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The present paper introduces a new multi-reference perturbation approach developed at second order,
based on a Jeziorski-Mokhorst expansion using individual Slater determinants as perturbers. Thanks
to this choice of perturbers, an effective Hamiltonian may be built, allowing for the dressing of the
Hamiltonian matrix within the reference space, assumed here to be a CAS-CI. Such a formulation
accounts then for the coupling between the static and dynamic correlation effects. With our new
definition of zeroth-order energies, these two approaches are strictly size-extensive provided that
local orbitals are used, as numerically illustrated here and formally demonstrated in the Appendix.
Also, the present formalism allows for the factorization of all double excitation operators, just as in
internally contracted approaches, strongly reducing the computational cost of these two approaches
with respect to other determinant-based perturbation theories. The accuracy of these methods has been
investigated on ground-state potential curves up to full dissociation limits for a set of six molecules
involving single, double, and triple bond breaking together with an excited state calculation. The
spectroscopic constants obtained with the present methods are found to be in very good agreement
with the full configuration interaction results. As the present formalism does not use any parameter
or numerically unstable operation, the curves obtained with the two methods are smooth all along the
dissociation path. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984616]

I. INTRODUCTION

The research of the ground-state wave function of closed-
shell molecules follows well-established paths. The pertur-
bative expansions from the mean-field Hartree-Fock single
determinant usually converge and may be used as basic
tools, especially when adopting a mono-electronic zero-order
Hamiltonian known as the Møller-Plesset Hamiltonian.1 In
this approach, the wave function and the energy may be
understood in terms of diagrams, which lead to the fun-
damental linked-cluster theorem.2 The understanding of the
size-consistency problem led to the suggestion of the cou-
pled cluster approximation,3–7 which is now considered as
the standard and most efficient tool in the study of such sys-
tems in their ground state, especially in its CCSD(T) version
where linked corrections by triple excitations are added per-
turbatively.8 The situation is less evident when considering
excited states, chemical reactions, and molecular dissocia-
tions, since it then becomes impossible to find a relevant single
determinant zero-order wave function. These situations exhibit
an intrinsic Multi-Reference (MR) character. A generalized
linked-cluster theorem has been established by Brandow,9

which gives a basis to the understanding of the size-consistency

a)Author to whom correspondence should be addressed: E.Giner@fkf.mpg.de

problem in this context, but the conditions for establishing this
theorem are severe. They require a Complete Active Space
(CAS) model space and a mono-electronic zero-order Hamil-
tonian. Consequently, the corresponding Quasi-Degenerate
Perturbation Theory (QDPT) expansion cannot converge in
most of the molecular MR situations.10–12 The research of
theoretically satisfying (size-consistent) and numerically effi-
cient MR treatments remains a very active field in quantum
chemistry, as summarized in recent review articles concerning
either perturbative13 or coupled-cluster14 methods.

The present work concentrates on the search of a new MR
perturbative approach at second order (MRPT2). Of course,
pragmatic proposals have been rapidly formulated, consisting
first in the identification of a reference model space, defined
on the set of single determinants having large components
in the desired eigenstates of the problem. Diagonalizing the
Hamiltonian in this reference space delivers a zero-order wave
function. Then one must define the vectors of the outer space
to be used in the development and, in a perturbative context,
choose a zero-order Hamiltonian. The simplest approach con-
sists in using single determinants as outer-space eigenvectors,
and this has been used in the CIPSI method15,16 which is iter-
ative, increasing the model space from the selection of the
perturbing determinant of largest coefficients and their addi-
tion to the model space. From a practical point of view, this
method is very efficient and is now employed to reach near
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exact Full Configuration Interaction (FCI) energies on small
molecules17,18 and also as trial wave function in the context of
quantum Monte Carlo.19–22 But the method suffers two main
defects: (i) it is not size-consistent and (ii) it does not revise
the model-space component of the wave function under the
effect of its interaction with the outer-space. This last defect
is avoided if one expresses the effect of the perturbation as a
change of the matrix elements of the model space CI matrix,
according to the Intermediate Effective Hamiltonian (IEH)
theory,23 as done in the state-specific24 or multi-state25 ver-
sions. Other methods which start from a CAS model space and
use multi-determinantal outer-space vectors have been pro-
posed later on and are now broadly used. The first one is the
CASPT2 method,26,27 which employs a mono-electronic zero-
order Hamiltonian. The method suffers from intruder state
problems, to be cured in a pragmatic manner through the intro-
duction of some parameters, and is not strictly size-consistent.
The NEVPT2 method28–30 also uses multi-determinantal per-
turbers [defined in two different ways in its partially (pc-
NEVPT2) and strongly contracted (sc-NRVPT2) versions], it
makes use of a more sophisticated bi-electronic Hamiltonian
(the Dyall Hamiltonian31) to define the zero-order energies of
these perturbers, it is parameter-free, intruder-state free, and
size-consistent. Both methods are implemented in several pop-
ular codes and use a contracted description of the model space
component of the desired eigenfunction (fixed by the diago-
nalization of the Hamiltonian in the model space). Still in the
spirit of the NEVPT2 approaches, a recent work of Sokolov
and Chan32 has allowed one to remove any contractions in the
perturber space, thanks to the use of matrix product states and
time-dependent perturbation theory (see Sec. III A for a com-
parison with the present work). Multi-state versions exist to
give some flexibility to the model space component, in particu-
lar around weakly avoided crossings, but this flexibility is very
limited.33,34 If one returns to methods using single-determinant
perturbers, the origin of their size-inconsistency problem has
been identified as due to the unbalance between the multi-
determinant character of the zero-order wave function and
the single determinant character of the perturbers.35 It is in
principle possible to find size consistent formulations but they
require rather complex formulations36–39 and face some risk
of numerical instabilities since they involve divisions by pos-
sibly small coefficients, the amplitudes of which may be small.
Finally, one should mention the approaches based on the lin-
earized internally contracted multi-reference coupled cluster
(MRCC) theory using matrix product states40,41 and stochas-
tic techniques.42 Such approaches use a much richer zeroth-
order Hamiltonian (the Fink Hamiltonian) which provides very
accurate results, to the price of a higher computational cost than
the methods based on the Dyall Hamiltonian.

The present paper is composed as follows. In Sec. II, the
here-proposed formalism is presented, whose main features
are as follows:

1. it considers a CAS model space (to achieve the strict
separability requirement), usually obtained from a pre-
liminary CASSCF calculation;

2. the perturbers are single determinants (the method is
externally non-contracted, according to the usual termi-
nology);

3. it is state-specific and strictly separable when localized
active MOs are used (see formal demonstration in the
Appendix);

4. it makes use of the Dyall Hamiltonian to define the exci-
tation energies appearing in the energy denominators;

5. it is based on a Jeziorski-Monkhorst43 (JM) expression
of the wave operator and proceeds through reference-
specific partitionings of the zero-order Hamiltonian,
as it has been previously suggested in the so-called
Multi-Partitionning44–46 (MUPA) and also in the UGA-
SSMPRT2.39 Consequently, it does not define a unique
zero-order energy to the outer-space determinants (see a
brief discussion in the Appendix);

6. it can be expressed either as a second-order energy cor-
rection or as a dressing of the CAS-CI matrix, which
offers a full flexibility in the treatment of the feed-back
effect of the post-CAS-CI correlation on the model space
component of the wave function;

7. the contributions of the various classes of excitations
are easily identified (as in the CASPT2 and NEVPT2
methods);

8. thanks to our definition of the zeroth-order energies, all
processes involving double excitations can be treated
by using only the one- and two-boy density matrices,
avoiding to loop on the perturbers;

9. given a set of molecular orbitals, it is parameter free
and does not contain any threshold to avoid numerical
instabilities.

After having presented the working equations of the present
formalism in Sec. II, Sec. III proposes a comparison with other
existing MR approaches, such as some special cases of multi-
reference coupled cluster (MRCC) and MRPT2. Section IV
discusses the computational aspects of the two methods pro-
posed here. Then, Sec. V presents the numerical results for the
ground state potential energy curves of six molecules involv-
ing single, double, and triple bond breaking together with
an excited state calculation with both the JM-MRPT2 and
JM-HeffPT2 methods. A numerical test of size-extensivity is
provided, together with the investigation of the dependency of
the results on the locality of the active orbitals. Finally, Sec. VI
summarizes the main results and presents its tentative develop-
ments. The reader can find in Sec. VI B a mathematical proof
of strong separability of the JM-MRPT2 method.

II. WORKING EQUATIONS FOR THE PERTURBATION
AND EFFECTIVE HAMILTONIAN AT SECOND ORDER

As demonstrated previously by one of the present authors
and his collaborators,35 the size-consistency problem in any
multi-reference perturbative expansion using single Slater
determinants as perturbers comes from the unbalanced zeroth
order energies that occur in the denominators. More precisely,
if the zeroth order wave function is a CAS-CI eigenvector,
the zeroth order energy is stabilized by all the interactions
within the active space. A perturber treated as a single Slater
determinant does not take into account the correlation effects
included in the zeroth order wave function, and consequently
its zeroth order energies are unbalanced with respect to the
one of the CAS-CI eigenvector. Nevertheless, if instead of a
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FIG. 1. Example of interactions: the two determinants of the CAS interact
through a bi-electronic operator involving the two active orbitals a and b, just
as the two perturber determinants generated by the same excitation operator
T r

i on the two CAS determinants.

unique perturber determinant, one considers the wave func-
tion created by the application of a given excitation operator
on the whole CAS-CI wave function, most of the interactions
found within the active space will also occur within this excited
wave function (see Fig. 1 for a pictorial example). Therefore,
the use of linear combinations of Slater determinants as per-
turbers together with a bi-electronic zeroth order operator, as
it is the case in the NEVPT2 framework which uses the Dyall
zeroth order operator, leads to balanced energy differences and
removes the size-consistency problem.

On the basis of such considerations, the present work
proposes an approach that uses single Slater determinants as
perturbers and takes benefits of a new definition of energy
denominators as expectation values of the Dyall zeroth order
Hamiltonian over a specific class of linear combinations of
Slater determinants. We first expose the definition of this per-
turbation theory, namely, the JM-MRPT2 method, which is
strictly separable provided that local orbitals are used.

