
 First Author et al.:
Title

1

Abstract— Limited endurance of Resistive RAM (RRAM)

is a major challenge for future computing systems. Using
thorough endurance tests that incorporate fine-grained
read operations at the array level, we quantify for the first
time temporary write failures (TWFs) caused by intrinsic
RRAM cycle-to-cycle and cell-to-cell variations. We also
quantify permanent write failures (PWFs) caused by
irreversible breakdown/dissolution of the conductive
filament. We show how technology-, RRAM programming-
and system resilience-level solutions can be effectively
combined to design new generations of energy-efficient
computing systems that can successfully run deep
learning (and other machine learning) applications despite
TWFs and PWFs. We analyze corresponding system
lifetimes and TWF BER.

Index Terms— RRAM, HfO2, variability, characterization,
reliability, performance, deep learning

I. Introduction
esistive RAM (RRAM [1]) is a non-volatile memory
technology with a Metal-Insulator-Metal (MIM) stack

structure. RRAM stores data through the formation (set) and
destruction (reset) of a conductive filament (CF) in the oxide
insulator layer—a set operation switches the RRAM cell to a
low-resistance state (LRS) while a reset operation switches the
RRAM cell back to a high-resistance state (HRS) [2]. RRAM
can provide massive on-chip data storage with low-voltage
and low-latency accessibility and can be integrated using
monolithic 3D integration. Thus, RRAM enables massive
improvements in energy and execution time, especially for
data-intensive applications such as deep learning [3, 4].
Despite major progress in RRAM technology [5],
understanding variations in RRAM and the corresponding

We acknowledge the support of DARPA, NSF-SRC/NRI/GRC
E2CDA, STARnet SONIC, NSF, member companies of the Stanford
SystemX Alliance, and the NTU start-up grant.

A. Grossi, E. Vianello, M. Barlas, L. Grenouillet, J. Coignus, E.
Beigne and E. Nowak are with CEA-Leti, Minatec Campus, Grenoble,
France.

M. M. Sabry is with Nanyang Technological University, Singapore.
T. Wu, B. Q. Le, M. K. Wootters and S. Mitra are with Dept. of EE,

Dept. of CS, Stanford SystemX Alliance, Stanford University, USA.
C. Zambelli is with Dipartimento di Ingegneria, Universita degli Studi

di` Ferrara, Via Saragat 1, Ferrara, Italy.

system-level impact are open challenges that must be
overcome.

One key challenge is the limited endurance of RRAM cells
[6]. Endurance is usually defined as the number of set-reset
operations (i.e., endurance cycles) after which the cell
experiences a permanent-write failure (PWF, cell is stuck at
HRS or LRS [6]). Several papers [6–11] have demonstrated up
to 106 endurance cycles at the array level (Table I). RRAM
also exhibits temporary-write failures (TWFs), which were
previously demonstrated at a single-cell level [7].

In this paper, we characterize permanent and temporary
write failures of RRAM arrays. We investigate the impact of
RRAM endurance and TWF at the system level and overcome
such RRAM failures by combining technology, RRAM
programming, and system resilience techniques. Collectively,
these techniques achieve a minimum of 4.5 years lifetime for
deep learning applications (Section V).

When an RRAM cell is in HRS, the read current is on the
order of nA, resulting in long read time (100× longer than
writes [7]) to measure the cell’s resistance value. Therefore,
typical endurance tests (to quantify PWFs) contain only a few
read operations per decade of endurance cycles (Table I). Fig.
1 reports a typical endurance test flow and corresponding
results from a 4-Kbit array. The RRAM technology (300 nm
diameter, TiN/HfO2/Ti/TiN) is monolithically integrated on
top of 130 nm silicon CMOS process [7]. PWFs at 3σ (3× the

Alessandro Grossi, Elisa Vianello, Member, IEEE, Mohamed M. Sabry, Member, IEEE,
Marios Barlas, Laurent Grenouillet, Jean Coignus, Edith Beigne, Tony Wu, Binh Q. Le, Mary

K. Wootters, Member, IEEE, Cristian Zambelli Member, IEEE, Etienne Nowak, and
Subhasish Mitra, Fellow, IEEE

Resistive RAM Endurance: Array-level
Characterization and Correction Techniques

Targeting Deep Learning Applications

R

TABLE I
STATE OF THE ART OF RRAM ARRAYS ENDURANCE TESTING. ENDURANCE

WAS EVALUATED ON A LIMITED NUMBER OF CELLS WITH LOW READING
GRANULARITY. TWFS WERE NOT STUDIED BY PREVIOUS PAPERS AT THE

ARRAY LEVEL.
Ref. Array

size
Tested
cells

Read
granularity

Endurance
cycles

Failure
investigated

[6] Few
cells

Few
cells

3 /decade of
endurance
cycles

106 HRS
stuck,
BD

[7] 4 Kbit 256 3 /decade 106 -
[8] 16

Mbit
1 Mbit 1 /decade 106 -

[9] 2
Mbit

- 2 105 -

[10] 1
Mbit

1 Kbit 3 /decade 106 -

[11] 1
Mbit

1 Kbit 1 /decade 106 -

Ours 4 Kbit 4 Kbit
×3

1000 /decade 107 HRS stuck,
BD, TWF

 First Author et al.:
Title

2

standard deviation) of the distribution of measured HRS and
LRS for the 4-Kbit array are highlighted. While permanent
oxide breakdown (causing LRS stuck) appears after 106
endurance cycles, HRS stuck failures are critical because they
appear much earlier (around 3×104 endurance cycles).

