
Università degli Studi
di Ferrara

Arenberg Doctoral School
Faculty of Engineering Science

Department of Mechanical Engineering

Dottorato di ricerca in Scienze dell’Ingegneria
Tesi in co-tutela

Dissertation presented in partial
fulfillment of the requirements for the degree of

Doctor in Engineering Science

CICLO XXVI

COORDINATOR: Prof. Stefano Trillo

Online Coordination and
Composition of Robotic Skills:

Formal Models for Context-aware Task Scheduling

Settore Scientifico Disciplinare: ING-INF/04

Dottorando - Ph.D. Candidate
Dott. Scioni Enea

Tutore - Supervisor UniFE
Prof. Bonfè Marcello

Tutore - Supervisor KU Leuven
Prof. Bruyninckx Herman

Anni 2011/2013

Preface

. . . and so it comes the time to write the most (likely) read part of a PhD
dissertation! If the reader is brave enough, and he/she is looking for some
technical insights about this work, the author suggests to avoid these rambling
words and to jump to the Chapter 1: it is author’s hope that he/she will find
some answers to the questions that the author left behind (see Chapter 7).
However, this dissertation is the outcome of a story with many actors, and if
the reader is eager to know such a story, some details are provided below.

As many kids like me, to the question “what will you be?” my answer was
“an astronaut”, but I immediately dropped the idea as soon as they told me
that excellent math skills are required for that. However, I kept playing with
my starship toys, and sometimes my father joined me. One evening, he was
stealing top-secret information from my imaginary Moon station, thanks to a
mysterious robot hidden in my base. That was the first time I ever heard about
an intelligent and autonomous machine, and back then, none of us had any idea
about the impact of such an episode had on me. Moreover, my father forgot to
mention that being a roboticist requires some math skills too! I will always be
grateful to my mother Cledes and my father Graziano to keep such a secret for
so long, and to allow me to pursue any goal I had in mind. Grazie Mamma,
grazie Babbo.

The years have passed, and I decided to pursue a technical degree instead of
following classical studies during the high school, with a focus on automation.
Along this period, I started developing some insane interests about programming
and computers in general: initially, everyone (including me) thought that was
merely related to the time spent playing videogames, but, obviously, it was not.

Five years later I decided to pursue a degree in Computer Science and
Automation Engineering at the University of Ferrara. During both my bachelor
and master career, Prof. Marcello Bonfé taught me the fundamentals of
embedded systems and control. A future career in robotics was not clear

i

ii PREFACE

by then, until it was the time to choose a topic for my master thesis. Almost
by chance I applied for an Erasmus scholarship, and actually Sweden was my
first choice. However, as soon as I hit Prof. Herman Bruyninckx web-page,
I changed my mind and my destination, provoking some headaches to the
university administrations1, since the position at KU Leuven was for a student
in electronic engineering, and obviously not at the mechanical department.
Once again, I had no idea that this was just the beginning: I planned to stay
abroad only six months, but it turned out to be six years! (Sorry Mom).

After my Master thesis, Marcello suggested me an opportunity to pursue a Ph.D
at University of Ferrara, and because of my previous rewarding experience at
KU Leuven, as well as my strong interest on software design applied to Robotics,
I expressed my wish to carry on a collaboration between Ferrara and Leuven,
at least in the context of my research. After few months, my wishes got shaped
in a joint agreement between the two Universities, and this was a one time in
life opportunity.

It has been a long, bumpy road, with uncertainties, weekends in the office,
nights in the lab, and travels all around the globe (Seattle, Tokyo, Chicago).
Many directions and detours have been taken, but full of lessons learnt and
experiences, which goes from theoretical issues down to practical troubles. I
must admit that it has not been easy, but along the third year my research got
a concrete shape, which happened to be in-line with the KU Leuven role in the
EU-FP7 RoboHow.cog project.

From this short resume of my life, it is clear to me that a massive amount of
gratitude goes to Herman and Marcello to give me an awesome opportunity, a
large number of critical and constructive discussions flavored with a coffee, as
well as the freedom to search my own answers.

I would like to express my gratitude to the members of the examination board,
who spent their time for gathering in Ferrara: Prof. Joris De Schutter, Prof.
Cristian Secchi and Prof. Lorenzo Marconi.

This work would have not been possible without the help and the expertise of
two amazing colleagues: Gianni Borghesan, who strongly contributed on my
research, and for which I give a special thank regarding Chapter 3, result of a
joint effort in the context of RoboHow.cog; Markus Klotzbücher, my software
mentor, for changing my way to approach to software development.

Five years are long and I have met amazing people who helped me of growing
up as a scientist and as a human being; I would like to thank, in a casual order:
Tinne De Laet for her help in the early stage of my academic experience in

1I kept being annoying for several years after that.

PREFACE iii

Leuven; Nico Hübel for his advices during long coffe breaks; Erwin Aertbeliën
and our everlasting discussions; Enrico Di Lello, who has welcomed me in
Leuven; Niccolò Tosi and his friendship; (Domi)Nick Vanthienen and the PR2
adventures; Lin Zhang and the “chicken legs sundays”; Dottor Wilm Decré; Koen
Buys and his hospitality; Azamat Shakhimardanov and Sebastian Blumenthal,
remote colleagues from Bonn; Maxim, Jonas, Bart, Kevin for tolerating my
rants as an officemate in Leuven, and Nicola Preda for my rants in Ferrara.
Moreover, I believe that my fish of plastic deserves an acknowledgement, as well
as the jesus who reminded me to keep up the writing.

There is a bunch of people that really make this experience enjoyable, especially
during my staying in Leuven. The list is very long, but I feel like to spend
few words anyway: Lucie and the late afternoon tea; Alireza, Sjoerd, Philip,
Marco and all the Happy Hour people, reminding me that weekends exist; Inés
y sus bailarinas; Mirian y el timbre 175 ; Matteo, the homebrewing and plenty
of friendly yeasts. I am grateful to Simona and our hate-love-hate relationship,
sometimes packaged in tupperware. A very special thank goes to Sergio (Frodo),
colleague and mate of many adventures with plenty laughter and few tears: my
staying in Leuven would not be the same without your support.

I would like to thank who, after years abroad, always welcome me like I never
even left: Enrico (Savio) Savioli, Nicola (Tino) Fantini, Naike Tallevi and
Alessandro (Raso) Rasini.

My deep gratitude goes to my grandfather Laerte, from whom I have inherited
my stubbornness, and to my grandmother Venerina, who is still surprised that
I am not going hungry in Belgium: grazie nonno, grazie nonna!

Maria, gracias por esperar por mi, por todo tu apoyo y por recordarme que no
siempre hay que mantener los pies en el suelo, que encima de un arco iris se
está muy bien.

Ferrara, Aprile 2016,
Enea Scioni

Acknowledgements

This dissertation is presented in partial fulfillment of the requirements for the
degree of Doctor in Engineering Science and Dottore di Ricerca, in the context
of a joint PhD agreement and in close collaboration between University of
Ferrara (Italy) and KU Leuven (Belgium). The author is very grateful to
both institutions for the great opportunity of carrying out his research in this
international environment.

This research was funded by the Italian Ministry of Education, University
and Research (MIUR, Ministero dell’Istruzione, dell’Università e della Ricerca),
through a PhD scholarship “Borsa di Dottorato di Ricerca” and by the European
Commission through the FP7 project RoboHow.cog (FP7-ICT-288533).

v

Abstract

This research aims to bridge the gap between symbolic plans and executable,
constraint-based robot task specifications by means of offline skill programming,
and online skill scheduling, refinement and adaptation. Symbolic plans are
discrete sequences of actions that must be performed by a robot to achieve an
intended change in the environment. Such actions are not directly executable,
so a refinement process adds context-dependent knowledge (about the robot, its
tools, and the environment) required to generate the robot’s continuous motion.

This work enhances this refinement process, providing a declarative description
of those situations that lie in both discrete and continuous domains, and a late
online decision making about the symbolic and continuous representations of
an action. For example, a multi-arm robot may have symbolic plans to open a
drawer by means of the right arm, the left arm, or both, and it can delay its
decision about which plan to execute until it knows all properties of the drawer
and its environment. In the same vein, grasping the drawer’s handle requires
the robotic gripper to be opened, and while that action can start anytime
during the approach motion, the progress of both actions must be coordinated
online, to avoid the robot to hit the handle with a not yet sufficiently opened
gripper. The state-of-the-art solution is typically to first open the gripper, and
only then start the approach motion; this work optimises the plan execution at
runtime, by an execution engine that exploits the most current status of the
robot capabilities. This behaviour is supported by formal models and Domain
Specific Languages, and by mechanisms to specify, compose and coordinate
robotic skills at runtime.

A first contribution is a formal skill model that represents both discrete and
continuous aspects of an action. The scheduling of the execution of these skills
is constrained by a set of dependencies that must be satisfied online, and that
represent logical conditions on the continuous state of the robot-environment
interaction; the formal representation of these dependencies is called the Skill
Dependency Graph (SDG). Such SDG models are interpreted and realised at

vii

viii ABSTRACT

runtime by an execution engine called Skill Dependency Graph Executive. This
dissertation prefers declarative and formal representations instead of procedural
and code-based approaches: to this end, the micro Skill Dependency Language
(uSDL) is proposed as a minimal set of declarative rules behind SDG models.

The second contribution of this dissertation is a novel constraint-based task
specification based on formal, declarative geometric relationships to represent
motion constraints; that is, relationships (e.g., distances and angles) between
pairs of geometric entities (such as points, lines and planes). At runtime, these
formal expressions are evaluated in the actual robot-environment context to
generate explicit and instantaneous motion set-points, optimising the robot
limitations (e.g., joint limits) and redundancies. Moreover, this solution
decouples the motion specification from the underlying numerical solver; in this
context, constraint-based optimal control strategies are preferred to constraint-
based motion planning to provide reactiveness and to support specifications
that describe physical interactions.

The third contribution is to integrate the previous two, with the explicit aim
to support generalization over skill models. Geometric entities are modelled as
part of a geometric item description, whether it is a physical object, a virtual
object or a tool (i.e., a controlled object that adds further capabilities to the
robot). This modelling effort generalises the skill specification to a class of cases,
where the objects involved are described with semantically equivalent and more
generic geometric entities. For example, the skill that performs the grasping
of a drawer’s handle conforms to the same generic skill as the grasping of a
glass, since both handle and glass are approximated as a cylindrical envelope.
This generalisation leads to skill prototypes, which are not executable as is, but
require additional context-dependent knowledge: the output of this refinement is
a executable skill instance. Complex skills are created by composition of multiple
skill prototypes, preferred to inherit from a single skill; several experimental
examples are provided in this work.

Another contribution is the realisation of a Just-in-Time strategy, to postpone
decisions until they are really needed, so that the task specifications are
composed with the latest information available at runtime.

A final contribution proposes hierarchical hypergraphs and a meta model called
“NPC4” as formal representation of the structural aspects of graph-based models
(including the SDG). Such a strict separation between structure and behaviour
enables the reuse of infrastructure code, and simplifies the definition of new
Domain Specific Languages.

Sommario

Lo scopo di questa tesi di dottorato consiste nel trasformare piani di tipo
simbolico in specifiche di movimento basate su vincoli ed eseguibili da sistemi
robotici autonomi, attraverso la programmazione di skill di movimento, nonchè la
loro schedulazione e adattamento a tempo di esecuzione. I piani di tipo simbolico
sono sequenze ordinate di azioni discrete eseguite da un robot atte ad ottenere
un desiderato cambiamento sull’ambiente circostante. Le azioni, in quanto
simboliche, non sono direttamente eseguibili, poiché esse non contengono dettagli
informativi che dipendono strettamente dal contesto di esecuzione dell’azione
stessa (e.g., informazioni sulle caratteristiche del robot, degli strumenti del quale
è equipaggiato, nonchè informazioni sull’ambiente circostante); per rendere
eseguibili le azioni è quindi necessario un processo di conversione di ciascuna
azione simbolica in una skill che definisca come eseguire il movimento continuo
del robot.

Questa tesi propone una metodologia per formalizzare la suddetta trasfor-
mazione, fornendo una descrizione dichiarativa di quelle situazioni che esibiscono
una natura sia discreta che continua e ritardando tale processo laddove possibile.
Per esempio, un robot umanoide può aprire un cassetto per mezzo del braccio
destro, sinistro o entrambi: la scelta della strategia di apertura dev’essere
ritardata fintanto che le informazioni siano insufficienti per una decisione
adeguata. Inoltre, afferrare la maniglia di un cassetto richiede che la pinza
robotica sia aperta: quest’ultima azione può essere eseguita in qualsiasi momento
durante il movimento di avvicinamento alla maniglia, ma evitando di urtare
quest’ultima nel caso in cui la pinza non sia sufficientemente aperta. Una
soluzione semplicistica è quella di eseguire tali azioni in ordine strettamente
sequenziale: questa tesi propone un’alternativa che ottimizza l’esecuzione del
piano online, attraverso un motore d’esecuzione che sfrutta le caratteristiche
del robot e le adatta al contesto di esecuzione.

Un primo contributo della tesi è la definizione di un modello formale di
skill robotica che permetta di rappresentare un’azione in modo completo,

ix

x SOMMARIO

considerandone gli aspetti nel dominio sia discreto che continuo. La
schedulazione dell’esecuzione di queste skill è vincolata ad un insieme di
dipendenze da soddisfare a tempo di esecuzione; tali dipendenze rappresentano
condizioni logiche relative alle interazioni tra robot e ambiente, le quali
appartengono al dominio continuo. La rappresentazione formale di queste
dipendenze definisce un modello chiamato Skill Dependency Graph (SDG), che
viene interpretato e realizzato a tempo di esecuzione da un Skill Dependency
Graph Executive (SDG-E). Preferendo una descrizione dichiarativa e formale
rispetto ad approcci procedurali, questa tesi propone inoltre il linguaggio
micro Skill Dependency Language (uSDL), come un insieme minimale di regole
dichiarative che definiscono le relazioni in un modello SDG.

Come secondo contributo, la tesi descrive un’innovativa specifica di movimento
per mezzo di relazioni geometriche che ne rappresentano i vincoli, ovvero relazioni
tra coppie di entità geometriche (punti, linee e piani) come distanze ed angoli. A
tempo di esecuzione, queste espressioni formali sono valutate nel contesto attuale
allo scopo di generare setpoints istantanei di movimento, ottimizzati rispetto ai
limiti del robot (e.g., limiti di giunto) e ridondanza cinematica. Inoltre, questa
soluzione separa la specifica di movimento dal risolutore numerico adottato; in
tal senso, strategie di controllo ottimo su vincoli sono preferite alla pianificazione
del movimento su vincoli, in quanto le prime supportano specifiche che includono
interazioni fisiche o che implementano azioni di controllo reattive.

Un terzo contributo è derivato dall’integrazione dei due precedenti, avente
lo scopo di generalizzare quelle componenti che formano un modello di skill
programmato manualmente. Le entità geometriche discusse in precedenza sono
modellate come parte di generici elementi geometrici, che siano oggetti fisici,
oggetti virtuali o strumenti del robot stesso. Questo approccio permette di
classificare le varie specifiche di skill robotiche, laddove gli oggetti coinvolti
nella specifica stessa siano semanticamente equivalenti. Per esempio, la skill che
realizza il movimento per afferrare una maniglia di un cassetto è conforme alla
stessa skill generica che afferra la maniglia di una porta o un bicchiere, in quanto
questi oggetti possono essere approssimati come inviluppo di un cilindro. Una
skill cosí generalizzata è detta prototipo: skill prototipali non sono direttamente
eseguibili, ma sono arricchite da un processo di trasformazione che provvede
informazioni dipendenti dal contesto di esecuzione. Il risultato di tale processo
converte il prototipo in un’istanza eseguibile in una skill di movimento. Skill
complesse sono create per composizione di molteplici prototipi, piuttosto che
applicando una strategia ad ereditarietà da una sola skill. Questo lavoro di tesi
provvede diversi esempi di skill implementate e testate sperimentalmente.

Questa tesi contribuisce alla realizzazione di una strategia Just-in-Time, con lo
scopo di ritardare ogni decisione fintanto che quest’ultime siano effettivamente
necessarie per la realizzazione del movimento. Grazie a questa soluzione, la

SOMMARIO xi

specifica di movimento è composta a tempo di esecuzione considerando le ultime
informazioni disponibili.

Infine, questa tesi propone ipergrafi gerarchici e un meta modello chiamato
“NPC4” per rappresentare formalmente aspetti strutturali di modelli basati
su grafi (incluso il modello SDG). La separazione tra struttura e funzionalità
permette un miglior riutilizzo di quelle porzioni di codice in comune, inoltre ne
semplifica la definizione di nuovi linguaggi specifici di dominio.

Beknopte samenvatting

Dit onderzoek probeert een brug te slaan tussen symbolische plans enerzijds, en
uitvoerbare beperkingsgebaseerde taakbeschrijvingen anderzijds, via de offline
programmatie van vaardigheden, en het online schakelen van hun uitvoering,
hun verdere verfijning, en hun aanpassing. Symbolische plans zijn discrete
actiesequenties die de robot moet uitvoeren om een beoogde verandering in
de wereld te realiseren. Zulke acties worden pas uitvoerbaar, in de vorm van
continue robotbewegingen, als er contextafhankelijke kennis is toegevoegd over
de robot en zijn gereedschappen, en over de omgeving.

Dit werk breidt dit verfijningsproces uit, door declaratieve beschrijvingen te
leveren van situaties die zowel in het symbolische als continue domein liggen,
en door late online beslissingen te nemen over de symbolische en continue
voorstelling van acties. Zo kan de robot bijvoorbeeld symbolische plans hebben
om een schuif open te trekken met de rechterarm, met de linkerarm, of met beide,
en hij kan zijn beslissing uitstellen over welk plan hij effectief zal uitvoeren
totdat hij weet heeft van alle relevante eigenschappen van de schuif en de
omgeving. Op dezelfde wijze vereist het grijpen van het handvat aan de schuif
dat de grijper van de robot openstaat; die openingsactie kan gelijk wanneer
starten gedurende de naderingsbeweging naar de schuif toe, maar de vooruitgang
van beide moet wel gecoördineerd worden gedurende de uitvoering, opdat de
robot niet met een onvoldoende geopende grijper het schuifhandvat zou raken.
State-of-the-art aanpakken openen typisch eerst de grijper, en starten pas
dan met de naderingsbeweging; dit onderzoek optimiseert de uitvoering van
taken online, door een “execution engine” dat gebruik kan maken van de
meest actuele informatie over de robot. Deze aanpak is gebouwd met formele
modellen, zogenaamde Domain Specific Languages, en met mechanismen om
robotvaardigheden online te specificeren, samen te stellen en te coördineren.

Een eerste bijdrage is een formeel model van vaardigheden dat zowel de
symbolische als de continue aspecten van acties voorstelt. De schakeling van
de uitvoering van deze vaardigheden is onderhevig aan een verzameling van

xiii

xiv BEKNOPTE SAMENVATTING

beperkingen en afhankelijkheden die online moeten voldaan zijn, en die logische
voorwaarden voorstellen op de continue toestand van de interactie tussen robot
en omgeving; de formele voorstelling van deze afhankelijkheden heet de Skill
Dependency Graph (SDG). Zulke SDG modellen worden online geïnterpreteerd
en gerealiseerd door een execution engine, met de naam Skill Dependency
Graph Executive. Deze thesis geeft de voorkeur aan declaratieve en formele
representaties boven procedurele en codegebaseerde aanpakken. Met dit doel
is de micro Skill Dependency Language (uSDL) ontwikkeld, als een minimale
verzameling van de declaratieve regels achter de SDG modellen.

De tweede bijdrage van de thesis is een nieuwsoortige beperkingsgebaseerde
taakspecificatie op basis van formele, declaratieve geometrische relaties die
bewegingsbeperkingen voorstellen. Dat wil zeggen, relaties zoals afstanden en
hoeken, tussen meetkundige primitiven zoals punten, lijnen en vlakken. Deze
formele uitdrukkingen worden online geëvalueerd in de context van de huidige
robotomgeving, om zo de expliciete en ogenblikkelijke streefwaarden te genereren
voor de beweging van de robot, tevens rekening houdende met zijn beperkingen
(zoals gewrichtslimieten) en redundanties. Bovendien ontkoppelt deze aanpak
de bewegingsspecificatie van de onderliggende numerieke oplossingsmethode;
beperkingsgebaseerde optimale controle-strategieën zijn te verkiezen boven
beperkingsgebaseerde bewegingplanning, om hogere reactiviteit mogelijk te
maken, in allerhande soorten fysische interacties.

De derde bijdrage is gericht op de integratie van de eerste twee, met het
oog op het kunnen realiseren van veralgemeningen van vaardigheidsmodellen.
Geometrische entiteiten worden gemodelleerd als een onderdeel van de
beschrijving van fysische objecten of virtuele objecten, of van werktuigen (dwz.,
objecten met een eigen controller die de mogelijkheden van de robot uitbreiden).
Deze modelleerinspanning veralgemeent de specificatie van vaardigheden tot
klasses, waarin de betrokken objecten voorgesteld worden met semantisch
equivalente en meer algemene geometrische entiteiten. Zo voldoet bijvoorbeeld
de vaardigheid om een schuifhandvat te grijpen aan dezelfde veralgemeende
vaardigheid als de vaardigheid om een glas te grijpen, omdat beide benaderd
kunnen worden als cylindrische primitieven. Op deze manier krijgt men
vaardighedenprototypes, die niet op zichzelf uitvoerbaar zijn, maar hiervoor
verder verfijnde context-afhankelijke kennis nodig hebben: zo’n meer verfijnde
uitvoer is een instantie van een vaardigheidsprototype. De compositie van
zulke vaardigheden levert steeds complexere vaardigheden op; en compositie
krijgt hierbij de voorkeur op overerving. Verscheiden experimentele voorbeelden
worden in de thesis uitgewerkt.

Een andere bijdrage van de thesis is de realisatie van een Just-in-Time strategie,
om beslissingen uit te stellen tot wanneer ze echt nodig zijn; dit maakt het
mogelijk om taakspecificaties samen te stellen op basis van de allerlaatste

BEKNOPTE SAMENVATTING xv

informatie die online beschikbaar is.

De laatste bijdrage voert hierarchische hypergrafen in, met een meta model
met de naam “NPC4”, als formele voorstelling van de structurele aspecten van
grafengebaseerde modellen (met inbegrip van de SDG). Zulke stricte scheiding
tussen structuur en gedrag maakt het mogelijk om basiscode te hergebruiken,
en vereenvoudigt de definitie van nieuwe Domain Specific Languages.

Abbreviations

3T-A : Three Tiered Architecture
AI : Artificial Intelligence
API : Application Program Interface
AST : Abstract Syntax Tree
COP : Constraint Optimization Problem
CRAM : Cognitive Robot Abstract Machine
CPL : CRAM Plan Language
CSP : Constraint Satisfaction Problem
CTAMP : Combined Task and Motion Planning
DSL : Domain Specific Language
eTaSL : expressiongraph-based TAsk Specification Language
FSM : Finite State Machine
MDE : Model-Driven Engineering
NPC4 : Node Port Connector Container Contains Connects

(Language)
iTaSC : instantaneous Task Specification using Constraints
JSON : JavaScript Object Notation
LTL : Linear Temporal Logic
QoS : Quality of Service
QP : Quadratic Programming
qpOASES : Quadratic Programming with Online Active-Set Strategy
PDDL : Planning Domain Definition Language
PRS : Procedural Reasoning Systems
RAP : Reactive Action Packages
ROS : Robot Operating System
RRT : Rapidly exploring Random Tree
rFSM : Reduced Finite State Machine
SDG : Skill Dependency Graph
SDG-E : Skill Dependency Graph Executive
SoT : Stack of Tasks

xvii

xviii ABBREVIATIONS

SQP : Sequential Quadratic Programming
SESD : Skill Execution Status Diagram
STRIPS : Stanford Research Institute Problem Solver
SWBC : Stanford Whole Body Control
TCA : Task Control Architecture
TDL : Task Description Language
TFF : Task Frame Formalism
uSDL : micro Skill Dependency Language

Contents

Abstract vii

Contents xix

List of Figures xxv

List of Tables xxxv

1 Introduction 1

1.1 Problem Statement . 5

1.2 Terminology . 6

1.3 Methodology . 10

1.3.1 Skill-based Approach . 10

1.3.2 Constraint-based Approach 11

1.3.3 Graphs Models for Knowledge Representation 13

1.3.4 Model-Driven Engineering Methodology 14

1.3.5 JSON and JSON-Schema 14

1.4 Contributions and Outline . 15

2 Skill Dependency Graph 19

2.1 The Execution Monitoring Role 20

xix

xx CONTENTS

2.1.1 Monitors and Conditions in the Continuous and Discrete
Domain . 22

2.2 The Skill Model . 29

2.2.1 A Motivational Example 29

2.2.2 Design Drivers . 31

2.2.3 Skill Behaviours . 31

2.2.4 Hierarchy in the Skill Model 33

2.2.5 Logical Conditions . 33

2.3 Skill Dependency Graph Model 35

2.3.1 Skill Dependencies . 35

2.3.2 The SDG Structural Model 38

2.4 SDG Executive . 41

2.4.1 Skill Execution Status Diagram 41

2.5 The micro Skill Dependency Language (uSDL) 45

2.5.1 The Language . 47

2.5.2 Common Situations . 51

2.5.3 Example . 54

2.6 Open a Drawer Scenario . 57

2.7 Related Work . 62

2.7.1 Mathematical Formalisms 62

2.7.2 Languages and Frameworks in Robotics 64

2.8 Conclusions . 69

3 A Geometric-based Task Specification 71

3.1 Introduction and Related Work 72

3.2 Geometric-based Task Specification DSL 75

3.2.1 Geometric Expressions between Geometric Primitives . 76

3.2.2 The Behaviour . 80

CONTENTS xxi

3.2.3 Constraints, Monitors and Task 82

3.3 Task Specification Examples 85

3.3.1 Numerical Solver . 85

3.3.2 Open a Drawer Scenario 87

3.3.3 Spanning a Planar Surface 95

3.4 Conclusions . 98

4 Applying the Skill Dependency Graph to Constraint-based Tasks 99

4.1 The Variability of the Context 99

4.2 Geometric Items . 101

4.2.1 Reference Frame . 101

4.2.2 Shape Primitives . 101

4.2.3 Affordances of a Geometric Item 103

4.2.4 Motion Specification as a Coupling between Geometric
Items . 104

4.3 Skill Prototypes . 105

4.3.1 Grasp an Object Skill Prototype 105

4.3.2 Place a Cylindrical Object on a Planar Surface 109

4.3.3 Pick & Place . 112

4.3.4 Pouring from/to a Glass 115

4.4 Related Work . 118

4.5 Conclusions . 119

5 Interleaving Planning and Execution: a Just-in-Time Approach 121

5.1 Motivations . 121

5.2 The Just-in-Time Approach . 122

5.2.1 Skill Life Cycle . 127

5.3 SDG Extensions: Conditional SDG 129

xxii CONTENTS

5.3.1 Loop Statements and Loop Unrolling 130

5.3.2 Branch Predication . 132

5.4 Conclusions . 133

6 Hierarchical Hypergraphs and the NPC4 Domain Specific Language135

6.1 Introduction . 135

6.2 Hierarchical Hypergraphs . 138

6.2.1 Motivations and Bad Practices 138

6.2.2 Primitives, Relationships and their Semantics 139

6.2.3 Design Drivers . 140

6.2.4 Formalisation into the NPC4 Language 140

6.2.5 Composition . 145

6.3 NPC4 Language Constraints 146

6.3.1 Constraints for Structural Well-formedness 146

6.3.2 Constraints Formalisation 151

6.4 Modelling with NPC4 . 154

6.4.1 Structure for Supporting Software 154

6.4.2 Behaviour on Deeper Levels of Abstractions 155

6.5 NPC4, SDG and uSDL . 156

6.5.1 Example . 158

6.6 Conclusions . 159

7 Conclusion 161

7.1 Contributions . 161

7.1.1 Maturity of the Models and Software Support 162

7.2 Discussion . 164

7.2.1 The Stack of Tasks Framework, SoT 164

7.2.2 The KU Leuven Approach: iTaSC and eTaSL 165

CONTENTS xxiii

7.2.3 Other Solutions in the Planning Domain 168

7.2.4 Preview Coordination 169

7.3 Suggestions for Future Work . 170

A JSON and JSON-Schema Models 175

A.1 JSON Schema uSDL Meta Model 175

A.2 Geometric-based Task DSL . 178

A.2.1 Geometric Primitives . 178

A.2.2 Constraints based on Expressions 180

A.2.3 Behaviour, Task and Monitors 185

A.3 Spreading Task Specification 188

Bibliography 191

List of Figures

1.1 An autonomous robot opening a drawer (frame from an
experiment discussed in Chapter 2). 2

1.2 A partial-order plan that describe the opening of a drawer
(Figure 1.2c), and two linearisation alternatives (Figures 1.2a
and 1.2b). 3

1.3 A generic functional architecture of a robotic system. From a
mission, a planner constructs a feasible plan, taking into account
the knowledge about the world representation and the agents
available to accomplish the mission. The plan is a total or partial-
order list of symbolic actions. The actions are transformed in
skills instances from a given database of skills, taking into account
environmental context and robot capabilities. A plan executive
manages the run-time activation of the skill instances with respect
to the relationship between them. The skills activated at run-
time composes the overall task as the activity executed by the
robot, realising the desired behaviour. Some (sub-)tasks involve
perception capabilities of the robot, so that the information
about the world representation is updated at run-time. In case of
unforeseen situations, a new task can be re-composed or, in the
worst case, recall a new planning phase from updated information. 7

1.4 The knowledge that composes a context of a skill execution. . . . 11

1.5 Simplified representation of the phases that ground an action. An
action can be implemented by multiple skill prototypes, which in
turn are grounded as a skill instance. The arrows between action
and skills denote a conform-to relationship, while an additional
arrow indicates the increasing detail of the knowledge required
in the refinement process. 12

xxv

xxvi LIST OF FIGURES

1.6 The conforms-to relationship and the modelling layers in the
context of JSON documents. 15

1.7 A JSON document that reports some data specific to a robot
joint (M0, on the left) that conforms to a JSON-Schema model
(M1, on the right), which in turn conforms to the JSON-Schema
meta-model. 16

2.1 Architectural separation between a continuous control strategy
(bottom) and a discrete plan executive (top). A generic closed
loop strategy is shown in form of a control diagram: r and u
are reference signal and control action, respectively; g, f and h
represent the disturbances in the continuous domain. The plan
executive generates a specification that configures the control
algorithms. Such a configuration ensures a correct execution of
a plan, considering the logical information from the underlying
control system, which must be mapped from the continuous
domain. 20

2.2 A sequence of events E = events(c) = {ec,1, ec,2, ec,3, . . . } over
a condition c. ec,1 and ec,3 are rising events; ec,2 and ec,4 are
falling events. 25

2.3 Nominal (left) and non-nominal (right) execution of a pouring
plan composed of two skills. The nominal execution motivates
the status of running, holding and executed. The non-nominal
execution, due to a not satisfied logical constraint, motivates the
existence of a suspending behaviour. 30

2.4 Set diagram of the conditions defined over a skill s. C is condition
set; Cs ⊆ C represents the internal conditions related to s.
Within Cs, one and only one condition ceff is intended effect
of s. Multiple side-effects cs,j exist (cs,j = side-eff(s,j),∀cs,j ∈
Cs \ ceff), among which Cs,fail is set of failure conditions. . . . 34

2.5 The role of the predicate isReadyToBeActivated, which lies in
the scope prior to the activation of the skill s. In this scope,
isReadyToBeActivated holds with the condition cstart, and the
execution engine evaluates the activation of s. After the activation
of s the condition cstart may vary, but it does not affect the skill
execution. 37

LIST OF FIGURES xxvii

2.6 Scope example of an invariant(s, cinv, g, t) predicate, which
lies during the execution of the skill s and depends on the
guard condition g. The invariant dependency expresses that
the condition cinv must hold within that scope. 38

2.7 Graphical representation examples of structural SDG models.
On the left, a legend of the graphical elements: executable skills
are represented by rounded box with a solid line; non-executable
skills are rounded, dashed boxes; a dependency is a connector-
based hyperedge; a port exposes internal conditions of a skill.
The SDG on top-right shows a skill s1 that has a dependency
relationship with the condition cbuttonpressed. Since the cause of
the condition is unknown (that is, another agent will produce
such a world-transformation, e.g., a human or a robot), a non-
executable skill is deployed. The SDG on bottom-right shows
two nodes, s2 and s3, connected through a dependency constraint
db. The indirect relationship between the two skills exists since
the definition of db involves the effect of s2, eff(s2). 40

2.8 Skill Execution Status Diagram (SESD). This diagram describes
the transitions available between skill status. inactive is initial
status of a skill instance. executed and failed are terminal
status that indicate a successful execution or a failure, respectively.
running status represents the nominal behaviour described by
the skill, while suspending describes the non-nominal behaviour.
Finally, holding allows to maintain the desired effect obtained
in running status. 42

2.9 Simplified overview of the algorithm adopted for the implemen-
tation of the SDG-E, in a dataflow form. The predicates that
influence the transitions have been briefly reported in an informal
fashion. 45

2.10 Situation examples of strict sequence (Figure 2.10a), pure concur-
rency (Figure 2.10b) and conditional concurrency (Figure 2.10c)
between a pair of skills s1, s2. 46

xxviii LIST OF FIGURES

2.11 Structural model of a complete and well-formed toy example
reported in Listing 2.4. Only static information is reported:
nodes do not assume a status (grey color). The skill sA exposes
externally the intended effect of s2 and s3 as side-effects of sA.
Furthermore, the intended effect of the composite skill sA is
achieved when both intended effects of s2 and s3 hold. Thus,
the dependency constraints d4 and d5 over the effect of sA are
expanded to sA internals. D1–D4 refers to the connectors that
are represented in the JSON model in Listing 2.4. 56

2.12 Open a Drawer Scenario. The picture shows the geometric entities
used to define the motion skills (see Table 2.5). 57

2.13 SDG model of the Open a Drawer Scenario described in the
uSDL in the Listing 2.5. The model illustrated is mainly
structural and does not show any online information. For the
sake of clarity, some structural primitives (e.g., ports) have been
omitted. 60

2.14 Relationships in Allen’s Interval Logic [4]. Each relationship
describes a time ordering constraint between a pair of finite
intervals defined on the same linear time structure. Inverse
relationships that describe analogous situations are on the same
line. Equality relationship is not shown. 62

2.15 A Three-Tiered Control Architecture [24, 83] adopted in multiple
frameworks, such as the Task Control Architecture (TCA) [147,
148] and the LAAS Architecture [3, 125]. The naming convention
on each layer may differ from framework to framework. For
instance, planning, executive and behaviour layers have been
called decisional, execution control and functional levels in the
LAAS Architecture. However, they all conform to the same
architectural description. 67

3.1 Overview of the task specification objects in a UML class diagram
style. This Figure is illustrative purposes only; several elements,
such as attributes of the classes, are omitted. 75

3.2 Graphical representations of the five possible relations between a
point and a line (3.2a), and between two lines (3.2b). 79

3.3 Some of the geometric entities involved in the “open a drawer”
scenario. 88

LIST OF FIGURES xxix

3.4 Values of constrained and monitored expressions during simula-
tion. Vertical lines show the transitions between states (labelled
from S.1 to S.3, each one corresponding to a set of primary
constraints). In the first state, the gripper is opened (3.4c),
aligned (3.4b), and brought to the handle (3.4a). A state
transitions is triggered when total distance (blue flat line in
3.4a) decreases under a given threshold. During S.2 the gripper
is closed (3.4c), and, lastly, the gripper is commanded to move
back to x = −0.3 m (thin solid line in 3.4a). The monitored
expressions in each task are highlighted with a fat gray underling
line. Furthermore, Figure 3.4c denotes a trapezoidal velocity
profile that drives in feedforward the target value. 90

3.5 Values of constrained and monitored expressions during the
experimental validation. The obtained results are comparable
with the simulation of Figure 3.4. Furthermore, this experiments
includes two additional states. 93

3.6 Frames of the open a drawer scenario sequence. 94

3.7 Frame from the open a drawer scenario, open drawer sequence
(S.3). 95

3.8 A frame from a ”spanning a planar surface with a tool“
experiment. The robot moves the spatula above the center,
initial pose of the spanning task. 96

3.9 Frames from a ”spanning a planar surface with a tool“ experiment.
To ensure the contact between the spatula tip and the surface, a
force of 2N is imposed orthogonally to the plane. 97

4.1 Geometric items. 102

4.2 Grasp an object skill prototype; uSDL textual model on the left,
resulting SDG structure on the right. Structural elements, such
as ports, are omitted for the sake of brevity. 106

4.3 Definitions of the geometric expressions that ground the skill
prototype grasp an object, possible refinement of the symbolic
action grasp(gripper, glass). 107

4.4 Definitions of the geometric expressions that ground the skill
prototype “place a cylindrical object on a planar surface”, possible
refinement of the symbolic action place(glass, table). 109

4.5 Placing a small cylindrical object to a second gripper palm. . . 110

xxx LIST OF FIGURES

4.6 SDG model of a simultaneous Pick&Place operations, grounded
as a composite skill instances of existing skill prototypes. The
grasp skill expands as defined in Section 4.3.1. 112

4.7 Set of screenshots of the simulated execution of the SDG in
Figure 4.4. 114

4.8 Definitions of the geometric expressions that ground a pouring
skill prototype, possible refinement of the action pour(glass1, glass2).
. 115

4.9 Execution of the composite skill that grounds the action
pour(glass1, glass2). In this case, only one grasping resource is
employed, converting the geometric item glass2 from object to
tool. 117

4.10 Execution of the composite skill that grounds the action
pour(glass1, glass2). In this case, both grasping resources of the
dual manipulator are required such that the generated motion
actively involves both glasses. 118

5.1 Analogy between JIT compilation (on the left) and the multistage
JIT approach proposed in this section (on the right). 123

5.2 A generic SDG model. At run-time, it is possible to identify three
sets of skills: executed, active and inactive. The SDG connectivity
provides a metric to determine when a skill must be an instance
and not symbolic: s8 is next to be executed and it should be
instantiated, while s9 can be symbolic. 124

LIST OF FIGURES xxxi

5.3 Skill Life Cycle stages (on the left) and a concrete example (on the
right). The skill creation is described in a top-down order; full-line
arrows highlight the possible stages transitions (the enumeration
matches with the explanation in this section). Dashed arrows
show the knowledge required to step from one stage to the next.
The input is a symbolic action provided by the planner, which
causes the deployment of a symbolic node in the SDG (grasp62).
A skill prototype is selected from a database of skills available;
such a skill must conform to the requirements imposed by the
symbolic action (e.g., shape of the glass, grasping tools on the
robot). During configuration, the symbolic arguments (e.g.,
glass:id425, left_gripper) that represent geometric item
instances are bound to the skill prototype; initialisation of the
functionalities which retrieve online information (e.g., frame pose)
on the geometric item instances is postponed according with the
JIT criteria over the activation distance. Once the initialisation
is achieved, the skill is an instance and it can be executed by the
SDG-E. Finally, the skill is destroyed, all required resources are
released and (optionally) only the node (grasp62) remains for
backtracking. 129

5.4 Example of a static loop unrolling. A not yet executable skill
(on the left) is expanded as a repetition of the skill prototype SA
(on the right). The resulting SDG is composed of two instances
sa1 and sa2 having a strict sequence relationship among them.
An extra semantic tag (sA, dashed line, which is a container, see
Chapter 6) provides additional information on the origin of the
generated instances; such information is needed to clean-up the
SDG in case the planner aborts the original skill execution. . . . 131

5.5 Example of a conditional SDG model due to the primitive
alternatives(s1, s2, s3, c1, c2, c3) and its (informal) pictorial
representation. 132

6.1 A hierarchical Finite State Machine. Nodes represent states, and
edges represent state transitions. 136

xxxii LIST OF FIGURES

6.2 Graphical conventions to represent hierarchical hypergraphs: (i)
Port is a square composed of two rectangles which represent
(with respect to the Node to which the Port is attached) the
internal (black) and external (white) docks; (ii) a Node is a
rounded box; (iii) the Connector is shaped as a filled circle; (iv)
the Container is represented as a dashed outline. The bottom
row shows an example of two Nodes, namely A and B, connected
by the Connector j attached to the external docks of Ports p1
and p2. The “clamps” on the docks appear if the docks have
been linked to a connector. 142

6.3 Generic example of a hierarchical hypergraph model. Node T is at the
top of the hierarchy, and allows to refer to the whole model from within
other models. Nodes A and X are contained by T, as is Container m;
Nodes B, C and D are contained by A. Connectors i and j link Ports
on Nodes. All Ports have Connector docks internal and external to
the Node they belong to. Container m gives a context to Node A and
its internals, but not to Node X or Connector i. 142

6.4 The containment tree of the nodes in Figure 6.3. Each node carries
its ports as arguments, since this information is required to check the
well-formedness of Connectors. 147

6.5 An example of a hierarchical composition in which containment does
not follow a strict tree hierarchy for containers: the containers “p”
(small blue dashes) and “n” (long red dashes) have some internal Nodes
in common, with each other and with Node “A”; the containers “p”
and “n” do not have ports themselves, in contrast to the Node “A”.
The nodes and their connectors do satisfy the node containment tree
constraint. 147

LIST OF FIGURES xxxiii

6.6 Different abstract examples of structural models defined with
NPC4. Both graphical layout and relative containment tree
have been reported. All the examples are based on the first
model, which defines contains relationships only. The models
differs on the connects relationship, and the containment
tree is not affected by these changes. Examples (2) and (3)
show well-formed models. In the associated containment tree,
the Connector j is considered and the Ports involved in the
relationship are indicated. In both cases, the resulting sub-
tree obtained by pruning portions discriminated by the Ports
is valid. The models (4), (5) and (6) are ill-formed because
of the presence of a wrong Connector. In detail, in Model (4)
the relation connects(j,port-d.idock) invalidates connections
with node-d internals, thus the connection is not feasible. In
example (5), port-D.edock excludes possible connections with
Nodes A,B and C; since a Port in A is connected, the Connector
j is not correct. The latter case (6) shows an intuitive case of
connecting two Nodes through two wrong docks (Connector k). 150

6.7 Examples of possible model-to-model transformation to describe a
deeper level of abstraction. The first example (I-right) shows a solution
to model behaviour on a Port primitive (I-left): Port p1 is expanded
in a Node pN contained in A (original owner of p1), while an internal
Connector establishes a view over the same Node. The containment
tree changes only internally to A, thus the change is compliant with the
original model. Not necessarily but useful, p1 refers to a Container in
the transformed model, such that the original semantic information is
preserved (and it is possible to retrieve the original model). The second
example (II) shows a similar case, but considering the Connector j
as target of the transformation. 155

6.8 Structural NPC4 view (Figure 6.8b) of the SDG model in
Figure 6.8a. 158

List of Tables

2.1 Monitor functions applied to the signals shown in Table 2.2, as
an example of a composite monitor of the predicate “y(t) signal
is in range [ζdown, ζup] before a timeout Tout”. ẏ(t) derivative of
the signal is considered to check if the evolution of y is steady.
The predicate is evaluated from the condition cok, defined as
boolean expression over the conditions cD, cTout , cup and cdown.
As a result, cok holds if y lies in the desired range before Tout, but
cD condition also avoids to trigger an event ecok,1 on the range
border, if y is still changing. The above-described mechanism is
a useful pattern to properly determine the success (or failure) of
a grounded action. All the threshold functions are expressed as
a constant value. 27

2.2 Example of evolution of a set of monitored signals and conditions;
the monitor functions applied to the monitored signals are
illustrated in Table 2.1. In this example, the condition cok holds,
since the monitored signal y(t) is in range [ζdown, ζup] and steady
within the timeout Tout. 28

xxxv

xxxvi LIST OF TABLES

2.3 Execution examples of some common situations. The first column
reports the textual uSDL model; the middle column shows the resulting
SDG structure; the last column shows the situation outcome, expressed
as a Gantt chart. The SDG in the middle column are snapshots of the
run-time execution. Some structural primitives (e.g., ports) have been
omitted. The color code of the nodes reflects the online skill status:
running(green), executed(black), holding(blue), inactive(yellow),
suspending(red), failed(purple). The color code of connectors
represents the dependency type: toStart(black), continuesIf(red),
latches(blue). The run-time information over the constraint (satisfied
or not) is expressed by the shape of the line: ”holds“ is a solid line,
”does not hold“ is a dashed line. For the sake of clarity, port elements
over the structural SDG model are not explicitly represented. The
SDG snapshots represent the overall status along one period of time, as
shown in the outcome column. Each row presents a different situation,
in order: i) strict sequence; ii) strict sequence, with inertia; iii) same
of ii), but with a run-time failure. Pure concurrency and conditional
concurrency cases are shown in Table 2.4. 52

2.4 Execution examples of pure concurrency and conditional concurrency,
in order: i) pure concurrency; ii) conditional concurrency with inertia;
iii) same SDG model of ii), but s2 goes to suspending status due to
the intended effect of s1 not achieved yet. This table follows the same
legend expressed in Table 2.3. 53

2.5 Open a drawer scenario: qualitative and verbose description
of the constraint-based motion related to each skill. Some of
the constraints are expressed in terms of the geometric features
depicted in Figure 2.12). 58

2.6 Nominal execution outcome of the SDG model in Figure 2.13,
in a Gantt-chart representation. Some motions exhibit a strict
sequence execution, other run concurrently. All the constraints
have been respected during the execution, thus no skill execution
fails or switches to non-nominal behaviour. 61

2.7 Non-nominal execution outcome of the SDG model in Figure 2.13,
in a Gantt-chart representation. The gripper moves too slow,
so that it gets close to the handle before it is fully opened.
The execution of move_to_handle is suspended, waiting for the
gripper to have opened sufficiently. This non-nominal execution
still satisfies the original plan. 61

3.1 Summary of geometric primitives, grounded in frame {w}. . . . 78

LIST OF TABLES xxxvii

3.2 Summary of geometric expressions between primitives. 78

3.3 List of behaviours: each behaviour is related to the type of
control and its specification, the type of set-point, the needed
measurements (position measurement is always needed), and the
related constraint (either equality or inequality). Inequalities
needs two set-points, representing the upper and lower bound
values. Specification is optional for limiting behaviours. 83

3.4 Reference frames and definitions of the geometric primitives
depicted in Figure 3.3 (Table 4.2a and Table 4.2b, respectively). 89

3.5 Constraints involved in the task specification of the Open a
drawer scenario, divided for each discrete state. 91

4.1 Constraints employed for the grasp of a cylindrical geometric
item on the side interaction attachment. 108

4.2 Description of the geometric primitives adopted for the “place a
cylindrical object on a planar surface” skill in Figure 4.4. . . . 110

4.3 Constraints employed to place a cylindrical object {c} on a planar
surface {p}. 111

4.4 Code excerpt of the additional information applied to generate a
skill instance from a given skill prototype. 112

4.5 Geometric expressions and constraints specification for grounding
a pouring action, pour(glass1, glass2). 116

6.1 Overview of the primitives introduced by NPC4 and the relative
structural relationship allowed between them. The table reads has
{primitive-row} {relationship} {primitive-column}, e.g. “a Node
(can) contains a Node”. Notes: (i) ∗ it is not a relationship in NPC4,
passive form; (ii) + it is not a formal relationship in NPC4, but
informally a Connector is indirectly connected to a Node through a
port; (iii) † as property of a well-formed Connector, see Section 6.3.1. 141

6.2 Full NPC4 model of the example shown in Figure 6.3. 143

6.3 conforms-to relationship between primitives and relationships in
uSDL and NPC4. 157

6.4 Example of an uSDL model (on the left) and its structural
NPC4 model (on the right). 158

Chapter 1

Introduction

Since its first announcement in 2011, the forthcoming Industry 4.0 (the fourth
industrial revolution) has drawn the attention of manufacturing industries to
the adoption of new technologies, such as Cloud Computing, the Internet of
Things and Smart Factories. One of the driving factors for such a strategic
innovation involves different branches of the Robotics research, from Artificial
Intelligence (AI) to control of autonomous robotic systems. An expected
scenario promises to increase the overall productivity (and to reduce the related
production costs) through a novel industrial environment, where machines
are not hidden behind cages, but they work autonomously and co-operate
with human operators. These innovations are also inspired by recent results in
numerous research projects funded by the 7th European Framework Programme,
that even go further by introducing autonomous robots in human working and
living environments; examples of those projects are GeRT [60], Rosetta [130]
and RoboEarth [164]. The RoboHow.cog project [128] investigated the role of
the knowledge acquired from instructions in the World Wide Web and from
previous human demonstrations to generate executable plans. One part of this
process concerns the development of autonomous robotic skills, such that robots
can be easily programmed by instructions which are as close as possible to a
natural language. At run-time, the robot adapts the instructions received to
the context of the execution, by exploiting the previously acquired knowledge.

