
Development of the acquisition

system and the control

environment for the experiment

KM3NeT

Matteo Favaro

Department of Mathematics and Computer Science

University of Ferrara

This dissertation is submitted for the degree of

Doctor of Philosophy

Tutor:

Luca Tomassetti

Co Tutor:

Tommaso Chiarusi

Francesco Giacomini

I would like to dedicate this thesis to:

my loving parents, that have supported me during these years,

Chiara, who has been one of the true friends in my life,

and to the persons that are making me happy. She understands me as nobody

has ever done. . .

Thank to all of you. Without your support, I never reached this achievement.

Matteo Favaro

Acknowledgements

I would like to acknowledge: Francesco Giacomini for helping me during this

period, Tommaso Chiarusi for having kept the workgroup close, Matteo Manzali

for the friendship and the help on this work and last but not least Carmelo

Pellegrino for giving me all his patience and encouragements. These persons will

have a important place in my heart and life forever.

Thank you sincerely. . .

Matteo Favaro

Abstract

In this thesis the Trigger and Data Acquisition System (TriDAS) for the KM3NeT-

Italy experiment is presented. The various elements that compose the TriDAS

are explained in detail, together with the description of the software tools used

for their design and implementation. The control system of the data acquisition

is one of the key features of the whole system and it is the core of this work. To

develop it, a general approach has been used, with the aim for possibly reusing

most of the product within other projects. The adopted solution improves the user

interface, exposing web-service API for remote steering and control; it also allows

the connections by multiple users at the same time, managing different privileges

for many user roles. Finally, the results of some tests are shown, demonstrating

that the new design of control system work in a reliable way. Moreover, the test

probes the TriDAS performances under realistic conditions.

Table of contents

List of figures xi

List of tables xv

1 The KM3NeT Experiment 3

1.1 Neutrino Detection Techniques . 5

1.2 Detection Principles . 7

1.2.1 Background . 8

1.3 The Experiment challenges . 10

1.3.1 Data Flowing Challenge . 10

1.3.2 The Throughput Challenge . 13

1.3.3 The Computational Challenge 15

1.3.4 The analysis Challenge . 16

2 Design and implementation of the Trigger and Data Acquisition

System 21

2.1 FCM . 24

2.2 HM . 26

2.3 TCPU . 31

2.3.1 TCPU Offline . 40

2.4 TSV . 41

x Table of contents

2.5 EM . 42

3 Design and implementation of the TriDAS control 47

3.1 TSC . 48

3.2 Interface to the TriDAS Control . 53

3.2.1 The web service . 53

3.2.2 The APIs exposed by the web service 62

3.3 A graphical Gui . 75

3.3.1 Purpose . 75

4 Tests 79

4.0.1 The farm . 79

4.0.2 Configuration . 81

4.0.3 Results . 82

5 Conclusion 87

References 89

Appendix A Development Tools 91

A.0.1 Boost . 91

A.0.2 ZMQ . 92

A.0.3 CrossBar.IO . 94

A.0.4 WebSocket . 98

A.0.5 AngularJS . 99

Appendix B Relevant Source Code 101

Appendix C Example of Datacard 105

List of figures

1.1 The experimental setup of the neutrino telescope in the KM3NeT-IT

site: the grid of optical modules, in the abyssal site, is connected to

shore via a mechanical electro-optical cable (MEOC) about 100 km

long. On shore the control station hosts the TriDAS computing farm

for the on-line data processing. 4

1.2 Km3 experiment Foot print and visual illustration of towers and

strings, on the right side is illustrated hot a tower is built, with

perpendicular floors connected by wires and how the PMT are placed.

On the left side is illustrated a string with the doms. 6

1.3 The Principle of detection of high energy neutrinos in an underwater

neutrino telescope (see text for details) 7

1.4 Scheme of a PMT connection, the logic board shown is the FEM . . 11

1.5 Illustration of FCMServer . 13

1.6 The circles groups PMTs in pairs: each pair could trigger a Simple

Coincidence. 17

1.7 Hammer-Aitoff projection of the default grid of 210 directions used

in the standard trigger algorithm. 18

1.8 Schematic view of a muon traversing a part of the instrumented

volume of the detector. 19

xii List of figures

2.1 The TriDAS core overview . 22

2.2 The TriDAS core overview . 23

2.3 A FCM Board . 25

2.4 FCM to HM data transfer . 26

2.5 HM block Scheme . 30

2.6 TCPU Block scheme . 32

2.7 TSV Block scheme . 42

2.8 EM Block Scheme . 43

3.1 TSC block Scheme . 48

3.2 TSC State Machine Diagram . 51

3.3 WEBServer Block Scheme . 54

3.4 Web Server Database Entity Relationship Schema 55

3.5 Escalation Procedure with an yes answer sequential diagram 60

3.6 Escalation Procedure sequential diagram with a “no” answer and a

forced procedure . 61

3.7 A representation of an running acquisition on the GUI without the

priviledge . 75

3.8 A representation of an running acquisition on the GUI with a gained

priviledge . 76

3.9 An example of other purposes of the GUI: the upload of the Runsetup

from a local client. 76

3.10The GUI uses HTML 5 technique and AngularJS: with dinamic icon,

dynamic notification . 77

List of figures xiii

3.11Representation of the connections status between all systems: two

users, one privileged and one not, issue command via HTTP POST

and receive notification from the WebSocket Server via the sub-

scribed topic; the web serve issue the command to the communica-

tion thread, that is kept alive from crossbar.io. The communication

Thread will communicate with the TSC. 78

4.1 The TriDAS core network topology 81

4.2 Represetation of the elaboration of the L1 Time execution 83

List of tables

1.1 Expected throughput from the Detector 15

Introduction

The INFN’s project KM3NeT-Italy [1], supported with Italian PON (National

Operative Programs) fundings, consists of 8 vertical structures, called Towers,

instrumented with a total number of 672 Optical Modules (OMs) and will be

deployed 3500 m deep in the Ionian Sea, at about 80 km from the Sicilian coast

[2][3]. A Tower is made of 14 horizontal bars, piled up one by one with 90°

heading difference. Each bar hosts six OMs. In order to reduce the complexity of

the underwater detector, the all-data-to-shore approach is followedAt the shore

station a Trigger and Data Acquisition System collects, processes and filters the

data streams from all the Towers, saving interesting data to a permanent storage

for subsequent analysis.[4]

The system must sustain the real data generated from the neutrinos added

to the optical background generated by the 40K decays and bioluminescence.

The throughput can grow up to 30 Gbps, with such large throughput strong con-

straints are required by the TriDAS performances and by the related networking

architecture.

Chapter 1 briefly describes the experiment and discusses the implications

and the challenges for its acquisition system. In chapter 2, I will present how

the TriDAS is built and which are its components. Chapter 3 shows all the work

that I have developed for the TriDAS control system. In chapter 4 the result of a

2 List of tables

realistic simulation will be presented in order to demostrate that the system is

ready for the real data acquisition.

Chapter 1

The KM3NeT Experiment

The primary aim of the KM3NeT project [5] is the detection of high-energy

neutrinos from the cosmos. Following the construction and operation of the

ANTARES neutrino telescope, the completion of the EU funded Design Study and

Preparatory Phase Study, and the acquisition of substantial funds (about 20% of

the envisaged total budget), KM3NeT phase-1 was launched in early 2013. The

construction has started off-shore Porto Palo di Passero, Italy and Toulon, France.

The construction of a neutrino telescope is extremely challenging. In short, a

systematic study of cosmic neutrinos requires a massive telescope with a size

of several cubic kilometres. A solution to make such a large mass sensitive to

neutrinos is to build a three dimensional array of very sensitive light sensors

in the sea. Neutrinos can then be detected indirectly through the detection of

the Cherenkov light produced by charged particles emerging from a neutrino

interaction. The transparency of the water makes it possible to distribute the

light sensors in a cost effective way. The absorption length of the water has

been measured at the selected sites in the Mediterranean Sea and was found

to be about 50 metres (at a wavelength of 470 nm). The angular resolution of

such a detector is limited by the lever arm between the light sensors and the

4 The KM3NeT Experiment

Fig. 1.1 The experimental setup of the neutrino telescope in the KM3NeT-IT
site: the grid of optical modules, in the abyssal site, is connected to shore via
a mechanical electro-optical cable (MEOC) about 100 km long. On shore the
control station hosts the TriDAS computing farm for the on-line data processing.

1.1 Neutrino Detection Techniques 5

measurement precision of their positions and the arrival times of the Cherenkov

light. The mechanical structure that accommodates the light sensors do not form

a static system due to changing sea currents. Hence, their positions must be

monitored continuously through acoustic triangulation. Of the three neutrino

species that exist in nature, the muon neutrino yields the best angular resolution

because the muon that emerges from a neutrino interaction has the longest range.

The KM3NeT infrastructure will also host a network of cabled observatories with

a wide array of dedicated instruments for oceanographic, geophysical and marine

biological research.

1.1 Neutrino Detection Techniques

A number of possible techniques exists for detecting high energy neutrinos from

space. The most widely exploited method for the core energy range of interest

(1011 to 1016 eV) is the detection of neutrinos in large volumes of water or ice,

using the Cherenkov light from the muons and hadrons produced by neutrino

interactions with matter around the detector. The original idea of a neutrino

telescope based on the detection of the secondary particles produced in neutrino

interactions is attributed to Markov[6] who invoked the concept in the 1950’s.

Given the need of a kilometrescale detector, only designs incorporating large

naturally occurring volumes of water or ice can be viable. A deep seawater

telescope has significant advantages over ice and lake-water experiments due

to the better optical properties of the medium. Water Cherenkov detectors are

the only detectors that have so far observed neutrinos produced beyond the

solar system; these were neutrinos with energies of 106 to 107 eV produced in

supernova 1987a. These detectors are much smaller than the proposed KM3NeT

neutrino telescope. MACRO was the largest detector using a different technique.

6 The KM3NeT Experiment

Fig. 1.2 Km3 experiment Foot print and visual illustration of towers and strings,
on the right side is illustrated hot a tower is built, with perpendicular floors
connected by wires and how the PMT are placed. On the left side is illustrated a
string with the doms.

1.2 Detection Principles 7

Fig. 1.3 The Principle of detection of high energy neutrinos in an underwater
neutrino telescope (see text for details)

It used liquid scintillator and streamer tubes to detect charged particles and

operated underground in the Gran Sasso laboratory in Italy. experiments are

also being developed based on the detection of radio waves or sound produced

in neutrino interactions. These techniques become viable for neutrinos with

energies roughly above 1018 eV.

1.2 Detection Principles

The detection of high-energy muon neutrinos exploits:

• The emission of Cherenkov light by the muon and other charged secondary

particles produced in a neutrino interaction;

• The directional correlation of the muon and parent neutrino trajectories to

within 0.3° for Ev > 10 TeV ;

8 The KM3NeT Experiment

• The fact that upwardgoing muons can only originate from local neutrino

interactions since the Earth filters out all other particles;

• The long range of muons in water and rock in the energy range of interest.

As a result, muons may be generated far from the instrumented volume and

still be detected.