To quantify TWFs, fine-grained endurance testing is
required (Fig. 2(a)): after each decade of endurance cycles
(103, 104, 105, and 106), 103 Set-Read-Reset-Read operations
(fine-grained test cycles) are performed for each cell. Fig. 2(b)
top shows an example of fine-grained test cycle results from
an arbitrary cell (after 103 endurance cycles). Few TWFs can
be seen (LRS/HRS values above/below verify threshold). Fig.
2(b) middle shows TWF cell count (between 0 to 4) per fine-
grained test cycle (after 103 endurance cycles). TWF bit error
ratio (BER), averaged over fine-grained test cycles, stabilizes
only after hundreds of cycles (Fig. 2(b) bottom)—this trend
holds after each decade of endurance as our experimental
measurements indicate.

While the mechanisms governing TWF are still under
investigation, we expect TWF is linked to the filamentary
nature of the switching process and not to conductive filament
localization (Fig. 9(c)). TWFs are not caused by Random-
Telegraph-Noise (RTN): the read stability has been verified by
performing 50 consecutive reads after Set and Reset. No

undesired switching between LRS and HRS was observed in
such test, confirming that TWFs are not RTN-related. Reading
from RRAM, for all cells in this paper, is performed with a
low-read voltage (0.1 V) where read-disturb failure is
negligible [41].

II. STATISTICAL ANALYSIS
TWF and PWF BER were extracted on three 4-Kbit arrays

to evaluate the die-to-die variability: Fig. 3 confirms that our
reported results are consistent over the 4-Kbit arrays. The
inter-arrival time between two consecutive TWFs on a cell
ranges from few tens to several hundred cycles and generally
decreases with increasing endurance cycles, as shown in Fig.
4(a). TWFs and PWFs locations after 103 (red, circle) and 105
(blue, square) endurance cycles are shown in Fig. 4(b). Fig. 5
indicates that TWFs occur in LRS for cells with high standard
deviation of resistance (cycle-to-cycle); in contrast, TWFs
occur in HRS for cells with low mean and low standard
deviation of resistance (cycle-to-cycle).

We found no evidence of spatial correlation on the cycle-to-
cycle means and standard deviations on the 4-Kbit array. To
evaluate spatial correlation, Global Moran’s I test [12] was
used. P-values were constructed using a permutation test.

(a) (b)

Fig. 1. Typical endurance characterization testflow (a) and test results
(b): PWFs (HRS stuck, breakdown) observed. HRS stuck failures occur

much earlier than breakdown failures.

(a) (b)

Fig. 4. CDF of cell-level TWF inter-arrival times after 103 and 105
endurance cycles for a 4-Kbit array (a). TWFs and PWFs locations at
103 (red, circle) and 105 (blue, square) endurance cycles (b).

Fig. 3. Breakdown BER, HRS-stuck BER, and TWF BER from 3 4-Kbit
RRAM dies. HRS-stuck BER = HRS stuck cells/tested cells,
Breakdown BER = breakdown cells/tested cells.

 (a) (b)
Fig. 2. Fine-grained endurance characterization (a). Fine-grained test
on a cell (b, top) highlighting the verify threshold that distinguishes
between a stored ‘0’ and ‘1’ (Verify TH, used in Program-retry in Fig.
9(a)), and TWF cells in a 4-Kbit array after 103 endurance cycles (b,
middle). TWF BER (TWF cells/tested cells) averaged over fine-grained
test cycles (b, bottom). Fine-grained testing is required as only few cells
/ cycles show TWFs.

 (a) (b)
Fig. 5. Mean (µ) vs. standard dev. (σ) of LRS and HRS, over 103 fine-
grained test cycles for 100 cells after 105 endurance cycles. TWFs
occur in cells with high σ (cycle-to-cycle) in LRS, and low σ and µ
(cycle-to-cycle) in HRS.

 First Author et al.:
Title

3

More precisely, 104 uniformly random permutations of the 4-
Kbit array were drawn, and the Moran’s I statistic was
computed for each permutation. This produced an empirical
distribution for this statistic under the null hypothesis that the
cells are exchangeable (in particular, that there is no spatial
correlation). If there were spatial correlations, one would
expect the Moran’s I statistic, when computed on the original
data, to be an outlier in this empirical distribution,
corresponding to a small p-value. This procedure was repeated
for 16 values of interest: one for each of the standard
deviations σlrs, σhrs and the means µlrs, µhrs over 100 fine grain
test cycles, starting at 103, 104, 105, and 106 endurance cycles
respectively. Out of all of these 16 tests, the smallest p-value
was 0.132 and the median was 0.328, which is not a
significant evidence of spatial correlation. To ensure that the
test would pick up spatial correlation if it was present,
correlation was artificially introduced by randomly selecting
20% of all the groups of contiguous 4 cells (across 2 rows and
2 columns) in the array and averaging their values. In this
artificial data, the procedure described above produced 16 p-
values, 14 of which were below 0.05 (i.e., statistically
significant to show spatial correlation).

Since we did not find evidence of spatial correlation in
either the cycle-to-cycle means or standard deviations, we
expect that TWFs and PWFs will behave similarly for larger
arrays.

