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ABSTRACT
The solution of an extended Riemann problem is used to provide the internal boundary conditions at a junction when simulating one-dimensional
flow through an open channel network. The proposed approach, compared to classic junction models, does not require the tuning of semi-empirical
coefficients and it is theoretically well-founded. The Riemann problem approach is validated using experimental data, two-dimensional model
results and analytical solutions. In particular, a set of experimental data is used to test each model under subcritical steady flow conditions, and
different channel junctions are considered, with both continuous and discontinuous bottom elevation. Moreover, the numerical results are compared
with analytical solutions in a star network to test unsteady conditions. Satisfactory results are obtained for all the simulations, and particularly for
Y-shaped networks and for cases involving variations in channels’ bottom and width. By contrast, classic models suffer when geometrical channel
effects are involved.
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1 Introduction

Channel junctions are found in natural rivers, irrigation and
drainage canals, and urban wastewater networks. Therefore,
understanding such systems is an essential issue in Hydraulics,
where the computation of the water surface profiles is nec-
essary for both steady and unsteady flows. When the water
depth is sufficiently small compared to the typical horizontal
scale, as in river and channel networks, one-dimensional (1D)
St Venant equations (in which cross-sectional area and total
discharge are the main variables) are widely used to describe
the flow (Chow, 1959); under the assumption of rectangular
cross-section, the St Venant model matches the one-dimensional
shallow water equations (SWEs).

The 1D SWEs are solved by means of different numerical
methods, such as the finite difference method (FDM), finite
element method (FEM), and finite volume method (FVM);
see Briani, Piccoli, and Qiu (2016), Unami and Alam (2012),

Bellamoli, Müller, and Toro (2018), Neupane and Dawson
(2015), Aral, Zhang, and Jin (1998), Kesserwani et al. (2008),
Ghostine, Vazquez, Terfous, Mose, and Ghenaim (2012),
Ghostine, Mose, Vazquez, Ghenaim, and Grégoire (2010),
Borsche (2016) and the references therein.

Independently from the specific adopted numerical scheme,
using the 1D approach to numerically solve open chan-
nel networks faces mathematical difficulties at the intersec-
tion of the channels (i.e. junctions). Indeed, whilst in a 2D
framework the numerical simulation of a junction does not
require particular precautions, in a 1D framework the junc-
tion is a singular point, where the numerical scheme can-
not be directly applied and therefore internal boundary con-
ditions must be prescribed. The system of governing equa-
tions used to supply the internal boundary conditions must
have a solution and this solution must be unique (Elshobaki,
Valiani, & Caleffi, 2018). Moreover, a proper numerical treat-
ment of these boundary conditions is required to ensure
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the well-posedness of the numerical scheme (Colombo &
Garavello, 2006).

Considering only subcritical flows, which are the most
common in nature, the well-established methods to con-
struct the internal boundary conditions are based on four
classic approaches. The first approach is reported by Akan
and Yen (1981), which prescribes that the total energy is pre-
served at junctions, being approximated by the water depth,
while kinetic head is neglected. The second approach is intro-
duced by Gurram, Karki, and Hager (1997) and considers the
momentum balance together with the mass conservation applied
at the junction. The third approach (Hsu, Lee, & Chang, 1998)
extends the principles given in Gurram et al. (1997) introducing
energy and momentum coefficients to include the energy losses
at the junction. The reader is addressed to Pinto Coelho (2015)
and Leite Ribeiro, Roy, and Schleiss (2012) for a thorough dis-
cussion on the physics behind this approach. Finally, Shabayek,
Steffler, and Hicks (2002) use a general nonlinear formulation
of the momentum principle and the conservation of mass, which
remove the restriction of equality of channel depths and chan-
nel widths at the junction. The equations associated to these
approaches are coupled to the continuity equation (Chow, 1959)
and the characteristic equations (Abbott, 1966; Chaudhry, 1993)
to form the six-equation, nonlinear system governing the junc-
tion (Elshobaki et al., 2018). We refer to the formulations
associated to these four approaches as the Equality model
(Akan & Yen, 1981), Gurram model (Gurram et al., 1997), Hsu
model (Hsu, Lee, et al.,1998), and Shabayek model (Shabayek
et al., 2002), respectively. Note that the Shabayek model implies
the use of two empirical coefficients that require further charac-
terization, as stated in Pinto Coelho (2015), and it is therefore
excluded from the present analysis.

A study by Kesserwani et al. (2008), comparing Hsu, Gur-
ram, Equality and Shabayek models for subcritical junction flow
shows that the Equality model leads to poor momentum conser-
vation when the Froude number is greater than 0.35. The study
also finds that the influence on the flow of the angle between the
main and lateral channels is much less important than the Froude
number downstream of the junction. However, the results are
only presented for a specific type of asymmetric confluence
(Best, 1985), under the assumption of a flat bottom throughout
the junction. Other works on the topic are carried out consider-
ing further comparison with 2D results (Ghostine et al., 2009),
or supercritical and transcritical flows (Kesserwani, Ghostine,
Vazquez, Ghenaim, & Mosé, 2008; Kesserwani et al., 2010).

The classic methods are not tested in symmetric con-
fluences (i.e. Y-shaped) because such methods, and particu-
larly the Gurram and Hsu models, are not derived for this
type of confluence. The flow field at confluences is also
affected by bottom discordance (i.e. a bottom discontinuity
at the confluence) between the lateral and mainstream chan-
nels (Best, 1988; Biron, Best, & Roy, 1996; Bradbrook, Lane,
Richards, Biron, & Roy, 2001; Leite Ribeiro et al., 2012; Wang,
Yan, & Guo, 2007). To extend the Gurram and Hsu models to

Y-shaped confluences, the fundamental governing equations are
re-derived in this work, taking into account the differences in
geometry and bottom elevation.