However, it is inherent in human nature to describe a situation as a linear
sequence of actions, whether they represent a plan to be executed or a fact that
happened previously. This limitation is still reflected in many robot programs,
which are affected by hidden assumptions over the context of the execution.
The “non-linear nature of plans” is already known in AI literature [134, 105],

1

2 INTRODUCTION

Figure 1.1: An autonomous robot opening a drawer (frame from an experiment
discussed in Chapter 2).

which provides a first definition of total-order and partial-order plans: where
a plan is an ordered set of actions, that plan is totally-ordered if the order
relationship is known for each action, while it is partially-ordered if only some
actions are ordered between each other. Thus, a partial-order plan is non-
linear, and a linearisation process can produce several total-order plans from
it. This linearisation process, sometimes called “refinement”, is possible when
plan uncertainties are solved by context-dependent information over the plan
execution.

An intuitive example is provided by the plans in Figure 1.2, which describe the
symbolic actions that a robot should execute to perform the opening of a drawer
(Figure 1.1). The possibility to concurrently execute multiple actions depends
on their implementations; as an initial assumption, concurrent action execution
is not possible, but this assumption can be removed as discussed in the next
paragraph. Considering the total-order plan in Figure 1.2a: firstly, the robot
approaches to the cabinet; secondly it opens its gripper; then it approaches
to the tray, bringing the gripper to a sufficient distance to grasp the handle;
finally, the handle is grasped and a pulling action is applied to the drawer. The
approach to the tray phase can be implemented by a couple of atomic actions,
Approach Tray I and Approach Tray II. The former brings the gripper close
to the handle, while the latter implements a local movement that brings the
gripper in the grasping pose, thus requiring the gripper to be opened in advance.
As a consequence, the order between the action Open Gripper and Approach
Tray I is not defined prior to execution, while Approach Tray II exhibits a

INTRODUCTION 3

Open Gripper

Grasp HandlePull Drawer

Approach Tray_IApproach Cabinet

Approach Tray_II

(a) A total-order plan for opening a drawer.

Open Gripper

Grasp HandlePull Drawer

Approach Tray_IApproach Cabinet

Approach Tray_II

(b) An alternative total-order plan for opening a drawer.

Approach Cabinet

Open Gripper

Pull Drawer Grasp Handle

Approach Tray II

Approach Tray I

(c) A partial-order plan for opening a drawer. A linearisation process can
generate one of the two total-order plan above (Figure 1.2a and Figure 1.2a).

Figure 1.2: A partial-order plan that describe the opening of a drawer (Figure 1.2c),
and two linearisation alternatives (Figures 1.2a and 1.2b).

dependency on the gripper status. Figure 1.2b shows an alternative total-order
plan, where the order of Open Gripper and Approach Tray I are reversed
with respect to the previous plan in Figure 1.2a. Figure 1.2c illustrates a
partial-order plan that describes both situations: a linearisation process leads
to one of the previous total-order plan. Resuming, this example shows that
there exists a need of declarative specifications over procedural descriptions,
in which the order is not explicitly defined, but rather a set of relationships
determine the execution order of the planned actions from some knowledge not
available at planning time.

However, the above-mentioned plans are not efficient due to the initial
assumption of executing only one action per time. It is obvious that the
resulting behaviour will benefit from concurrent scheduling, e.g., executing
both Open Gripper and Approach Tray I at the same time. Other actions
can be part of the same online activity, but it is not trivial to identify those

4 INTRODUCTION

prior to execution: it depends on how the actions are implemented, but also
on the robot capabilities and the kinematic redundancy available on the robot.
For example, the robot in Figure 1.1 has two arms, and maybe one is better
positioned than the other to execute the task; even both arms can be used.
Furthermore, the environment in which the robot operates is dynamic, and this
prevents any form of early optimisation. Therefore, optimisation on the motion
execution is delegated to run-time decisions to be made by control algorithms
that implement the intended behaviour of the actions.

Opening a drawer and manipulating other mechanisms such as doors are well-
known control problems already studied in the past; some examples are [73, 124,
95, 77, 76]. Even if they are efficient, these approaches only consider the whole
problem in the continuous domain, or at most few hand-written discretisation
steps are employed, often encoded into a Finite State Machine (FSM). This
procedural approach implies multiple hidden assumptions on the feasibility
of the plan, e.g., only a nominal execution is considered, as well as on the
assumptions over the chosen tuning parameters that feed models and control
algorithms. In addition, some control laws are employable under the assumption
that the robot is equipped with a specific tool or sensor (e.g., force sensing
capability), which must be verified. As a consequence, the continuous control of
the robotic platform is often optimised, but only with respect to a situation that
is known offline already: composition, flexibility and reusability, in a broader
context and with run-time inputs and decisions, are not provided.

How to bridge the gap between symbolic plans and continuous motion control is
a very open research question, which is not only due to technical difficulties, but
also to the heterogeneous background that composes the Robotic Community.
As a matter of fact, such an integration requires a deep understanding of both
the AI and Control literature, which often use different terms to express the
same concepts. This leads to numerous omissions over the assumptions taken,
sometimes as an unconscious fact, sometimes as a conscious lack of interest
from the researcher. Recent position papers [61, 71] point out the need to renew
research on the synergy between planning and acting, and this dissertation
contributes with a concrete research question:
given a symbolic plan, how to schedule, compose and optimise both discrete and
continuous aspects of its execution, while still preserving logical consistency and
the reactiveness over non-nominal situations?

PROBLEM STATEMENT 5

1.1 Problem Statement

The previous narrative scenario shows, together with other practical experiences
on software development for Robotics, a set of challenges and research questions
that this dissertation addresses.

Q1: Which are the hidden assumptions that a programmer makes
when he/she is building a robotic application, whether it is an high-
level program or the implementation of a single action? How to
model explicitly those assumptions?
Plans often represent only nominal situations, that is a sequence of actions
to perform, valid only if the environment reacts as expected. Most of the
applications run successfully because the context of their execution is known a
priori, or even controlled. In the same vein, a control strategy that implements
an action suits to a particular scenario, where a robot that has some capabilities
interacts with well-defined objects. Offline optimisation and a proper tuning
of the control parameters is possible due to the assumptions made in advance.
This research aims to model these context-dependent assumptions, with the
objective to exploit those for run-time optimisation and adaptation. Therefore,
this raises the following question:
Q2: How to compose and to schedule multiple actions concurrently,
thus generating an optimised execution with respect to the robot
capabilities and the context of the execution?
To this end, it is necessary to bring formal knowledge into action descriptions,
defining a motion specification that the robot must execute.
Q3: How to transform a symbolic action into a continuous motion
specification?
Q4: Which model can describe an action in both discrete and
continuous domains?
In the planning domain, the status of the execution of an action is monolithic,
that is, an action can be executed, not executed or under execution. There is
no information about the continuous execution of the action; as a consequence,
it is not possible to reason and to react on the continuous execution. Moreover,
an action may change the environment in many ways, and not all the effects of
an execution are intended. An objective is to monitor the continuous behaviour
performed by the execution of an action, and to react in case of conditions that
diverge from the planned situation. Consequently, the following question arises:
Q5: Which conditions are relevant for the execution of an action?
How to map the information monitored in the continuous domain to
the discrete domain?
Q6: How to model a reaction to a violation of some conditions?
The implementation of an action should consider also non-nominal situations,

6 INTRODUCTION

inducing a change in the motion specification. Yet another research question is
Q7: Which is a minimal set of declarative rules that describe a
situation, thus creating a relationship between the execution of
different actions?
A plan can be described as a procedural program, as well as a composition of
explicit logical constraints that must be satisfied. This dissertation investigates
about the latter, such that the scheduling of the actions is adapted to the
run-time conditions.
Q8: When must the context-dependent knowledge be available?
Most of the control frameworks require that the motion specification is
completely defined at one specific stage of the application, sometimes at
configuration time, sometimes offline. However, it is not necessary to define the
whole plan at once, fulfilling information subject to changes, but to delay such
a refinement until it is strictly necessary: formalise such an approach is part of
the objectives of this work.

Q9: Can the software infrastructure be generalised to serve other
purposes than the one for which it is designed?
This work addresses the above-mentioned research questions through formal
models. However, software development covers an important role to support
and to “activate” those models; during the development process, researchers and
engineers are often focused on solving only the problems that they are addressing,
while part of the software infrastructure may serve other purposes, even in
different contexts. This regards not only the re-use of some functionalities,
but also the structural aspect that represents and stores the data, and this
dissertation aims to address also this facet.

As a whole, these research questions lead to elaborate a broader, but concrete
objective, which is: how to bridge a symbolic plan, which lies in the
discrete domain, and constraint-based motion control, which lies in
the continuous domain?

1.2 Terminology

In literature, there is no common agreement about the definitions of actions,
skills and tasks. Sometimes these terms are used interchangeably, sometimes
they have a specific meaning, leading to a linguistic ambiguity. This is yet
another symptom of the heterogeneous nature of the Robotic Community.

In Control, the term action refers to a control action, that is the output of
a control strategy; in [162, 161] an action is an elementary motion primitive;
in [61] an action is a symbolic world-transformation step that can be used

TERMINOLOGY 7

.....

Planner

Knowledge
+

World ModelPlan := <...,Action,...>

Mission

Action(s)

Robot Control

Task Executive

Skill

Task

Skill Skill

Skill
Database

Action
Grounding

Figure 1.3: A generic functional architecture of a robotic system. From a mission,
a planner constructs a feasible plan, taking into account the knowledge about the
world representation and the agents available to accomplish the mission. The plan
is a total or partial-order list of symbolic actions. The actions are transformed in
skills instances from a given database of skills, taking into account environmental
context and robot capabilities. A plan executive manages the run-time activation of
the skill instances with respect to the relationship between them. The skills activated
at run-time composes the overall task as the activity executed by the robot, realising
the desired behaviour. Some (sub-)tasks involve perception capabilities of the robot,
so that the information about the world representation is updated at run-time. In
case of unforeseen situations, a new task can be re-composed or, in the worst case,
recall a new planning phase from updated information.

to perform a certain task. A definition that suits all the above is the one
of acting [71], that is an implementation of an on-line, closed-loop feedback
function that processes streams of sensor stimuli to actuators commands in
order to refine and control the achievement of an intended condition. According
to this definition, an action requires a refinement mechanism to implement and
instantiate a concrete motion; this refinement process involves further knowledge
of both environment and robot capabilities, and the result of this process is a
grounded skill, that is, the description of which actions should be performed,
together with specifications about how the robot capabilities should be used,
and how the run-time reaction should be to the environment context.

For the sake of clarity, the following terminology complies with the definitions
given in [71, 61, 67, 120], but it is also influenced by the overall workflow that
this dissertation proposes, briefly depicted in Figure 1.3, and by the adopted

8 INTRODUCTION

methodology described in Section 1.3.

Mission
A mission represents the overall intention of a robotic application. For example,
“make a pizza”, “set the table for dinner” and “pour some water in a glass”
are descriptions of missions expressed in natural language, describing a world
transformation at a different level of abstraction (e.g., “pour some water in a
glass” can be part of “set the table for dinner”). In general, a mission does not
specify the agent(s) responsible for performing those changes, and assigning a
role to each agent is part of the mission planning problem.

Symbolic Plan
A symbolic plan is a situation1 that an agent should perform, described by
means of a total or partial-order list of symbolic actions to execute. A plan
differs from a mission, since not only the world transformation are described,
but also the set of actions that can be performed. A plan is a refined version of
a mission, where the role of the agents is known; the latter can hold depending
on the level of abstraction, e.g., a robot can execute a plan to “pour some water
in a glass”, but it could not be decided which arm(s) will perform such a world
transformation. In literature, the statement that “a robot is performing a task”
often refers to the execution of a plan.

Symbolic Action
A symbolic action lies in the symbolic domain and it represents a physical
motion with the intention to achieve a world-transformation visible in the
symbolic domain. A symbolic action can be composed of other actions; in this
case, the action abstracts a symbolic plan. An action is executed by an agent,
whether it is an autonomous robot or a human, and it can accidentally cause
other world-transformations besides the intended one.

Symbolic Planning
Symbolic planning is a process that computes a symbolic plan that performs a
given mission from a known initial state.

Motion Skill
A motion skill is a model that represents the implementation of an action that
resides in the control domain. Other types of skills are perception skills; since
this dissertation focuses on motion skills, the term “motion” is omitted. The
skill model abstracts the information of a control strategy which is reusable in
similar contexts, and it is executable if the knowledge about the context of the
execution is fully available; in the latter case, the skill represents a concrete

1In AI, a situation is a feature-based representation of actions, that is, the description of
the world changes by means of actions and their effects. A situation must not be confused
with the state of the world. A situation can describe future intentions (i.e., plan), but also
not intended circumstances and occurred actions.

TERMINOLOGY 9

instance of a motion description. A skill prototype is an implementation of
a generic action that is legal under a set of pre-defined assumptions about
the context in which the action must be performed. Skill prototypes can be
programmed by a skill developer, and they can be employed whenever the
assumptions made on the environment context holds; however, they are not
executable as is, but they require a further refinement process that involves
run-time information. Alike symbolic actions, a skill can be composed of other
skills, and the relationships between those define a concrete executable plan.

Ground a Symbolic Action to an Executable Motion
Grounding a symbolic action refers to the refinement process that transforms
such an action into an executable motion description. In the scope of this
dissertation, a symbolic action is grounded into an executable skill instance,
and this transformation adds extra knowledge to the symbolic representation.

Context-awareness
Context-awareness is the capability of an automated system to select and adapt
the grounding and the execution of an action with respect to the mission,
the environment and the robot capabilities. Context-awareness includes the
capacity of selecting the quantities to be monitored, as well as to provide a
correct interpretation to the latter. From the given definition, skill programming
plays a fundamental role for the fulfillment of a context-aware robotic system.

Skill Scheduling
Skill scheduling is a process that decides when a skill instance is executed at
run-time, that is, the linearisation process that determines the execution order
of grounded actions. Scheduling must not be confused with planning, since the
latter regards which actions must be performed.

Task
Task is a generic term that indicates which activity the robot should perform.
Depending on the level of abstraction, it can refer either to the execution of an
high-level specification (i.e., the execution of a symbolic plan), or the continuous
activity currently performed by the control. If multiple skills can be executed
concurrently, then their run-time composition defines a task specification that
the robot must perform.

Plan Executive
The plan executive, also known as task executive, is the software entity
responsible for executing a symbolic plan, thus grounding and scheduling a set
of motion skills by composing a task specification that the robot must perform.

Three Tiered Control Architecture
The term Three Tiered Control Architecture (3T-A) is a widely known
architecture in Robotics, firstly suggested in [24, 83] and adopted by several

10 INTRODUCTION

frameworks [147, 148, 3, 125]. The 3T-A model assumes the existence of a third
layer between planning and control, called task executive or plan executive,
responsible for coordinating and scheduling the various activities on the robot
starting from a given plan. This dissertation focuses mainly on the task
executive layer, but it also expands investigations in planning and control
directions, showing that this separation is not so strict.

1.3 Methodology

This section briefly resumes the hypotheses and the tools adopted to pursue
the objectives of this dissertation.

1.3.1 Skill-based Approach

This work advocates the use of skills to ground a symbolic action. Conceptually,
a skill is a reusable strategy that implements a symbolic action in a similar
context. This concept is known in literature, but its concrete incarnation
changes between frameworks and research areas. For instance, learnable
motion skills are extracted from human demonstrations and encoded as
parameterisation over motion primitives [149, 7, 114, 75, 87]; programmable
skills are defined by procedural programming [121, 23, 162, 68] or constraint-
based programming [151, 150]; recent investigations aim to extract constraint-
based task specifications from human demonstration which can be used by other
solvers [163].

A skill execution exhibits both discrete and continuous behaviours, so the skill
suits to the role of intermediate primitive between a symbolic action and its
implementation. As the scheduling of a symbolic action depends on some logical
(pre-)conditions, a skill execution depends on a set of constraints that reflects
the symbolic order of the plan; however, those dependencies are not expressed
in the discrete domain, but they must link to the continuous domain.

A skill model adds formal knowledge into an action description, and multiple
skills can implement the same action on different contexts. The context plays a
fundamental role, since it provides the necessary information that makes the
skill deployable and executable. Figure 1.4 shows the knowledge that defines the
context: i) the robot capabilities, e.g., tools and sensors equipped to the robot;
ii) the intention of the action; iii) the objects that involves the action; iv) the
environment that constrains the execution of the action. Such a knowledge is
involved in any aspect of a robotic application, from the symbolic planning to

METHODOLOGY 11

Objects

Action

Ro
bo
t

Ca
pa
bil
itie
s

Context

En
vir
on
me
nt

Figure 1.4: The knowledge that composes a context of a skill execution.

the generation of the motions, but with different views or level of abstractions.
Therefore, the complete knowledge may not be fully available at the beginning
of the plan execution, but could rather be acquired during the execution itself.
Concretely, this research promotes the adoption of different phases to ground an
action to an executable skill, as shown in Figure 1.5: a first refinement process
grounds a symbolic action to a skill prototypes, and then the skill prototype is
fed with additional knowledge. As a result, the same action can be grounded by
many skill prototypes, which in turn they boil down to a different skill instance,
depending on the knowledge of the context in which the action is performed.

Finally, yet another research hypothesis concerns the composability of a skill,
both from the modelling and the execution point of view. The former advocates
that a skill can be modelled as a composition of other skills, while the latter
indicates that skills can be executed concurrently.

1.3.2 Constraint-based Approach

One of the objectives of this dissertation is to employ declarative specifications
rather than procedural programming. To this end, a proposed methodology is
to consider everything as a constraint-based problem. This is motivated by the
fact that most of the solvers, in both discrete and continuous domains, already
adopt such a methodology:

• in the planning domain, a plan is generated from the knowledge about

12 INTRODUCTION

Symbolic
Action

Skill Prototype

Skill Instance

Skill Prototype

Skill Prototype

Skill Instance

Skill Instance

Skill Instance

Skill Instance

Skill Instance

Context (Knowledge)

Figure 1.5: Simplified representation of the phases that ground an action. An action
can be implemented by multiple skill prototypes, which in turn are grounded as a
skill instance. The arrows between action and skills denote a conform-to relationship,
while an additional arrow indicates the increasing detail of the knowledge required in
the refinement process.

possible actions and classes of objects that populate the world (the
“domain”), and the concrete world instance and goals to achieve (the
“problem”). Both domain and problem can be expressed as a set of logical
constraints, formulating a Constraint Satisfaction Problem (CSP);

• in the control domain, Constraint Optimisation Problems (COPs) are
used to describe a motion problem, whether the solution is a trajectory
to follow or an instantaneous control action to apply to the robot joints;
the former regards motion planning, the latter concerns motion control.
This solution aims to minimise a certain objective function that reflects
the intended behaviour, while respecting some constraints, e.g., about the
robot capabilities, such as joints limits.

These similarities lead the constraint-based approach to be a candidate as an
“interlingua” between discrete and continuous problems, where logical constraints
are translated to motion constraints (and viceversa). This hypothesis has been
investigated already, bridging the symbolic planning to the motion planning;
examples are in [18, 47, 74, 156, 89, 88]. However, these approaches still reside
in the planning domain, where everything must be known in the planning phase.
This leads to some assumptions and compromises: all the knowledge must be
available in advance, thus the environment is static; otherwise replanning is
necessary, but its computational cost is extremely high in a realistic scenario,
and such a cost increases even more with the introduction of motion constraints.

METHODOLOGY 13

Furthermore, even if dynamic constraints can be taken into account in a generic
motion planning problem, none of the above-mentioned prior-work considers
force-based tasks. Approximations that allow geometric reasoning over physical
properties of an object is possible [106], but also in such cases interaction tasks
cannot be detailed. Resuming, motion planning techniques can be adopted to
reason about the feasibility of a plan, but not for active control.

Instead, this dissertation focuses on bridging symbolic plans to those
COP techniques that perform reactive control, such as the instantaneous Task
Specification using Constraints (iTaSC) [36], the Stanford Whole-Body Control
(SWBC) [141], the Stack of Tasks (SoT) [96] or the recent expressiongraph-based
Task Specification Language (eTaSL) [2]. To the best of the author’s knowledge,
this promising synergy has been only partially explored [120, 121, 12], probably
due to the different research interests of the Robotics Community.

1.3.3 Graphs Models for Knowledge Representation

Graphs are known data structures in AI [32, 169], Control and Robotics
literature, mostly used to store knowledge and relationships between the
connected information; some examples are: graph structures for CSP [39];
world model representation [22]; algorithms for Simultaneous Localization
and Mapping [64]; bond-graphs [6, 115]; semantic description of kinematic
chains [142]. This dissertation is not an exception, and it promotes the adoption
of hierarchical hypergraphs as a primary structural model:

• a hyperedge is a first-class citizen that represents a n-ary relationship;

• nodes are hierarchical, so they can contain a graph. This introduce the
generic concept of level of abstraction, since each node can be expanded
to contain deeper knowledge, which is relevant only for some parts of an
application, or unknown a priori.

Additional structural constraints can be imposed by the specific knowledge
domain that the graph represents; in this dissertation, such a knowledge
embeds relationships between executable motion skills. This work advocates
the importance of separating the structural model from its interpretation (i.e.,
behaviour and functionalities), which is domain-specific.

14 INTRODUCTION

1.3.4 Model-Driven Engineering Methodology

Model-Driven Engineering is a software methodology to create and describe
architectural solutions by means of domain specific models [80, 19]. Instead of
describing the functionalities through Application Program Interfaces (APIs),
whether as routines or as protocols, in this work the representation choice falls
in the Domain Specific Languages (DSLs) [55]. In this way, both structural
data and attached semantics are decoupled from the underlying implementation
of the functionalities, which allow to convey the achieved results in a formal
manner. Atkinson et al. [8] suggest four modelling layers that represent the
different abstractions over the information that the model contains:

M3: the domain-independent model, also called meta-meta-model, represents
the generic and invariant concepts and relations that hold over multiple
domains. In MDE, it is also referred as a language or the tool to
model other languages. In the context of this work, an example is the
mathematical foundation of the graph theory, since graphs are employed
to represent structural information (vertex) and the relationships between
those (edges);

M2: the domain-specific model, or simply meta-model, augments a M3 model
with domain-specific information and constraints. This work proposes
DSLs that reside in this layer, since they are meant to solve a problem in
a specific domain. An early example is the structural rules applied to a
generic graph to describe the dependencies between executable skills;

M1: the domain model, or just model, is a specific instance of a M2 model, for
example, a specific set of dependencies between skills;

M0: the instance of a M1 model that often represents the concrete information
of the above layers.

These abstraction layers are related to each other by a conforms-to relationship,
from which entails a statement of software-reusability: each functionality
implemented in one specific M3 model can be applied to any M2 model that
conforms-to the M3 model, and so on for the other layers. Specific details are
discussed for each DSL proposed in this dissertation.

1.3.5 JSON and JSON-Schema

Another decision over a DSL design is whether its implementation is internal (or
embedded) to a general purpose language. The initial development of the DSLs

CONTRIBUTIONS AND OUTLINE 15

JSON data JSON-Schema

M0 M1
JSON-Schema
meta-model

M2

conforms-to conforms-to

Figure 1.6: The conforms-to relationship and the modelling layers in the context of
JSON documents.

in this dissertation is supported by the Lua scripting language [70] to obtain
executable models. However, this work presents alternative representations
based on JavaScript Object Notation (JSON) [28] documents. The JSON
data format suits the requirements of a format for sharing models, since it is
language-independent and both machine and human readable. Furthermore, the
structural representation of a JSON document can be described by a specific
schema model, which resides in the M1 level. In turn, such a model conforms to
the so-called JSON-Schema [57], a meta-model (M2) that defines the semantics
of the keywords used in a schema, also encoded as a JSON document2. This
approach enables structural checks over the validity of a JSON document.
Figure 1.6 depicts the modeling layers around the conforms-to relationships in
the JSON context, while Figure 1.7 proposes a concrete usage example. Finally,
the recent JSON-LD (Linked Data) [155] allows to link both data and models
together, such that new DSLs can be obtained by composition. This dissertation
does not make use of the JSON-LD, but such a tool further motivates the JSON
choice.

1.4 Contributions and Outline

This research proposes formal methods to ground a symbolic action to an
executable motion skill, and to compose and to coordinate the concurrent
execution of multiple skills. The skill scheduling is driven by logical constraints,
such that the behaviour is adapted to the context of the execution. In detail, this
dissertation provides a structural way to model both discrete and continuous
aspects of a skill, taking into account not only the intended behaviour, but also
non-nominal situations. The composition of the skills to be performed defines a
constraint-based task specification online, which in turn generates a constraint-
optimization problem; the computed solution is the control action to apply to
the robot joints. As a whole, this work can be seen as an integration effort
to combine symbolic plans and executable task specifications. For this reason,
this dissertation does not contribute to improve the current state-of-the-art

2The specification of the JSON-schema meta-model can be found in http://json-schema.
org/draft-04/schema.

http://json-schema.org/draft-04/schema
http://json-schema.org/draft-04/schema

16 INTRODUCTION

{
"name" : " joint1 ",
" position ": 0.21,
" velocity ": 0.04,
" acceleration ": -0.01,
" timestamp ":

1456389234 ,
...

}

{
"id": "http: //.../ joint_info ",
" $schema ": " htttp:// json - schema .org

/draft -04/ schema ",
" description ": " joint information "
" type " : " object ",
" properties " : {

"name" : {" type " : " string "},
" position " : {

" type " : " number ",
" minimum " : -0.3,
" maximum " : 0.3

}
...

}
}

Figure 1.7: A JSON document that reports some data specific to a robot joint (M0,
on the left) that conforms to a JSON-Schema model (M1, on the right), which in turn
conforms to the JSON-Schema meta-model.

with respect to solvers and algorithms in both planning and control domains.
Instead, it provides a novel programming paradigm that bridges the gap on
the scheduling of discrete plans in the continuous domain. Moreover, this work
addresses a major issue that affect most of the current control frameworks, which
is the limitation of composing and configuring critical parts of an application
in an early stage, often making decisions that are not optimised to the current
context of the execution.

In detail, each chapter contributes to address the several questions that compose
the problem statement (Section 1.1) as reported below.

Chapter 2 introduces to the Skill Dependency Graph (SDG), an executable
model that grounds a symbolic plan by means of the dependencies (edges in the
graph) of each skill (vertex in the graph) representing a symbolic action. To
this end, this chapter proposes a skill model that represents both nominal and
non-nominal situations, and that bridges a discrete description to a continuous
motion specification (Q4). The SDG model, interpreted by an executive engine
called Skill Dependency Graph Executive (SDG-E), is built through a minimal
set of declarative rules (Q7) that expresses the relationships that constrain
the execution of each skill; this approach defines a language called micro Skill
Dependency Language (uSDL). Therefore, the skill execution is influenced by
logical conditions on the continuous state of both robot and environment: a
contribution consists in formally defining such a mapping (Q5, Q6). At run-

CONTRIBUTIONS AND OUTLINE 17

time, the satisfaction of the modelled dependencies determines whether the
skills are executed concurrently or not, that is, defining an execution order
(scheduling) online (Q2).

Chapter 3 proposes a constraint-based task specification using geometric
expressions. A geometric expression is a relationship between geometric entities
that are part of a model of the manipulated object, such as points, lines and
planes. This object-centric DSL extends existing task specifications, which are
often coupled to a specific control strategy. This DSL contributes to decouple the
task specification from the underlying numerical solver. This chapter partially
contributes to describe the grounding of an action in the continuous domain
(Q3, Q5).

Chapter 4 contributes to integrate the previous findings, aiming to generalise
the description of a skill model. The result is a skill prototype, a skill having each
behaviour described by a constraint-based motion specification, which in turn is
defined on the basis of generic geometric items (Q3 and Q4). A skill prototype
is not executable as is, but it requires additional context-dependent knowledge.
Another contribution is the definition of the context-dependent information
(Q1) that, once available, refines the skill prototype to an executable skill
instance. This chapter is accompanied by a set of examples showing how to
define complex skill prototypes by composition of existing ones.

Chapter 5 addresses to the question Q8, proposing a “Just-in-Time” (JIT)
strategy to compose a motion specification at run-time on the basis of the
SDG model and a Skill Life Cycle. This approach aims to postpone all the
decisions until it is needed, so that the action is grounded to a skill that encodes
the latest, context-dependent information available at run-time. In addition,
this chapter shows how to delegate decisions often taken during the planning
phase to a local SDG-E. Therefore, this chapter partially contributes to solve
the questions Q1, Q2 and Q3.

Chapter 6 advocates the hierarchical hypergraph as a structural model to
describe context-dependent knowledge. The objectives are: i) to provide a formal
language to describe hierarchical hypergraphs, called NPC4, ii) to separate the
structural model of a graph from its behaviour (or functionality), in this way
iii) other DSLs can be realised by adding domain-dependent constraints on the
structure, then “activated” by domain-dependent functionalities. This work
contributes to standardise graph-based models, by separating common from

18 INTRODUCTION

domain-dependent assumptions, thus promoting model sharing and reusability
of common functionalities. This modelling effort applies to a broader scope than
the one discussed in this dissertation, and it provides further insights on the
SDG approach, since the SDG structural model conforms to the NPC4 language.
That is, this chapter is an answer to Q9.

Appendix A reports a set of models and meta-models in JSON and JSON-
Schema format that are discussed along the text.

Suggestions to the reader: a first set of dependencies concerns the reading
order of the chapters. As they are, the chapters are ordered to facilitate the
understanding of the solution proposed. However, this order is not strictly
necessary, since Chapter 2 and Chapter 3 are self-contained and their order can
be reversed: this is yet another partial-order plan. The author crafted this text
taking into account the heterogeneous background of the treated concepts, and
it is author’s hope that the reader will enjoy this dissertation.

Chapter 2

Skill Dependency Graph

This chapter introduces the Skill Dependency Graph (SDG), a first modelling
step in a broader methodology to coordinate, configure and compose robotic
behaviours. A SDG is a model that represents a concrete instance of a
plan, where the skills are executable primitives that exhibit both discrete and
continuous behaviours. The skill execution is driven by a set of dependencies
that must be satisfied during or prior to execution; their online evaluation is
based on monitored conditions that capture the dynamic changes of the world.
In this way, the scheduling of the skills is determined by the context in which
the robot operates, ordering their activation accordingly. The SDG model suits
to represent situations, that is the execution order of the skills (i.e., scheduling),
described by a set of declarative rules, as an alternative to procedural recipes.

To this end, logical conditions and skills play a relevant role, so a first
formalisation is required (Section 2.1 and Section 2.2). On the basis of the latter,
a formalisation of the SDG model, its primitives and its relationships is presented
in Section 2.3. The online execution of a SDG model is coordinated by the
Skill Dependency Graph Executive (SDG-E, Section 2.4), a software entity that
resides in the middle layer of a “Three-Tiered” control architecture [24, 83]. To
compose a SDG model and to express the skills scheduling order by declarative
rules, a language called micro Skill Dependency Language (uSDL) is introduced
in Section 2.5. The features of the proposed approach are demonstrated by the
solution of a concrete Open a Drawer use-case (Section 2.6). Finally a review of
related works (Section 2.7) reports about alternative mathematical formalisms
and concrete plan (or task) executives.

19

20 SKILL DEPENDENCY GRAPH

2.1 The Execution Monitoring Role

Execution monitoring is a key feature of any automated system; it allows to
detect and classify the quality of the performed behaviour. That may differ
from the nominal case, and the causes of such differences may vary: a hardware
failure, uncertainties, unreliable resources, environment changes, unforeseen
situations and so on. Some of those issues have been widely investigated in the
past by the control community, referring to the problem of fault detection and
isolation (FDI). These solutions have been successfully applied to industrial and
aerospace domains, but not in the robotic context. A survey of the existing
approaches in robotics is presented in [119], which identifies three categories:
analytical, data-driven and knowledge-based. This separation is mostly due
to an heterogeneous background of the community involved in the robotics
research. Anyway, they share a common definition of execution monitoring,
namely the online detection of anomalies in the behaviour of a system.

Measurement
+

Estimation

Controller Plant/Robot
+
-

Fault Detection/
Behaviour
Evaluation

Coordinator/
Reconfiguration

Mechanism

Plan Executive

Plan

+Trajectory
Generator

Continuous Control

Configuration
Specification

Configures

Configures
Configures

Continuous/Discrete Mapping

Figure 2.1: Architectural separation between a continuous control strategy (bottom)
and a discrete plan executive (top). A generic closed loop strategy is shown in form
of a control diagram: r and u are reference signal and control action, respectively; g,
f and h represent the disturbances in the continuous domain. The plan executive
generates a specification that configures the control algorithms. Such a configuration
ensures a correct execution of a plan, considering the logical information from the
underlying control system, which must be mapped from the continuous domain.

In the context of this work, a contribution aims to provide a link between
a continuous monitor and the symbolic representation from a plan executive

THE EXECUTION MONITORING ROLE 21

perspective1. Considering a generic system in Figure 2.1, a plan executive
coordinates and configures the control system, in order to perform the desired
behaviour of a given plan. A configuration mechanism interacts with the
controller by changing its settings, selecting a different behaviour, or even
replacing the control algorithm strategy. Such decisions are made upon a
previous evaluation of the behaviour quality performed with respect to a nominal
plan, which is often specified as a plain sequence of tasks. Therefore, execution
monitoring has a relevant role, since it is the primary source of information
to evaluate the success or the failure of a motion. The more the monitor
information is rich and precise, the more the controller configuration is adapted
to unforeseen situations.

However, no special care is often taken on the role of the execution monitoring,
and this is denoted by the lack of appropriate primitives in the current task
specifications. Task specifications are those that describe a motion, often an
object manipulation, independently from the agent that will perform it. Most
of the current state-of-the-art in Robotics only focuses on the nominal scenario,
defining only those conditions that determine a success. A typical example is the
usage of guarded-motions in the Task Frame Formalism (TFF) [30, 82], in the
Listing 2.1; the condition, which is expressed in the last line of the specification,
determines the nominal success of the motion. Note that the TFF formalism
does not provide a linguistic primitive to denote non-nominal terminations2,
such as a timeout, a failure on the performed behaviour and so on.

1 move compliantly {
with task frame directions
xt: velocity 0 mm/sec
yt: velocity 0 mm/sec

5 zt: velocity v_des mm/sec
axt: velocity 0 rad/sec
ayt: velocity 0 rad/sec
azt: velocity 0 rad/sec

} until zt force <- f_max N

Listing 2.1: Example of a guarded-motion task definition from [30].

A step-forward in this direction is provided by the expressiongraph-based Task
Specification Language (eTaSL) [2]. eTaSL offers the capability to define multiple
event-based monitors from an arbitrary numerical expression; an example is
shown in Listing 2.2.

1In this work, the terms “plan executive“ and ”task executive“ are used interchangeably.
2This is not the only hidden assumption of TFF; another assumption is against robot

capabilities, e.g., a robot should be able to move in 6 DOF, capable of sensing forces and so
on.

22 SKILL DEPENDENCY GRAPH

1 Monitor {
context = ctx ,
name = " goal_reached ",
expr = norm(origin (arm)-origin (goal)),

5 lower = 1E-4,
actionname = " event ",
argument = " e_goal_reached "

}

Listing 2.2: Code snippet of a monitor specification in eTaSL [2].

This mechanism provides higher expressivity on defining the monitored quantity,
but the handling of the generated events is left to the user. In fact,
eTaSL promotes a FSM-based coordinator that reacts to those events, linking
a continuous behaviour to a discrete one. However, compiling a FSM is a
procedural form of programming; the FSM is usually hand-written, thus it is
statically defined. Therefore, it is not trivial to model all possible non-nominal
situations over a complex application.

The importance of an execution monitoring system has been underlined in the
architectural Composition Pattern introduced in [167, 165]. In the composition
pattern, a monitor is a functional entity, responsible for verifying some conditions
and raise events accordingly. A concrete DSL implementation that complies
to the Composition Pattern is introduced in [168]. However, this DSL does
not provide any formal facility to define a criterion to detect a failure of the
task under execution, and it falls on the same already mentioned limitations of
the eTaSL framework. The following sections aim to address such limitations.

2.1.1 Monitors and Conditions in the Continuous and Discrete
Domain

This section proposes a formal tool to bridge the monitoring of a continuous
quantity to a discrete description. In control theory, a signal is any quantity
exhibiting variation in time (or space) that conveys specific information about
a behavior or a status of a physical system. In a robotic context, examples
are: (i) a position, (e.g., joint position, an object position) (ii) a velocity, (e.g.,
joint velocity, an object velocity) (iii) a force, (e.g., joint torque, contact force
against a surface). In Artificial Intelligence (AI), the fluent has the same
meaning of signal, that is anything whose value is subject to change over time.
Actually, in AI the term fluent is often limited to propositional fluents, that is
a logical condition whose truth value changes over the time. One example
is the proposition “the drawer is open”: such a condition may hold or not,
and its evaluation can be grounded in many forms, e.g., evaluating the relative

THE EXECUTION MONITORING ROLE 23

position of both drawer and furniture. However, the threshold that determines
if the drawer is open may vary, depending on the domain of the application;
e.g., a small opening suffices to place small items in the drawer, otherwise the
drawer must be fully open for placing large objects. Furthermore, a spatial
relationship is not the only way to ground the truth value of such a proposition.
In fact, an agent may verify this condition with a concrete action, such as
moving the drawer along the closing direction, and checking the forces of such
a physical interaction. In short, the mechanism of monitoring a quantity, often
called symbolic anchoring or lifting, is rather complex, since involves knowledge,
context of the application, perception and related execution of motions. This
work does not focus on the overall anchoring problem, but on the monitoring
necessary to validate the expected effect of a motion, bridging continuous and
discrete domains.

Resuming, monitoring a quantity means to evaluate and to assign a semantic
information to its value over the time. For this purpose, a monitor function is
introduced as follows.�

�

�

�

Monitor Function: let y(t) be a signal representing the quantity to monitor,
then a monitor function m is defined as

m(y(t), ζ(·)) =
{
True if y(t) ≤ ζ(·)
False otherwise,

(2.1)

where ζ(·) is a threshold function associated with a relational operator
(<,≤,=,≥, >) that converts the continuous value of y to a logical truth
value.

In short, the monitor function converts a signal3 to a fluent having the semantic
meaning of the condition that it represents. Furthermore, multiple monitor
functions can be applied on the same signal y(t), representing different logical
propositions. To simplify the terminology, we drop the term fluent in favor
of the generic term condition. This is justified by the fact that all the logical
propositions are time-varying in the context of this work.�
�

�
�

Logical Condition c is a symbolic variable that represents the truth value
of a logical proposition. A condition is linked to a monitor function that
grounds the evaluation of the truth value, formally c⇐ m.

The difference between a monitor function and a condition is the domain in
which they are defined. A condition c lies in the symbolic domain, while the

3Of course, it is assumed that continuous time signals are actually elaborated in a digital
domain, as signals sampled at a proper frequency, without need to introduce a change of
notation (e.g., from t to tk).

24 SKILL DEPENDENCY GRAPH

associated monitor function m is the concrete anchoring mechanism in the
continuous domain. Of course, the evaluation of c is possible only if it is
mapped to a monitor function m. However, the condition c abstracts from its
grounding, and the mapping with a monitor function can be postponed until
an evaluation is required. To re-call an evaluation of c in the symbolic domain,
the predicate holdsAt is borrowed from Event Calculus and Situation Calculus
[145] as follows:�
�

�
�

holdsAt(c,t) predicate: a condition c holds at time t. Formally,

holdsAt(c, t)← m(y(t), ζ(·)) (2.2)

The holdsAt predicate implies a duration over the time of its truth value, thus
it is not instantaneous (the instantaneous concept is provided by the event
primitive, introduced below). Therefore, if holdsAt(c, t) is true, then it must
exists a time interval for which the same predicate holds; formally:

(holdsAt(c, t)← True) → ∃ t1, t2 : ∀ti ∈ [t1, t2[holdsAt(c, ti)← True (2.3)

The latter motivates the introduction of a τ parameter that represents the
minimum time interval that captures the truth value of a condition4.

Furthermore, new conditions can be defined starting from existing ones through
a logical composition. In short, a condition can be defined as boolean expression
that composes a predicate. For example, a condition c3 can be defined by the
following expression:

holdsAt(c3, t)← (holdsAt(c1, t) ∧ holdsAt(c2, t)).

Another relevant concept is the event, which is strongly coupled to a condition
evaluation.�
�

�
�Event e: an instantaneous notification of a change over time of the truth

value of a condition c.

Formally, an event is yet another fluent that holds only at one very specific
point in time. Figure 2.2 shows a sequence of events defined over a
condition c. The function events(c) returns an ordered set E of events
defined on c, while the function event(c, j) returns a specific event ec,j .
The truth value of an event is evaluated by the predicate occurs, that is:�� ��occurs(ec,j , t) predicate: the event ec,j := event(c, j) occurs at time t.

4Such a parameter does not necessarily correspond to the sampling time of the signal,
which is the higher time resolution for the execution monitoring.

THE EXECUTION MONITORING ROLE 25

time
False

True

Figure 2.2: A sequence of events E = events(c) = {ec,1, ec,2, ec,3, . . . } over a condition
c. ec,1 and ec,3 are rising events; ec,2 and ec,4 are falling events.

The above-mentioned definitions and predicates are propositional axioms, which
are arbitrary and refutable by nature. Alternative definitions exist in literature,
all with different implications. For instance, in Event Calculus conditions
(fluents) and events are fully decoupled concepts. However, the motivation
behind those definitions is given by a bottom-up approach: a condition is defined
through a monitor function that bridges discrete and continuous domains. As it
will be discussed in Section 2.7, the level of expressivity does not change with
respect to other approaches, but the adopted axioms directly link to monitored
quantities.

Given the previous definitions, then the following axiom implication is well-
formed:

occurs(ec,j , t)↔(¬holdsAt(c, t−) ∧ holdsAt(c, t+))

∨ (¬holdsAt(c, t+) ∧ holdsAt(c, t−))

where t− and t+ defines a neighbourhood on t.

As shown in Figure 2.2, a distinction between rising and falling events exists,
that is

eventRising(ec,j , t)↔ (occurs(ec,j , t) ∧ (holdsAt(c, t+)))

eventFalling(ec,j , t)↔ (occurs(ec,j , t) ∧ (¬holdsAt(c, t+))).

Furthermore, events defined over the same condition are unique in time, formally

∀C, t : occurs(ec,j , t)→ ∀k, k 6= j, (¬occurs(ec,k, t))

Another interesting predicate is the happened, which evaluates if the event has
occurred in the past.

26 SKILL DEPENDENCY GRAPH

�

�

	
happened(e, t) predicate: given an event ec,j defined over a condition c,
and a time T ∈ R+, then

happened(ec,j , T)← ∃t ∈ R+, t ≤ T : occurs(ec,j , t)

Conditions, events and related predicates are sufficient primitives to construct
a complex monitor expression. On the same quantities can be applied different
monitor functions, which are linked to logical conditions in the discrete domain.
The meaning behind the truth value of a condition is context-dependent and
interpreted by the execution monitoring system. As an example, Table 2.1
shows multiple monitor functions that aim to evaluate a success condition cok
and a failure condition named cfail. The success condition holds if the monitor
quantity y(t) lies in a range of values within a given timeout Tout. In addition,
the dynamic evolution of y(t) is taken into account, that is the condition holds
if y(t) does not vary. However, if the timeout occurs, y(t) lying in the given
range is acceptable. On the other hand, cfail holds if the latter has not been
obtained. Table 2.2 depicts a possible evolution of the monitored signals using
the monitor functions in Table 2.1. The above-described semantics represent a
common pattern for monitoring a quantity that exhibits a dynamic behaviour.
Other context-dependent interpretations are, of course, feasible.

THE EXECUTION MONITORING ROLE 27

1

mup(y(t), ζup(t)) =
{
True if y(t) ≤ ζup(t)
False otherwise

mlow(y(t), ζlow(t)) =
{
True if y(t) ≥ ζlow(t)
False otherwise

cup ← mup, cdown ← mdown

2
mẏ(ẏ(t), ζẏ(t)) =

{
True if t ≤ ζẏ(t)
False otherwise

cD ← mẏ

3
mTout

(t, Tout) =
{
True if t ≥ Tout
False otherwise

cTout
← mTout

4

holdsAt(cin, t)←

holdsAt(cdown, t)) ∧ (holdsAt(cup, t))

holdsAt(cok, t)←

holdsAt(cin, t)∧

(holdsAt(ctout
, t) ∨ holdsAt(cD, t))

holdsAt(cfail, t)←

holdsAt(ctout , t) ∧ (¬holdsAt(cin, t))

Table 2.1: Monitor functions applied to the signals shown in Table 2.2, as an example
of a composite monitor of the predicate “y(t) signal is in range [ζdown, ζup] before a
timeout Tout”. ẏ(t) derivative of the signal is considered to check if the evolution of
y is steady. The predicate is evaluated from the condition cok, defined as boolean
expression over the conditions cD, cTout , cup and cdown. As a result, cok holds if y lies
in the desired range before Tout, but cD condition also avoids to trigger an event ecok,1
on the range border, if y is still changing. The above-described mechanism is a useful
pattern to properly determine the success (or failure) of a grounded action. All the
threshold functions are expressed as a constant value.

28 SKILL DEPENDENCY GRAPH

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

m
o
n
it

o
re

d
 q

u
a
n

ti
ty

60 1 2 3 4 5
time [s]

2
60 1 2 3 4 5

time [s]

3
0

time [s]

1

2

3

4
5
6

60 1 2 3 4 5 time [s]

4 60 1 2 3 4 5 time [s]

0
1
0
1
0
1
0
1

0
1

Table 2.2: Example of evolution of a set of monitored signals and conditions; the
monitor functions applied to the monitored signals are illustrated in Table 2.1. In
this example, the condition cok holds, since the monitored signal y(t) is in range
[ζdown, ζup] and steady within the timeout Tout.

THE SKILL MODEL 29

2.2 The Skill Model

This section proposes the concept of the skill as a formal model to cover both
discrete and continuous representations of a grounded action. The purpose
of an action is to perform a desired world-transformation, sometimes called
intended effect or post-condition. In literature, the execution of a symbolic
action can lead to one of the following status: i) successfully executed, i.e., the
intended effect is achieved; ii) the execution fails, i.e., the intended effect is
not achieved; iii) the action is planned but not yet executed; iv) the action is
under execution but its result is not known yet. This discrete abstraction is
a consequence of a functional approach widely used in the symbolic domain:
the execution of the action is delegated to an underlying controller, and a plan
executive decides the next action to execute upon the current outcome. This
strategy does not permit to reason about the execution of the action itself,
since there is no information about “what is happening during execution”: the
skill model addresses this limitation. The execution of the proposed skill model
aims to achieve the same intended effect of the action that the skill grounds.
Moreover, a skill (execution) monitoring captures the dynamic behaviour of the
execution, which is systematically mapped in the symbolic domain. This allows
to further extend the reasoning about the motion execution itself locally, at the
plan executive level.

2.2.1 A Motivational Example

Once an action is activated, the intended effect is not obtained immediately, but
in accordance with the dynamic that involves all the actors in the execution,
whether they are controlled (i.e., the robot) or not (i.e., the environment). For
a better understanding, let us consider a concrete pouring water case of study.
A robot serves a glass of water, filling 25 cl of water from a jug. For such a
task, the main action consists in pouring the water, and that can be achieved
by tilting the jug. An ideal flow is obtained by a tilt angle of 1.22 rad, but
an inclination of 0.87 rad is already enough, due to the water contained in
the jug. Such information is strongly context-dependent: another jug or a
different initial quantity of water would change these values. Before pouring, it
is necessary that the jug’s spout is on the top of the glass, otherwise the water
will be spilled out. This describes a logical constraint, a necessary pre-condition
that must hold prior to the execution of the action. To this end, another action
may be executed to fulfill such a condition, obtaining a plain sequence of action
executions.