III. OVERCOMING PWFS AND TWFS
HRS stuck failures are mostly caused by complete filament

dissolution [6]. If a filament is located near a cell edge which
is damaged by the cell etching process, the free oxygen in the
damaged area can diffuse into the filament and dissolve it. We

explore a technological solution to constrain the cell switching
area far from the edges by using local Si implantation (LSI)
[13] (Fig. 6). Programming conditions to maximize endurance
for a target PWF BER are identified in Fig. 7(a) and reported
in Table II. LSI ensures memory window (no PWFs) at 3σ
until 105 endurance cycles, as shown in Fig. 7(b). Fig. 8 shows
HRS stuck BER and Breakdown BER for LSI and HfO2:
thanks to LSI (Fig. 8(a)), PWFs appear after 105 endurance
cycles.

At the RRAM programming level, program-retry [14] (Fig.
9) significantly suppresses TWFs up to 105 endurance cycles
(with 4 retries). Our measurements indicate that <5% of cells
required program-retry. Program-retry may degrade PWF but
the degradation is very minor (from 2×105 to 1.72×105), which
can be masked by limiting the endurance cycles to 105

Fig. 6. RRAM cell with LSI (SEM, schematic)

TABLE II
OPTIMAL PROGRAMMING CONDITIONS FOR HFO2 AND LSI.

 Set Reset
ICC VBL TPULSE VWL VSL TPULSE

HfO2 200 µA 2 V 100 ns 3 V 2.5 V 100 ns
LSI 150 µA 2 V 100 ns 3 V 2.5 V 100 ns

 (a) (b)
Fig. 7. (a) Programming energy vs. endurance for different target PWF
BER (10-3 and 10-2 in solid lines with solid markers and dotted lines
with hollow markers, respectively) for HfO2 (red lines) and LSI (black
lines). (b) Endurance results of LSI with optimal programming
conditions.

(a) (b)

Fig. 8. HRS stuck (a) and Breakdown (b) BERs for LSI and HfO2. LSI
suppresses PWFs up to 2×105 endurance cycles.

 (b) (c)

Fig. 9. Program-Retry algorithm [14] where TH is the verify threshold
illustrated in Fig. 2(b) (a). TWF BER as a function of endurance cycles
and the maximum number of retries (imax) (b). TWFs can be
suppressed by using 4 retries until 105 endurance cycles. TWF BER
before and after Program-Retry-based correction (10 iterations) (c)—
TWF BER similar for HfO2 and LSI, indicating that TWF is not linked to
conductive filament localization.

 (a) (b)
Fig. 10. Retention results: LRS and HRS distributions measured after
105 cycles before bake (black) and after 24 hours bake at 165oC (red)
for HfO2 (a) and LSI (b).

 First Author et al.:
Title

4

(Section V). To evaluate the retention features after 105
endurance cycles with program-retry, a 24-hour bake at 165°C
was performed (Fig. 10)—the overlap between LRS and HRS
distribution tails is approximately 1%. At room temperature,
the error rate is below the measurement limit (10-6), where the
~1% overlap between LRS and HRS appears after ~18 days,
following Arrhenius law with activation energy of 1.5 eV
[15]. Our system-level resilience techniques (Section IV) can
overcome this challenge.

IV. SYSTEM-LEVEL RESILIENCE
LSI and program-retry (Section III) somewhat reduce

RRAM PWF and TWF BER, respectively. Further
improvements are still required to increase system lifetime
(i.e., time until the first PWF occurrence1) and simultaneously
reduce the overall TWF BER, especially for computing
systems with large amounts of on-chip RRAM (e.g., [3] that
can significantly improve application-level execution time and
energy consumption).

A computing system with only LSI and program-retry
reaches four-day lifetime and ~5×10−6 TWF BER (Section V).
We introduce the following mechanisms to improve both
system lifetime and TWF BER:
• ENDURER (ENDUrance REsiliency using random

Remapping, Fig. 11(b)) to improve lifetime [4].
• WRITER (WRIte Temporary failure Resiliency, Fig. 11(c))

to correct persisting TWFs after program-retry (Section
III).

 Fig. 11 illustrates the overall architecture of a computing
system, highlighting ENDURER and WRITER
implementations within each memory controller [16] that
manages accesses to RRAM-based main memory.

ENDURER increases the lifetime of computing system by
balancing writes across all words with negligible overheads,
as shown later in Section V. ENDURER combines: 1) address
shifting by a random offset supported by periodic remapping
of memory contents and 2) a write-back buffer (using SRAM)
that places an upper bound on the number of writes per word
within a single period. In this paper we apply the remapping
algorithm with one-hour period (~9×104 remap operations in
10 years), where all memory words are read and written back
(implicitly overcoming limited data retention). The buffer
capacity is 16 KBytes per 1-GByte RRAM which ensures that
no word receives more than 105 writes within a single
mapping period [4].

WRITER (Fig. 11(c)) reduces TWF BER by identifying the
precise location of the faulty bit(s) during write operations via
write-verify operation (XOR operation between the data stored
in RRAM and original data). WRITER is invoked upon each
unsuccessful program-retry operation (Section III) and uses
additional RRAM—referred to as Error Correction Table
(ECT)—to store the locations of faulty bits in ECT records
(Fig. 11(c)), akin to previous works [17, 18]. For each word in
RRAM, same address is used to access the corresponding
ECT entry (multiple records per entry).

1We use this definition in this paper. However, one could use repair

techniques, such as memory built-in repair [37], to tolerate PWFs.

ECT uses separate RRAM arrays from the main memory to
ensure overall lower TWF BER and better endurance for ECT
versus the main memory (Section V.B).2

2WRITER can accommodate other techniques to further reduce
TWF BER, e.g., SRAM-based associative memory to store records if
an error occurs in ECT (beyond the scope of this paper).