As an alternative to the classic methods, a recent for-
mulation of the internal boundary conditions is proposed
by Briani et al. (2016), based upon the work by Goudiaby
and Kreiss (2013). This formulation is obtained by solving
a well-posed Riemann problem (RP) at the junction assum-
ing a continuous bottom and symmetric configurations. We
refers to this formulation as the Riemann problem approach (RP
approach). A rigorous study about the existence and unique-
ness of the problem solution is also provided for the symmetric
case without bottom steps (Goudiaby & Kreiss, 2013). The RP
approach is theoretically analysed in more general configura-
tions by Elshobaki et al. (2018), where asymmetric networks
and discontinuous bottom are taken into account.

The purpose of this work is to compare the RP approach
with the classic approaches. In particular, we are interested
in the application aspects. With this aim, the classic junc-
tion models and the RP approach are implemented in a FVM
Dumbser–Osher–Toro (DOT) scheme (Dumbser & Toro, 2011).
The models are tested against experimental data provided in
literature (Biron et al., 1996; Bradbrook et al., 2001; Briani
et al., 2016; Hsu, Lee, et al., 1998; Hsu, Wu, & Lee, 1998;
Wang et al., 2007) for steady flows in both asymmetric and sym-
metric confluences. In particular, only discordant bottoms are
considered in the experimental data of Bradbrook et al. (2001),
Wang et al. (2007) and Biron et al. (1996). To complete the cur-
rent study, the models are tested against the analytical solutions
provided by Goudiaby and Kreiss (2013) for unsteady flows.

The rest of this paper is structured as follows. First, the math-
ematical model and its numerical treatment are given. Then,
the Riemann, Equality, Gurram, and Hsu junction models are
briefly described. Next, the models are tested for both steady
and unsteady open channel flows, and numerical results are pre-
sented. The numerical solutions are compared with the exper-
imental results and analytical solutions. Finally, conclusions
are given.

2 Mathematical model and numerical scheme

In this section, the shallow water equations are described. Then,
the FVM-DOT numerical scheme (Dumbser & Toro, 2011),
used to discretize the SWEs in each channel, is briefly outlined.

2.1 The one-dimensional shallow water equations

The SWEs are a particular case of the Navier–Stokes equations
and are obtained by integrating the mass and momentum equa-
tions for an incompressible fluid over the depth. They are written
in conservative form as:

∂U
∂t

+ ∂F
∂x

= S, in [0, L] (1)
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with

U =
[

h
hu

]
, F =

[
hu

hu2 + gh2

2

]
, S =

[
0

gh(S0x − Sf )

]

where u(x, t) and h(x, t) are the flow velocity and the flow depth,
respectively. L is the channel length; g is the gravity accel-
eration; S0x = −∂z/∂x is the bottom slope; z(x) is the bottom
elevation; Sf is the friction slope (Chow, 1959); and x and t are
space and time, respectively. For the purpose of this study, the
forces due to friction are much smaller than pressure forces and
momentum fluxes, so the SWEs are solved as in the frictionless
bottom case (i.e. Sf = 0). Equation (1) can therefore be cast in
a quasi-linear form as follows:

∂W
∂t

+ A(W)
∂W
∂x

= 0, in [0, L] (2)

with

W =
⎡
⎣ h

hu
z

⎤
⎦ , A(W) =

⎡
⎣ 0 1 0

gh − u2 2u gh
0 0 0

⎤
⎦

The form of the SWEs in Eq. (2) is preferable when bottom
discontinuities have to be included in the mathematical model
(Caleffi & Valiani, 2017; LeFloch & Thanh, 2007; Valiani
& Caleffi, 2017). This aspect is fundamental because a discon-
tinuity in bottom elevation is a recurring feature at junctions
(Leite Ribeiro et al., 2012).

2.2 Dumbser–Osher–Toro Riemann solver

The integration of Eq. (2) over a control volume gives the fol-
lowing path-conservative formulation (Dumbser & Toro, 2011;
Parés, 2006):

Wn+1
i = Wn

i − �t
�x
(D−

i+1/2 + D+
i−1/2) (3)

where the fluctuations D±
i±1/2 must satisfy the following com-

patibility condition:

D−
i+1/2 + D+

i+1/2 =
∫ 1

0
A(ψ(Wi+1, Wi, s))

∂ψ

∂s
ds (4)

Wn
i denotes the cell average of the conservative variables

at time tn. The uniform spatial step is �x = xi+1/2 − xi−1/2

and the time step �t = tn+1 − tn. Choosing a linear integra-
tion path ψ(s) (Dumbser & Toro, 2011) in the parameter
s ∈ [0, 1]:

ψ(s) = ψ(W−, W+, s) = W− + s(W+ − W−) (5)

the Osher fluctuation term becomes:

D±
i+1/2 = 1

2

(∫ 1

0
A(ψ(s))± |A(ψ(s))| ds

)
(Wi+1 − Wi) (6)

Equation (6) is replaced by:

D±
i+1/2 = 1

2

⎛
⎝ G∑

j =1

ωj [A(ψ(sj ))± |A(ψ(sj ))|]
⎞
⎠ (Wi+1 − Wi)

(7)
using a G-point Gauss–Legendre quadrature in the interval [0, 1]
with nodes sj and weights ωj (Stroud, 1971). For the stability of
the scheme, the time step must satisfy the relationship:

�t = CFL
�x

max(|u ± c|) (8)

where CFL < 1 is the Courant–Fredrich–Lewy coefficient, and
c = √

gh is the wave celerity.
Finally, the scheme has to be completed with boundary con-

ditions. Two types of boundary conditions are needed: external
and internal. The external boundary conditions are posed at
the inflow-outflow sections of the network. They are defined
by taking into account the subcritical flow state considered in
this work. A discharge hydrograph is imposed at the inflow
sections and a given water depth is imposed at the outflow sec-
tions. The external boundary conditions are numerically treated
as described by Chaudhry (1993).