The execution of a nominal plan is illustrated in Figure 2.3: the condition of

30 SKILL DEPENDENCY GRAPH

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

w
at

er
 v

ol
um

e
[c

l]

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

w
at

er
 v

ol
um

e
[c

l]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

True

False

Holding

Gl
as

s
Al

ig
ne

d
(lo

gi
ca

l c
on

di
tio

n)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

True

False

Holding

Fai
led

Gl
as

s
Al

ig
ne

d
(lo

gi
ca

l c
on

di
tio

n)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

til
tin

g
ju

g
an

gl
e

[r
ad

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

til
tin

g
ju

g
an

gl
e

[r
ad

]

Running Running

Su
sp

en
din

g

Ex
ec

ut
ed

Figure 2.3: Nominal (left) and non-nominal (right) execution of a pouring plan
composed of two skills. The nominal execution motivates the status of running,
holding and executed. The non-nominal execution, due to a not satisfied logical
constraint, motivates the existence of a suspending behaviour.

the glass aligned with the jug holds, thus the robot tilts the jug. The skill that
refines the tilting action implements a continuous behaviour, illustrated by the
controlled tilting angle. The outcome, measured by monitoring the water in the
glass, is not instantaneous, but it changes in accordance with the dynamic of
the system (jug, glass, water flow, and so on); a monitor function is defined for
such a purpose. Once the intended effect (glass filled) is achieved, the execution
of the skill terminates, bringing the jug to its initial inclination. This execution
exhibits three different discrete status of a skill, each one representing a separate
behaviour: i) running status, that is the behaviour that actively tilts the jug,
until the intended effect is achieved; ii) executed status, that is the behaviour
related to the closure of a skill; iii) holding status, that does not concern the
tilting action but a second action that maintains the glass and the jug aligned
(if necessary).

However, the nominal description reported above is not sufficient to provide a
robust skill model. For instance, no reaction is modelled in case of the glass
is moved while pouring the water on it. A human would react spontaneously
to such a situation, by tilting back the jug. This is possible because human

THE SKILL MODEL 31

beings reason on a open world context, inferring implicit information given
from an assigned task. Instead, automated plans are based on a closed world
assumption, especially in the executive phase: if an unexpected event is not
modelled, the robot may even do not recognise the occurred failure. An example
of non-nominal behaviour is reported in Figure 2.3: the alignment condition
does not hold, thus the tilting skill switches to a suspending status, bringing
the jug in a different angle position, enough to prevent to continue to pour
(nominal behaviour).

2.2.2 Design Drivers

The previous example illustrates the following aspects that a skill model must
consider:

• hybrid behaviour: a skill execution exhibits a finite number of
continuous behaviours, whether they are nominal or not; those can be
represented symbolically, that is, a skill manifests both discrete and
continuous behaviours, and it can be modelled as a hybrid system;

• composability: a skill model can be composed of other skills, reflecting
the inherent composability of a symbolic action; e.g., a “pouring action”
implies the execution multiples sub-actions (i.e., a sub-plan), such as
“grasp a jug”, “place the jug’s spout on the top of the glass”, “tilt the
jug” and so on; the skill that grounds such an action is implemented by
composition of other skills;

• scheduling: like actions, it exists an order on the skill execution, mostly
driven by condition-based dependencies;

• context: an executable skill model adds those context-dependent
information necessary for its execution.

2.2.3 Skill Behaviours

A main contribution of this modelling effort is to introduce a minimal but
complete set of behaviours that fully describe a skill model. Motivated by the
example in Section 2.2.1, the proposed set of behaviours follows:

• Nominal behaviour, namely a behaviour that aims to achieve the intended
effect of the skill (e.g., tilting the jug);

32 SKILL DEPENDENCY GRAPH

• Non-nominal behaviour, that is a behaviour that replaces the nominal
behavior in case of non-nominal (but modelled) situations (e.g., to prevent
to pour more water if the glass is not aligned with the jug’s spout);

• Holding behaviour, namely a behaviour that preserves the achievement of
an intended effect previously realised;

• Failed behaviour, that is a behaviour that expresses what to do in case
that the nominal behaviour does not succeed.

The execution of a skill model concerns the selection of the behaviour to apply at
run-time. An execution engine is responsible for such a decision, which involves
a set of declarative rules based on logical conditions continuously monitored.
Therefore, the execution engine sets a status of a skill instance5 that represents
the deployed behaviour; an enumerative list of status follows:

• Inactive: this is the initial status of a skill instance, not yet in the
execution stack; no behaviour is associated to this status;

• Running: a modelled nominal behaviour is deployed;

• Suspending: a non-nominal behaviour is applied;

• Holding: a holding behaviour is deployed;

• Executed: is a terminal status that indicates the successful execution of
the skill instance; the intended effect is achieved and the skill instance
can be dismissed;

• Failed: is a terminal status that represents a modelled failure of the skill
execution, whether the previous behaviour was nominal or not; in this
status, a failed behaviour is applied.

As a convention, s indicates a skill instance, while s.<status> denotes the run-
time property of s, e.g., s.running. In the same vein, the fluent is<status>(s, t)
is introduced to formalise the declarative specifications that rule the skill
execution. For instance, isRunning(s, t) is a predicate that holds if s is in
running status at the given time t. During execution, a skill instance s can
assume one and only one status at any given time, therefore inferencing as
follows is correct:

isRunning(s, t)↔(¬isInactive(s, t)) ∧ (¬isHolding(s, t))

∧ (¬isExecuted(s, t)) ∧ (¬isSuspending(s, t)). (2.4)
5A skill instance (M0) is a concrete instance of a skill model (M1).

THE SKILL MODEL 33

2.2.4 Hierarchy in the Skill Model

The proposed skill model is hierarchical. The hierarchy adds extra semantics
to compose several skills as a whole, and it allows to further expand a skill
model to a deeper level of detail. The hierarchy relationship imposes a strict
tree structure: a skill can contain multiple children, but one child has only one
parent. To express a hierarchy relationship, the following notation is adopted:

• contains(s1, s2) denotes that the skill s1 contains s2;

• isParent(s1, s2) is a predicate that holds if a hierarchical relationship ex-
ists between the two skills, formally isParent(s1, s2)↔ contains(s1, s2);

• parentOf(s2) is function that returns s1 parent node of s2;

• childrenOf(s1) is function that returns a set of children nodes of s1.

2.2.5 Logical Conditions

Section 2.1 illustrates the relevant role of the execution monitoring, providing
the tools to formalise the mapping between continuous and discrete domain.
However, the nature of a condition may vary, e.g., the monitoring over the
achievement of a intended effect, the monitoring over the position of an object,
or monitoring if a button has been pressed. In the skill model, logical conditions
are first-class citizens, and they are classified in accordance with the existence
of a causality relationship between the execution of a skill and the truth value
of the condition. The definitions that follow are part of the skill model, and
they are fundamental to constrain logical dependencies between skills, as shown
in Section 2.3.�

�

�

�
Internal Condition: let c and s be a logical condition and a skill instance,
respectively. c is called internal with respect to s if there exists a causality
relationship between the execution of the skill s (cause) and the truth value
of c (effect).

Examples of internal conditions are those that are evaluated by monitoring
function(s) defined over a signal(s) controlled by s; e.g., a threshold over a
controlled position of an object, a threshold over a controlled velocity of a robotic
joint and so on. Other internal conditions are based on a monitored quantity not
directly controlled by s but intended as behaviour outcome: an example is a skill
that implements a hybrid force/position control. Time-based conditions defined
over the execution of s also fall in this definition. For instance, a condition
whose the truth value holds after a certain time elapsed in s.running.

34 SKILL DEPENDENCY GRAPH

As a complementary definition, an external condition is a condition which is
not internal to s.�
�

�
�

External Condition: let c and s be a condition and skill, c is said external
with respect to s if c there is no causality relationship between the execution
of s and the truth value of c.

As a remark, this property is always referred to a node s, and it is mutually
exclusive, formally isExternal(s, c)↔ ¬ isInternal(s, c).

Figure 2.4: Set diagram of the conditions defined over a skill s. C is condition
set; Cs ⊆ C represents the internal conditions related to s. Within Cs, one and
only one condition ceff is intended effect of s. Multiple side-effects cs,j exist (cs,j =
side-eff(s,j), ∀cs,j ∈ Cs \ ceff), among which Cs,fail is set of failure conditions.

Given a skill instance s, Figure 2.4 shows the set of internal conditions Cs,
which is further classified in:

• intended effect (ceff) holds if the goal of the nominal behaviour of the
skill is achieved. This condition is unique for the given skill instance
s. However, expressivity is not affected, since such a condition can be
expressed as a boolean expression. Formally, the function eff(s) refers to
the modelled intention of the skill s;

• side effects (cs,j) are those internal conditions that are not intended
effect of s. Side effects are not uniquely defined in s; multiple outcomes
can be expressed and realised over the execution of s. The notation
cs,j = side-eff(s, j) indicates the j-th side-effect;

• execution failure set (Cs,fail) is a subset of side-effects that reports a
skill execution failure. Failure conditions are not unique in s, and the k-th
failure condition is indicated with the notation cs,k = fail(s, k). Note

SKILL DEPENDENCY GRAPH MODEL 35

that these failures are foreseen failures for which the skill is ready to deal
with; “real” failures are those for which the skill has no solution modelled.

2.3 Skill Dependency Graph Model

This section presents the Skill Dependency Graph (SDG), a model that grounds
a symbolic plan. A plan is a total or partial-order list of symbolic actions,
which are scheduled sequentially or concurrently, depending on the logical
constraints that bind their activation. The planning literature provides a rich
set of languages to express constraints on the action execution; a selection of
these is discussed in Section 2.7. Likewise, skills are connected to each other,
executed as a plain sequence or concurrently, depending on some constraints
evaluated online. Therefore, grounding a symbolic plan means to ground the
planned actions one by one, but also to represent the dependencies that rule the
scheduling of the skills. The Skill Dependency Graph (SDG) is a graph-based
model dedicated to represents this information.

Formally, the SDG is a hierarchical, directed acyclic hypergraph that stores
relationships between skills through conditions. Nodes represent skills, while
hyperedges represent conditional dependency relationships between skills, that
is, a logical condition that can be evaluated at run-time. The violation of a
dependency may prevent a skill execution, or even modify the original behaviour
of a skill to a non nominal configuration. The execution of one skill may cause
a condition to hold (or not), influencing the execution of other skills. This
explains the directed nature of the SDG, that indicates if a skill depends on the
relationship, or if its outcome may influence the execution of another.

2.3.1 Skill Dependencies

This section formalises the dependencies that drive the execution of a skill
instance s. Often defined over external conditions of s, these constraints
bind the activation of a skill, but also which behaviour of the skill model
is deployed during execution. This work proposes two dependency types:
activation dependency and invariant dependency. This separation is due to
the different semantic associated to the dependencies, which live in separate
contexts. The invariant dependency lives in the scope of the skill execution,
while the activation dependency lives before the scope of the skill execution.
Details on the semantic and related logical proposition axioms are explained as
follows.

36 SKILL DEPENDENCY GRAPH

Activation dependency

The activation dependency is a relationship between a skill s and a user-defined
condition cstart that indicates when the skill can be executed. The condition
cstart is also called pre-condition of s, since it represents the set of requirements
that must be satisfied prior to s execution. For this purpose, the predicate
isReadyToBeActivated(s, cstart, t) holds if the skill s can be executed at time
t:

isReadyToBeActivated(s, cstart, t)← isInactive(s, t)︸ ︷︷ ︸
scope

∧

isRunning(parentOf(s), t)︸ ︷︷ ︸
hierarchy constraint

∧

holdsAt(cstart, t)︸ ︷︷ ︸
requirement

, (2.5)

where:

• the scope term denotes that isReadyToBeActivated can hold only before
the execution of the skill;

• the hierarchy constraint indicates that the skill can be activated only if its
parent (if any) is under execution and its nominal behaviour is deployed
(i.e., running status);

• the requirement term denotes that the pre-condition cstart must hold.

As a convention, outside its scope the predicate isReadyToBeActivated does not
hold. Note that the isReadyToBeActivated indicates only if the dependencies
on the activation are satisfied; it is the skill executive engine that evaluates
this predicate online and actually activates the execution of the skill instance
(see Section 2.4). For the sake of clarity, Figure 2.5 illustrates the role of the
predicate isReadyToBeActivated.

Invariant dependency

An invariant dependency, often called per-condition, indicates a necessary
requirement for the execution of the nominal behaviour of a skill instance s. To

SKILL DEPENDENCY GRAPH MODEL 37

time

True

False

activation
True

False False

False

Figure 2.5: The role of the predicate isReadyToBeActivated, which lies in the scope
prior to the activation of the skill s. In this scope, isReadyToBeActivated holds with
the condition cstart, and the execution engine evaluates the activation of s. After the
activation of s the condition cstart may vary, but it does not affect the skill execution.

this end, the predicate invariant is introduced to bind a user-defined condition
cinv that must hold during the execution of s. Due to the previous definition,
the invariant relationship lives within the scope of the skill execution; outside
that scope, the invariant predicate is assumed hold as a convention.

In propositional logic, an invariant is defined by a tuple <s, cinv, g>, where s
is skill, cinv is a required condition and g is a third condition called guard
condition:

invariant(s, cinv, g, t)←
(
(¬isRunning(s, t)) ∧ (¬isSuspending(s, t)

)︸ ︷︷ ︸
scope

∨

((
(isRunning(s, t) ∨ isSuspending(s, t)

)︸ ︷︷ ︸
scope

∧

(
(¬holdsAt(g, t)) ∨ (holdsAt(g, t) ∧ holdsAt(cinv, t))

)︸ ︷︷ ︸
guard condition

)
(2.6)

The role of the guard condition g is to define a continuous (sub-)scope within
the execution of s: the condition cinv must hold if also g holds, otherwise
the truth value of cinv is not relevant. This allows to express a per-condition
constraint anchored to the continuous domain, and not discretely on the overall
execution of the skill. For the sake of clarity, Figure 2.6 depicts a situation that
graphically explains the role of the guard condition. As a side note, Eq. 2.6 can

38 SKILL DEPENDENCY GRAPH

time

True

False

must hold
in this scope

Figure 2.6: Scope example of an invariant(s, cinv, g, t) predicate, which lies during
the execution of the skill s and depends on the guard condition g. The invariant
dependency expresses that the condition cinv must hold within that scope.

be written even without g, but delegating to the boolean expression of cinv the
definition of scope; however, the proposed formulation is preferred since it is
explicit. Finally, multiple invariant dependencies can be applied on the same
skill instance s.

An invariant constraint is a logical proposition, thus it resides in the symbolic
domain. This symbolic constraint can be linked to the concept of geometric or
motion invariant [102, 122, 35], which resides in the continuous domain.

2.3.2 The SDG Structural Model

This section presents the structural model of the SDG and its graphical
representation (see Figure 2.7), bringing together all the elements previously
described. The first primitive of this model is the skill that, when executed,
controls the status of its internal conditions (the second primitive of the
SDG). In turn, the execution of a skill is driven by the satisfaction of some
dependencies (third primitive of the SDG), which are defined over external
conditions of the skill. This allows to “connect” the skills between each other,
through condition-based dependencies. Let S, C and D be, respectively, the sets
of skills, conditions and dependencies, then a SDG model is defined as a tuple
<S,C,D> that describes a hierarchical hypergraph. The hierarchy is inherent
in the skill model described in Section 2.2. The edge is n-ary relationship that
represents a constraint, which can be defined on multiple conditions, and it can
influence multiple skill executions.

SKILL DEPENDENCY GRAPH MODEL 39

The mostly adequate structure to describe the SDG is based on a Component-
Port-Connector paradigm, namely the NPC4 DSL that is discussed in Chapter 6.
This section does not provide detailed insights on the NPC4, but only on
the primitives required for the understanding of the SDG model, depicted in
Figure 2.7:

• a node represents a skill;

• a port denotes a “source” of a condition, that can be used to define a
dependency. A port belongs to one and only one node, exposing an internal
condition of a skill s, whether it is an intended effect or a side-effect;

• a connector represents a dependency. Since a well-formed dependency
is a relationship between a condition and a skill, the connector connects
at least two nodes; one is the subject of the constraint (a skill), the
other represents the source of the condition. In addition, connections are
directed: the target indicates the constrained skill.

Resuming, the structural model of the SDG does not allow to connect skills
to each other directly, but always through a well-formed condition-based
dependency. These connections form a directed and acyclic graph, thus the
same skill instance cannot be executed twice; however, multiple instances of
the same type can be deployed in the same graph. The previous description
defines the structural constraints of a well-formed SDG plan.

In the SDG model, a skill is a grounded symbolic action that represents a
world-transformation, but not all world-transformations are controllable. As a
consequence, not all the skills are executable:

• an executable skill is a skill fully grounded and under control of the
execution engine, that is, by executing such a skill it is possible to modify
the truth value of its intended effect;

• a skill is non-executable in the following cases:

– it is not fully grounded, i.e., the information available does not suffice
to perform the modelled behavior; an example is a skill that grounds
the action of grasping an object, but the position of such an object
is unknown;

– the skill represents an action that is not performed by the controlled
robot, but by another actor, whether it is a human or a robot.

The above-mentioned is a run-time property of a skill, but it shows the
importance of a complete representation of the plan. A well-formed SDG model

40 SKILL DEPENDENCY GRAPH

executable
skill

dependency

condition
source

non-executable
skill

Figure 2.7: Graphical representation examples of structural SDG models. On the left,
a legend of the graphical elements: executable skills are represented by rounded box
with a solid line; non-executable skills are rounded, dashed boxes; a dependency is a
connector-based hyperedge; a port exposes internal conditions of a skill. The SDG on
top-right shows a skill s1 that has a dependency relationship with the condition
cbuttonpressed. Since the cause of the condition is unknown (that is, another agent will
produce such a world-transformation, e.g., a human or a robot), a non-executable
skill is deployed. The SDG on bottom-right shows two nodes, s2 and s3, connected
through a dependency constraint db. The indirect relationship between the two skills
exists since the definition of db involves the effect of s2, eff(s2).

is complete6, and it allows to specify the dependency on unknown facts or
events, which can be specified later, during the execution of the whole plan.
This important feature of the SDG approach is called “Just-in-Time” and it is
discussed in Chapter 5.

Figure 2.7 shows two basic examples. In the first case, a skill s1 has a dependency
constraint da, e.g., on activation, against an external condition cbutton_pressed.
Since the source of such a condition is unknown, a non-executable skill is
deployed to represent a generic action that modifies the monitored condition.
Such an action can be executed by a human or an agent, e.g., push a button,
thus the skill does not ground any behaviour to be realised. However, during
the execution, a run-time update can inform that the robot itself must perform
such an action, e.g., by performing the push a button action. The second case
is trivial, since a skill s3 is constrained to a dependency db. The definition of db
involves a constraint c, that happens to be the intended effect of a modelled
skill s2 (eff(s2)). As a remark, the eff(s2) is internal with respect to s2, but
external with respect to s3. Directivity in the connections is then explained.

6No “floating” ports are allowed, since they must belong to one node. That is, a node
representing a skill is required, whether executable or not.

SDG EXECUTIVE 41

2.4 SDG Executive

This section introduces the SDG-Executive (SDG-E), the execution engine
responsible for the interpretation of a SDG model. The SDG-E is a software
entity that implements the run-time functionalities and policies that activate a
SDG model, among which:

• skill behaviour selection: a skill models multiple behaviours (see
Section 2.2), but only one is deployed at run-time. The SDG-E is
responsible for activating the skill instances, deploying one behaviour, as
well as to switch discretely from a behaviour to another during the skill
execution, in accordance with the satisfaction of the modelled dependencies.
Therefore, the SDG-E executes the transitions between skill status, which
are discussed in details in the next sub-section;

• Execution Monitoring: the SDG-E enables the monitoring of interesting
facts, whose monitor functions that bind to logical conditions that may
trigger a change in the deployed behaviour. In other words, not all logical
conditions described in a SDG model are monitored, but only those that
are relevant in the run-time context;

• online composition of a SDG model: due to a failure or an external
event, a SDG plan may vary at run-time. The SDG-E implements
the functionalities that allow to dynamically (re-)compose an existing
SDG model. Further details on this topic are available in Chapter 4 and
Chapter 5.

Therefore, the SDG-E implements a scheduling strategy of a given SDG model;
it does not concern about which skills are planned, but it is responsible for
determining when a certain skill is executed.

2.4.1 Skill Execution Status Diagram

This section introduces the Skill Execution Status Diagram (SESD) that
defines which transitions are available between the behaviours modelled in
a skill instance s (see Figure 2.8). These transitions are enabled based on the
satisfaction of dependencies that constrain the skill instance. Thus, an online
change on a monitored condition can trigger a transition from one skill status
to another, determining whether a skill is executed, it is failed or its nominal
behaviour is replaced by a non-nominal behaviour. The notation 7−→ expresses
a transition; as an example, s.inactive 7−→ s.running refers to a transition

42 SKILL DEPENDENCY GRAPH

Holding
Executed

Running

Inactive

Failed

Suspending

Figure 2.8: Skill Execution Status Diagram (SESD). This diagram describes the
transitions available between skill status. inactive is initial status of a skill instance.
executed and failed are terminal status that indicate a successful execution or a
failure, respectively. running status represents the nominal behaviour described by the
skill, while suspending describes the non-nominal behaviour. Finally, holding allows
to maintain the desired effect obtained in running status.

of s, from inactive to running. A detailed description in propositional logic
flavor is reported below.

Initial and Terminal Status

For all the skill instances in a SDG model, the initial status is inactive. After
being executed, a skill may succeed or not: the terminal status executed and
failed represents this semantic difference.

Activation, s.inactive 7−→ S.running

The activation of a skill is strictly related to the dependency constraint
isReadyToBeActivated illustrated in Section 2.3.1. As soon as the condition
cstart holds, the SDG-E switches the skill status to running, activating the
related behaviour. Formally, let s be a node in inactive status, that is
s.inactive, then the transition s.inactive 7−→ s.running is enabled if the
predicate isReadyToBeActivated(s, cstart, t) holds:

isRunning(s, t+)← isReadyToBeActivated(s, cstart, t). (2.7)

SDG EXECUTIVE 43

Invariant constraint, s.running 7−→ s.suspending and
s.suspending 7−→ s.running

The transitions between the nominal execution and the non-nominal execution
of a skill instance s are determined by the invariant constraints presented in
Section 2.3.1. Unlike the activation dependency, a skill instance can be subject
to multiple invariant constraints. The violation of one of the invariant constraint
is sufficient to trigger a transition from the running status (nominal behaviour)
to a suspending status (non-nominal behaviour). The nominal execution is
restored only if all the invariants are satisfied again. Let Is be a set of the
invariants applied to s, Is = {<(s, cinv1 , g1)>, <(s, cinv2 , g2)>, . . . }, then

s.suspending↔ ∃i ∈ Is : ¬invariant(i, t), (2.8)

s.running→ ∀i ∈ Is : invariant(i, t). (2.9)

Moreover, if the skill instance s is a composite and its status is suspending,
then all the children skills sl in running status are suspended:

isSuspending(s, t)→∀sl, isParent(s, sl)∧

isRunning(sl, t−) ∧ isSuspending(sl, t). (2.10)

Successfully Termination, s.running 7−→ s.executed and
s.running 7−→ s.holding

The nominal execution of a skill sk succeeds if the intended effect ceff = eff(sk) is
achieved. In this case, the skill can be dismissed only if there are no dependencies
in the SDG model based on the intended effect eff(sk) that constrain another
skill (sj ∈ S), which is under execution or not activated yet. Otherwise, the
status of the skill sk switches to holding, that is the behaviour that ensures
the ceff to hold over the time.

44 SKILL DEPENDENCY GRAPH

In propositional logic,

∃sj ∈ S, j 6= k, ceff = eff(sk), Isj = {<(sj , cinv1 , g1)>, . . . },(
isRunning(sk, t)→ True

)
,(

¬isExecuted(sj , t) ∧ ¬isHolding(sj , t) ∧ ¬isFailed(sj , t)
)
→ True,

isHolding(sk, t+)←(
(isReadyToBeActivated(sj , t)→ False)←

(
(¬holdsAt(ceff, t)

))
∨(

∀i ∈ Isj , (invariant(i, t)→ False)← (¬holdsAt(ceff, t))
)
. (2.11)

In short, a running skill terminates once its intended world-transformation is
obtained, and no other skill requires such a transformation to persist. If the
skill sk is composite and in holding status, then those skill instances sl such
that isParent(sk, sl) holds and their intended effect contribute in the definition
of eff(sk) are also in holding status:

∀sl : (isParent(sk, sl)→ True),

(holdsAt(eff(sk), t)→ False)← (¬holdsAt(eff(sl), t)), (2.12)

isHolding(sl, t)↔ isHolding(sk, t). (2.13)

Execution Failure, s.running, s.suspending, s.holding 7−→ s.failed

The execution of any behaviour modelled in the skill can fail. As discussed
in Section 2.2.5, multiple failure conditions exist, and only one is sufficient to
trigger a transition to a failed status:

isFailed(s, t+)←

∃cs,k = fail(s, k) : holdsAt(cs,k, t)∧

(isRunning(s, t) ∨ isHolding(s, t) ∨ isSuspending(s, t)).
(2.14)

Moreover, if the skill instance sk is composite, and at least one child sl is in
failed status, then also sk fails:

isFailed(sk, t)← ∃sl, isParent(sk, sl) ∧ isFailed(sl, t). (2.15)

THE MICRO SKILL DEPENDENCY LANGUAGE (USDL) 45

required?
TrueFalse

Figure 2.9: Simplified overview of the algorithm adopted for the implementation of
the SDG-E, in a dataflow form. The predicates that influence the transitions have
been briefly reported in an informal fashion.

To conclude, Figure 2.9 reports a simplified overview of the SDG-E algorithm
that manages each skill.

2.5 The micro Skill Dependency Language (uSDL)

This section introduces the micro Skill Dependency Language (uSDL), a
minimalistic language to describe relationships between skills and conditions.
The language aims to build a SDG model through a set of declarative rules that
describes an executable situation (plan). In fact, the invariant dependency
(see Section 2.3.1) is rather generic, and the uSDL limits the definition of
invariant dependency to a subset of interesting use-cases shown in Figure 2.10.
Concretely, the uSDL aims to express explicitly declarative constraints that
determine the following situations between a pair of skills:

• Strict sequence, the activation of the execution of a skill instance s2
depends on the successful execution of a skill instance s1 (see Figure 2.10a);

• Pure concurrency, there is no relationship between the execution of
the skill instances s1 and s2, that is, the skills can be executed as parallel
activities shown in Figure 2.10b;

46 SKILL DEPENDENCY GRAPH

time

(a) Strict sequence between the skills s1 and
s2, as soon as s1 terminates, s2 is activated.

time

(b) Pure concurrency example between s1
and s2, since there is no relationship between
the skills.

time
(c) Conditional concurrency between s1 and s2: s1 and
s2 are executed concurrently, but s1 must terminate
earlier than s2.

Figure 2.10: Situation examples of strict sequence (Figure 2.10a), pure concurrency
(Figure 2.10b) and conditional concurrency (Figure 2.10c) between a pair of skills
s1, s2.

• Conditional concurrency can be seen as a relaxed version of a strict
sequence, as well as a constrained version of pure concurrency. In this
situation, the skills s1 and s2 can run concurrently, since there is no
activation dependency between them. However, the intended effect of
one skill can influence the execution of the other, causing a change on
the deployed behaviour. Therefore, a relationship between the couple of
skills exists. An example is depicted in Figure 2.10c, where a skill s1 must
terminate successfully within the scope of the execution of s2.

In addition, the uSDL covers explicitly the concept of common-sense law of
inertia. Such a concept has been firstly derived from the frame problem [144]
caused by a world model closure. In literature, a common assumption is to
consider the effect achieved by the execution of an action as persistent, that
is, the effect holds is no other actions are applied to influence its truth value.
Examples of this assumption are: a glass placed on a table stays on the table,
a door that has been opened stays open, a grasped object is still in the robot
hands if no action is taken to release such an object. However, in a dynamic
environment this assumption is not always valid, requiring a persistent action
to maintain the achieved effect, e.g., a grasped object is still in the robot hands

THE MICRO SKILL DEPENDENCY LANGUAGE (USDL) 47

if the grasping persists. Therefore, the common-sense law of inertia describes a
situation where a skill must hold the achieved effect, and the symbolic inertia is
transformed into a constraint between the skill that realise such an effect, and
those that depends on its truth value for their execution.

As explained in Section 2.7, strict sequence and pure concurrency are already
covered by the state-of-the-art. The contributions of the uSDL are the
conditional concurrency and the common-sense law of inertia, the two primary
design drivers of the language.

Another relevant design driver is the requirement of independent and
semantically consistent declarative approach by means of a set of rules that can
be added or removed also at run-time.

The proposed language is developed as a textual model, but graphical elements
are also used for the sake of clarity. There is no strong emphasis on the syntax
choice, which can be easily adapted in accordance with the implementation
tools. Where possible a polish notation is preferred, since it allows to build an
Abstract Syntax Tree (AST) that facilitates both parser and lexer processes.

2.5.1 The Language

The core of the language are the declarative rules toStart, continuesIf and
latches that constrain a skill instance to a condition, defining a connection in
the SDG model between a node (the skill) and a port (the condition). Therefore,
the primitives of the language are: Skill, Condition and the dependencies
created by the declarative rules. Conditions are symbolic, and they are defined
as a boolean expression or as a mapping to the continuous domain through
monitor functions: a monitor relationship serves this purpose. The relationships
is-effect and is-side-effect denote if a condition is intended effect or side-
effect of a skill, respectively. Another relationship is the contains that indicates
the hierarchy between skills. Lastly, uSDL primitives and relationships have an
Unique Identifier Number (UID), allowing introspection and online manipulation
of their properties.

Identity
Identity is given to each primitive instance by simple declaration:

Skill: s1, s2,... (2.16)

Condition: c1, c2,... (2.17)

Dependency primitives are declared through the declarative rules toStart,
continuesIf and latches as described below.

48 SKILL DEPENDENCY GRAPH

is-effect-of, is-side-effect-of,eff
By default, each skill instance has an intended effect, thus the declaration of
a skill instance s also deploys a Condition c such that is-effect-of(s,c).
Moreover, the intended effect can be retrieved with the eff(s). Side-effects
must be explicitly declared with is-side-effect-of, for example:

is-side-effect-of(s1,c1) (2.18)
states that the condition c1 is side effect of the skill s1.

monitor
Each condition binds a monitor function for its evaluation, or to a boolean
expression, for instance

Condition: c1,c2,c3

monitor(c1,and(c2,c3)) (2.19)
represent the following logical proposition

holdsAt(c1, t)← holdsAt(c2, t) ∧ holdsAt(c3, t). (2.20)
If the monitor function is defined in the continuous domain, a symbolic function
identifier denotes which monitor function implementation binds to the target
Condition:

monitor(c1,’fncmon42’). (2.21)
It is SDG-E role to bind that Condition to the underlying monitor function
implementation, and to manage the Condition evaluation online. The
implementation of these is discussed in Chapter 3, and further examples are in
Chapter 4.

contains
The relationship contains conforms to the skill model illustrated in Section 2.2,
and it denotes the hierarchy between skills, thus:

contains(s1,s2) (2.22)
expresses that the skill s1 contains the skill s2.

The uSDL has three types of dependency relationships to add constraints to
the skill execution: toStart, continuesIf and latches. Each of these bind a
skill with conditions, and it returns a dependency primitive, for instance

d1 = toStart(s,c).

If not captured, the dependency primitive can be retrieved inspecting the
connectivity of the structural SDG model.

THE MICRO SKILL DEPENDENCY LANGUAGE (USDL) 49

toStart

The toStart relationship represents a necessary but not sufficient condition for
the activation of a skill s.�
�

�
�toStart(s, c) reads as “to start the skill s, the condition c is required to

hold”.

Formally, the toStart is nothing more than syntactic sugar that composes
the activation condition cstart of s (see predicate isReadyToBeActivated in
Eq. 2.5). Let As be the set of all the conditions involved in a toStart constraint
of the skill s, then the truth value of cstart is subject to:

holdsAt(cstart, t)← ∀cj ∈ As : holdsAt(cj , t). (2.23)

Furthermore, if As is empty set (As = {∅}), then cstart always holds.

continuesIf

The continuesIf relationship implements an event-based guard over the
nominal execution of s.�
�

�
�continuesIf(s, c1, cs,n) reads as “the execution of skill s continues if c1

holds when a rising event e defined over cs,n occurs”.

This relationship is a specific case of an invariant constraint, where the
condition arguments bind the following predicates of the invariant tuple:

• cinv: is directly linked to c1, as an external condition that must hold along
s execution scope;

• g guard condition predicate is defined as an occurrence of a rising
event over the condition cs,n. Moreover, cs,n must be a side-effect of s
(n subscript indicates to which side-effect refers): this constraint is
fundamental in the continuesIf definition, since it binds the scope of
the invariant dependency on the execution of s itself. In propositional
logic,

holdsAt(g, t)←

cs,n = side-eff(s, n), ∃ecs,n,j ∈ events(cs,n)

: occurs(ecs,n,j , t) ∧ eventRising(ecs,n,j , t).

50 SKILL DEPENDENCY GRAPH

This “point in time”7 rule is fundamental to implement a conditional concurrency
relationship between a pair of skills. Considering a skill pair s1,s2, the guard g
is defined over the behaviour of s2, while the skill coupling is given by c1, where
c1 = eff(s1). Concretely, such a mechanism permits to define statements as “s1
must terminate successfully before s2 terminates”: the condition cs,n expresses
how close is the execution of s2 to its termination. Similarly to the toStart,
multiple continuesIf relationships can be applied to the same skill s; some
examples are shown in Section 2.5.2.

latches

The latches relationship implements the common-sense law of inertia, expressed
as a persistency requirement of an external condition c in the scope of the skill
execution s. Moreover, such a requirement is not required along the overall
execution scope, but only after that the condition c holds for the first time.
That is, c may never hold in the scope of the execution of s, and still such a
constraint is not violated; instead it is violated if the truth value of c holds, and
later it does not. In short, the scope of the execution s latches c to hold. This
relationship is mostly used in combination with a toStart or a continuesIf,
and examples of usage are shown in Section 2.5.2.�
�

�
�latches(s, c) reads as “the nominal execution of s latches the truth value

of c, as soon as c condition holds within s scope.

The relationship indicates that the skill s requires the condition c; the previous
does not imply that s behaviour is actively maintaining that condition, since c
is external to s. However, the condition c is possibly maintained by another
skill for which c is internal (i.e., the intended effect).

The latches defines an invariant constraint having a guard predicate based
on cinv:

holdsAt(g, t)←(
first-occur(cinv, t)∧

(isRunning(s, t) ∨ isSuspending(s, t) ∨ isReadyToBeActivated(s, t))︸ ︷︷ ︸
scope

)
,

(2.24)

7The guard condition of the continuesIf rule is event-based that holds only at one point
in time.

THE MICRO SKILL DEPENDENCY LANGUAGE (USDL) 51

where the scope term contains the isReadyToBeActivated predicate, such
that the occurrence is also captured in the neighbourhood of the activation.
The predicate first-occur captures the first occurrence of cinv and it can be
written as:

first-occur(cinv, t)←

∃ec,j ∈ events(cinv) :

happened(ec,j , t) ∧ eventRising(ec,j , t). (2.25)

2.5.2 Common Situations

The uSDL expresses execution dependencies between a set of skills. Table 2.3 and
Table 2.4 resume some run-time examples of strict sequence, pure concurrency,
conditional concurrency. In detail:

• strict sequence is shown as a first example; s1 has no activation
constraints, while s2 requires eff(s1) to start. Therefore, s2 is executed
immediately after the termination of s1;

• strict sequence, with inertia is reported as a second case; s2 requires
eff(s1) for both activation and invariant conditions over the nominal
execution of s2. As a consequence, s1 switches to holding instead of
executed status;

• pure concurrency between a pair is shown as a third example; there
are no constraints on both s1 and s2, so their execution start immediately
and they are independent. In the example, s2 terminates before s1, but
also the opposite is possible;

• conditional concurrency (with inertia) is one of the most interesting
cases. In this situation, s1 and s2 are not constrained over their activation,
but s2 relies on the effect of s1 (eff(s1)) to continue its nominal behaviour.
The guard condition is determined by one of the side effects of s, csf =
side-eff(s, j). If the continuesIf constraint is not satisfied, the nominal
execution of s2 is suspended, so a non-nominal behaviour is performed. As
soon as the constraint is satisfied again, the nominal execution is restored.

Whenever the invariant constraints are not satisfied, the executive changes
the status of the constrained skill to suspending. The latter may occur due to
a failure during execution of another skill, responsible for one specific condition.
Reacting by switching to suspending status is fundamental to implement a

52 SKILL DEPENDENCY GRAPH

Rules SDG Outcome (Gantt Char)

Skill : s1 , s2
toStart (s2 ,eff(s1))

II

I

time

(don't care)

I II

Skill : s1 , s2
toStart (s2 ,eff(s1))
latches (s2 ,eff(s1))

II

I

time

I II

Skill : s1 , s2
toStart (s2 ,eff(s1))
latches (s2 ,eff(s1))

I

II

III time

I II III

Table 2.3: Execution examples of some common situations. The first column reports
the textual uSDL model; the middle column shows the resulting SDG structure; the
last column shows the situation outcome, expressed as a Gantt chart. The SDG in the
middle column are snapshots of the run-time execution. Some structural primitives
(e.g., ports) have been omitted. The color code of the nodes reflects the online
skill status: running(green), executed(black), holding(blue), inactive(yellow),
suspending(red), failed(purple). The color code of connectors represents the
dependency type: toStart(black), continuesIf(red), latches(blue). The run-time
information over the constraint (satisfied or not) is expressed by the shape of the
line: ”holds“ is a solid line, ”does not hold“ is a dashed line. For the sake of clarity,
port elements over the structural SDG model are not explicitly represented. The
SDG snapshots represent the overall status along one period of time, as shown in the
outcome column. Each row presents a different situation, in order: i) strict sequence;
ii) strict sequence, with inertia; iii) same of ii), but with a run-time failure. Pure
concurrency and conditional concurrency cases are shown in Table 2.4.

behaviour that prevents the scheduling of undesired motions. As a major feature
of the proposed approach, the SDG provides some information to reason about
the action failure: which skill failed, in which composition and in which context
(e.g., the dependencies that are not respected). In case of a failure, a high-level
planner can exploit these information and provide a better plan than the original
one.

THE MICRO SKILL DEPENDENCY LANGUAGE (USDL) 53

Rules SDG Outcome (Gantt Char)

Skill : s1 , s2

II

I

time

(don't care)

I II

Skill: s1, s2

Condition:csf

is-side-effect-of(s2,csf)

latches(s2, eff(s1))

continuesIf(s2,

,eff(s1), csf)

II

I

time

I II

I

II

III
time

I II III

Table 2.4: Execution examples of pure concurrency and conditional concurrency,
in order: i) pure concurrency; ii) conditional concurrency with inertia; iii) same
SDG model of ii), but s2 goes to suspending status due to the intended effect of s1
not achieved yet. This table follows the same legend expressed in Table 2.3.

54 SKILL DEPENDENCY GRAPH

2.5.3 Example

Listing 2.3 reports the uSDL textual model of a toy example, hierarchical
composition included. The resulting structural model is graphically shown in
Figure 2.11.

1 Skill: s1 ,s2 ,s3 ,sA ,sB
Condition : side_eff_sb

is-side-effect-of (sB , side_eff_sb)
5 contains (sA ,s1)

contains (sA ,s2)
contains (sA ,s3)

d1= toStart (s2 ,eff(s1))
10 d2= toStart (s3 ,eff(s1))

d3= latches (s3 ,eff(s1))
d4= latches (sB ,eff(sA))
d5= continuesIf (sB ,eff(sA),side_eff_sb)

15 monitor (eff(sA),and(eff(s2),eff(s3))
monitor (side_eff_sb ," fncmon425 ")
monitor (eff(s1) ," fncmon12 ")
monitor (eff(s2) ," fncmon325 ")
monitor (eff(s3) ," fncmon247 ")

20 monitor (eff(sB) ," fncmon543 ")

Listing 2.3: Code snippet of an uSDL example.

Note that uSDL is a minimal language, as a compromise between completeness
and verbosity of the model. In fact, it limits the expressivity of the invariant
constraints to only two classes (e.g., latches and continuesIf); nevertheless
this suffice to describe the most common situations. A full model description
(explicit connections, fully coupling between skills) is provided in the Listing 2.4.
Such a model is encoded as a JSON object (JavaScript Object Notation Data
Interchange Format, see [28]). The JSON allows to describe an independent
model with respect to an underlying, language-dependent implementation of
the SDG-E. Furthermore, the above-mentioned model conforms to the (M2)
meta-model described in JSON-Schema [57] reported in Appendix A.1.

THE MICRO SKILL DEPENDENCY LANGUAGE (USDL) 55

1 {
" metamodel ":"http:// people .mech. kuleuven .be /~ u0072295 /sdg -v01",

" skills ": [
{ "id": " example ", " type ": " skill " },

5 { "id": "s1", " type ": " skill ", "eff": " eff_s1 " },
{ "id": "s2", " type ": " skill ", "eff": " eff_s2 " },
{ "id": "s3", " type ": " skill ", "eff": " eff_s3 " },
{ "id": "sA", " type ": " skill ", "eff": " eff_sA ",

"side -eff":[" eff_s2 ", " eff_s3 "] },
10 { "id": "sB", " type ": " skill ", "eff": " eff_sB ",

"side -eff":[" side_eff_sb "] }
],
" contains " : [

{ " parent " : " example ",
15 " children " : ["sA", "sB"]

},
{ " parent " : "sA",

" children " : ["s1", "s2", "s3"]
}

20],
" conditions " : [

{ "id" : " eff_s1 ", " type ": " condition ",
" monitor ": { " type " : " function ", "id" : " fncmon12 " }

},
25 { "id" : " eff_s2 ", " type ": " condition ",

" monitor ": { " type " : " function ", "id" : " fncmon325 " }
},
{ "id" : " eff_s3 ", " type ": " condition ",

" monitor ": { " type " : " function ", "id" : " fncmon247 " }
30 },

{ "id" : " eff_sA ", " type ": " condition ",
" monitor ": { " type " : "expr",
"expr":{ " operator ": "and", "args": [" eff_s2 ", " eff_s3 "]}}

},
35 { "id" : " eff_sB ", " type ": " condition ",

" monitor ": { " type " : " function ", "id" : " fncmon543 " }
},
{ "id" : " side_eff_sb ", " type ": " condition ",

" monitor ": { " type " : " function ", "id" : " fncmon425 " }
40 }

],
" dependencies " : [

{ "id" : "D1", " type " : " dependency ",
" relationship " : " toStart ", " condition ": " eff_s1 ",

45 " requiredby " : ["s2", "s3"]
},
{ "id" : "D2", " type " : " dependency ",

" relationship ": " latches ", " condition ": " eff_s1 ",
" requiredby " : ["s2"]

50 },
{ "id" : "D3", " type " : " dependency ",

" relationship ": " latches ", " condition ": " eff_sA ",
" requiredby " : ["sB"]

56 SKILL DEPENDENCY GRAPH

},
55 { "id" : "D4", " type " : " dependency ",

" relationship ": " continuesIf ", " condition ": " eff_sA ",
" guard " : " side_eff_sb ",
" requiredby " : ["sB"]

}]
60 }

Listing 2.4: Formal structural model of the SDG in Figure 2.11, in JSON format

Figure 2.11: Structural model of a complete and well-formed toy example reported
in Listing 2.4. Only static information is reported: nodes do not assume a status (grey
color). The skill sA exposes externally the intended effect of s2 and s3 as side-effects
of sA. Furthermore, the intended effect of the composite skill sA is achieved when
both intended effects of s2 and s3 hold. Thus, the dependency constraints d4 and d5
over the effect of sA are expanded to sA internals. D1–D4 refers to the connectors
that are represented in the JSON model in Listing 2.4.

OPEN A DRAWER SCENARIO 57

2.6 Open a Drawer Scenario

{cabinet}

{handle}

{ee}{

{base}
{approach spot}

ee
 g

ra
sp

 a
pp

ro
ac

h
di

re
ct

io
n

short distance line

drawer o
pening directio

n

handle axis

Figure 2.12: Open a Drawer Scenario. The picture shows the geometric entities used
to define the motion skills (see Table 2.5).

Finally, this section applies the proposed SDG formalism and the related
uSDL to model a concrete use-case. Recalling from Chapter 1, the aim is to
show the benefits of the proposed approach with respect to the limitations
discussed on the Open a Drawer Scenario.

Figure 2.12 shows the layout of frames and geometric entities involved to describe
the motion skills, briefly resumed in Table 2.5. The skills are implemented
as a configuration of a Constraint Optimization Problem (COP). Thus, each
skill in Table 2.5 is formulated as a set of constraints over relationships of
geometric entities. COP solution generates the instantaneous robot motion
that satisfies the imposed constraints. That is, the composability of the COP
approach allows to fulfill multiple skill executions concurrently, whenever those
are not conflicting within the tolerance allowed by the monitor functions. It is
beyond the scope of this section to provide further details about the motion
specification; a concrete contribution will be discussed in Chapter 3.

A concrete set of execution dependencies is specified in a declarative form by
constraining the skills of Table 2.5 with the logical relationships of Listing 2.5,
and Figure 2.13. This description allows a more detailed specification with
respect to common alternatives based on Finite State Machines (FSMs).
Tables 2.6 and 2.7 compare two different execution outcomes of the same
uSDL model, expressed in a Gantt-chart form.

The execution reported in Table 2.6 shows a nominal situation: firstly, the

58 SKILL DEPENDENCY GRAPH

Skill Constraint description

approach_drawer
The base position of the robot is constrained to reach
the approach spot (Figure 2.12).

align_line

The gripper is constrained to point toward the handle
(i.e. the approach direction must be aligned with the
shortest distance line between the end effector and the
handle).

align_rot
The axis of the end effector perpendicular to the gripper
movements must be aligned with the handle axis.

open_gripper The gripper is open so that it can enclose the handle.

move_to_handle The distance between the gripping point and the handle
is reduced to zero.

grasp_handle The gripper is closed in order to take hold of the handle.

pull_drawer The end effector moves/exerts force along the drawer
opening direction.

Table 2.5: Open a drawer scenario: qualitative and verbose description of the
constraint-based motion related to each skill. Some of the constraints are expressed in
terms of the geometric features depicted in Figure 2.12).

robot approaches to the drawer; secondly the skills align_rot, align_line and
open_gripper prepare the gripper to grasp the handle; then the gripper is moved
to the handle position; and finally the handle is grasped and the end effector
pulls the drawer. Multiple situations described in Section 2.5.2 can be identified
in this execution: approach_drawer and align_rot skills are executed as strict
sequence; align_rot and align_line are executed concurrently with respect
to each other; logical inertia is required for the pull_drawer skill, since the
gripper must grasp the handle before the pulling action, but also during the
pulling execution.

Another execution that differs from the previous is shown in Table 2.7. In
this case, the dynamics of the gripper is slower than expected with respect
to the motion that approaches to the handle. If the gripper is not fully open
when it reaches the handle, an unexpected collision may occur, preventing the
achievement of the intended effect. The latter also holds for the align_rot
constraint. A feasible solution would be to execute these skills as a strict
sequence, but such a solution is extremely conservative with respect to the robot
capabilities. Therefore, a guard is imposed on the continuous behaviour of
move_to_handle, that is allowed to continuesIf the gripper has been properly
prepared for the grasping action before it is close enough to the handle. The
above description is expressed by the constraints imposed by lines 14 and 15 in

OPEN A DRAWER SCENARIO 59

1 Skill: approach_drawer , align_line , align_rot ,
open_gripper , move_to_handle , grasp_handle ,
pull_drawer

Condition : close_to_handle

5 is-side-effect-of (move_to_handle , close_to_handle)

d1= toStart (align_rot ,eff(approach_drawer))
d2= toStart (align_line ,eff(approach_drawer))
d3= toStart (open_gripper ,eff(approach_drawer))

10 d4= toStart (move_to_handle ,eff(align_line))
d5= latches (move_to_handle ,eff(align_rot))
d6= latches (move_to_handle ,eff(align_line))
d7= latches (move_to_handle ,eff(open_gripper))
d8= continuesIf (move_to_handle ,eff(open_gripper),

close_to_handle)
15 d9= continuesIf (move_to_handle ,eff(align_rot),

close_to_handle)
d10= toStart (grasp_handle ,eff(open_gripper))
d11= toStart (grasp_handle ,eff(move_to_handle))
d12= toStart (pull_drawer ,eff(grasp_handle))
d13= latches (pull_drawer ,eff(grasp_handle))

Listing 2.5: uSDL dependency constraints applied on the open a drawer
scenario. Monitor functions descriptors have been omited.