Fig. 11. Overall computing system architecture including ENDURER
and WRITER integrated into each memory controller (a). Architecture
of ENDURER mechanism with pseudocodes of remapping algorithm
and memory access (b); WRITER mechanism highlighting ECT and
pseudocodes of memory-access algorithms (c).

Data outData inAddress

Data inAddress

Computing
elements

Shared SRAM memory

Memory controller

Main memory:
on-chip RRAM (1T-1R)

Data out

Main Memory (RRAM)

Address

Record

Chip floorplan
(system with on-chip RRAM)

WRITER
Mechanism (c)

Interconnect

e.g., 512 bits per word
(corresponds to a cache line)

ENDURER
Mechanism (b)

(a)

PRNG

Offset
Reg

-

Periodic remapping

Data outData inAddressClk

En

En

Address
checker

Timer

Fully
associative

SRAM buffer

Connections to WRITER and RRAM main memory
Data outData inAddress

(b) ENDURER

+

(c) WRITER

XOR

XORdecoder

Data out

Data out Data in Address

Address

Record to
ECT

Record from
ECT

Address
to ECT

Data in

Data write registerAddress register

Data read register

Priority
encoder

Record write
register

Record read
register

Faulty bit location
(e.g., 9 bits for 512-bit
word in main memory)

Error correction table (ECT)
(RRAM)

ECT
record

Valid bit

Multiple records (e.g., 2-3)
per ECT entry

Enable

Connections from ENDURER

Connections to RRAM main memory

WRITER memory-read algorithm (every read)
Inputs: AddressA
Do in parallel {

DataA ß Read from RRAM (AddressA);
RecordsAß Read from ECT (AddressA);

}
Foreach Record in RecordsA{

if (valid(Record)){
DataAß DataA XOR 2Record;

}
}

WRITER memory-write algorithm (every write)
Inputs: AddressA, DataA
Locations ß write-verify(AddressA, DataA);

Foreach location in Locations{
record ß create ECT record (location);
Insert ECT record (record, AddressA);
set valid (record, AddressA);

}

write-verify: DataA XOR (Read from RRAM (AddressA))

ENDURER remapping algorithm (once every hour)
Inputs: memory size M = 1GByte, Offset
!ß create random number (); " ß count trailing zeros (!); Offset ß (Offset + !) modulo M; Ncycles ß 2";
For (#=0; # <Ncycles; # ++) {

Address_A ß #; Address_B ß # + !; Data_A ß Read from Data RRAM (Address_A);
While (Address_B ≠ #) {

Data_B ß Read from Data RRAM(Address_B);
Write to Data RRAM (Address_B, Data_A);
Data_A ß Data_B; Address_A ß Address_B; Address_B ß (Address_A + !) modulo M;

}
Write to Data RRAM (Address_B, Data_A);

}

ENDURER memory-read algorithm (every read)
Inputs: Offset, Address_A, M

Address_A ß (Address_A + Offset) modulo M;
If (address exists in SRAM buffer (Address_A)) {

Data_A_out ß Read from buffer (Address_A);
} else {

Data_A_out ß Read from Data RRAM (Address_A);
}

ENDURER memory-write algorithm (every write)
Inputs: Offset, Address_A, Data_A_in, M

Address_A ß (Address_A + Offset) modulo M;
If (address exists in SRAM buffer (Address_A)) {

Update data in buffer (Address_A, Data_A_in);
} else {

If(is SRAM buffer full()) {
Flush buffer contents to Data RRAM ();

}
Write to SRAM buffer (Address_A, Data_A_in);

}
Remapping period: 1-hour
SRAM buffer size: 16 KBytes per 1 GByte RRAM

 First Author et al.:
Title

5

V. SYSTEM-LEVEL EVALUATION
A. Methodology

We quantify the lifetime and overall TWF BER for an
RRAM-based hardware accelerator for inference
(classification) phase of deep learning applications,
summarized in Table III [3], with ENDURER and WRITER.
This accelerator comprises 4,096 processing elements each
performing multiply-and-accumulate operations (used
extensively in deep learning), a local 256-Byte SRAM
memory per processing element, a globally-shared SRAM
across all processing elements (varied in capacity as we
explain later), and a 4-GByte on-chip RRAM. We assume that
RRAM cells have no spatial correlation (Section II)—all cells
have the same PWF and TWF probabilities in Figs. 8 and 9.
We also pessimistically assume that each write to an RRAM
word is a single endurance cycle.

We use a detailed simulation framework—adopted from [3,
4] that leverages commercial physical design tools to
implement all architecture modules using circuit-design
libraries calibrated with experimental data—to determine the
operating lifetime and TWF BER of the targeted system for
each examined workload (shown later). The framework
creates a trace by recording the number of writes to each
memory word in RRAM during the execution of a workload
(to completion). This trace is then repeated to simulate the
continuous execution of the corresponding workload and then
estimate the system lifetime while accounting for measured
RRAM PWF and TWF BER values and system resiliency
mechanisms.

We analyze the inference phase of deep learning workloads
owing to the wide adoption of inference in embedded and

server computing systems for different applications (e.g.,
computer vision, speech-to-text and language translation) [38].
Table IV summarizes deep learning workloads for commonly-
benchmarked applications (i.e., image classification, object
detection and language modeling), highlighting the number of
weight parameters of each network. Inference can be applied
to a batch of single or multiple inputs (e.g., images)
simultaneously. We consider batch sizes from 1 to 32 inputs
(Table V)—small (≤4) batch sizes are found in embedded
systems, while larger ones are in servers [3, 19, 20].