1.2.1 Background

Backgrounds in a neutrino telescope are caused either by random light, not

associated with particles traversing the detector, or by muons or neutrinos

generated in cosmic ray interactions in the terrestrial atmosphere. The muons

(“atmospheric muons”) can penetrate the water above the detector and give rise

to a reducible background. The neutrinos (“atmospheric neutrinos”), on the other

hand, are an irreducible background.

Random Backgrounds

Daylight does not penetrate at any detectable level to depths beyond a kilo-

metre. Sea water however contains small amounts of the naturally occurring

radioactive potassium isotope, 40K. This isotope decays mostly through β decay

releasing electrons that produce Cherenkov light and produce a steady, isotropic

background of photons with rates of the order of 350 Hz per square centimetre.

Although the induced number of photo electrons per photomultiplier during the

time it takes a muon to pass the detector (a few microseconds) is moderate there

is still a chance that these hits may mimic the signature of a muon or shower or,

more importantly, contaminate the hit pattern of a neutrino induced event. Many

life forms that inhabit the deep sea emit light. This bioluminescence has two con-

tributions, a continuous component usually attributed to bioluminescent bacteria,

1.2 Detection Principles 9

and a component of localized bursts of light with high rates probably connected

to macroscopic organisms passing the detector. These random backgrounds can

be reduced by coincidence methods t to an acceptable level.

Atmospheric Muons

Cosmic rays entering the atmosphere produce extensive air showers which

contain high energy muons. Although the sea water above the detector serves

as a shield many such muons reach the detector. This background is reduced by

deploying a neutrino telescope at great depth. The remaining flux of atmospheric

muons is still many orders of magnitude larger than any neutrino induced muon

flux. Since the atmospheric muons come from above this can be exploited to

eliminate e them. However, multiple coincident atmospheric muons can produce

a hit pattern that resembles that of an up-going muon. Therefore, care must be

taken in the detector design and the reconstruction algorithms to minimize the

rate of these fake events.

Atmospheric Neutrinos

Large numbers of charged pions and kaons are produced in cosmic ray interac-

tions in the atmosphere. Their subsequent decays produce neutrinos, resulting

in a large flux of atmospheric highenergy neutrinos. They are an irreducible

background for the detection of neutrinos of cosmic origin. To study neutrinos

arriving from cosmic point sources, a small search cone, commensurate with

the angular resolution, is used. This reduces the background from atmospheric

neutrinos to a manageable level. For the investigation of any diffuse neutrino

flux of cosmic origin one relies on the fact that their expected energy spectrum is

harder than the spectrum of atmospheric neutrinos. Thus it is possible to search

10 The KM3NeT Experiment

for an excess of cosmic origin neutrinos at higher energies. However, this may

be complicated by the presence of the so called “prompt” atmospheric neutrino

flux with a hard energy spectrum, arising from the decay of charm particles in

atmospheric showers.

1.3 The Experiment challenges

The challenge of this project is the detection of high-energy neutrinos from the

cosmos (see chapter 1). In order to achieve this challenge a deep study of the

data flowing is necessary. In order to understand the reason of the decisions

taken for developing the DAQ (Data Acquisition) for this experiment, is necessary

to investigate how the detector produce data, which are the amount of data that

is necessary to analyze, how is possible to achieve an online analysis of the data

and how is possible to understand that data are containing valid information

related to the experiment target.

1.3.1 Data Flowing Challenge

The offshore detector harvests the data starting from the OpticalModules (PMTs).

Each PMT with its own logic board (FEM) is connected to a Floor Control Module

(FCM) as shown in Fig. 1.4.

The FEM translates analog signal coming from the PMT into a digital signal.

The logic board recognize the “excitement” of the PMT and communicates to the

FCM when it happens and for how long. A “excitement” is called hit. A hit is a

digital data composed as described:

• PMT Info: the ID of the PMT where the hit is occurred.

• Hit time: the time that the hit has lasted.

1.3 The Experiment challenges 11

Fig. 1.4 Scheme of a PMT connection, the logic board shown is the FEM

12 The KM3NeT Experiment

• Hit Charge: a value that indicates how “bright” the hit has been.

• Wave Form A digital representation of the the sampled wave form gener-

ated by the hit.

The connection between the FEM and the FCM is serial with a custom protocol

designed by the researchers of the FCM group. At this time the FCM receive

these data from all PMTs of the floor (6 PMT per floor) continuously due the

optical background and the wanted neutrinos reaction. [7]

The FCM is connected to a junction box that multiplex the signal of each

FCM connected in order to use less optical fiber to bring the data to the shore

station. In the shore station there is a respective demultiplexer that split the

signals and send to the respective NaNet3 logic board. Virtually each FCM is

connected directly with the board with a two way communicating fiber. The

fiber brings undersea the GPS signal, the clock, the Slow Control commands (e.g.

“turn on”, “state”, “turn off”. . .) to the FCM along the path “shore to offshore”

and on the other side it receives the stream of data. The protocol that FCM uses

to communicate with the NaNet3 logic board is called G-link. It is a synchronous

protocol for data exchanging over fiber optics. A single NaNet3 board can serve

up to 4 FCM simultaneously. The FCM uses the GPS signal and the clock to

mark the data with the timestamp. It encapsulates the data into structures called

DataFrame before sending them to the offshore server. By design a DataFrame

can have a variable dimension from a minimum of 8 to a maximum of 44 WORDs1

(88 bytes).

On the shore machine there is a collaboration between two elements: the

NaNet3 and a software called FCMServer. The NaNet3 write the data coming from

the FMC on the RAM of the machine. The FCMServer handle two task, it opens a

12 bytes–long words

1.3 The Experiment challenges 13

TCP socket and waits for a connection. When a client connects to the FCMServer

software starts reading the data contained into the RAM and generates a data

flow to the clients (see section 2.1). The FCMServer software generates standard

Fig. 1.5 Illustration of FCMServer

TCP/IP packets which payload is the DataFrame. At this point the acquisition can

start and here is where the TriDAS acquisition system is connected to.

1.3.2 The Throughput Challenge

The detector beside the desired detection of the Cosmo’s Neutrinos is affected

by a background noise called Optical Background Hit Rate. It is a noise of false

hits, they are generated by the environment due 40K decay’s. When a 40K particle

decays it generates a Muon that decays in a photon that is detected from the PMT.

Fortunately is possible to calculate this kind of events. In the Mediterranean Sea

14 The KM3NeT Experiment

and at a depth of ~3500m the noise has a typical value of 50KHz with a maximum

of 150KHz, in a conservative vision a value of 70KHz has been taken in account.

A DataFrame dimension is strictly related to the fraction of PMTs that are

seeing photon in a certain moment. The worst case is when all the PMTs are

seeing photons simultaneously for a long time. This means that the DataFrame

will have the maximum size of 88 bytes (as introduced in section 1.3.1), due to

the sum of background noise and the actual neutrinos signals, but the frequency

of the neutrino data is very poor, covered by the noise.

If this happen the detector will have a throughput calculated as follow:

DataFrame dimension → DFD

Optical Background → OB

DFD∗OB∗NPMT FLOOR ∗NFLOOR TOWER ∗NTOWERS = throughput in bps

Considering the worst case, a PMT generates 88 bytes of data.

Every PMT is affected by the noise on 70KHz 40K decay .

88 bytes ∗ 70KHz = 6.160.000 Bi/s → 49.280.000 bps → 49,28 Mbps

On a floor there are 6 PMTs.

49,28Mbps∗ 6 = 295,68 Mbps

In a Tower there are 14 floors.

295,68 Mbps∗ 14 = 4139,52 Mbps → 4.14 Gbps

The entire detector will be composed by 8 Towers.

4.14 Gbps∗8 = 33,12 Gbps → 3.86 GiB/s

In this case it has been considered that all the PMTs are registering a hit at

the same time. This is quite impossible due the Poisson distribution of the hits. A

quite real averaged value of a DataFrame dimension is 46 Bytes.

1.3 The Experiment challenges 15

Repeating the various calculation with this new value a more realistic through-

put is shown in Table 1.1.

Table 1.1 Expected throughput from the Detector

Case (KM3NeT-Italia)
Expected
(vsingle = 50kHz)

Conservative
(vsingle = 70kHz)

Maximum
(vsingle = 150kHz)

10” PMT (0.25
p.e thresh)

(Mbps) 19.0 26.0 56.0

floor (6 PMT /
floor)

(Mbps) 110.0 160.0 330.0

Std Tower (14
floors)

(Mbps) 1600.0 2200.0 4700.0

NEMO Phase 2
(8 floors - 4
PMT/floor)

(Gbps) 0.6 0.8 1.8

Full Detector
(8 Std Tower)

(Gbps) 12.0 17.0 37.0

1.3.3 The Computational Challenge

As described, during an acquisition phase a lot of data arrive at the offshore

station. It is easily to imagine that computing all the data, that the detector

is producing, is a hard task. Although, for computing the data and detect the

significant neutrinos traces the trigger algorithms need to be aware of the whole

detector. This mean that, ideally, we need to aggregate all the data arriving

from each PMT in a unique stream, sending it to a single computer for the

processing. Obviously, this is impossible to achieve without some intermediate

steps and some kind of distribution of the workload over multiple nodes. In first

instance, it is necessary to have a complete sight of the entire active detector,

this forces to manipulate the real-time stream and splitting it in “pieces” or more

precisely “slices”. The idea is to slice the stream in packets that contain a certain

amount of data related to a customizable time-window. This approach permits

16 The KM3NeT Experiment

to process “snapshots” of the acquired data from the detector and after a first

aggregation level the distribution of this aggregated data through several nodes,

this snapshot is called TimeSlices. Furthermore, this kind of approach allows to

scale and adapting the TriDAS to a detector that could increase its dimension

along years, resolving in advance scalability problems like the large amount of

data arriving at the offshore station. Thus, when the detector will increase the

number of the towers the system will not hit the physical communication limits.

With the Time-slicing method could happen to splitting a relevant “event” (an

“hit” sampled from the PMTs) in two different TimeSlice. In this case is necessary

to define how large must be the slice in time. During the studying and simulation

of the detector this dimension has been calculated and this is 200ms. Indeed,

with this value the probability to split a relevant event in two TimeSlice is 10−6.

This probability is small enough to be acceptable for the experiment. Moreover,

with this slice dimension the TriDAS can handle the online triggering with the

current technology limitations. The experiment takes into account the costs too,

in fact there are technologies that could permit to handle different dimension of

TimeSlices and throughput but they are too expensive and not sustainable on the

long term.

1.3.4 The analysis Challenge

It has just been said that the data is being “sliced” because is necessary to

have a complete sight of the detector for discriminating the relevant neutrinos

trace from the background. For achieving this task is necessary to use two

different algorithms. An L1 level and a L2 level algorithms. These algorithms are

called Trigger. The L1 algorithms are hardcoded into the TCPU (see section 2.3)

program. A L1 trigger consist of a logic OR of the following conditions:

1.3 The Experiment challenges 17

• Simple Coincidences: i.e. topological time-like trigger conditions involving

hits occurring on near PMTs within a time-window of 20 ns. The circles

in Fig 1.6 indicate the pairs of PMTs of each floor that can trigger Simple

Coincidences L1 events.