The internal boundary conditions are imposed at the inter-
faces between the channels at the junction node. At the extrem-
ity of each channel adjoining the node, a depth and a discharge
must be prescribed. Therefore, for a network of three chan-
nels, the unknowns are three water depths and three water
discharges. To compute these unknowns, a junction model
which takes shape of a system of six equations must be given.
In Section 3, the junction models considered in this work are
briefly summarized.

3 Junction models

This section presents a short description of the nonlinear junc-
tion models used here to provide the internal boundary condi-
tions. Note that the classic Gurram and Hsu models are modified
to include the effect of the lateral bottom discordance. In addi-
tion, these models are generalized to the case of a non-straight
main channel in the Y-shaped confluence (Appendices 1 and 2).

3.1 Riemann problem approach model

The Riemann problem at the junction is defined by anal-
ogy as the classic Riemann problem in a single open chan-
nel. The classic Riemann solution has been described in
Toro (2009) for continuous bottom and in Bernetti, Titarev,
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and Toro (2008), Alcrudo and Benkhaldoun (2001) and LeFloch
and Thanh (2007) for discontinuous bottom. Here, the Riemann
problem consists of Eq. (2) and the following initial conditions
(depth, velocity and bottom elevation are assumed uniform in
each channel):

⎧⎪⎪⎨
⎪⎪⎩

h(x, 0) = h0k

u(x, 0) = u0k

z(x, 0) = zk

k = 1, 2, 3 (9)

where k = 1, k = 2, and k = 3 refer to the main upstream chan-
nel, the lateral channel, and the main downstream channel,
respectively. The unknowns at the junction node can be pre-
dicted using the Riemann solution, as reported in Goudiaby
and Kreiss (2013). The structure of the solution of the Riemann
problem gives the following system:

3∑
k=1

ηkbkhkuk = 0 (10a)

u2
1

2g
+ h1 + z1 = u2

k

2g
+ hk + zk, k = 2, 3 (10b)

uk − u0k + ηkf (h0k, hk) = 0, k = 1, 2, 3 (10c)

where

f (h0k, hk) =
⎧⎨
⎩

2(
√

gh0k − √
ghk), hk < h0k

(h0k − hk)
√

g
2 (

1
h0k

+ 1
hk
), hk ≥ h0k

(11)

(h0k, u0k) are the initial data and b is the channel width. In the
current work, z1 = z3 = 0 and z2 �= 0 to represent a bottom step
between the second (lateral) channel and the main channels, as
shown in Fig. 1. The RP approach can be generalized for dif-
ferent bottom and junction configurations; the interest is here

Figure 1 Star network of three channels

focused just on this case because it is the most frequent in natural
streams (Leite Ribeiro et al., 2012). The quantity:

ηk =
{

1, if xk = Lk, k = 1, 2, 3

−1, if xk = 0, k = 1, 2, 3

refers to the inner boundary edge at the junction. Equation (10c)
represents the classic SWE wave relationships for shocks and
rarefactions in each channel. In facts, Eq. (10c) is the Rankine–
Hugoniot condition or the constancy of the Riemann invariants
(Toro, 2009) written in a convenient form. The continuity
equation (Eq. (10a)) must be satisfied together with the equality
of the total head at the junction (Eq. (10b)). The hypothesis of
total head and flow discharge preservation in the 1D single chan-
nel over a bottom step, as part of the solution of the Riemann
problem, is discussed in Valiani and Caleffi (2017) and for the
junction network of three non-identical channels in Elshobaki
et al. (2018).

3.2 Equality model

The equality model is the simplest junction model, and it is
written in the following form:

3∑
k=1

ηkbkhkuk = 0 (12a)

h1 = h2 + z2 (12b)

h2 + z2 = h3 (12c)

ukhk = Akhk + Ck, k = 1, 2, 3 (12d)

where Ak = u0k ± √
gh0k and Ck = ∓h0k

√
gh0k. The sign

depends on the characteristic direction at the junction. Indeed,
Eq. (12a) represents mass conservation. Equations (12b)
and (12c) represent the equal water elevation condition at the
junction, which was recognized by Akan and Yen (1981) as
a simplification of the equal energy condition at the junction,
where the kinetic head is considered to be small for subcritical
flows. Equation (12d) represents the characteristic equations, in
which three relationships are produced by using the character-
istic curves for subcritical flows at the junction (Abbott, 1966;
Chaudhry, 1993).

3.3 Gurram model

The Gurram model is based on the momentum conservation
principle used by Gurram et al. (1997) to predict the depth ratio
(h1/h3) at the junction. The equality of water depths and channel
widths upstream from the junction is assumed. Here, the Gurram
model is generalized to consider the discordant bottom effect
and a general channel network configuration. More details about
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the modified Gurram formula are given in Appendix 1. There-
fore, the unknowns at the junction can be obtained by solving
the following system:

3∑
k=1

ηkbkhkuk = 0 (13a)

h1 = h2 + z2 (13b)

(
h1

h3

)3

cos(Ω)−
(

b3h1

b1h3

)

×
[

1 + 2F2 −
(

2b2

b3

) (
hs

h2
3

)
z2 cos(δ)

]

+ 2F2

[(
h1u1

h3u3

)2

cos(Ω)+
(

b2
3h1

b1b2(h1 − z2)

)

×
(

1 − b1h1u1

b3h3u3

)
cos

(
8δ
9

)]
= 0 (13c)

ukhk = Akhk + Ck, k = 1, 2, 3 (13d)

where F is the Froude number in the main downstream chan-
nel, Ω is the angle between the main upstream channel and the
main downstream channel, and δ is the junction angle (the angle
between the main and lateral channels; Fig. 1). The depth over
the lateral bottom step, found using the analytical procedure by
Valiani and Caleffi (2008), is denoted hs. Equation (13a) rep-
resents mass conservation, Eq. (13b) is obtained by assuming
equal water elevation upstream from the junction, Eq. (13c)
is the modified Gurram formula, and Eq. (13d) represents
the characteristic equations according to Abbott (1966) and
Chaudhry (1993).