There are two data types in deep-learning workloads:
weights and intermediate variables (also referred to as
activations or feature maps [38]). We observe during
inference: a) memory allocated to weights experiences read-
only behavior, b) memory allocated to temporary variables
incurs read-and-write behavior. Thus, we can avoid writes to
RRAM during inference by storing weights in RRAM and
remaining data in SRAM.

Table V shows that the amount of memory for weights and
intermediate variables reaches 1200 and 338 MBytes,
respectively. Thus, a system with a 338-MByte SRAM can
eliminate unnecessary writes to RRAM (still needed to store
weights), which diminishes the need for RRAM-endurance
resiliency.3 This SRAM capacity can be integrated on-chip
particularly at advanced technology nodes but at the cost of
increased chip area and energy consumption (e.g., higher
leakage in SRAM versus RRAM).

In this paper, we consider two configurations representing
embedded and server processing systems as follows:
• Accelerator (Table III) with 2-MByte on-chip SRAM

executing deep learning inference with input batch sizes 1
and 4 (embedded configuration).

• Accelerator (Table III) with 128-MByte on-chip SRAM
executing deep learning inference with input batch sizes
8, 16 and 32 (server configuration).

B. Simulation results
Table V summarizes the lifetime and TWF BER with and

without system resiliency. Our approach (LSI + ENDURER +
Program-retry (4 retries) + WRITER) achieves more than 4.5
years of continuous inference operation with up to 8.2×10−12

TWF BER, while incurring only 64-kByte SRAM (for
ENDURER), 6% additional RRAM (for WRITER) and ~3%
execution time and energy overheads. WRITER can further
reduce the RRAM overhead to 4% (instead of 6% earlier) for
TWF BER of 8.7×10−9 or lower by using a 512-bit word size
instead of 256-bit word in RRAM (Table V).4 Such
continuous operation (no idle time) represents highly
pessimistic application scenarios. In contrast, no resiliency
(LSI + Program-retry) achieves a maximum of 4-day lifetime
and 6.7×10−5 TWF BER, while FLASH-based endurance
mechanisms achieve up to 256 days (<1 year) as shown in
Section VI.

3Resilience techniques may be still needed to overcome limited

retention time for read-only RRAM. A variation of ENDURER can be
used with a longer remapping period (e.g., 18 days similar to the
retention time at room temperature) with a lower overhead than that in
Table V.

4WRITER storage overhead can be further reduced, e.g., using
RRAM-based TCAM [39] (beyond the scope of this paper).

TABLE III
ARCHITECTURE PARAMETERS OF THE ANALYZED DOMAIN-SPECIFIC

ACCELERATOR [3]

Compute units
4,096 8-bit multiply-and-accumulate units
 Frequency: 0.5 GHz,
 Energy: 1.9 pJ/op

On-chip SRAM

Local: 256 Bytes per unit
 Latency: 2 ns,
 Energy: 0.23 pJ/bit
Shared: {2,128} MBytes
 Latency: {4,10} ns,
 Energy: {0.32,1.4} pJ/bit

4 GBytes
On-chip RRAM

4 memory controllers
8 access channels, 256 bits/channel
 Read: 16ns, 3.1pJ/bit
 Write: 106 ns, 24.4 pJ/bit

TABLE IV

ANALYZED DEEP-LEARNING NETWORKS, HIGHLIGHTING APPLICATION
DOMAINS, INPUT TYPE, DATASET, AND NUMBER OF WEIGHTS.

Network Application domain/ input
type/ dataset

Number of
weights

(millions)
AlexNet[21] Image classification

(top accuracy: ResNet)
Input: images

(224×224×3 pixels)
Dataset: ImageNet [34]

60
ResNet152 [22] 60

ZfNet [23] 107
VGGNet-19 [24] 145

Faster-RCNN
[25]

Object detection in videos
Input: video frames

(1392×512×3 pixels)
Dataset: KITTI [35]

75

Language Model
[26]

Natural language modeling
Input: text (30-word phrase)
Dataset: 1-billion word [36]

1200

 First Author et al.:
Title

6

VI. ENDURER VS. FLASH-INSPIRED TECHNIQUES
FOR RRAM LIFETIME IMPROVEMENT

We compare ENDURER (Section IV) versus possible
RRAM endurance management techniques inspired by those
used in FLASH memories. We show that these mechanisms
achieve up to 268-day lifetime, 13× shorter than ENDURER
for the same workloads.

For FLASH, wear-leveling mechanisms aim to evenly
distribute writes among various blocks (e.g., 128 KBytes) of
the memory [29]. For each write-back to FLASH, updated
data are written to an unused block, then the block containing
the old data is erased and labeled unused (free). State-of-the-
art FLASH wear-leveling approaches can be classified as
dynamic [27, 30] and static [28, 31]. Dynamic wear-leveling
does not use blocks that experience read-only behavior (or
very little updates [30]) whereas static wear-leveling is applied
to all blocks. For both cases, a mapping table is used to
identify free blocks and store the addresses of remapped
blocks. We quantify the lifetime of the system summarized in
Table III when running the workloads in Table IV using
adaptations of both wear-leveling techniques for RRAM-based
memories as follows:

• In dynamic wear-leveling, the amount of memory allocated
to store network weights (see Section V(A)) is excluded as
it contains read-only data.