• Charge over threshold: when a hit charge is above a certain threshold in

picoCoulomb (note that 1 single photon electron hit charge is about 8 pC).

• Floor Coincidences: when one PMT has a coincidence with another PMT

that is not in the same couple but it is on the same floor.

Fig. 1.6 The circles groups PMTs in pairs: each pair could trigger a Simple
Coincidence.

When a trigger seed has been found in the stream of one TimeSlice, a L1

event is cut, saving all the hits from all the PMTs within ±3µs from the trigger

seed occurrence. If a new seed occurs before the end of the event, the event

time-window is extended by counting additional 3µs from the last found seed.

The Level 2 trigger consist on a causality filter [8]. Only L1 events are

containing a number of L1 seeds � 5 were considered. The strategy consist of

testing the causality among the hits of the L1 seeds assuming being originated

18 The KM3NeT Experiment

by a muon coming from a guess direction out of a collection of 210 ones which

cover the full solid angle 4π (see Fig. 1.7).

Fig. 1.7 Hammer-Aitoff projection of the default grid of 210 directions used in
the standard trigger algorithm.

The L2 algorithm proceeds as the following: given the direction, the detector

frame is rotated till the chosen direction becomes the vertical one. Then the

causality relation was tested with equation 1.1 for all the pairs of L1 hits (refer

also to Fig. 1.8):

|(ti− t j)c− (zi− z j)|� tanθc

√
[(xi − x j)2 +(yi − y j)2] = tanθc|Ri j| (1.1)

The application of the L1 + L2 trigger levels determines a trigger efficiency

ranging 3-5%. It is a reasonable efficiency considering that the triggered good

events are, for this simulation, downward going atmospheric muons, and being

the NEMO-like towers optimized for the detection of upward going particles.

Moreover, approximatively the same trigger efficiency is found for the ANTARES

detector [9], which has almost the same instrumented volume.

1.3 The Experiment challenges 19

Fig. 1.8 Schematic view of a muon traversing a part of the instrumented volume
of the detector.

Chapter 2

Design and implementation of the

Trigger and Data Acquisition

System

The TriDAS Core [10] (Figure 2.1) is formed by the HitManager (HM), the Trigger

CPU (TCPU), the TriDAS-SuperVisor (TSV) and the Event Manager (EM).

In figure 2.1 and 2.2 there is a schematic representation of the TriDAS.

The whole system derives from a base developed for the previous phase of

the experiment, in this version the modularity of the system has been kept but

most part of the system has been redesigned in order to be more scalable and

reliable for the foreseen multiple towers.

The FCMServer (FCMS) units provide data to the TriDAS core, these servers

read the PMT data from the detector and send them to the HitManager. The

FCMServers are designed to be the onshore gate for all the kind of data streams

(slow control, optical and acoustic), going to and coming from the offshore

detector [11]. One single FCMServer can handle the optical data coming from

4 floors of a Tower. With 8 Towers, the total number of FCMServers is 32. The

22 Design and implementation of the Trigger and Data Acquisition System

Fig. 2.1 The TriDAS core overview

23

FCMServers forward the data coming from the OMs to the first layer of the

TriDAS, the HitManagers.

Fig. 2.2 The TriDAS core overview

Every single HitManager process runs in a dedicated server and it is linked to

a fixed number of FCMServers ,which correspond to a portion of the detector,

called Sector. All the HitManagers share the same time line, originated from a

common timestamp, which is quantized in subsequent intervals of time of the

same duration, called TimeSlices. In this way, a full set of PMT data occurred

during a particular TimeSlice are asynchronously managed by the HitManagers

that is managing that FCMServer, the HitManagers organize their own fraction

of data in a special data-structures called the “Sector Time Slices” (STSs). The

24 Design and implementation of the Trigger and Data Acquisition System

role of the TriDAS-SuperVisor is to steer all the HitManagers sending the STSs

belonging to the same TimeSlice to the first available TriggerCPU, according to

a free-token-scheduler mechanism. In its turn, one TCPU collects all the STSs

of a TimeSlice into the so called “Telescope Time Slice” structure (TTS), then

process it according to the trigger algorithms [4]. Many TriggerCPUs process

different TTS at the same time. The fraction of data which fulfill the trigger

selection criteria is sent to the EventManager, which records the filtered data

in binary files on the local storage. Offline, the written post-trigger files are

transferred from the Shore station infrastructure of Portopalo to the storage

facility at LNS via a dedicated 10 Gbps connection. The design for TriDAS is

modular and scalable with the number of deployed Towers. The required amount

of TriggerCPUs processes depends on the complexity of the trigger algorithms

and increases with the number of OMs.

2.1 FCM Server

The Floor Control Module Server called FCMServer is a program that works in

collaboration with a NaNet3 card [11], as introduced in section 1.5.

The NaNet3 is a logic board plugged on the PCIe1 bus of a server that reads

the optical data from an undersea tower’s floors and after a decoding it writes

that data on the RAM of the pc. A NaNet3 can read and manage the data coming

from at most 4 floors. This part of software is developed by a collaborating

group in Rome. From the point of view of the FCM Server program, it spawns

a different network socket for each different floor. Therefore, we treat every

1PCI Express® (Peripheral Component Interconnect Express), officially abbreviated as PCIe®,
is a computer expansion card standard designed to replace the older PCI, PCI-X, and AGP
standards. It is used to link motherboard-mounted peripherals and as an expansion card interface
for add-in boards.

2.1 FCM 25

socket as a “different” FCM server when we are talking about “FCM Server”

from the HM side. When a client connects to a socket the FCM server starts to

send a continuous stream of data to its 2.3. This data are blocks that contains

this information:

• GPS timestamp

• Data from each OpticalModule

• other data

The GPS timestamp is the key information that will be used on the next block

chain.

As told previously the next element that read the data from the FCM server is

the HM.

A FCM serves only a HM for the whole configuration.

Fig. 2.3 A FCM Board

26 Design and implementation of the Trigger and Data Acquisition System

2.2 Hit Manager

The purpose of the Hit Manager is to transform/slice the data in blocks according

to an absolute time-“label”. The label that has been used is the absolute time

contained in each segments of the data received from the FCM Server (2.1).

In fact, the data that the FCM is sending is like a stream, but that stream

is structured and the data from the floors are all synchronized with a global

timestamp calculated from a GPS with the nanosecond precision. The HMs

Fig. 2.4 FCM to HM data transfer

represent the first aggregation stage for the incoming data-stream. Each HM

handles a number of floors (Fig.2.4) or FCMServer and all these represent a

“Sector”, slicing data in subsequent TimeSlices (TS) of the same fixed duration

and referred to a common time origin. Each HM organizes its own sliced data

in special structures called SectorTimeSlices (STSs) and sends them to the

TriggerCPUs. At every “Run” a number of HM are running according to the

number of floors that the FCM Server are serving.

More floors are present during a Run more HM could be necessary. Each HM

maintain a customizable buffer of STSs inside itself for multiple reasons:

2.2 HM 27

1. The HM is not synchronized with the second step of the TriDAS analysis

(TCPU2.3), in fact an analysis of the detector could be slower or faster

depending on what the Telescope has detected in a certain moment.

2. it could arrive an external trigger

Accordingly with the design of the international collaboration of acquiring

data from the universe, the Detector can receive an external trigger. This trigger

is emitted from the international collaboration when a transient astrophysical

phenomena such as Gamma Ray Bursts (GRB) or SuperNova explosions are

detected. In this case is required to save at least 30 minutes of recorded data

from the detector to permanent storage. When this request arrives to the TriDAS

the HM is informed to store all the data that it is keeping, sending them directly

to disk. In order to be always ready to satisfy this request every HM keep a

time window 30 minutes wide in an internal buffer. The number of how many

STSs the HM must keep for covering the 30 minutes of data is defined into the

Datacard in which is defined how big is a “slice” of the data. The Datacard is a

single configuration file that is shared from all the components of the TriDAS at

the beginning of the acquisition. In this file there are sections related with each

component of the TriDAS and the description of the geometry of the detector.

Listing 2.1 Datacard Part related to ALL components configuration

1 "INTERNAL_SW_PARAMETERS": {

2 "DELTA_TS": "200",

3 "PMT_BUFFER_SIZE": "1000000",

4 "STS_READY_TIMEOUT": "5",

5 "TTS_READY_TIMEOUT": "30",

6 "STS_IN_MEMORY": "100"

7 },

28 Design and implementation of the Trigger and Data Acquisition System

As is possible to see into the listing 2.1 there is a “key” value named INTER-

NAL_SW_PARAMETERS. Inside this block there are many configuration and HM

related are:

• DELTA_TS: this number is in milliseconds format, it tells to the HM how

big is the slice of the data that it must create, typically, 200ms.

• PMT_BUFFER_SIZE: this number is expressed in bytes. It indicates the

maximum buffer size deputed to contain the data of a PMT in a TS.

• STS_READY_TIMEOUT: this number is correspond to seconds. It is a

timeout that indicates how much the HM must wait before consider a STS

as ready to be sent.

• STS_IN_MEMORY: this number is an absolute number that tell to the HM

how big must be the internal buffer of STS for the reason explained before

(GRB).

2.2 HM 29

Listing 2.2 Datacard Part related to HM configuration

1 "HM": {

2 "LOG_LEVEL": "DEBUG",

3 "BASE_CTRL_PORT": "16100",

4 "DUMP_FLAG": "0",

5 "DUMP_FILENAME_PREFIX": "\/tmp\/hm_dump_",

6 "DUMP_MAX_SIZE": "500",

7 "HOSTS": [

8 {

9 "CTRL_HOST": "192.168.253.114",

10 "N_INSTANCES": "1"

11 },

In the second listing 2.2 there is listed the configuration of the for the HM.

• LOG_LEVEL: indicated the verbosity of the log that the HM will produce

during the run (possible options: DEBUG | INFO | WARNING).

• BASE_CTRL_PORT: is the BASE port number where the HM wait the

connection from the TSV (2.4) in order to receive the message. A message

contains this information:“the STS containing this TS must be sent to this

TCPU”. The actual port will be calculated on launch, see Section ??.

• DUMP_FLAG: these are flags for debugging purpose, when this is set to

“1” the HM will dump all the received data to a file with a prefix defined on

DUMP_FILENAME_PREFIX key.

• DUMP_FILENAME_PREFIX: is the prefix of the file when the HM must

write on disk the dumped data.

30 Design and implementation of the Trigger and Data Acquisition System

Fig. 2.5 HM block Scheme

• DUMP_MAX_SIZE: debug value that indicates how many STSs must be

dumped.

• HOSTS: inside this key are indicated all the instances of HM that must be

launched in this “Run” over all the HM hosts.

– CTRL_HOST: is the IP where the HM will wait the connection from

the TSV.

– N_INSTANCES: is number of instances of HM (different process) that

host must have running during the “run”.

As is shown in Fig.2.5 the HM has is connected with other two TriDAS

component: TCPU (2.3) and TSV (2.4). Following the TriDAS chain, as a matter of

fact, we must to deliver these data to some one that has the ability to reconstruct

2.3 TCPU 31

the entire detector and understand if the data is meaningful. But the HM contains

only a part of the data of the entire detector. Is necessary, indeed, that the TSV

tell to the HM where to send which data. In other words, the HM waits for a

message from the TSV where is indicated which STS must be sent to a single

TCPU instance. When this message is received the HM check if the required STS

is present on the buffer and then send the STS directly to the TCPU. The STS is

not discarded yet, for the external trigger reason, but it will discarded when the

buffer will wrap up.

