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Abstract— Limited endurance of Resistive RAM (RRAM) 

is a major challenge for future computing systems. Using 
thorough endurance tests that incorporate fine-grained 
read operations at the array level, we quantify for the first 
time temporary write failures (TWFs) caused by intrinsic 
RRAM cycle-to-cycle and cell-to-cell variations. We also 
quantify permanent write failures (PWFs) caused by 
irreversible breakdown/dissolution of the conductive 
filament. We show how technology-, RRAM programming- 
and system resilience-level solutions can be effectively 
combined to design new generations of energy-efficient 
computing systems that can successfully run deep 
learning (and other machine learning) applications despite 
TWFs and PWFs. We analyze corresponding system 
lifetimes and TWF BER. 
 

Index Terms— RRAM, HfO2, variability, characterization, 
reliability, performance, deep learning 

I. Introduction 
esistive RAM (RRAM [1]) is a non-volatile memory 
technology with a Metal-Insulator-Metal (MIM) stack 

structure. RRAM stores data through the formation (set) and 
destruction (reset) of a conductive filament (CF) in the oxide 
insulator layer—a set operation switches the RRAM cell to a 
low-resistance state (LRS) while a reset operation switches the 
RRAM cell back to a high-resistance state (HRS) [2]. RRAM 
can provide massive on-chip data storage with low-voltage 
and low-latency accessibility and can be integrated using 
monolithic 3D integration. Thus, RRAM enables massive 
improvements in energy and execution time, especially for 
data-intensive applications such as deep learning [3, 4]. 
Despite major progress in RRAM technology [5], 
understanding variations in RRAM and the corresponding 
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system-level impact are open challenges that must be 
overcome.  

One key challenge is the limited endurance of RRAM cells 
[6]. Endurance is usually defined as the number of set-reset 
operations (i.e., endurance cycles) after which the cell 
experiences a permanent-write failure (PWF, cell is stuck at 
HRS or LRS [6]). Several papers [6–11] have demonstrated up 
to 106 endurance cycles at the array level (Table I). RRAM 
also exhibits temporary-write failures (TWFs), which were 
previously demonstrated at a single-cell level [7]. 

In this paper, we characterize permanent and temporary 
write failures of RRAM arrays. We investigate the impact of 
RRAM endurance and TWF at the system level and overcome 
such RRAM failures by combining technology, RRAM 
programming, and system resilience techniques. Collectively, 
these techniques achieve a minimum of 4.5 years lifetime for 
deep learning applications (Section V).  

When an RRAM cell is in HRS, the read current is on the 
order of nA, resulting in long read time (100× longer than 
writes [7]) to measure the cell’s resistance value. Therefore, 
typical endurance tests (to quantify PWFs) contain only a few 
read operations per decade of endurance cycles (Table I). Fig. 
1 reports a typical endurance test flow and corresponding 
results from a 4-Kbit array. The RRAM technology (300 nm 
diameter, TiN/HfO2/Ti/TiN) is monolithically integrated on 
top of 130 nm silicon CMOS process [7]. PWFs at 3σ (3× the 
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TABLE I 
STATE OF THE ART OF RRAM ARRAYS ENDURANCE TESTING. ENDURANCE 

WAS EVALUATED ON A LIMITED NUMBER OF CELLS WITH LOW READING 
GRANULARITY. TWFS WERE NOT STUDIED BY PREVIOUS PAPERS AT THE 

ARRAY LEVEL. 
Ref. Array 

size 
Tested 
cells 

Read 
granularity 

Endurance 
cycles 

Failure 
investigated 

[6] Few 
cells 

Few 
cells 

3 /decade of 
endurance 
cycles 

106 HRS 
stuck, 
BD 

[7] 4 Kbit 256 3 /decade 106 - 
[8] 16 

Mbit 
1 Mbit 1 /decade 106 - 

[9] 2 
Mbit 

- 2  105 - 

[10] 1 
Mbit 

1 Kbit 3 /decade 106 - 

[11] 1 
Mbit 

1 Kbit 1 /decade 106 - 

Ours 4 Kbit 4 Kbit 
×3 

1000 /decade 107 HRS stuck, 
BD, TWF 
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standard deviation) of the distribution of measured HRS and 
LRS for the 4-Kbit array are highlighted. While permanent 
oxide breakdown (causing LRS stuck) appears after 106 
endurance cycles, HRS stuck failures are critical because they 
appear much earlier (around 3×104 endurance cycles).  