• The block size for each workload is selected from
commonly-used values (i.e., 4 KBytes to 1 MByte [40]).
Since the data size of intermediate variables (Table V) is
not a multiple of any block size, we select the block size
that yields a small amount of unused words within a block,
while simultaneously incurring small storage overheads
(mapping table).

• Wear-leveling is triggered when the number of writes to a
block equals the number of words within this block (e.g.,
1024 writes in a 32-KByte block with 256-bit word length).

Table VII summarizes the lifetime using adaptations of

FLASH-based wear-leveling techniques for RRAM—up to
256 days (<9 months) of lifetime could be achieved versus a
minimum of 4.5 years with our resiliency mechanism (Table
V). Compared to FLASH-based techniques, ENDURER
brings in two key benefits: 1) the write-back buffer reduces
the number of writes to RRAM by filtering frequently-written
words and simultaneously places an upper bound on the
number of write per word per remapping period. 2) The

TABLE V APPLICATION-LEVEL LIFETIME, TWF BER, AND STORAGE OVERHEAD WITH AND WITHOUT OUR SYSTEM-LEVEL RESILIENCE FOR THE TARGETED
WORKLOADS (TABLE IV). THE TABLE ALSO INCLUDES THE AMOUNT OF MEMORY FOR NETWORK WEIGHTS AND INTERMHEDIATE VARIABLES. LIFETIME IS
ESTIMATED WITH A MAXIMUM 105 WRITES PER WORD DURING CONTINUOUS OPERATION OF WORKLOADS. WE PESSIMISTICALLY ASSUME A SINGLE WRITE
TO RRAM CORRESPONDS TO A SINGLE ENDURANCE CYCLE. LIMITED DATA RETENTION IN RRAM IS ADDRESSED VIA PERIODIC REMAPPING IN ENDURER.

Network Batch
size

Data size (MBytes) No resiliency
(LSI + Program-retry)

With resiliency
(ENDURER + WRITER + LSI + Program-retry)

Weights Inter.
variables Lifetime TWF

BER Lifetime
TWF BER

256-bit RRAM word 512-bit RRAM word

Accelerator with 2 MBytes on-chip shared SRAM (Table III)
AlexNet [20] 1, 4 60 0.25, 1.8 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed

ResNet152 [21]
1

60
0.98 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed

4 3.9 46 minutes 4.0×10−5 6.6 years 1.1×10−12 1.0×10−10

ZfNet [22]
1

107
1.1 No writes to RRAM, except initial model loading. Lifetime >> 10 years and no TWF BER observed

4 4.4 1 hour 6.6×10−6 6.7 years 8.2×10−12 2.8×10−10
VGGNet-19
[23]

1
145

6.1 24 minutes 5.6×10−6 10 years 7.1×10−12 1.8×10−10
4 24.5 28 minutes 5.0×10−6 6.8 years 2.0×10−12 8.0×10−9

Faster-RCNN
[24]

1
75

10.6 7 minutes 6.7×10−5 4.5 years 1.7×10−12 8.7×10−9
4 42 19 minutes 4.7×10−6 4.4 years 1.7×10−12 8.6×10−9

Language
Model [26]

1
1200

0.75 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed
4 3 5 hours 6.4×10−6 10 years 6.3×10−13 1.3×10−10

Storage overhead (additional SRAM, additional RRAM) SRAM: 64 KBytes (1.5%)
RRAM: 240 MBytes (6%)

SRAM: 64 KBytes (1.5%)
RRAM: 160 MBytes (4%)

Execution time and energy overheads 2.5% execution time, 3% energy
Accelerator with 128 MBytes on-chip shared SRAM (Table III)

AlexNet [20] 8, 16, 32 60 3.6, 7.3, 14.5 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed
ResNet152 [21] 8, 16, 32 60 7.9, 15.8, 31.5 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed
ZfNet [22] 8, 16, 32 107 8.9, 17.7, 35.4 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed
VGGNet-19
[23]

8, 16
145

49, 98 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed
32 196 4 days 3.9×10−7 10 years 2.7×10−13 1.2×10−10

Faster-RCNN
[24]

8
75

84 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed
16 169 4 days 6.2×10−7 10 years 2.5×10−13 1.2×10−10
32 338 1.2 days 5.2×10−6 4.4 years 2 ×10−12 9.6×10−10

Language
Model [26] 8, 16, 32 1200 6, 12, 24 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed

Storage overhead (additional SRAM, additional RRAM) SRAM: 64 KBytes (0.05%)
RRAM: 240 MBytes (6%)

SRAM: 64 KBytes (0.05%)
RRAM: 160 MBytes (4%)

Execution time and energy overheads 2.5% execution time, 3% energy

 First Author et al.:
Title

7

random remapping is applied at the word level causing all
RRAM words to experience similar number of writes. On the
contrary, FLASH-based techniques do not distribute the
number of writes within a block which in turn reduces the
lifetime. Using a smaller block size (e.g., one word per block)
incurs significant storage overheads—up to 145 MBytes
SRAM for a 4-GByte RRAM.

VII. CONCLUSIONS
Overcoming endurance and temporary-failures challenges

are essential to use RRAM as a working on-chip memory. Our
end-to-end approach to overcome such challenge includes
extensive experimental characterization as well as effective
combination of technology-, RRAM programming-, and
system resilience-level solutions. This approach paves the
path for deep learning on RRAM-based computing systems
with long lifetime and reduced temporary bit-error rates.