3.4 Hsu model

The Hsu model is derived by Hsu, Lee, et al. (1998), similarly to
the Gurram model, but energy and momentum coefficients are
taken into account. The unknowns at the junction are obtained
by solving the following system:

3∑
k=1

ηkbkhkuk = 0 (14a)

h1 = h2 + z2 (14b)

(
h1

h3

)3

cos(Ω)−
(

b3h1

b1h3

)

×
[

1 + 2βF2

γ
−

(
2b2

b3

) (
hs

h2
3

)
z2 cos(δ)

]

+ 2βF2

γ

[(
h1u1

h3u3

)2

cos(Ω)+
(

b2
3h1

b1b2(h1 − z2)

)

×
(

1 − b1h1u1

b3h3u3

)
cos(δ)

]
= 0 (14c)

ukhk = Akhk + Ck, k = 1, 2, 3 (14d)

where β is the momentum coefficient and γ is the energy
coefficient. Equation (14a) is the mass conservation, Eq. (14b)
is obtained by assuming equal water elevation upstream from
the junction, Eq. (14c) is the modified Hsu formula given in
Appendix 2, and Eq. (14d) represents the characteristic equa-
tions according to Abbott (1966) and Chaudhry (1993).

The nonlinear systems of Eqs (10), (A2), (A3), (A4) are
solved using a hybrid iterative method (Powell, 1970).

4 Results for steady flows

To validate the junction models, five steady flow experiments
(Biron et al., 1996; Hsu, Lee, et al., 1998; Hsu, Wu, et al.,
1998; Pinto Coelho, 2015; Wang et al., 2007) are numerically
reproduced. Different network configurations (asymmetric and
symmetric confluences) are considered, and the lateral bottom
step is present at the junction in specific cases.

4.1 Steady flow in asymmetric confluence with concordant
bottom

Hsu, Lee, et al. (1998) conducted experiments in a rectangu-
lar flume (Fig. 1) with Ω = 0 and z1 = z2 = z3 = 0. The lateral
and the main channels were 1.5 and 6 m long, respectively. The
channel width was 0.155 m for both the lateral and the main
channels, with junction angles δ of 30◦, 45◦ and 60◦. In Hsu,
Wu, et al. (1998), the lateral and the main channels were 4 and
12 m long, respectively. The channel width was 0.155 m in both
channels, with a junction angle δ of 90◦. In Pinto Coelho (2015),
both channels were 0.30 m wide and 0.50 m deep. The main
channel was 10 m long, with a bottom slope of 0.14% and junc-
tion angles of 30◦ and 60◦. In this and the next subsections,
the values of β and γ are taken as 1.12 and 1.27, respectively.
These values have been selected according to the suggestions
by Hsu, Lee, et al. (1998). For a quantitative comparison, the
percentages of the relative error (E) between the predicted depth
ratio (Y = h1/h3) and the corresponding experimental values are
calculated using the following formula:

E = |Yexp − Ynum|
Yexp

× 100 (15)

where Yexp refers to the experimental depth ratio (main upstream
to downstream) in Hsu, Lee, et al. (1998), Hsu, Wu, et al. (1998)
and Pinto Coelho (2015), Ynum refers to the depth ratio computed
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using the RP approach, Equality model, Gurram model, or Hsu
model.

In Fig. 2, the performance of the four junction models are
compared with the data of Hsu, Lee, et al. (1998) and Hsu, Wu,
et al. (1998). The depth ratio h1/h3 is plotted against the dis-
charge ratio Q1/Q3 (Q = bhu) with junction angles δ of 30◦, 45◦,
60◦, and 90◦. Figure 3 shows the performance of the different
junction models against the Pinto Coelho (2015) experimen-
tal data, with junction angles of 30◦ and 60◦. Good agreement
with respect to the experiments using the RP approach, Gurram
model and Hsu model is shown. By contrast, the Equality model
gives the worst behaviour, which is not surprising because such
model has bad performance for F greater than 0.35 (Kesser-
wani et al., 2008), and F ranges between 0.52 and 0.7 in these
experiments. The percentage errors are listed in Tables 1 and 2,
related to Figs 2 and 3, respectively. The effect of the junc-
tion angle on the solution is clear from these tables. Among the
results, the Equality model gives the maximum error (19.91%)
while the Hsu model gives the minimum error (0.61%), fol-
lowed by the Gurram model (2.37%) and RP approach (2.68%).
In general, the error of the RP approach is close to the errors
of the Gurram and Hsu models for junction angles 30◦, 45◦ and

Table 1 The error percentage in the computed depth ratio
h1/h3 at the junction, compared to the experimental data of
Hsu, Lee, et al. (1998) and Hsu, Wu, et al. (1998)

Junction angle δ Riemann Equality Gurram Hsu

30◦ 2.68 10.59 3.02 0.72
45◦ 2.87 11.64 2.37 0.61
60◦ 2.88 13.02 2.48 1.27
90◦ 5.84 19.91 3.78 2.21

Table 2 The error percentage in the computed depth ratio
h1/h3 at the junction, compared to the experimental data of
Pinto Coelho (2015)