To quantify TWFs, fine-grained endurance testing is 
required (Fig. 2(a)): after each decade of endurance cycles 
(103, 104, 105, and 106), 103 Set-Read-Reset-Read operations 
(fine-grained test cycles) are performed for each cell. Fig. 2(b) 
top shows an example of fine-grained test cycle results from 
an arbitrary cell (after 103 endurance cycles). Few TWFs can 
be seen (LRS/HRS values above/below verify threshold). Fig. 
2(b) middle shows TWF cell count (between 0 to 4) per fine-
grained test cycle (after 103 endurance cycles). TWF bit error 
ratio (BER), averaged over fine-grained test cycles, stabilizes 
only after hundreds of cycles (Fig. 2(b) bottom)—this trend 
holds after each decade of endurance as our experimental 
measurements indicate.  

While the mechanisms governing TWF are still under 
investigation, we expect TWF is linked to the filamentary 
nature of the switching process and not to conductive filament 
localization (Fig. 9(c)). TWFs are not caused by Random-
Telegraph-Noise (RTN): the read stability has been verified by 
performing 50 consecutive reads after Set and Reset. No 

undesired switching between LRS and HRS was observed in 
such test, confirming that TWFs are not RTN-related. Reading 
from RRAM, for all cells in this paper, is performed with a 
low-read voltage (0.1 V) where read-disturb failure is 
negligible [41].  

II. STATISTICAL ANALYSIS 
TWF and PWF BER were extracted on three 4-Kbit arrays 

to evaluate the die-to-die variability: Fig. 3 confirms that our 
reported results are consistent over the 4-Kbit arrays. The 
inter-arrival time between two consecutive TWFs on a cell 
ranges from few tens to several hundred cycles and generally 
decreases with increasing endurance cycles, as shown in Fig. 
4(a). TWFs and PWFs locations after 103 (red, circle) and 105 
(blue, square) endurance cycles are shown in Fig. 4(b). Fig. 5 
indicates that TWFs occur in LRS for cells with high standard 
deviation of resistance (cycle-to-cycle); in contrast, TWFs 
occur in HRS for cells with low mean and low standard 
deviation of resistance (cycle-to-cycle).  

We found no evidence of spatial correlation on the cycle-to-
cycle means and standard deviations on the 4-Kbit array. To 
evaluate spatial correlation, Global Moran’s I test [12] was 
used. P-values were constructed using a permutation test. 

 
(a) (b) 

Fig. 1. Typical endurance characterization testflow (a) and test results 
(b): PWFs (HRS stuck, breakdown) observed. HRS stuck failures occur 

much earlier than breakdown failures. 

 
(a)  (b) 

Fig. 4. CDF of cell-level TWF inter-arrival times after 103 and 105 
endurance cycles for a 4-Kbit array (a). TWFs and PWFs locations at 
103 (red, circle) and 105 (blue, square) endurance cycles (b). 

 
Fig. 3. Breakdown BER, HRS-stuck BER, and TWF BER from 3 4-Kbit 
RRAM dies. HRS-stuck BER = HRS stuck cells/tested cells, 
Breakdown BER = breakdown cells/tested cells. 

 

 
 (a) (b) 
Fig. 2. Fine-grained endurance characterization (a). Fine-grained test 
on a cell (b, top) highlighting the verify threshold that distinguishes 
between a stored ‘0’ and ‘1’ (Verify TH, used in Program-retry in Fig. 
9(a)), and TWF cells in a 4-Kbit array after 103 endurance cycles (b, 
middle). TWF BER (TWF cells/tested cells) averaged over fine-grained 
test cycles (b, bottom). Fine-grained testing is required as only few cells 
/ cycles show TWFs. 