A large benefit from this new definition is that one may
go beyond the sole calculation of the energy and improve the
reference wave function by taking into account, in a strictly
size-consistent way, the correlation effects brought by the per-
turbers on the reference space. In a second step, we reformulate
the approach as a dressing of the Hamiltonian matrix within
the set of Slater determinants belonging to the reference wave
function, which is diagonalized. This approach will be referred
to as the JM-HeffPT2 method.

A. The JM-MRPT2 method
1. First-order perturbed wave function
and second-order energy

The formalism presented here is state specific and is not
therefore restricted to ground state calculations. Nevertheless,
for the sake of clarity and compactness, we omit the index
referring explicitly to a specific eigenstate.

The zeroth order wave function |ψ(0)〉 is assumed to
be a CAS-CI eigenvector expanded on the set of reference
determinants |I〉,

��ψ(0)〉 = ∑
I ∈CAS−CI

cI |I〉 . (1)

Such a wave function has a variational energy e(0),

e(0) =
〈ψ(0) |H|ψ(0)〉

〈ψ(0)|ψ(0)〉
. (2)

Starting from a normalized |ψ(0)〉 (i.e., 〈ψ(0) |ψ(0) 〉 = 1), we
assume that the exact wave function can be expressed as

|Ψ〉 = |ψ(0)〉 +
∑

µ <CAS−CI

cµ|µ〉 , (3)

where |µ〉 are all possible Slater determinants not belonging
to the CAS-CI space. One should notice that such a form is in
principle not exact, as some changes of the coefficients within
the CAS-CI space can formally occur when passing from the
CAS-CI eigenvector to the FCI one, but such an approximated
form for the exact wave function is the basis of many MRPT2
approaches like NEVPT2, CASPT2, or CIPSI.

As in any projection technique, the exact energy can be
obtained by projecting the Schrödinger equation on |ψ(0)〉,

E = 〈ψ(0)|H|Ψ〉 = e(0) +
∑

µ <CAS- CI

cµ 〈ψ
(0)|H|µ〉 , (4)

and one only needs to compute the coefficients of | µ〉 that inter-
act with |ψ(0)〉, which consist in all individual Slater determi-
nants being singly or doubly excited with respect to any Slater
determinant in the CAS-CI space. From now on, we implicitly
refer to |µ〉 as any single Slater determinant belonging to such
a space.

The coefficients cµ are then written according to the JM
ansatz,43 whose general expression for wave function is not
explicitly needed here, and will be therefore given in Sec. III B
when the comparison of the present method with other multi-
reference methodologies will be investigated. The JM ansatz
introduces the genealogy of the coefficients cµ with respect to
the Slater determinants within the CAS-CI space

cµ =
∑

I

cI tIµ, (5)

where the quantity tIµ is the excitation amplitude related to the
excitation process TIµ that leads from |I〉 to |µ〉,

TIµ |I〉 = |µ〉 . (6)

Here, we restrict TIµ to be a single or double excitation opera-
tor. Within this JM formulation of cµ, a very general first order
approximation of the amplitudes t(1)

Iµ can be expressed as

t(1)
Iµ =

〈I |H|µ〉

e(0) − E(0)
Iµ

=
〈I|H|µ〉

∆E(0)
Iµ

, (7)

where the excitation energy ∆E(0)
Iµ depends explicitly on the

couple (|I〉 , |µ〉). In that regard, a given Slater determinant
|µ〉 will have different zeroth-order energies according to
the parent |I〉 from which it is generated, implying that the
zeroth-order Hamiltonian explicitly depends on the refer-
ence determinant | I〉, just as was initially proposed in the
MUPA approaches44–46 (the interested reader could find in
the Appendix a more detailed discussion of that aspect). Such
a definition is different from other determinant-based MRPT2
like the CIPSI or shifted-Bk where the excitation energy does
not depend on the couple (|I〉 , |µ〉) but only on |µ〉. With this
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definition of t(1)
Iµ , one can write the second-order correction to

the energy e(2) as

e(2) = 〈ψ(0)|H|ψ(1)〉 =
∑
µ

∑
I

cI
〈I|H|µ〉

∆E(0)
Iµ

〈ψ(0)|H|µ〉

=
∑
µ

∑
I J

cI
〈I|H|µ〉 〈µ |H|J〉

∆E(0)
Iµ

cJ, (8)

and the total second-order energy E(2),

E(2) = 〈ψ(0)|H|ψ(0)〉 + 〈ψ(0) |H|ψ(1)〉 = e(0) + e(2). (9)

2. Definition of the energy denominators

The first-order wave function can be written explicitly in
terms of the excitation operators TIµ,

|ψ(1)〉 =
∑
µ

c(1)
µ |µ〉 =

∑
µ

∑
I

cI
〈I|H TIµ | I〉

∆E(0)
Iµ

TIµ | I〉 . (10)

However, one can notice that

1. the excitation operators TIµ do not explicitly depend on |I〉
as they are general single or double excitation operators,
just as in the Hamiltonian for instance;

2. a given excitation operator T contributes to the coeffi-
cients of several |µ〉 (TIµ = TJν = T );

3. the application of all the single and double excitation
operators T on each |I〉 generates the entire set of |µ〉 as
the reference is a CAS.

Therefore one can rewrite the first-order perturbed wave func-
tion directly in terms of excitation operators T applied on the
each CAS-CI Slater determinant as

|ψ(1)〉 =
∑

T

|ψ
(1)
T 〉 , (11)

where |ψ(1)
T 〉 is the part of the first-order wave function

associated with the excitation process T,

|ψ
(1)
T 〉 =

∑
I

cI
〈I|H T|I〉

∆E(0)
I T I

T|I〉 . (12)

In order to fully define our perturbation theory and inter-
mediate Hamiltonian theory, one needs to select an expression
for the energy denominators occurring in the definition of
|ψ

(1)
T 〉. We propose to take a quantity that does not depend

explicitly on the reference determinant | I〉 but only depends
on the excitation process T,

∆E(0)
I T I = ∆E(0)

T ∀ I. (13)

Consequently, in the expression of |ψ(1)
T 〉 [see Eq. (12)], the

energy denominator can be factorized

|ψ
(1)
T 〉 =

1

∆E(0)
T

∑
I

cI 〈I|H T|I〉 T|I〉 =
1

∆E(0)
T

|ψ̃
(1)
T 〉 , (14)

where |ψ̃(1)
T 〉 is simply

|ψ̃
(1)
T 〉 =

∑
I

cI 〈I|H T|I〉 T|I〉 . (15)

Also, one can notice that as |ψ̃(1)
T 〉 and |ψ(1)

T 〉 differ by a simple
constant factor, they have the same normalized expectation
values

〈ψ
(1)
T |H

D |ψ(1)
T 〉

〈ψ
(1)
T |ψ

(1)
T 〉

=
〈ψ̃

(1)
T |H

D |ψ̃(1)
T 〉

〈ψ̃
(1)
T |ψ̃

(1)
T 〉

. (16)

Then, the excitation energy ∆E(0)
T is simply taken as the dif-

ference of the normalized expectation values of the Dyall
Hamiltonian HD over |ψ(0)〉 and |ψ̃(1)

T 〉,

∆E(0)
T =

〈ψ(0) |HD |ψ(0)〉

〈ψ(0) |ψ(0)〉
−
〈ψ̃

(1)
T |H

D |ψ̃(1)
T 〉

〈ψ̃
(1)
T |ψ̃

(1)
T 〉

=
〈ψ(0) |HD |ψ(0)〉

〈ψ(0) |ψ(0)〉
−
〈ψ

(1)
T |H

D |ψ(1)
T 〉

〈ψ
(1)
T |ψ

(1)
T 〉

. (17)

This ensures the strong separability when localized orbitals
are used, as will be illustrated numerically in Sec. V.

The Dyall Hamiltonian is nothing but the exact Hamilto-
nian over the active orbitals and a Møller-Plesset type operator
over the doubly occupied and virtual orbitals. If one labels a, b,
c, and d as the active spin-orbitals, i, j the spin-orbitals that are
always occupied, and v , r the virtual spin-orbitals, the Dyall
Hamiltonian can be written explicitly as

HD = HD
iv + HD

a , (18)




HD
a =

∑
ab

heff
ab a†aab +

1
2

∑
abcd

(ad |bc) a†aa†bacad

HD
iv =

∑
i

ε i a†i ai +
∑
v

ε v a†vav + C

, (19)

where ε i and ε v are defined as the spin-orbital energies asso-
ciated with the density given by |ψ(0)〉, and the effective active
one-electron operator heff

ab = 〈a|h +
∑

i (Ji − Ki) |b〉. With a
proper choice of the constant C in Eq. (19),

C =
∑

i

〈 i|h|i〉 +
1
2

∑
i,j

((ii|jj) − (ij |ij)) , (20)

one has

〈ψ(0) |HD |ψ(0)〉

〈ψ(0) |ψ(0)〉
=
〈ψ(0) |H |ψ(0)〉

〈ψ(0) |ψ(0)〉
= e(0). (21)

Because the Dyall Hamiltonian acts differently on the active
and inactive-virtual orbitals, the excitation energy ∆E(0)

T is the

sum of an excitation energy ∆E(0) iv
T associated with the inac-

tive and virtual orbitals and of an excitation energy ∆E(0) a
T

associated with the active orbitals

∆E(0)
T = ∆E(0) a

T + ∆E(0) iv
T . (22)

Also, it is useful to differentiate the active part from the
inactive-virtual part of the excitation T,

T = TaTiv . (23)

The inactive-virtual excitation energy ∆E(0) iv
T is simply

∆E(0) iv
T =

∑
i ∈ T

ε i −
∑
v ∈ T

ε v , (24)

where i ∈ T and v ∈ T refer to, respectively, the inactive and
virtual spin-orbitals involved in the excitation operator T.
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Conversely, the active excitation energy ∆E(0) a
T has a more

complex expression, namely,

∆E(0) a
T

= e(0) −

∑
I J

(
cI 〈I��H T ��I〉

)
〈I��T†a HD Ta

��J〉
(
cJ 〈J��H T ��J〉

)∑
I
(
cI 〈I��H T ��I〉

)2
〈I|T†T |I〉

.