REFERENCES
[1] T. Werner et al., "Experimental demonstration of short and long term

synaptic plasticity using OxRAM multi k-bit arrays for reliable

detection in highly noisy input data," 2016 IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 16.6.1-16.6.4.
doi: 10.1109/IEDM.2016.7838433

[2] G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A.
Padovani, et al., “Metal oxide resistive memory switching mechanism
based on conductive filament properties,” Journal of Applied Physics,
vol. 110, no. 12, pp. 1–12, 2011. doi: 10.1063/1.3671565

[3] W. Hwang et al., "Special session paper 3D nanosystems enable embedded
abundant-data computing," 2017 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Seoul, 2017, pp. 1-2. doi: 10.1145/3125502.3125531

[4] M. M. Sabry Aly et al., "The N3XT Approach to Energy-Efficient
Abundant-Data Computing”, in Proceedings of the IEEE, (in press),
2019. doi: 10.1109/JPROC.2018.2882603

[5] L. Perniola et al., "Universal Signatures from Non-Universal Memories:
Clues for the Future...," 2016 IEEE 8th International Memory Workshop
(IMW), Paris, 2016, pp. 1-3. doi: 10.1109/IMW.2016.7495295

[6] Y. Y. Chen et al., “Balancing SET/RESET Pulse for Endurance in 1T1R
Bipolar RRAM”. IEEE Transactions on Electron Devices. 59, 2012.
3243. 10.1109/TED.2012.2218607.

[7] A. Grossi et al., "Fundamental variability limits of filament-based
RRAM," 2016 IEEE International Electron Devices Meeting (IEDM),
San Francisco, CA, 2016, pp. 4.7.1-4.7.4. doi:
10.1109/IEDM.2016.7838348

[8] Z. Chen et al., "Performance Improvements by SL-Current Limiter and
Novel Programming Methods on 16MB RRAM Chip," 2017 IEEE
International Memory Workshop (IMW), Monterey, CA, 2017, pp. 1-4.
doi: 10.1109/IMW.2017.7939097

[9] Y. Hayakawa et al., "Highly reliable TaOxReRAM with centralized
filament for 28-nm embedded application," 2015 Symposium on VLSI
Technology (VLSI Technology), Kyoto, 2015, pp. T14-T15. doi:
10.1109/VLSIT.2015.7223684

[10] A. Calderoni, S. Sills and N. Ramaswamy, "Performance comparison of
O-based and Cu-based ReRAM for high-density applications," 2014
IEEE 6th International Memory Workshop (IMW), Taipei, 2014, pp. 1-
4. doi: 10.1109/IMW.2014.6849351

[11] A. Mallik et al., "Design-technology co-optimization for OxRRAM-
based synaptic processing unit," 2017 Symposium on VLSI
Technology, Kyoto, 2017, pp. T178-T179. doi:
10.23919/VLSIT.2017.7998166.

[12] L. Anselin, Spatial Econometrics: Methods and Models. Springer
Netherlands, 1988.

[13] M. Barlas et al., "Improvement of HfO2based RRAM array
performances by local Si implantation," 2017 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp.
14.6.1-14.6.4. doi: 10.1109/IEDM.2017.8268392

[14] A. Belmonte, A. Fantini, A. Redolfi, M. Houssa, M. Jurczak and L.
Goux, "Optimization of the write algorithm at low-current (10μA) in
Cu/Al2O3-based conductive-bridge RAM," 2015 45th European Solid
State Device Research Conference (ESSDERC), Graz, 2015, pp. 114-
117. doi: 10.1109/ESSDERC.2015.7324726

[15] B. Traoré, P. Blaise, E. Vianello, H. Grampeix, S. Jeannot, L. Perniola,
B. De Salvo, and Y. Nishi, “On the Origin of Low-Resistance State
Retention Failure in HfO2-Based RRAM and Impact of
Doping/Alloying”, in IEEE Trans. on Electron Devices, Vol. 62, no. 12,
pp. 4029, 4036, 2015. DOI: 10.1109/TED.2015.2490545

[16] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

[17] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not ECC,
for hard failures in resistive memories”. ACM SIGARCH Computer
Architecture News, 2009. 38. 141. 10.1145/1816038.1815980.

[18] M. K. Qureshi, "Pay-As-You-Go: Low-overhead hard-error correction
for phase change memories," 2011 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Porto Alegre,
2011, pp. 318-328.

[19] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “Eie: efficient inference engine on compressed deep neural
network,” in Proc. ISCA, 2016. pp. 243–254. arXiv:1602.01528

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, et
al., “In-datacenter performance analysis of a tensor processing unit,” in
Proc. ISCA, 2017, pp. 1–12. doi: 10.1145/3079856.3080246

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks”. Neural Information
Processing Systems, 2012. 25. 10.1145/3065386.

[22] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image
Recognition," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778. doi:
10.1109/CVPR.2016.90

TABLE VI
APPLICATION-LEVEL LIFETIME AND STORAGE OVERHEAD OF THE ANALYZED

FLASH-BASED WEAR-LEVELING MECHANISMS. LIFETIME IS ESTIMATED WITH A
MAXIMUM 105 WRITES PER WORD. WE PESSIMISTICALLY ASSUME A SINGLE

WRITE TO RRAM CORRESPONDS TO A SINGLE ENDURANCE CYCLE.