 

 
 (a) (b) 
Fig. 5. Mean (µ) vs. standard dev. (σ) of LRS and HRS, over 103 fine-
grained test cycles for 100 cells after 105 endurance cycles. TWFs 
occur in cells with high σ (cycle-to-cycle) in LRS, and low σ and µ 
(cycle-to-cycle) in HRS. 
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More precisely, 104 uniformly random permutations of the 4-
Kbit array were drawn, and the Moran’s I statistic was 
computed for each permutation. This produced an empirical 
distribution for this statistic under the null hypothesis that the 
cells are exchangeable (in particular, that there is no spatial 
correlation). If there were spatial correlations, one would 
expect the Moran’s I statistic, when computed on the original 
data, to be an outlier in this empirical distribution, 
corresponding to a small p-value. This procedure was repeated 
for 16 values of interest: one for each of the standard 
deviations σlrs, σhrs and the means µlrs, µhrs over 100 fine grain 
test cycles, starting at 103, 104, 105, and 106 endurance cycles 
respectively. Out of all of these 16 tests, the smallest p-value 
was 0.132 and the median was 0.328, which is not a 
significant evidence of spatial correlation. To ensure that the 
test would pick up spatial correlation if it was present, 
correlation was artificially introduced by randomly selecting 
20% of all the groups of contiguous 4 cells (across 2 rows and 
2 columns) in the array and averaging their values. In this 
artificial data, the procedure described above produced 16 p-
values, 14 of which were below 0.05 (i.e., statistically 
significant to show spatial correlation).  

Since we did not find evidence of spatial correlation in 
either the cycle-to-cycle means or standard deviations, we 
expect that TWFs and PWFs will behave similarly for larger 
arrays. 

III. OVERCOMING PWFS AND TWFS 
HRS stuck failures are mostly caused by complete filament 

dissolution [6]. If a filament is located near a cell edge which 
is damaged by the cell etching process, the free oxygen in the 
damaged area can diffuse into the filament and dissolve it. We 

explore a technological solution to constrain the cell switching 
area far from the edges by using local Si implantation (LSI) 
[13] (Fig. 6). Programming conditions to maximize endurance 
for a target PWF BER are identified in Fig. 7(a) and reported 
in Table II. LSI ensures memory window (no PWFs) at 3σ 
until 105 endurance cycles, as shown in Fig. 7(b). Fig. 8 shows 
HRS stuck BER and Breakdown BER for LSI and HfO2: 
thanks to LSI (Fig. 8(a)), PWFs appear after 105 endurance 
cycles.  

At the RRAM programming level, program-retry [14] (Fig. 
9) significantly suppresses TWFs up to 105 endurance cycles 
(with 4 retries). Our measurements indicate that <5% of cells 
required program-retry. Program-retry may degrade PWF but 
the degradation is very minor (from 2×105 to 1.72×105), which 
can be masked by limiting the endurance cycles to 105  

Fig. 6. RRAM cell with LSI (SEM, schematic) 
 

TABLE II 
OPTIMAL PROGRAMMING CONDITIONS FOR HFO2 AND LSI. 

 Set Reset 
ICC VBL TPULSE VWL VSL TPULSE 

HfO2 200 µA 2 V 100 ns 3 V 2.5 V 100 ns 
LSI 150 µA 2 V 100 ns 3 V 2.5 V 100 ns 
 

 
 (a) (b) 
Fig. 7. (a) Programming energy vs. endurance for different target PWF 
BER (10-3 and 10-2 in solid lines with solid markers and dotted lines 
with hollow markers, respectively) for HfO2 (red lines) and LSI (black 
lines). (b) Endurance results of LSI with optimal programming 
conditions. 
 

   
(a)                      (b) 

Fig. 8. HRS stuck (a) and Breakdown (b) BERs for LSI and HfO2. LSI 
suppresses PWFs up to 2×105 endurance cycles. 