(25)

3. Practical consequences: The difference between
single and double excitation operators

From Eq. (25), one must differentiate the class of the pure
single excitation operators from the pure double excitation
operators. For the sake of clarity, we define the spin-adapted
bielectronic integrals ((mn|pq)) as

((mn|pq)) =

{
(mn|pq) if σ(m, p),σ(n, q)
(mn|pq) − (mp|nq) if σ(m, p) = σ(n, q)

, (26)

where σ(m, p) is the spin variable of the spin orbitals m and
p. If one considers a given double excitation involving four
different spin orbitals m, n, p, and q,

Tnq
mp = a†na†qapam m, n, p, q, (27)

one can notice that the Hamiltonian matrix elements associated
with this double excitation only depend, up to a phase factor,
on the four indices m, n, p, and q involved in Tnq

mp. Indeed, if
Tnq

mp is possible on both |I〉 and |J〉, one has

〈I|H Tnq
mp |I〉 = ((mn|pq)) 〈I|

(
Tnq

mp

)†
Tnq

mp |I〉 ,

〈J|H Tnq
mp |J〉 = ((mn|pq)) 〈J|

(
Tnq

mp

)†
Tnq

mp |J〉 ,
(28)

and as

〈I|
(
Tnq

mp

)†
Tnq

mp |I〉 = 〈J|
(
Tnq

mp

)†
Tnq

mp |J〉
= 1,

(29)

it becomes
〈J|H Tnq

mp |J〉 = 〈I|H Tnq
mp |I〉 . (30)

Therefore, as the Hamiltonian matrix elements of type
〈J|H Tnq

mp |J〉 can be factorized both in the numerator and the
dominator of the expression of the active part of the excitation
energy [see Eq. (25)]. Finally, the expression of the active part
of the excitation energy for a given double excitation Tnq

mp is
simply

∆E(0) a
Tnq

mp
= e(0) −

∑
I J cI 〈I|T

†
a HD Ta |J〉 cJ∑

I c2
I 〈I|T

†
a Ta |I〉

= e(0) −
〈ψ(0) |T†a HD Ta |ψ

(0) 〉

〈ψ(0) |T†a Ta |ψ(0) 〉
. (31)

As a consequence, the amplitudes tITqp
mnI and tJTqp

mnJ associated
with the same excitation Tqp

mn for different parents |I〉 and |J〉
are also equal,

tITqp
mnI =

〈I|H Tqp
mn |I〉

∆E(0)
Tqp

mn

,

tJTqp
mnJ=
〈J|H Tqp

mn |J〉

∆E(0)
Tqp

mn

,

(32)

and one can define a unique excitation operator T qp
mn

(1) which
does not depend on the reference determinant on which it
acts. The explicit form of the reference-independent excitation
operator T qp

mn
(1) is

T qp
mn

(1)
=

((mq|np))

∆E(0)
Tqp

mn

a†qa†panam. (33)

In the case where T is a pure single excitation operator,
the term 〈I|H T |I〉 may strongly depend on |I〉 and Eq. (25)
cannot be simplified.

4. Precaution for spin symmetry

As the formalism proposed here deals with Slater determi-
nants, it cannot formally ensure to provide spin eigenfunctions.
In order to ensure the invariance of the energy with the Sz value
of a given spin multiplicity, we introduced a slightly modified
version of the Dyall Hamiltonian which does not consider the
following:

1. any exchange terms in the Hamiltonian matrix elements
when active orbitals are involved,

2. any exchange terms involving two electrons of opposite
spins (namely, a†bαa†aβabβaaα and a†bβa†aαabαaaβ).

B. The JM-HeffPT2 method

An advantage of a determinant-based multi-reference per-
turbation theory is that it can be easily written as a dressing
of the Hamiltonian matrix within the reference space. Starting
from the Schrödinger equation projected on a given reference
determinant |I〉, one has

cI 〈I|H|I〉 +
∑
J,I

cJ 〈I|H|J〉
∑
µ

c(1)
µ 〈I|H|µ〉 = E(2)c I. (34)

Using the expression for the first order coefficients c(1)
µ , it

becomes

cI
*.
,
〈I|H|I〉 +

∑
µ

〈I|H|µ〉2

∆E(0)
Iµ

+/
-

+
∑
J,I

cJ
*.
,
〈I|H| J〉 +

〈I|H|µ〉 〈µ|H|J〉

∆E(0)
Jµ

+/
-
= E(2)c I. (35)

Therefore, one can define an non-Hermitian operator ∆H (2),

〈I|∆H (2) |J〉 =
∑
µ

〈I|H|µ〉 〈µ|H| J〉

∆E(0)
Jµ

, (36)

and a dressed Hamiltonian H as

〈I|H(2) |J〉 = 〈I|H| J〉 + 〈I|∆H (2) |J〉 , (37)

such that Eq. (35) becomes a non-symmetric linear eigenvalue
equation within the CAS-CI space

cI 〈I|H(2) |I〉 +
∑
J,I

cJ 〈I|H(2) |J〉 = E(2)c I. (38)

The second-order correction to the energy e(2) can be simply
obtained as the expectation value of ∆H (2) over the zeroth-
order wave function

e(2) = 〈ψ(0) |∆H (2) |ψ(0) 〉

=
∑
µ

∑
I J

cI
〈I|H|µ〉 〈µ|H| J〉

∆E(0)
Jµ

cJ. (39)
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Finally, one can define a Hermitian operator H̃ (2),

〈I|H̃ (2) |J〉 =
1
2

(
〈I|H(2) |J〉 + 〈J|H(2) |I〉

)
, (40)

and a corresponding eigenpair (|Ψ̃2 〉, Ẽ(2)) verifying

H̃ (2) |Ψ̃2 〉 = Ẽ(2) |Ψ̃2 〉 . (41)

The diagonalization of such a Hamiltonian allows then to
improve the CAS-CI wave function by treating the coupling
that can exist between the correlation effects within and outside
the CAS-CI space.

III. LINKS WITH OTHER MULTI-REFERENCE
METHODS
A. MRPT2 based on the Dyall Hamiltonian

It is interesting to understand the similarities and dif-
ferences between the present JM-MPRT2 and other strictly
size-consistent MRPT2 methods based on the Dyall zeroth-
order Hamiltonian. The most flexible solution of such MRPT2
makes use of the exact solution for the Dyall Hamiltonian
with N + 1, N + 2, N � 1, and N � 2 electrons in the active
space (where N is the number of electrons in the active
space) as perturbers. Such a formulation is totally uncon-
tracted in the perturber space, which implies a high com-
putational cost, but a solution as been recently proposed by
Sokolov and Chan.32 using a time-dependent formulation and
matrix product state techniques. Then, one can use the par-
tially contracted NEVPT2 (pc-NEVPT2) which is compu-
tationally less demanding and provides very similar results,
as shown by Sokolov and Chan.32 Finally, when comparing
JM-MRPT2, the nearest version of NEVPT2 is certainly the
strongly contracted one and the present paragraph focusses on
their differences and similarities.

JM-MRPT2 uses perturbers that are individual Slater
determinants, whereas all versions of NEVPT2 use linear com-
binations of Slater determinants. However, in SC-NEVPT2,
the contraction coefficients are closely related to the Hamil-
tonian matrix elements, just as in the JM-MRPT2 method.
In order to better understand the differences between SC-
NEVPT2 and JM-MRPT2, let us take a practical example.
Here, i, j are the inactive spin-orbitals, a, b are the active spin-
orbitals, and r, s are the virtual spin-orbitals. Considering a
given semi-active double excitation Tav

ij = a†aa†vajai, the first-

order amplitude tav
ij

(1) associated with Tav
ij in the JM-MRPT2

formalism is given by

tav
ij

(1)
=

((ia|jv))

ε i + ε j − ε v + ∆E(0)

a†a

, (42)

where the active part of the excitation energy ∆E(0)

a†a
directly

comes from Eq. (31)

∆E(0)

a†a
= e(0) −

〈ψ(0) |aa HD a†a |ψ
(0) 〉

〈ψ(0) |aaa†a |ψ(0) 〉
. (43)

Note that such a quantity can be thought as an approximation
of the electron affinity of the molecule, as it is the change
in energy when one introduces “brutally” an electron in spin
orbital a without relaxing the wave function. Consequently, as

it has been emphasized in Sec. II A [see Eq. (33)], one can
consider the part of the first-order perturbed wave function
generated by the excitation Tav

ij ,

|ψ(1)
Tav

ij
〉 =

∑
I

cI tav
ij

(1) Tav
ij |I〉 , (44)

which turns out to be

|ψ(1)
Tav

ij
〉 =

((ia|jv))

ε i + ε j − ε v + ∆E(0)

a†a

∑
I

cI Tav
ij |I〉

=
((ia|jv))

ε i + ε j − ε v + ∆E(0)

a†a

Tav
ij |ψ

(0) 〉 . (45)

In the SC-NEVPT2 framework, one does not consider explic-
itly a given Tav

ij but has to consider a unique excitation T v
ij

which is a linear combination of all possible Tav
ij for all active

spin orbitals a, with proper contraction coefficients. To be more
precise, the first-order perturbed wave function associated with
T v

ij is

|ψ(1)
T v

ij
〉 =

1

∆E(0)
T v

ij

∑
a

((ia| jv)) Tav
ij |ψ

(0) 〉 , (46)

where the excitation energy∆E(0)
T v

ij
associated withT v

ij is unique

for all the excitation operators Tav
ij and can be thought as an

average excitation energy over all a. Consequently, one can
express the part of |ψ(1)

T v
ij
〉 that comes from the Tav

ij as

|ψ(1)
Tav

ij
〉
(SC- NEVPT2)

=
((ia|jv))

∆E(0)
T v

ij

Tav
ij |ψ

(0) 〉 , (47)

which we can compare to Eq. (45) in the case of the JM-
MRPT2 method. Then, the only difference between SC-
NEVPT2 and JM-MRPT2 is the definition of the excitation
energy occurring in Eqs. (45) and (47). In the SC-NEVPT2
method, the excitation energy ∆E(0)

T v
ij

is closely related to the

excitation energy defined in JM-MRPT2

∆E(0)
T v

ij
= e(0) −

〈ψ
(1)
T v

ij
|HD |ψ(1)

T v
ij
〉

〈ψ
(1)
T v

ij
|ψ(1)

T v
ij
〉

= ε i + ε j − ε v + ∆E(0)SC–NEVPT2
a†

, (48)

where the quantity ∆E(0)SC–NEVPT2
a†

is the same for all active
orbitals and defined as

∆E(0)SC–NEVPT2
a†

= e(0) −

∑
a
∑

b((ia|jv))((ib|jv)) 〈ψ(0) |ab HD a†a |ψ
(0) 〉∑

a ((ia|jv))2 〈ψ(0) |aaa†a |ψ(0) 〉
.