In order to not overload the TCPU workload the HM is always waiting for a

message from the TSV before send any data to the TCPU. The HM wait for the

connection from the TSV in order to let to him the control of the data flowing.

If the TSV is not running the HM will retry indefinitely to reconnect to the TSV.

This permit to be ready to start an acquisition (see Section 3.1).

2.3 Trigger CPU

The Trigger CPU better known as TCPU is responsible for the last step of data

aggregation and online analysis. A TCPU receives the STSs from HMs creating a

TotalTimeSlice (TTS),then it applies triggers to this new object and finally sends it

to the Event Manager. As we shown in fig.2.6, is possible to identify six elements

with which the TCPU is composed.

In first instance, the TCPU receives the STSs from several HMs and via the

“TTS Builder” the program aggregates them. The “TTS Builder” has the task of

reassemble all the STSs belonging to the same TimeSlice coming from all HMs

into a single “TotalTimeSlice” or “TTS” data structure. When the rebuild process

is complete the TTS is containing the data from the whole detector with a wide

of the slice width (e.g. 200ms). This block allocates memory dynamically trying

32 Design and implementation of the Trigger and Data Acquisition System

to reuse as much memory as possible. It uses a queue where take already freed

memory called “TTS Free”, if this queue is empty it will allocate new memory and

a new TTS will be created. When the data structure is loaded with the incoming

data it will be marked with a TTSID that is the ID of the TS2.

Fig. 2.6 TCPU Block scheme

At any time, the TCPU can have only a certain amount of allocated memory

due the fact that there are only a limited number of “token”.

It could happen that a HM is receiving the data with delay or, even worse, is

not receiving the data at all from the FCM connected server, so when a STS is

requested and it must send the required STS to a TCPU, it is possible that the

HM will not reply to the request. The TCPU can manage this kind of situation

by using a variable inside the INTERNAL_SOFTWARE_PARAMETER block, as

shown into the listing 2.3:

2TimeSlice

2.3 TCPU 33

• TTS_READ_TIMEOUT: this value is expressed in seconds and indicates

how many seconds a TTS must be kept into the “TTS Builder” before

marking it complete and moving it to the analysis block.

Listing 2.3 Datacard Part related to ALL components configuration

1 "INTERNAL_SW_PARAMETERS": {

2 "DELTA_TS": "200",

3 "PMT_BUFFER_SIZE": "1000000",

4 "STS_READY_TIMEOUT": "5",

5 "TTS_READY_TIMEOUT": "30",

6 "STS_IN_MEMORY": "100"

7 },

This timeout starts when the first STS related to a TS (TimeSlice), is received.

In both cases, either the TTS has been completed or the timeout has expired, the

TTS is moved into the “TTS Ready Queue” for further data processing. If a STS

that should have belonged to an already moved TTS is received, it will simply be

discarded.

As the name of this part of the TriDAS suggests, the main task of the program

is analyze the TTSs and try to find out if the data are relevant or not.

The TCPU as the HM uses a part of the Datacard, as is shown in the listing 2.4.

Listing 2.4 Datacard Part related to TCPU component configuration

1 "TCPU": {

2 "LOG_LEVEL": "DEBUG",

3 "DUMP_FLAG": "0",

4 "DUMP_FILENAME_PREFIX": "\/tmp\/tcpu_dump_",

5 "DUMP_MAX_SIZE": "500",

34 Design and implementation of the Trigger and Data Acquisition System

6 "BASE_CTRL_PORT": "16200",

7 "BASE_DATA_PORT": "16300",

8 "OFFLINE_FLAG": "0",

9 "SIMULATION_FILENAME": "\/tmp\/simulated_events.txt",

10 "PARALLEL_TTS": "2",

11 "PLUGINS_DIR": "\/tmp\/plugins",

12 "HOSTS": [

13 {

14 "CTRL_HOST": "192.168.253.118",

15 "DATA_HOST": "10.0.80.118",

16 "N_INSTANCES": "1"

17 },

18 [CUT]

19],

20 "TRIGGER_PARAMETERS": {

21 "L1_EVENT_WINDOW_HALF_SIZE": "600",

22 "L1_DELTA_TIME_SC": "4",

23 "L1_DELTA_TIME_FC": "20",

24 "L1_CHARGE_THRESHOLD": "500",

25 "L1_FLAG_RT": "1",

26 "L1_FREQUENCY_RT": "5",

27 "L1_DELTA_TIME_RT": "200000",

28 "L1_DELTA_TIME_SEQHIT": "200",

29 "L1_N_SEQHIT": "7"

30 },

31 "PLUGINS": {

2.3 TCPU 35

32 "RANDOM": {

33 "NAME": "TrigRandom",

34 "ID": "0",

35 "PARAMETERS": {}

36 },

37 "SCALER_10": {

38 "NAME": "TrigScaler",

39 "ID": "1",

40 "PARAMETERS": {

41 "SCALE_FACTOR": "10"

42 }

43 }

44 },

The meaning of each “configuration key” are defined as follow:

• LOG_LEVEL: indicates the verbosity of the log that the HM will produce

during the run (possible options: DEBUG | INFO | WARNING).

• DUMP_FLAG: these are flags for debugging purpose, when this is set to

“1” the HM will dump all the received data to a file with a prefix defined in

the DUMP_FILENAME_PREFIX key.

• DUMP_FILENAME_PREFIX: is the prefix of the file when the HM must

write on disk the dumped data.

• DUMP_MAX_SIZE: another debug value that indicates how many TTS

must be dumped.

36 Design and implementation of the Trigger and Data Acquisition System

• BASE_CTRL_PORT: is the port where the TCPU waits the connection from

the TSV (2.4) in order to send a message (token). A message contains

this information:“I have finished the TTS related to this TS, I’m ready for

receiving new data”.

• BASE_DATA_PORT: is the BASE port where the TCPU waits the connection

from the HMs for receiving the STSs. It is the start number for calculating

the right port where to wait the connection.

• OFFLINE_FLAG: this is a boolean value that indicates to the TCPU if it

must run in “online” mode or “offline” mode (see Section 2.3.1).

• SIMULATION_FILENAME: is the path of the file to use during an offline

analysis.

• PARALLEL_TTS: is the number of parallel TTS (how many threads) the

TCPU must manage during its run.

• PLUGINS_DIR: is the directory where the TCPU will search the plugin to

dynamically load during at launch.

• HOSTS: this “key” contains an array with the following keys:

– CTRL_HOST: is the IP where the TCPU must wait for the connection

from the TSV.

– DATA_HOST: is the IP where the TCPU must wait for the connection

from the HMs.

– N_INSTANCES: is the number of instances of TCPU (different pro-

cesses) that the host must have running during the “Acquisition Run”.

2.3 TCPU 37

• TRIGGER_PARAMETERS: the TCPU has two levels of trigger, L1 and L2.

In the list below, the keys related to the L1 trigger will be described in

details. This trigger is hardcoded into the TCPU itself:

– L1_EVENT_WINDOW_HALF_SIZE: this value indicates the amount

of time-data to keep before and after a Hit while building an event3.

– L1_DELTA_TIME_SC: this value will determine how much time can

be passed between two hits coming from two adjacent PMT. When this

happen a simple coincidence Trigger will be activated. This value has

the format of µs.

– L1_DELTA_TIME_FC: maximum time between two Hits coming from

two PMT that do not belong to the same couple of adjacent PMT; if

the time is under this threshold a Floor Coincidence Trigger will be

activated. This value is represented in µs.

– L1_CHARGE_THRESHOLD: threshold of minimum charge detected

by a PMT4 in order to consider the hits as relevant. This value is

represented as a number.

– L1_FLAG_RT: this is a flag activates a particular trigger algorithm

that randomly identifies a bunch of data as an Event. This particular

behavior is needed in order to refine during the offline analysis the

trigger algorithm, this data is used as control sample. This value is a

boolean.

– L1_FREQUENCY_RT: with this key it is possible to indicate how often

the above Random Trigger will be activated. The value is in Hz.

– L1_DELTA_TIME_RT: it is the duration of a Random Event in µs.
3An Event is a bulk of hits that has activate the trigger algorthm
4Value present into the data

38 Design and implementation of the Trigger and Data Acquisition System

– L1_DELTA_TIME_SEQHIT: this key is for calibrating the “shower

hits”. The value indicates a timewindow where a certain amount of

hits must be present in order to activate the Sequential Hit Trigger.

– L1_N_SEQHIT: the minimum amount of Hits that must be found on

the above timewindow in order to activate the Sequential Trigger.

• PLUGINS: as told before the TCPU has two level of Trigger the L2 Trigger

are defined into this “node”. The TriDAS has the capability to load multiple

different Trigger plugin dynamically at launch time and their description is

located here.

The structure of a plugin “node” is described below.

• “NAME”: this is a special key with human-readable form of the plug-in.

• NAME: name of the plugin that must be searched into the plugin directory

and once found loaded

• ID: is a sequential order that indicates to the TCPU the absolute order of

the launch of the trigger over each TTS.

• PARAMETERS: optional parameters for this plugin.

The TCPU is designed to analyze several TTS at a time so it is possible to

scale on machines with multiple processors and cores. At launch the TCPU will

prepare a bunch of threads that will concur on a queue. These threads will hang

on the “get data” function of the TTS Ready Queue. This threads are represented

by the Trigger interface Threads block on the diagram in Fig.2.6.

After that the TTS has been processed from the Trigger Interface Block, that

will run the L1+L2 Triggers algorithms (see Chapter1.3.4). The analyzed TTS is

2.3 TCPU 39

put in another queue called TTS Done Queue. Here the TTSs are processed from

the last thread of the program: the “TTS Manager”. The purposes of this thread

are three:

1. send the processed TTS from the trigger to the EM (see Section 2.5) for

consolidating the results.

2. after data transmission, it cleans the data structure of the TTS and puts

this “pointer” into a queue called TTS Free in order to reuse it in the TTS

Builder with new data coming from the HM.

3. send a communication to the TSV that a TTS with a specific TSID5 has been

completed and that the TCPU has space for further data processing.

It is clear that the computational time of a TCPU is not constant since a TTS

could contain more Hits than another and this means that their processing is

more complex. A more complexity during the processing brings unavoidably

to longer computation time. All the system is realized to process data in real-

time during acquisition so is necessary to have some kind of “autobalacing”

mechanism in order to let an overloaded TCPU the time to “digest” the data. The

system implemented in this study is the token based mechanism. Each TCPU

has a certain amount of tokens available and each token correspond to one and

only one TTS that can be processed by each TCPU. The managing of the token

is handled by the TTS Manager thread. At launch time it tries to connect to the

TSV sending all the tokens that are defined. If the TSV is not running and the

token exchange can not be done, this thread retries indefinitely until the TSV

accepts the token. This permit the system to be ready to start the acquisition, this

behavior is strictly coupled with the State Machine of the TSC (see section 3.1).