 

 
        (b)                (c) 

Fig. 9. Program-Retry algorithm [14] where TH is the verify threshold 
illustrated in Fig. 2(b) (a). TWF BER as a function of endurance cycles 
and the maximum number of retries (imax) (b). TWFs can be 
suppressed by using 4 retries until 105 endurance cycles. TWF BER 
before and after Program-Retry-based correction (10 iterations) (c)—
TWF BER similar for HfO2 and LSI, indicating that TWF is not linked to 
conductive filament localization. 
 

 
 (a) (b) 
Fig. 10. Retention results: LRS and HRS distributions measured after 
105 cycles before bake (black) and after 24 hours bake at 165oC (red) 
for HfO2 (a) and LSI (b). 
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(Section V). To evaluate the retention features after 105 
endurance cycles with program-retry, a 24-hour bake at 165°C 
was performed (Fig. 10)—the overlap between LRS and HRS 
distribution tails is approximately 1%. At room temperature, 
the error rate is below the measurement limit (10-6), where the 
~1% overlap between LRS and HRS appears after ~18 days, 
following Arrhenius law with activation energy of 1.5 eV 
[15]. Our system-level resilience techniques (Section IV) can 
overcome this challenge. 

IV. SYSTEM-LEVEL RESILIENCE 
LSI and program-retry (Section III) somewhat reduce 

RRAM PWF and TWF BER, respectively. Further 
improvements are still required to increase system lifetime 
(i.e., time until the first PWF occurrence1) and simultaneously 
reduce the overall TWF BER, especially for computing 
systems with large amounts of on-chip RRAM (e.g., [3] that 
can significantly improve application-level execution time and 
energy consumption).  

A computing system with only LSI and program-retry 
reaches four-day lifetime and ~5×10−6 TWF BER (Section V). 
We introduce the following mechanisms to improve both 
system lifetime and TWF BER: 
• ENDURER (ENDUrance REsiliency using random 

Remapping, Fig. 11(b)) to improve lifetime [4].  
• WRITER (WRIte Temporary failure Resiliency, Fig. 11(c)) 

to correct persisting TWFs after program-retry (Section 
III). 

  Fig. 11 illustrates the overall architecture of a computing 
system, highlighting ENDURER and WRITER 
implementations within each memory controller [16] that 
manages accesses to RRAM-based main memory.  

ENDURER increases the lifetime of computing system by 
balancing writes across all words with negligible overheads, 
as shown later in Section V. ENDURER combines: 1) address 
shifting by a random offset supported by periodic remapping 
of memory contents and 2) a write-back buffer (using SRAM) 
that places an upper bound on the number of writes per word 
within a single period. In this paper we apply the remapping 
algorithm with one-hour period (~9×104 remap operations in 
10 years), where all memory words are read and written back 
(implicitly overcoming limited data retention).  The buffer 
capacity is 16 KBytes per 1-GByte RRAM which ensures that 
no word receives more than 105 writes within a single 
mapping period [4].  

WRITER (Fig. 11(c)) reduces TWF BER by identifying the 
precise location of the faulty bit(s) during write operations via 
write-verify operation (XOR operation between the data stored 
in RRAM and original data). WRITER is invoked upon each 
unsuccessful program-retry operation (Section III) and uses 
additional RRAM—referred to as Error Correction Table 
(ECT)—to store the locations of faulty bits in ECT records 
(Fig. 11(c)), akin to previous works [17, 18]. For each word in 
RRAM, same address is used to access the corresponding 
ECT entry (multiple records per entry). 

 
1We use this definition in this paper. However, one could use repair 

techniques, such as memory built-in repair [37], to tolerate PWFs. 

ECT uses separate RRAM arrays from the main memory to 
ensure overall lower TWF BER and better endurance for ECT 
versus the main memory (Section V.B).2  
 

2WRITER can accommodate other techniques to further reduce 
TWF BER, e.g., SRAM-based associative memory to store records if 
an error occurs in ECT (beyond the scope of this paper).  