Junction angle δ Riemann Equality Gurram Hsu

30◦ 2.83 17.84 1.54 1.64
60◦ 5.62 20.63 0.70 1.49

60◦, but the difference increases for the 90◦ junction angle. The
junction angle has a notable impact on the performance of the
RP approach compared to that of the Gurram and Hsu mod-
els. Given that the RP approach does not take into account the
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Figure 2 Different numerical solutions vs. the experimental data of Hsu, Lee, et al. (1998) with junction angles (a) 30◦ (b) 45◦ (c) 60◦; and vs. the
experimental data of Hsu, Wu, et al. (1998) with 90◦ junction angle (d). The experimental data are shown as filled stars; circles, squares, triangles,
and diamonds indicate the RP approach, Equality model, Gurram model, and Hsu model, respectively. Note that the symbols represent the same
quantities in the all following figures
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Figure 3 Different numerical solutions vs. the experimental data of Pinto Coelho (2015) with junction angles (a) 30◦ and (b) 60◦
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junction angle, a reasonable motivation of this behaviour can
be found in the nature of the governing equations, that is, the
pure shallow water equations. Neither the momentum coeffi-
cients nor energy coefficients are used, so the larger the junction
angle is, the worse the agreement between the model and the
real phenomenon. Clearly, the recirculation pattern becomes
more important as the junction angle increases, so the perfor-
mance of the RP approach can be expected to worsen as the
junction angle increases. The Gurram and Hsu models, which
use empirical adjustments that take into account (more or less
directly) the recirculation pattern, are less sensitive to changes
in the junction angle. A possible solution to recover the junc-
tion angle influence without empirical parameters is proposed
by Bellamoli et al. (2018). In the proposed approach the junc-
tion is represented as a single two-dimensional cell connecting
one-dimensional branches.

According to this investigation, not only can the momentum-
based junction models be used with acceptable error (less than
8%, according to Kesserwani et al., 2008) but the RP approach
gives tolerable errors for practical purposes. However, the use
of momentum-based junction models (Gurram and Hsu models)
is not trivial in many situations due to the involved empirical
coefficients, such as energy and momentum coefficients, which
require proper calibration based on the geometry of the junction
and the characteristics of the flow dynamics.

4.2 Steady flow in asymmetric confluence with lateral
discordant bottom

According to Biron et al. (1996), the bottom discordance has
a noticeable effect on the flow in a river channel confluence,
even with a small Froude number (less than 0.35). Therefore,
further investigation to illustrate the behaviour of the junction
models in presence of a lateral discordant bottom is presented
in this subsection. Biron et al. (1996) performed experiments
in an asymmetric channel confluence with Ω = 0 and δ = 30◦

(Fig. 1) to investigate the effects of bottom discordance on such
confluence. They describe the four flow dynamics regions at
the junction, namely, the flow deflection, separation, maximum
velocity, and mixing layer zones. Following the work of Biron

et al. (1996), we consider a numerical experiment character-
ized by a main upstream, a lateral, and a main downstream
channel, 0.12, 0.08, and 0.137 m wide and 3.5, 3.5, and 10 m
long, respectively. The lateral bottom height is 0.03 m. F is less
than 0.20. The discharges are 2.688 × 10−3, 2.808 × 10−3, and
5.496 × 10−3 m3s−1 in the main upstream channel, the lateral
channel, and the main downstream channel, respectively. The
corresponding depths are 0.16, 0.13, and 0.16 m. The discharge
ratio Qr between the main upstream channel and the lateral
channel is 1.04. The experimental data from Biron et al. (1996)
are not available. To produce cross-section averaged quantities
to use as a reference solution for 1D models, TELEMAC-2D
software (Hervouet, Ata, Audouin, Pavan, & Tassi, 2015) is
employed. Therefore, the experiments by Biron et al. (1996)
are reproduced and the corresponding 2D numerical results
are averaged on a cross section located 8 m downstream from
the junction.

The behaviour of the Riemann and Equality models,
which satisfactorily match the corresponding reference solu-
tion (Fig. 4), is different from that of the Gurram model, which
slightly overestimates the downstream discharge, and from that
of Hsu model, that slightly underestimates the same quantity.
This difference may be due to the specific values selected for the
energy and momentum coefficients. It is worth noting that the
Froude number (less than 0.35) is in the proper range of appli-
cability of both the Gurram and Hsu models, so their complete
reliability is debatable even at low Froude number. This slightly
poorer performance might be due to the fact that introducing a
bottom discontinuity in such methods requires a complete retun-
ing of the empirical coefficients appearing in their formulation;
these are a momentum and an energy coefficients due to the flow
recirculation downstream from the junction and are tuned on the
basis of flat bottom experiments: this aspect is out of the scope
of the present work.

The bottom discordance divides the four models into two cat-
egories: empirical (Gurram, Hsu) and non-empirical (Riemann,
Equality) models. As reported in Table 3, the maximum error
(7.05%) is obtained by the Gurram model, followed by the Hsu
model (5.95%). The minimum error (0.60%) is obtained by the
RP approach, followed by the Equality model (1.78%).
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Figure 4 Four different numerical solutions for downstream discharge vs. time for a discharge ratio Qr = 1.04. Reference solution is obtained using
TELEMAC-2D software on the experimental layout of Biron et al. (1996)
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Table 3 The error percentage in the computed
downstream discharge Q3 relative to the reference
solution obtained using TELEMAC-2D software on
the experimental layout of Biron et al. (1996)

Junction model Discordant bottom

Riemann 0.59
Equality 1.77
Gurram 7.05
Hsu 5.95

The present computations show that even with a downstream
Froude number less than 0.35, the momentum-based junction
models (Gurram and Hsu) are hardly extendible to more general
cases without specific studies of the role of bottom discontinu-
ities in their physical framework. The high error of the Gurram
model is very close to the 8% limit of acceptability consid-
ered by Kesserwani et al. (2008), and a certain weakness of the
momentum-based methods, also for F < 0.35, is shown. This
is in contrast with the findings of Kesserwani et al. (2008).
Therefore, the RP approach attains the best agreement with the
corresponding experimental layout of Biron et al. (1996).