Listing 2.5, where close_to_handle side effect of move_to_handle is evaluated
as Euclidean distance between the handle and the gripper. As a consequence,
the move_to_handle motion is suspended if the logical constraint is not satisfied,
and restored later when the dependencies have been satisfied. In this case,
the behaviour of the isSuspending status is implemented as maintaining the
current distance from the handle.

60 SKILL DEPENDENCY GRAPH

approach_drawer

align_rot open_gripperalign_line

move_to_handle

grasp_handle

pull_drawer

Figure 2.13: SDG model of the Open a Drawer Scenario described in the uSDL in
the Listing 2.5. The model illustrated is mainly structural and does not show any
online information. For the sake of clarity, some structural primitives (e.g., ports)
have been omitted.

The outcomes illustrated in Tables 2.6 and 2.7 have been obtained from
experiments conducted in both simulation environment and an experimental
setup. Further details on this use-case can be found in [137]8, and multimedia
material of the experiments is available online9.

8The work presented in [137] shows early results with respect to the approach discussed
in this chapter. Core functionalities and experimental validations are correct and coherent.
However, many contributions have been formalised in this chapter, introducing explicitly the
SDG and the resulting uSDL, that slightly differs with respect to the original semantics. For
instance, the relationship toHold in [137] is equivalent to the latches, as well as the toEnd
that is equivalent to the continuesIf.

9https://youtu.be/NzSLYboz2Os

https://youtu.be/NzSLYboz2Os

OPEN A DRAWER SCENARIO 61

approach_drawer
align_rot

align_line
open_gripper

move_to_handle
grasp_handle
pull_drawer

Table 2.6: Nominal execution outcome of the SDG model in Figure 2.13, in a Gantt-
chart representation. Some motions exhibit a strict sequence execution, other run
concurrently. All the constraints have been respected during the execution, thus no
skill execution fails or switches to non-nominal behaviour.

approach_drawer
align_rot

align_line
open_gripper

move_to_handle
grasp_handle
pull_drawer

Table 2.7: Non-nominal execution outcome of the SDG model in Figure 2.13, in
a Gantt-chart representation. The gripper moves too slow, so that it gets close to
the handle before it is fully opened. The execution of move_to_handle is suspended,
waiting for the gripper to have opened sufficiently. This non-nominal execution still
satisfies the original plan.

62 SKILL DEPENDENCY GRAPH

2.7 Related Work

2.7.1 Mathematical Formalisms

Literature on AI and cognitive research is rich of methodologies, mathematical
formalisations and languages that describe a situation or a chain of events.
Those events that influence a symbolic world description may occur due to
an explicit action execution, but an action execution is also triggered by an
event occurrence. Therefore, there are multiple ways to describe a situation,
depending on the axiomatic definitions given to the core primitives, which are
event, action, time and logical condition.

Event Calculus [85, 144, 145] is a language based on logical propositions to
represent events and their effects over fluents. The event is a core-primitive,
and fluents capture the world status driven by events. In Event Calculus, an
event is directly interpreted as an outcome of an action; in fact the terms are
used interchangeably. A complementary approach is provided by the so-called
Situation Calculus [100, 101], another mathematical formalisation based on
first-order logic formulae. In Situation Calculus, actions are core axioms, fluents
describe the state of the world, and the so-called situation is a finite sequence
of actions. Actions require some pre-conditions to be performed, and the set
of available actions and their constraints is called domain. Resuming, Event
Calculus and Situation Calculus provide the same level of expressivity, but they
are based on different axiomatic definitions. Analogies and differences between
these methodologies have been investigated in the past [84, 15].

Before(i,j)

Meets(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Overlaps(i,j)

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

StartedBy(j,i)

i j

Figure 2.14: Relationships in Allen’s Interval Logic [4]. Each relationship describes a
time ordering constraint between a pair of finite intervals defined on the same linear
time structure. Inverse relationships that describe analogous situations are on the
same line. Equality relationship is not shown.

A third formalism to describe a situation is provided by the Allen’s Interval

RELATED WORK 63

Logic [4, 5] (also called Allen’s Temporal Logic). The axiomatic primitive
of this approach is the structure of time as a linear model. Allen defines 13
primitive relationships to constrain a pair of finite interval periods, as shown
in Figure 2.14. The knowledge of the temporal relations is usually represented
by a hierarchical graph called temporal network. It is relevant to notice that
Allen’s Temporal Logic (and derivatives) describes qualitative intervals, and not
quantitative intervals: the knowledge of the exact initial and final time value
is not required to impose a certain relationship10. Intervals often represent an
action, and the events are directly related to the beginning or the ending of a
certain interval. Alternatives to this interpretation exist; for instance, similar
relationships can be imposed between points in time (point-time logic) or
between points and intervals (point-interval logic). Mathematical comparisons
between temporal approaches and Event Calculus are reported in [108], and
recent efforts better formulate the semantics between time and events [16].
Finally, temporal description alternatives exist; one of these is the so-called
Linear Temporal Logic (LTL) [123, 11], widely known in the context of model
checking and validation.

Apart of the mathematical details, there are no concrete differences in terms of
expressivity provided by the above-mentioned formalisms. Depending on the
use-case, one solution may provide a more concise description than another, but
in practice the difference is often negligible. The main differences regard merely
the axiomatic definitions, which are often matter of “taste”. The aim of the
previous Section 2.1 and Section 1.2 was not to define yet another formalism,
but to provide the set of axioms used in this work. The motivation behind the
axioms choice provide in Section 2.1 is based on a bottom-up approach. Instead
of choosing one arbitrary set of axioms, the core primitives are given by the
continuous output of the execution monitoring, which is the truth information
available from the system. Events are changes on these conditions, and the
action attempts to modify the state of the world to a desired value. A similar
approach has been taken to define a skill, that does not follow the discrete
nature of the action. The SESD captures the execution of a skill in its dynamic
and continuous evolution, exposing not only the description of the nominal
behaviour, but also behaviours implemented in case of unforeseen situations.
However, considering other axioms as a starting point is possible, but the final
outcome would be analogous.

10The knowledge about the duration of the time interval is not required to describe a
relationship, but it is required for scheduling with Allen’s Temporal Logic.

64 SKILL DEPENDENCY GRAPH

2.7.2 Languages and Frameworks in Robotics

The previous section reported some mathematical formalisms to describe a
situation as a constrained sequence of events or actions. Such a representation
can be used for different purposes; as a narrative description of a past situation,
as well as a desired (or nominal) situation to be realised. In the latter, the
situation turns into a plan, which must be realised by one (or more) agent(s).
The work presented in this chapter does not concern the plan generation, but a
description of a plan having a consistent grounding in the continuous domain.
The approach is based on the Skill Dependency Graph (SDG), from which
a simple language is derived (uSDL, Section 2.3). Finally, a SDG-Executive
mechanism has been introduced to realise a given uSDL description (Section 2.5).

In the robotics context, many languages and frameworks aim to solve different
aspects of the planning, plan description and related run-time execution and
monitoring. It follows a non-exhaustive discussion on prior works, with a special
attention on the plan languages and executive features.

GOLOG and GOLEX

On the basis of Situation Calculus, the GOLOG programming language [94, 93]
is probably one of the most popular between logical approaches. Multiple
interpreter exist, and most of them are based on Prolog. In order to ground
actions into motion primitives, GOLEX, an executive of GOLOG programs,
has been introduced in [69]. GOLEX provides monitoring primitives to check
the outcome of the execution of an action, which is treated as an external and
atomic program; thus, no interleaving or continuous introspection is possible.

Temporal-based Frameworks

Temporal-based descriptions are widely used in Robotics. A common approach is
based on Linear Temporal Logic (LTL) formalism [123, 11], for example [65, 98].
A workflow of these solutions is defined by the following steps: (i) the LTL
formulae is converted to a Büchi Automaton [58], (ii) the generated automaton
is directly used as a refined plan, or (iii) the Büchi Automata is transformed
to a behavioural FSM or to a Behavioural Tree [45, 98, 33]. In short, the
original temporal constraints expressed as LTL formula are translated to a third
coordination model that can be executed. Thus, the executive layer decouples
the plan constraints from a concrete solution. Reactiveness and modeling of
unforeseen situations depends on the completeness of the LTL proposition, as
well as on the chosen coordination model. However, it is possible to demonstrate

RELATED WORK 65

the completeness of the generated Büchi Automaton, which is a main advantage
with respect to other alternatives. As a major drawback, the LTL proposition
is formulated considering an environment with no dynamic evolution apart of
the nominal behaviour of the controlled agents. Therefore, it suits as an offline
approach, since it is not trivial to develop an interleaved solution between the
planner and the execution monitoring system.

Allen’s Interval Logic are still popular nowadays; a recent example of robot
task scheduling application is shown in [107]. The main limitation of this
approach is due to the prior knowledge of the duration of an action. The
previous assumption is acceptable to optimise a plan, but it shortly fails when
the actions are dependent motion compositions; a motion execution influences
the timing of another due to concurrency. In short, the role of the plan executive
is underestimated.

The Stanford Research Institute Problem Solver

Another approach is given by the Stanford Research Institute Problem Solver
(STRIPS) language [51], still a reference among the planning community. The
original STRIPS solver is state-space based: similarly to Situation Calculus,
the core primitive is the symbolic description of the state of the world. A
STRIPS problem consists on the description of the initial and final (goal) world
state. A STRIPS domain is described as a set of available actions, their effects
on the world state and the necessary pre-conditions that guarantee a proper
execution of an action. In practice, the original approach is rather limited, for
instance (i) the problem domain must be complete, in terms of actions, agents
and objects types available; (ii) close world assumption, that is everything must
be explicitly modeled; (iii) the outcome is a total-order plan, with no support
for concurrency. Nevertheless, STRIPS has been a pioneer result adopted by the
robotic community; all the solutions that follow have been inspired by this work,
at least partially. In this context, it is relevant to mention PLANEX1 [50], an
early implementation of a monitor execution for STRIPS. The previous shows
that interleaving planning and action execution has been a known problem in
early days already, even if it has not been primary subject of investigations
for several decades. The historical reason behind it is determined by the lack
of interest of the AI and planning community on investing resources on such
“low-level” issues, as well as the lack of interest from the control community,
focused on providing functionalities in the continuous domain.

66 SKILL DEPENDENCY GRAPH

Procedural-based Solutions and Architectures

A renovated effort on task execution and monitor control has been delivered by
the so-called procedural approaches. The Reactive Action Packages (RAP) [53,
54] are designed to bridge the gap between the symbolic action to a low-level
skill, defined in the continuous, real-time domain. A RAP Executor reacts to
primitive events by activating (or deactivating) a certain skill. The skills are
stored and connected each other through a so-called skill network, exhibiting a
dependency relationship (not formally expressed within the RAP framework).
The semantic of the outcome obtained by a skill execution is rather limited to a
failure or success status. In fact, the skills are mostly commands or processes that
implement a control law, while reactions are determined by definedmemory-rules
triggered by task completion or external signals. Furthermore, the memory-rules
mechanism in RAP offers the possibility to interpret an event given a certain
context. RAP framework also supports hierarchy through a tree structure
composition of skills.

In the same vein, the Task Control Architecture (TCA) [147] and its extension,
the Task Description Language (TDL) [148], is an alternative to describe Robot
Tasks. The TCA/TDL allows concurrent planning and execution through
hierarchical task decomposition. In addition, the framework provides explicit
constructs to define temporal constraints that allow synchronization between
tasks. Other alternatives exists, among which the Procedural Reasoning System
(PRS) [72, 92] or an alternative TaskNets framework presented in [161].

The above-mentioned procedural solutions do not strongly differ between each
other. Furthermore, it is worth to notice that these frameworks are results of
investigations conducted in the same period of time; none of them was meant
to improve the state-of-the-art of the others. The main difference regards the
methods for distributing the required functionalities on the overall architecture,
which is often a technical matter rather than a modeling issue. In fact, most
of these approaches conform to the so-called Three-Tiered Architecture (3T-
A) [24, 83] shown in Figure 2.15. These task executives, which resides in
the second layer of the 3T-A, have been designed to be integrated with legacy
planners or control middleware. Thus, one approach better adapts against legacy
functionalities than another. For instance, TDL implementation suits to C/C++
applications, where concurrent skills are control law instances deployed in OS
threads. Another example is the recent Light-Weight Robot Coding for Skills
(LightRocks) DSL [162]. LightRocks extends the TaskNets approach [161, 52],
which is based on manipulation primitives, to a hierarchical skill description
based on UML/P statecharts.

RELATED WORK 67

Behaviour Layer
(Reactive Skills)

Executive Layer

Planning Layer
(Deliberation)

Plans Status

Perceptual DataCommands

Figure 2.15: A Three-Tiered Control Architecture [24, 83] adopted in multiple
frameworks, such as the Task Control Architecture (TCA) [147, 148] and the LAAS
Architecture [3, 125]. The naming convention on each layer may differ from framework
to framework. For instance, planning, executive and behaviour layers have been called
decisional, execution control and functional levels in the LAAS Architecture. However,
they all conform to the same architectural description.

The Plan Execution Interchange Language

An Automata-based approach has been follow to design the Plan Execution
Interchange Language (PLEXIL) [170]. PLEXIL has been developed by the Jet
Propulsion Laboratory (JPL) at NASA, in order to replace the task executive
on the Coupled Layer Architecture for Robotic Autonomy (CLARAty) [112],
previously based on the TDL. PLEXIL has been successfully applied to various
spacecraft applications, such as the K10 Rover, the Drilling Automation for Mars
Exploration (DAME) [63], and other automated operations on the International
Space Station11 (ISS).

Similar to the TDL, a node in PLEXIL represents an action, which is linked
to an external command to execute. The node status reflects the run-time
information on the command execution; an enumerative list of possible status
follows: waiting, executing, finishing, failing, finished. Also, the node provides
an outcome property that must match with one of the following status: success,
failure, skipped. Nodes follow a hierarchical tree structure, thus a node can
have a list children nodes, but each child has only one parent. The execution of
the node is driven by a set of constraints over boolean expressions. PLEXIL
differentiates between the so-called gate conditions and check conditions. The
former are monitored continuously; the latter are evaluated once, in a well-

11https://www.nasa.gov/mission_pages/station/main/index.html

https://www.nasa.gov/mission_pages/station/main/index.html

68 SKILL DEPENDENCY GRAPH

known moment of the node life cycle. For example, the EndCondition is a gate
condition and, if that holds, a PostCondition is evaluated to ensure whether
the desired outcome has been achieved by the action. In the same vein, the
StartCondition is a gate condition that evaluates if the node can be executed
and, if that holds, an additional PreCondition acts as a guard mechanism to
prevent the node activation. If no activation constraints are imposed, the node
is immediately executed. PLEXIL explicitly provides an InvariantCondition
that must be valid along the overall execution of the action. Furthermore,
PLEXIL provides constructs such as RepeatUntilCondition to invoke the same
command multiple times.

The Cognitive Robot Abstract Machine

An alternative architecture is provided by the Cognitive Robot Abstract Machine
(CRAM) [14]. CRAM is a framework that well integrates a perception pipeline
and a knowledge-space database [158, 159] (the so-called KnowRob). CRAM
includes a Cram Plan Language (CPL) that allows to describe a plan as a
partial-order sequence of actions. CPL is implemented in Lisp programming
language, and it supports description of both sequences and concurrencies of
actions, with guard predicates on an action failure. The level of expressivity
of CPL is not dissimilar to a Behavioural Tree approach [45]. The advantages
of the CRAM system are related to a reactive CRAM-Executive [173] that,
in case of an action failures, triggers a Prolog-based reasoner which extends
or modifies the original plan to a feasible solution. This plan enrichment is
obtained by inferencing the knowledge space, which has been updated at run-
time. However, CRAM does not offer any particular feature about managing
the action execution. The actions available are programmed motion primitives,
executed “as-they-are“ by a motion server. Thus, an action can be activated
(or deactivated), with few parametrization options, and the interface with the
motion stack is implemented in a client-server fashion. Once again, the latter is
determined by the choice of the middleware that integrates the motion control,
that is the Robot Operating System (ROS) [126].

The Planning Domain Definition Language

It is not possible to conclude this section without mentioning the Planning
Domain Definition Language (PDDL) [56, 59], a recent and evolving effort of
the planning community. The PDDL provides a common DSL to describe a
planning problem and its domain in a generic fashion, decoupling from the
symbolic solver adopted. The development of PDDL is driven by the necessity
of the planning community to formulate a set of problems to benchmark existing

CONCLUSIONS 69

solvers. PDDL can specify problems in STRIPS or other formalisms, including
temporal planning, scheduling, probabilistic problems and so on. PDDL does not
offer any facility regarding an execution layer. So far, the Robotic Community
made some efforts to bridge the gap between classical discrete planners and
continuous motion planning [156, 109]: these solutions reside in the planning,
and in case of environmental changes, replanning is preferred to active control.

2.8 Conclusions

This chapter presents a formal task executive framework based on a hierarchical
hypergraph structure, the so-called Skill Dependency Graph. The SDG fully
describes a nominal plan as a composition of skills and their dependencies,
which constrain the skills between each other. Each skill is modelled as a hybrid
system, and this chapter has focused on describing the set of discrete behaviour
that a skill exhibits. A SDG Executive is introduced as a software entity
that activates a given SDG model. Furthermore, a micro Skill Dependency
Language is proposed as a specification language to compose a SDG model. In
this way, SDG models are partially-ordered plans, reacting to non-nominal
situations. A use-case is discussed in Section 2.6.

The introduced mathematical foundation is equivalent in expressivity with
respect to other formalisms, but the adopted axioms, derived by a bottom-up
approach, directly bind the logical primitives to the continuous domain. The
latter has several practical implications, especially in the context of specification
of robotic motions. Among those, the most relevant is the capability of specify
a conditional concurrency execution between skills. In fact, all the existing
task executives offer the capability to model sequential and concurrent skill
executions, but none of those allow to specify an arbitrary guard condition along
the continuous behaviour of a skill, imposing an execution serialization only when
needed. This feature improves the expressivity of a plan specification,
allowing online adaptation by skill scheduling.

To the best of author’s knowledge, only PLEXIL [170] includes the concept of
logical invariant constraint. However, a PLEXIL action is implemented as
an atomic command, which can be only activated or not. Thus, no anchoring
is possible at the continuous level; instead, the skill model adopted in the
SDG formalisation allows to bridge the invariant constraint between
discrete and continuous domain, at the cost of an extra modelling effort.
The latter became essential if the skill is implemented as a set of constraints,
formulating a COP that generates the motion in the continuous domain. The
following chapter will cover the above-mentioned topic.

Chapter 3

Constraint-based Task
Specification based on
Expressions between
Geometric Primitives1

Constraint-based programming is a well known approach to specify and generate
robotic motions. A primary feature of this approach is given by the composability
of the task specification: a task can be defined as a composition of other
constraint-based tasks, as well as the objective function that drive the generated
behaviour. Hence, satisfying multiple constraints corresponds to execute
multiple sub-tasks concurrently. This chapter presents a formal Domain Specific
Language (DSL) to specify constraint-based tasks. Instead of focusing on a
specific feature provided by an underlying numerical solver (Section 3.1), this
language allows to define constraints over geometric expressions, that are
relationships between geometric primitives (Section 3.2). In addition, the
language includes a way to express the control behaviour imposed for the
constraints resolution, compatible with most of the existing solvers. This
work aims to provide i) a formal model to decouple the task specification
from the underlying numerical solver, ii) a geometric-based approach, which is
more intuitive than the alternatives available, but also iii) it carries semantic
information, enabling high level reasoning, such as automatic generation of the

1The content of this chapter is partially based on the research presented in [26], which
has been carried out with the contributions of other co-authors.

71

72 A GEOMETRIC-BASED TASK SPECIFICATION

constraints, as well as executable feasibility over the robot capabilities. Finally,
task specification examples will be provided and validated with an experimental
setup (Section 3.3).

3.1 Introduction and Related Work

Constrained Optimization is a well known mathematical process that computes
a solution x (if any exists) that minimises the value of a given objective function
f(x). Such a solution must lie in the so-called feasible space, defined by a set of
constraints expressed as equality or inequality functions. A generic formulation
of a Constraint Optimization Problem (COP) can be written as:

minimize
x

f(x),

subject to g(x) = c, Equality Constraints,

h(x) ≤ d Inequality Constraints.

(3.1)

As a side note, a COP must not be confused with a Constraint Satisfaction
Problem (CSP). The latter regards only the satisfaction of the constraints, often
expressed as integer constraints. CSPs are widely used for planning in the
symbolic domain.

COP formulations are widely used in many robotics contexts, among withmotion
planning and motion control. The former focuses on generating trajectories
that complies to kinodynamic constraints, minimising path length, time, and
energy required for the execution or a combination of these; examples are
[171, 38, 40]. The latter focuses on generating an instantaneous control action,
expressed as desired velocities, accelerations or forces on the robot joints (or
a combination of those, see [142]). The objective function defines the general
behaviour, often formulated to optimise energy consumption, in one form or
another (e.g., minimal velocities, accelerations or forces applied to the joints);
constraints can be defined in both joint or task space [135]. In this context,
the term task specification often refers to a specific formulation of a COP to
perform a given task.

Constraint programming enables a set of advantages over classical motion
specifications, among which:

• composability of the constraints: most of the constraints does not
involve the whole platform, hence satisfying multiple constraints is possible;
combining constraints is a way to generate a task by composition of
multiple sub-tasks, which are performed concurrently;

INTRODUCTION AND RELATED WORK 73

• redundancy resolution: a COP formulation allows to exploit and
optimise the behaviour on the overall degrees of freedom (DOFs) provided
by the robotic platform;

• portability of the task specification: under certain conditions, the
same task specification can be executed by another robot platform; these
conditions often depend on the robot capabilities, i.e., a specification can
be incompatible whereas the robot does not provide certain features or
tools;

• uncertainties: some frameworks (e.g., [36]) provide a systematic
approach to model and estimate geometric uncertainties online, such
that the control action is adapted accordingly;

• reactiveness: in the instantaneous version, the control action is
computed at a frequency rate compatible with the real-time requirements
of the application.

However, formulating a COP is not always trivial. To this end, several
frameworks provide a specific toolchain, often addressed to a specific solver
implementation. Some examples are: i) the Stanford Whole-Body Control
framework (SWBC) [141] that deals with force-resolved schemes, ii) the
instantaneous Task Specification using Constraints (iTaSC) [36] introduces
feature and uncertainties variables, allowing to define tasks in complex task
spaces and to treat systematically geometric uncertainties. In the iTaSC,
the optimisation problem is defined as a least-squares problem, which uses the
Moore-Penrose pseudo-inverse algorithm [116]; a further extension supports both
equality and inequality constraints [41]. Another family of solvers is provided by
the iii) Stack of Tasks (SoT) [96, 97], originally based on a Hierarchical Quadratic
velocity-resolved scheme [48], then extended to force-resolved scheme [133, 42].
A velocity-based scheme based on a Sequential Quadratic Programming (SQP)
solver (qpOASES, see [49]) is adopted by the iv) openSoT [129], as well as
the v) expression-based Task Specification Language (eTaSL) [2]. The latter
differs from the others due to the introduction of expressiontrees for automatic
differentiation purposes (e.g., Jacobian computation). Alternative formulations
on the same SQP approach can be found in [9]. Finally, vi) hybrid kinematic-
dynamic scheme have been investigated in [142, 143]. This non-exhaustive
overview shows the increasing popularity over the COP methodology, and,
functionality-wise, demonstrates its maturity. Furthermore, none of the above-
mentioned framework is meant as a replacement of the others, but as an
alternative which better adapts to a concrete context.

However, none of the above-mentioned frameworks provide a practical solution
to compose a task specification: there is no common methodology among the

74 A GEOMETRIC-BASED TASK SPECIFICATION

frameworks, many tuning parameters are required, and the learning curve is
quite steep for a non-expert. As a matter of fact, experts stick on one solver or
methodology, without adopting any alternative; non-experts are reluctant to
use these methods, opting for motion planning solutions.

To the best of the author’s knowledge, only few initiatives have been taken
to formally describe a task-centric application. Starting from the seminal
work of Mason [99], a more formal language to describe compliant motions
is given by the Task Frame Formalism (TFF) [30, 82], later revisited in [86].
However, these approaches does not scale to more complex robots and tasks.
Furthermore, it is often implicitly assumed that a robot is capable of performing a
certain motion, or it provides the required capabilities for the motion execution.
Examples are guarded motions over force-based constraints: not all robots
provide a force sensing capability. Another work is the iTaSC-DSL [168] that
supports only a task specification based on the iTaSC methodology. The recent
eTaSL framework [2] provides another example of task specification strictly
related to the underlying solver capabilities.

This chapter introduces an alternative DSL for constraint-based task specifica-
tions, which is not only independent from the numerical solver or methodology
adopted, but it is also translated and implemented in existing frameworks. To
this end, the task specification formalises geometric primitives as first-class
citizens, which are both feature of concrete items instances and target of
relationships that describe a desired world transformation.

Another drawback of a COP formulation can arise when multiple sub-tasks are
combined together, generating a situation of conflicting constraints. For instance,
a conflict between constraints occurs when i) some inequality constraints are
partitioning the same space in disjoint sets, ii) multiple equality constraints
defined in the same space are imposed, and when iii) a robot is over-
constrained [132, 165], thus there is no redundancy available to fully satisfy
the constraints. Luckily, all of the above-mentioned frameworks provide a
mechanism to deal with conflicting constraints, already in the continuous domain.
The most common solutions are i) constraint weighting between conflicting
constraints [135, 44, 97, 2]) and ii) constraint prioritization [110, 140, 36, 43].
However, the implementation of such mechanisms is solver-dependent; as an
example, the iTaSC [36] implements priorities through null space projection [10],
while the eTaSL [2] implements priorities by introducing slack variables in the
QP formulation. Lastly, solutions in the discrete domain are possible, such as
reformulations of the objective function (e.g., removal of a term) or the removal
of a conflicting constraint, as adopted by the SoT [96].

Resuming, the aim of the chapter is not to introduce a novel COP solver or
methodology. Instead, the purpose is to design a task specification that unifies

GEOMETRIC-BASED TASK SPECIFICATION DSL 75

1..*
1..*

1
1

1

1

1 1

Task

Geometric ConstraintMonitor

Geometric Expression Behaviour

Geometric Primitive

Geometric Entity Reference Frame

Figure 3.1: Overview of the task specification objects in a UML class diagram style.
This Figure is illustrative purposes only; several elements, such as attributes of the
classes, are omitted.

the existing frameworks.

3.2 Geometric-based Task Specification DSL

This section introduces a motion task specification based on geometric constraint
expressions. This DSL aims to abstract i) the space where tasks are expressed,
which is defined in terms of symbolic expressions, ii) the type of control to be
enforced on such a space (the behaviour), and iii) the monitors required to
detect an achievement over the desired behaviour. One of the design drivers of
the language is the composability (by aggregation) of the language elements, as
it is shown in Figure 3.1. An implementation of the language is grounded in
JSON-schema, which is reported in appendix A.2. Therefore, all the examples
in Section 3.4 conforms to that meta-model.

76 A GEOMETRIC-BASED TASK SPECIFICATION

3.2.1 Geometric Expressions between Geometric Primitives

This section introduces the geometric concepts of i) geometric entities (a
geometrical feature such as a point, a versor, a line, a plane and so on),
ii) geometric primitives (entities expressed in a frame), and iii) geometric
expressions (a scalar function that relates primitive). Expressions can be non-
geometric as well (e.g., joint expressions).

Expressions are a relationship that maps joint-space values and measurements,
to task-space values (controlled, measured, and so on). The use of expressions
is two-fold: i) to compute “deviations” from (task-space) positions, or ii) to
compute the “Jacobian” (the partial derivative of the expression w.r.t. joint
angles) that relates joint velocities (forces) to generalized velocities (torques).

Since our focus is task specification, no assumption is made on how values
and Jacobian are computed (e.g., analytically, numerically, solving implicit
equations, and so on).

Geometric Entities

The elementary geometric entities considered are the point and the versor ; both
have three parameters that can be represented by triples (x, y, z). Additionally,
the versor must comply with unitary norm constraint. Combinations of points
and versors yield to other two well-known geometric entities, line and plane,
each with five free parameters in its representation. This representation is non-
minimal, since it is known that a minimal representation of a line requires only
four parameters. Nevertheless, the chosen representation is intuitive, obtained
by composition, and it simplifies the specification. Furthermore, it carries an
extra information, which is an orientation with respect to the line origin. The
latter is very convenient; for instance it allows to specify projection relationships
described below.

Geometric Primitives

Entities need a frame to ground their coordinate representations: so, a geometric
primitive associates a geometric entity with a frame. The four possible
geometric primitives are reported in Table 3.1, along with the associated
mathematical symbol. Formal meta-models of point entity and primitive are
given in Listings 3.1–3.2. As a reminder, a meta-model represents all the formal
constraints that every individual instance must conform to. In turn, the chosen
meta-meta-model to describe this work is based on JSON-Schema.

GEOMETRIC-BASED TASK SPECIFICATION DSL 77

1 { "id": "http: //.../ point #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Point Entity ",
" type ": " object ",

5 " properties ": {
"x": {

" type ": " number ",
" description ": " coordinate along x-axis"},

"y": {
10 " type ": " number ",

" description ": " coordinate along y-axis"},
"z": {

" type ": " number ",
" description ": " coordinate along z-axis"},

15 " type ": { "enum": [" point "] }
},
" required ": ["x", "y", "z", " type "],
" additionalProperties ": false

}

Listing 3.1: Formal JSON meta-model of a point entity.

1 { "id": "http: //.../ primitive #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Geometric Primitive ",
" type ": " object ",

5 " properties ": {
" object_frame ": {

" type ": " string ",
" description ": " reference frame "},

" entity ": { "$ref": "#/ definitions / entity " }
10 },

" required ": [" object_frame ", " entity "],
" additionalProperties ": false ,
" definitions ": {

" entity ": {
15 " oneOf ": [

{ "$ref": "http: //.../ point #" },
{ "$ref": "http: //.../ versor #" },
{ "$ref": "http: //.../ plane #" },
{ "$ref": "http: //.../ line #" }]

20 } } }

Listing 3.2: Formal JSON meta-model of a geometric primitive.

78 A GEOMETRIC-BASED TASK SPECIFICATION

Geometric Primitive Symbol entity composed of
point expr. in {w} p{w} scalars x, y, z
versor expr. in {w} n̂{w} scalars x, y, z s.t. || · || = 1
line expr. in {w} n{w} point origin, versor direction
plane expr. in {w} P{w} point origin, versor normal

Table 3.1: Summary of geometric primitives, grounded in frame {w}.

point line
point point-point distance

line line-point distance
projection of point on line

distance btw lines
projection (p1-f1)
projection (p2-f2)

plane point-plane distance
(a) Geometric expressions on distances.

versor plane
versor angle btw versors
plane incident angle angle btw planes

(b) Geometric expressions on angles.

Table 3.2: Summary of geometric expressions between primitives.

Geometric Expressions

A geometric expression is a relationship between a pair of well-defined geometric
primitives. The list of primitives in Table 3.1 is not exhaustive, but suffices
for most scalar expressions that describe positioning between pairs of objects.
For example, Table 3.2 gives distance and angle expressions. Most of the table
entries are self-explaining; nevertheless the expressions line-point and line-line
distance require an additional explanation to avoid any misunderstanding:

• The line-point entry (Figure 3.2a) has two expressions: the line-point
distance, that is the distance between the point p2 and the point of
shortest distance f1, and the projection of point on line, that is the
distance between the points p1 and f1.

• The line-line entry (Figure 3.2b) has three distance expressions: the
distance from lines, distance d between the two lines, the distance between
the point p1 and the minimum distance point f1, and the distance between
the origin of the line p1 and the minimum distance point f2.

GEOMETRIC-BASED TASK SPECIFICATION DSL 79

A relevant remark is that all the above-mentioned distances are signed; the
latter is a useful property that increases the expressivity of the proposed DSL.

line-point
distance

proj.

(a) Line 1 is expressed in
{

o1
}
, Point

2 in
{

o2
}
.

distance
between lines

proj.
proj.

(b) Lines 1 and 2 are expressed in
{

o1
}

and
{

o2
}
,

respectively.

Figure 3.2: Graphical representations of the five possible relations between a point
and a line (3.2a), and between two lines (3.2b).

Expressions in Joint Space

Geometric expressions are used to describe constraints on the task space.
However, many cases need to express constraints in a robot’s joint space,
the most obvious cases being limits in torque, position, or velocity. Joint space
expressions, as well the constraints defined upon these, are platform dependent
and they change from robot to robot, thus they are not task specific.

Composite Expressions

Many constraint specifications require complex expressions, either as a
combination of the elementary expressions above, or based on more complex
geometrical shapes, or specified directly as geometric “curves”. The adopted
approach is to enumerate all models that one requires in a specific task context,
since with this approach it is trivial to extend the enumeration list. The
following are few examples of such higher complexity expressions:

80 A GEOMETRIC-BASED TASK SPECIFICATION

• Non-scalar expressions or multi-dimensional expressions, as rotations
in space. Rotations are often used when full orientation is constrained.
However, a analogous results can be achieved by considering a set of angle
between versor expresssions.

• Sensor-space expressions; in some applications, constraints are directly
expressed in a sensor space, e.g.in visual servoing with eye-in-hand camera.
In cases where such a relation cannot be expressed by means of geometric
expression, a new expression must be formalised, and the underling
implementation realised:

y = f(χu, q, . . .),

where χu is the relative position of the measured object with respect to the
camera, y is the measured output, and q refers to the robot configuration.

3.2.2 The Behaviour

Geometric expressions are a useful tool to specify constraints in the “output
space”, but how should these constraints be satisfied has not been discussed yet.
The latter refers to the concept of behaviour specification, which is a way to
describe how to achieve a certain result, delegating the concrete implementation
of the control law to the underling solver.

An enumerative list of behaviours covered in this chapter are:

• Positioning, that describes position regulation problems;

• Move, to specify direction and rate of motion, rather than only the
desired final position;

• Physical Interaction, to control force or impedance occurring in physical
contact;

• Compliant positioning, to control the position of the system, while
allowing for physical compliance in order to cope with unexpected or
partially modelled contacts;

• Limits, to reduce the space of feasible solutions, preventing the robot
from going in undesired positions or to exert excessive forces.

Table 3.3 matches behaviours with the needed characteristics of the system, in
terms of: i) controller type, ii) type of set-point that must be specified, such
as position, velocity and forces, either as a constant, provided by a trajectory

GEOMETRIC-BASED TASK SPECIFICATION DSL 81

generator or another external source, and iii) type of constraint, i.e., equality
or inequality.

Obviously, these functionalities should be provided by the system developer,
and they should be achievable by the robot that performs the task. Thus, not
all the behaviours are available on a controlled system. The latter re-call to the
concept of robot capabilities: a task specification can be executed only if the
robot offers all the required features to guarantee a correct realisation, among
with the relative control algorithm (software) and sensing capabilities (e.g.,
force sensor).

Referring to Table 3.3, the features of the implemented control algorithms
should comply to the follow requirements: i) in the first three cases, the goal
is to have a zero steady state error in either position, velocity, or force, ii) in
the compliance mode the control algorithm regulates the position, but allowing
deviations proportional to force, and iii) with limits, only the bound satisfaction
is sufficient, and no motions are imposed if the latter holds. In addition,
the first four behaviours need a parameter to indicate i) the time constant of
the error, in the first three cases, or ii) the relation between angular or linear
displacement (along the output direction) with respect to the disturbance (force
or torques respectively).

With the first three control laws, we seek an asymptotically zero converging
error in position, velocity, or force, respectively, and the error dynamic should
be “analogous” to a first order system. In the case of position control:

ẏ◦d = Kp(yd − y), (3.2)

where ẏ◦d is the velocity actuated (see [36]), and the gain Kp is the specification,
and whose dimension is [1/s] regardless of the constrained variable; a feedforward
term (ẏd or λ̇d, in Table 3.3) could also be taken into account.

The compliant motion behaviour, instead, achieves a given displacement from a
rest position as response to disturbances (e.g., an external force). Henceforth,
the tuning parameter represents a desired apparent stiffness:

δf = Kδy. (3.3)

Lastly, in case of limiting-type behaviours, parameters are considered optional,
since in many cases (e.g., joint position or effort limits), the desired interval
should not be violated (and no convergence rule toward limits is needed). On the
contrary, in cases where limiting behaviours are used to define “soft constraints”
(e.g., auxiliary constraints as described in the following section), these gains can
be used to assess a smooth convergence toward the limits following the control
equation 3.3.

82 A GEOMETRIC-BASED TASK SPECIFICATION

The described behaviours cover most of the tasks proposed in literature, but it
is not exhaustive. If the need arises, it is possible to extend the enumerated
list with additional behaviours (or add additional parameters to the proposed
ones), provided that controllers exist that are able to execute them.

3.2.3 Constraints, Monitors and Task

Constraints

A constraint is defined as a composition of two primitives, that is i) an expression,
and ii) a set-point specification, as a constant value, or as a generated trajectory
or any other external source. Furthermore, a constraint must be linked to a
valid behaviour in order to be executed.

In all but the simplest tasks, several constraints are imposed together. Since
the initial conditions, the environment, and other aspects can be unknown at
the time of defining the application, or vary between executions, a task could
result in conflicting objectives that cannot be achieved simultaneously. For
this reason, a well-formed specification should express explicitly in which way
conflicts should be handled at run-time. Therefore, a semantic tag is attached
to each constraint; such a tag is interpreted at run-time, and in case of conflicts
a certain policy is applied. The number of tags is an arbitrary choice that
depends on the level of control granularity required by the application. In most
of the applications (see [137, 136]) the following three levels suffice:

• Safety constraints: constraints that are necessary for the robot platform
or critical surroundings integrity, such as hardware limitations, non-desired
collisions, sustained balance in humanoid robots, and so on. These
constraints are usually formulated as inequalities, thus reducing the
space of feasible solutions in which lower level constraints can be fulfilled.
Constraints executed in this level should not be conflicting.

• Primary constraints: those constraints that, if satisfied, trigger a logical
step-forward along the nominal plan execution,

• Auxiliary constraints: also called soft-constraints, are those that
facilitate the execution of primary constraints, but they can be violated
without causing a failure over the desired behaviour; an example is
the optimization of the robot pose configuration with respect to the
manipulability index, [25], others are gazing, elbow configuration and so
on.

GEOMETRIC-BASED TASK SPECIFICATION DSL 83

B
eh

av
io
ur

ne
ed

s:
Sp

ec
ifi
ca
ti
on

co
nt
ro
lle

r
se
tp
oi
nt
s
(o
ne

of
)

Fo
rc
e

m
ea
su
re
m
en
t

co
ns
tr
ai
nt
s

y d
ẏ d

y d
,ẏ
d

λ d
λ d
,λ̇

d
=

<

Po
sit

io
ni
ng

Po
sit

io
n

X
X

X
do

m
in
an

t
po

le
[1 /

s]
M
ov
e

Ve
lo
ci
ty

X
X

do
m
in
an

t
po

le
[1 /

s]
Ph

ys
ic
al

in
te
ra
ct
io
n

Fo
rc
e

X
X

X
X

do
m
in
an

t
po

le
[1 /

s]
C
om

pl
ia
nt

m
ot
io
n

Im
pe

da
nc
e

X
X

X
St
iff
ne

ss
[N
/m

]o
r

[N
m
/r

ad
]

Po
sit

io
n
Li
m
it

Po
sit

io
n

X
×

2
X

(d
om

in
an

t
po

le
[1 /

s])
Ve

lo
ci
ty

Li
m
it

Ve
lo
ci
ty

X
×

2
X

(d
om

in
an

t
po
le

[1 /
s])

Fo
rc
e
lim

it
Fo

rc
e

X
×

2
X

X
(d
om

in
an

t
po
le

[1 /
s])

Ta
bl
e
3.
3:

Li
st

of
be

ha
vi
ou

rs
:
ea
ch

be
ha

vi
ou

r
is

re
la
te
d
to

th
e
ty
pe

of
co
nt
ro
l
an

d
it
s
sp
ec
ifi
ca
ti
on

,
th
e
ty
pe

of
se
t-
po

in
t,

th
e
ne

ed
ed

m
ea
su
re
m
en
ts

(p
os
it
io
n
m
ea
su
re
m
en
t
is

al
w
ay
s
ne

ed
ed

),
an

d
th
e
re
la
te
d
co
ns
tr
ai
nt

(e
it
he

r
eq
ua

lit
y
or

in
eq
ua

lit
y)
.

In
eq
ua

lit
ie
s
ne

ed
s
tw

o
se
t-
po

in
ts
,r
ep

re
se
nt
in
g
th
e
up

pe
r
an

d
lo
w
er

bo
un

d
va
lu
es
.
Sp

ec
ifi
ca
tio

n
is
op

tio
na

lf
or

lim
iti
ng

be
ha

vi
ou

rs
.

84 A GEOMETRIC-BASED TASK SPECIFICATION

A conflicting situation is solved by a pre-defined policy on the indication of the
semantic tags associated to the constraints involved. Recalling from Section 3.1,
conflicting constraints are solved by implementation-dependent methods, among
with: i) weighting of a conflicting term in the objective function, ii) prioritization
of constraints, achieved mostly with null space projectors, and iii) removal of
the conflicting constraint. Since the purpose of this chapter is to present a
task specification, no further details are provided in this context.

Monitors

The importance of the execution monitoring has been discussed already in
Section 2.1. The proposed DSL introduces a way to configure a monitor function,
promoting the usage of the geometric expressions. In details, a monitor can
either observe:

1. a controllable variable (for example a variable that is used as constraint),
or

2. a measured quantity that is influenced by the robot actions, but cannot
be directly controlled. This quantity can be measured in terms of: i) a
variable that lives in the space described by an expression, or ii) an
external monitored value.

For the cases 1) and 2i, a monitor is defined as: i) an expression (that
specifies the space where the variable lives), ii) a condition name (e.g.finished,
failed), iii) the (monitored) variable type (POSITION, VELOCITY, FORCE), that
is expressed in the space defined by the expression, iv) a comparison type (<,
>, ∈, 6∈), v) reference value(s). The external monitor (case 2ii) allows for
composability with external sources, for example, time-out or safety events.

Task

Finally, the formal definition of a Task wraps the previous items together;
it includes i) at least one primary constraint, and ii) at least one (end-of-
task) monitor. Optionally, it can have iii) safety constraints, and iv) auxiliary
constraints.

Thus, the minimum specification of the task corresponds to a constraint (an
expression, a behaviour that rules which kind of control must be used, and a
reference value) and one monitor (that dictates the end of the task execution).

TASK SPECIFICATION EXAMPLES 85

Having a well defined end-of-task monitor is instrumental to define the post-
condition(s) of the task to be used in plan reasoning and scheduling algorithm
(see Section 2.1).

3.3 Task Specification Examples

This section shows two different task specifications related to different case
studies, namely an open a drawer (previously discussed in Chapter 2) and a
spanning a surface scenarios. The task specification is transformed to a COP,
which is solved by a numerical algorithm. The presented results have been
obtained in both simulation environment and on a real robotic system. The
execution is validated by the behaviour performed, thus by monitoring the
satisfaction of the imposed geometric constraints. However, this chapter focuses
on the “feedforward” part of the whole control problem, which is fully realised
on a model, whether or not adapted at run-time. It is beyond the scope of this
chapter to discuss about the quality of the generated motion, or on the control
methodology adopted, since there are no contribution in that perspective. The
main aim of this section is to propose a possible realisation by means of concrete
examples. For the sake of clarity, the discrete coordination of the robotic tasks
does not adopt the SDG methodology discussed in Chapter 2, which it will be
illustrated in Chapter 4. Instead, the adopted coordination model is based on a
FSM, mostly driving the switch of a strict sequence of tasks encoded a priori.

3.3.1 Numerical Solver

As mentioned in Section 3.1, the focus of this chapter is neither on the numerical
solver or on the methodology adopted to ground the proposed DSL. However,
in order to provide an executable task specification, the choice over a numerical
solver is required. This section briefly illustrates the velocity-resolved solver
employed to perform the motion controller, which is a modified version of the
solver provided in eTaSL framework [2].

Let x be optimisation variable written as x =
[
q̇T εT

]T , where q̇ is the
control action (i.e., nr joint velocities of the controlled robot), and ε is vector
of ns slack variables that implements primary and auxiliary constraints in the
solver (further details are provided below). The instantaneous control action is

86 A GEOMETRIC-BASED TASK SPECIFICATION

computed by solving a SQP written as:

minimize
x

xTHx, (3.4)

subject to LA ≤ Ax ≤ UA, (3.5)

L ≤ x ≤ U, (3.6)

where Eq. 3.6 expresses the velocity limits that bound the feasible space;
hence, this equation is filled in by the safety constraints described in the task
specification. The behaviour of the remaining geometric constraints is grounded
by Eq. 3.5. In details, each geometric constraint2 i defines a task function ei(q, t)
as suggested in [135]. The desired evolution of such a task function is imposed
by a first order system with time constant K−1 (i.e., a simple proportional
controller); for equality constraint,

d

dt
ei(q, t) = −Kei(q, t), (3.7)

which slightly differs in case of inequality constraint,

d

dt
ei(q, t) ≤ −Kei(q, t). (3.8)

The evolution of the task function can be re-written as partial derivatives,

dei
dt

= ∂ei
∂t

+
nr∑
j=1

∂ei
∂qj︸︷︷︸
Ji

q̇j , (3.9)

and combined with Eq. 3.7 (or Eq. 3.8),

Jiq̇ = −Kei −
∂

∂t
ei + εi. (3.10)

In the latter, εi (e.g., slack variable of the constraint i) is added to implement
a weighting policy without causing infeasibility of the QP problem (the feasible
space is determined only by the safety constraints). As a remark, the above
formulation is also adopted by the SoT [97]. To resume, this solution imposes an
exponential decay to the behaviour of the constraint to be satisfied; a possible
drawback is the introduction of discontinuities in the computed task space, in
particular when a constraint is inserted. To avoid such situations, a velocity
profile can be attached to the controller as feedforward term, imposing a desired

2All the geometric constraints represented in the DSL are scalars, therefore no special
care is required.

TASK SPECIFICATION EXAMPLES 87

and customizable behaviour, still defined in the task space. An alternative
solution is to adopt an adaptive gain function instead of the time constant K−1.

To conclude, the resulting Hessian matrix that defines the objective function is:

H =
[
µWr 0

0 µI + Ws

]
, (3.11)

where i) µ is an arbitrary value large enough to guarantee that the Hessian matrix
is positive definite, ii) Wr are weights on the joint space, and iii) Ws are weights
on the primary and auxiliary constraints. In the latter, an arbitrary weight-
based policy must be defined to differentiate between primary and auxiliary
constraints. To solve the QP problem (Eq. 3.4), the qpOASES solver [49] is
adopted.

As a remark, this solution is not the only implementation available; in fact,
within the European Project FP7-RoboHow.cog [128], the proposed Geometric-
based DSL (Section 3.2) has been also grounded in the SoT [96] framework3.

3.3.2 Open a Drawer Scenario

A first case of study is the already discussed “open a drawer scenario”: Section 2.6
briefly illustrates the constraint-based motions in a narrative way, instead
this section finalises the description of the task formally. Furthermore, both
simulation and real experiments are reported below; that allows to show slightly
different task specifications for the same application, enforcing the concept that
from a symbolic action multiple grounding are possible.

Simulation Validation

The overall application is composed of the following three states, ordered
sequentially: approach the tray (S.1), grasp the handle (S.2) and open the
drawer (S.3). During the overall execution, the safety constraints are enforced
in order to limit both joint positions and joint velocities within their range.
The remaining constraints are related to the specification of each state (see
Table 3.5), that is:

• Approach the tray (S.1): the robot brings its end effector in such a position
that can conveniently grasps the handle. To this end, the robotic gripper
should be: i) oriented toward the handle, ii) properly rotated along its

3http://stack-of-tasks.github.io/

http://stack-of-tasks.github.io/

88 A GEOMETRIC-BASED TASK SPECIFICATION

(a) Gripper: the line ga{o2}represents the
direction of approach of grasping, while versor
ĝn{o2}must be parallel to the handle axis

direction ĥa{o1a}.