 
Fig. 11. Overall computing system architecture including ENDURER 
and WRITER integrated into each memory controller (a). Architecture 
of ENDURER mechanism with pseudocodes of remapping algorithm 
and memory access (b); WRITER mechanism highlighting ECT and 
pseudocodes of memory-access algorithms (c).  
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WRITER memory-read algorithm (every read)
Inputs: AddressA
Do in parallel {

DataA ß Read from RRAM (AddressA);
RecordsAß Read from ECT (AddressA);

}
Foreach Record in RecordsA{

if (valid(Record)){
DataAß DataA XOR 2Record;

}
}

WRITER memory-write algorithm (every write)
Inputs: AddressA,  DataA
Locations ß write-verify(AddressA,  DataA);

Foreach location in Locations{
record ß create ECT record (location);
Insert ECT record (record, AddressA);
set valid (record, AddressA);

}

write-verify: DataA XOR (Read from RRAM (AddressA))

ENDURER remapping algorithm (once every hour)
Inputs: memory size M = 1GByte, Offset
!ß create random number (); " ß count trailing zeros (!); Offset ß (Offset + !) modulo M;  Ncycles ß 2";
For (#=0; # <Ncycles; # ++) {

Address_A ß #;  Address_B ß # + !;  Data_A ß Read from Data RRAM (Address_A);
While (Address_B ≠ #) {

Data_B ß Read from Data RRAM(Address_B);
Write to Data RRAM (Address_B, Data_A);
Data_A ß Data_B;    Address_A ß Address_B;  Address_B ß (Address_A + !) modulo M;

}
Write to Data RRAM (Address_B, Data_A);

}

ENDURER memory-read algorithm (every read)
Inputs: Offset,  Address_A, M

Address_A ß (Address_A + Offset) modulo M;
If (address exists in SRAM buffer (Address_A)) {

Data_A_out ß Read from buffer (Address_A);
} else {

Data_A_out ß Read from Data RRAM (Address_A);
}

ENDURER memory-write algorithm (every write)
Inputs: Offset, Address_A,  Data_A_in, M

Address_A ß (Address_A + Offset) modulo M;
If (address exists in SRAM buffer (Address_A)) {

Update data in buffer (Address_A, Data_A_in);
} else {

If(is SRAM buffer full()) {
Flush buffer contents to Data RRAM ();

}
Write to SRAM buffer (Address_A, Data_A_in);

}
Remapping period: 1-hour
SRAM buffer size: 16 KBytes per 1 GByte RRAM
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V. SYSTEM-LEVEL EVALUATION 
A. Methodology 

We quantify the lifetime and overall TWF BER for an 
RRAM-based hardware accelerator for inference 
(classification) phase of deep learning applications, 
summarized in Table III [3], with ENDURER and WRITER. 
This accelerator comprises 4,096 processing elements each 
performing multiply-and-accumulate operations (used 
extensively in deep learning), a local 256-Byte SRAM 
memory per processing element, a globally-shared SRAM 
across all processing elements (varied in capacity as we 
explain later), and a 4-GByte on-chip RRAM. We assume that 
RRAM cells have no spatial correlation (Section II)—all cells 
have the same PWF and TWF probabilities in Figs. 8 and 9. 
We also pessimistically assume that each write to an RRAM 
word is a single endurance cycle. 

We use a detailed simulation framework—adopted from [3, 
4] that leverages commercial physical design tools to 
implement all architecture modules using circuit-design 
libraries calibrated with experimental data—to determine the 
operating lifetime and TWF BER of the targeted system for 
each examined workload (shown later). The framework 
creates a trace by recording the number of writes to each 
memory word in RRAM during the execution of a workload 
(to completion). This trace is then repeated to simulate the 
continuous execution of the corresponding workload and then 
estimate the system lifetime while accounting for measured 
RRAM PWF and TWF BER values and system resiliency 
mechanisms.  

