame of a tight frame shares the same structure as the frame itself. In
particular, if the frame has a shealets (resp., wavelet) structure, the same holds
for the canonical dual frame, while the canonical dual frame of a nontight shealets
(resp., wavelet) frame might not have the shealets (resp., wavelet) structure. In
practice, the tight frame structure allow to control the behavior of the associated
canonical dual frame, whereas the complicated structure of both the frame operator
and its inverse makes it difficult in the more general nontight case.
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A.2 Representation of locally compact groups
Representation theory of groups in harmonic analysis is a matter of interest due
to its application to wavelet, and hence shearlet, theory. Many of the aspects of
this theory can be studied within the class of locally compact topological groups,
even if the most interesting examples belongs to another class of groups, the Lie
groups class, that will not be accounted here.
We start by refreshing the definition of locally compact topological group.

Definition A.4 ([57]). A topological group is a group G endowed with a topology
relative to which the group operations

(g, h) −→ gh, g −→ g−1

are continuous as maps G × G → G and G → G, respectively. G is said locally
compact if every point has a compact neighborhood. We shall also assume our
groups to be Hausdorff.

Let H1 and H2 be two Hilbert spaces and consider a linear and bounded func-
tion T : H1 → H2. Recall that T is an isometry if

∥T u∥ = ∥u∥ ∀u ∈ H1.

Equivalently, T is an isometry if and only if T ∗T = IH1 , given that ∥T u∥2 =
⟨T u, T u⟩ = ⟨T ∗T u, u⟩ and ∥u∥2 = ⟨u, u⟩. In particular, isometries are injective,
but they are not necessarily surjective.

Definition A.5 ([39]). A linear and bounded functionT : H1 → H2 is called a
unitary map if it is a bijective isometry.

Notice that if T is unitary, such is also T −1 and in this case T T ∗ = IH2 . In
particular if H1 = H2 = H, the following set forms a group:

U(H) = {T bounded and linear : T is unitary}.

Let now G be a locally compact Hausdorff topological group.

Definition A.6 ([39]). A unitary representation of G on the Hilbert space H is a
group homomorphism π : G −→ U(H) continuous in the strong operator topology,
namely for every g, h ∈ G and u ∈ H:

(i) π(gh) = π(g)π(h);

(ii) π(g−1) = π(g)−1 = π(g)∗;
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(iii) g → π(g)u is continuous from G to H.

The affine group “ax + b”, defined on G = R+ × R endowed with the group
operation

(a′, b′)(a, b) = (a′a, a′b+ b′),

is particularly interesting since it is at the basis for the wavelet representation
construction.

Example A.7 (Wavelet representation,[39]). Let G be the “ax+ b” group and H =
L2(R). The so-called wavelet representation is define to be:

π(a, b)ψ(x) =
1√
a
ψ

(
x− b
a

)
.

Notice that π(a, b) it is given by the composition of two important unitary maps:
the translation operator Tb and the dilation operator Da, defined by

Tbψ(x) = ψ(x− b), Daψ(x) =
1√
a
ψ
(x
a

)
.

Indeed

TbDaψ(x) = Tb(Daψ)(x) = Daψ(x− b) =
1√
a
ψ

(
x− b
a

)
.

Observe that TbTb′ = Tb+b′ and DaDa′ = Daa′ . Hence, in general, Tb and Da do
not commute (i.e., TbDa ̸= DaTb):

DaTbψ(x) =
1√
a
(Tbψ)

(x
a

)
=

1√
a
ψ
(x
a
− b
)

=
1√
a
ψ

(
x− ab
a

)
= Daψ(x− ab) = TabDaψ(x).

Definition A.8 ([39]). LetM be a closed subspace ofH. M is called an invariant
subspace for the unitary representation π if π(g)M ⊆ M for all g ∈ G. If there
exists a nontrivial invariant subspace for π, then π is called reducible, otherwise π
is said irreducible.

From the point of view of applications, a unitary representation π of a locally
compact group G is particularly useful if it yields a reproducing formula, that is,
a (weak) reconstruction of a function f in the representation space H of the form

f =

∫
G

⟨f, π(g)ψ⟩ π(g)ψ dg (A.3)
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where dg is a left Haar measure and ⟨f, π(g)ψ⟩ originates from the so-called voice
transform

Vψ : H −→ L2(G)

g −→ Vψ(f)(g) := ⟨f, π(g)ψ⟩.

In other words, a reproducing formula is a weak reconstruction that holds true for
every f ∈ H, for some admissible ψ ∈ H, i.e., a ψ ∈ H satisfying∫

G

|⟨ψ, π(g)ψ⟩|2 dg <∞,

for a given unitary representation π of G on H. In this case, (G, π, ψ) is called a
reproducing system; otherwise, G is simply said to be a reproducing group. If π
is irreducible, this is nothing else but the traditional concept of square integrable
representation.
The most famous example holds when H = L2(Rn), with n ≥ 1 and the ψ, usually
called generating or mother function, is a wavelet, as illustrated in Chapter 4.

Finally, notice that all this can be translated in the discrete framework. Indeed,
if a countable collection (ψi)i∈I in a Hilbert space H is a Parseval frame, then this
is equivalent to the reproducing formula f =

∑
i∈I ⟨f, ψi⟩ψi for all f ∈ H, where

the series converges in the norm of H.
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