5TimeSliceID

40 Design and implementation of the Trigger and Data Acquisition System

During the acquisition phase every time a TTS is sent to the EM and the data

structure cleaned, the TTS Manager sends a token to the TSV indicating which

TTSID has been just finished. This mechanism brings the system to autobalance

the load on the TCPU indeed if a TCPU is overloaded it will not send tokens, so it

will not receive new TTS to process.

2.3.1 TCPU Offline

The simulation of the trigger is an important stage of the characterization of

the trigger itself. It allows to determine the efficiency and purity of the trigger

algorithms, providing also a basic — but powerful — testbed for their software

implementation. The basic idea is to execute a real TCPU process feeding it

with data contained in a file. The output of the trigger is written as a normal

post-trigger file, as in the online context. The input and output file formats

coincide. This has several implications: in first place, it allows to hide the nature

of the data fed into the simulation process, unbiasing its behavior; secondly, it

allows to handle a single data format, simplifying the code and its maintenance;

moreover, it allows to re-trigger the data iteratively without any further effort,

thus online-taken data can also be reprocessed.

The Trigger Simulator (TrigSim) is the software component deputed to the

trigger simulation. The program recreates a minimal TriDAS environment to

support the execution of a real TCPU process. So, the TCPU is the very same as

the online one while the remaining TriDAS components (HM, TSV, TSC and EM)

are simulated.

The evt2pt program translates a file from the ANTARES EVT format [12, 13],

widely used in simulation chains by the ANTARES and KM3NeT Collaborations,

2.4 TSV 41

into a post-trigger file format. The Datacard field contains the simulation param-

eters.

2.4 TriDAS Super Visor

The TSV supervises the data exchange between HM and TCPU, taking note of

the processed TSs. The TSV is one of the most simpler processes present into

the TriDAS but it is one of the most important, indeed it informs all HMs to send

their STS to a specific TCPU that will build the TTS for the data processing. In

order to orchestrate the data-flow the TSV needs a “Start TS ID” that is a “Start

Time”. This information is provided by the TSC at TSV launch time. Therefore,

when the TSV starts it will connect to the HMs and TCPUs and wait the incoming

data from the TCPUs. When a TCPU gets connected, it will send all its tokens.

The TSV will receive all the tokens and for each token it will assign a new TSID

starting from the received Start Time.

When a TCPU is ready to handle new data, it sends a token to the TSV. The

TSV selects a TS ID among those not yet processed and communicates to all HMs

to send the corresponding STS to that TCPU. The TSV keeps track of every TSID

that is under processing and every time one TSID is completed it calculates the

next ID that must be processed from every single TCPU.

Listing 2.5 Datacard Part related to TSV component configuration

1 "TSV": {

2 "LOG_LEVEL": "DEBUG",

3 "CTRL_HOST": "192.168.253.113"

4 },

The meaning of each “configuration key” are defined as follow:

42 Design and implementation of the Trigger and Data Acquisition System

Fig. 2.7 TSV Block scheme

• LOG_LEVEL: indicates the verbosity of the log that the HM will produce

during the run (possible options: DEBUG | INFO | WARNING).

• DUMP_FLAG: these are flags for debugging purpose, when this is set to

“1” the HM will dump all the received data to a file with a prefix defined on

DUMP_FILENAME_PREFIX key.

• CTRL_HOST: Indicates the IP of the machine that will run the TSV on the

Control Network

2.5 EventManager

The EM is the software component of TriDAS devoted to the storage of triggered

data. A single EM process collects triggered data from the whole TCPU set and

performs data writing on local storage.

2.5 EM 43

Fig. 2.8 EM Block Scheme

44 Design and implementation of the Trigger and Data Acquisition System

Listing 2.6 Datacard Part related to ALL components configuration

1 "EM": {

2 "CTRL_HOST": "192.168.253.112",

3 "DATA_HOST": "192.168.253.112",

4 "DATA_PORT": "16400",

5 "NETWORK_THREADS": "1",

6 "LOG_LEVEL": "DEBUG",

7 "LOG_TO_SYSLOG": "0",

8 "FILE_MAX_SIZE": "2000000000",

9 "PT_FILE_PREFIX": "/home/tridas/nemo_f3_pt",

10 "PT_FILE_POSTFIX": ".dat"

As shown in the Listings 2.6 there are several configuration keys for this

component:

• LOG_LEVEL: indicates the verbosity of the log that the HM will produce

during the run (possible options: DEBUG | INFO | WARNING).

• CTRL_HOST: Indicates the IP of the machine that will run the EM on the

Control Network.

• DATA_HOST: The IP Address where the EM listen for the incoming data

from the TCPU.

• DATA_PORT: The IP port where the EM will listen for the data.

• NETWORK_THREADS: how may threads are necessary to handle the

amount of incoming data. Normally one is enough but if it is necessary to

scale the system is already ready.

2.5 EM 45

• LOG_TO_SYSLOG: This is a flag that enables the feature to log directly

into the Linux SysLog daemon.

• FILE_MAX_SIZE: This value indicates in bytes the maximum size of a

single produced file.

• PT_FILE_PREFIX: this is the string that will be used on the filesystem.

After this prefix it will be attached a sequential number.

• PT_FILE_POSTFIX: this is the string that will be attached at the end of

the filename that will be produced during the run.

Chapter 3

Design and implementation of the

TriDAS control

This chapter presents the work done for completing the TriDAS providing the

control system for all the components. The control system has been split in two

parts: the TSC and the web service. Initially the GUI was only a proof of concept

for showing the functionality of the web service, but at the moment, it is grown

as the first use case for the TriDAS. This decision has been taken in order to

logically separate the low-level control of the processes and the users.

The first part manages the execution and killing of the processes on the

datacenter for starting or stopping the acquisition. Therefore this level is totally

agnostic and it does not give any control about security and privileges that users

can have. In an environment such as an experiment, it is obvious that a large

amount of people is collaborating. So, it is necessary to implement a high level

component that administrates the users and grants the privilege of controlling

the TriDAS, which is a single system. This component is the web service, which is

the only component allowed to issue commands to the TSC. In addition, the web

service manages an escalation procedure in order to grant the permissions. This

48 Design and implementation of the TriDAS control

procedure has the capability to revoke the controlling privilege implementing a

“SuperUser” action that allows to solve inappropriate user’s behaviors.

3.1 TriDAS Control

The TriDAS Control (TSC) is the software component that orchestrates all the

TriDAS processes running on the data acquisition farm. The TriDAS Control

implements a simple hierarchical state machine with four states, as shown in

Figure 3.2:

Fig. 3.1 TSC block Scheme

The TSC, moreover, computes two essential information for the launching of

the entire TriDAS Acquisition, these are:

• STARTTIME: this information will be inserted into the final Datacard and

indicates which will be the first TS that must be requested from the TSV for

this acquisition.

3.1 TSC 49

• RUNNUMBER: this number identified the unique reference to this acquisi-

tion run.

The TSC is composed by several functional blocks that represent all its capabili-

ties as shown in Figure 3.1

As the other TriDAS components the TSC has a block into the Datacard that

has the content listed in the listing 3.1.

Listing 3.1 Datacard Part related to the TSC

1 "TSC": {

2 "DATACARD_SHAREDDIR": "/lxstorage1_home/km3/datacard/tsc"

3 },

• Datacard_SHAREDDIR: this key indicates to the TSC where is the location

of the shared directory where to put the computed Datacard that will be

read from every TriDAS component at launch.

Command Receiver

This block is the only entry point for the TSC, thus of the entire TriDAS. This

block opens a local unix socket which permits to the TSC to communicate with

only one external client at time. There is a protocol that the TSC follow in order

to communicate the information to the client. The protocol is quite simple and

consists in commands sent through the socket. The possible commands are:

• status: this command asks to the TSC in which state is the system, inquires

the configured cluster and retrieves the status for the single component.

• init “Run setup ID”: try to enter into the “Standby” state, trying to retrieve

the “Run setup” from the ID

50 Design and implementation of the TriDAS control

• configure: try to enter into the “Ready” state performing the distribution

of the Datacard and launching the components related to the Ready state.

• start: try to enter into the “Running” state trying to launch the TSV.

• stop: stop the acquisition and return to the “Standby” state.

• reset: this command will erase all the configuration, stop all the compo-

nents that were running and revert the system to the “Idle” State.

For each command the TSC can answer with a success or an error.

Remote Connector

This Block has the capability to connect to a remote Database for retrieving the

Runsetup configuration for an acquisition. The Runsetup as already explained is

a file with a JSON content. The communication between the TSC and the remote

database is based on a webAPI protocol with “GET” HTTP method.

Cluster Launch Executor

With this component the TSC can connect to each Node on the farm and launch

on each computer the components as described on the Runsetup. This component

uses the “libssh2” library in order to handle the ssh session natively without

using external clients, providing a better error handling.

Configuration Distributor

The Configuration distributor is the functional block that will physically write the

computed Datacard (the retrieved Datacard with the addition of the STARTTIME

and the RUNNUMBER) into the shared directory. In this way every TriDAS

component that will be launched will read the same configuration.

3.1 TSC 51

State Machine

Fig. 3.2 TSC State Machine Diagram

Idle This is the initial state of the overall TriDAS state machine, where no pro-

cesses are running. An init transition, which takes a run setup identifier as

a parameter, executes an action that retrieves a run Datacard correspond-

ing to the given run setup. The Datacard describes the geometry of the

detector and the configuration of the TriDAS system (such as the role of

each node) for this run. If the action is successful, the state machine moves

into the Initiated sub-state machine.

Standby This is the initial state of the Initiated sub-state machine. Here the

TriDAS Control is aware of the configuration of the TriDAS system but no

processes are running yet. A configure transition executes an action that

retrieves the run number and starts the Trigger CPU, HitManager and

52 Design and implementation of the TriDAS control

Event Manager processes on the corresponding nodes. If all the processes

start successfully the state machine moves into the Configured sub-state

machine.

Ready This is the initial state of the Configured sub-state machine. Here the

Trigger CPUs, the HitManagers and the Event Manager are ready to ac-

quire, filter and save physics data coming from the FCMServers. The start

transition executes an action that computes the start time of the run and

starts the TriDAS-SuperVisor. The TriDAS-SuperVisor’s role is to sched-

ule which Trigger CPU process will compute a given TTS. The scheduling

follows a credit-based mechanism to balance the load among the Trigger

CPUs. If the TriDAS-SuperVisor starts successfully the data starts and the

state machine moves into the Running state.

Running In this state the data acquisition is running.

Transitions exist to move the system back to the Idle and Standby states.

If any error occurs during a transition, the transition is aborted. Depending

on the severity of the error, the system may stay in the current state or even

shut-down completely.

The communication with the TriDAS Control, for example to trigger the

transitions described above or to query the state of the system, is stateless and

happens over an UNIX socket. Only one client can use the socket at a time.