4.3 Steady flow in Y-shaped confluence with lateral
concordant and discordant bottoms

The experiments performed by Wang et al. (2007) to test the
effect of the bottom discordance on the flow at the Y-shaped
confluence with Ω = δ = 45◦ in Fig. 1 are used to compare

the junction models. The Wang et al. (2007) experimental data
are organized in 3D form. To use the data in a 1D frame-
work, TELEMAC-2D software is used to reproduce the Wang
et al. (2007) experimental data, and the average cross-section
values of the discharge at 4 m downstream from the junction
are computed. Here, the lateral channel is 0.3 m wide and 2.4 m
long; the main upstream and downstream channels are 0.45 m
wide and 2.4 and 4.8 m long, respectively. Two cases are con-
sidered, where the bottom is either concordant or discordant.
For the concordant bottom case (i.e. z2 = 0), the discharges are
3.12 × 10−2, 1.68 × 10−2, and 4.8 × 10−2 m3s−1 in the main
upstream channel, the lateral channel, and the main down-
stream channel, respectively. The corresponding water depths
are 0.25 m in all channels, and the discharge ratio Qr between
the lateral channel and the main downstream channel is 0.35.
For the discordant case (i.e. z2 = 0.05 m), the discharges are
1.8 × 10−2, 3.0 × 10−2, and 4.8 × 10−2 m3s−1. The correspond-
ing water depths are 0.30, 0.25, and 0.30 m, with Qr = 0.6.

Figures 5 and 6 compare the different junction models and
the Wang et al. (2007) reference solution at the Y-shaped con-
fluence with concordant and discordant bottom, respectively. F
was less than 0.27 in both cases. However, some differences
between the numerical solutions and the Wang et al. (2007) ref-
erence solution are noted. In particular, the Gurram and Equality
models slightly overestimate the downstream discharge, the RP
approach behaves correctly, and the Hsu model slightly underes-
timates the downstream discharge. The influence of the bottom
on the solution can be seen in Table 4. The error increases
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Figure 5 Different numerical solutions for downstream discharge vs. time for a discharge ratio Qr = 0.35. Reference solution is obtained using
TELEMAC-2D software on the experimental layout of Wang et al. (2007)
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Figure 6 Four different numerical solutions for downstream discharge vs. time for a discharge ratio Qr = 0.6. Reference solution is obtained using
TELEMAC-2D software on the experimental layout of Wang et al. (2007)
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Table 4 The error percentage in the computed downstream
discharge Q3 relative to the reference solution obtained using
TELEMAC-2D software on the experimental layout of Wang
et al. (2007)

Junction model Concordant bottom Discordant bottom

Riemann 1.079 1.25
Equality 6.667 8.27
Gurram 3.858 2.53
Hsu 7.223 16.21

by approximately 1% when comparing the concordant and dis-
cordant bottom for the Equality model. By contrast, the error
decreases by approximately 1% for the Gurram model. The error
increases by 9% for the Hsu model and remains approximately
constant for the RP approach.

As a conclusion of these comparisons, in the Y-shaped
confluence case, the RP approach appears to outperform the
momentum-based models for both concordant and discordant
bottom. Indeed, some reasonable doubt arises in terms of the
extent to which such momentum-based models are generaliz-
able, especially to cases that are not strictly similar to those of
the original experiments. By contrast, the RP approach, which is
based on general mechanical bases, performs well, mainly with
respect to case-independence.

5 Results for unsteady flows

The validation of the junction models under unsteady flow
conditions is not fully covered in literature. Only few stud-
ies have been performed (Briani et al., 2016; Chang, Chang,
& Chiang, 2016; Kesserwani et al., 2008). Here, the ana-
lytical Riemann solution (Elshobaki et al., 2018; Goudiaby
& Kreiss, 2013) for unsteady flow at a junction is used to val-
idate the four junction models. Considering the network layout
shown in Fig. 1, with Ω = δ = 45◦, three channels with equal

widths (i.e. b1 = b2 = b3) and equal lengths (i.e. L1 = L2 = L3)
are connected to a single point and form a network. The dis-
charge (and the corresponding velocity) is considered to be
positive in the first and second channels (main upstream and
lateral channel) if the channel feeds the node and in the third
channel (main downstream channel) if the node feeds the chan-
nel. In Fig. 1, positive discharges correspond to arrows from left
to right. The initial conditions are: h1 = 0.5 m; h2 = 0.5 m; h3 =
1.0 m; Q1 = 0.1 m3s−1; Q2 = 0.1 m3s−1; Q3 = 0 m3s−1. These
conditions are chosen to obtain similar flow configurations to
those of previous experimental works (Pinto Coelho, 2015).
This problem is the counterpart of the dam break problem in
a single channel. A shock wave travelling backward into the
upstream/lateral branches and a rarefaction wave travelling for-
ward in the downstream branch are expected. The initial state
of the system (particularly, the bottom discontinuity at the junc-
tion) has important effects on the existence and uniqueness of
the solution, as shown by Elshobaki et al. (2018). A limited
range of initial conditions allows the existence of a physically
based solution. Such conditions, which are not trivial, have been
derived in Elshobaki et al. (2018). The current test case refers
to a symmetric confluence with a continuous bottom; the bot-
tom elevation is zero everywhere. Figure 7 shows the numerical
results for the four junction models. The l1 errors for the depth
and the discharge are listed in Tables 5 and 6 and are computed
according to the following formulas:

eh
k = �x

N∑
i=1

|h∗
k(xi, t)− hk(xi, t)|, k = 1, 2, 3 (16a)

eQ
k = �x

N∑
i=1

|Q∗
k(xi, t)− Qk(xi, t)|, k = 1, 2, 3 (16b)

where h∗ and Q∗ are the depth and the discharge obtained using
the analytical solution. h and Q are the depth and discharge com-
puted by the FVM-DOT model including the junction models
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Table 5 The l1 error in the computed depth. Analytical solu-
tion by Goudiaby and Kreiss (2013)