(49)

Under this perspective, one sees that the quantity
∆E(0)SC–NEVPT2

a†
is related to ∆E(0)

a†a
defined in Eq. (43):

• in the JM-MRPT2 method, the quantity∆E(0)

a†a
explicitly

refers to the “brutal” addition of an electron in orbital
a, whatever the inactive orbitals i, j or virtual orbitals v
involved in Tav

ij ;
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• the quantity ∆E(0)SC–NEVPT2
a†

involved in SC-NEVPT2
is an average electronic affinity over all possible exci-
tation processes a†a within the active space, but keeping
a trace of the inactive and virtual excitation processes
involved in Tav

ij , thanks to the interaction (ia|jv).

Consequently, the quantity ∆E(0)SC–NEVPT2
a†

contains also the

interactions between various a†a |ψ
(0) 〉. To summarize, on one

hand, JM-MRPT2 gives a different but rather crude excitation
energy for each Tav

ij , and on the other hand, SC-NEVPT2 has
a unique and sophisticated excitation energy for all Tav

ij . Of
course, one can extend this comparison to all the other classes
of double excitations.

Finally, one should notice that the effective Hamiltonian
formulation of JM-MRPT2 leads to the revision of the zeroth-
order wave function, which is not allowed by the NEVPT2
framework, whatever its degree of contraction in the perturber
space.

B. Multi-reference coupled cluster methods

The present formalism has also several links with other
multi-reference methods. First of all, as it uses a JM genealog-
ical definition for the coefficients c(1)

µ [see Eqs. (5) and (7)],
the wave function corrected at first order |Ψ(1) 〉 can be written
as

|Ψ(1) 〉 = |ψ(0) 〉 + |ψ(1) 〉

=
∑

I

cI |I〉 +
∑
µ

∑
I

cI t(1)
Iµ TIµ |I〉

=
∑

I

cI
*.
,
1 +

∑
µ

t(1)
Iµ TIµ

+/
-
|I〉 . (50)

By introducing the excitation operator T (1)
I acting only on |I〉

as
T (1)

I =
∑
µ

t(1)
Iµ T Iµ, (51)

the expression of |Ψ(1) 〉 in Eq. (50) becomes

|Ψ(1) 〉 =
∑

I

cI

(
1 + T (1)

I

)
|I〉 . (52)

Such a parameterization for the first-order corrected wave
function |Ψ(1) 〉 recalls immediately a first-order Taylor expan-
sion of the general JM-MRCC ansatz

|JM −MRCC〉 =
∑

I

cI eTI |I〉. (53)

Nevertheless, based on the JM-MRPT2 expression for the
amplitudes, one might imagine to divide the general T I oper-
ator into a reference-dependent single excitation operator and
a reference-independent double excitation operator. The JM-
MRPT2 amplitudes might be used as a guess to start the
iterative research of the MRCC equations.

Also, within the present formalism, the class of the dou-
ble excitations can be factorized as shown in Sec. II A [see
Eq. (33)]. Therefore, using the reference-independent ampli-
tudes defined in Eq. (33), one can define a unique double
excitation operator T (1)

D as

T (1)
D =

∑
m,n,p,q

T qp
mn

(1), (54)

recalling thus the formalism of the internally contracted-
MRCC58–61 (ic-MRCC) which uses a unique excitation oper-
ator T as in the single-reference coupled-cluster

|ic −MRCC〉 = eT |ψ(0) 〉 = eT
∑

I

cI |I〉 . (55)

In such a perspective, as the energy provided by the JM-
MRPT2 equations is size-extensive, it can be seen as a lin-
earized coupled cluster version using a hybrid parameteri-
zation of the wave function: internally contracted ansatz for
the double excitation operators and JM ansatz for the single
excitation operators.

C. Determinant-based multi-reference
perturbation theories

JM-MRPT2 presented here can be directly compared to
the CIPSI method, just as the JM-HeffPT2 can be directly
compared to the shifted-Bk method.48–50 Indeed, by using the
following amplitudes:

tCIPSI
Iµ =

〈I|H|µ〉

e(0) − 〈µ |H| µ〉
, (56)

in the equation of the second-order correction on the energy
[see Eq. (8)], one obtains the CIPSI energy, and by introducing
tCIPSI
Iµ in the definition of the dressed Hamiltonian H̃ (2), one

obtains

〈I|H (2)
Shifted−Bk

|J〉 = 〈J |H| J〉 +
∑
µ

〈I|H|µ〉 〈µ |H| J〉

e(0) − 〈µ |H| µ〉
, (57)

which defines the shifted-Bk Hamiltonian and corresponding
energy once H (2)

Shifted−Bk
is diagonalized. As mentioned pre-

viously, it has been shown that the size-consistency error of
these methods comes from the unbalanced treatment between
the variational energy of a multi-reference wave function such
as |ψ(0) 〉 and the variational energy of the single Slater deter-
minant |µ〉. Such an error is not present within the definitions
of the excitation energies in the JM-MRPT2 method as the
latter introduces expectation values of the Hamiltonian over
linear combinations of perturber Slater determinants.

In a similar context, one can compare the JM-HeffPT2
method to the Split-GAS47 of Li Manni et al. whose definition
of the amplitude is

tSplit−GAS
Iµ =

〈I|H|µ〉

e(0) + e(2) − 〈µ |H| µ〉
. (58)

In the Split-GAS framework, the correlation energy e(2)

brought by the perturbers is included in the energy denom-
inator, which introduces self consistent equations as in the
Brillouin-Wigner perturbation theory.51 However, the size-
consistency error in such a method is even more severe than in
the shifted-Bk as the excitation energies are much larger due
to the presence of the total correlation energy e(2).

IV. COMPUTATIONAL COST
A. Mathematical complexity and memory requirements

Compared to other size-extensive MRPT2 methods, a
clear advantage of JM-MRPT2 is its simplicity. The NEVPT2
approach requires to handle the four-body density matrix and
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the CASPT2 needs to handle the three-body density matrix.
Both of these computationally intensive phases can be skipped
in our formalism as one only needs to compute expectation val-
ues whose number is relatively small compared to NEVPT2
and CASPT2. The most involved quantity to be computed is

∆E(0)
ir = e(0) −

∑
I
∑

J cI 〈I|H a†r ai |I〉 〈I|H| J〉 〈J|H a†r ai |J〉 cJ(∑
I cI 〈I|H a†r ai | I〉

)2
,

(59)
for all pairs (i, r) where i is an inactive orbital and r is a virtual
orbital. These quantities need to be only computed once since
they can all fit in memory. Each ∆E(0)

ir is, from the computa-
tional point of view, equivalent to an expectation value over
the CASSCF wave function. As all ∆E(0)

ir are independent, the
computation of these quantities can be trivially parallelized.
Regarding the memory footprint of the JM-MRPT2 method,
it scales as O(n3

a) (na being the number of active orbitals) for
the storage of the ∆E(0)

a†aa†bac
and ∆E(0)

a†aabac
quantities.

Regarding the complexity of the equations for the ampli-
tudes, it is clear that once computed the active part of the
denominator, JM-MRPT2 is just a simple sum of contribu-
tions. This is in contrast with the UGA-SSMRPT2 equations
which involve the handling of coupled amplitude equations.

B. Removal of the determinant-based
computational cost

The present formalisms are formally determinant-based
methods, which implies that the computational cost should
be proportional to the number of perturbers |µ〉 that one has
to generate to compute the corrections to the energy or the
dressing of the Hamiltonian matrix, just as in the CIPSI,
shifted-Bk , or UGA-SSMRPT2 methods. To understand the
main computational costs, one can divide the excitation classes
according to the difference dedicated CI (DDCI) framework,52

which classifies the Slater determinants in terms of numbers
of holes in the doubly occupied orbitals and particles in the
virtual orbitals. If NCAS is the number of Slater determinants
of the CAS-CI zeroth order wave function, no, na, and nv ,
respectively, the number of doubly occupied, active and virtual
orbitals, one can then classify each excitation class according
to the number of perturbers needed to compute their con-
tribution to the second-order perturbation correction to the
energy:

1. the two-holes-two-particles excitation class (2h2p)
which scales as NCAS × n2

o × n2
v ;

2. the one-hole-two-particles excitation class (1h2p) which
scales as NCAS × no × na × n2

v ;
3. the two-holes-one-particle excitation class (2h1p) which

scales as NCAS × n2
o × na × nv ;

4. the two-particles excitation class (2p) which scales as
NCAS × n2

v ;
5. the two-holes excitation class (2h) which scales as NCAS

× n2
o;

6. the one-hole-one-particle excitation class (1h1p) which
scales as NCAS × no × nv ;

7. the one-particle excitation class (1p) which scales as
NCAS × nv ;

8. the one-hole excitation class (1h) which scales as NCAS

× no.

Nevertheless, our formalism presents several mathematical
simplifications that allow one to basically remove any brows-
ing over the Slater determinants |µ〉, and once more there
is a difference between the single and double excitations
processes.

C. Factorization of the most numerous double
excitation processes

As the five most computationally demanding excitation
classes involve only double excitation operators in their equa-
tions, their contribution can be formalized directly, thanks
to the one- and two-body density matrices of the zeroth-
order wave function. To understand how one can write the
second-order correction to the energy as

e(2)
double exc.