(b) Drawer: axis of the handle and direction
of opening oa{o1b}are the two main features.

Figure 3.3: Some of the geometric entities involved in the “open a drawer” scenario.

z-axis, and then iii) reducing the distance between the grasping point and
the handle center to zero. Such set of constraints is shown in Table 3.5a.

• Grasp the handle (S.2): while the positioning constraints are held, the
gripper is closing; the constraint shown in Table 3.5b is added to the task
specification, while the previous are kept.

• Open the drawer (S.3): the handle is grasped, and the additional constraint
in Table 3.5c is placed to enforce an opening motion. In the meantime, the
handle must kept grasped, thus the previous constraints are not removed.
However, the weighting policy of some of those can switch to auxiliary,
since the physical coupling “gripper-handle” bind the motion anyway.

For all the above-mentioned constraints, the behaviour employed is of type
“positioning”. Furthermore, alternative task specifications can adopt behaviours
of type “physical interaction”; it is the case for the “open the drawer”
specification, which can be grounded by imposing a force along the opening
direction of the drawer (hz{o1a}).

The geometric expressions used to specify the monitors can differs from the
ones used for the constraint specification. In details: i) the success of the
“approach the tray” task can be determined by monitoring a point-point distance
relationship between the origins of frames

{
o1a} and

{
o2}; ii) the success of the

“grasp the handle” can be visually confirmed, or achieved by a direct/indirect
force measurement in the grasp space. Whereas the previous alternatives are
not possible (e.g., due to robot capabilities missing), it is still possible to rely on
the position information (i.e., current distance between the fingertips); iii) the

TASK SPECIFICATION EXAMPLES 89

reference frame description{
o1a} handle center, z-axis along the handle{
o1b} the chest of drawers (fixed in the world){
o2} Tool Center Point (TCP) of the gripper{
o3} left tip of the gripper{
o4} right tip of the gripper

(a) Reference frames attached to physical objects in the scene (see
Figure 3.3)

geometric primitive type reference frame
name symbol

handle_position hp{o1a} point
{
o1a
}

handle_axis_direction oa{o1b} line
{
o1b
}
, aligned with z−axis

handle_axis_direction ĥa{o1a} versor
{
o1a
}
, aligned with z−axis

handle_axis_x hx{o1a} line
{
o1a
}
, aligned with x−axis

handle_axis_y hy{o1a} line
{
o1a
}
, aligned with y−axis

handle_axis_z hz{o1a} line
{
o1a
}
, aligned with z−axis

grasp_position gp{o2} point
{
o2}

grasp_normal_direction ĝn{o2} versor
{
o2}, aligned with x−axis

grasping_axis ga{o2} line
{
o2}, aligned with z−axis

left_tip_position lp{o3} point
{
o3}

right_tip_position rp{o4} point
{
o4}

(b) Geometric primitive definitions (see Figure 3.3).

Table 3.4: Reference frames and definitions of the geometric primitives depicted in
Figure 3.3 (Table 4.2a and Table 4.2b, respectively).

success of the “open the drawer“ can be acknowledged by monitoring when the
distance between the gripper position and the initial drawer position is above a
given threshold. In this context, no special care is taken to specify a failure
of a task execution; a generic timeout over the time elapsed in one state is
employed. Finally, Figure 3.4 shows the monitored evolution of the expressions
involved in the task specification.

As a side note, the constraints shown in Table 3.5 are equality constraints. This
is an ideal choice for an illustrative example, but it is often too simplistic in a
real application. In fact, i) an equality constraint is always subject to numerical
tolerances, and ii) a task specification based exclusively on equality constraints
can easily cause an over-constrained situation or infeasibility of the solution
space, while the task should be achievable. The latter is discussed in Chapter 4.

90 A GEOMETRIC-BASED TASK SPECIFICATION

0 2 4 6 8 10 12

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Time [s]

D
is

ta
n
ce

 a
n
d

 p
o
si

ti
o
n
 [

m
]

S.1

Distance
pos. along x
pos. along y
pos. along z
monitored

S.2 S.3

(a) x, y, z positions of gripper w.r.t. the handle (initial, fixed)
frame, and total distance between frame origins.

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time [s]

D
is

ta
n
ce

 [
m

],
 a

n
g
le

 [
ra

d
]

S.1

Point-line dist.
angle (,)

S.2 S.3

(b) Point-line distance between the gripper grasping direction and
the handle frame origin, and misalignment between the handle axis
and normal grasping directions.

0 2 4 6 8 10 12

3.0
3.5
4.0
4.5
5.0
5.5
6.0

G
rip

pe
r o

pe
ni

ng
 [c

m
]

Time [s]

gripper
monitored

S.1 S.2 S.3

(c) Distance between gripper fingers.

Figure 3.4: Values of constrained and monitored expressions during simulation.
Vertical lines show the transitions between states (labelled from S.1 to S.3, each
one corresponding to a set of primary constraints). In the first state, the gripper is
opened (3.4c), aligned (3.4b), and brought to the handle (3.4a). A state transitions is
triggered when total distance (blue flat line in 3.4a) decreases under a given threshold.
During S.2 the gripper is closed (3.4c), and, lastly, the gripper is commanded to move
back to x = −0.3 m (thin solid line in 3.4a). The monitored expressions in each task
are highlighted with a fat gray underling line. Furthermore, Figure 3.4c denotes a
trapezoidal velocity profile that drives in feedforward the target value.

TASK SPECIFICATION EXAMPLES 91

primitive I primitive II relation target value
ga{o2} hp{o1a} line-point distance 0 [m]
ĝn{o2} ĥa{o1a} angle btw versors 0 [rad]
gp{o2} hx{o1a} point-line projection 0 [m]
gp{o2} hy{o1a} point-line projection 0 [m]
gp{o2} hz{o1a} point-line projection 0 [m]

(a) Approach the tray (S.1)

primitive I primitive II relation target value
lp{o3} rp{o3} point-point distance 0.09 [m]

(b) Grasp the handle constraints, (S.2).

primitive I primitive II relation target value
gp{o2} oa{o1b} point-line distance 0.3 [m]

(c) Open the drawer, (S.3).

Table 3.5: Constraints involved in the task specification of the Open a drawer scenario,
divided for each discrete state.

92 A GEOMETRIC-BASED TASK SPECIFICATION

Experimental Validation

The ”open a drawer“ scenario is validated on a Personal Robot 2 (PR2) robotic
platform. The overall application slightly differs from the previous example,
due to the variability of the initial conditions of the experiment. For instance, a
state (S.0) is added such that the task specification ”open gripper“ is executed
before to start the approaching phase. As discussed in Section 2.6, the gripper
must be open before it is close to the handle; since the FSM coordination model
does not provide a construct for conditional concurrency, a conservative plan
ensure the satisfaction of that logical condition.

For the sake of brevity, the description of the task specifications executed in
each state are not reported in this dissertation. However, the formal model,
encoded as a JSON document, is available online4. Figure 3.6 and Figure 3.7
show a screenshot for each execution state; the integral video of the experiment
can be found online5. The results can be appreciated in Figure 3.5: apart of
the disturbances that affect the system, the outcome is comparable with the
results obtained in simulation (Figure 3.4).

4https://people.mech.kuleuven.be/~u0072295/jgeom_constr/examples/app/
pr2-opendrawer/

5https://www.youtube.com/watch?v=4_t9dYEuswo

https://people.mech.kuleuven.be/~u0072295/jgeom_constr/examples/app/pr2-opendrawer/
https://people.mech.kuleuven.be/~u0072295/jgeom_constr/examples/app/pr2-opendrawer/
https://www.youtube.com/watch?v=4_t9dYEuswo

TASK SPECIFICATION EXAMPLES 93

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

S0 S1 S2 S3

Distance
pos. x
pos. y
pos. z

(a) x, y, z positions of gripper w.r.t. the handle (initial, fixed) frame, and total
distance between frame origins.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

S0 S1 S2 S3

Point−line dist.

(b) Point-line distance between the gripper grasping direction and the handle
frame origin, and misalignment between the handle axis and normal grasping
directions.

0 5 10 15 20 25 30 35 40
0.02

0.04

0.06

0.08

0.1

S0 S1 S2 S3

Time [s]

Gripper

(c) Distance between gripper fingers.

Figure 3.5: Values of constrained and monitored expressions during the experimental
validation. The obtained results are comparable with the simulation of Figure 3.4.
Furthermore, this experiments includes two additional states.

94 A GEOMETRIC-BASED TASK SPECIFICATION

(a) Open Gripper (S.0).

(b) Approach Tray (S.1).

(c) Grasp Handle (S.2).

Figure 3.6: Frames of the open a drawer scenario sequence.

TASK SPECIFICATION EXAMPLES 95

Figure 3.7: Frame from the open a drawer scenario, open drawer sequence (S.3).

3.3.3 Spanning a Planar Surface

Originally developed for ”spreading tomato sauce on a pizza dough“ (within
the context of the RoboHow.cog project [128]), this example suits to other
contexts that require to slide an object on a planar surface. Firstly, the robot
must ensure the contact between the object and the surface; secondly, a planar
motion is performed, maintaining the contact previously achieved. Thus, such
tasks perform a physical interaction, which is a behaviour provided by the
proposed DSL. As an assumption, the robot grasps the object, and in this case,
the object is a tool, since it provides a particular features; examples are a spoon,
a spatula and a sponge.

A validation experiment proposes a sequence of three states, each representing
the execution of a different task: i) ”moving spatula above the center“ as
an initial task to bring the tool in a preferred spot on the top of the target
plane (e.g., where the tomato sauce is piled up); ii) ”moving spatula to the
center“, task performed by combining positioning constraints, as well as a
”physical interaction“ constraint, which also serves as monitoring for the next
action; iii) ”spread with spatula“ by means of a linear motion expressed as a
positioning constraint, while the ”physical interaction“ constraint is maintained.
In addition, an extra auxiliary constraint is imposed to maintain the arm elbow
above the plane, preference that allows to impose a better physical contact.
Iterating over the same set of tasks but with different initial and starting pose
allows to cover different areas. Implementation-wise, the ”physical interaction“
constraint is still a scalar, since a force direction is indicated in a scalar task
space, but other options are feasible. The interaction is then implemented as
an admittance control scheme.

96 A GEOMETRIC-BASED TASK SPECIFICATION

Figure 3.8: A frame from a ”spanning a planar surface with a tool“ experiment. The
robot moves the spatula above the center, initial pose of the spanning task.

Screenshots of the experiment are illustrated in Figure 3.8 and Figure 3.9, while
the full demo is available online6. For the sake of brevity, no further details are
provided in this section. However, an excerpt of the task specification ”spread
with spatula“ is reported in appendix A.3; the full specification is publicly
available7.

As an ending note, the above-described task specifications are executable under
the assumption that the robot provides the capability of measuring the contact
force on the tool tip. In the experiment, the robot relies on the feedback provided
by the joint torque; neither an external force sensor or a tool model is used
to estimate the force on the tip. Therefore, the robot capability are sufficient
with respect to the quality of the execution expected by the task. The tradeoff
provided by the robot capability and the concrete task is a fundamental aspect
often neglected in the task specification. The proposed DSL provides a step
forward in this direction: the behaviour type expresses a capability requirement,
while a monitored expression within a range determines the order of magnitude
of the quality expected. In this specific case of study, the capabilities of the
robot have been ensured by prior work [27, 166]. For high precision tasks, the
current assumption may not suffice, and better capabilities (e.g., external force
sensor) or extra knowledge (e.g., a model of the grasped tool [152]) are required.

6https://www.youtube.com/watch?v=Q6I4XMfl3s4
7https://people.mech.kuleuven.be/~u0072295/jgeom_constr/examples/app/

spreading_spec/

https://www.youtube.com/watch?v=Q6I4XMfl3s4
https://people.mech.kuleuven.be/~u0072295/jgeom_constr/examples/app/spreading_spec/
https://people.mech.kuleuven.be/~u0072295/jgeom_constr/examples/app/spreading_spec/

TASK SPECIFICATION EXAMPLES 97

(a) Moving spatula to the center (an initial pose on the plane).

(b) Spread with spatula, linear spanning action.

Figure 3.9: Frames from a ”spanning a planar surface with a tool“ experiment. To
ensure the contact between the spatula tip and the surface, a force of 2N is imposed
orthogonally to the plane.

98 A GEOMETRIC-BASED TASK SPECIFICATION

3.4 Conclusions

This chapter formalises a constraint-based task specification over geometric
expressions. The primary aim of this work was to unify the various state-of-
the-art approaches that deal with complex tasks on advanced robotic systems.
Thus, the proposed DSL is meant as an interface between the implementation
of the control strategy adopted and the entity responsible for composing the
task specification (e.g., a developer or an automated system). In fact, the
design of the language is driven by a composition principle through a limited
number of formally described primitives. This enables to reason about the
task in various aspects: firstly, the formal representation permits to validate
the task model against structural properties (with the help of the adopted
JSON-schema); secondly, the geometric expressions must be consistent with
respect to the primitives involved. Lastly, additional semantic tags provide
symbolic indications on the correct formulation of the COP handled by an
underlying solver implementation. In particular, the behaviour classification
allows to indicate the requirements for the capabilities of both solver (software
algorithms) and robot capabilities (hardware equipped).

The current implementation covers most of the common use cases, however
it is limited in number of the geometric primitives and behaviour supported.
Nevertheless, the presented methodology permits to extend the support to other
primitives, such as curves and non-planar surfaces.

As a final note, the task specification described in this chapter is complete and
executable: it contains all the knowledge required for executing the task. Some
elements are numerical, and they must be known and fulfilled prior to execution.
However, some of these are not known offline, but they are determined by an
online evaluation. Thus, this task specification is not enough to describe real
applications outside a protected environment as a robotic laboratory. An online
coordinator must provide these values, as well as to compose the different sub-
tasks, according with some symbolic constraints often described in a narrative
way (see Section 3.3, e.g., whether a constraint must be maintained multiple
tasks): the SDG model of Chapter 2 is a possible solution. The next chapter
will bridge those elements, providing a set of mechanisms that transforms the
symbolic components to an executable task specification.

Chapter 4

Applying the Skill
Dependency Graph to
Constraint-based Tasks

This chapter brings together the SDG model of Chapter 2 and the instantaneous
constraint-based task specification proposed in Chapter 3. This fusion allows
to bridge the discrete description of a skill with its implementation in the
continuous domain. The result is the skill prototype (Section 4.3), a context-
dependent refinement of a symbolic action, often obtained by composition of
existing ones. To deal with the variability of the context (Section 4.1), the
concept of geometric item is introduced in Section 4.2, such that the geometric
constraints that define the task are linked to instances of physical objects and
their online and symbolic properties.

4.1 The Variability of the Context

Chapter 3 provided some examples of constraint-based task specification using
geometric expressions. Those specifications are manually composed, starting
from a known description of the environment, including the object instances
that populate the scene. However, geometric primitives can be fully defined in
the symbolic domain, and only grounded to a particular object later in time. It
follows that the same task specification can be employed in similar contexts, as
long as the object instances involved in the task belong to the same class.

99

100 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

For example, the task specification for opening a drawer is not so different from
opening a door: both require a skill that allows to grasp a handle, with the aim
to further interact with it. While the interaction may differ, the grasp gesture
follows the same discrete pattern, whether it is grounded as behavioural-FSM
or with a SDG model (Chapter 2); further details will be given in Section 4.3.1.

The real variability of the specification comes from the context in which the
gesture is applied, and that depends on:

• object instance: the object to manipulate (e.g., the handle) has some
properties that constrain a possible interaction; examples are: the
geometric dimensions of the object; the geometric primitives attached to
the object; semantic information on the role of the object;

• robot capabilities: not only the robot should provide the capabilities
required to manipulate the object (e.g., grasping), but also the specific
tool type (and relative properties) constrain the interaction in different
ways; for instance, end effectors such as parallel jaws grippers, suction
grippers, and robotic hands, provide different capabilities on grasping and
manipulating a certain object;

• purpose of the action: the grounding of an action to an executable task
does not only depend on the current purpose, but also on the follow-up
actions; for example, the way to grasp a handle can differ if the next
action is to pull, push or turn the handle;

• environment: the ideal action realisation may change due to environ-
mental constraints, e.g., the presence of other objects not involved in the
action.

Only by combining all the above-mentioned knowledge, and solving all related
constraints, it is possible to generate an executable task specification.

An initial step in this direction is given by a proper model of an object instance,
which must belong to a geometric item class. Therefore, tasks expressed on these
classes are a first level of abstraction from a dependent to a more independent
context specification. Where the specification is still dependent on the context,
the classes of items involved define the context requirements for the specification
adoption. The link between these specifications and an “abstract” SDG model
shapes a grounded model called skill prototype (Section 4.3).

GEOMETRIC ITEMS 101

4.2 Geometric Items

A geometric item is a model that collects the information related to a specific
object, whether it is a physical or a virtual object. In general, an object model
does not contain only geometric information, but it also links to other properties,
such as color, weight and possible object usage; the latter model is often called
functional object [91]. However, this section focuses only on a minimal set of
properties that can be exploited in the context of a motion task specification,
omitting other information that strictly belongs to the symbolic domain.

4.2.1 Reference Frame

The reference frame is a unique attribute given to a geometric item that identifies
its pose with respect to a world frame {w}, and it can be expressed in both
symbolic and numerical forms. Such a property is also called object frame in
other frameworks (e.g., the iTaSC [36]) whereas the geometric item corresponds
to a physical object. In this cases, the adoption of an arbitrary coordinate
system a-b-c is motivated by the need of decoupling a generic object class from
its concrete instance.

The existence of a reference frame {o} suffices to specify the following 19
geometric primitives (see Figure 4.1a):

• 1 origin point, o{o};

• 3 (+3) versors, â{o}, b̂{o} , ĉ{o}, defined along the a,b,c-axis, respectively,
and their opposite versors n̂a{o}, n̂b{o}, n̂c{o};

• 3 (+3) lines, la{o}, lb{o} , lc{o}; since lines are directed, a line having
opposite direction exists (nla{o}, nlb{o} , nlc{o});

• 3 (+3) planes, a{o}, b{o} , c{o}, as well as the counter-planes na{o}, nb{o}
, nc{o}.

4.2.2 Shape Primitives

A shape primitive can be associated to a geometric item, centered with respect
to the reference frame as an arbitrary convention, see Figures 4.1b–4.1d. Shape
primitives are inspired by prior studies on object affordances [104, 103], and they
are reduced to an extendable enumerative list, such as box, cylinder, sphere, cone

102 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

a
b

c

(a) Generic reference frame attached to
an object ({o}) and geometric primitives
generated from its origin (o{o}). Planes are
not illustrated.

a L

D

b

c

(b) Cylindrical object {c} and some geometric
primitives generated from the model descrip-
tion.

bH

c

a

L

W

(c) Box-shaped object {b}; the geometric
dimensions are W ,L and H.

m
axm

in

depth

lengthpalm

(d) Gripper object {g}, with related geomet-
ric primitives, dimensions. The Figure is a
non-exhaustive example of composition of
shapes.

Figure 4.1: Geometric items.

and so on. Each shape is fully specified by a set of geometric dimensions, and the
number of parameters depends on the shape itself. For example, a cylindrical
shape (Figure 4.1b) is completely specified by the dimensions D and L, diameter
and length of the cylinder, respectively; a box shape (Figure 4.1c) is determined
by the dimensions W , L and H width, length and height, respectively.

A shape primitive is a convenient way to ground interesting geometric primitives
for a task specification. For instance, the cylinder (Figure 4.1b) identifies two
bounded planes, while the box identifies six bounded planes (Figure 4.1c). As
it will be further discussed, the bounding facility provided by a shape primitive
turns out to be useful to generalise a task specification. Furthermore, additional

GEOMETRIC ITEMS 103

primitives can be extracted from vertices and edges of the shape.

A concrete object can be modelled as an approximation of a shape primitive,
or by a composition of multiple shapes. The model of a parallel jaws gripper
in Figure 4.1d is an example of geometric description based on a composition:
the origin of the reference frame o{g} indicates the Tool Center Point (TCP),
while a bounding box allows to specify two palm surfaces pu{g} and pd{g}. In
addition, further information can be attached to the geometric model, such as
the minimum and maximum span of the gripper tips.

4.2.3 Affordances of a Geometric Item

A geometric item often describes an approximation of a physical object having
one (or more) functional properties; in literature, such an approach is known
as functional object mapping [131, 91]. The main idea consists of providing
semantic information (or tags) over the role of the physical item, and link
such a role to a specific context. For instance, a generic box can contain some
objects, but a context-dependent box can bound the contained objects to a
limited subset: a tupperware stores food, while a workbox does not. These
object properties, called affordances, compose a knowledge-space inquired by a
symbolic planner, in order to generate a legal plan.

The goal of this section is not to provide an exhaustive model of functional
items, but to discuss a minimal set of semantic information that allows to
generalise the description of a task specification. To this end, a first distinction
over a geometric item is its role in terms of capability provided with respect to
the robotic system. Robot resources (sometimes called tools) are those that
provide a certain capability to the system, and they are under control of the
motion stack. For example, an end effector can provide grasping capability, as
well as an interaction capability (e.g., pushing an object) and sensing capabilities.
Narrowing the description to grasping capabilities only, a certain tool can provide
a finite number of grasp affordances, such as pinch, cylindrical, circular, power
grasp and so on; a prehensile grips taxonomy can be found in [34, 124]. An
additional run-time property indicates whether the tool is allocated or not, e.g.,
if the end effector is grasping an object already, and it cannot perform another
grasp until the current object is released.

Another set of geometric items are those objects that are not part of the
robot, but they can be the target of an interaction with the robot. In this
case, additional information attached to the geometric primitives regards the
set of interactions allowed; if an interaction is possible, the related geometric
primitive offers an interaction attachment. The set of affordances provided
by an interaction attachment can be limited in number, and varying with the

104 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

context. As an example, the cylinder of Figure 4.1b can approximate a glass,
which can be grasped on the interaction attachment defined by the cylinder
surfaces down (nc{c}), up (c{c}) and side [146]. However, if the glass is placed
on a table employing the surface down, all the interaction attachments provided
by down primitive are not available. Moreover, if the action to be performed is
to pour something from/to the glass, the interaction attachments provided by up
can result unavailable or limited, encouraging a grasp from the side primitive.
In addition, the interaction attachments are not atomic, but they can be further
decomposed in other semantic properties, revealing a sort of preference. An
example is again shown in Figure 4.1b: the interaction attachment side provides
three preferences for the grasping, that is a high, center and low grasping
pose.

Lastly, a geometric item does not necessarily correspond to a physical object,
but also to a virtual item, often called feature. In this case, a virtual item can
aid the grounding of a task specification in several ways, such as the definition
of spatial boundaries or moving targets along a geometric path.

In a robotic application, instances of geometric items are stored in a world
model, and their run-time properties are updated by perception capabilities of
the autonomous system. At any time, the robot can fetch some property of
an object, including extra semantic information not discussed in this chapter;
examples of semantic world models are [159, 46].

4.2.4 Motion Specification as a Coupling between Geometric
Items

Recalling from Chapter 2, the purpose of a symbolic action is to achieve a
world-transformation. Most of the actions can be grounded by describing a
relationship between two (or more) geometric items, where at least one is a tool,
thus controllable. Therefore, the grounding of a specific task specification must
match with i) a tool that provides a certain interaction capability and ii) an
object that allows an interaction iii) that suits the intended behaviour of the
action. Grasping a glass with the purpose of pouring is an example: a parallel
jaws gripper allows to grasp a glass from its side, which is an interaction that
fits to a pouring action. The focus of this chapter is on actions that involve an
object manipulation. However, the same principle holds for perception-driven
tasks: a sensor (e.g., camera) offers a perception capability suitable to extract
a certain information from a target object (e.g., color of the object) or the
environment.

Another (sometimes implicit) feature of a robotic system is to extend (or convert)

SKILL PROTOTYPES 105

some of its own capabilities, at the expense of others: grasping an object has a
temporary effect of losing a grasp capability, but other type of interactions may
be provided by the grasped object. In short, a grasping feature can be seen as
an extension capability, where an object is linked to a kinematic chain, turning
the object into a tool. This plays an important role in the grounding of the
task specification, which is further discussed in the example of Section 4.3.4.

4.3 Skill Prototypes

The introduction of the geometric items (Section 4.2) allows to generalise the
construction of a task specification (Chapter 3), and to link to the SDG model
(Chapter 2) for online composition of the constraint-based task. The overall
model is called skill prototype, and it describes a refinement of an action,
limited to the context for which it has been designed. This section is driven by
concrete examples that show the design principles of a skill prototype, which is
a composition of:

• a SDG model that represents a set of logical constraints for the online
composition;

• a set of geometric expressions between geometric primitives, belonging to
the geometric items involved in the action;

• a set of policies that ground each skill status to a set of constraint-based
tasks based on the above-mentioned geometric expressions.

A skill prototype is not executable as is, but must be grounded to the
specific object instances involved in the action, thus considering their geometric
properties and their logical status (e.g., availability of interaction attachments).
In short, a skill prototype must be turned into a skill instance, which is a skill
that fulfills the online context of its execution.

4.3.1 Grasp an Object Skill Prototype

A first skill prototype is a generalisation of the “open a drawer” scenario
extensively discussed in Chapter 2 and Chapter 3. This skill separates the
initial action that grasps the handle from the subsequent action of pulling
the drawer. The introduction of the geometric items allows to generalise the
handle as a cylindrical (or box) shape approximation; the same holds for the
specific gripper, which can be mapped to a generic parallel jaws gripper model.

106 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

Skill : grasp ,prepare , opengripper ,
approach , closegripper

Condition : close_to_object

contains (grasp , prepare)
contains (grasp , opengripper)
contains (grasp , approach)
contains (grasp , closegripper)

is-side-effect-of (approach ,
close_to_object)

d1= latches (closegripper ,eff(prepare))
d2= continuesIf (approach ,eff(prepare),

close_to_object)
d3= latches (approach ,eff(prepare))
d4= toStart (opengripper ,eff(prepare))
d5= continuesIf (approach ,eff(opengriper)

,close_to_object)
d6= latches (approach ,eff(opengripper))
d7= toStart (closegripper ,eff(approach))
d8= latches (closegripper ,eff(approach))

grasp

prepare

opengripper

closegripper

approach

Figure 4.2: Grasp an object skill prototype; uSDL textual model on the left, resulting
SDG structure on the right. Structural elements, such as ports, are omitted for the
sake of brevity.

Therefore, instead of grounding the grasping action over a specific handle and
gripper, a generalisation is provided by describing such an action by means of a
class of geometric items: this description is suitable for grasping any object and
any tool that conform to those classes.

Figure 4.2 illustrates an implemented SDG model composed of the following
skills: i) prepare skill describes the alignment gestures for a correct pre-grasp
condition, ii) approach skill implements the motion that brings the tool to the
object, and finally iii) opengripper and iv) closegripper directly control the
tool for the grasping. Nominally, prepare and approach skills run concurrently,
as well as the skill opengripper once the effect of the prepare skill is achieved.
In this way, the skill execution is optimised with respect to a conservative
sequential execution.

Figure 4.3 shows the geometric expressions employed to ground the task
specification, while Table 4.1 resumes the constraints that implement the
skills prepare and approach. The approach requires an implementation of

SKILL PROTOTYPES 107

L

D

Figure 4.3: Definitions of the geometric expressions that ground the skill prototype
grasp an object, possible refinement of the symbolic action grasp(gripper, glass).

the suspending status, here adopted as maintaining the current value of the
constrained expression.

The constraints in Table 4.1a are strongly context-dependent, in detail:

• align_gripper is an equality constraint, but it can be relaxed as a pair
of inequality constraints, dependently on both gripper and object models;

• grasp_side is expressed as a pair of inequality constraints around the
length of the cylinder. However, an equality constraint can be added to
express a preference over the grasping pose, previously referred as low,
center and high interaction attachments;

• grasp_angle_rot and grasp_angle_rot2 are optional constraints that
depend on task, environment and object property, e.g., the angle α can be
limited due to the presence of an obstacle, either part of the environment
or belonging to the object itself (e.g., mug handle). Furthermore, the
constraints can be enforced by an equality constraint instead of the adopted
inequality pair, whereas necessary.

108 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

name prim. I prim. II relation target value
dist_line_c la{g} lc{c} line-line distance 0 [m]

align_gripper ĉ{g} ĉ{c} versor-versor angle θ = 0 [rad]
grasp_side o{g} lc{c} point-line projection [−L/2, L/2]

grasp_angle_rot â{g} â{c} versor-versor angle [−α/2, α/2]
grasp_angle_rot2 â{g} ĉ{c} versor-versor angle [−β/2, β/2]

(a) Constraints employed in the prepare skill.

name prim. I prim. II relation runn. value susp. value

dist_line_a o{g} a{c} point-line projection 0 [m] curr
dist_line_b o{g} b{c} point-line projection 0 [m] curr

(b) Constraints employed in the approach skill.

Table 4.1: Constraints employed for the grasp of a cylindrical geometric item on the
side interaction attachment.

Resuming, the implementation of a skill prototype must consider the above-
mentioned cases, providing an algorithm that selects the most appropriate
configuration with respect to the context in which the skill is executed. To
generalise the presented specification, a possible solution is to further expand
each entry in Table 4.1a as a group of three constraints, one as an equality and
the others as inequalities. An appropriate policy can regulate online the role
of the constraints, e.g., by modulation of the constraint weights based on the
semantic value assigned to the tags primary and auxiliary (see Section 3.2.3).

Because of the infinite variability of a realistic application, it is not trivial to
provide a skill prototype that suits to all contexts. Therefore, a skill prototype
must explicitly define the contexts in which it can be employed, or the contexts
in which cannot. The grounding reported in Table 4.1 can be adopted in case of
i) grasping with parallel jaw grippers ii) of cylindrical geometric items iii) with
interaction attachment on the side and iv) grasp of type pinch. Extending
the previous previous cases to others is straightforward, e.g., a grasp of type
envelope can be implemented considering an internal point to the gripper than
o{g}. Finally, the dimensions of the geometric items must match, e.g., the
diameter D of the cylindrical object must be included between minimum and
maximum opening span of the gripper.

SKILL PROTOTYPES 109

ab

c

Wp

Lp

a

c

wwww

b

proj_a proj_b

proj_c

Hp

Figure 4.4: Definitions of the geometric expressions that ground the skill prototype
“place a cylindrical object on a planar surface”, possible refinement of the symbolic
action place(glass, table).

4.3.2 Place a Cylindrical Object on a Planar Surface

Another common skill is the one that describes how to place an object on a
planar surface. Figure 4.4 shows a possible set of geometric primitives (Table 4.2)
and geometric expressions used as constraints (Table 4.3) to implement such a
skill. In the same vein of the previous example, the imposed constraints are
driven by behaviours of type “positioning”, which do not require any particular
robot capability. However, the specification can be improved considering a
“physical interaction” behaviour, as shown in Section 3.3.3. Furthermore, the
context considered in this skill implementation regards geometric items having
a cylindrical shape. In particular, Table 4.3a and Table 4.3b illustrate context-
dependent solution: the former is applied in case of the intention of posing the
cylinder in contact with the down interaction attachment; the latter in the case
of contact with the side. The expression of the constraint proc_c is monitored
to determine the nominal behaviour of the skill execution: if proc_c is satisfied,
the skill is successfully executed. In addition, side-effects can be expressed upon

110 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

reference frame description
{p} centered on the planar surface, c-axis against gravity direction
{c} cylinder frame

(a) Reference frames attached to the physical objects of Figure 4.4.

geometric primitive type reference frame
name symbol

plane p{p} plane {p}
object_origin p{c} point origin of {c}
axis_c_plane ĉ{c} versor {p}, aligned with c−axis
axis_c_obj ĉ{c} versor {c}, aligned with c−axis
axis_a_obj â{c} versor aligned with a−axis of {c}

neg_axis_c_obj n̂c{p} versor opposite to c−axis of {p}
line_c_plane lc{p} line aligned with c−axis of {p}

(b) Geometric primitive definitions of Figure 4.4.

Table 4.2: Description of the geometric primitives adopted for the “place a cylindrical
object on a planar surface” skill in Figure 4.4.

the same expression, such as a condition to represent whether the object is
close enough to the plane. Thus, the suspending status of the skill can be
implemented by constraining proc_c to maintain its current value.

wwww

c

a

b

a

b c

b

a

c

Figure 4.5: Placing a small cylindrical object to a second gripper palm.

Table 4.3c and Table 4.3d provide additional constraints imposed in case of
specific requirements over both task and geometric items. In fact, this skill

SKILL PROTOTYPES 111

name prim. I prim. II relation target value
proj_c o{c} lc{p} point-line projection L/2 + Hp/2
α ĉ{c} p{p} versor-plane angle 0 [rad]

(a) Minimum set of constraints to place a cylindrical object on a planar surface, posed on
the down interaction attachment, place(cylinder, plane, down).

name prim. I prim. II relation target value
proj_c o{c} lc{p} point-line projection D/2 + Hp/2
α ĉ{c} p{p} versor-plane angle π/2
β â{c} n̂c{p} versor-versor angle [−(π/2− θ); π/2− θ]

(b) Minimum set of constraints to place a cylindrical object on a planar surface, posed on
the side interaction attachment.

name prim. I prim. II relation target value
proj_a o{c} la{p} point-line projection [−Lp/2− D/2; Lp/2− D/2]
proj_b o{c} lb{p} point-line projection [−Wp/2− D/2;Wp/2− D/2]

(c) Optional inequality constraints applied if the plane primitive is bound.

name prim. I prim. II relation target value
proj_a o{c} la{p} point-line projection Lsetpoint
proj_b o{c} lb{p} point-line projection Wsetpoint

(d) Optional equality constraints, dominating over the inequalities of Table 4.3c, applied
in case of an explicit action requirements.

Table 4.3: Constraints employed to place a cylindrical object {c} on a planar surface
{p}.

refines an action of type place(cylinder, plane), where the generic plane in not
bound. In practice, a plan primitive is usually referred to a bounded surface,
such as a table having known dimensions (a box-shaped geometric item), thus
inequalities constraints are adopted (Table 4.3c). Furthermore, this constraints
can be determined by a virtual geometric item, to shrink the area in which
the object will be placed. If the action is explicit on the final pose of the
object, one or both equality constraints of Table 4.3d are imposed. However,
the skill prototype does not lose of generality, since it suits the non-trivial task
of placing the cylinder on a gripper palm (for small enough objects), as shown
in Figure 4.5.

As a last remark, the cylinder of this example must be a tool; it follows that

112 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

grasp_right move_right place_right

release_right

opengripper move_away

move_left place_leftgrasp_left

idle

release_left

opengripper move_away

closest_obj_table

Figure 4.6: SDG model of a simultaneous Pick&Place operations, grounded as a
composite skill instances of existing skill prototypes. The grasp skill expands as
defined in Section 4.3.1.

grasp_left = {
prototype = " grasp ",
items ={ obj1=" left_gripper ",

obj2="cyl1" },
alpha = 1.57 -- [rad]

}

...

place_left = {
prototype = " place ",
items = {

obj1 = "cyl1",
obj2 = " table "

}
}

grasp_right = {
prototype = " grasp ",
items ={ obj1=" right_gripper ",

obj2="cyl2" },
grasp_preference = "high",
alpha = 1.57 --[rad]

}
...
place_right = {

prototype = " place ",
items = { obj1="cyl2",

obj2=" table " },
interaction = "side",
Lsp = 0.0 , -- [m]
Wsp = 0.1 , -- [m]

}

Table 4.4: Code excerpt of the additional information applied to generate a skill
instance from a given skill prototype.

this skill must be preceded by another that grounds a grasping action (e.g., skill
prototype of Section 4.3.1).

4.3.3 Pick & Place

This example illustrates how the composition of few skill prototypes are enough
to implement a large variability of actions. Figure 4.6 shows an instance of a
SDG model that implements a concurrent Pick&Place operation executed by a
dual arm manipulator.

Nominally, each Pick&Place operation is executed independently by a single

SKILL PROTOTYPES 113

arm equipped with a parallel jaws gripper: firstly, the object is grasped, then
moved to an arbitrary pose; it follows a “place on a table” skill, and finally a
safe release of the object. The grasp and place skills are prototypes already
discussed in the previous sections, thus only two new skill prototypes have been
implemented. Furthermore, each skill instance is specialised with the additional
action requirements reported in Table 4.4. In detail, the Pick&Place operation
that involves the right arm is more specific: a grasp preference is indicated
(high), while the place skill is augmented with the explicit declaration the
requirements on positioning the cylinder on its side, and on a specific position
relative to the table. Whenever no explicit information is provided, the skill
instance is generated from some default values, or additional constraints are
not imposed.

In some cases, the two independent Pick&Place operations may be in conflict
with each other, especially if they are sharing the same workspace. A possible
solution is to add an extra logical constraint of type continuesIf in the
SDG model, augmented with the monitored information of which cylinder is
closest to the table. In this way, a sort of priority is assigned at run-time:
in case of conflicts, the execution of the skill place having the object farther
from the table is suspended, and restored as soon as the other terminates with
success. Furthermore, a skill that implements a self-collision feature is always
active in this composition (not represented in the SDG in Figure 4.6).

As an example, Figure 4.7 illustrates a set of screenshots of the simulated
execution of the SDG in Figure 4.6.

114 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

(a) Initial condition (b) Both grasp skills are running, (approach
phase).

(c) Both approach skills are defined, and
the achieved grasping follows different
preferences.

(d) The cylinders are moved to an arbitrary
position, simultaneously.

(e) The objects are placed considering the
different preferences reported in Table 4.4.

(f) The cylinders are released safely, thus the
grippers are moved away from the cylinders.

Figure 4.7: Set of screenshots of the simulated execution of the SDG in Figure 4.4.

SKILL PROTOTYPES 115

max

minproj_2 proj_1

x
y

z

D

Figure 4.8: Definitions of the geometric expressions that ground a pouring skill
prototype, possible refinement of the action pour(glass1, glass2).

4.3.4 Pouring from/to a Glass

An interesting case of study is the grounding of an action of pouring something
from a glass to another, pour(glass1, glass2). This action is rather complex and
it can be expanded in many ways, e.g., depending on the robot capabilities and
the overall scenario. In fact, the grounding of this action can lead to (at least)
two forms: one that involves only one grasping capability (see Figure 4.9), the
other that involves the coordination of two grasping resources (see Figure 4.10).
The latter is more demanding, since it constrains both geometric items (the
glasses) to be used as tools (so fully controllable), at the expenses of an
additional resource (e.g., a gripper), which in turn must be available. On
the other hand, pouring with only one arm is less demanding from the robot
capabilities perspective, but it assumes that the target glass, not controlled by
the robot, is not moved or, at least, it is possible to track its motion.

The advantage of the approach proposed in this dissertation is that the execution
of both strategies shown in Figure 4.9 and Figure 4.10 is obtained only with
minimal changes on the SDG composition, while the core specification of the

116 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

pouring skill is exactly the same. Figure 4.8 shows a minimal set of geometric
expressions to implement the pouring action as a skill prototype, based on the
cylindrical approximation previously discussed. The action pour(glass1, glass2)
reads as pouring to glass1 from glass2; the constraints of Table 4.5 suit to both
cases in which glass1 is either tool or not, while glass2 must be a tool. The
overall composition includes a skill having the effect of positioning glass2 on
the top of glass1, which must be maintained during the overall pouring motion.
If this constraint is not respected, the pouring motion is suspended by tilting
back glass2, which does not necessarily constraint ĉ{c2} being parallel to the
z-axis of the world frame {w}, but enough to guarantee any further pouring.

A third, more conservative, alternative is to grasp glass1 first, and then to
consider it not as a tool, but as a regular geometric item. In this way, glass1 is
symbolically not constrained in the motion, and its posture is held.

reference frame description
{c1} glass frame 1 (cylindrical approximation)
{c2} glass frame 2 (cylindrical approximation)
{w} world frame (fixed)

(a) Reference frames in the pouring skill prototype of Figure 4.8.

geometric primitive type reference frame
name symbol

glass_1_origin o{c1} point origin of {c1}
glass_2_origin o{c2} point origin of {c2}
line_c_glass_1 lc{c1} line aligned with c−axis of {c1}
line_c_glass_2 lc{c2} line aligned with c−axis of {c2}

(b) Geometric primitive definitions (see Figure 4.8).

name prim. I prim. II relation target value
distance lc{c1} lc{g2} line-line distance 0 [rad]
proj_1 o{c1} lc{c2} point-line projection [min,max]
proj_2 o{c2} lc{c1} point-line projection [0, D]

(c) Minimal set of constraints that implement the pouring skill prototype.

Table 4.5: Geometric expressions and constraints specification for grounding a pouring
action, pour(glass1, glass2).

SKILL PROTOTYPES 117

(a) Grasping skill execution (b) Moving glass2 on the top of glass1.

(c) Pouring skill in running status, but no
content is poured yet.

(d) Pouring skill in running status, pouring
in progress.

(e) Place skill in running status. (f) glass2 is placed back on the table.

Figure 4.9: Execution of the composite skill that grounds the action
pour(glass1, glass2). In this case, only one grasping resource is employed, converting
the geometric item glass2 from object to tool.

118 APPLYING THE SKILL DEPENDENCY GRAPH TO CONSTRAINT-BASED TASKS

(a) Simultaneous grasp skills running. (b) Preparing the pouring skill by moving
glass2 on the top of glass1.

(c) Pouring skill is in running status, but not
content is poured yet.

(d) Pouring skill is in running status, pouring
in progress.

Figure 4.10: Execution of the composite skill that grounds the action
pour(glass1, glass2). In this case, both grasping resources of the dual manipulator
are required such that the generated motion actively involves both glasses.

4.4 Related Work

The approach of modelling physical objects by means of their geometric features
is recently emerged as a need in industrial applications. For instance, in [118] an
ontology of geometric constraints is constructed from semantic annotations over
existing CAD models of manufacturing objects. The latter is then exploited to
define industrial tasks, see [154, 117]. However, manual annotation is not the
only way to feed a model. A common solution is to extract this information
from sensing data, and anchoring the recognised features for a later usage;
examples are [153, 62]. The interaction attachments introduced in this chapter
are a specific example of semantic annotations, which are directly connected to
the possible usages of the object. This approach is known in planning literature

CONCLUSIONS 119

as functional object modelling (see [131, 91, 146]). A third knowledge-based
methodology is to feed the models from the web. To the best of the author’s
knowledge, the KnowRob [158, 159] is one of the most complete ontologies that
cover this approach, and further improved within the context of the RoboEarth
project [160, 164].

Anyway, the scope of this chapter was not to introduce a new ontology, nor to
argue on the methods to feed the models, but to provide a minimal set of semantic
information useful to generalise the description of a skill. Lastly, a preliminary
work on bridging geometric features with a COP motion controller can be found
in [12, 157], delivered in the context of the RoboHow.cog project [128].

4.5 Conclusions

This chapter proposes a methodology to merge a task specification defined
in the continuous domain and a discrete SDG model. The result is a skill
prototype, a refinement of a symbolic action compliant to context-dependent
information. As a matter of fact, the same action can be grounded by multiple
skill prototypes, which in turn can generate multiple skill instances.

Several examples are provided, showing that the composability feature of both
SDG model and the geometric-based task specification allows to ground multiple
actions with few skill prototypes, also considering and exploiting the online
context of the execution.

The effort required for such a flexibility is to model and to implement the skill
prototype itself, which must be developed and tested in advance by a skill
expert. However, defining the requirements for which the skill prototype has
(not) been designed is more relevant than delivering a prototype that aims
to cover all possible cases. In fact, the latter is not feasible according to the
Gödel’s incompleteness theorems [127].

Chapter 5

Interleaving Planning and
Execution: a Just-in-Time
Approach

This chapter tackles one of the main issues that often affects many control
architectures in robotics, which is the limitation of composing and configuring
the overall task in a early stage of the application, or even offline. In fact, taking
decisions in advance prevents optimisation and adaptation of the robotic system
to context-dependent information, which is subject to changes over the time.
Instead of composing a task in one shot, this chapter proposes a “Just-in-Time”
approach applied to the SDG model (Section 5.2), such that decisions are made
only when needed, composing the task specification at run-time, and based on
the latest information available. Furthermore, some decisions that are usually
part of the planning can be delegated to the execution layer; Section 5.3 shows
that the SDG is designed to support such a feature.

5.1 Motivations

Chapter 4 introduces the concept of skill prototype, a description that captures
and generalise recurrent patterns of grounded plans. The context in which a
skill is executed provides the necessary information to generate a skill instance
from a skill prototype. Skill instances are truly executable entities, since they
contain both symbolic and numerical values that fulfill a task specification,

121

122 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

which in turn configures the underlying numerical solver. However, it is not a
realistic assumption to retrieve this information all at once, e.g., at planning
time.

Recalling the “pouring” skill prototype discussed in Section 4.3.4, a feasible plan
for the mission “pour off some water from a glass to another, and both glasses
are placed on the table” can be the following sequence of symbolic actions: i) go
to the table, then ii) pick the glass with water, iii) pour the water in the second
glass, and iv) place back the glass on the table. Already in the planning phase,
some decisions can be taken on the resources allocated with respect to the robot
capabilities. An example is the decision of executing such a plan by means of
one or two robotic arms, equipped with grasping tools; this choice composes
a different skill prototype that refines the symbolic action. However, other
context information may not be available, such as: i) the gripper assigned to
grasp the glass may not be compatible with the dimensions of the object (e.g.,
because of a small opening span between the gripper tips); ii) the environment
can cause an additional grasping constraint, e.g., due to an obstacle; iii) if two
arms are used, the decision on which arm picks which glass can be postponed;
whether a criteria is established a priori (e.g., shortest Euclidean distance
between glass and gripper), its evaluation cannot be made until the pose of the
glass is numerically known. Furthermore, in these cases the original symbolic
plan is still valid, which is a clear hint that performing a full refinement of a
symbolic action is not a responsibility of the planning. In addition, a complete
refinement of the plan is not necessary to start its execution; only the first
action must be fully grounded, while the others can be refined online. For
instance, the grasp action can be refined immediately prior to its execution,
or “just-in-time”, evaluating the context-dependent information that may cause
additional constraints over the motion execution.

To resume, a single information flow from the planner to the executive does not
suffice, thus multiple interactions between planning and execution are necessary.
Mechanisms to interleave planning and execution layers are a research topic for
any robotic architecture that aims to provide context adaptation features. The
framework proposed in this dissertation is not an exception; the SDG model
and the related plan executive implementation support a “Just-In-Time“ (JIT)
approach for such a purpose.

5.2 The Just-in-Time Approach

The term “Just-in-Time” is borrowed from compiler technology domain, which
in turn has been inspired by the manufacturing domain. The main strategy

THE JUST-IN-TIME APPROACH 123

.....

JIT Compiler

Compiler

source code

.....

bytecode

.....

native
machine code

.....

task
specification

.....

symbolic
plan

skill
prototypes

.....
.....
.....

SDG model.....

JIT SDG Composer

JIT SDG-Executive

Figure 5.1: Analogy between JIT compilation (on the left) and the multistage JIT
approach proposed in this section (on the right).

behind the JIT approach is simple: making nothing, postponing decisions
and evaluations until it is needed, and then producing them at the
highest level of quality. This approach goes also beyond the concepts of
lazy initialisation and lazy evaluation, which are, respectively, the capability
to delay the creation of an object instance and the capability to delay the
evaluation of an expression. The JIT approach requires both lazy evaluation
and initialisation, but it also adds the capability of translating, composing and
optimizing the desired result.

In the compiler technology domain, JIT compilation translates dynamically
an intermediate “temporary” representation of a program source, the so-called
bytecode, to machine code that eventually executes the program. The bytecode is
usually portable, and it decouples from the original programming language from
which the bytecode has been generated. A Virtual Machine (VM) interprets the
bytecode, optimizing whenever possible against a target CPU architecture (i.e.,
exploiting a specific instruction set that the CPU provides, memory limitations
and others). Whenever the bytecode interpretation is lazy, that is, it is not
interpreted before its first invocation, the VM implements a JIT strategy.