3.2 Interface to the TriDAS Control 53

3.2 Interface to the TriDAS Control

3.2.1 The web service

This is the real unique entry point of the entire TriDAS. This component allows

users to control, inquire and monitor the acquisition system. It is a RESTFul1

web API service, that means that it exposes command via calling HTTP methods

(e.g. GET, POST) with a json payload. It is developed for allowing multiple

concurrent user to see the state of the acquisition and ask for controlling the

DAQ. The TSC permits only one connection to its socket and there is not any

system to disconnect an idle user or broken client from that socket. With the web

service via a token based authentication and an escalation algorithm is possible

to have this kind of control. As shown in the Fig. ?? the web service is the only

client that can issue commands to the TSC via the “Command Issuer” block. The

web service is divided in two asynchronous part: the RESTFul service and the

Websocket Manager (see appendix A.0.3).

The web service works with this protocol:

• A HTTP POST request arrives using the payload defined in the next chapter.

• The web service analyses the request and gives back an answer with a

HTTP response.

• The web service broadcasts a message through the websocket channel.

1 In computing, representational state transfer (REST) is the software architectural style of
the World Wide Web. More precisely, REST is an architectural style consisting of a coordinated
set of architectural constraints applied to components, connectors, and data elements, within
a distributed hypermedia system. REST ignores the details of component implementation
and protocol syntax in order to focus on the roles of components, the constraints upon their
interaction with other components, and their interpretation of significant data elements. Through
the application of REST architectural constraints certain architectural properties are induced:
Performance, Scalability, Simplicity, Modifiability, Visibility, Portability, and Reliability.

54 Design and implementation of the TriDAS control

Fig. 3.3 WEBServer Block Scheme

The clients must be aware about the status of the system. The use of web-

sockets allows to avoid a constant polling from the clients to the web service. In

addition, clients can react instantaneously to the changes occurred server-side.

When a client wants to use the websocket functionality, it must implement the

WAMP protocol over the websocket (see appendix A.0.3). Luckily this protocol

provides libraries for a lot of programming languages2. If a client cannot use the

websocket, the web service can be used with the standard polling mechanism.

The websocket Manager keeps alive a thread that issues the real commands

to the TSC. This permits to be always responsive, even if, for example the TSC

stops to answer back for any reason.

2http://wamp-proto.org/

3.2 Interface to the TriDAS Control 55

Fig. 3.4 Web Server Database Entity Relationship Schema

The peculiarity of the web service implementation is that it is very generic

and it can be adapted to every system with a state machine and a single entry

point. This permit to reuse the web service and transform a single user local

program to a concurrent multi-user program. The web service does not mention

the TSC in any part, indeed, from its point of view the TSC is only a daemon to

control and inquire.

Database

The web service uses a local database for keeping information such as the users

information, the Daemon Status, the escalation situation, and an audit log.

As shown in Fig. 3.4, the table Users is the center point of the most part of the

database, actually, all the tables use the user_id as key for keeping information.

The password of the user is not in plain but it is a hash of a hashed password.

The roles fields are simply flags that describe which permission has each role.

The particular field “is_superuser_like” is for the super user Role and this flag

allow an user that belong to this role to kick out an user while he is controlling

the daemon. The field “can_escalate” is replicated in both the “Role” table and

the “users” table in order to have more granularity on users. For example if it

56 Design and implementation of the TriDAS control

is necessary to revoke the access only to a certain user for any reason without

modifying his belonging role. The table session keep tracks of the life of the

tokens that have been released. When a token expires, the session for that user

is ended and he must do again the login.

The only two tables that are used for maintaining another kind of information

are the table Current_state and Current_state_options. The first one keeps track

of the current state of the daemon, the second one, instead, uses the value of

the Current_state as key for aggregating the information that every state could

provide. This two tables are materialized in order to avoid the continuous polling

of the daemon.

The Table Escalation and Privilege are used by the procedure for the escala-

tion (see section 3.2.1). This two tables keep track about the users that are trying

to obtain the control of the daemon and who is controlling it at the moment.

The last table Audit is useful for security reason and debug reason: it makes

possible to retrieve what happened to the web service and which user performed

an action.

WebSocket Server

In parallel of the web service there is the WebSocket manager that routes all the

messages between the web service and the remote clients, and the web service

and the daemon. When a command API is called from the client, in order to

perform some actions on the remote daemon, the web service will not execute

that request directly but after checks if that user has: a valid session, the right

permission and it is currently granted; The web service will write a message to a

private “WAMP topic” that is:

• com.tridas.execute.daemon

3.2 Interface to the TriDAS Control 57

There is an observer of this topic that is the Communication Thread. This

topic has a particular configuration and only a local process, with specific cre-

dential can write on it.

Moreover, the WebSocket Server manages other topics. All the clients that

would use the WebSocket features must subscribe to the following topic:

• com.tridas.statemachine.priviledged.change: the messages related to

the privilege changing on the web service pass over this topic. E.g. when

an user is escalating or an user has completed the escalation process.

• com.tridas.statemachine.statechange: it contains all the messages re-

lated to the state and other information that the attached daemon is provid-

ing. After a customizable time the “Communication Thread” will write in

this topic the information gathered from the last action executed from the

daemon.

• com.tridas.statemachine.escalation.“user released token”: This is a

special topic. When a client succeeds to login into the web service, it is

provided a token that must be used in order to have the permission to exe-

cute actions. This token represent, also, a topic (built as a concatenation of

com.tridas.statemachine.escalation + “the_token_value”) on the websocket

server. This topic is a private topic where there are only two actors: the web

service and the specific user/client (a token is unique and known only from

the logged user). When the web service must deliver a message directly to

a client this topic will be used. E.g. when an user wants to escalate and

obtain the control of the daemon, but there is another user that is currently

privileged. In this case the web service will send over this special topic a

message that will inform the current privileged user that someone wants to

obtain his privilege and the protocol of “privilege exchange starts”.

58 Design and implementation of the TriDAS control

The “public and open to subscription” topics are read only, this means that

only the service is allowed to send message over these channels.

Escalation Procedure

For allowing the users to use the daemon and permit them to issue commands

a Escalation Procedure is needed. This procedure has the capability to assign

the control of the daemon to users that request the “privilege”. This brings

some problems during the managing of the escalation but is possible to identify

different scenario to be taken into account:

• There is not any privileged user: this is the simplest scenario; if the system

is in this situation the privilege will be granted to the first user who ask

for it. The grant is given for a certain amount of time, when it expires the

privilege is automatically revoked.

• There is another privilege user: in this case a user has requested and

obtained the privilege to control the daemon and another user wants it.

There is a collision so the system tries to resolve it with a request to the

current user to release the privilege. If the clients are using the websocket

a message on the “private channel” (topic with the token) of each user is

sent. Otherwise, it is the client itself that must poll the server in order to

know if it is losing the privilege. The privileged user must answer. If he will

not answer in a certain amount of time (two minutes at the moment), he

looses the privilege automatically and the system grants the privilege to the

other user. If the current privileged user replies, the answers can be only

two:

– yes, “release my privilege” : in this case the solution for the system is

easy, the web service will revoke the privilege from the current user

3.2 Interface to the TriDAS Control 59

and inform the other that from this moment he is the current privileged

(Fig. 3.5).

– no, “I want to keep it” : when this happen the system will inform the

other user that his try has failed but the system count how many times

the negative answer is given. After two consecutive negative answer

given and a given idle time the system enables the “forced escalation”

procedure. This grant the privilege to the requesting user without

any confirmation from the current user. There is a particular kind

of users that has the flag “is_super_user” set, that have always the

possibility to use the “forced escalation”. This flag is normally used

for administrative user that need the control for fixing problems (Fig.

3.6).

This procedure needs a synchronization among concurrent users and this is

provided by the database using transactions.

Communication Thread

This component is the actual communicator with the daemon, this thread opens

the connection to the daemon and subscribes itself as an observer of the topic:

• com.tridas.execute.daemon

when a command is received over this topic the thread will execute the corre-

sponding action and after that it consolidates the information on the database

and writes a message on the topic :

• com.tridas.statemachine.statechange

60 Design and implementation of the TriDAS control

Fig. 3.5 Escalation Procedure with an yes answer sequential diagram

3.2 Interface to the TriDAS Control 61

Fig. 3.6 Escalation Procedure sequential diagram with a “no” answer and a forced
procedure

62 Design and implementation of the TriDAS control

3.2.2 The APIs exposed by the web service

The web service provides APIs for allowing the users to have access to the

daemon. In the next sections, all the available APIs are described.

Login API

In order to access to the service, it is necessary to call this API at the beginning

of the session.

API url: https://web service.Domain/login

This API requires the parameters listed in Listing 3.2.

POST data

Listing 3.2 Login Post Data

1 {

2 username: "[username]",

3 password: "[password]",

4 }

If the login is requested by the“datamanager3” user, the web service does not

limit the duration of his session. The password field must contain a sha256 hash

of the true password value.

The web service will answer as shown in the Listing 3.3.

Answers data

Listing 3.3 Login Answer Data Example

1 {

2 role: "admin",

3The datamanager is another slow control that during the first phase of the experiment
represented the slow control of the acquisition

3.2 Interface to the TriDAS Control 63

3 token: "cfc32ff100e72e159b83817f4cd56481",

4 action: "ok",

5 message: "User matteo succesfully logged in"

6 }

For normal users the session has a duration of 15 minutes. Every time a user

contacts an API the session is automatically renewed.

If any other APIs is called without first calling this API, the web service will

always reply with the HTTP error 403 Forbidden.

check Token API

This API permits the clients to use the last obtained token as login, instead to

call the “login API”. If the token is not expired it will be renewed. API url:

https://web service.Domain/verifyToken

POST data:

Listing 3.4 Login via auth token Example

1 {

2 authToken: "token"

3 }

Answers data:

Listing 3.5 Login via auth token Answer

1 {

2 role: "admin",

3 action: "ok",

4 message: "User matteo successfully logged in"

5 }

64 Design and implementation of the TriDAS control

Logout API

This API permits to explicitly destroy an user session on the server.

API url: https://web service.Domain/logout

POST data:

Listing 3.6 Logout via auth token

1 {

2 authToken: "token",

3 }

Answers data:

Listing 3.7 Logout via auth token Answer

1 {

2

3 action: "ok",

4 message: "User matteo successfully logged out"

5 }

Command API

In order to control the Daemon is necessary to use this API. By design the daemon

can accept command only from an “escalated” user. If a command is issued from

a user that is authenticated but has not completed the “Escalation Procedure”

the web service will always answer with the HTTP error 403 Forbidden.

API url: https://web service.Domain/commands

POST data:

3.2 Interface to the TriDAS Control 65

Listing 3.8 Command Post data

1 {

2 command: "[init|configure|start|stop|reset]",

3 param: "[better explained afterwords]",

4 authToken: "[previously received token]"

5 }

The param key is required with the command init and the request is:

Listing 3.9 Command Init example

1 {

2 command: "init",

3 param: "[runsetup]",

4 authToken: "[previously received token]"

5 }

In all the other cases the param key will be ignored. When the request is

recognized and it is allowed, the web service will try to issue the request to the

back-end in order to generate an answer. The answers can be: success or fail:

Listing 3.10 Command Api answer example

1 {

2 action: "ok|fail",

3 currentState: "idle|stanby|ready|running"

4 }

66 Design and implementation of the TriDAS control

Status API

This API can be used from any authenticated user. It is important to underline

that at every state-machine event a websocket notification is sent to the client in

order to minimize the requests to the server. The behavior of the client is left to

the developer decision.