=
∑

m, n, p, q

∑
I

cI 〈ψ
(0) |H a†qa†panam |I〉

((mq|np))

∆E(0)

a†qa†panam

=
∑

m, n, p, q

∑
I, J

cIcJ 〈J|H a†qa†panam |I〉
((mq|np))

∆E(0)

a†qa†panam

. (60)

Consequently, as 〈J |H a†qa†panam |I〉 is necessarily of type

〈J|H a†qa†panam |I〉 = ((ef |gh)) 〈J|a†f a†hagae a†qa†panam |I〉 ,
(61)

one can reformulate the second-order correction to the energy
in terms of many-body density matrices

e(2)
double exc. =

∑
m, n, p, q, e, f , g, h

〈ψ(0) |a†f a†hagae a†qa†panam |ψ
(0) 〉

×
((mq|np)) ((ef |gh))

∆E(0)

a†qa†panam

. (62)

Such a formulation avoids completely to run over Slater deter-
minants and consequently kills the prefactor in NCAS involved
in each of the excitation classes, just as in the internally con-
tracted formalisms. Of course, because of the restrictions in
terms of holes and particles in the inactive and virtual orbitals,
the handling of the four-body density matrix never occurs
in our formalism. We report here the explicit equations for
the energetic corrections of the five most numerous double
excitation classes

e(2)
2h2p =

1
2

∑
i,j,v,r

3(iv |jr)2 + (ir |jv)2 − 2(iv |jr)(ir |jv)
ε i + ε j − ε v − ε r

, (63)

e(2)
1h2p =

1
2

∑
i,v,r,a,b

〈ψ(0) |aaa†b |ψ
(0) 〉

((ir |av))((ir |bv))

ε i + ∆E(0)

a†a
− ε r − ε v

, (64)

e(2)
2h1p =

1
2

∑
i,j,r,a,b

〈ψ(0) |a†aab |ψ
(0) 〉

((ir |aj))((ir |bj))

ε i + ε j + ∆E(0)
aa
− ε r

, (65)

e(2)
2p =

1
2

∑
r,v,a,b,c,d

〈ψ(0) |a†aa†bacad |ψ
(0) 〉

((ar |bv))((cr |dv))

∆E(0)
acad
− ε r − ε v

,

(66)
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TABLE I. Geometries used for the ethane and ethylene molecules.

Geometrical parameters C2H6 C2H4

C–H (Å) 1.103 1.089
H–C–C (◦) 111.2 120.0
H–C–H (◦) 107.6 120.0
H–C–C–H (◦) 180.0 180.0

e(2)
2h =

1
2

∑
i,j,a,b,c,d

〈ψ(0) |aaaba†ca†d |ψ
(0) 〉

((ai|bj))((ci|dj))

ε i + ε j + ∆E(0)

a†c a†d

.

(67)

D. Simplification for the 1h1p excitation class

Thanks to the factorization of the most numerous dou-
ble excitations processes, the remaining main computational
cost comes from the single excitations involved in the 1h1p
excitation class. In the case of single excitation processes, the
factorization cannot be applied as the Hamiltonian matrix ele-
ments depend on the Slater determinant on which the single
excitation is applied. The total energetic correction brought by
the single excitation processes involved in the 1h1p excitation
class can be expressed as follows:

e(2) Single exc.
1h1p =

∑
i, r

∑
I

〈ψ(0) |H a†r ai |I〉 cI
〈I|H a†r ai |I〉

∆E(0)
ir

=
∑
i, r

∑
I, J

cJ 〈J|H a†r ai |I〉 cI
〈I|H a†r ai |I〉

∆E(0)
ir

. (68)

As the Hamiltonian matrix elements 〈J|H a†r ai |I〉 are simply

〈J |H a†r ai |I〉 = ((ir |ab)) 〈J|a†baa |I〉 , (69)

one can reformulate the sum as

e(2) Single exc.
1h1p =

∑
I, J

cJcI

∑
a, b

F I
ab 〈J|a

†

baa |I〉 , (70)

where the quantityFI
ab is the effective Fock operator associated

with the Slater determinant |I〉 involving the active orbitals a
and b,

FI
ab =

∑
i, r

((ir |ab))
〈I|H a†r ai |I〉

∆E(0)
ir

. (71)

Of course, as 〈I|H a†r ai |I〉 depends on the occupation of |I〉,
there is one effective Fock operator for each reference determi-
nant |I〉which would suggest to compute explicitly these quan-
tities for each Slater determinant within the CAS-CI space.
Nevertheless, one can notice that 〈I|H a†r ai |I〉 is just a sum of
terms

〈I|H a†r ai |I〉 =
∑

m occupied in |I〉

((ir |mm)). (72)

Considering that the inactive orbitals are always doubly occu-
pied in |I〉, this sum can be split into an inactive and an active
contribution, namely,

〈I|H a†r ai |I〉 = Fc.s.
ir + FI

ir , (73)

where Fcs
ir and FI

ir are defined as

Fcs
ir =

∑
j doubly occupied in |I〉

2(ir |jj) − (rj |ij), (74)

FI
ir =

∑
c occupied in |I〉

((ir |cc)). (75)

Therefore, one can first compute the effective Fock operator
associated with the closed shell orbitals

Fcs
ab =

∑
i, r

((ir |ab))
Fcs

ir

∆E(0)
ir

, (76)

TABLE II. Non-parallelism errors and spectroscopic constants computed from the potential energy curves obtained at different computational levels for the F2,
C2H6, and FH molecules. NPE and D0 are reported in mH, Req in Å, and k in hartree/Å2.

F2 C2H6 FH

NPE D0 Req k NPE D0 Req k NPE D0 Req k

CASSCF 30.7 22.1 1.53 0.43 27.7 154.0 1.55 0.99 35.3 180.0 0.92 2.15

JM-MRPT2 6.7 46.3 1.44 0.85 2.5 179.0 1.53 1.06 9.7 220.4 0.93 2.11
JM-MRPT2 (deloc) 11.4 51.1 1.43 0.93 4.5 181.6 1.54 1.06 13.1 224.3 0.93 2.13
SC-NEVPT2 8.5 48.1 1.44 0.88 2.6 179.2 1.54 1.07 9.5 220.5 0.93 2.11
PC-NEVPT2 8.5 48.2 1.44 0.88 2.5 179.2 1.54 1.07 9.5 220.5 0.93 2.11
CASPT2 (IPEA = 0) 2.6 44.1 1.46 0.74 3.6 175.0 1.53 1.08 3.1 214.1 0.92 2.16
CASPT2 (IPEA = 0.25) 3.9 44.3 1.46 0.75 3.4 177.8 1.53 1.09 4.0 214.5 0.92 2.17
Mk-MRPT2a . . . 47.2 1.44 0.60 . . . . . . . . . . . . . . . . . . . . . . . .
Mk-MRPT2 (deloc)a . . . 48.4 1.44 0.71 . . . . . . . . . . . . . . . . . . . . . . . .

JM-HeffPT2 7.4 50.1 1.45 0.87 2.4 179.4 1.53 1.05 8.9 221.9 0.93 2.11
JM-HeffPT2 (deloc) 14.2 56.2 1.44 0.94 5.4 182.2 1.54 1.05 14.5 226.1 0.94 2.14
Shifted Bk 6.6 50.1 1.48 0.80 8.6 136.4 1.64 0.75 44.3 216.4 0.93 2.11
Shifted Bk (deloc) 5.7 91.8 1.41 1.26 4.7 220.5 1.53 1.09 26.7 236.1 0.94 2.31

FCIb . . . 45.1 1.46 0.77 . . . 177.7 1.53 1.06 . . . 214.4 0.92 2.16

aResults from Ref. 62.
bResults obtained with CIPSI calculations converged up to a second-order perturbative correction lower than 10�4 hartree.
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which is common for all the Slater determinants |I〉within the
CAS-CI space. Then, what differentiates the effective Fock
operator between two different determinants |I〉 and |J〉 is the
active part

FI
ab =

∑
i, r

((ir |ab))
FI

ir

∆E(0)
ir

. (77)

One can then notice that the active part of the Fock operator FI
ir

is just a sum over all active orbitals occupied in |I〉 of quantities
that only depend on the active orbitals

FI
ab =

∑
c occupied in |I〉

Fc
ab, (78)

where Fc
ab is nothing but

Fc
ab =

∑
i, r

((ir |ab))
((ir |cc))

∆E(0)
ir

. (79)

Therefore, by computing and storing all possible Fc
ab together

withF cs
ab , one can then easily rebuild the total effective operator

of a given Slater determinant |I〉,

F I
ab = F cs

ab +
∑

c occupied in |I〉

Fc
ab, (80)

and consequently compute the total second-order correction to
the energy e(2) Single exc.

1h1p as a simple expectation value. To sum-

marize, a computational step scaling as N2
CAS × no × nv [see Eq.

(68)] is replaced by a first calculation scaling as n3
act × no × nv

[see Eq. (79)], followed by the computation of an expectation
value scaling as N2

CAS, independent of the number of doubly
occupied and virtual orbitals.

V. NUMERICAL RESULTS

The present section spells out the numerical results
obtained for the potential energy curves and corresponding
spectroscopic constants of six molecules involving a single,
double, and triple bond breaking, which are F2, FH, C2H6,
C2H4, H2O, and N2. We also report the computation of the
1Ag→

1B1u excitation energy of the ethylene molecule and
compare it to the near FCI value obtained by Daday and co-
workers53 with the FCI-Quantum Monte Carlo (FCI-QMC)
approach. A numerical test of strong separability is also
provided in the case of the F2 · · · FH molecule.

A. General computational details

The cc-pVDZ basis set has been used in all cases, except
for the FH molecule for which the aug-cc-pVDZ basis set was
retained, and pure spherical harmonics were used for all cal-
culations. The frozen core approximation has been used, and
consequently the 1s electrons were systematically frozen for
all non-hydrogen atoms. The near FCI reference values were
obtained using the CIPSI algorithm developed in the program
Quantum Package54 and all calculations were converged below
0.1 mH. The shifted-Bk , JM-MRPT2, and JM-HeffPT2 have
been implemented in the Quantum Package, and all CASSCF
calculations were performed using the GAMESS(US)55

software. The CASPT2 calculations were performed with
MOLCAS 7.8,56 while the NEVPT2 results were obtained
using stand-alone codes developed at the University of Ferrara

and interfaced with MOLCAS 7.8. The geometrical parame-
ters used for the C2H6 and C2H4 molecules can be found in
Table I, and the H–O–H angle of the H2O molecule has been
set to 110.6◦. Concerning the excitation energy calculation
of the ethylene molecule, we used the experimental geome-
try and the ANO-L-VDZ basis set57 in order to compare to
one of the values obtained within the FCI-QMC method in
Ref. 53.