This little detour allows to provide an analogy between JIT compilation and
the JIT approach applied to a plan executive context, as shown in Figure 5.1.
In detail, the SDG-E implementation employed in the examples of Chapter 4
conforms to a similar meta-model:

124 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

Executed

Active

Inactive

Figure 5.2: A generic SDG model. At run-time, it is possible to identify three sets
of skills: executed, active and inactive. The SDG connectivity provides a metric
to determine when a skill must be an instance and not symbolic: s8 is next to be
executed and it should be instantiated, while s9 can be symbolic.

• SDG model (and the uSDL) is, similarly to a bytecode, an intermediate
representation of a plan (the program), independently from the planner
language, and it represents a first refinement necessary for its execution;

• a task specification is equivalent to the machine code of the robot, which
can be optimised considering the overall context: the robot capabilities (the
“resources”), the constraints given by the environment; the objects involved
in the task; the action itself. A task specification is composed online by
interpreting a SDG model, according with the (logical) constraints included
in the description. Policies and capabilities that rule the COP formulation,
which feeds the underlying solver, are analogous the “instruction set” (e.g.,
constraint weight policies, priorities and so on).

• SDG-E is a “VM” that interprets the SDG model: it composes a
task specification; it preserves the consistency between symbolic and
numerical domain; it evaluates the symbolic variables when required for
the execution.

In this analogy, the SDG model must be complete and executable, so it must
be composed of a set of grounded skill instances. However, Section 5.1 explains
that is not efficient to ground the whole skill in one single shot. As a matter
of fact, a further JIT step can be applied when interleaving the planning and
the execution of robotic tasks, involving the whole action refinement process.
In detail, Figure 5.2 illustrates a generic SDG model and, at run-time, it is
possible to identify the following sets of skills:

THE JUST-IN-TIME APPROACH 125

1. s2 and s5, executed skills;

2. s1, s3, s4, s6 and s7 skills belong to an active set A, thus they are neither
in inactive or executed status;

3. s8 and s9 are skills in inactive status.

The skills of the latter set are not necessarily instances; they can still be
either a pure symbolic representation or shaped as skill prototypes not yet
configured. Furthermore, the skills can be replaced, or even removed from the
SDG composition. The constraints described in the SDG provide the information
to decide when a skill must be grounded in time: at latest, this must happen
when the activation constraint is satisfied. However, the refinement process can
be anticipated by means of the distance between the skill and the active set A.
As an example, s8 is inactive but “close” to its activation (see Figure 5.2),
since the activation depends only on the effect of the skill s4, which in turn is
already activated. On the other hand, the activation of s9 is farther than s8, due
to the constraint activation dependent on the effect of s8, which is not active yet.
In short, the connectivity of the SDG provides a metric about the activation
of the skills; Algorithm 1 reports a possible implementation (in the previous
example, distanceActive(s8, A) = 1 and distanceActive(s9, A) = 2). This
metric permits to define a criteria that triggers the initialisation of the skill,
from its symbolic representation to a concrete instance, with respect to the
future horizon of the foreseen execution.

Resuming, this second JIT step pertains to the composition of the SDG:

• the creation of a skill instance, starting from a skill prototype designed
in advance. Such an object is statically defined, as part of “source code”
required to compose an application. Since the same symbolic action can
be grounded by different skill prototypes, the first step of this process
is the selection of a skill prototype over the ones available, which is a
context-dependent choice;

• the grounding of the skill, from the selected skill prototype to a concrete
skill instance. This is a multi-stage process that involves both lazy
initialisation and evaluation; more details are provided in Section 5.2.1;

• at run-time, the symbolic plan can be updated by adding, removing or
finalising some actions; the implementation of this JIT composer must
support this feature.

The analogy with the JIT compilation is not only conceptual: implementation-
wise, the techniques adopted for the implementation are inspired by the richer set

126 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

Algorithm 1 Distance of skill s from active set in SDG
1: function distanceActive(s,A)
2: input: s skill
3: input: A, set of active skills
4: output: dist, distance s from active skill set
5: dist← 0
6: if s ∈ A then
7: return dist
8: end if
9: C ← connectedTo(s) . set of skills connected to s

10: repeat
11: dist← dist+ 1
12: C ′ = {∅}
13: for i ∈ C do
14: if i /∈ A then
15: sc ←ConnectedTo(i)
16: push(C ′, sc)
17: end if
18: end for
19: C ← C ′

20: until C = {∅}
21: return dist
22: end function

of algorithms available in this domain. The major difference with JIT compilers
is that motion skills require context-dependent reasoning, while compilers are
typically context-free.

To the best of the author’s knowledge, only a few frameworks explicitly
consider formal code generation techniques to integrate and bridge different
functionalities of a robotic system. An example is the Behaviour, Interaction,
Priority (BIP) [13, 17, 1], a framework to formally describe and generate
composed-based functionalities from a BIP model. However, the BIP framework
focuses of model-based verification; the code generation is not treated as an
opportunity to interleave planning and execution, and the approach has been
demonstrated with basic motion primitives for mobile platforms only. On the
other hand, the SDG model proposed and discussed in this dissertation aimed
to concretely bridge a plan executive with a motion controller based on a
COP formulation; model verification is possible, but it has not been subject of
further investigations.

Similar to the JIT compilation, the proposed JIT approach is not free of

THE JUST-IN-TIME APPROACH 127

limitations, which are, not surprisingly, quite similar to those of the former. The
implementation of both SDG-E and SDG composer are rather complex, and it
is not trivial to debug ill-formed skill instances. Pragmatically speaking, in this
context bug tracking corresponds on fetching and plotting the evaluation of the
expressions used to specify the constraints in the continuous domain. Such a
monitoring is particularly hard, since expressions and constraints are generated
online, hence it is not easy to link to them in advance. As a consequence, the
workflow for implementing new skill prototypes requires an hard-testing phase
to ensure the correct behaviour performance within the context in which they
are applied.

5.2.1 Skill Life Cycle

This section presents the Skill Life Cycle, a model that represents the stages that
rule the creation, execution and destruction of a skill in the JIT approach. The
Skill Life Cycle model is not unique, and it depends on the implemented support
of the underlying SDG composer; the adopted stages are depicted in Figure 5.3,
and they are: i) symbolic skill, ii) skill prototype, iii) skill configured, iv) skill
instance, v) skill instance execution, and vi) skill destroyed. Each step forward
in the life of a skill instance is ruled by the set of the following operations (see
enumeration in Figure 5.3):

1. Symbolic skill creation: the initial step to refine a symbolic action in
the SDG model is to populate the model with an extra node that represents
a skill. The node, together with an appropriate unique labelling that
binds to the original symbolic action, suffices to constrain the skill with
the others already deployed in the SDG model, in accordance with the
given plan;

2. Skill prototype selection: among the skill prototypes available, one
is selected to ground the action. This process involves object properties,
robot capabilities and the intended effect that the skill should perform.
Note that only part of the knowledge is exploited here, e.g., the current
pose of the geometric items is not evaluated. If the skill prototype is
composite, this stage is propagated to all the children skills. Once this
operation is completed, the skill previously represented in a symbolic form
is linked to the chosen skill prototype;

3. Skill configuration: once the prototype is selected, the symbolic
instances of the geometric items involved in the skill grounding are bounded
as arguments to fulfill the skill description. This phase implements a lazy
initialisation of the functionalities and resources that provides run-time

128 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

knowledge over the geometric items; examples are datastreams or services
requests against perception capabilities and world model queries. Until
the initialisation is not achieved with success, the skill cannot be executed;
an aggressive JIT implementation can postpone the initialisation up to
the satisfaction of the activation constraint;

4. Skill initialisation: in this stage the initialisation of the functionalities
described above occurs. This process can be time-consuming, depending on
the type and number of features needed, as well as the overall architecture
of the system. Thus, a conservative JIT implementation must evaluate a
worst-case scenario to avoid an excessive delay on the execution of this
phase. The outcome of this operation is a skill instance, ready to be
executed;

5. Skill execution call: the skill instance is called for its execution; all
the expressions are well-formed and their evaluation occurs on-demand,
while the behaviour is realised according with the description provided in
Chapter 2;

6. Skill destruction: the skill is executed, resulting in either a success or
a failure (executed or failed status, respectively). The skill is marked
to be destroyed by a garbage collector, as well as the descendant skills (if
any). It is garbage collector role to release all the resources not involved in
the current COP definition. Optionally, a symbolic node can persist in the
SDG model, enabling planning backtracking and historical introspection;
otherwise the node is pruned away from the SDG model.

The operations described above are nominally executed by following the same
sequence in which they have been introduced; this ordering fully describes the
Skill Life Cycle model. However, an interaction with the planner can cause a
step back to any previous stage in the action refinement process; examples are:
an alternative choice on the skill prototype, a different geometric item involved
task (e.g., another object to be grasped) and so on. Furthermore, the action
can be aborted, causing an immediate jump to the destruction stage. The latter
is the only possible operation if the skill instance is already under execution:
any step back is not possible, but only to abort the action by destroying the
skill. An example of the resulting refinement process is illustrated in Figure 5.3.
The knowledge about the current context is involved in any phase, but with
a different level of abstraction. Thus, the design decision over the Skill Life
Cycle influences the order of the information required, and alternatives on the
proposed model are possible.

SDG EXTENSIONS: CONDITIONAL SDG 129

Robot
Capabilities

grasp(glass:id425)

grasp62

grasp62(cylinder,gripper)

grasp62(glass:id425,left_gripper)

grasp62(glass:id425,left_gripper)

grasp62(glass:id425,left_gripper)

grasp62

Symbolic Action

Symbolic Skill

Skill Instance

Skill Prototype

Skill Configuredste
p back

Skill Instance
Execution

Skill
Destroyed

KnowledgeSkill
Prototypes DB

World
Model

1

2

3

4

5

6

6

Figure 5.3: Skill Life Cycle stages (on the left) and a concrete example (on the right).
The skill creation is described in a top-down order; full-line arrows highlight the
possible stages transitions (the enumeration matches with the explanation in this
section). Dashed arrows show the knowledge required to step from one stage to the
next. The input is a symbolic action provided by the planner, which causes the
deployment of a symbolic node in the SDG (grasp62). A skill prototype is selected
from a database of skills available; such a skill must conform to the requirements
imposed by the symbolic action (e.g., shape of the glass, grasping tools on the robot).
During configuration, the symbolic arguments (e.g., glass:id425, left_gripper) that
represent geometric item instances are bound to the skill prototype; initialisation of the
functionalities which retrieve online information (e.g., frame pose) on the geometric
item instances is postponed according with the JIT criteria over the activation distance.
Once the initialisation is achieved, the skill is an instance and it can be executed
by the SDG-E. Finally, the skill is destroyed, all required resources are released and
(optionally) only the node (grasp62) remains for backtracking.

5.3 SDG Extensions: Conditional SDG

A complete SDG model represents a grounded plan composed of skill instances,
and its execution ends successfully when each skill is in the executed status.
Such a model is deterministic: it does not provide any support for branch
predication, such as conditional constructs of type if-then-else, as well as
control flow loops as while-do. Therefore, these constructs must be solved
prior to execution, at composition time, since branch predications are planning
primitives. This choice is not a limitation, but a design decision: the SDG model

130 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

is a scheduling structure composed of declarative rules (the uSDL), which
constrain when a skill is executed. Any decision regarding what to execute is a
responsibility of the planner, and for this reason an online interleaving between
the planning and the execution is fundamental.

The separation between what to execute and when to execute is an important
research hypothesis inspired by other task-graph-based algorithms (e.g.,
scheduling) from other engineering domains, such as compiling technologies,
embedded design, multi-processor systems-on-chips and so on. In these contexts,
JIT approaches are much more embraced than the Robotics domain. The
current trend in the Robotics Community is to provide models and solutions
that attempt to solve multiple problem in-once, simplifying the tackled issue
with hidden assumptions. The latter holds for most of the state-of-the-art
already discussed in Section 2.7.

However, techniques to interleave planning and execution are not trivial to
implement. A solution is to delegate local decisions to the executive by means
of additional information that augments the SDG model. This section discusses
an extension to support branch predication and loop control statements, which
usually reside in the planning domain. The result is a conditional SDG, also
useful to design self-contained applications where the plan is provided offline by
a human developer.

5.3.1 Loop Statements and Loop Unrolling

Control flow loop statements are those that indicate the need of repeat the
execution of a certain action; examples are for-do, while-do and repeat-until
constructs. In compiler technology literature, the operation that generates a
finite sequence of commands from a loop statement is called loop unrolling;
an analogous operation is adopted for composing a SDG model. Unrolling
an action in the SDG consists of populating the SDG with as many skills
instances are required for the loop termination. All the instances are of the
same prototype, which grounds the action that must be repeated. Each instance
differs from the others, i.e., i-th skill instance operates under different world-
status conditions of its previous skill instance (i − 1)-th. Obviously, a loop
unrolling is possible only if the termination condition is known and evaluable,
such that the number of instances is finite and well-defined. If the latter does
not hold, e.g., a termination condition that depends on the outcome of the
executed instance, the loop unrolling is dynamic. In general, there are two
classes of loops:

• iteration-based: those loops that increases (or decreases) a counter for

SDG EXTENSIONS: CONDITIONAL SDG 131

2x

Figure 5.4: Example of a static loop unrolling. A not yet executable skill (on the left)
is expanded as a repetition of the skill prototype SA (on the right). The resulting
SDG is composed of two instances sa1 and sa2 having a strict sequence relationship
among them. An extra semantic tag (sA, dashed line, which is a container, see
Chapter 6) provides additional information on the origin of the generated instances;
such information is needed to clean-up the SDG in case the planner aborts the original
skill execution.

each skill executed with success. The loop is terminated if a counter
threshold is met. Whereas the threshold value is statically defined, the
loop is immediately unrolled as shown in Figure 5.4; otherwise the unroll
process must be online, falling in the case of external-defined condition
(see below);

• condition-based: those loops having an explicit termination condition
evaluable online, which can be:

– externally defined, e.g., if its evaluation is invariant with respect to
the loop execution; in this case, the evaluation occurs during the skill
initialisation stage (see Section 5.2.1), and the number of repetition
is determined;

– internally defined, if its evaluation depends on the outcome behaviour
of the skill in the loop; a first skill instance is executed and, if the
execution succeeds (executed status), the termination condition is
evaluated; if the condition does not hold, a new skill instance is
appended to the SDG.

In both cases, the activation constraints on the unrolled skills is automatically
generated, considering a strict order policy. The invariant constraints

132 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

(latches and continuesIf in uSDL) bind to the latest skill instance of the
loop.

5.3.2 Branch Predication

Planning under uncertainties requires to model branches in a plan. An example
is a “pouring” action discussed in Section 4.3.4, which can be refined as a
skill composition that considers the cases of i) grasping the glass with the left
gripper, ii) grasping the glass with the right gripper, or iii) grasp both glasses
(if both grippers are available). This context-dependent choice can be postponed
through a proper interleaving between planning and execution.

As an alternative solution, the planner can preselect few possibilities, delegating
the final choice to the executive layer. This is possible by populating the
SDG model with the alternative skills, and inform the SDG-E to select one of
these. To this end, the primitive alternatives extends the uSDL language
described in Chapter 2.�
�

�
�

alternatives(s1, s2, . . . , sn, c1, c2, . . . , cn): the skills s1, . . . , sn are alterna-
tives, and the conditions c1, . . . , cn are selectors of the skill candidate for the
execution.

Whereas this primitive is applied, the SDG is not deterministic, but conditional;
an illustrative example is depicted in Figure 5.5. However, at run-time, one
and only one skill is selected for the execution, turning back to a deterministic
situation.

Skill : sA ,s1 ,s2 ,s3 ,sB
Condition : c1 ,c2 ,c3 ,

ca

toStart (s1 ,eff(sA))
toStart (s2 ,eff(sA))
toStart (s3 ,eff(sA))
toStart (sB ,ca)
alternatives (s1 ,s2 ,s3 ,

c1 ,c2 ,c3)

Figure 5.5: Example of a conditional SDG model due to the primitive
alternatives(s1, s2, s3, c1, c2, c3) and its (informal) pictorial representation.

CONCLUSIONS 133

Formally, the alternatives primitive alterates the activation constraint of
each skill involved in the relationship, that is,

toStart(s1, c1) . . . toStart(sn, cn),

but the additional value of the alternatives primitive is provided by the
constraints that determine the well-formedness of the declarative rule, which
are:

• selectors are mutually exclusive, formally

holdsAt(c1, t)→ ¬holdsAt(c2, t) ∧ · · · ∧ ¬holdsAt(cn, t); (5.1)

• Control Flow Uniqueness: the tail of each branch must produce the same
effect, that is

eff(s1) = eff(s2) = · · · = eff(sn). (5.2)

Resuming, the decision making delegated to the SDG-E is implemented as a
regular evaluation of extra conditions (the selectors), and their design must
guarantee the above-mentioned constraints. The selector concept permits to
further extend the SDG from conditional to probabilistic graph, in those cases
where the evaluation of the condition is associated to probabilistic values, e.g.,
perception information with a certain degree of uncertainty. However, no further
investigations are made in this direction, highlighting a possible future work in
this direction.

Lastly, the alternatives primitive as defined above involves only the activation
dependency constraint. Similar derivations are possible considering invariant-
based constraints, for instance, by grouping alternative skills with mutually
exclusive guard conditions. This suggestion allows to introduce other features,
such as a continuous switching between alternative skills.

5.4 Conclusions

The contributions of this chapter are manifold: firstly, a JIT methodology has
been introduced and applied to a robotic context which is, to the best of the
author’s knowledge, a first attempt of this kind; secondly, a concrete skill-based
model to refine a symbolic action to its implementation has been proposed.
Together, these efforts permit to postpone context-dependent evaluations
that influence the definition of the task specification. In this way, the task
specification is optimised and adapted to its execution context. Lastly, it has

134 INTERLEAVING PLANNING AND EXECUTION: A JUST-IN-TIME APPROACH

been illustrated how to delegate symbolic decisions, usually made in the planning
phase, to a local execution layer based on the SDG.

This chapter did not focus on the technicalities of the sofware implementation,
but on the formalisation of the concepts that, hopefully, will contribute to shape
the future of robotic programming.

As a last remark, the software that executes the examples of Chapter 4 has
been implemented with the technical notes provided in this chapter.

Chapter 6

Hierarchical Hypergraphs and
the NPC4 Domain Specific
Language1

6.1 Introduction

Many robotics applications rely on graph models in one form or another:
perception via probabilistic graphical models such as Bayesian Networks; control
diagrams and other computational “function block” models; software component
architectures [31, 167]; Finite State Machines [81] (e.g., Figure 6.1); kinematics
and dynamics of actuated mechanical structures [142]; world models and
maps [22, 21]; knowledge relationships as the so-called RDF triples (Resource
Description Framework), and so on. In traditional graphs, each edge connects
just two nodes, and graphs are flat, that is, a node does not contain other nodes.

This chapter is a shorter version of the work submitted in [138], which introduces
hierarchical hypergraphs as an alternative to traditional graph models: i) an
edge can connect more than two nodes, ii) the attachment between nodes and
edges is made explicit in the form of “ports” to provide a uniquely identifiable
view on a node’s internal behaviour, and iii) every node can in itself be another
hierarchical hypergraph. These properties are encoded formally in a Domain
Specific Language (or “a meta-model of a language"”), called “NPC4”, built with
node, port, connector, and container as primitives, and contains and connects

1The content of this chapter is based on the research presented in [138].

135

136 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

E_1

State1

E_2

State
2.1

State
2.2

State2
E_21

State
2.1

E_24
E_23

E_22

Figure 6.1: A hierarchical Finite State Machine. Nodes represent states, and edges
represent state transitions.

as its composability as a meta modelling language, for both the structural and
behavioural parts of more concrete (Domain Specific Languages) (DSL) that
can be built on top of it, each in a specific domain context. NPC4 introduces a
particular primitive, the container, to support overlapping contexts. It suits to
the following major targets in knowledge-centric robotics systems: (i) various
levels of abstraction in domain models, (ii) “multiple inheritance” from (or
rather “conformance to”) different knowledge domains, and (iii) connecting one
or more domain DSLs to the same software infrastructure in which they all
have to be “activated”.

The central research hypothesis of this work is that the concept of the
hierarchical hypergraph is a good formal representation to cover all the
compositional structures mentioned above, more particularly, via the property
(“has-a”), containment and connection (“interacts-with”) primitives. Obviously,
each application domain needs more than only a structural model; the approach
in this work makes sure that composability is a first-class design driver.

Core idea and objectives: the aim is to provide better modelling flexibility
and methodology to robot system developers, by introducing them to a
hierarchical hypergraph meta-meta-model. The NPC4 meta-model represents
the structural properties of all the use cases introduced before, in a fully formal,
computer-processable way, and with a clean separation between structure and
behaviour. Structure models which subsystems interact with which other ones,
and how their internal structure looks like; and behaviour models the “dynamics”
of each of interconnected subsystems, and how the interconnections influence
those subsystem dynamics.

The research hypothesis that NPC4 provides:

• a separation between structure and behaviour (or functionalities);

• a methodology of making a new DSL by only having (i) to specialize the
interpretation of NPC4 ’s primitives (node, port, connector, container)

INTRODUCTION 137

to the domain, and (ii) to add constraints to the contains and connects
relationships.

• the minimal set of language primitives and relationships that supports all
DSLs in the robotic domain.

In addition to the envisaged optimal reuse of modelling concepts, the systematic
approach is also expected to create a step change in reuse of software:

• reuse of syntactical parsing code: the structure of a DSL is visible through
the language’s syntax, and since NPC4 provides a common structural
basis to DSL builders, they should be able to reuse a lot of the parsing
software.

• reuse of infrastructure code: every DSL that is being introduced in a
robotics system requires more support from the system’s infrastructure
code than only the realisation of the modelled domain functionalities, e.g.,
logging, messaging, debugging, tracing, and so on. NPC4provides all the
“hooks” to connect these non-functional software requirements to.

• reuse of “Model-to-X” transformation tooling: models are declarative
specifications of domain functionalities, and inevitably needs to be
transformed into code that supports turning the declarative specifications
into procedural code, and basing different DSLs onto the same NPC4 core
simplifies reuse of such model transformation tools.

Due to the heterogeneous types of applications that can benefit from the
introduction of hierarchical hypergraphs, the results presented in this chapter
were obtained by shared efforts of many researchers. The author of this
dissertation contributed to formalise the NPC4 model, as well as to realise the
cases of study presented in [138].

For the sake of brevity, the content of this chapter is limited on the Skill
Dependency Graph (SDG, Chapter 2), which is one application example; insights
and examples in broader contexts are not discussed in this work, but they can be
found in [138]. Section 6.2 explains the semantics of what this work understands
under the term “hierarchical hypergraph”. It also creates a fully formal language
for hierarchical hypergraphs, the NPC4, in the form of a DSL. Section 6.3
presents constraints and properties over the NPC4 language, while Section 6.4
discusses about composability features of the language. Section 6.5 illustrates
that the SDG model conforms to the NPC4 language: the structural primitives
are enriched with domain-specific constraints regarding the well-formedness of
a SDG model.

138 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

6.2 Hierarchical Hypergraphs

This section proposes the adoption of hierarchical hypergraphs in the robotics
domain, instead of traditional graphs, as its main structural model. The
motivation is based on the list of examples in Section 6.2.1 that illustrate
various ways in which the use of traditional graphs introduces erroneous ways
of representing and reasoning about complex systems. Many users of graph
models are not aware of the hidden assumption of the specific domain, or cannot
formulate them by lack of an appropriate and semantically well-defined language;
the primitives of such a language, NPC4, are introduced in Section 6.2.2, and
then formalised in Section 6.2.4.

6.2.1 Motivations and Bad Practices

Traditional graphs have nodes and edges as model primitives, and most
practitioners feel very comfortable with using them as graphical primitives for
modelling. However, traditional graphs have a rather limited expressivity with
respect to modelling the structural properties of a system design. The paragraphs
below explain commonly occurring “bad practices” in using traditional graphs.

An edge can only connect two nodes, while many structural interactions
are so-called n-ary relationships, that is, more than two (i.e, “n”) entities
interact at the same time, and influence each other’s behaviour. A SDG model
exhibits such relationships as first-class citizen primitives, and domains having
a constraint over the number of connections that an edge can host must be
explicitly expressed.

The structural model is flat, in that all nodes and edges in the model live
on the same “layer” of the model. However, hierarchy has, since ever, been
a primary approach to deal with complexity in design problems by allowing
to interconnect various levels of abstraction when modelling a system. For
example, a kinematic model of a robot structure might be enough for motion
planning, but the dynamics of its actuators might be needed to design the
robot’s motion controllers. Since the actuators are mechanically connected to
the kinematic chain of the robot, a hierarchical structural model would apply
perfectly to support the separation between the kinematic and dynamic models
of the same robot. Also knowledge relationships are prominent examples of
where the problem of flat structural models is very apparent: here, hierarchy
is equivalent to context, that is, the meaning of a concept depends on the
context in which it is used. Context is an indispensable structure in coping
with the information in, and about, complex systems. A third prominent “bad
practice” example of “flat” structural models are the popular (open source)

HIERARCHICAL HYPERGRAPHS 139

robotics software frameworks, like ROS [126] or Orocos [29]: they do not support
hierarchical composition of software components, the consequence being that
users always see all the dozens, or even hundreds, of nodes at the same time.
This makes understanding, analysis and debugging of applications difficult.

Interactions are uni-directional. Most modelling approaches use directed
edges, that is, the graph assumes that each “partner” in an interaction can
influence one or more other “partners”, without ever being influenced itself
by those partners in any way. Nevertheless, bi-directional interactions are
the obvious physical reality: interactions, including man-machine interactions,
exchange energy in both directions.

6.2.2 Primitives, Relationships and their Semantics

This section introduces a minimal and complete set of primitives and
relationships to describe a semantically consistent structural model. The
concepts of hyperedges and hierarchy, as key additions to existing graph
modelling traditions, aim to prevent the implicit, domain-specific assumptions
previously discussed.

The core of the language are the structural relationships of has-a, connects
and contains between the model primitives of Node, Port, Connector and
Container. The semantic role of a Node is to host a behaviour, while a
Connector describes the interaction relationship between the dynamics inside
multiple Nodes by “connecting“ them. Formally, a Connector realises an
hyperedge, since the relationship is not unary but n-ary, and is bi-directional by
default (that is, unless explicitly constrained not to be so.) In traditional graph
modelling, a duality property exists between Node and Connector: both can
be seen as vertex or hyperedge.

However, this symmetry disappears as soon as the containment relationship
is introduced. In fact, the hierarchy concept is orthogonal with respect to
the hyperedge connection concept. Hierarchy is expressed by the relationship
contains applied to the Node primitive: a Node can contain a full hierarchical
hypergraph in itself. The latter is semantically justified by observing that the
hosted behaviour by the Node can be structurally represented as composition of
internal Nodes and the interactions between them. Note that composition is a
primary design driver of the proposed hierarchical hypergraph approach.

To achieve full expressiveness of the structural model, the Port is formally
introduced as the third primitive in the language. A Port offers a specific view
of a Node, exposing a specific part of a Node’s internal behaviour, and creates
structure in the connects relationships across hierarchy levels. As a consequence,

140 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

the connects relationship involves directly the Port primitive, and not Nodes,
as it will be illustrated in the following section.

Finally, a primitive called Container provides a grouping feature, allowing to
add extra semantic knowledge to a selected subset of primitives; such grouping
is known under various names, such as “context”, “namespace” and “scope”.

6.2.3 Design Drivers

The major design drivers to ground the hierarchical hypergraph concepts as a
Domain Specific Language are minimality, explicitness and composability:

Minimality. The model represents only interconnection and containment
structure. It serves as skeleton to represent the information about the structural
model, but it does not make any assumption on the behaviour of such a structure.

Explicitness. Every concept, and every relationship between concepts, gets
its own explicit keyword:

• Node for the concept of behaviour encapsulation.

• Connector for the concept of behaviour interconnection.

• Port for the concept of access between encapsulated behaviour and each
of its interconnections.

• Container for the concept of packaging a model in an entity that can be
referred to in its own right.

• contains for the relationship of composition into hierarchies.

• connects for the relationship of composition via interaction.

Composability. The DSL is intended to represent only structure, and is, hence,
designed to be extended (or composed) with behavioural models: it allows to
connect other models to any of its own language primitives and relationships,
without having to change the definition of the language (and hence also its
parsers or other supporting software and tooling).

6.2.4 Formalisation into the NPC4 Language

The previous section provided an overview about the role and the motivations of
the primitives and relations proposed in this work. This section turns this into

HIERARCHICAL HYPERGRAPHS 141

hhhhhhhhhhhhhhhhhPrimitive
Primitive Node Port Connector Container

Node contains has-a contains† contains
Port part-of - connects is-contained*
Connector is-connected (port)+ connects - is-contained*
Container contains contains contains contains

Table 6.1: Overview of the primitives introduced by NPC4 and the relative
structural relationship allowed between them. The table reads has {primitive-row}
{relationship} {primitive-column}, e.g. “a Node (can) contains a Node”. Notes: (i)
∗ it is not a relationship in NPC4, passive form; (ii) + it is not a formal relationship in
NPC4, but informally a Connector is indirectly connected to a Node through a port;
(iii) † as property of a well-formed Connector, see Section 6.3.1.

a concrete DSL, the NPC4 meta-model for hierarchical hypergraph. Considering
the modelling layers suggested in [8, 113] (see Chapter 1.3.4), the NPC4 DSL
resides on M2 level, and its domain is the description of hierarchical hypergraph
structures. Since this work focuses more on the ontological/theoretical model
rather than a linguistic one, the M3 meta meta model for NPC4 is the
mathematical foundation of a graph. A further assumption is that multiple
meta-models on M2 can coexist and can be composed2 into new DSLs. In this
cases, a new DSL can conform to one or more other meta-models on M2 level.

The textual formalisation of the language is discussed, while Figure 6.2 shows the
corresponding graphical conventions adopted. Table 6.1 provides an overview on
the language core, and Table 6.2 illustrates the DSL by means of the concrete
example of Figure 6.3.

Identity is given to all primitives by simple declaration:

Node : node-B, node-X, . . . (6.1)

Port : port-p, port-x, . . . (6.2)

Connector : connct-i, connct-j, . . . (6.3)

Container : cntnr-m, . . . (6.4)

Furthermore, let {node}, {port}, {connector} and {container} be the sets
of all the declared Nodes, Ports, Connectors and Containers, respectively.

has-a: a relationship between a Node and a Port. A Port can exist on itself
(e.g., when it is still “floating” during the construction of a graph model in
a development tool), but the graph model can only be “well-formed” (see

2This composition of DSLs is sometimes denoted as language mixin.

142 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

A

j

p1

A B
j

Port

Node

Connector

Container
Connection

Node-A Node-B

Graphical ConventionPrimitive

m

p1 p2

Figure 6.2: Graphical conventions to represent hierarchical hypergraphs: (i) Port is a
square composed of two rectangles which represent (with respect to the Node to which
the Port is attached) the internal (black) and external (white) docks; (ii) a Node is
a rounded box; (iii) the Connector is shaped as a filled circle; (iv) the Container is
represented as a dashed outline. The bottom row shows an example of two Nodes,
namely A and B, connected by the Connector j attached to the external docks of
Ports p1 and p2. The “clamps” on the docks appear if the docks have been linked to
a connector.

A

B

C X

i

j

p

q r

n

s

m

T

u

D

Figure 6.3: Generic example of a hierarchical hypergraph model. Node T is at
the top of the hierarchy, and allows to refer to the whole model from within other
models. Nodes A and X are contained by T, as is Container m; Nodes B, C and D are
contained by A. Connectors i and j link Ports on Nodes. All Ports have Connector
docks internal and external to the Node they belong to. Container m gives a context
to Node A and its internals, but not to Node X or Connector i.

Section 6.3) if every port belongs to exactly one node. Ports are those parts
of a node through which (a selected subset of) the latter’s behaviour becomes
accessible for interaction to other nodes. So only statements of the following
type make sense:

has-a(node-B, port-p), (6.5)

HIERARCHICAL HYPERGRAPHS 143

Node: node-A, node-B, node-C, node-D, node-X, node-T
Port: port-q, port-r, port-p, port-n, port-u, port-s
Connector: connector-j, connector-i
Container: container-m

has-a(node-T, port-u)
has-a(node-X, port-s)
has-a(node-B, port-n)
has-a(node-B, port-p)
has-a(node-C, port-q)
has-a(node-D, port-r)

contains(node-A, node-B)
contains(node-A, node-C)
contains(node-A, node-D)
contains(node-T, node-A)
contains(node-T, node-X)
contains(container-m, node-A)
contains(container-m, connector-j)

connects(connector-j, port-q.edock)
connects(connector-j, port-n.edock)
connects(connector-j, port-r.edock)
connects(connector-i, port-p.edock)
connects(connector-i, port-s.edock)
connects(connector-i, port-u.idock)

Table 6.2: Full NPC4 model of the example shown in Figure 6.3.

and statements of the following type do not:

has-a(connct-i, port-p), has-a(cntnr-m, port-p).

The inverse relationship part-of could be added to the model language, as
syntactic sugar:3

part-of(port-p, node-B)

⇔ has-a(node-B, port-p). (6.6)

has-a: a second relationship of this kind exists between a Port and a dock.
The dock is a structural property of the Port that holds at most one connection

3Informally, in this work the following sentences are equivalent of expressing an has-a
relationship: (i) “a port belongs to a node”, (ii) “a port is attached to a node”.

144 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

with a Connector. Each Port has exactly two docks, one internal and one
external with respect to the Node which owns the Port. The docks are true
Port properties by design, therefore they are not considered as a primitive of
the language. To distinguish with respect to the previous has-a relationship,
the dock is uniquely referred by a dot (.) notation, that is:

∀P ∈ {port},∃!P.edock,∃!P.idock (6.7)

with edock and idock being a port’s external and internal dock, respectively.
The dock property will turn out to be important later on, when well-formedness
of connectors will be discussed in Section 6.3.

Figure 6.2 shows the graphical convention of a Port, visualised as box divided
in black and white rectangles; the former represents the internal dock, the
latter is the external dock. The has-a relationship between Node and Port is
visualised by placing the Port along the Node border.

contains: Nodes and Containers can contain other primitives, as represented
by containment statements of the following type:

contains(M, X), (6.8)

with M and X being a Node or a Container. The contains relationship brings
hierarchy in the relations between Node and Container primitives.

Containment is a transitive relationship, so other containment relationships can
be derived from the statements above; for example:

contains(container-m, node-A),

contains(node-A, node-B) (6.9)

⇒ contains(container-m, node-B).

connects: a Connects relationship binds two or more nodes together, via an
hyperedge (i.e. a Connector) attached to (an internal or external dock on)
Ports on these Nodes. So, statements of the following type are semantically
valid:

connects(connct-i, port-s.edock),

connects(connct-i, port-u.idock).
(6.10)

HIERARCHICAL HYPERGRAPHS 145

6.2.5 Composition

An extra keyword is introduced to indicate that all primitives in NPC4 can be
compositions in themselves:

composite = {node,port,connector,composite}.

The recursion in this definition reflects the hierarchical property of containment
in a natural way.

Secondly, the composition with other, external DSLs is realised via the following
fundamental design choice, motivated by the proven way that, for example,
XML-based meta-models such as XHTML, SVG or JSON use: each primitive
in a model must have the following meta data “property tags”, that explicitly
indicate in which knowledge context (that is, using which meta models) they
have to be interpreted:

• instance_UID: a Unique IDentifier of any instantiation of the primitive
concept;

• model_UID: a unique pointer to the model that contains the definition of
the semantics of the primitive;

• meta_model_UID: a unique pointer to the meta-model that describes the
language in which the primitive’s model is written;

• name: a string that is only meant to increase human readability.

This generic property meta data allows to compose structural model information
with domain knowledge by letting each primitive in a composite domain model
refer to (only) the structural model that it conforms-to [19]; such a composition-
by-referencing is a key property of a language to allow for composability.

Finally, since NPC4 is a language for structural composition, it deserves a
separate keyword compose to refer to one or more of its possible composition
relationships, namely contains and connects:

compose = {has-a, contains, connects}.

The motivation for the explicitness design driver is that (i) each of the language
primitives can be given its own properties and, more importantly, its own
extensions, independently of the others, (ii) it facilitates automatic reasoning4

4This motivation comes from the objective to make the formal models useful not just to
human system developers, at design time, but also to robots themselves, at run-time!

146 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

about a given model because all information is in the keywords (and, hence,
none is hidden implicitly in the syntax), and (iii) it facilitates automatic
transformation of the same semantic information between different formal
representations. Such model-to-model transformations become steadily more
relevant in robotics because applications become more complex, and hence lots
of different components and knowledge have to be integrated. Trying to do
that with one big modelling language becomes increasingly inflexible, because
it will be impossible to avoid (partial) overlaps of the many DSLs that robotics
applications will eventually have to use in an integrated way.

6.3 NPC4 Language Constraints

The proposed NPC4 language not only introduces primitives and relationships,
but also constraints to guarantee both syntactic and semantic correctness. In
this section these constraints will be discussed.

6.3.1 Constraints for Structural Well-formedness

Some constraints must be satisfied by composition relationships in a graph
model to make sure that the model is well-formed.

There must be no “floating” ports:

∀P ∈ {port},∃!N ∈ {node} : has-a(N,P). (6.11)

The reason is that ports get their semantic meaning only from giving access to
the behaviour that is contained in the node they belong to, so: without a node,
a port has no meaning.

contains relationships on Nodes must result in a containment tree.5
A Node can contain other Nodes, but it must not contain itself. Furthermore, each
node has one and only one “direct parent node” in a containment relationship.
The reason for this constraint is as follows: since nodes are meant to represent
behaviour, and since the containment hierarchy is meant to allow levels of
abstraction in a system model, it makes no sense if two nodes that are separated
at a higher level of modelling would contain the same behaviour node at a more
detailed model level. In other words, behaviour cannot be shared by two nodes
with different identity.

As an example, Figure 6.4 visualizes the node containment tree of Figure 6.3.
The node containment tree is unique for each hierarchical hypergraph and plays

5Strictly speaking, a forest, that is a collection of disjointed trees.

NPC4 LANGUAGE CONSTRAINTS 147

T(u)

A X(s)

B(n,p) C(q) D(r)

Figure 6.4: The containment tree of the nodes in Figure 6.3. Each node carries its
ports as arguments, since this information is required to check the well-formedness of
Connectors.

F

B

C

a

b

c

d

e

n

p

E

Figure 6.5: An example of a hierarchical composition in which containment does not
follow a strict tree hierarchy for containers: the containers “p” (small blue dashes)
and “n” (long red dashes) have some internal Nodes in common, with each other and
with Node “A”; the containers “p” and “n” do not have ports themselves, in contrast
to the Node “A”. The nodes and their connectors do satisfy the node containment tree
constraint.

a relevant role on determining the validity of a connects relationship, as it will
be discussed in the following paragraphs.

contains relationships of containers must result in a directed acyclic
graph.
That means that a container (or a node) can have multiple “parent containers”,
and containers can overlap, but cannot contain themselves. This constraint is
weaker than that for nodes, since containers are meant to represent knowledge,
and knowledge can be shared indefinitely between nodes with different identities.
An example is shown in Figure 6.5, where Containers n and p overlap.

A Connector connects Ports on a joint containment tree.
The role of a Port is to provide a specific view on the Node that belongs to.
In other words, the effect of the Port is to split the containment tree in two
sub-trees, considering the Node as origin. The Port’s internal dock selects
the “downward” subtree from that Node, while the external dock selects the
“upward” subtree. Establishing a connection with a specific dock means to
bound the relationship in the selected subtree, despite the other. For example,

148 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

if a connector attaches to an internal dock of a port on a Node, all its other
attachments must be to external port docks of Nodes that are contained in the
given Node, or to other internal port docks of the same Node.

For the sake of clarity, Figure 6.6 shows different model examples. The
procedure to check this constraint is straightforward when starting from the
Node containment tree: each of the ports involved in a connector prunes the Node
containment tree in an downward and upward subtree depending on whether
the Connector attaches to the Port’s internal or external dock, and the tree
that remains after considering all involved Ports must still be connected.

The semantic meaning of this structural constraint is explained by observing
an ill-formed example reported in Figure 6.6. For instance, the Connector
j in model (5) is semantically not correct, since it relates the node Node E
with the whole Node D, but also with a Node D internal (Node A). Of course
the Node E can have multiple kind of relationship with the D Node, but these
are necessarily different relationships, as showed in the well-formed model (3).
Different semantic meaning is represented by the Connectors (j,k) in models
(2) and (3). In the former, Node E is in relationship with D, exposing a specific
view on it (Nodes A and C). That is, the coupling E-A and E-C is indirect, since
it considers explicitly the containment boundary D. In model 3, Connector
j relates directly Node E with A and C, while Connector k is a completely
unrelated relationship with respect to Connector j.

A well-formed Connector is contained in the Lowest Common
Ancestor (LCA) of the Nodes involved.
Considering the example in Figure 6.3, a statement of the following type is
semantically correct:

contains(node-A,connector-j), (6.12)

since node-A is LCA of Nodes A, B and C. This property is a consequence of
a well-formed Connector, and it is not necessarily used to explicitly define
a model. In fact, a Connector instance is already fully defined by a list of
connects relationship that involves that Connector. However, adding this
extra information in a NPC4 model can be useful as “checksum” during the
validation phase. Finally, this Connector property helps the rendering of the
hierarchical hypergraph layout.

As corollary, that implies that every graph model must have at least one root
Node

∀C ∈ {connector},∃N ∈ {node} : contains(N,C).

NPC4 LANGUAGE CONSTRAINTS 149

The reason is that everything inside that root Node must have an identified
context.6

When describing the design decisions behind a formal modelling language, it is
not only important to identify and motivate the constraints that compositions
in the language must satisfy, but also why some constraints have not been
introduced in the language. In this work, the following “non-constraint” is one
of the fundamental design choices: the contains and connects relationships
are maximally decoupled, in that one does not depend on the other. For example,
even though Nodes “X” and “B” live at two different levels of the containment
hierarchy, the connector “i” can still connect both (through a port).

Figure 6.5 shows an example in which a connector is crossing a containment
boundary, or, in other words, connectors can leave a container without the
explicit need for a port on that container.

While the decoupling is maximal, it is not total: connectors must take the Node
containment hierarchy into account to some extent, that is, as described by the
last constraint above.

In summary, NPC4 does not introduce the (most often implicit!) constraint
of interpreting a containment boundary also as a connection boundary, since
this should only be decided (explicitly!) when domain specific semantics is
being added to the domain-independent semantics provided by NPC4. Another
adopted “non constraint” design choice regards the direction over a connects
relationship: no explicit direction is assumed, thus all the connections are
bi-directional. The direction is a property which belongs to the behavioral model,
and not to the structural one: the constraint will be added in the specific domain
of the meta-model. The SDG model is an example, and further details are in
Section 6.5.

6This context need not be unique, since others can be added by composition.

150 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

D
B

C

Ai

j

E

H
k

G F
l

Hierarchical
Hypergraph Layout

Node
Containment Tree

12
5

n
°

connector: j

connector: j

A

H

D
E

B
C F

G

connector: k

D
B

C

Ai
j

E

H
k

G

l
F

D
B

C

Ai
j

E

H
k

G

l
F

A

H

D
E

B
C F

GGG
E
GG

E
GG

E
GG

E
GG

E
GG

EEE
GG

EEE
GG

EEE
GG

EEE
GG

EEE
GG

EE
GG

E
GG

E
GG

E
GG

E
GGGGGGGGGGGGGGGGGGGGG

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCCCCCCCC

4
A

H

D
E

B
C CCCCC

BBBB

EEE

AAAA
BBB DDDD

F
G

AAAAAAAAAAA
CCCCCCCCCCCC

D
B

C

A

E

H

G F

A

H

D
E

B
C F

G

D
B

C

Ai

j

E

H
k

G F
l

connector: j

A

H

D
E

B
C F

GGGGGGGGGGGGGGG
FFFFFFFF

GG
EEEEE

AAAAAAAAA
CCCCCCC

3
6

Hierarchical
Hypergraph Layout

D
B

C

Ai

E

H
j

G F
l

connector: j

A

H

D
E

B
C F

GGGGGGGGGGGGGGG
FFFFFFFF

GG
EEEEE

AAAAAA
BBB

CCCC
BBBB

AAAAAAAAAAAAA
BB DD

n°
Node

Containment Tree

Figure
6.6:

D
ifferent

abstract
exam

ples
ofstructuralm

odels
defined

w
ith

N
PC

4.
B
oth

graphicallayout
and

relative
containm

ent
tree

have
been

reported.
A
llthe

exam
ples

are
based

on
the

first
m
odel,w

hich
defines

contains
relationships

only.
T
he

m
odels

differs
on

the
connects

relationship,and
the

containm
ent

tree
is

not
affected

by
these

changes.
E
xam

ples
(2)

and
(3)

show
w
ell-form

ed
m
odels.

In
the

associated
containm

ent
tree,the

Connector
j
is
considered

and
the

Ports
involved

in
the

relationship
are

indicated.
In

both
cases,

the
resulting

sub-tree
obtained

by
pruning

portions
discrim

inated
by

the
Ports

is
valid.

T
he

m
odels

(4),
(5)

and
(6)

are
ill-form

ed
because

of
the

presence
of

a
w
rong

Connector.
In

detail,
in

M
odel

(4)
the

relation
connects(j,port-d.idock)

invalidates
connections

w
ith

node-d
internals,thus

the
connection

is
not

feasible.
In

exam
ple

(5),
port-D.edock

excludes
possible

connections
w
ith

Nodes
A,B

and
C;since

a
Port

in
A
is
connected,the

Connector
j
is
not

correct.
T
he

latter
case

(6)
show

s
an

intuitive
case

ofconnecting
tw

o
Nodes

through
tw

o
w
rong

docks
(Connector

k).

NPC4 LANGUAGE CONSTRAINTS 151

6.3.2 Constraints Formalisation

Section 6.2.3 introduced the primitives of the NPC4 language, and the contains
and connects relationships that can exist between these primitives. However,
not all relationships that can be formed syntactically also have semantic
meaning. This section describes some constraints already discussed in the
previous section, but striving for formal completeness, by adding some obvious
constraint relationships to the core semantic explained above.

Note that no connects relationships appear anywhere in the constraints on the
contains relationships, and the other way around, which reflects the above-
mentioned orthogonality of both relationships. Of course, when application
developers add behaviour to a structural model of their system, they may
introduce extra structural constraints, even between has-a, connects and
contains relationships.

Constraints on primitives. The UID of every primitive must be unique:

∀(X,Y) ∈ {node, port, connector,

contains, connects},

X.UID = Y.UID⇒ X = Y.

Of course, these constraints hold for all three UIDs in the meta data of each
NPC4primitive.

Constraints on has-a. As mentioned in Section 6.2.4, a Port can be floating
during construction time, but a model having a port that is not part-of a
Node is an ill-formed model. Furthermore, a Port must be part-of one and
only one Node, that is:

∀P ∈ {port},∀(N1,N2) ∈ {node},

has-a(N1,P), has-a(N2,P)⇒ N1 = N2.

The previous statements affects other relationships too, as it will be shown in
the next paragraph.

Constraints on connects. The constraints in this section realise the well-
formedness of the connection relationships, that is, about which kind of
structural interconnections are possible. Recalling from Section 6.2.4, the
Port has exactly two docks, one internal, and one external. Each dock is

152 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

constrained to have only one Connector attached, that is:

∀(C1, C2) ∈ {connector},∀P ∈ {port} :

connects(C1,P.idock),

connects(C2,P.idock)

⇒ C1 = C2

∀(C1, C2) ∈ {connector},∀P ∈ {port} :

connects(C1,P.edock),

connects(C2,P.edock)

⇒ C1 = C2

Furthermore, the well-formedness of the Connector (discussed in Section 6.3.1)
can be formally expressed as follows:

• given C is the Connector to be validated;

• given the sets of internal and external Ports, pci and pce, defined as:

pci , {p ∈ {port} | connects(C,p.idock)}

pce , {p ∈ {port} | connects(C,p.edock)}

• then, ∀pi ∈ pci, Ni ∈ {node} s.t. has-a(Np, pi) holds, ∀pj ∈ {pci}−pi, C
Connector is valid if contains(Np, pj) holds, and the following condition
holds

• ∀pe ∈ pce, Ni ∈ {node} s.t. has-a(Np, pe) holds, ∀pj ∈ {pce} − pe, C
Connector is valid if contains(Np, pj) does not hold.