Junction
model

Upstream
main

channel
Lateral
channel

Downstream
main

channel

Riemann 1.6997 × 10−3 1.6997 × 10−3 4.2037 × 10−3

Equality 1.1143 × 10−2 1.1143 × 10−2 2.8994 × 10−2

Gurram 4.3977 × 10−3 4.3977 × 10−3 1.2914 × 10−2

Hsu 2.1425 × 10−3 2.1425 × 10−3 5.9129 × 10−3

Table 6 The l1 error in the computed discharge. Analytical
solution by Goudiaby and Kreiss (2013)

Junction
model

Upstream
main

channel
Lateral
channel

Downstream
main

channel

Riemann 4.2644 × 10−3 4.2644 × 10−3 8.8333 × 10−3

Equality 3.5669 × 10−2 3.5669 × 10−2 3.8996 × 10−2

Gurram 1.1279 × 10−2 1.1279 × 10−2 1.7570 × 10−2

Hsu 6.4912 × 10−3 6.4912 × 10−3 1.0272 × 10−2

at the final time (t = 0.2 s). N is the number of mesh cells. It
is clear that the numerical solution based on the RP approach
has the best performance in this case because the only differ-
ence between that solution and the analytical one is just the
numerical error. Therefore, this test is mainly devoted to under-
standing the performance of the classic models. The results for
the shock backward propagation in the main and lateral branches
are quite good for all models, with slightly worse behaviour
for the Equality model. In the downstream main channel, the
behaviour of Equality model is again the worst, followed by the
Gurram model, whilst the Hsu model performs well for both
depth and discharge.

6 Conclusions

In this research, the use of a suitable RP approach to set up the
internal boundary conditions at the junctions in the numerical
simulation of channel network flows is evaluated. Generally, the
RP approach matches the experimental data, despite the geomet-
ric characteristics of the junction. Moreover, this study confirms
the poor performance of the Equality model. The junction angle
has a notable impact on the performance of the RP approach
compared to the Gurram and Hsu models when fitting experi-
mental data concerning the asymmetric confluence of channels
with equal widths and concordant bottoms (F ranges from 0.5
to 0.7). By contrast, for the asymmetric confluence of chan-
nels with non-equal widths and with lateral discordant bottoms
and for Y-shaped confluence, the Gurram and Hsu models dif-
fer substantially from the reference experimental data, even for
F smaller than 0.35, and the RP approach performs better. For
unsteady flows, the presented results show that the RP approach
has the best agreement with the analytical solutions. Therefore,

the RP approach proves to be generally a good choice and has
the following benefits: the approach is based on a theoretical
background that is generalizable and does not rely on empirical
coefficients; and the overall behaviour is generally satisfactory,
both for steady and unsteady flows.

There are also limitations to the applicability of the RP
approach. The RP approach is not validated for junctions in
meandering rivers and curved channels. Moreover, recirculation
and turbulence phenomena (detachment of vortexes and three-
dimensional effects) are not taken into account, but this is not
considered to be a severe drawback when studying problems at
longitudinal scales much larger than the channel width.
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Appendix 1. The modified Gurram formulas

In this appendix, we introduce the modified Gurram formula.
We consider the junction in Fig. 1. Following the assumptions
made by Gurram et al. (1997), the flow is assumed to be steady
with small bottom slope, such that the friction slope is nearly
compensated; the flow is one-dimensional in the main upstream
and downstream channels with momentum and energy coef-
ficients (β1 at AB, β3 at CD, and γ at CD) assumed to be
unity. Towards the junction, the lateral channel flow is acceler-
ated due to the flow contraction at the separation zone (Gurram
et al., 1997). Therefore, the lateral channel momentum M2 at EH
in Fig. 1 can be written as:

M2 = β2ρb2h2u2
2 cos(δ) (A1)

where ρ is the density of water and β2 is the lateral momen-
tum coefficient. Gurram et al. (1997) showed that β2 can be
computed with the following relation

β2 = b3h3u3

b2h2u2

cos(α)
cos(δ)

where α as the angle between the representative lateral veloc-
ity vector at EH and the main channel direction. The relation
between α and δ is (Hager, 1987)

α = 8
9
δ

Because of the presence of the bottom step in the lateral channel,
the flow mixing between the upstream and the lateral channel
is expected to be increased; therefore, the relationship between
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δ and α must be recalibrated. However, this process is beyond
the scope of this work, so the suggestion of Hager (1987) is
maintained. Assuming a hydrostatic pressure distribution, the
force exerted by the lateral bottom step is computed according
to Elshobaki et al. (2018), and the equality of the water level
between the upstream main channel and the lateral channel is
assumed rather than the equality of water depth. Taking into
account the angle Ω , the momentum balance in the main down-
stream channel direction over a control volume ABCDEH in
Fig. 1 gives:

ρb1h1u2
1 cos(Ω)+ ρg

2
b1h2

1 cos(Ω)+ ρb3h3u3u2 cos(α)

+ ρgb2hsz2 cos(δ) = ρb3h3u2
3 + ρg

2
b3h2

3 (A2)

where hs refers to the depth over the lateral bottom step, which is
computed by applying the conservation of the total head over the
step (Valiani & Caleffi, 2008) by considering only the subcritical
solution:

hs = 1
3

(
h3 + u2

3

2g
− z2

) [
1 − 2 cos

(
2π + θ

3

)]
(A3)

where

θ = arccos

⎛
⎜⎝1 − 27

⎛
⎜⎝ −h3 − u2

3
2g + z2(

h1u1
h3u3

)2 (
h2

3u2
3

g

) 1
3

⎞
⎟⎠

⎞
⎟⎠

For more details, see Elshobaki et al. (2018). Multiplying
Eq. (A2) by 2/b3h2

3 gives:

[
2b1h1u2

1

gb3h2
3

+
(

b1

b3

) (
h1

h3

)2
]

cos(Ω)+ 2u2u3

gh3
cos(α)