In order to compare the performance of the here pro-
posed formalisms with other determinant-based MPRT2 meth-
ods, we have also performed calculations using the shifted-
Bk method using an Epstein-Nesbet zeroth order Hamilto-
nian, and we also report results obtained at the Mk-MPRT262

and UGA-SSMRPT239 level of theories when available. For

FIG. 2. Comparison of different MR-PT2 schemes with the FCI energy along
the potential energy curves of C2H6, F2, with the cc-pVDZ basis set, and FH
with the aug-cc-pVDZ basis set. Energy differences in atomic units.



224108-11 Giner et al. J. Chem. Phys. 146, 224108 (2017)

the sake of comparison with other state-of-the-art methods,
we also report the spectroscopic constants and the error
with respect to FCI obtained at the strongly contracted (SC-
NEVPT2) and partially contracted (PC-NEVPT2) NEVPT2
using delocalized orbitals, together with CASPT2 with two
different IPEA values. The IPEA values were chosen as 0 as in
the original formulation of CASPT2, and 0.25 corresponding
to the nowadays standard CASPT2 method.

B. Definition of the active spaces and localized orbitals

All MRPT2 calculations started with a minimal valence
CASSCF involving the bonding and anti-bonding orbitals of
each bond being broken along the potential energy curve.
In the case of the single bond breaking, it simply implies
a CASSCF(2,2) with the σ and σ∗ orbitals. The following
minimal valence active spaces are used for the three systems
involving multiple bond breaking: for the H2O molecule, a
CASSCF(4,4) with four orbitals of valence character (using
the C2v symmetry point group, two orbitals of the A1 irrep
and two orbitals of the B2 irrep having a C–H bonding charac-
ter); for the C2H4 molecule, a CAS(4, 4) has been performed
using the bonding and anti-bonding orbitals of both the σ and
π C–C bonds; and for the N2 molecule, a CAS(6, 6) has been
used with the bonding and anti-bonding orbitals of the σ and
the two π bonds.

Nevertheless, as it is the case for many multi-reference
perturbation theories, our formalism is not invariant through
orbital rotations within each orbital space (active, inactive, and
virtual). Therefore one can choose to use delocalized orbitals,
as the canonical ones, or localized orbitals. The present for-
malism is strictly separable when localized orbitals are used,
so it seems therefore natural to use localized active orbitals
rather than the canonical ones. In the case, F2, N2, C2H6, and
C2H4, these orbitals are simply obtained by a rotation of π/4
between the bonding and anti-bonding active orbitals (σ and
σ∗ for the σ bond, π and π∗ for the π bonds, and so on). In the
case of the FH and H2O molecules, the active orbitals were
obtained, thanks to a rotation of the canonical active MOs in
order to maximize the overlap with reference localized orbitals
following chemical intuition: for the FH molecule, they consist

in the 2pz atomic orbital of the fluorine and 1s atomic orbital
of the hydrogen atom, and for the H2O molecule they consist
in the two 1s atomic orbitals of the hydrogen atoms and of two
simple linear combinations of the 2px and 2py orbitals, each
one pointing to a given hydrogen atom.

Even if the present formalism is strictly separable only
using localized orbitals, we nevertheless investigate the depen-
dency of the choice of the active orbitals for the three molecules
involving a single bond breaking (F2, FH and C2H6) for which
we report calculations both with canonical delocalized active
orbitals (which are referred as “deloc”) and localized active
orbitals.

C. Single bond breaking

Table II presents the spectroscopic constants, namely,
equilibrium distance (Req), the bond energy (D0), and the sec-
ond derivative (k) at Req, for the F2, C2H6, and FH molecules
at different computational levels. Also, we represent in Fig. 2
the difference of the FCI energy along the potential energy
curves of those systems. From these data, several trends
can be observed, both regarding the quality of the potential
energy curves and the dependency on the choice of the active
orbitals.

1. Dependency on the locality of the active orbitals

From the error of the potential energy curve to the FCI
reference, it appears that the JM-MRPT2 method gives sys-
tematically better spectroscopic constants and a lower error
with respect to the full-CI energy when localized orbitals are
chosen. This is consistent with the fact that these methods
are strictly separable when localized orbitals are used. There-
fore, from now on we shall only refer to the results obtained
with localized orbitals. One can remark that in the case of
the F2 molecule where Mk-MRPT2 calculations are available
in the literature,62 the JM-MRPT2 method gives very similar
results.

2. Quality of the potential energy curves

From Table II, one can observe that the results obtained
with the JM-MRPT2 method are comparable to those obtained

TABLE III. Non-parallelism errors and spectroscopic constants computed from the potential energy curves obtained at different computational levels for the
H2O, C2H4, and N2 molecules. NPE and D0 are reported in mH, Req in Å and k in hartree/Å2.

H2O C2H4 N2

NPE D0 Req k NPE D0 Req k NPE D0 Req k

CASSCF 40.9 289.3 0.96 3.74 26.2 252.6 1.36 2.03 18.2 313.7 1.11 5.34

JM-MRPT2 3.0 332.7 0.96 3.89 3.7 279.5 1.35 2.07 3.4 316.9 1.12 5.05
SC-NEVPT2 2.4 329.2 0.96 3.81 2.4 278.2 1.36 2.09 2.3 317.2 1.12 5.10
PC-NEVPT2 2.5 329.5 0.96 3.81 3.2 279.3 1.35 2.10 1.3 318.2 1.12 5.10
CASPT2 (IPEA = 0) 5.5 325.4 0.96 3.86 6.0 271.9 1.35 2.10 9.6 310.2 1.12 5.07
CASPT2 (IPEA = 0.25) 3.0 327.9 0.96 3.86 4.5 278.0 1.35 2.11 4.4 318.8 1.12 5.14

JM-HeffPT2 4.8 333.9 0.96 3.85 4.0 280.2 1.35 2.08 4.5 317.1 1.12 4.99
Shifted Bk 30.8 304.3 0.98 3.37 7.6 238.5 1.40 1.73 5.9 277.7 1.14 4.42

FCIa . . . 330.3 0.96 3.89 . . . 277.0 1.35 2.09 . . . 319.4 1.12 5.04

aResults obtained with CIPSI calculations converged up to a second-order perturbative correction lower than 10�4 hartree.
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with the well-established CAS-PT2 and NEVPT2 methods.
The largest deviation on D0 is of 6 mH for the FH molecule,
representing less than 3% of error on the total binding energy,
whereas it is of 1.2 mH and 1.3 mH which represents an error of
less than 3% and 1% on the binding energy for the F2 and C2H6

molecules, respectively. The equilibrium geometries obtained
at the JM-MRPT2 level are always within 1% of error with
respect to the FCI estimates, and so are the k values except
for the F2 molecule for which a significant deviation of 10% is
observed. Except for the quality of the results, one can observe
a systematic overestimation of the binding energy at the JM-
MRPT2 level.

The non-parallelism error (NPE) is, within the computed
points, the difference between the maximum and minimum
absolute errors with respect to FCI energies. In addition to the
the spectroscopic constants, the NPE is also a good indicator
of the quality of the results of a given method. Using localized
orbitals, the NPE obtained at JM-MRPT2 is of 6.7 mH for
the F2 molecule, 2.5 mH for C2H6, and 9.7 mH for the FH
molecule. The maximum NPE is then for the FH molecule,
which has also the largest energetic variation among the three
molecules studied here.

D. Numerical results for double and triple
bond breaking

Table III presents the spectroscopic constants obtained for
the H2O, C2H4, and N2 molecules and Fig. 3 shows the dif-
ference of the FCI energy along the potential energy curves.
From Table III, it appears that the results obtained with the
JM-MRPT2 method follow a trend similar to what has been
observed with the study of the three molecules involving a sin-
gle bond breaking: the spectroscopic constants obtained at this
level of theory are globally in good agreement with the FCI
ones, D0 obtained at the JM-MRPT2 level tends to be overesti-
mated. Also, the absolute error on D0 obtained at JM-MRPT2
is quite constant: 2.4 mH, 2.4 mH, and 2.5 mH, representing
0.7%, 0.9%, and 0.8% of the total binding energy for the H2O,
C2H4, and N2 molecules, respectively.

Regarding the curves displaying errors with respect to the
FCI energies, it appears that the JM-MRPT2 curves are smooth
and do not present any intruder state problems, with an NPE
between 3 and 4 mH.

E. Comparison of JM-HeffPT2 with shifted-Bk

Figure 4 shows the difference of the FCI for all the previ-
ously studied systems, for the JM-HeffPT2 and the shifted-Bk

methods. It is clear that in all the cases, the potential energy
curves obtained with the JM-HeffPT2 are much more paral-
lel to the FCI curve than the shifted-Bk ones. Also, it is worth
mentioning that the JM-HeffPT2 curves are smooth and do not
present any intruder state problems. The spectroscopic con-
stants and NPEs calculated with both methods are given in
Tables II and III.