Constraints on contains. The constraints in this paragraph realise the well-
formedness of the containment relationships of Nodes, that is, about which kind
of hierarchies, or “composites” are possible.

NPC4 LANGUAGE CONSTRAINTS 153

First, the fact that every primitive can be a composite in itself is expressed:

composite = {node, port, connector, composite},

∀C ∈ {composite} :

∃n ∈ {node} ∨ ∃c ∈ {connector}

∨ ∃d ∈ {composite} :

contains(C,n) ∨ contains(C,c)

∨ contains(C,d).

Every contains relationship can only be defined on existing Nodes and
containers:

∀c ∈ {contains},

∃(X,Y) ∈ {node,container} :

c(X,Y).

And finally, there always exists at least one Node at the top of a contains
hierarchy:

∀X ∈ {node,connector,composite},

∃T ∈ {Node} : contains(T,X) ∨ T=X.

This latter constraint is a very strong one, that is imposed for one and only
one reason: every structural model should have an explicitly identified context.
In other words, the meta data of the top Node must be made rich enough to
understand the semantics of everything it contains, even when the model is
deployed in a running system. There can be more than one context for each
composition, which is in agreement with the design objective of composability:
several context containers can be put around any existing model, and/or a
composite can conform to more than one meta-model. The top Node need not
have any Port attached to it, so that it reduces to just a container of meta
data.

154 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

6.4 Modelling with NPC4

This section briefly discusses some structural features of the proposed solution.

6.4.1 Structure for Supporting Software

Many domain models use only traditional graphs, with Nodes and edges, while
the proposed hierarchical hypergraph model splits the “edge” primitive in two
new first-class primitives: “port” and “connector”. The motivation for this
choice is to allow not only more precise domain semantics if needed, but also
a more flexible infrastructure to support a domain model with software. For
example, by using ports to log and visualise data exchange between Nodes, or
to count the number of interactions (statically as well as during run-time), or
to make graphical development tools in which selections have to be made on
which internal behaviour of Nodes to connect to, and so on.

Recall also the other motivation of this work with respect to hierarchical
composition: at a certain level of abstraction of a system model, a port might be
a completely passive part of a system model, that is, without behaviour of its
own, while more behaviour appears when going to a deeper level of abstraction in
the system part represented by that port. A typical example is communication:
two Nodes connected with communication middleware send and receive data
through socket ports, at the application layer, but when going inside such a
socket at the level of the operating system, lots of activity becomes visible:
packet composition, encoding, time stamping, and so on. Much of that activity
is “infrastructure” code for the higher level of abstraction, but the suggested
approach allows to connect all these things together, over different levels of
abstraction.

The third software-centric motivation for the presented model pertains to the
introduction of the container primitive: it carries no behaviour, but is used to
model information influence of “higher” contexts7 on “lower” Nodes, ports and
connectors. More precisely, the container model primitive is needed to store
meta data, such as: unique identifiers; references to the modelling languages in
which the Nodes, ports or connectors inside a container are expressed; references
to ontologies that encode the semantic meaning of the model (hence indicating,
among other things, which configuration values to use for all model parameters);
version numbers; etc. One particularly useful case is to introduce containers
to store the composition model of the sub-system that is embedded within its
internal context.

7Or scope, namespace, domain, or any other terminology has been used to represent this
container concept.

MODELLING WITH NPC4 155

A

p1

j1

A p1 Bp2

jN
j2

pj-A pj-BC j

A B

j

p1 p2

C

A

j

pN

p1-i

p1-e

p1I

II

Figure 6.7: Examples of possible model-to-model transformation to describe a deeper
level of abstraction. The first example (I-right) shows a solution to model behaviour
on a Port primitive (I-left): Port p1 is expanded in a Node pN contained in A (original
owner of p1), while an internal Connector establishes a view over the same Node. The
containment tree changes only internally to A, thus the change is compliant with the
original model. Not necessarily but useful, p1 refers to a Container in the transformed
model, such that the original semantic information is preserved (and it is possible
to retrieve the original model). The second example (II) shows a similar case, but
considering the Connector j as target of the transformation.

6.4.2 Behaviour on Deeper Levels of Abstractions

In the proposed structural meta-model, the hierarchy concept is applied to
Node and Container primitives only. Allowing Ports and Connectors being
hierarchies on themselves would violate the design choice that only Nodes carry
behaviour.

However, in practical cases Ports and Connectors may manifest behaviour, if
a deeper level of abstraction is considered. A concrete example arises in the
attempt of model a software system involving two computers: what was first a
simple shared data structure (i.e., a “Connector”) in the centralized version now
becomes a full set of cooperating “middleware” software components in itself
(i.e., a composition of Nodes, Connectors and Ports). In short, modelling the
distribution explicitly boils down in introducing a deeper levels of abstraction.

In such cases, it is possible to apply a systematic model-to-model transformation
to obtain an alternative model, as a composition of the original NPC4 model
and a separate NPC4 model of the Port (or Connector) internals. Figure 6.7
illustrates two examples which expands Port and Connector respectively. In
both cases Port and Connector have been modelled as a simple Node, which
already enables the hierarchy feature. Furthermore, a Container may be added
to preserve the knowledge over the original model. As a remark, this property is
offered by the composability feature of NPC4, considered as one of the primary

156 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

design drivers of the language.

In conclusion, modeling a deeper level of abstraction is always possible, but the
described structural models differs.

6.5 NPC4, SDG and uSDL

This section provides additional insights on the hierarchical hypergraph structure
adopted in the SDG model (Chapter 2). In fact, the SDG model conforms-to
the NPC4 DSL by adding domain specific constraints on the top of NPC4. This
conformity is reflected in the mapping between the NPC4 primitives and the
uSDL primitives resumed in Table 6.3; further details are provided below:

1. a Skill s is represented as a node in the graph, thus its declaration in
uSDL corresponds to a Node declaration in NPC4 ; in addition, a Skill
declaration deploys a NPC4 Port hosted by the node itself, representing
the intended effect of the skill, eff(s);

2. a Condition in uSDL creates a Port in NPC4 ; like the Port, Conditions
are not “floating”, but they belong to a Skill (NPC4 Node), thus an extra
has-a relationship must be defined. This structural constraint influences
the well-formedness of a SDG model;

3. a dependency or logical constraint in the SDG model is represented
as a Connector in NPC4, and such a Connector can host multiple
dependencies;

4. the primitive contains does not change between NPC4 and uSDL, since
it represents the same hierarchical tree between nodes;

5. NPC4 Containers are structural primitives used to represent run-time
information over a SDG, fundamental for a JIT approach; concrete
examples are the “loop unrolling“ and the ”branch predication“ discussed
in Chapter 5 (Section 5.3.1 and Section 5.3.2);

6. the primitives toStart, latches and continuesIf in uSDL define a
relationship between a Skill and a Condition, thus they structurally
connects a Node to a Connector. In detail, such a connection links a Port
that is hosted by the Node, thus an additional Port is deployed in that Node
(has-a primitive in NPC4). In a well-formed uSDL model, the origin of the
Condition is also known, thus a second connects relationship is applied
between the NPC4 Connector that represents the logical constraint and

NPC4, SDG AND USDL 157

uSDL NPC4
1 Skill −→ Node (has-a)
2 Condition −→ Port
3 Dependency −→ Connector
4 contains −→ contains
5 Run-time info −→ Container
6 toStart, latches, continuesIf −→ connects (has-a)
7 is-effect-of, is-side-effect-of −→ has-a

Table 6.3: conforms-to relationship between primitives and relationships in uSDL and
NPC4.

the NPC4 Port that represents the ”source“ of the uSDL Condition,
whether it belongs to a controlled Skill or not;

7. the relationships is-effect-of and is-side-effect-of in uSDL is
equivalent to the relationship has-a in NPC4 ; both declare a relationship
between a Node (Skill) and a Port (intended effect or any other side-
effects).

The additional domain-dependent constraints that the SDG model imposes
over a generic NPC4 model are:

• directivity: Node-Connector connections (through Ports) are unidirec-
tional, and graphically indicated with an arrow in the examples of this
dissertation; the arrow points to the Node subject to the constraint, the
tail to the source of the conditions involved in the relationship;

• acyclicity: the SDG model is acyclic, and no loops are allowed (but a
symbolic plan with loops can be unrolled, see Section 5.3.1).

Finally, the behaviour attached to a SDG model is directed to its interpretation,
that is, the SDG-Executive.

158 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

6.5.1 Example

The above-mentioned mapping between uSDL and NPC4 DSLs may be
overwhelming without some familiarity to both languages; for the sake of clarity,
Table 6.4 reports an example of an uSDL model and its structural representation
in NPC4. As expected, the uSDL is less verbose than its structural NPC4model,
since the domain adds syntactic sugar on the overall description. For instance,
each Skill comes with an intended effect, represented as a NPC4 Port that
belongs to the Skill.

Skill : s1 , s2 , s3

toStart (s2 ,eff(s1))
toStart (s3 ,eff(s1))

Node : s1 , s2 , s3
Port : eff_s1 , eff_s2 , eff_s3 ,

cstr_s2 , cstr_s3
Connector : to_start_eff_s1

has-a (s1 , eff_s1)
has-a (s2 , eff_s2)
has-a (s3 , eff_s3)
has-a (s2 , cstr_s2)
has-a (s3 , cstr_s3)
connects (to_start_eff_s1 , eff_s1 . edock)
connects (to_start_eff_s1 , cstr_s2 . edock)
connects (to_start_eff_s1 , cstr_s3 . edock)

Table 6.4: Example of an uSDL model (on the left) and its structural NPC4 model
(on the right).

(a) Graphical representation of the
uSDL model in Table 6.4.

eff_s1

cstr_s3

eff_s3

cstr_s2
eff_s2

to_start_eff_s1

(b) Graphical representation of the
NPC4 model in Table 6.4.

Figure 6.8: Structural NPC4 view (Figure 6.8b) of the SDG model in Figure 6.8a.

Figure 6.8 depicts both SDG and NPC4 models: the directivity is a clear
domain-dependent addition, which is not represented in the structural view.

CONCLUSIONS 159

However, the NPC4 model contains all the structural elements explicitly, e.g.,
Ports representation of the intended effects eff(s2) and eff(s3), which are not
used in the SDG model.

6.6 Conclusions

What is the minimal set of primitives and relationships, to cover all use cases
of structural composition in robotics applications?

This was the main research question addressed in this chapter, motivated by
the drive to realise a step change in the reuse of “infrastucture code”. Several
robotic frameworks have been developed in the last years, and all of them
have quite overlapping needs with respect to the structural composition of the
functional primitives they offer, yet no common designs or models are shared,
let alone code. This chapter advocates the use of the NPC4 language, as the
meta-model to represent port-based composition, for both interconnection of
behaviour and containment of knowledge, and in a domain-independent way.

The minimal set of primitives adopted are common elements: nodes, ports and
connectors (or semantically equivalent concepts) have been used in several
contexts, in one form or another. The real challenge was to identify the minimal
set of constraints that govern all structural compositions: the lesson learned is
that developers tend to be not very aware of such constraints, and the more
expert one is in a certain domain, the more obvious and implicit such constraints
appear.

The objectives behind this work are: (i) to separate strictly the structural and
behavioural aspects, and (ii) to make all structural relationships explicit in a
formal language, based on hierarchical hypergraphs. The benefits of having a
common structure are manifold, such as common tools for storing, querying and
composing heterogeneous systems, as well as easily create new funcionalities or
DSLs based on the graph structure.

The behaviour attached to the structural primitives always depends on the
specific context in which various pieces of the knowledge integrated in the
system are valid or not. Hence, it is important to have an explicit computer-
readable representation of the structural knowledge contexts in which a system
is contained; most often, there are many overlapping contexts active at the same
time. Hence, the hierarchical hypergraph meta-meta-model is highly relevant
to make the step from traditional engineering systems to knowledge-aware
engineering systems, that is, systems that can use the knowledge themselves at
run-time.

160 HIERARCHICAL HYPERGRAPHS AND THE NPC4 DOMAIN SPECIFIC LANGUAGE

In the above-mentioned context, the aspect of composability of structural models
is an important design focus; NPC4 advocates that extra “features” (such as
behaviour or visualisation) should not be added “by inheritance” (that is,
by adding attributes or properties to already existing primitives), but “by
composition”, that is, a new DSL is made, that imports already existing DSLs
and adds only the new relationships and/or properties as first-class and explicit
language primitives. An example is the SDG model of Chapter 2 and its
language uSDL, which adds to the structural model acyclicity and directivity
constraints.

Although presented in a robotics context, nothing in NPC4 depends on
this specific robotics domain. NPC4 can also serve the goals of related to
other application domains such as the Internet of Things. However, the
advantages of the NPC4 meta-model pay off most in robotics, because of
(i) the large demand for knowledge-aware systems, (ii) the online efficiency and
(re)configuration flexibility of such robotics systems, and (iii) their need for
the online reasoning about (and eventually the online adaptation of) their own
structural architectures.

Finally, this work suggests the NPC4 language for adoption as an application-
neutral standard, since standardizing the structural part of components,
knowledge, or systems, is a long-overdue step towards higher efficiency and
reuse in robotics system modelling design, and in the development of reusable
tooling and (meta) algorithms.

Chapter 7

Conclusion

This chapter concludes this dissertation, summarising the contributions and the
results obtained with respect to the problem statement of Chapter 1. Moreover,
a critical discussion on the improvements with respect to the state-of-the-art is
provided in Section 7.2, while concrete suggestions for future work are illustrated
in Section 7.3.

7.1 Contributions

As its main contribution, this dissertation shows how to bridge symbolic
plans to executable constraint-based task specifications by means of
offline skill programming, and online skill scheduling and adaptation.
This work suggests a solution to the representation problem of actions in
both discrete and continuous domains, advocating a declarative approach
in place of procedural specifications, and postponing the grounding of
symbolic actions until it is needed.

This thesis proposes a set of formal models from which the following Domain
Specific Languages are derived:

• the micro Skill Dependency Language (uSDL) that includes three
declarative rules (i.e. toStart, continuesIf and latches) sufficient to
express dependencies over the skill execution;

• a geometric-based task specification that expresses robotic tasks in a
constraint-based fashion by means of relationships between entities;

161

162 CONCLUSION

• the NPC4 language to describe the structure of hierarchical hypergraphs.

The knowledge shows up to any level and in many forms, providing those
context-dependent information necessary to adapt the execution of the skill.
This work denotes the causes that turn the context of the execution being
variable (i.e., object(s) involved in the task, robot capabilities, purpose of the
action and environment), and exposing those in the specification. To exploit
this knowledge, a skill prototype describes the grounding of a task specification
that suits to some contexts; such a model is fed Just-in-Time with additional
knowledge, and the outcome is an executable skill instance adapted to a specific
context.

Furthermore, this work promotes the Skill Dependency Graph as a good formal
model to represent the dependencies between motion skills and logical conditions
that influence the skill execution. These conditions that abstract the state
of the world reside in the discrete domain, and they must be mapped to the
monitoring of continuous quantities. Moreover, the choice of using graphs to
describe dependencies is already applied to other domains, and this motivates
the modelling effort to define their structure, aiming to a standardisation of
such an approach.

The solutions presented can be adopted as a whole, but also individually: the
geometric-based task specification is employed in other coordination models
such as Finite State Machines; the skill model employed in the SDG is back
compatible with skill models of other frameworks, where the activation of
the skill is atomic or implemented as a functional delegation; the Just-in-
Time approach holds for other workflows; hierarchical hypergraphs and the
NPC4 cover structural models in other domains. However, the main benefits are
visible considering the overall integration that define a complete plan executive.
As a matter of fact, such a framework combines an object-centric DSL based on
geometric expressions and a declarative action-centric DSL (i.e., the uSDL),
providing a synergy among these approaches.

7.1.1 Maturity of the Models and Software Support

This work proposes formal models and DSLs, but according to the Gödel’s
incompleteness theorems [127], it is not possible to demonstrate that those
models are complete and consistent, neither the validity of the axioms in which
they are founded. However, it is possible to argue about the maturity of the
models, expressed as the stability achieved after a certain number of design
iterations and changes. In the same vein, it is possible to report about the

CONTRIBUTIONS 163

maturity of the software developed in this thesis to support the necessary
mechanisms that “activate” the models. A short overview is discussed below.

Skill Dependency Graph and uSDL
The Skill Dependency Graph has undergone multiple design iterations and its
formalisation is rather stable; the SDG structural model and the formulation
of the dependencies (activation and invariant) form a meta-meta-model to
which the uSDL (meta-model) conforms to. Since the executive (SDG-E) is
implemented on the basis of the propositional logic described by such a meta-
meta-model, the software is ready to support other languages that implement
changes to the behaviours represented in the skill model, as well as changes to
the transitional model (SESD). However, both skill model and uSDL suffice to
cover several examples reported in Chapter 4.

Geometric-based Task Specification (Chapter 3)
This DSL has three years of development within the context of the
RoboHow.cog [128] already, and numerous design iterations1 shaped this meta
model at its current status. Originally, the task specification was implemented
as internal DSL in the Lua [70] language, and only recently is consolidated as
a JSON format description, increasing the chances of diffusion and adoption.
The software that converts a task specification into a constraint-optimisation
problem is rather stable, as well as the cases that the language covers.

Just-in-Time (Chapter 5)
The skill life cycle presented in Chapter 5 allows to implement a Just-in-Time
strategy for the online refinement of a skill prototype to a concrete executable
instance. Such a model is implemented, together with the metric that determines
whether to refine the skill or not, in the SDG-E that executes the examples
of Chapter 4. However, this result is recent, and the software support is still
at prototype level (alpha phase). Further development is not only needed for
the software implementation of the Just-in-Time strategy in itself, but also for
investigating to what extent mature compiler technologies (e.g., LLVM2) could
be used to fully exploit the potential of this approach.

Hierarchical Hypergraphs and NPC4 (Chapter 6)
Hierarchical hypergraphs are well-known in mathematics as an extension to
traditional graphs. The contribution is on their usage as formal models
to separate structure and behaviour, as well as on the introduction of the
NPC4 language and its role to represent both novel and existing graph-
based algorithms. The design of NPC4 has several years of maturity, and
the contribution of many co-authors, also within other projects such as

1The author is grateful to Prof. Michael Beetz from University of Bremen and Prof.
Abderrahmane Kheddar from CNRS, University of Montpellier for their precious suggestions.

2http://llvm.org

164 CONCLUSION

ROSETTA [130] and BRICS [20]. At the time of writing, a critical aspect is the
limited support of software and tooling to provide those common functionalities
that could enlarge the number of adopters.

7.2 Discussion

This section provides a critical discussion about advantages, disadvantages
and novelty of the presented research with respect to the state-of-the-art and
alternative frameworks that ground and schedule symbolic actions into robot
motions. A fair comparison is not trivial, due to the lack of common benchmarks,
reproducibility of the results, and the overall complexity those frameworks.
Therefore, this evaluation is qualitative, based on the improvements that this
dissertation introduces.

As a first remark, this work is distinguished among the state-of-the-art for the
focus on explicit formal models, while other works focus on functionalities only;
this approach permits a comparison with respect to prior work, separating what
the different frameworks provide, and how a certain functionality is delivered.

7.2.1 The Stack of Tasks Framework, SoT

The Stack of Tasks (SoT) [96, 97] provides a stack-based scheduler to insert
(and remove) constraints in the numerical solver responsible for computing the
control action. The SoT architecture is composed of three layers that rule the
stack of tasks: the first two layers handle conflicting constraints with respect to
the so-called environmental constraints (e.g, joint limits and collision avoidance);
the third layer, namely look-ahead controller, prevents the convergence of the
solution to a local minimum or a dead-lock situation. These layers represent
a concrete mechanism that conforms to the semantics expressed by the DSL
proposed in Chapter 3. In detail, the constraints managed by the first two layers
are of type safety (e.g, joint limits) or primary (e.g, collision avoidance), while
the remaining are of type primary or auxiliary, depending on the application. In
addition, the collision avoidance may be modelled as a set of safety constraints
as well, but this choice must be application dependent: in fact, it is necessary to
differentiate when a collision is desired, when it is forbidden, and when it is not
relevant for the application. Instead, the SoT imposes the role of the collision
avoidance, that is a strong assumption; while the proposed geometric-based
DSL permits to express such a role very flexibly in the task specification, the
SoT hides one explicit choice of that role in the implementation. Since the
SoT software provides solvers for a subset of the task specifications that are

DISCUSSION 165

covered by the proposed geometric-based DSL, demonstrations integrating both
are realised in the context of the EU FP7 RoboHow.cog project [128].

A SoT application is realised as a plain sequence of pre-defined constraints,
with some degrees of configurability over the formulation of the COP, namely
the insertion and removal of some constraints. The work of Keith et al. [78, 79]
extends this approach formulating a scheduler based on a Constraint Satisfaction
Problem (CSP). Given a set of tasks, the scheduler is responsible for computing
their execution order, considering temporal constraints between task pairs.
In this context, the temporal constraints are derived from a subset of Allen’s
Interval Algebra [4], since each task is modelled as a time interval that represents
the duration of the task execution. The outcome is a task temporal network that
optimises the execution of the whole plan. This solution is technically sound,
and it is widely used in planning literature [56, 111], as well as in robotics [107].
However, the expressivity of this approach is rather limited, since a temporal
constraint defines an implicit relationship between a task execution and the
intended effect produced by the execution of another task: this means that i) the
execution of a task cannot be constrained to an effect caused by another agent
(e.g., a human pressing a button), and ii) the plan can represent only nominal
situations. In addition, the optimization process proposed in [78] requires the
prior knowledge of the exact duration of each task execution. In practice, it is
not straightforward to compute those timing, even by simulating the nominal
behaviour beforehand, which is also computational expensive. Resuming, the
scheduling optimisation suggested in [78, 79] resides in the planning domain,
and it is limited in expressivity and reactiveness. The SDG model proposed in
Chapter 2, together with the Just-in-Time approach (Chapter 5), solves these
limitations by modelling explicitly those logical constraints and alternative
behaviours that permit to adapt and optimise the plan execution on-line.

7.2.2 The KU Leuven Approach: iTaSC and eTaSL

iTaSC
The instantaneous Task Specification using Constraints (iTaSC) framework [36]
provides a solution to integrate both instantaneous task specification and
estimation of geometric uncertainties, but it does not provide any explicit
mechanism to coordinate or sequencing a set of task specifications. Smits et
al. [151, 150] introduces the concept of skill within the iTaSC framework: the
behaviour (i.e., the task) to realise is implemented in a constraint-based fashion,
and a discrete FSM (precisely, a State Chart diagram [66]) coordinates which task
specification is executed. Strictly speaking, each FSM state represents a COP to
be solved, and its execution performs a guarded motion: if a certain condition
occurs (success or failure), a switch to another COP is applied. Recently,

166 CONCLUSION

Vanthienen et al. [168] extended such a mechanism, introducing the so-called
Composition Pattern and a specific DSL for deploying iTaSC applications [168].
However, the synthesis of a skill remains unchanged, since an analogous
procedural-based approach is adopted (precisely, the reduced Finite State
Machine, rFSM [81]).

The shortcomings of such a methodology are the ones that motivated this
research, that is: i) numerical values are defined offline, e.g., weights on the
optimisation function terms and control gains; ii) the FSM that coordinates the
overall application is statically defined and often hand-written; iii) “concurrent
execution” (e.g., opening a gripper while approaching to the tray in an open a
drawer scenario) is provided by a manual composition of the constraint-based
(sub-)task into a single activity description; iv) the only logical conditions are
those that enable a transition in the FSM model, while no explicit constraints
denote when it is legal to aggregate some (sub-)tasks in a single activity, and
when it is not; in addition v) there is no explicit mechanism to model the reasons
why a state in the FSM is considered to be a failure or a non-nominal behaviour.
All the above lead to a formulation of a COP which is well-formed only under
some design assumptions that hold in a known and controlled environment.
Therefore, the claimed re-usability of task specification is limited to a model
of the world that is defined offline (i.e., closed-world assumption), and as a
consequence, the same plan on a similar context may require to encode another
FSM model, as well as the tuning of a numerical configuration.

The work presented in this dissertation addresses to the above-mentioned
issues, providing: i) a way to schedule and to adapt a skill execution from a
set of explicit declarative rules, namely the uSDL (Chapter 2), ii) the skill
model (Chapter 2) offers a structural way to express non-nominal and failure
behaviours, iii) the skill prototypes (Chapter 4) are composable models that
specify a task by symbolic geometric relationships (Chapter 3), re-usable under
well-defined contexts, and iv) a mechanism that transforms these prototypes
into skill instances that are optimised to the context in which they are executed
(Chapter 5), hence allowing an online “opening” in the model of the world.

In addition, the geometric-based DSL in Chapter 3 defines constraint-based
tasks on the basis of non-causal geometric relationships, alternative to the
Virtual Kinematic Chain (VKC), which are each particular instances of casual
representation of the same relationship.

For the sake of comparison accuracy, the iTaSC methodology includes a solution
to the estimation of geometric uncertainties, a problem that is not treated in
the scope of this work.

DISCUSSION 167

eTaSL
An alternative framework is the expressiongraph-based Task Specification
Language eTaSL [2] that introduces an Automatic Differentation mechanism to
compute the Jacobian of multiple expressions. On this basis, eTaSL proposes
a scripting-based language to define a task specification, then translated to
a numerical COP, precisely, a Quadratic Programming (QP) problem. The
eTaSL advocates the usage of auxiliary variables, namely the feature variables,
that specify free movements not necessarily associated to a robot joint or to
a physical object. The feature variables offer a solution to formulate complex
constraints by coupling expressions together, and the composition is directly
reflected in the COP formulation.

The geometric-based DSL (Chapter 3) does not support explicitly feature
variables, however: i) geometric items (Chapter 4) are not necessarily attached
to a physical object, but they can also represent virtual objects that describe
free movements too; ii) the constraint coupling with feature variables is strong,
that is, it expresses a well-defined situation, and it is not meant to be combined
with other skills. Therefore, the usage of feature variables as suggested in [2]
exhibits a symptom of early optimisation, since the task specification can be
executed only “as is”, and there is no symbolic attachment that allows to reason
about feature variables. Nevertheless, feature variables turn out to be useful
in those well-defined cases where the task is rather specific, described by a
skill developer and it must not be (automatically) combined with others. The
SDG model supports those cases: the skill is executed “stand-alone”, as a strict
sequence with respect to previous and subsequent skills. It is the author’s
suggestion to do not abuse on the usage of the feature variables where it is not
necessary.

Another difference between eTaSL and this work resides in the methodology
adopted. As a matter of fact, the eTaSL language does not provide a formalism
neither on the syntax nor on the grammar, and the specification is strongly
coupled with the underlying implementation, that is, it is not a DSL but a
module of the Lua [70] scripting language.

The eTaSL framework focuses on the continuous domain of the task specification,
and it does not support run-time (re-)configuration of a task. In detail, the
language boils down to an offline configuration of sequential tasks ruled by
a FSM: the discrete coordination, as well as numerical information must be
known prior to execution. In case the latter can be retrieved by external sources,
they must be known and the related resources (e.g., communication) must be
allocated at configuration time. The proposed Just-in-Time methodology in
Chapter 5 aims to improve the above-mentioned limitations.

The implementation of the geometric-based DSL (Chapter 3) and the

168 CONCLUSION

experiments illustrated in Chapter 4 share the same expressiongraph library3,4

that also realises the eTaSL framework.

7.2.3 Other Solutions in the Planning Domain

This dissertation addresses the problem of bridging the gap between symbolic
plans and executable motion descriptions, with a preference on optimisation-
based motion control solutions. To the best of the author’s knowledge, the
works in this direction are few. For example, the research presented in [120, 121]
aims to bridge the symbolic planner ICARUS [90] with the Stanford Whole
Body Control (SWBC) framework: a skill describes a constraint-based task
that exposes some parameters configured at run-time, but it is not clear when
these parameters feed the skill model. Moreover, the skill activation is driven
by a FSM, no online composition is supported, and non-nominal behaviours
are not modelled. However, this work shows a solution that interacts with a
symbolic planner, while the focus of this dissertation is limited to the execution
of symbolic plans.

An alternative methodology to bridge planning and acting consists to integrate
the continuous motion planning in the reasoner [47, 74]. In these approaches, the
motions are often the result of the execution of pre-computed trajectories, which
are in turn generated from more target configurations that are then checked for
feasibility and reachability. Generally, the path planning is solved in the joint
space, e.g., by a RRT-based method (Rapidly exploring Random Tree), and in
case of environmental changes a replanning is necessary. In [18] object geometry
is taken into account to reduce the search space of the motion planning. Another
approach is to interleave the symbolic planning with geometric backtracking [37],
such that the reasoner can infer alternative motion plans in case of failure of
a previous execution. An interesting constraint-based solution is provided
in [89, 88], that combines both task and motion planning: this reasoner takes
into account multiple constraints from the context of the execution, e.g., the
geometry of the objects, robot redundancies, and a sequence of the symbolic
actions that must be performed. Similar results are obtained in [156]: instead of
proposing a novel planning algorithm, it explores the possibility of interleaving
classical symbolic planners with traditional motion planner generators.

The above-mentioned solutions reside in the planning domain, bridging symbolic
plans and continuous motion planning based on constraints. These approaches
differ from the methodology proposed in this dissertation, since the latter focuses

3https://github.com/eaertbel/expressiongraph
4The author is thankful to Erwin Aertbeliën for publicly releasing the expressiongraph

library.

https://github.com/eaertbel/expressiongraph

DISCUSSION 169

on constraint-based motion control: i) in the planning, information about the
context must be known and evaluated in advance (eager evaluation), while in
the JIT approach the need of such a knowledge is delayed as long as possible;
this benefit is tangible in case of dynamic environment, in fact ii) in case of
environmental changes, a replanning is necessary for motion planning solutions
(e.g., if an object is moved); instead, constraint-based motion control does
not require any update in the task specification for small changes, and the
SDG model contains all the knowledge to deal with local changes; iii) such
replanning is also due to the lack of semantic information on a generated
path to realise, thus it is not possible to reason about local changes (apart of
the geometric backtracking); using explicit constraints to generate the control
action allows to reason about the motion itself, since constraints have a semantic
meaning; iv) the solution proposed in this dissertation allows to specify and to
realise force-based and physical interaction with (moving) objects (including
human-in-the-loop situations, not discussed in this dissertation); on contrary,
motion planning solutions are limited in that perspective, even when the motion
plan is generated considering both kinematic and dynamic constraints on the
robot and the manipulated object; lastly, v) symbolic planning algorithms
are computationally expensive NP-hard problems5, and integrating those with
motion planning is quite demanding; on contrary, the task executive (SDG-E)
proposed in this dissertation runs at the same frequency of the control loop
(namely, up to 250 Hz). However, the proposed framework is also affected by
few disadvantages, among which i) the optimisation problem may suffer of local
minima, ii) the motion control, and the whole framework provided best fits to
local problems, and iii) it provides a solution to ground symbolic plans, but not
to generate those. Anyhow, a motion planning approach does not exclude an
integration with reactive control: they are complementary, and not alternatives.

7.2.4 Preview Coordination

The SDG formalism presented in this work has not been the first solution by
the author of this dissertation; an early approach is the Preview Coordination
presented in [139]. The Preview Coordination aims to optimise the overall
execution time of a robotic application; the core idea is to augment an existing
FSM model with run-time information about the likelihood of the future
transitions: an extension of the FSM execution model determines the most likely
future activities, and it executes those that are compatible with the current
activity and robot capabilities.

5NP-hard, Non-deterministic Polynomial-time algorithms are those that cannot be solved
in a deterministic, polynomial time.

170 CONCLUSION

In detail, the employed method converts a regular FSM model to a Deterministic
Probabilistic Finite-State Automata (DPFA) [172], from which a preview state
list is computed online. This list contains the likely future activities within a
pre-defined preview horizon, and their execution is enabled by a task activation
policy. Such a policy considers possible conflicts between the candidate future
activities and the current one, as well as an activity progress parameter that
indicates how close is the current activity to terminate; in this way, an early
future activity is inhibited from its execution if the expected benefits from an
early execution are not tangible.

The Preview Coordination has not been integrated with a COP approach
for the motion generation, but the skills encoded in the FSM states are
defined as a configuration of a traditional trajectory generator. However, the
findings presented in Chapter 3 and Chapter 4 can be applied to the Preview
Coordination formalism.

Compared to the SDG, the Preview Coordination is affected by some limitations
due to the procedural nature of a FSM model with respect to the declarative
solution provided by the uSDL. Concretely, the situations that the Preview
Coordination can represent are limited by the expressivity of a FSM: the
activities are scheduled sequentially or concurrently, without explicit logical
constraints defined along the execution of an activity. Another limitation is the
absence of an explicit primitive to model non-nominal situations: the application
developer that encode the FSM model must consider all the possible combination
of failures, which is non-trivial for complex applications. As a consequence, the
skill composability is limited to a subset of cases with respect to the SDG.

7.3 Suggestions for Future Work

Conducting research, proposing solutions to the addressed research questions
lead to novel unsolved matters. This dissertation is not an exception, and this
section provides few ideas on the research direction that could be carried out in
further investigations.

Skill prototypes database
A natural continuation of the work carried out in this dissertation is the
development of an extensive database of skill prototypes, in the same vein
as the examples provided in Chapter 4. In detail, the skills implemented are
kinematic-based only, but force-based skills would improve (and sometimes
simplify) actions that require physical interaction.

SUGGESTIONS FOR FUTURE WORK 171

Learning-based approaches for Skill Prototypes
This research focuses on programmable skills, and the Chapter 4 shows many
examples of programmable skill prototypes. This approach requires modelling
efforts and development time of a “skill developer expert”, even if a set of few
skill prototypes already covers many practical scenarios. A complementary
research direction regards learnable skills, and further investigations can be
addressed to integrate both methods. Concrete suggestions depends on the type
of learning over existing skill prototypes:

• given a skill prototype, to learn and to improve the execution of skill
instances from previous executions in the same context. This learning
consists in determine some parameters of the COP previously specified
manually, such as control gains and constraint weights;

• matching human demonstrations with the composition of existing skill
prototypes, thus learning the relationships between multiple skills that
perform a certain effect;

• among multiple skill prototypes that suit to the same context, selecting the
most appropriate one by recurrent execution and evaluation; in this case,
the simplest mechanism of learning is caching the success of a previous
execution;

• discovering new patterns as a composition of existing skill prototypes from
recurrent executions (and the context in which they are employable).

Model Verification and Validation
Chapter 2 and Chapter 6 provide the structural constraints that determine the
well-formedness of the SDG model (e.g., acyclicity of the graph). Furthermore,
the model is deterministic: the execution outcome does not change if the initial
conditions are the same, as well as the truth value of the logical conditions
between two executions6. To aid the skill prototype developer, a suggested
future work is to provide formal tools and software support for verification and
validation of a SDG model.

Software Tools for Developing Skills
This dissertation focuses on the formalisation and the novelty of the proposed
framework. It is worth to mention that the author developed a few tools
to aid the online visualisation of the deployed SDG and the running skills
in a web-based Graphical User Interface (GUI). However, these tools are
not mature and not sufficient to fully exploit the potential of the skill-based

6Note that the SDG model is deterministic, but not the context of the execution. Here it
is assumed that the context of the execution is invariant. Within these assumption, model
verification and validation aids the skill development.

172 CONCLUSION

approach, e.g., it is not possible to compose graphically the skills, but text-
based only. The development of tools is a necessary step to disseminate the
presented methodology, and some functionalities must not be implemented at
the SDG level, but at its structural level (i.e., NPC4), such that those efforts
also hold for other graph-based methodologies.

Distributed SDG
The software infrastructure that performs the experiments in this dissertation is
centralised: the task specification is translated to a single COP, and a numerical
solver computes the control action for one robotic platform only. In the same
vein, the SDG model is deployed monolithically in one single SDG-E. However,
the proposed models are ready to be deployed in a distributed architecture.
For instance, a dual arm manipulator (already employed in the experiments)
can be seen as a couple of agents that perform several actions, whether they
are competitive or not. In this case, the whole problem is formulated as
single COP, but the task specification can be deployed in two separate COP(s),
while the execution monitoring and the coordination driven by the SDG-E is
still in common. Likewise, the SDG model can be deployed in two different
SDG-E, each running on a different robotic platform. The primitives in the
SDG model allow this feature, since it is possible to represent a non-controlled
skill: in a “local” SDG model, someone else’s duty is represented in this way,
and the dependencies “bridge” between the separate models. However, the
implementation of a distributed SDG raises a set of non-trivial new challenges,
such as the capability of maintaining the distributed models coherent and
up-to-date.

Integrating with Symbolic Planners
This work illustrates a formal methodology to ground symbolic plans and actions
into to an executable SDG model. Chapter 2 presents all the elements to link
to existing planners, while the overall dissertation provides a systematic way
to describe situations in both continuous and discrete domains. However, the
integration with a symbolic planner is not addressed in this work, and further
investigations can be carried out in this direction. As an additional hint, the
most promising approaches are the integration with classical planners, and the
integration with Hierarchical Task Networks (NTH): the former would allow
to solve a large variety of planning problems; the latter is widely used for fast
reactive planning and backtracking. Another concrete suggestion is to consider
the geometric constraints used in the symbolic planner [89, 88] to generate
SDG models instead of computing a path to follow.

Improvements on Solvers and Execution Monitor
The Robotics Community is already focused on this aspect, but improvements
on the continuous problem definition and the numerical solvers are still a
hot research topic, e.g., solvers that combines both kinematic and dynamic

SUGGESTIONS FOR FUTURE WORK 173

constraints. Moreover, the execution monitoring and the evaluation of
the Quality of Service (QoS) of a skill execution requires some further
investigations; some preliminary work is already carried out by the author
of this dissertation [136].

Geometric-based Task DSL as a Benchmark Language for Constraint-
based Whole Body Control Solvers
The Planning Domain Definition Language (PDDL) [56, 59] serves the purpose
of benchmark language between symbolic planners. In fact, it is developed
to formulate planning problems for the International Planning Competition
(IPC), also indicating which features the solver must implement (i.e., the
solver capabilities) to solve a specific problem. In the same vein, the proposed
geometric-based task DSL can cover the same role of benchmark language
for constraint-based approaches for Robotics. The DSL in Chapter 3 can be
employed in multiple framework already (e.g., eTaSL [2], SoT [96]), and the
choice over the JSON format simplifies the parsing of the specification. This
standardisation effort, together with a broad adoption among the Robotics
Community, could help to measure the advancements that, so far, are validated
without a scientific comparison with respect to alternatives applied to the same
context.

Appendix A

JSON and JSON-Schema
Models

A.1 JSON Schema uSDL Meta Model

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 /sdg -v01",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" type " : " object ",

5 " properties " : {
" metamodel " : { "enum" : ["http:// people .mech. kuleuven .be←↩

/~ u0072295 /sdg -v01"] },
" skills " : {

" type " : " array ",
" minItems " : 1,

10 " uniqueItems " : true,
" items " : { "$ref" : "#/ definitions / skill " }

},
" contains " : {

" type " : " array ",
15 " uniqueItems " : true,

" items " : { "$ref" : "#/ definitions / container " }
},
" conditions " : {

" type " : " array ",
20 " uniqueItems " : true,

" items " : { "$ref" : "#/ definitions / condition " }
},
" dependencies " : {

" type " : " array ",
25 " uniqueItems " : true,

175

176 JSON AND JSON-SCHEMA MODELS

" items " : { "$ref" : "#/ definitions / dependency " }
}

},
" required " : [" metamodel ", " skills ", " conditions ", "←↩

dependencies "],
30 " additionalProperties " : false,

" definitions " :{
" skill " : {

" type " : " object ",
" properties " : {

35 " type " : { "enum" : [" skill "] },
"id" : { " type " : " string " },
"eff" : { " type " : " string " },
"side -eff" : {

" type " : " array ",
40 " uniqueItems " : true,

" minItems " : 1,
" items " : { " type " : " string " }

}
},

45 " additionalProperties " : false,
" required " : [" type ", "id"]

},
" container " : {

" type " : " object ",
50 " properties " : {

" parent " : { " type " : " string " },
" children " : { " type " : " array ", " items " : { " type " : ←↩

" string "}, " minItems " : 1, " uniqueItems " : true }
}

},
55 " condition " : {

" type " : " object ",
" properties " : {

" type " : { "enum" : [" condition "] },
"id" : { " type " : " string " },

60 " monitor " : { " oneOf " : [
{ " type " : " object ",

" properties " : {
" type " : { "enum" : [" function "]},
"id" : { " type " : " string " }

65 },
" required " : [" type ", "id"],
" additionalProperties " : false

},
{ " type " : " object ",

70 " properties " : {
" type " : { "enum" : ["expr"]},
"expr" : { "$ref" : "#/ definitions / lexpr " }

},
" required " : [" type ", "expr"],

75 " additionalProperties " : false
}

JSON SCHEMA USDL META MODEL 177

]}
},
" additionalProperties " : false,

80 " required " : [" type ", "id", " monitor "]
},
" dependency " : {

" type " : " object ",
" properties " : {

85 " type " : { "enum" : [" dependency "] },
"id" : { " type " : " string " },
" relationship " : { "enum" : [" toStart ", " continuesIf←↩

", " latches "] },
" condition " : { " type " : " string " },
" guard " : {

90 " oneOf " : [
{ "$ref": "#/ definitions / lexpr " },
{ " type " : " string " }
]},
" requiredby " : {

95 " type " : " array ",
" uniqueItems " : true,
" minItems " : 1,
" items " : { " type " : " string " }

}
100 },

" additionalProperties " : false,
" required " : [" type ", "id", " relationship ", "←↩

condition "]
},
" lexpr " : {

105 " type " : " object ",
" properties " : {

" operator ": { "enum" : ["and", "or", "neg", "nor←↩
", "nand"] },

"args": {
" type " : " array ",

110 " minItems ": 2,
" maxItems ": 2,
" items " : { " oneOf " : [

{ " type " : " string "},
{ "$ref" : "#/ definitions / lexpr " }

115]}
}

}
}

}
120 }

Listing A.1: JSON-Schema meta model of the uSDL model

178 JSON AND JSON-SCHEMA MODELS

A.2 Geometric-based Task DSL

A.2.1 Geometric Primitives

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

point #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Point Entity ",

5 " type ": " object ",
" properties ": {

"x": {
" type ": " number ",
" description ": " coordinate along x-axis"

10 },
"y": {

" type ": " number ",
" description ": " coordinate along y-axis"

},
15 "z": {

" type ": " number ",
" description ": " coordinate along z-axis"

},
" description " : { " type " : " string " },

20 " type ": { "enum": [" point "] }
},
" required ": ["x", "y", "z", " type "],
" additionalProperties ": false

}

Listing A.2: Point JSON-Schema meta model

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

line #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": "Line Entity ",

5 " type ": " object ",
" properties ": {

" type ": { "enum": ["line"] },
" description " : { " type " : " string " },
" direction ": { "$ref": "http:// people .mech. kuleuven .be /~←↩

u0072295 / jgeom_constr / versor #" },
10 "p": { "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩

jgeom_constr / point #" }
},
" required ": [" direction ", "p", " type "],
" additionalProperties ": false

}

Listing A.3: Line JSON-Schema meta model

GEOMETRIC-BASED TASK DSL 179

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

versor #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Versor Entity ",

5 " type ": " object ",
" properties ": {

" type ": { "enum": [" versor "] },
" description " : { " type " : " string " },
"x": {

10 " type ": " number ",
" description ": " coordinate along x-axis"

},
"y": {

" type ": " number ",
15 " description ": " coordinate along y-axis"

},
"z": {

" type ": " number ",
" description ": " coordinate along z-axis"

20 }
},
" required ": ["x", "y", "z", " type "],
" additionalProperties ": false

}

Listing A.4: Versor JSON-Schema meta model

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

plane #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Plane Entity ",

5 " type ": " object ",
" properties ": {

" type ": { "enum": [" plane "] },
" description " : { " type " : " string " },
" normal ": { "$ref": "http:// people .mech. kuleuven .be /~←↩

u0072295 / jgeom_constr / versor #" },
10 "p": { "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩

jgeom_constr / point #" }
},
" required ": [" normal ", "p", " type "],
" additionalProperties ": false

}

Listing A.5: Plane JSON-Schema meta model

180 JSON AND JSON-SCHEMA MODELS

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

primitive #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Geometric Primitive ",

5 " type ": " object ",
" properties ": {

" description " : { " type " : " string " },
" reference_frame ": {

" type ": " string ",
10 " description ": " reference frame for the geometric entity "

},
" entity " : { "$ref": "#/ definitions / entity " }

},
" required ": [" reference_frame ", " entity "],

15 " additionalProperties ": false ,
" definitions ": {

" entity ": {
" oneOf ": [

{ "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩
jgeom_constr / point #" },

20 { "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩
jgeom_constr / versor #" },

{ "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩
jgeom_constr / plane #" },

{ "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩
jgeom_constr /line #" }

]
}

25 }
}

Listing A.6: Primitive JSON-Schema meta model

A.2.2 Constraints based on Expressions

1 {
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Geometric expression between two geometric ←↩

primitives ",
" type ": " object ",

5 " properties ": {
" description ":{" type ": " string " },
" type ":{"enum":[" geometric_expression "] },
" expression_type ":{"enum":[

" point_point_distance ",
10 " line_point_distance ",

" projection_point_on_line ",
" line_line_distance ",
" plane_point_distance ",

GEOMETRIC-BASED TASK DSL 181

" angle_btw_planes ",
15 " angle_btw_versors ",

" angle_plane_versor ",
" angle_line_point "
]

},
20 " expression_name ": {" type ": " string " },

" primitive_1 ":{"$ref": "http:// people .mech. kuleuven .be /~←↩
u0072295 / jgeom_constr / primitive #" },

" primitive_2 ":{"$ref": "http:// people .mech. kuleuven .be /~←↩
u0072295 / jgeom_constr / primitive #" }

},
" required ": [" expression_type ", " expression_name ", "←↩

primitive_1 ", " primitive_2 ", " type "],
25 " additionalProperties ": false,

" oneOf ":[
{" properties ":{

" expression_type ":{"enum":[" point_point_distance "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" point "]}}}]}}},
30 " primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{"←↩

properties ":{" type ":{"enum":[" point "]}}}]}}}
}

},
{" properties " :{

" expression_type ":{"enum":[" angle_btw_versors "] },
35 " primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" versor "]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" versor "]}}}]}}}
}

},
{" properties ":{

40 " expression_type ":{"enum":[" line_line_distance "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":["line"]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":["line"]}}}]}}}
}

},
45 {" properties ":{

" expression_type ":{"enum":[" angle_btw_planes "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" plane "]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" plane "]}}}]}}}
}

50 },
{" oneOf ":[

{
" properties ":{

" expression_type ":{"enum":[" line_point_distance ", "←↩
projection_point_on_line ", " angle_line_point "] },

182 JSON AND JSON-SCHEMA MODELS

55 " primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩
properties ":{" type ":{"enum":["line"]}}}]}}},

" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩
properties ":{" type ":{"enum":[" point "]}}}]}}}

}
},
{

60 " properties ":{
" expression_type ":{"enum":[" line_point_distance ", "←↩

projection_point_on_line ", " angle_line_point "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" point "]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":["line"]}}}]}}}
}

65 }
]},
{" oneOf ":[

{
" properties ":{

70 " expression_type ":{"enum":[" plane_point_distance "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" plane "]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" point "]}}}]}}}
}

},
75 {

" properties ":{
" expression_type ":{"enum":[" plane_point_distance "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" point "]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" plane "]}}}]}}}
80 }

}
]},
{" oneOf ":[

{
85 " properties ":{

" expression_type ":{"enum":[" angle_plane_versor "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" plane "]}}}]}}},
" primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" versor "]}}}]}}}
}

90 },
{

" properties ":{
" expression_type ":{"enum":[" angle_plane_versor "] },
" primitive_1 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩

properties ":{" type ":{"enum":[" versor "]}}}]}}},

GEOMETRIC-BASED TASK DSL 183

95 " primitive_2 ":{" properties ":{" entity ":{" oneOf ":[{ "←↩
properties ":{" type ":{"enum":[" plane "]}}}]}}}

}
}] }] }

Listing A.7: Geometric expression JSON-Schema meta model

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

single_joint_expression #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " expression that returns the value of a single←↩

joint ",
5 " type ": " object ",

" properties ": {
" description " : { " type ": " string " },
" type " : { "enum" : [" single_joint_expression "] },
" expression_name ": { " type ": " string " },