API url: https://web service.Domain/status

POST data:

Listing 3.11 Status Api example

1 {

2 command: "state",

3 authToken: "[previously received token]"

4 }

The answer and the notification have the same structure and content.

Listing 3.12 Status Api answer example

1 {

2 currentState: "idle|stanby|ready|running"

3 Processes: {

4 HM: "[n_of_processes]",

5 TSV: "[n_of_processes]",

6 TCPU: "[n_of_processes]",

7 EM: "[n_of_processes]"

8 },

9 Other: "{ [better explain afterwords] }"

10 }

3.2 Interface to the TriDAS Control 67

Inside the Other key there are all the other information that the daemon is giving

but that are not related to the processes.

RunSetup API

The RunSetup API is provided in order to allow a client to know the list of the

avaiable RunSetup on the remote DB.

API url: https://web service.Domain/runsetup

POST data:

Listing 3.13 Runsetup Post Data

1 {

2 command: "getRunSetupList",

3 param: "",

4 authToken: "[previously received token]"

5 }

Answer:

Listing 3.14 Runsetup Answer example

1 {

2 {

3 id: "ID",

4 name: "[RunSetup Name]",

5 othersKeys: "[usefull information]"

6 },

7 {

8 id: "ID",

9 name: "[RunSetup Name]",

68 Design and implementation of the TriDAS control

10 othersKeys: "[usefull information]"

11 }

12 }

Escalate API

In this section, the set of commands provided by the web service in order to

escalate privileges will be described.

API url: https://web service.Domain/escalate

This API has several commands, as in the following.

• ”Command: Am I Privileged?”

This command permit to know in every moment if the current user is allowed

to send commands to the Daemon. If a “No answer” (false) is returned, any

attempts to use the “Command API” will then cause an HTTP error: 403

Forbidden.

POST data:

Listing 3.15 Am I Privileged data

1 {

2 command: "amiprivileged",

3 authToken: "[previously received token]"

4 }

Answers data:

Listing 3.16 Am I Privileged answer example

1 {

2 result: "true|false",

3.2 Interface to the TriDAS Control 69

3 currentPriviledgedUserName: "username | ’’ ",

4 currentPriviledgedName: "name | ’’ "

5 currentEscalatingName: "name | ’’ "

6 message: "the current privileged user is XX | there aren’

t any priviledged

7 user" + " user XX is escalating" | " "

8 priviledgeWillExpireInSeconds: "seconds to priviledge

exipration"

9 }

• ”Command: I would like to escalate”.

This command is needed if a client wants to become a Privileged users.

POST data:

Listing 3.17 I would like to escalate example

1 {

2 command: "iwouldliketoescalate",

3 forceEscalation: "true|false"

4 authToken: "[previously received token]"

5 }

The key forceEscalation is dangerous to use. With a true value, it forces the

web service to release the priviledge from the current privileged user to the

issuing user. This key is thought in order to avoid a buggy client to always

answer “no” to the service “Authorize escalation”. This parameter is simply

ignored until a client is answering “no” to the service “Authorize escalation”

for more that 2 minutes. After that time every new request with this

70 Design and implementation of the TriDAS control

parameter set will be evaluated. When the procedure is started a message

will be sent to the notification channel identified by: “com.TriDAS.escalation”

. “token” . of the current privileged user.

Answers data:

Listing 3.18 I would like to escalate answer example

1 {

2 result:

3 "procedureinitiated|procedureAlreadystarted|WAFOU|WAFOUFEE

|escalationCompleted|youAreAlreadyPriviledged",

4 currentPriviledgedName: "[name of the current privileged

user]",

5 currentEscalatingName: "[name of the current escalating

user]",

6 message: "[other information eg The procedure is started

by you wait, The

7 user XX has already started the procedure,]",

8 timestamp: "[time stamp of the begining of the procedure]"

,

9 secondsToForceEnabling:"seconds",

10 }

The meaning of the answers is:

– procedureinitiated: this client is the initializer of the escalation pro-

cedure, if it will end correctly, the client will become a privileged

user.

3.2 Interface to the TriDAS Control 71

– procedureAlreadystarted: the procedure is on going by another user

and this client has to wait.

– WAFOU: (Waiting Answer From Other User) this client has already

asked to become a privileged user and now it has to wait that the

procedure completes. The maximum time of completion could be 2

minutes or 5 minutes depending on the behavior of the other users.

– WAFOUFEE: (Waiting Answer From Other User, Force Escalation

Enabled) the privileged user is continually answering “no” so from now

the parameter “forceEscalation” is taken into account.

– escalationCompleted: There was not any privileged user, so now the

client has automatically became the new privileged user

– youAreAlreadyPriviledged: this client is escalating on itself, nothing

will be done.

Everytime something happens server-side, a notification will be sent on

the topic:“com.TriDAS.statemachine.priviledged.change” with the following

content:

Listing 3.19 push answer example

1 {

2 currentEscalatingName: "",

3 currentPriviledgedName: "Matteo Favaro",

4 currentPriviledgedUserName: "matteo",

5 priviledgeWillExpireInSeconds: 900

6 }

• Command: Am I losing the privilege”?

72 Design and implementation of the TriDAS control

This command is provided in order to know if someone has started the

“Escalation procedure”. When the procedure is started this is the way to

know who has started the procedure.

POST data:

Listing 3.20 Command: Am I losing the privilege example

1 {

2 command: "imlosingprivilege",

3 authToken: "[previously received token]"

4 }

Answers data:

Listing 3.21 Status Api answer example

1 {

2 result: "true|false",

3 message: "[some useful description eg. User XX wants to

became

4 privileged,

5 contact answer service]"

6 }

• ”Command: Authorize escalation”

When “Am I losing the privilege” API returns true, the client must call this

API within 2 minutes. If the call does not happen, the web service assumes

a positive answer. If the current privileged user repeatedly answers “no” for

5 minutes, the web service will give to the requesting user the possibility to

force the privilege escalation.

3.2 Interface to the TriDAS Control 73

POST data:

Listing 3.22 Status Api answer example

1 {

2 command: "authorizeescalation",

3 authorize: "[yes|no]",

4 message: "[reason mandatory]",

5 authToken: "[previously received token]"

6 }

Answers data:

Listing 3.23 Status Api answer example

1 {

2 result: "ok",

3 }

• ”Command: Release Privilege”

This command explicitly release the privilege acquired.

POST data:

Listing 3.24 Status Api answer example

1 {

2 command: "releaseprivilege",

3 authToken: "[previously received token]"

4 }

Answers data:

74 Design and implementation of the TriDAS control

Listing 3.25 Status Api answer example

1 {

2 result: "ok",

3 }

Escalation Procedure Best Practice

In this section, the order and how to contact the provided “escalation” commands

are described.

1. (optional but useful depending on developer implementation) before con-

tacting the command API it is a good practice to contact the escalate API

with the amiprivileged command:

(a) If a “yes” answer is returned, the user is already privileged and can

send commands and control the data acquisition.

(b) If a “no” is returned, continue with the procedure.

2. If the user wants to escalate and gain the power to control the daemon, it is

needed to call the iwouldliketoescalate command. The next steps depends

on the implementation of the client; it can either poll the API with this

command or with the amiprivileged command. Moreover, if the client is

using the websocket feature, it just need to wait for a message on the token

topic.

3. When a client is privileged, it must keep polling the escalate API with the

imlosingprivilege command, unless the websocket feature is active.

4. When a client discovers that it is losing the privilege, it must contact the

escalate API with the authorizeescalation command.

3.3 A graphical Gui 75

5. It is a good practice to release the privilege contacting the escalate API

with the releaseprivilege command.

3.3 A graphical Gui

A graphical application has been made for having the possibility to use the

TriDAS.

3.3.1 Purpose

This application has been designed for several reasons, one of them is the

administration of the users and, of course, the control of the acquisition.

Fig. 3.7 A representation of an running acquisition on the GUI without the
priviledge

In Fig. 3.7 and Fig. 3.8 it is possible to notice how the privilege mechanism is

notified. The status of the user privilege is always shown with a clear indication

about the remaining time.

In Fig. 3.9 is shown a special feature of the GUI: the upload of a local runsetup

to the system in order to make it usable from the TSC.

In Fig. 3.10 are shown different things:

76 Design and implementation of the TriDAS control

Fig. 3.8 A representation of an running acquisition on the GUI with a gained
priviledge

Fig. 3.9 An example of other purposes of the GUI: the upload of the Runsetup
from a local client.

3.3 A graphical Gui 77

1. The status icon: there are two icons that indicate respectively the the status

of the daemon (1) and the status of the websocket connection (2).

2. The notification Panel: the system uses the websocket features and in this

GUI they are implemented as notifications that appear when messages are

sent on the websocket channel(3).

3. The personal user Manu: Each user can view the personal data such as the

role.

Fig. 3.10 The GUI uses HTML 5 technique and AngularJS: with dinamic icon,
dynamic notification

Finally, in Fig 3.11 is represented a typical use case from the user’s point of

view. The users connect to the web service via the standard HTTP channel and at

the same time they connect to the websocket server for receiving the notification

through the various topics. The web service is connected to the web socket

server via a private channel that only the web service can use. The websocket

server (Crossbar.io) keeps alive the communication thread that is continuously

connected with the TSC, the communication thread receives notification to

execute command from the web service and notifies the topic about the results.

78 Design and implementation of the TriDAS control

Fig. 3.11 Representation of the connections status between all systems: two
users, one privileged and one not, issue command via HTTP POST and receive
notification from the WebSocket Server via the subscribed topic; the web serve is-
sue the command to the communication thread, that is kept alive from crossbar.io.
The communication Thread will communicate with the TSC.

Chapter 4

Tests

In this chapter, a relevant test and its results about the TriDAS system will be

presented.

The aim of this test is to observe how the system behave changing the load

(i.e. the number of towers to be processed). The environment configuration and

the number of nodes, their role and processes are constant during the test. The

used machines are the same as those available in the Portopalo’s datacenter.

In the test bench there are available machines for simulating at most 4 towers.

So the test can only push until that limit.

4.0.1 The farm

The machines that have been used are connected as shown in Fig. 4.1, and they

have the following specifications:

• TCPU machines: 4 nodes

– Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz, 32 cores

– 32 GB of ram

80 Tests

– 1 Gb connection for control network

– 1 Gb connection for data from TCPU to EM network

– 10 Gb connection for data from HM to TCPU network

• HM machines: 4 nodes

– Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz, 8 cores

– 128 GB of ram

– 1 Gb connection for control network

– 1 Gb connection for data from FCM to HM network

– 10 Gb connection for data from HM to TCPU network

• TSV machine: 1 node

– Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz, 8 cores

– 16 GB of ram

– 1 Gb connection for control network

– 1 Gb connection for token network

• TSC, Web server, GUI machine: 1 node

– Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz, 8 cores

– 16 GB of ram

– 1 Gb connection for control network

• EM: 1 node

– Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz, 8 cores

– 16 GB of ram

81

– 1 Gb connection for control network

• FCM: 6 node

– Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz, 8 cores

– 16 GB of ram

– 1 Gb connection for control network

Fig. 4.1 The TriDAS core network topology

4.0.2 Configuration

For this test the farm has been configured as follow:

• 4 TCPU one for each available machine, each TCPU process will elaborate

24 parallel TTS at time for a total of 96 parallel TTS at time.