In general, the energetic values obtained after diagonaliz-
ing the effective Hamiltonian are not better than those obtained
with the JM-MRPT2 method. But the main advantage of JM-
HeffPT2 over JM-MRPT2 is that it provides improved CI-
coefficients on the reference space, like the shifted-Bk method.
To illustrate the quality of the improved wave functions, we

report in Table IV the ratios ci/cn where ci and cn are the
CI-coefficients of the determinants relative to the ionic and
neutral structures of F2 obtained at the CAS-CI, JM-HeffPT2,
shifted-Bk , and CIPSI levels. As a reference, CIPSI calcula-
tions were carried out in the frozen-core FCI space, and the
number of determinants (Ndet) selected in the variational wave
function are given in Table IV. For such large wave functions,
the CI-coefficients on the reference determinants are expected
to be very close to the FCI limit. Both the JM-HeffPT2 and
shifted-Bk methods show a significant improvement of the
wave function, and JM-HeffPT2 is in very good agreement
with the FCI especially at the equilibrium distance. Similarly,
we report in Table V computations of the dipole moment along
the internuclear axis for the FH molecule and compare it to

FIG. 3. Comparison of different MR-PT2 schemes with the FCI energy along
the potential energy curves of C2H4, N2, and H2O with the cc-pVDZ basis
set. Energy differences in atomic units.
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FIG. 4. Energy difference of JM-HeffPT2 and shifted-Bk with respect to the FCI energy along the potential energy curves of C2H6, F2, C2H4, N2, and H2O
with the cc-pVDZ basis set, and FH with the aug-cc-pVDZ basis set. Energy differences in atomic units.

values obtained by projecting and normalizing large CIPSI
wave functions on the CAS-CI space (referred hereafter as
CIPSI-proj-CAS). Therefore, the dipole moment computed
with a given method only depends on the relative coefficients of
the four Slater determinants belonging to the CAS-CI space.
From these results, it clearly appears that the JM-HeffPT2
method allows one to obtain values for the dipole moment
that are in excellent agreement with that obtained at the

TABLE IV. Ratios ci/cn at different internuclear distances, for the F2
molecule (cc-pVDZ). The last row indicates in italics the number of Slater
determinants in the CIPSI wave functions.

F2 1.4119 Å 2 Å 3 Å

CAS-CI 0.572 0.212 0.024
JM-HeffPT2 0.646 0.273 0.033
Shifted-Bk 0.707 0.274 0.030

CIPSI 0.638 0.259 0.030
Ndet 6 321 822 7 889 806 12 748 141

CIPSI-proj-CAS level of theory. Also, one can notice a sig-
nificant improvement of the description of the dipole moment
going from the CAS-CI wave function to the JM-HeffPT2
wave function, implying that the diagonalization of the dressed
Hamiltonian leads to coefficients within the CAS-CI space that
are closer to the ones of the FCI wave function, which is not
the case for the shifted-Bk method.

TABLE V. Dipole moment (reported in a.u.2) along the internuclear axis
obtained at various computational levels for the FH molecule (aug-cc-pVDZ).
The last row indicates in italics the number of Slater determinants in the CIPSI
wave functions.

FH 0.95 Å 1.4 Å 1.9 Å

CAS-CI 1.07 1.87 3.20
JM-HeffPT2 1.04 1.70 2.88
Shifted-Bk 1.01 1.47 2.19

CIPSI-proj-CAS 1.05 1.71 2.92
Ndet 2 677 789 2 545 448 2 153 580
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TABLE VI. Excitation energy of the ethylene molecule for the 1B1u singlet
state computed in the ANO-L-VDZ basis set.

∆E (eV)

CASSCF(2,2) 8.83

JM-MRPT2 (loc) 8.38
JM-MRPT2 (deloc) 8.47

JM-HeffPT2 (loc) 8.42
JM-HeffPT2 (deloc) 8.53

Shifted-Bk (loc) 7.97
Shifted-Bk (deloc) 7.62

FCI-QMCa 8.25(1)

aResults obtained from Ref. 53.

F. The excited state 1B1u of the ethylene molecule

The excited state of the ethylene molecule 1B1u of sin-
glet spin symmetry has been the subject of intense debates,
both from a theoretical and experimental point of views. The
excited state 1B1u resulting from the singlet coupling of the
single π → π∗ excitation has a strong ionic character. Conse-
quently, the electronic correlation effects are much larger in
such a state than in the ground state where the neutral forms
dominate, explaining the high dependency of the excitation
energy to the level of treatment of electronic correlation.63,64

In order to test the applicability of the JM-MRPT2 method for
the computation of excited states, we performed state-specific
calculations on both the ground and the singlet 1B1u states and
compare it to the near FCI values obtained by Daday et al.53 As
1B1u is the lowest singlet of the B1u symmetry (using the D2h

point group), we optimize the orbitals of both the ground and
excited states at the CASSCF level using two electrons in the
two π and π∗ orbitals. We used the ANO-L-VDZ basis set57

and performed the calculation both with symmetry adapted and
localized active orbitals. The results are reported in Table VI.
From this table, one can notice that the maximum deviation
from the FCI-QMC result is of 0.31(1) eV using JM-HeffPT2
with delocalized orbitals, whereas the minimum deviation of
0.13(1) is obtained with JM-MRPT2 with localized orbitals.

G. Numerical evidence of strong separability

A given method based on the definition of active orbitals
is said to be strongly separable when the energy computed
for a system composed of two non interacting fragments
A · · · B with active orbitals both on system A and B coin-
cides with the sum of the energies of each sub system com-

puted individually with the corresponding active orbitals on
the fragments A and B. The present definitions of JM-MRPT2
and JM-HeffPT2 respect the property of strong separability
when localized orbitals are used. A formal proof of the strict
separability is given in the Appendix. In order to give a numer-
ical example of the strong separability property, we report
in Table VII calculations on F2 (F–F = 1.45 Å), FH (F–H
= 0.90 Å), and on the super-system of F2 · · · FH at an inter-
molecular distance of 100 Å. As the two subsystems are differ-
ent, the orbitals obtained by the CASSCF method are localized
on each system, which is a necessary condition for the strong
separability in our formalism. From Table VII, it appears that
the deviations on the computed correlated energy e(2)-JM-
MRPT2 [see Eq. (8)] between the super system with non-
interacting fragments and the sum of the two systems is lower
than 10�13 hartree, which is actually smaller than the non-
additivity of the CASSCF energies. For JM-HeffPT2, the rela-
tive error remains in the same order of magnitude than that for
the CASSCF. This shows that the effective Hamiltonian does
not introduce non-separability error. Finally, one should notice
the strong non-separability error of the shifted-Bk approach.

VI. CONCLUSIONS AND PERSPECTIVES
A. Summary of the main results

The present work has presented a new MRPT2 approach,
the JM-MRPT2 method, that uses individual Slater determi-
nants as perturbers and allows for an intermediate Hamiltonian
formulation, which is the JM-HeffPT2 approach. These meth-
ods are strictly size-consistent when localized orbitals are used,
as has been numerically illustrated here. The link of these
two new methods with other existing multi-reference theories
has been established, specially in the case of the SC-NEVPT2
level of theory. The accuracy of the methods has been investi-
gated on a series of ground state potential energy curves up to
the full dissociation limit for a set of six molecules involv-
ing single (F2, FH, and C2H6), double (H2O, C2H4), and
triple bond breaking (N2), using the cc-pVDZ basis set and
the aug-cc-pVDZ basis set in the case of FH. The two meth-
ods proposed here have been compared to near FCI energies,
thanks to large CIPSI calculations converged bellow 0.1 mH,
whose values can be found in the supplementary material.
The quality of the results has been investigated by means of
the non-parallelism error and three spectroscopic constants
(Req, D0, and k) together with absolute errors with respect to
FCI energies along the whole potential energy curves. Among
the six molecules studied here, the largest error found on the

TABLE VII. Total energies (a.u.) for the numerical separability check on F2 · · · FH.

CASSCF Shifted-Bk e(2)-JM-MRPT2 JM-HeffPT2

F2 �198.746 157 368 569 �199.122 170 300 �0.337 009 510 134 933 �199.085 305 155 169 4
FH �100.031 754 985 880 �100.289 784 498 �0.230 422 886 638 017 �100.262 424 667 296 7
F2 + FH �298.777 912 354 448 �299.411 954 798 �0.567 432 396 772 949 �299.347 729 822 466 0
F2 · · · FH �298.777 912 354 443 �299.396 752 116 �0.567 432 396 773 035 �299.347 729 822 461 6

Absolute error (a.u.) 5.0 ×10−12 1.5 ×10−2 8.6 ×10−14 4.4 ×10−12

Relative error 1.7 ×10−14 5.1 ×10−5 1.5 ×10−13 1.4 ×10−14

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-001722
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binding energy at the JM-MRPT2 level of theory is of 6 mH for
the FH molecule, representing a deviation lower than 3% with
respect to the FCI value. In all other cases, the errors on D0 are
much smaller, ranging from 1.3 mH to 2.5 mH, which repre-
sents deviations between 1% and 3% with respect to the FCI
estimates. The equilibrium distance is also found to be always
within 1% of the FCI values. These results are very encourag-
ing, specially considering the simplicity of this second-order
perturbation theory, and its low computational cost. Regarding
the JM-HeffPT2 method, its intermediate Hamiltonian formu-
lation allows one to take into account the dominant part of the
coupling between the static and dynamic correlation effects.
From what has been observed in the present calculations, the
diagonalization of the symmetrized intermediate Hamiltonian
yields improved CI-coefficients on the reference determinants,
together with a very small NPE compared to the shifted-Bk

method.

B. Perspectives

Due to its flexibility, the present formalism offers a broad
field of perspectives. First, the JM-MRPT2 and JM-HeffPT2
methods can be formalized with a zeroth order wave function
that does not need to be a CAS-CI eigenvector. This opens the
way of treating much larger active spaces as one can select
the dominant configurations of a given CAS-CI space, thanks
to the use of a perturbative criterion (as in the CIPSI algo-
rithm) or by using localized orbitals. Second, the reasons of
the systematic slight overestimation of the binding energy at
the JM-MRPT2 level of theory can also be investigated, taking
benefit from localized active orbitals and of the clear reading
of the reference wave function that they offer. Moreover, this
allows one to use as zeroth-order wave function quasi diabatic
states obtained, for instance, by a unitary transformation of a
few CI eigenvectors65 (either of a CAS-CI or from a more gen-
eral CI). Also, as it has been shown that the present formulation
is connected to multi-reference coupled-cluster formalisms,
it is possible to derive the working equations starting from
the JM-MRCC ansatz. This will allow one to obtain higher
order terms which may correct the slight overestimation of
the binding energies. The coupling of the present formalism
with multi-reference coupled cluster models follows naturally.
For instance, the treatment of the most numerous excitation
classes at the JM-MRPT2 level can easily be combined with the
recently introduced JM-MRCC ansatz of some of the present
authors.66 This will allow for a drastic lowering of the com-
putational costs of the JM-MRCC ansatz, and opens the way
to the treatment of larger systems at high level of ab initio
theory.