10 " joint_name ": { " type ": " string " }
},
" required ": [" expression_name ", " joint_name ", " type "],
" additionalProperties " : false

}

Listing A.8: Joint expression JSON-Schema meta model

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

expression #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Expression ",

5 " type ": " object ",
" properties ": {

" description " : { " type " : " string " },
" expression " : { "$ref": "#/ definitions / expression " }

},
10 " required ": [" expression "],

" additionalProperties ": false ,
" definitions ": {

" expression ": {
" oneOf ": [

15 { "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩
jgeom_constr / geometric_expression #" },

{ "$ref": "http:// people .mech. kuleuven .be /~ u0072295 /←↩
jgeom_constr / single_joint_expression #" }

]
}

}
20 }

Listing A.9: Expression JSON-Schema meta model

184 JSON AND JSON-SCHEMA MODELS

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

constraint #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Constraint over an expression ",

5 " type ": " object ",
" properties ": {

" description " : { " type ": " string " },
" type " : { "enum" : [" constraint "] },
" constraint_name ": { " type ": " string " },

10 " expression " : { "$ref" : "http:// people .mech. kuleuven .be /~←↩
u0072295 / jgeom_constr / expression #" },

" behaviour " : { "$ref": "http:// people .mech. kuleuven .be /~←↩
u0072295 / jgeom_constr / behaviour #" }

},
" required ": [" constraint_name ", " expression ", " behaviour ", "←↩

type "],
" additionalProperties " : false

15 }

Listing A.10: Constraint JSON-Schema meta model

GEOMETRIC-BASED TASK DSL 185

A.2.3 Behaviour, Task and Monitors

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

monitor ",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Monitor over an expression ",

5 " type ": " object ",
" oneOf ": [

{ "$ref" : "#/ definitions / single_bound "},
{ "$ref" : "#/ definitions / double_bound "}

],
10 " definitions " : {

" common " : {
" properties " : {

" type " : { "enum" : [" monitor "] },
" description " : { " type ": " string " },

15 " monitor_name ": { " type ": " string " },
" event_risen ": { " type ": " string " },
" monitor_var_type " : { "enum": ["pos", "for", "vel"] },
" monitored_expression " : { "$ref": "http:// people .mech.←↩

kuleuven .be /~ u0072295 / jgeom_constr / expression #" }
},

20 " required " : [" type ", " monitor_name ", " event_risen ", "←↩
monitor_var_type ", " monitored_expression "]

},
" single_bound " : {

" allOf " : [
{ "$ref" : "#/ definitions / common " },

25 { " properties " : {
" comparison_type " : { "enum" : ["less", "more"] },
" bound " : { " type ": " number " }

},
" required ": [" bound ", " comparison_type "]

30 }
]

},
" double_bound " : {

" allOf " : [
35 { "$ref" : "#/ definitions / common " },

{ " properties " : {
" comparison_type " : { "enum" : [" in_interval ", "←↩

out_interval "] },
" lower_bound " : { " type ": " number " },
" upper_bound " : { " type ": " number " }

40 },
" required ": [" lower_bound ", " upper_bound ", "←↩

comparison_type "]
}

]
} } }

Listing A.11: Monitor JSON-Schema meta model

186 JSON AND JSON-SCHEMA MODELS

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

behaviour #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Control Behaviour for a target constraint ",

5 " type ": " object ",
" properties ": {

" description " : { " type ": " string " },
" type " : { "enum": [" behaviour "] },
" behaviour_type " : { "enum" : [

10 " positioning ",
" move_toward ",
" interaction ",
" compliant ",
" position_limit ",

15 " velocity_limit ",
" force_limit "

]
}

},
20 " required ": [" behaviour_type ", " type "],

" oneOf " : [
{ " properties " : {

" behaviour_type " : { "enum" : [" position_limit ", "←↩
velocity_limit ", " force_limit "] },

" traj_gen_upper " : { "$ref" : "http:// people .mech.←↩
kuleuven .be /~ u0072295 / jgeom_constr / trajectory " },

25 " traj_gen_lower " : { "$ref" : "http:// people .mech.←↩
kuleuven .be /~ u0072295 / jgeom_constr / trajectory " }

},
" required " : [" traj_gen_upper ", " traj_gen_lower "]

},
{ " properties " : {

30 " behaviour_type " : { "enum" : [" positioning ", "←↩
move_toward ", " interaction ", " compliant "] },

" specification " : { " type " : " number " },
" traj_gen " : { "$ref" : "http:// people .mech. kuleuven .be←↩

/~ u0072295 / jgeom_constr / trajectory " }
},
" required " : [" traj_gen ", " specification "]

35 }
]

}

Listing A.12: Behaviour JSON-Schema meta model, linked to a Constraint

GEOMETRIC-BASED TASK DSL 187

1 {
"id": "http:// people .mech. kuleuven .be /~ u0072295 / jgeom_constr /←↩

task #",
" $schema ": "http:// json - schema .org/draft -04/ schema #",
" description ": " Constraint - based Task using Geometric ←↩

Relations ",
5 " type ": " object ",

" properties ": {
" description " : { " type ": " string " },
" type " : { "enum" : [" geom_task "] },
" task_name ": { " type ": " string " },

10 " primary " : {
" type " : " array ",
" items " : { "$ref" : "http:// people .mech. kuleuven .be /~←↩

u0072295 / jgeom_constr / constraint " },
" uniqueItems " : true

},
15 " auxiliary " : {

" type " : " array ",
" items " : { "$ref" : "http:// people .mech. kuleuven .be /~←↩

u0072295 / jgeom_constr / constraint " },
" uniqueItems " : true

},
20 " safety " : {

" type " : " array ",
" items " : { "$ref" : "http:// people .mech. kuleuven .be /~←↩

u0072295 / jgeom_constr / constraint " },
" uniqueItems " : true

},
25 " monitors " : {

" type ": " array ",
" items " : { "$ref" : "http:// people .mech. kuleuven .be /~←↩

u0072295 / jgeom_constr / monitor " },
" minItems " : 1,
" uniqueItems " : true

30 }
},
" required ": [" task_name ", " primary ", " auxiliary ", " safety ", ←↩

" monitors ", " type "],
" additionalProperties " : false

}

Listing A.13: Task JSON-Schema meta model (composition of constraints and
monitors)

188 JSON AND JSON-SCHEMA MODELS

A.3 Spreading Task Specification

1 {
" type ":" geom_task ",
" monitors ":[{

" monitored_expression ":{
5 " expression ":{

" type ":" geometric_expression ",
" description ":" distance spoon_tip (XY) on the dough ←↩

radius from the center ",
" primitive_1 ":{

" entity ":{ " type ":" point ",
10 "y":0.01, "x":0.23, "z":0

},
" reference_frame ":" rightarm_gripper "

},
" primitive_2 ":{

15 " entity ":{
" type ":"line",
" direction ":{ " type ":" versor ",

"y":0, "x":1, "z":0
},

20 "p":{ " type ":" point ",
"y":0, "x":0, "z":0

}
},
" reference_frame ":" center "

25 },
" expression_type ":" projection_point_on_line ",
" expression_name ":" radius_distance "

}
},

30 " type ":" monitor ",
" comparison_type ":" in_interval ",
" monitor_name ":" is_spoon_on_perifery ",
" lower_bound ":0.08,
" monitor_var_type ":"pos",

35 " event_risen ":" e_spoon_on_perifery ",
" upper_bound ":0.12

}
],
" task_name ":" spread_action ",

40 " primary ":[{
" type ":" constraint ",
" description ":"tip spoon (XY) constrainted to lie on ←↩

dought area",
" constraint_name ":" spoon_along_dough_radius ",
" behaviour ":{

45 " traj_gen ":{
" type ":" trajectory ",
" traj_type ":" trapezoidal_with_duration ",
" target ":0.1, " duration ":5,
" vel_max ":0.1, " acc_max ":0.1

SPREADING TASK SPECIFICATION 189

50 },
" type ":" behaviour ",
" specification ":1.5,
" behaviour_type ":" positioning "

},
55 " expression ":{

" expression ":{
" type ":" geometric_expression ",
" description ":" distance spoon_tip (XY) on the dough ←↩

radius from the center ",
" primitive_1 ":{

60 " entity ":{ " type ":" point ",
"y":0.01, "x":0.23, "z":0

},
" reference_frame ":" rightarm_gripper "

},
65 " primitive_2 ":{

" entity ":{
" type ":"line",
" direction ":{ " type ":" versor ",

"y":0, "x":1, "z":0
70 },

"p":{ " type ":" point ",
"y":0, "x":0, "z":0

}
},

75 " reference_frame ":" center "
},
" expression_type ":" projection_point_on_line ",
" expression_name ":" radius_distance "

}
80 }

},
{

" type ":" constraint ",
" description ":" force constraint on Z- direction wrt table←↩

, imposed contact spoon - table ",
85 " constraint_name ":" force_contact_spoon_on_table ",

" behaviour ":{
" traj_gen ":{

" target ": -2,
" type ":" trajectory ",

90 " traj_type ":" constant "
},
" type ":" behaviour ",
" specification ":0.02,
" behaviour_type ":" interaction "

95 },
" expression ":{

" expression ":{
" type ":" geometric_expression ",
" description ":" force imposed on the table, Z-←↩

direction ",

190 JSON AND JSON-SCHEMA MODELS

100 " primitive_1 ":{ " type ":" point ",
" entity ":{

"y":0.01, "x":0.23, "z":0
},
" reference_frame ":" rightarm_gripper "

105 },
" primitive_2 ":{

" entity ":{
" type ":"line",
" direction ":{ " type ":" versor ",

110 "y":0, "x":0, "z":1
},
"p":{ " type ":" point ",

"y":0, "x":0, "z":0
}

115 },
" reference_frame ":" center "

},
" expression_type ":" projection_point_on_line ",
" expression_name ":" force_z_on_table "

120 }
} }] }

Listing A.14: Task specification of “spread with spoon”. For the sake of brevity,
safety and auxiliary constraints are omitted.

Bibliography

[1] Abdellatif, T., Bensalem, S., Combaz, J., de Silva, L., and
Ingrand, F. Rigorous design of robot software: A formal component-
based approach. Robotics and Autonomous Systems 60, 12 (2012), 1563–
1578.

[2] Aertbeliën, E., and De Schutter, J. eTaSL/eTC: A constraint-
based task specification language and robot controller using expression
graphs. In Proceedings of the 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems (Chicago, IL, USA, 2014), IROS2014,
pp. 1540–1546.

[3] Alami, R., Chatila, R., Fleury, R., Ghallab, M., and Ingrand,
F. An architecture for autonomy. The International Journal of Robotics
Research 17, 4 (1998), 315–337.

[4] Allen, J. F. Maintaining knowledge about temporal intervals.
Communications of the ACM 26, 11 (1983), 832–843.

[5] Allen, J. F., and Ferguson, G. Actions and events in interval
temporal logic. Journal of logic and computation 4, 5 (1994), 531–579.

[6] Allen, R. R., and Dubowsky, S. Mechanisms as components of
dynamic systems: A Bond Graph approach. Journal of Electronic Imaging
(1977), 104–111.

[7] Argall, B. D., Chernova, S., Veloso, M., and Browning, B. A
survey of robot learning from demonstration. Robotics and Autonomous
Systems 57 (2009), 469–483.

[8] Atkinson, C., and Kühne, T. Model-driven development: a
metamodeling foundation. IEEE software 20, 5 (2003), 36–41.

191

192 BIBLIOGRAPHY

[9] Avanzini, G. B., Zanchettin, A. M., and Rocco, P. Reactive
constrained model predictive control for redundant mobile manipulators.
In Intelligent Autonomous Systems 13 - Proceedings of the 13th
International Conference IAS-13, Padova, Italy, July 15-18, 2014 (2014),
pp. 1301–1314.

[10] Baerlocher, P., and Boulic, R. Task-priority formulations for
the kinematic control of highly redundant articulated structures. In
Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent
Robots and Systems (Vancouver, British Columbia, Canada, 1998),
IROS98, pp. 323–329.

[11] Baier, C., Katoen, J.-P., et al. Principles of model checking,
vol. 26202649. MIT press Cambridge, 2008.

[12] Bartels, G., Kresse, I., and Beetz, M. Constraint-based movement
representation grounded in geometric features. In 13th IEEE-RAS
International Conference on Humanoid Robots (Atlanta, Georgia, USA,
October 15–17 2013).

[13] Basu, A., Bozga, M., and Sifakis, J. Modeling heterogeneous real-
time components in BIP. In Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods (2006), SEFM
’06, IEEE Computer Society, pp. 3–12.

[14] Beetz, M., Mösenlechner, L., and Tenorth, M. CRAM—A
cognitive robot abstract machine for everyday manipulation in human
environments. In Proceedings of the 2010 International Conference on
Advanced Robotics (2010), pp. 1012–1017.

[15] Belleghem, K. V., Denecker, M., and Schreye, D. D. On the
relation between situation calculus and event calculus. The Journal of
Logic Programming 31, 1–3 (1997), 3–37.

[16] Bennett, B., and Galton, A. P. A unifying semantics for time and
events. Artificial Intelligence 153, 1–2 (2004), 13–48.

[17] Bensalem, S., de Silva, L., Ingrand, F., and Yan, R. A verifiable
and correct-by-construction controller for robot functional levels. Journal
of Software Engineering in Robotics 2, 1 (2011), 1–19.

[18] Berenson, D., Srinivasa, S., and Kuffner, J. Task space regions: A
framework for pose-constrained manipulation planning. The International
Journal of Robotics Research 30, 12 (October 2011), 1435 – 1460.

[19] Bézivin, J. On the unification power of models. Software and Systems
Modeling 4, 2 (2005), 171–188.

BIBLIOGRAPHY 193

[20] Bischoff, R., Guhl, T., Prassler, E., Nowak, W., Kraetzschmar,
G., Bruyninckx, H., Soetens, P., Hägele, M., Pott, A.,
Breedveld, P., Broenink, J., Brugali, D., and Tomatis, N.
BRICS—Best practice in robotics. In 41st International Symposium
on Robotics (Munich, Germany, 2010), pp. 968–975.

[21] Blumenthal, S., and Bruyninckx, H. Towards a domain specific
language for a scene graph based robotic world model. In 4th International
Workshop on Domain-Specific Languages and models for ROBotic systems
(2013).

[22] Blumenthal, S., Bruyninckx, H., Nowak, W., and Prassler, E.
A scene graph based shared 3D world model for robotic applications.
In Proceedings of the IEEE International Conference on Robotics and
Automation (Karlsruhe, Germany, 2013), ICRA2013, pp. 453–460.

[23] Bøgh, S., Nielsen, O. S., Pedersen, M. R., Krüger, V., and
Madsen, O. Does your robot have skills? In The 43rd Intl. Symp. on
Robotics (ISR2012) (2012).

[24] Bonasso, R. P., Kortenkamp, D., Miller, D. P., and Slack, M.
Experiences with an architecture for intelligent, reactive agents. Journal
of Experimental and Theoretical Artificial Intelligence 9 (1995), 237–256.

[25] Borghesan, G., Aertbeliën, E., and De Schutter, J. Constraint-
and synergy-based specification of manipulation tasks. In Proceedings of
the IEEE International Conference on Robotics and Automation (Hong
Kong, 2014).

[26] Borghesan, G., Scioni, E., Kheddar, A., and Bruyninckx, H.
Introducing geometric constraint expressions into robot constrained
motion specification and control. IEEE Robotics and Automation Letters
PP, 99 (2015), 1–1.

[27] Borghesan, G., Willaert, B., and De Schutter, J. A constraint-
based programming approach to physical human-robot interaction. In
Proceedings of the IEEE International Conference on Robotics and
Automation (Minnesota, USA, 2012), pp. 3890–3896.

[28] Bray, T. RFC 7159, The JavaScript Object Notation (JSON) Data
Interchange Format, August 2014.

[29] Bruyninckx, H. Open robot control software: the OROCOS project.
In Proceedings of the 2001 IEEE International Conference on Robotics
and Automation (Seoul, Korea, 2001), ICRA2001, pp. 2523–2528.

194 BIBLIOGRAPHY

[30] Bruyninckx, H., and De Schutter, J. Specification of force-controlled
actions in the “Task Frame Formalism”: A synthesis. IEEE Transactions
on Robotics and Automation 12, 5 (1996), 581–589.

[31] Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N.,
Kraetzschmar, G., Gherardi, L., and Brugali, D. The BRICS
Component Model: A model-based development paradigm for complex
robotics software systems. In 28th ACM Symposium On Applied
Computing (2013), pp. 1758–1764.

[32] Chein, M., and Mugnier, M.-L. Graph-based knowledge representation:
computational foundations of conceptual graphs. Springer Science &
Business Media, 2008.

[33] Colledanchise, M., and Ogren, P. How behavior trees modularize
robustness and safety in hybrid systems. In Proceedings of the 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems
(Chicago, IL, USA, 2014), IROS2014, pp. 1482–1488.

[34] Cutkosky, M., and Wright, P. Modeling manufacturing grips and
correlations with the design of robotic hands. In Robotics and Automation.
Proceedings. 1986 IEEE International Conference on (Apr 1986), vol. 3,
pp. 1533–1539.

[35] De Schutter, J. Invariant description of rigid body motion trajectories.
Transactions of the ASME, Journal of Mechanisms and Robotics 2, 1
(2010), 011004/1–9.

[36] De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits,
R., Aertbeliën, E., Claes, K., and Bruyninckx, H. Constraint-
based task specification and estimation for sensor-based robot systems
in the presence of geometric uncertainty. The International Journal of
Robotics Research 26, 5 (2007), 433–455.

[37] de Silva, L., Pandey, A., and Alami, R. An interface for interleaved
symbolic-geometric planning and backtracking. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems
(Tokyo, Japan, Nov 2013), IROS2013, pp. 232–239.

[38] Debrouwere, F., Van Loock, W., Pipeleers, G., Tran Dinh,
Q., Diehl, M., De Schutter, J., and Swevers, J. Time-optimal
path following for robots with convex-concave constraints using sequential
convex programming. IEEE Transactions on Robotics 29, 6 (2013), 1485–
1495.

BIBLIOGRAPHY 195

[39] Dechter, R. Tractable structures for constraint satisfaction problems.
Handbook of constraint programming, part I (2006), 209–244.

[40] Decré, W., , Bruyninckx, H., and De Schutter, J. An
optimization-based estimation and adaptive control approach for human-
robot cooperation. In 12th International Symposium on Experimental
Robotics (Delhi, India, 2010).

[41] Decré, W., Smits, R., Bruyninckx, H., and De Schutter, J.
Extending iTaSC to support inequality constraints and non-instantaneous
task specification. In Proceedings of the 2009 IEEE International
Conference on Robotics and Automation (Kobe, Japan, 2009), ICRA2009,
pp. 964–971.

[42] Del Prete, A., Nori, F., Metta, G., and Natale, L. Prioritized
motion–force control of constrained fully-actuated robots: “task space
inverse dynamics”. Robotics and Autonomous Systems 63 (2015), 150–157.

[43] Del Prete, A., Romano, F., Natale, L., Metta, G., Sandini, G.,
and Nori, F. Prioritized optimal control. In Proceedings of the IEEE
International Conference on Robotics and Automation (Hong Kong, 2014),
pp. 2540–2545.

[44] Doty, K. L., Melchiorri, C., and Bonivento, C. A theory of
generalized inverses applied to robotics. The International Journal of
Robotics Research 12, 1 (1993), 1–19.

[45] Dromey, R. From requirements to design: formalizing the key steps.
In First International Conference on Software Engineering and Formal
Methods. (sept. 2003), pp. 2 –11.

[46] Elfring, J., van den Dries, S., van de Molengraft, M. J. G., and
Steinbuch, M. Semantic world modeling using probabilistic multiple
hypothesis anchoring. Robotics and Autonomous Systems 61, 2 (2013),
95–105.

[47] Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., and
Uras, T. Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation. In Proceedings of
the IEEE International Conference on Robotics and Automation (Shangai,
China, 2011), ICRA2011, pp. 4575–4581.

[48] Escande, A., Mansard, N., and Wieber, P.-B. Hierarchical
quadratic programming: Fast online humanoid-robot motion generation.
The International Journal of Robotics Research (June 2014), pp. 1006–
1028.

196 BIBLIOGRAPHY

[49] Ferreau, H., Kirches, C., Potschka, A., Bock, H., and Diehl, M.
qpOASES: A parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation 6, 4 (2014), 327–363.

[50] Fikes, R. E. Monitored execution of robot plans produced by STRIPS.
In IFIP Congress (1971).

[51] Fikes, R. E., and Nilsson, N. J. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence
2, 3/4 (1971), 189–208.

[52] Finkemeyer, B., Kröger, T., and Wahl, F. M. Executing assembly
tasks specified by manipulation primitive nets. Advanced Robotics 19, 5
(2005), 591–611.

[53] Firby, R. J. Task networks for controlling continuous processes. In
AIPS (1994), pp. 49–54.

[54] Firby, R. J., and Slack, M. G. Task execution: Interfacing to reactive
skill networks. In AAAI Spring Symposium (1995).

[55] Fowler, M. Domain Specific Languages. Addison-Wesley Professional,
2010.

[56] Fox, M., and Long, D. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of Artificial Intelligence Research
20 (2003), 61–124.

[57] Galiegue, F., and Zyp, K. JSON Schema, Draft 0.4v, August 2013.

[58] Gastin, P., and Oddoux, D. Fast ltl to büchi automata translation.
In Computer Aided Verification (2001), Springer, pp. 53–65.

[59] Gerevini, A., Haslum, P., Long, D., Saetti, A., and Dimopoulos,
Y. Deterministic planning in the fifth international planning competition:
Pddl3 and experimental evaluation of the planners. Artificial Intelligence
173, 5-6 (2009), 619–668.

[60] GeRT. Generalizing robot manipulation tasks: The GeRT Project.
http://www.gert-project.eu/.

[61] Ghallab, M., Nau, D., and Traverso, P. The actor’s view of
automated planning and acting: A position paper. Artificial Intelligence
208 (2014), 1–17.

[62] Gheţa, I., Heizmann, M., Belkin, A., and Beyerer, J. World
modeling for autonomous systems. In KI 2010: Advances in Artificial
Intelligence. Springer, 2010, pp. 176–183.

http://www.gert-project.eu/

BIBLIOGRAPHY 197

[63] Glass, B., Cannon, H., Branson, M., Hanagud, S., and Paulsen,
G. Dame: planetary-prototype drilling automation. Astrobiology 8, 3
(2008), 653–664.

[64] Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W. A
tutorial on graph-based slam. IEEE Intelligent Transportation Systems
Magazine 2, 4 (2010), 31–43.

[65] Guo, M., Johansson, K. H., and Dimarogonas, D. V. Motion
and action planning under ltl specifications using navigation functions
and action description language. In Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems (Tokyo, Japan,
2013), IROS2013, pp. 240–245.

[66] Harel, D. State charts: A visual formalism for complex systems. Science
of Computer Programming 8 (1987), 231–274.

[67] Hasegawa, T., Suehiro, T., and Takase, K. A model-based
manipulation system with skill-based execution. IEEE Transactions
on Robotics and Automation 8, 1 (1992), 535–544.

[68] Holz, D., Topalidou-Kyniazopoulou, A., Rovida, F., Pedersen,
M., Kruger, V., and Behnke, S. A skill-based system for
object perception and manipulation for automating kitting tasks. In
IEEE International Conference on Emerging Technologies and Factor
Automation (Luxemburg, September 2015), pp. 1–9.

[69] Hähnel, D., Burgard, W., and Lakemeyer, G. Golex—bridging
the gap between logic (golog) and a real robot. In KI-98: Advances
in Artificial Intelligence, O. Herzog and A. Günter, Eds., vol. 1504 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1998,
pp. 165–176.

[70] Ierusalimschy, R., de Figueiredo, L. H., and Filho, W. C. Lua—
an extensible extension language. Softw. Pract. Exper. 26, 6 (1996),
635–652.

[71] Ingrand, F., and Ghallab, M. Robotics and artificial intelligence: A
perspective on deliberation functions. AI Communications 27, 1 (2014),
63–80.

[72] Ingrand, F. F., Chatila, R., Alami, R., and Robert, F. PRS: a
high level supervision and control language for autonomous mobile robots.
In Proceedings of the 1996 IEEE International Conference on Robotics
and Automation (Minneapolis, MN, 1996), ICRA96, pp. 43–49.

198 BIBLIOGRAPHY

[73] Jain, A., and Kemp Charles, C. Pulling open doors and drawers:
Coordinating an omni-directional base and a compliant arm with
equilibrium point control. In Proceedings of the IEEE International
Conference on Robotics and Automation (Anchorage, Alaska, USA, 2010),
pp. 1807–1814.

[74] Kaelbling, L. P., and Lozano-Pérez, T. Integrated task and motion
planning in belief space. The International Journal of Robotics Research
32, 9-10 (2013).

[75] Kallmann, M., and Jiang, X. A motion planning framework for skill
coordination and learning. In Motion Planning for Humanoid Robots.
Springer, 2010, pp. 277–306.

[76] Karayiannidis, Y., Smith, C., Barrientos, F., Ogren, P., and
Kragic, D. An adaptive control approach for opening doors and drawers
under uncertainties. Robotics, IEEE Transactions on 32, 1 (Feb 2016),
161–175.

[77] Karayiannidis, Y., Smith, C., Vina, F., Ogren, P., and Kragic,
D. Mdel-free robot manipulation of doors and drawers by means of fixed-
grasps. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on (May 2013), pp. 4485–4492.

[78] Keith, F., Mansard, N., Miossec, S., and Kheddar, A.
Optimization of tasks warping and scheduling for smooth sequencing
of robotic actions. In Proceedings of the 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems (St. Louis, Missouri, 2009),
IROS2009, pp. 1609–1614.

[79] Keith, F., Wieber, P.-B., Mansard, N., and Kheddar, A. Analysis
of the discontinuities in prioritized tasks-space control under discreet task
scheduling operations. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (San Francisco, California,
2011), IROS2011, pp. 3887–3892.

[80] Kent, S. Model driven engineering. In Integrated Formal Methods,
vol. 2335 of Lecture Notes in Computer Science. 2002, pp. 286–298.

[81] Klotzbücher, M., and Bruyninckx, H. Coordinating robotic tasks
and systems with rFSM Statecharts. Journal of Software Engineering in
Robotics 3, 1 (2012), 28–56.

[82] Klotzbücher, M., Smits, R., Bruyninckx, H., and De Schutter,
J. Reusable hybrid force-velocity controlled motion specifications with
executable domain specific languages. In Proceedings of the 2011

BIBLIOGRAPHY 199

IEEE/RSJ International Conference on Intelligent Robots and Systems
(San Francisco, California, 2011), IROS2011, pp. 4684–4689.

[83] Kortenkamp, D., and Simmons, R. G. Robotic systems architectures
and programming. In Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 187–206.

[84] Kowalski, R., and Sadri, F. Reconciling the event calculus with the
situation calculus. The Journal of Logic Programming 31, 1–3 (1997),
39–58.

[85] Kowalski, R., and Sergot, M. A logic-based calculus of events. New
Gen. Comput. 4, 1 (January 1986), 67–95.

[86] Kröger, T., Finkemeyer, B., Heuck, M., and Wahl, F. M.
Compliant motion programming: The Task Frame Formalism revisited.
Journal of Robotics and Mechatronics 3 (2004), 1029–1034.

[87] Kronander, K. Control and Learning of Compliant Manipulation Skills.
PhD thesis, 2015.

[88] Lagriffoul, F., and Benjamin, A. Combining task and motion
planning: A culprit detection problem. The International Journal of
Robotics Research (2016).

[89] Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, J., and
Karlsson, L. Efficiently combining task and motion planning using
geometric constraints. The International Journal of Robotics Research 33,
14 (2014), 1726–1747.

[90] Langley, P., and Choi, D. A unified cognitive architecture for physical
agents. In Proceedings of the National Conference on Artificial Intelligence
(2006), vol. 21, Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, p. 1469.

[91] Leidner, D., Borst, C., and Hirzinger, G. Things are made for what
they are: Solving manipulation tasks by using functional object classes.
In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International
Conference on (Nov 2012), pp. 429–435.

[92] Lemai, S., and Ingrand, F. Interleaving temporal planning and
execution in robotics domains. In Proceedings of the AAAI National
Conference on Artificial Intelligence (San Jose, California, USA, 2004),
Citeseer.

[93] Levesque, H., and Lakemeyer, G. Cognitive robotics. Elsevier
Science, 2008, pp. 869–886.

200 BIBLIOGRAPHY

[94] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., and Scherl,
R. B. Golog: A logic programming language for dynamic domains. The
Journal of Logic Programming 31, 1 (1997), 59–83.

[95] Lutscher, E., and Cheng, G. Constrained manipulation in
unstructured environment utilizing hierarchical task specification for
indirect force controlled robots. In Proceedings of the IEEE International
Conference on Robotics and Automation (Hong Kong, 2014), pp. 3471–
3476.

[96] Mansard, N., and Chaumette, F. Task sequencing for sensor-based
control. IEEE Transactions on Robotics 23, 1 (2007), 60–72.

[97] Mansard, N., Khatib, O., and Kheddar, A. A unified approach to
integrate unilateral constraints in the stack of tasks. IEEE Transactions
on Robotics 25, 3 (2009), 670–685.

[98] Marzinotto, A., Colledanchise, M., Smith, C., and Ogren,
P. Towards a unified behavior trees framework for robot control.
In Proceedings of the IEEE International Conference on Robotics and
Automation (Hong Kong, 2014), pp. 5420–5427.

[99] Mason, M. T. Compliance and force control for computer controlled
manipulators. IEEE Transactions on Systems, Man, and Cybernetics
SMC-11, 6 (1981), 418–432.

[100] McCarthy, J. Programs with common sense. In Semantic Information
Processing, M. Minsky, Ed. 1968, pp. 403–418.

[101] McCarthy, J., and Hayes, P. J. Some philosophical problems from
the standpoint of artificial intelligence. Readings in artificial intelligence
(1969), 431–450.

[102] McCarthy, J. M., and Roth, B. Instantaneous properties of
trajectories generated by planar, spherical, and spatial rigid body motions.
Transactions of the ASME, Journal of Mechanical Design 104 (1982),
39–51.

[103] Miller, A., and Allen, P. Graspit! a versatile simulator for robotic
grasping. Robotics Automation Magazine, IEEE 11, 4 (Dec 2004), 110–122.

[104] Miller, A., Knoop, S., Christensen, H., and Allen, P. Automatic
grasp planning using shape primitives. In Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference on (Sept 2003),
vol. 2, pp. 1824–1829 vol.2.

BIBLIOGRAPHY 201

[105] Minton, S., Bresina, J., and Drummond, M. Total-order and partial-
order planning: A comparative analysis. Journal of Artificial Intelligence
Research 2 (1994), 227–262.

[106] Mösenlechner, L., and Beetz, M. Fast temporal projection using
accurate physics-based geometric reasoning. In Proceedings of the
IEEE International Conference on Robotics and Automation (Karlsruhe,
Germany, 2013), ICRA2013, pp. 1821–1827.

[107] Mudrova, L., and Hawes, N. Task scheduling for mobile robots using
interval algebra. In Proceedings of the IEEE International Conference on
Robotics and Automation (Seattle, USA, 2015), pp. 383–388.

[108] Mueller, E. T. Event calculus and temporal action logics compared.
Artificial Intelligence 170, 11 (2006), 1017–1029.

[109] Muñoz, P., R-Moreno, M., and Castaño, B. Integrating a pddl-
based planner and a plexil-executor into the ptinto robot. In Trends
in Applied Intelligent Systems, N. García-Pedrajas, F. Herrera, C. Fyfe,
J. Benítez, and M. Ali, Eds., vol. 6096 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 72–81.

[110] Nakamura, Y., Hanafusa, H., and Yoshikawa, T. Task-priority
based redundancy control of robot manipulators. The International
Journal of Robotics Research 6, 2 (1987), 3–15.

[111] Nau, D., Ghallab, M., and Traverso, P. Automated Planning:
Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2004.

[112] Nesnas, I. A. D., Simmons, R., Gaines, D., Kunz, C., Diaz-
Calderon, A., Estlin, T., Madison, R., Guineau, J., McHenry,
M., Shu, I.-H., and Apfelbaum, D. CLARAty: Challenges and steps
toward reusable robotic software. International Journal of Advanced
Robotic Systems 3, 1 (2006), 23–30.

[113] Object Management Group. Meta Object Facility (MOF) core
specification. http://www.omg.org/spec/MOF/2.4.1/PDF, 2013.

[114] Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. Learning
and generalization of motor skills by learning from demonstration. In
Proceedings of the 2009 IEEE International Conference on Robotics and
Automation (Kobe, Japan, 2009), ICRA2009, pp. 1293–1298.

[115] Paynter, H. M. An epistemic prehistory of Bond Graphs. In Bond
Graphs for Engineers, P. Breedveld and G. Dauphin-Tanguy, Eds. 1992.

http://www.omg.org/spec/MOF/2.4.1/PDF

202 BIBLIOGRAPHY

[116] Penrose, R. A generalized inverse for matrices. Proc. Cambridge Philos.
Soc. 51, 3 (1955), 406–413.

[117] Perzylo, A., Somani, N., Profanter, S., Gaschler, A., Griffiths,
S., Rickert, M., and Knoll, A. Ubiquitous semantics: Representing
and exploiting knowledge, geometry, and language for cognitive robot
systems. In 15th IEEE-RAS International Conference on Humanoid
Robots (Seoul, Republic of Korea, November 2015).

[118] Perzylo, A., Somani, N., Rickert, M., and Knoll, A. An ontology
for CAD data and geometric constraints as a link between product
models and semantic robot task descriptions. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(Hamburg, Germany, 2015), IROS2015.

[119] Pettersson, O. Execution monitoring in robotics: A survey. Robotics
and Autonomous Systems 53 (2005), 73–88.

[120] Philippsen, R., Nejati, N., and Sentis, L. Bridging the gap between
semantic planning and continuous control for mobile manipulation using
a graph-based world representation. In International Workshop on Hybrid
Control of Autonomous Systems (HYCAS-09) (2009), pp. 77–82.

[121] Philippsen, R., Sentis, L., and Khatib, O. An open source extensible
software package to create whole-body compliant skills in personal mobile
manipulators. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (San Francisco, California,
2011), IROS2011, pp. 1036–1041.

[122] Piao, Y., Hayakawa, K., and Sato, J. Space-time invariants for
recognizing 3D motions from arbitrary viewpoints under perspective
projection. Transactions of the Institute of Electronics, Information and
Communication Engineers E89-D, 7 (2006), 2268–2274.

[123] Pnueli, A. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on (Oct 1977), pp. 46–57.

[124] Prats, M., Pobil, A. P. D., and Sanz, P. J. Robot Physical
Interaction through the combination of Vision, Tactile and Force Feedback
- Applications to Assistive Robotics, vol. 84 of Springer Tracts in Advanced
Robotics. Springer, 2013.

[125] Py, F., and Ingrand, F. Real-time execution control for autonomous
systems. In Embedded and Real-Time Systems (2004), pp. 21–23.

BIBLIOGRAPHY 203

[126] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T. B.,
Leibs, J., Wheeler, R., and Ng, A. Y. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source Software (2009).

[127] Raatikainen, P. Gödel’s incompleteness theorems. In The Stanford
Encyclopedia of Philosophy, E. N. Zalta, Ed., spring 2015 ed. 2015.

[128] RoboHow. The RoboHow Project. http://robohow.eu/.

[129] Rocchi, A., Hoffman, E., Caldwell, D., and Tsagarakis, N.
Opensot: A whole-body control library for the compliant humanoid robot
coman. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on (Seattle, USA, 2015), pp. 6248–6253.

[130] ROSETTA. Robot control for skilled execution of tasks in natural
interaction with humans; based on autonomy, cumulative knowledge and
learning. http://www.fp7rosetta.eu/.

[131] Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M. E.,
and Beetz, M. Functional object mapping of kitchen environments.
In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on (2008), IEEE, pp. 3525–3532.

[132] Rutgeerts, J. Constraint-based task specification and estimation for
sensor-based robot tasks in the presence of geometric uncertainty. PhD
thesis, Department of Mechanical Engineering, Katholieke Universiteit
Leuven, Belgium, 2007.

[133] Saab, L., Ramos, O. E., Keith, F., Mansard, N., Souères, P.,
and Fourquet, J.-Y. Dynamic whole-body motion generation under
rigid contacts and other unilateral constraints. IEEE Transactions on
Robotics 29, 2 (2013), 346–362.

[134] Sacerdoti, E. D. The nonlinear nature of plans. In Proceedings of the
4th International Joint Conference on Artificial Intelligence - Volume 1
(San Francisco, CA, USA, 1975), IJCAI’75, Morgan Kaufmann Publishers
Inc., pp. 206–214.

[135] Samson, C., Le Borgne, M., and Espiau, B. Robot Control, the Task
Function Approach. Clarendon Press, Oxford, England, 1991.

[136] Scioni, E., Borghesan, G., Bruyninckx, H., and Bonfè, M. A
framework for formal specification of robotic constraint-based tasks and
their concurrent execution with online qos monitoring. In Proceedings of
the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems (Chicago, IL, USA, 2014), IROS2014, pp. 2963–2969.

http://robohow.eu/
http://www.fp7rosetta.eu/

204 BIBLIOGRAPHY

[137] Scioni, E., Borghesan, G., Bruyninckx, H., and Bonfè, M.
Bridging the gap between discrete symbolic planning and optimization-
based robot control. In Proceedings of the IEEE International Conference
on Robotics and Automation (Seattle, USA, 2015), pp. 5075–5081.

[138] Scioni, E., Hübel, N., Blumenthal, S., Shakhimardanov, A.,
Klotzbücher, M., Garcia, H., and Bruyninckx, H. Hierarchical
hypergraphs for knowledge-centric robot systems: a composable structural
meta model and its domain specific language npc4. Journal of Software
Engineering in Robotics (under review).

[139] Scioni, E., Klotzbücher, M., De Laet, T., Bruyninckx, H., and
Bonfé, M. Preview coordination: An enhanced execution model for
online scheduling of mobile manipulation tasks. In Proceedings of the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems
(Tokyo, Japan, 2013), IROS2013, pp. 5779–5786.

[140] Sentis, L., and Khatib, O. Task-oriented control of humanoid robots
through prioritization. In IEEE International Conference on Humanoid
Robots (2004).

[141] Sentis, L., and Khatib, O. A whole-body control framework for
humanoid operating in human environments. In Proceedings of the 2006
IEEE International Conference on Robotics and Automation (Orlando,
U.S.A., 2006), ICRA2006, pp. 2641–2648.

[142] Shakhimardanov, A. Composable Robot Motion Stack: Implementing
constrained hybrid dynamics using semantic models of kinematic
chains. PhD thesis, Department of Mechanical Engineering, Katholieke
Universiteit Leuven, Belgium, November 2015.

[143] Shakhimardanov, A., Bruyninckx, H., Copejans, M., and Smits,
R. Popov-Vereshchagin algorithm for linear-time hybrid dynamics, control
and monitoring with weighted or prioritized partial motion constraints in
tree-structured kinematic chains. Under review., 2015.

[144] Shanahan, M. Solving the frame problem: a mathematical investigation
of the common sense law of inertia. MIT Press, Cambridge, MA, 1997.

[145] Shanahan, M. The event calculus explained. In Artificial intelligence
today. Springer, 1999, pp. 409–430.

[146] Shiraki, Y., Nagata, K., Yamanobe, N., Nakamura, A., Harada,
K., Sato, D., and Nenchev, D. Modeling of everyday objects for
semantic grasp. In Robot and Human Interactive Communication, 2014
RO-MAN: The 23rd IEEE International Symposium on (2014), pp. 750–
755.

BIBLIOGRAPHY 205

[147] Simmons, R. Structured control for autonomous robots. IEEE
Transactions on Robotics and Automation 10, 1 (1994), 34–43.

[148] Simmons, R., and Apfelbaum, D. A task description language for robot
control. In Proceedings of the 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems (Vancouver, British Columbia, Canada,
1998), IROS98, pp. 1931–1937.

[149] Skubic, M. Transferring assembly skills to robots: learning force sensory
patterns and skills from human demonstration. PhD thesis, Texas A&M
University, 1997.

[150] Smits, R. Robot skills: design of a constraint-based methodology and
software support. PhD thesis, Department of Mechanical Engineering,
Katholieke Universiteit Leuven, Belgium, May 2010.

[151] Smits, R., Bruyninckx, H., and De Schutter, J. Software support
for high-level specification, execution and estimation of event-driven,
constraint-based multi-sensor robot tasks. In Proceedings of the 2009
International Conference on Advanced Robotics (Munich, Germany, 2009),
ICAR2009.

[152] Smoljkic, G., Borghesan, G., Poorten, E. V., Reynaerts, D.,
and Sloten, J. V. 6th European Conference of the International
Federation for Medical and Biological Engineering: MBEC 2014, 7-11
September 2014, Dubrovnik, Croatia. Springer International Publishing,
2015, ch. Force Control of a Rigid Robot with a Flexible Link, pp. 375–378.

[153] Somani, N., Cai, C., Perzylo, A., Rickert, M., and Knoll, A.
Object recognition using constraints from primitive shape matching. In
Proceedings of the International Symposium on Visual Computing (Las
Vegas, Nevada, USA, December 2014), ISVC2014, Springer, p. 783–792.

[154] Somani, N., Gaschler, A., Rickert, M., Perzylo, A., and Knoll,
A. Constraint-based task programming with CAD semantics: From
intuitive specification to real-time control. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(Hamburg, Germany, 2015), IROS2015.

[155] Sporny, M., Longley, Dave Kellogg, G., Lanthaler, M., and
Lindström, N. A JSON-based serialization for Linked Data. http:
//www.w3.org/TR/json-ld/, 2014.

[156] Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S.,
and Abbeel, P. Combined task and motion planning through an
extensible planner-independent interface layer. In Proceedings of the

http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/

206 BIBLIOGRAPHY

IEEE International Conference on Robotics and Automation (Hong Kong,
May 2014), pp. 639–646.

[157] Tenorth, M., Bartels, G., and Beetz, M. Knowledge-based
specification of robot motions. In European Conference in Artificial
Intelligence (2014).

[158] Tenorth, M., and Beetz, M. KnowRob—Knowledge processing for
autonomous personal robots. In Proceedings of the 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems (St. Louis,
Missouri, 2009), IROS2009, pp. 4261–4266.

[159] Tenorth, M., and Beetz, M. KnowRob—A knowledge processing
infrastructure for cognition-enabled robots. The International Journal of
Robotics Research 32, 5 (2013), 566–590.

[160] Tenorth, M., Perzylo, A. C., Lafrenz, R., and Beetz, M.
Representation and exchange of knowledge about actions, objects, and
environments in the ROBOEARTH framework. IEEE Transactions on
Automation Science and Engineering (2013).

[161] Thomas, U., Finkemeyer, B., Kröger, T., and Wahl, F. M. Error-
tolerant execution of complex robot tasks based on skill primitives. In
Proceedings of the 2003 IEEE International Conference on Robotics and
Automation (Taipeh, Taiwan, 2003), ICRA2003, pp. 3069–3075.

[162] Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., and
Wortmann, A. A new skill based robot programming language using
uml/p statecharts. In Proceedings of the IEEE International Conference
on Robotics and Automation (Karlsruhe, Germany, 2013), ICRA2013,
pp. 461–466.

[163] Ureche, A., Umezawa, K., Nakamura, Y., and Billard, A. Task
parameterization using continuous constraints extracted from human
demonstrations. IEEE Transactions on Robotics 31, 6 (Dec 2015), 1458–
1471.

[164] van de Molengraft, M. The RoboEarth project. http://www.
roboearth.org/, 2011.

[165] Vanthienen, D. Composition Pattern for Constraint-based Programming
with Application to Force-sensorless Robot Tasks. PhD thesis, Department
of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium,
January 2015.

http://www.roboearth.org/
http://www.roboearth.org/

BIBLIOGRAPHY 207

[166] Vanthienen, D., De Laet, T., Decré, W., Bruyninckx, H.,
and De Schutter, J. Force-sensorless and bimanual human-robot
comanipulation. In 10th IFAC Symposium on Robot Control (SYROCO)
(Dubrovnik, Croatia, September, 5–7 2012), vol. 10.

[167] Vanthienen, D., Klotzbücher, M., and Bruyninckx, H. The
5C-based architectural Composition Pattern: lessons learned from re-
developing the iTaSC framework for constraint-based robot programming.
Journal of Software Engineering in Robotics 5, 1 (2014), 17–35.

[168] Vanthienen, D., Klotzbücher, M., De Laet, T., De Schutter,
J., and Bruyninckx, H. Rapid application development of constrained-
based task modelling and execution using domain specific languages. In
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (Tokyo, Japan, 2013), IROS2013, pp. 1860–1866.

[169] Veloso, M. Graph-based task libraries for robots: Generalization and
autocompletion. In AI* IA 2015 Advances in Artificial Intelligence:
XIVth International Conference of the Italian Association for Artificial
Intelligence, Ferrara, Italy, September 23-25, 2015, Proceedings (2015),
vol. 9336, Springer, p. 397.

[170] Verma, V., Estlin, T., Jónsson, A., Pasareanu, C., Simmons, R.,
and Tso, K. Plan execution interchange language (plexil) for executable
plans and command sequences. In Proceedings of the 9th International
Symposium on Artificial Intelligence, Robotics and Automation in Space
(2005).

[171] Verscheure, D., Demeulenaere, B., Swevers, J., Schutter,
J. D., and Diehl, M. Time-optimal path tracking for robots: A convex
optimization approach. IEEE Transactions on Automatic Control 54, 10
(2009), 2318–2327.

[172] Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F.,
and Carrasco, R. C. Probabilistic finite-state machines—Part I. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27, 7 (2005),
1013–1025.

[173] Winkler, J., Bartels, G., Mösenlechner, L., and Beetz, M.
Knowledge Enabled High-Level Task Abstraction and Execution. First
Annual Conference on Advances in Cognitive Systems 2, 1 (December
2012), 131–148.

List of publications

• Enea Scioni, Gianni Borghesan, Herman Bruyninckx, Marcello Bonfè.
Bridging the gap between Discrete Symbolic Planning and Optimization-
based Robot Control.
In: Proceedings of the 2015 IEEE International Conference on Robotics
and Automation (ICRA), Seattle, USA.

• Gianni Borghesan, Enea Scioni, Abderrahmane Kheddar, Herman
Bruyninck.
Introducing Geometric Constraint Expressions into Robot Constrained
Motion Specification and Control.
In: IEEE Robotics and Automation Letters, Volume:PP, Issue: 99, Year:
2015, doi: 10.1109/LRA.2015.2506119 .

• Enea Scioni, Nico Hüebel, Sebastian Blumenthal, Azamat Shakhimar-
danov, Markus Klotzbücher, Hugo Garcia, Herman Bruyninckx.
Hierarchical Hypergraphs for Knowledge-centric Robot Systems: a
Composable Structural Meta Model and its Domain-Specific Language
NPC4. In: accepted to Journal of Software Engineering for Robotics
(JOSER), 2015.

• Enea Scioni, Gianni Borghesan, Herman Bruyninckx, Marcello Bonfè.
A Framework for Formal Specification of Robotic Constraint-based Tasks
and their Concurrent Execution with Online QoS Monitoring.
In: Proceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Chicago, USA.

• Enea Scioni, Markus Klotzbüecher, Tinne De Laet, Herman Bruyninck,
Marcello Bonfè.
Preview coordination: An enhanced execution model for online scheduling
of mobile manipulation tasks.
In: Proceedings of the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Tokyo, Japan.

209

210 LIST OF PUBLICATIONS

• Marcello Bonfè, Enea Scioni, Cristian Secchi.
Online Trajectory Generation and Tracking Control Design for Mobile
Robots with Kinodynamic Constraints.
In: Proceedings of the 10th IFAC Symposium on Robot Control (SYROCO
2012).

• Koen Buys, Steven Bellens, Wilm Decre, Ruben Smits, Enea Scioni, Tinne
De Laet, Joris De Schutter, Herman Bruyninckx.
Haptic coupling with augmented feedback between two KUKA Light-
Weight Robots and the PR2 robot arms.
In: Proceedings of the 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), San Francisco, USA.