We analyze the inference phase of deep learning workloads 
owing to the wide adoption of inference in embedded and 

server computing systems for different applications (e.g., 
computer vision, speech-to-text and language translation) [38]. 
Table IV summarizes deep learning workloads for commonly-
benchmarked applications (i.e., image classification, object 
detection and language modeling), highlighting the number of 
weight parameters of each network. Inference can be applied 
to a batch of single or multiple inputs (e.g., images) 
simultaneously. We consider batch sizes from 1 to 32 inputs 
(Table V)—small (≤4) batch sizes are found in embedded 
systems, while larger ones are in servers [3, 19, 20]. 

There are two data types in deep-learning workloads: 
weights and intermediate variables (also referred to as 
activations or feature maps [38]). We observe during 
inference: a) memory allocated to weights experiences read-
only behavior, b) memory allocated to temporary variables 
incurs read-and-write behavior. Thus, we can avoid writes to 
RRAM during inference by storing weights in RRAM and 
remaining data in SRAM.  

Table V shows that the amount of memory for weights and 
intermediate variables reaches 1200 and 338 MBytes, 
respectively. Thus, a system with a 338-MByte SRAM can 
eliminate unnecessary writes to RRAM (still needed to store 
weights), which diminishes the need for RRAM-endurance 
resiliency.3 This SRAM capacity can be integrated on-chip 
particularly at advanced technology nodes but at the cost of 
increased chip area and energy consumption (e.g., higher 
leakage in SRAM versus RRAM).  

In this paper, we consider two configurations representing 
embedded and server processing systems as follows: 
• Accelerator (Table III) with 2-MByte on-chip SRAM 

executing deep learning inference with input batch sizes 1 
and 4 (embedded configuration). 

• Accelerator (Table III) with 128-MByte on-chip SRAM 
executing deep learning inference with input batch sizes 
8, 16 and 32 (server configuration).  

B. Simulation results 
Table V summarizes the lifetime and TWF BER with and 

without system resiliency. Our approach (LSI + ENDURER + 
Program-retry (4 retries) + WRITER) achieves more than 4.5 
years of continuous inference operation with up to 8.2×10−12 

TWF BER, while incurring only 64-kByte SRAM (for 
ENDURER), 6% additional RRAM (for WRITER) and ~3% 
execution time and energy overheads. WRITER can further 
reduce the RRAM overhead to 4% (instead of 6% earlier) for 
TWF BER of 8.7×10−9 or lower by using a 512-bit word size 
instead of 256-bit word in RRAM (Table V).4 Such 
continuous operation (no idle time) represents highly 
pessimistic application scenarios. In contrast, no resiliency 
(LSI + Program-retry) achieves a maximum of 4-day lifetime 
and 6.7×10−5 TWF BER, while FLASH-based endurance 
mechanisms achieve up to 256 days (<1 year) as shown in 
Section VI. 

 
3Resilience techniques may be still needed to overcome limited 

retention time for read-only RRAM. A variation of ENDURER can be 
used with a longer remapping period (e.g., 18 days similar to the 
retention time at room temperature) with a lower overhead than that in 
Table V. 

4WRITER storage overhead can be further reduced, e.g., using 
RRAM-based TCAM [39] (beyond the scope of this paper).  

TABLE III 
ARCHITECTURE PARAMETERS OF THE ANALYZED DOMAIN-SPECIFIC 

ACCELERATOR [3] 

Compute units 
4,096 8-bit multiply-and-accumulate units    
  Frequency: 0.5 GHz,  
  Energy: 1.9 pJ/op 

On-chip SRAM 

Local:  256 Bytes per unit  
  Latency: 2 ns, 
  Energy: 0.23 pJ/bit 
Shared: {2,128} MBytes   
  Latency: {4,10} ns,  
  Energy: {0.32,1.4} pJ/bit 

4 GBytes 
On-chip RRAM 

4 memory controllers 
8 access channels, 256 bits/channel 
  Read: 16ns, 3.1pJ/bit 
  Write: 106 ns, 24.4 pJ/bit 

 
TABLE IV 

ANALYZED DEEP-LEARNING NETWORKS, HIGHLIGHTING APPLICATION 
DOMAINS, INPUT TYPE, DATASET, AND NUMBER OF WEIGHTS. 