SUPPLEMENTARY MATERIAL

See supplementary material for all the near FCI energies
obtained with the CIPSI calculations.
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APPENDIX: PROOF OF STRONG SEPARABILITY AND
LINK WITH THE MUPA APPROACH

The present appendix provides analytical derivations in
order to demonstrate analytically the size consistency property
of the JM-MRPT2 and JM-HeffPT2 methods (see part 1), and
also to show the link of these two methods with the multi-
partitioning of the Hamiltonian (see part 2).

1. Proof of separability

The present section proposes an analytical proof of strong
separability of the JM-MRPT2 method. In a MRPT2 frame-
work, the strong separability requires that an excitation TA

located on a system A gives the same contribution to the
correlation energy with or without the presence of another
system B whose zeroth-order wave function contains correla-
tion effects. To be more specific, let us define the zeroth-order
wave function and energy of a system A,

|ψ(0) A〉 =
∑

IA

cIA |IA〉 , (A1)

E(0) A =
〈ψ(0) A |HA |ψ

(0) A〉

〈ψ(0) A |ψ(0) A〉
, (A2)

and the same quantities for the system B,

|ψ(0) B〉 =
∑

IB

cIB |IB〉 , (A3)

E(0) B =
〈ψ(0) B|HB|ψ

(0) B〉

〈ψ(0) B |ψ(0) B〉
. (A4)

Let us consider now a given excitation TA acting only on a sys-
tem A. According to the definition of Eq. (14), the correspond-
ing contribution to the first-order perturbed wave function
is

|ψ
(1) A
TA
〉 =

1

∆E(0) A
TA

| ψ̃
(1) A
TA
〉 , (A5)

| ψ̃
(1) A
TA
〉 =

∑
IA

cIA 〈IA |HA TA | IA〉 TA | IA〉 , (A6)

and the excitation energy ∆E(0) A
TA

characteristic of the excita-
tion TA is defined according to Eq. (17) as

∆E(0) A
TA
= E(0) A −

〈ψ̃
(1) A
TA
|HA | ψ̃

(1) A
TA
〉

〈ψ̃
(1) A
TA
| ψ̃

(1) A
TA
〉

. (A7)

Therefore, its contribution to the correlation energy of A is

e(2) A
TA
= 〈ψ(0) A|H|ψ(1) A

TA
〉 =
〈ψ(0) A|HA | ψ̃

(1) A
TA
〉

∆E(0) A
TA

. (A8)

A necessary and sufficient mathematical condition for the
strong separability property of the energy is that a given exci-
tation process TA involving only the orbitals of the system A
gives the same contribution to the energy when it is considered
on the sole system A or on the super non interacting system
A · · · B. To reach such a condition, one first needs that the
zeroth-order wave function be the product of the zeroth-order
wave function of the two sub-systems A and B,

|ψ(0) A+B〉 = |ψ(0) A〉 ⊗ |ψ(0) B〉 , (A9)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-001722
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which ensures that its corresponding zeroth-order energy is the
sum of zeroth-order energies of the sub-systems A and B,

E(0) A+B =
〈ψ(0) A+B|HA + HB|ψ

(0) A+B〉

〈ψ(0) A+B |ψ(0) A+B 〉

=
〈ψ(0) A|HA|ψ

(0) A〉 〈ψ(0) B |ψ(0) B〉

〈ψ(0) A|ψ(0) A〉 〈ψ(0) B |ψ(0) B〉

+
〈ψ(0) B|HB |ψ

(0) B 〉 〈ψ(0) A |ψ(0) A〉

〈ψ(0) B |ψ(0) B〉 〈ψ(0) A |ψ(0) A〉

= E(0) A + E(0) B, (A10)

as the total Hamiltonian can be written as the sum of HA acting
only on the orbitals of A and the corresponding HB acting
only on the orbitals of B. A CAS-CI wave function respects of
course the property of the additivity of the energy.

Starting from |ψ(0) A+B 〉, one can generate the contribution
to the first-order perturbed wave function |ψ(1) A

TA
〉 associated

with TA in the super-system A · · ·B,

|ψ
(1) A+B
TA

〉 =
1

∆E(0) A+B
TA

| ψ̃
(1) A+B
TA

〉 , (A11)

| ψ̃
(1) A+B
TA

〉 =
∑
IA IB

cIA cIB TA | IB〉 ⊗ |IA〉

〈IA | ⊗ 〈IB | (HA + HB) TA | IB 〉 ⊗ | IA〉 , (A12)

with the following excitation energy ∆E(0) A+B
TA

:

∆E(0) A+B
TA

= E(0) A+B −
〈ψ̃

(1) A+B
TA

|HA + HB| ψ̃
(1) A+B
TA

〉

〈ψ̃
(1) A+B
TA

| ψ̃
(1) A+B
TA

〉
. (A13)

Then, the contribution of TA to the correlation energy of the
super system A · · ·B is simply

e(2) A+B
TA

=
〈ψ(0) A+B|HA + HB|ψ̃

(1) A+B
TA

〉

∆E(0) A+B
TA

. (A14)

One can then notice that as TA only acts on the orbitals of A,
one has

〈IA| ⊗ 〈JB| (HA + HB) TA| JB〉 ⊗ |IA〉 = 〈JB | JB〉 〈IA|HA TA| IA〉,

(A15)

and consequently the zeroth-order wave function of system B
can be factorized in Eq. (A12)

|ψ̃
(1) A+B
TA

〉 =
∑
IB

cIB | IB〉 ⊗
∑
IA

cIA 〈IA|HA TA| IA〉 TA | IA〉

= |ψ(0) B〉 ⊗ | ψ̃
(1) A
TA
〉 . (A16)

This form for | ψ̃(1) A+B
TA

〉 is crucial, as it has a product structure,
implying that it will not suffer from any size consistency and
separability issues. Indeed, the numerator of Eq. (A14) simply
reduces to

〈ψ(0) A+B|HA + HB | ψ̃
(1) A+B
TA

〉 = 〈ψ(0) A|HA| ψ̃
(1) A
TA
〉 , (A17)

and the denominator of the same Eq. (A14) is then

∆E(0) A+B
TA

= E(0) A+B −
〈ψ̃

(1) A
TA
|HA| ψ̃

(1) A
TA
〉

〈ψ̃
(1) A
TA
| ψ̃

(1) A
TA
〉
− E(0) B

= E(0) A −
〈ψ̃

(1) A
TA
|HA | ψ̃

(1) A
TA
〉

〈ψ̃
(1) A
TA
| ψ̃

(1) A
TA
〉

= ∆E(0) A
TA

, (A18)

and therefore,
e(2) A+B

TA
= e(2) A

TA
. (A19)

Consequently, the JM-MRPT2 is strictly separable provided
that a partition of the Hamiltonian in terms of HA and HB can
be done, which supposes local orbitals.

2. Multi-partitioning of the Hamiltonian

In contrast with the CIPSI or shifted-Bk approaches, a
given perturber determinant | µ〉has as much zeroth-order ener-
gies as reference determinants | I〉 with which it interacts (i.e.,
〈µ |H| I〉,0) within the JM-MRPT2 framework. This formally
implies that the zeroth-order Hamiltonian depends on the ref-
erence determinant | I〉, just as in the MUPA approach. The
present paragraph proposes to briefly highlight the link existing
between these two approaches.

Using the JM ansatz for the wave function [see Eq. (53)]
and projecting the Schrödinger equation onto a given perturber
| µ〉 lead to∑

I

cI
*.
,
〈µ|H| I〉 +

∑
µ′

〈µ|H| µ′ 〉 tIµ′
+/
-

+ R = E
∑

I

cItIµ, (A20)

where R contains all terms in the coupled cluster equation
containing higher or equal powers of T I than (TI)2. Retaining
all terms of first order in tIµ′ in Eq. (A20) leads to the equations
of linearized coupled cluster type∑

I

cI
*.
,
〈µ|H| I〉 +

∑
µ′

〈µ|H| µ′ 〉 tIµ′
+/
-
= e(0)

∑
I

cItIµ, (A21)

which can be written as∑
I

cI
*.
,
〈µ|H| I〉 +

∑
µ′

〈µ|H| µ′ 〉 tIµ′ − e(0)t Iµ
+/
-
= 0. (A22)

Just as in the spirit of the UGA-SSMPRT2 of Mukherjee
et al., Eq. (A22) is solved independently for all references
| I〉, leading to

〈µ|H| I〉 + tIµ 〈µ|H|µ〉 +
∑
µ′,µ

〈µ|H| µ′ 〉 tIµ′ = e(0)t Iµ. (A23)

As each equation is solved independently, one can use a differ-
ent partitioning of the Hamiltonian according to the reference
determinants | I〉,

H = H (0)
I + λVI,

H (0)
I = e(0) | I〉 〈I| +

∑
µ

e(0)
Iµ | µ〉 〈µ|. (A24)

In Eq. (A24), retaining all terms at first order in λ leads to

〈µ |VI | I〉 + t(1)
Iµ 〈µ |H

(0)
I | µ〉 +

∑
µ′,µ

〈µ |H (0)
I | µ

′〉 t(1)
Iµ′ = e(0)t(1)

Iµ .

(A25)
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By defining the zeroth-order energies e(0)
Iµ as

e(0)
Iµ =

〈ψ̃
(1)
TIµ
|HD| ψ̃

(1)
TIµ
〉

〈ψ̃
(1)
TIµ
| ψ̃

(1)
TIµ
〉

, (A26)

where | ψ̃(1)
TIµ
〉 is defined in Eq. (15) with the excitation operator

TIµ which connects | I〉 and | µ〉 [see Eq. (6)], one can recover
the expression of the amplitudes used in the JM-MRPT2
approach

t(1)
Iµ =

〈µ |H| I〉

e(0) − e(0)
Iµ

. (A27)

Also, one can notice that the zeroth-order energies of the
MUPA and JM-MRPT2 methods coincide for the 2h2p but
also for the 1h2p and 2h1p. Indeed, the energy denominators
appearing in the two latter classes imply the generalization
of ionization potential [see Eq. (43)] and electronic affinities
whose definition is identical in the MUPA and JM-MRPT2
methods. Therefore, in the case of the double excitations
amplitudes, one can see the JM-MRPT2 method as the gen-
eralization of the MUPA method to all possible operations
appearing in the active space for the definition of energy
denominators.
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