Network Batch
size

Adaptation of FLASH-based wear-leveling
Block
size
(kByte)

Dynamic [27] Static [28]

Lifetime
(days)

Storage
overhd
(KByte)

Lifetime
(days)

Storage
overhd
(KByte)

Accelerator with 2 MBytes on-chip shared SRAM (Table III)
AlexNet
[21]

1,4 No writes to RRAM, except initial weights loading.
Lifetime > 10 years

ResNet152
[22]

1 No writes to RRAM, except initial weights loading.
Lifetime > 10 years

4 32 60 453 46 256
ZfNet [23] 1 No writes to RRAM, except initial weights loading.

Lifetime > 10 years
4 128 37 105 43 56

VGGNet-
19 [24]

1 16 41 937 8 544
4 32 13 453 8 256

Faster-
RCNN [25]

1 64 9 218 9 120
4 128 6 105 7 56

Language
Model [26]

1 No writes to RRAM, except initial weights loading.
Lifetime > 10 years

4 128 70 105 194 56
Accelerator with 128 MBytes on-chip shared SRAM (Table III)

AlexNet
[21]

8, 16,
32

No writes to RRAM, except initial weights loading.
Lifetime > 10 years

ResNet152
[22]

8, 16,
32

No writes to RRAM, except initial weights loading.
Lifetime > 10 years

ZfNet [22] 8, 16,
32

No writes to RRAM, except initial weights loading.
Lifetime > 10 years

ZfNet [23] 8, 16 No writes to RRAM, except initial weights loading.
Lifetime > 10 years

32 128 115 105 114 56
VGGNet-
19 [24]
Faster-
RCNN [25]

8 No writes to RRAM, except initial weights loading.
Lifetime > 10 years

16 256 258 50 130 26
32 512 52 24 40 12

Language
Model [25]

8, 16,
32

No writes to RRAM, except initial weights loading.
Lifetime > 10 years

 First Author et al.:
Title

8

[23] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in European conference on computer vision.
Springer, 2014, pp. 818–833. doi:

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99. doi:
10.1109/TPAMI.2016.2577031

[26] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
“Exploring the Limits of Language Modeling,” CoRR, vol. 1602.02410,
2016.

[27] Micron Technology Corp., Micron Tech. Appl. Note (TN-29-42),
“Wearleveling techniques in nand flash devices,” 2008.

[28] Y. Chang, J. Hsieh and T. Kuo, "Endurance Enhancement of Flash-
Memory Storage, Systems: An Efficient Static Wear Leveling Design,"
2007 44th ACM/IEEE Design Automation Conference, San Diego, CA,
2007, pp. 212-217.

[29] Y.-H. Chang and L.-P. Chang, “Efficient wear leveling in NAND flash
memory”. Springer Series in Advanced Microelectronics, 2018. 343-
367. doi: 10.1007/978-981-13-0599-3_10.

[30] Numonyx., Numonyx Appl. note (AN1822)., “Wear leveling in nand
flash memories.” 2008.

[31] Y. Gudeta, S. J. Kwon, E.-S. Cho, and T.-S. Chung, “Probability-based
static wear-leveling algorithm for block and hybrid-mapping NAND
flash memory”. Design Automation for Embedded Systems, 2012. 16.
10.1007/s10617-013-9108-3

[32] L.-P. Chang, and C.-D. Du, “Design and Implementation of an Efficient
Wear-Leveling Algorithm for Solid-State-Disk Microcontrollers”. ACM
Trans. Design Autom. Electr. Syst, 2009.. 15.
10.1145/1640457.1640463.

[33] R. Yamashita et al., "11.1 A 512Gb 3b/cell flash memory on 64-word-
line-layer BiCS technology," 2017 IEEE International Solid-State
Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 196-197.
doi: 10.1109/ISSCC.2017.7870328

[34] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet:
A large-scale hierarchical image database," 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, 2009, pp. 248-
255. doi: 10.1109/CVPR.2009.5206848

[35] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision Meets Robotics:
The KITTI Dataset.” The International Journal of Robotics Research 32,
no. 11 (September 2013): 1231–37. doi:10.1177/0278364913491297.

[36] C. Chelba et al. "One billion word benchmark for measuring progress in
statistical language modeling." arXiv preprint arXiv:1312.3005 (2013).
http://www.statmt.org/lm-benchmark/

[37] M. Nicolaidis, N. Achouri and L. Anghel, "A diversified memory built-
in self-repair approach for nanotechnologies," 22nd IEEE VLSI Test
Symposium, 2004. Proceedings., Napa Valley, CA, USA, 2004, pp.
313-318. doi: 10.1109/VTEST.2004.1299258

[38] Y. LeCun et al., “Deep Learning”, in Nature vol. 521, 2015. doi:
10.1038/nature14539

[39] A. Grossi et al., "Experimental Investigation of 4-kb RRAM Arrays
Programming Conditions Suitable for TCAM," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems. doi:
10.1109/TVLSI.2018.2805470

[40] J. Kim, J. M. Kim, S. H. Noh, S. L. Min and Y. Cho, "A space-efficient
flash translation layer for CompactFlash systems," in IEEE Transactions
on Consumer Electronics, vol. 48, no. 2, pp. 366-375, May 2002. doi:
10.1109/TCE.2002.10101.

[41] G. Sassine et al., “Sub-pJ Consumption and Short Latency Time in
RRAM Arrays for High Endurance Applications”, in 2018 IEEE
international Reliability Physica Symposiun (IRPS), 2018. DOI:
10.1109/IRPS.2018.8353675