Network Application domain/ input 
type/ dataset 

Number of 
weights  

(millions) 
AlexNet[21] Image classification  

(top accuracy: ResNet) 
Input: images  

(224×224×3 pixels) 
Dataset: ImageNet [34] 

60 
ResNet152 [22] 60 

ZfNet [23] 107 
VGGNet-19 [24] 145 

Faster-RCNN 
[25] 

Object detection in videos 
Input: video frames 

(1392×512×3 pixels) 
Dataset: KITTI [35] 

75 

Language Model 
[26] 

Natural language modeling 
Input: text (30-word phrase) 
Dataset: 1-billion word [36] 

1200 
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VI. ENDURER VS. FLASH-INSPIRED TECHNIQUES 
FOR RRAM LIFETIME IMPROVEMENT 

We compare ENDURER (Section IV) versus possible 
RRAM endurance management techniques inspired by those 
used in FLASH memories. We show that these mechanisms 
achieve up to 268-day lifetime, 13× shorter than ENDURER 
for the same workloads.  

For FLASH, wear-leveling mechanisms aim to evenly 
distribute writes among various blocks (e.g., 128 KBytes) of 
the memory [29]. For each write-back to FLASH, updated 
data are written to an unused block, then the block containing 
the old data is erased and labeled unused (free). State-of-the-
art FLASH wear-leveling approaches can be classified as 
dynamic [27, 30] and static [28, 31]. Dynamic wear-leveling 
does not use blocks that experience read-only behavior (or 
very little updates [30]) whereas static wear-leveling is applied 
to all blocks. For both cases, a mapping table is used to 
identify free blocks and store the addresses of remapped 
blocks. We quantify the lifetime of the system summarized in 
Table III when running the workloads in Table IV using 
adaptations of both wear-leveling techniques for RRAM-based 
memories as follows: 

• In dynamic wear-leveling, the amount of memory allocated 
to store network weights (see Section V(A)) is excluded as 
it contains read-only data. 

• The block size for each workload is selected from 
commonly-used values (i.e., 4 KBytes to 1 MByte [40]). 
Since the data size of intermediate variables (Table V) is 
not a multiple of any block size, we select the block size 
that yields a small amount of unused words within a block, 
while simultaneously incurring small storage overheads 
(mapping table).  

• Wear-leveling is triggered when the number of writes to a 
block equals the number of words within this block (e.g., 
1024 writes in a 32-KByte block with 256-bit word length). 
 
Table VII summarizes the lifetime using adaptations of 

FLASH-based wear-leveling techniques for RRAM—up to 
256 days (<9 months) of lifetime could be achieved versus a 
minimum of 4.5 years with our resiliency mechanism (Table 
V). Compared to FLASH-based techniques, ENDURER 
brings in two key benefits: 1) the write-back buffer reduces 
the number of writes to RRAM by filtering frequently-written 
words and simultaneously places an upper bound on the 
number of write per word per remapping period. 2) The 

TABLE V APPLICATION-LEVEL LIFETIME, TWF BER, AND STORAGE OVERHEAD WITH AND WITHOUT OUR SYSTEM-LEVEL RESILIENCE FOR THE TARGETED 
WORKLOADS (TABLE IV). THE TABLE ALSO INCLUDES THE AMOUNT OF MEMORY FOR NETWORK WEIGHTS AND INTERMHEDIATE VARIABLES. LIFETIME IS 
ESTIMATED WITH A MAXIMUM 105 WRITES PER WORD DURING CONTINUOUS OPERATION OF WORKLOADS. WE PESSIMISTICALLY ASSUME A SINGLE WRITE 
TO RRAM CORRESPONDS TO A SINGLE ENDURANCE CYCLE. LIMITED DATA RETENTION IN RRAM IS ADDRESSED VIA PERIODIC REMAPPING IN ENDURER. 