+
(

2b2

b3

)(
hs

h2
3

)
z2 cos(δ) = 2u2

3

gh3
+ 1 (A4)

The continuity equation implies

b1h1u1 + b2h2u2 = b3h3u3 (A5)

By using the equality of the water level upstream from the
junction and substituting Eq. (A5) into Eq. (A4), with a little
arrangement we obtain:

(
h1

h3

)3

cos(Ω)−
(

b3h1

b1h3

) [
1 + 2F2 −

(
2b2

b3

) (
hs

h2
3

)
z2 cos(δ)

]

+ 2F2

[(
h1u1

h3u3

)2

cos(Ω)+
(

b2
3h1

b1b2(h1 − z2)

)
(

1 − b1h1u1

b3h3u3

)
cos

(
8δ
9

)]
= 0 (A6)

where

F =
√
γ u2

3

gh3

therefore, Eq. (A6) represents the final Gurram formula that is
used in the model (Eq. (13c)).

Appendix 2. The modified Hsu formulas

This appendix shows the derivation of the modified Hsu for-
mula in the channel network of Fig. 1. According to Hsu, Wu,
et al. (1998), the flow is accelerated due to the flow contrac-
tion at the separation zone as long as we move towards the
junction. Therefore, momentum coefficients are introduced (β1

at AB, β2 at FG, β3 at CD, and βEH at EH). Assuming steady
flow and a hydrostatic pressure distribution, neglecting the fric-
tion force, taking into account the angle Ω , the acting force
due to the presence of the lateral step, and further assuming
β1 = β2 = β3 = βEH = β, the momentum balance in the main
downstream channel direction over the area ABCDEH gives:

βρb1h1u2
1 cos(Ω)+ ρg

2
b1h2

1 cos(Ω)+ βρb2h2u2uEH cos(α)

+ ρgb2hsz2 cos(δ) = βρb3h3u2
3 + ρg

2
b3h2

3 (A7)

where uEH is the representative velocity at EH. According to
Hsu, Wu, et al. (1998), the representative velocity uEH is related
to the angle α by:

uEH = b2h2u2

bEH hEH sin(α)
(A8)

bEH and hEH are the channel width and the water depth at section
EH in the lateral channel, respectively. Substituting Eq. (A8)
into Eq. (A7) gives:

βρb1h1u2
1 cos(Ω)+ ρg

2
b1h2

1 cos(Ω)+ βρ(b2h2u2)
2

bEH hEH
cot(α)

+ b2hsz2 cos(δ) = βρb3h3u2
3 + ρg

2
b3h2

3 (A9)

Applying the momentum balance in the lateral channel direction
over the area EFGH gives:

βρb2h2u2
2 + ρg

2
b2h2

2 = ρg
2

b2h2
EH + βρ(b2h2u2)

2

bEH hEH

cos(δ − α)

sin(α)
(A10)

Taking into account the equality of the water level upstream
from the junction, letting bEH = b2/ sin(δ), further assuming
hEH = h2 based on experimental observation by Hsu, Wu, et al.
(1998), taking into account the effect of the lateral bottom step
hs (Valiani & Caleffi, 2017), using the mass continuity equation,



12 M. Elshobaki et al. Journal of Hydraulic Research (2018)

and substituting Eq. (A10) into Eq. (A9), it possible to obtain:

(
h1

h3

)3

cos(Ω)−
(

b3h1

b1h3

)

×
[

1 + 2βF2

γ
−

(
2b2

b3

) (
hs

h2
3

)
z2 cos(δ)

]

+ 2βF2

γ

[(
h1u1

h3u3

)2

cos(Ω)+
(

b2
3h1

b1b2(h1 − z2)

)

×
(

1 − b1h1u1

b3h3u3

)
cos(δ)

]
= 0 (A11)

Therefore, Eq. (A11) represents the modified Hsu formula
(Eq. (14c)).

Notation

A = Jacobian matrix of the flux function (–)
bk = channel width of the kth channel (m)
CFL = the Courant–Fredrich–Lewy coefficient (–)
c = wave celerity ( m s−1)
D = fluctuation term (–)
E = relative per cent error (–)
eh

k = error in the depth of the kth channel (–)
eQ

k = error in the discharge of the kth channel (–)
F = downstream Froude number (–)
F = flux function (–)
g = gravity acceleration (m s−2)
hk = water depth in the kth channel (m)
h∗

k = depth (analytical solution) in the kth channel (m)
hs = depth over the lateral bottom step (m)
k = channel index, k = 1 refers to the main upstream chan-

nel, k = 2 refers to the lateral channel, k = 3 refers to
the main downstream channel (–)

Lk = channel length of the kth channel (m)
Mk = momentum in the kth channel (N)
N = number of mesh cells (–)
n = time step index (–)
Qk = water discharge in the kth channel (m3 s−1)
Qr = discharge ratio (–)
Q∗

k = discharge (analytical solution) in the kth channel
(m3 s−1)

S = vector of source term (–)
S0x = bottom slope (–)
Sf = friction slope (–)
s = parameter, s ∈ [0, 1] (–)
t = time (s)
U = vector of conservative variables (–)
uk = water velocity in the kth channel (m s−1)
W = extended vector of conservative variables (–)
Wn

i = space average of W over the ith cell at time tn (–)
xk = space in the kth channel (m)

Yexp = experimental depth ratio (main upstream to down-
stream) (–)

Ynum = computed depth ratio (main upstream to downstream)
(–)

zk = bottom elevation in the kth channel (m)
α = angle between the lateral velocity vector at EH and the

main channel direction (–)
β = momentum coefficient, β = 1.27 (–)
γ = energy coefficient, γ = 1.12 (–)
δ = junction angle (–)
ηk = parameter number in the kth channel, η = −1, 1 (–)
ρ = water density ( kg m−3)
ψ = integral path (–)
Ω = main channel angle (–)
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