Network Batch 
size 

Data size (MBytes) No resiliency 
(LSI + Program-retry) 

With resiliency 
(ENDURER + WRITER + LSI + Program-retry) 

Weights Inter. 
variables Lifetime TWF 

BER Lifetime 
TWF BER 

256-bit RRAM word 512-bit RRAM word 

Accelerator with 2 MBytes on-chip shared SRAM (Table III) 
AlexNet [20] 1, 4 60 0.25, 1.8 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 

ResNet152 [21] 
1 

60 
0.98 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 

4 3.9 46 minutes 4.0×10−5 6.6 years 1.1×10−12 1.0×10−10 

ZfNet [22] 
1 

107 
1.1 No writes to RRAM, except initial model loading. Lifetime >> 10 years and no TWF BER observed 

4 4.4   1 hour 6.6×10−6 6.7 years 8.2×10−12 2.8×10−10 
VGGNet-19 
[23] 

1 
145 

6.1 24 minutes 5.6×10−6 10 years 7.1×10−12 1.8×10−10 
4 24.5 28 minutes 5.0×10−6 6.8 years 2.0×10−12 8.0×10−9 

Faster-RCNN 
[24] 

1 
75 

10.6   7 minutes 6.7×10−5 4.5 years 1.7×10−12 8.7×10−9 
4 42 19 minutes 4.7×10−6 4.4 years 1.7×10−12 8.6×10−9 

Language 
Model [26] 

1 
1200 

0.75 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 
4 3   5 hours 6.4×10−6 10 years 6.3×10−13 1.3×10−10 

Storage overhead (additional SRAM, additional RRAM) SRAM: 64 KBytes (1.5%) 
RRAM: 240 MBytes (6%) 

SRAM: 64 KBytes (1.5%) 
RRAM: 160 MBytes (4%) 

Execution time and energy overheads 2.5% execution time, 3% energy 
Accelerator with 128 MBytes on-chip shared SRAM (Table III) 

AlexNet [20] 8, 16, 32 60 3.6, 7.3, 14.5 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 
ResNet152 [21] 8, 16, 32 60 7.9, 15.8, 31.5 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 
ZfNet [22] 8, 16, 32 107 8.9, 17.7, 35.4 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 
VGGNet-19 
[23] 

8, 16 
145 

49, 98 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 
32 196 4 days 3.9×10−7 10 years 2.7×10−13 1.2×10−10 

Faster-RCNN 
[24] 

8 
75 

84 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 
16 169 4 days 6.2×10−7 10 years 2.5×10−13 1.2×10−10 
32 338 1.2 days 5.2×10−6 4.4 years 2 ×10−12 9.6×10−10 

Language 
Model [26] 8, 16, 32 1200 6, 12, 24 No writes to RRAM, except initial weights loading. Lifetime > 10 years and no TWF BER observed 

Storage overhead (additional SRAM, additional RRAM) SRAM: 64 KBytes (0.05%) 
RRAM: 240 MBytes (6%) 

SRAM: 64 KBytes (0.05%) 
RRAM: 160 MBytes (4%) 

Execution time and energy overheads 2.5% execution time, 3% energy 
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random remapping is applied at the word level causing all 
RRAM words to experience similar number of writes. On the 
contrary, FLASH-based techniques do not distribute the 
number of writes within a block which in turn reduces the 
lifetime. Using a smaller block size (e.g., one word per block) 
incurs significant storage overheads—up to 145 MBytes 
SRAM for a 4-GByte RRAM.  

VII. CONCLUSIONS 
Overcoming endurance and temporary-failures challenges 

are essential to use RRAM as a working on-chip memory. Our 
end-to-end approach to overcome such challenge includes 
extensive experimental characterization as well as effective 
combination of technology-, RRAM programming-, and 
system resilience-level solutions. This approach paves the 
path for deep learning on RRAM-based computing systems 
with long lifetime and reduced temporary bit-error rates.  
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