82 Tests

• 4 HM one for each available machine, each HM will be elaborate an entire

towers at time connecting to 7 different FCM processes.

• 1 TSV, 1 EM, 1 TSC, web server and GUI, each process are located at the

machine as described in previous section.

• 56 FCM process, the processes are equal distributed over 6 machine, in

each machine there are 10 FCM process.

It has been decided to set 24 threads (1 TTS per thread so 24 parallel TTS)

because the machine has 32 cores but there are other threads into the TCPU

process, for example the connection thread and the queue handling, it has been

decided to leave some cores for these threads.

The number of FCM processes per machine is determined by the frequency

of event generation. Indeed, a FCM process that generates events at 50KHz is

producing data at 5.5Mbs. The available bandwidth related to the data network

of a FCM server is 100Mbps (nominally), so 10 FCM processes on the same

machine generate 55Mbps.

Eight different runs have been performed, each with an increment of half

tower (7 floors) with respect to the previous. Each run lasted for 30 minutes.

At the end of each run, the logs of the TCPU have been collected and pushed

in a git repository with a continuous integration job that processes data and

creates the graphs.

4.0.3 Results

In Fig. 4.2 the results of this test are summarized. As the load increases, the

more is the time spent by the L1 trigger algorithms. With 4 towers the maximum

value that has been recorded is 1,6s.

83

Fig. 4.2 Represetation of the elaboration of the L1 Time execution

84 Tests

For better understand the meaning of this value, it is necessary to put some

upper-limit to the TTS processing time, above which the data acquisition will

result out of sync with the data produced from the FCM server. The HMs slice

the data in 200ms-long slots:

timespent_per_T T S < 200ms

In the TriDAS’s case the time_spent_per_TTS is proportional to the number of

available parallel TTS, so:

timespent_per_one_T T S = time_window ∗ n_parallel_T T S

Thus, until the time_spent_per_TTS is less than the time window the acquisi-

tion and elaboration are synchronized.

Applying our configuration data to the formula above the time per TTS be-

comes:

timespent_per_one_T T S = 200ms ∗ 96 (parallel T T S) timespent_per_one_T T S = 19,2s

This means that the every TCPU has at most 19,2s for completing a TTS.

Looking at the results, the maximum time of 1,6s that has been recorded is

well below the upper limit calculated above.

It could be more accurately it is possible to describe how much time the

TCPUs have spent to elaborate each TTS:

timeone_single_T T S_over_entire_TriDAS = 1,6s / 96 = 0,016̄s ≈ 17ms

17ms ≪ 200ms

This means that more than 17 seconds are available to the processing of

the L2 triggers. It is important to note that as more time is available, as more

complex the algorithms running during the data acquisition could be. TriDAS

85

makes possible to increase this time by simply increasing the number of parallel

TTS. At Portopalo’s farm there are 48 machines of TCPU class, this means that

the parallel TTS can become:

48 ∗ 24 (pT T S) = 1152

so the total available computational time becomes:

200ms ∗ 1152 = 230,4s

This result is very encouraging and at the moment it is possible to state that

the system is ready to support the acquisition from at least 4 towers.

More investigations will be carried out, indeed we are waiting for an expansion

of the test bench in order to be able to simulate the foreseen 8 towers.

Chapter 5

Conclusion

The TriDAS has been improved to sustain the foreseen 8 towers detector. Its

performances and scalability are under intense test, with long duration runs and

varying the incoming throughput using either real FCMServer and simulation

programs, using a test bench that reproduces a scale of the real farm in Portopalo.

New trigger algorithms are under development serving different kinds of physics

analysis, e.g. multi-messenger external alerts, high energy neutrino induced

showers and astrophysical source detection.

The test phase demonstrates that the system is stable and the users are

able to control it properly. Moreover, in November 2015 the installation and

functionality test of the farm in Portopalo has been completed. Extended tests

of the TriDAS will be also realized in the Portopalo infrastructure, in advance

with respect to the first deployment of the Towers. This will make possible tests

in the real situation, exploiting the actual facility available in the shore station.

In addition to that, increasing the computing resources with respect to what

available in the test-bench, more realistic results will be achieved.

Moreover the whole system is using State-of-the-art of latest technologies.

Such as the HTML5, websocket, /0MQ etc. In particular the web service is

88 Conclusion

written for being adjustable to different systems and applications. Indeed with

limited modifications it can control and export web API for every single-user

local-program, that uses some kind of local communication, such as socket, pipe

or similar. With this new approach it is possible to reuse the web service as

a “hat” and so improve the development time of new applications by having a

control system already ready.

At the same time, the whole TriDAS system is modular. This permit to change

the environment and the purpose with small efforts, moreover, this permit to be

more agile on DAQ development, avoiding to re-implement large part of the code,

concentrating on more important things such as the trigger algorithms.

In the near future this system will be used in real-time data acquisition with

the deployment of the first tower in Portopalo. There is a lot of excitement around

this event because the system will be used in “the real world” for the first time.

For this reason the TriDAS is continuing a deep testing phase in order to be sure

to successfully harvest the data from the undersea towers.

During the development phase we used many tools and programming methods

such as git, agile, TDD, continuous integration. This has permitted to be very fast

and precise. For this reason the test is confirming that the whole system at the

deployment will be ready and reliable.

References

[1] K. Collaboration, “Km3net web site,” http://www.km3net.org/home.php,
2015, [Online; accessed 11-Dec-2015].

[2] S. Aiello et al., “Measurement of the atmospheric muon depth
intensity relation with the {NEMO} phase-2 tower,” Astroparticle
Physics, vol. 66, pp. 1 – 7, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0927650514001960

[3] M. S. T. Chiarusi, “High-energy astrophysics with neutrino telescopes,”
European Physical Journal, vol. 65, no. 649, p. 3, 2010.

[4] C. Pellegrino, et al., “The trigger and data acquisition for the NEMO-Phase
2 tower,” AIP Conference Proceedings, vol. 1630, no. 158, p. 7, 2014.

[5] M. de Jong, “KM3NeT: The next generation neutrino telescope,” Interna-
tional Cosmic Ray Conference (33 ; 2013 ; Rio de Janeiro), vol. 3, no. 0891,
p. 4, 2013.

[6] Markov, M. A., “Proceedings int. conf. on high energy physics,” Proceedings
Int. Conf. on High Energy Physics, p. 183, 1960.

[7] Pellegriti, M. G., et all, “Long-term optical background measurements
in the capo passero deep-sea site,” AIP Conference Proceedings,
vol. 1630, no. 1, pp. 94–97, 2014. [Online]. Available: http:
//scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4902780

[8] B. Bakker, “Trigger studies for the Antares and KM3NeT neutrino tele-
scopes,” Bachelor Thesis, p. 314, 2011.

[9] A. M. M. Spurio, Tech. Rep.

[10] M. Manzali, T. Chiarusi, M. Favaro, F. Giacomini, A. Margiotta, and
C. Pellegrino, “The trigger and data acquisition system for the 8
tower subsystem of the {KM3NeT} detector,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0168900215014266

[11] A. L. et al., “Nanet: a configurable nic bridging the gap between
hpc and real-time hep gpu computing,” Journal of Instrumentation,
vol. 10, no. 04, p. C04011, 2015. [Online]. Available: http:
//stacks.iop.org/1748-0221/10/i=04/a=C04011

http://www.km3net.org/home.php
http://www.sciencedirect.com/science/article/pii/S0927650514001960
http://www.sciencedirect.com/science/article/pii/S0927650514001960
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4902780
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4902780
http://www.sciencedirect.com/science/article/pii/S0168900215014266
http://www.sciencedirect.com/science/article/pii/S0168900215014266
http://stacks.iop.org/1748-0221/10/i=04/a=C04011
http://stacks.iop.org/1748-0221/10/i=04/a=C04011

90 References

[12] J. Brunner, “General purpose data format for antares simulation and recon-
struction, antares internal note,” CCPM, Tech. Rep. ANTARES-Soft/1998-
007, 1998.

[13] ——, “Updated tag list for new antares event format, antares internal note,”
CCPM, Tech. Rep. ANTARES-Soft/1999-003, 1999.

[14] B. Comunity, “Boost web site,” http://boost.org, 2015, [Online; accessed
01-Gen-2016].

http://boost.org

Appendix A

Development Tools

A.0.1 Boost

The Boost C++ Libraries[14] are a collection of libraries based on the C++

standard. The License that this tool uses is the Boost Software License, which

allows anyone to use, modify, and distribute the libraries for free. The libraries

are platform independent and support most popular compilers, as well as many

that are less well known.

The Boost libraries are developed and published with the contributions of the

boost community. The community is composed by a large group of C++ develop-

ers from around the world coordinated through the web sitewww.boost.org as

well as several mailing lists. The library are stored on a GitHub Repository freely

accessible by every one. The target of the community is to develop and collect

high-quality libraries, complementary to the standard library. The libraries that

during the development process had proved valuable and become important for

the development of C++ applications, have a good chance of being included in

the standard library.

92 Development Tools

The Boost community emerged around 1998, when the first version of the

standard was released. Now it plays a big role in the standardization of C++.

There is no relationship between the Boost community and the standardization

committee. The developers are often involved in both groups.

The current version of the C++ standard, approved in 2011, includes libraries

that have their roots in the Boost community.

The use of Boost libraries has often proved useful for increasing productivity

in C++ projects, especially when your requirements go beyond what is available

in the standard library. This happens because the Boost libraries evolve faster

than the standard library. Thus, developers can benefit from progress made in

the evolution of C++ more rapidly.

A.0.2 ZMQ

/0MQ was born in 2007 as an iMatix project to build a low-latency version of

OpenAMQ messaging product, with Cisco and Intel as partners. Since the

beginning, /0MQ’s target was to get the best performance possible out of hardware.

To achieve this, the libraries are developed in multithreading which is also the

key feature of this libraries.

Afterwards, a technical white paper was published which says:

"Single threaded processing is dramatically faster when compared to multi-

threaded processing, because it involves no context switching and synchro-

nisation/locking. To take advantage of multi-core boxes, we should run one

single-threaded instance of an AMQP implementation on each processor core.

Individual instances are tightly bound to the particular core, thus running with

almost no context switches."

/0MQ is popular for several reasons:

93

It is open source and it is supported by a large community. It includes an

ultra-simple API based on BSD sockets. This API is familiar, easy to learn, and

conceptually identical no matter what is the language. It implements real mes-

saging patterns like topic pub-sub, workload distribution, and request-response.

This means /0MQ can solve cases for connecting applications. It seems to work

with every programming language, operating system, and hardware. It provides

a single consistent model for all language APIs. This means that the investment

in learning /0MQ is rapidly portable to other projects. It is licensed as LGPL code.

This makes it usable, with no licensing issues, in closed-source as well as free

and open source applications. It is designed as a library that is linked with the

applications. This means there are no brokers to have to be started and managed:

the less are the moving pieces, the less they can break or go wrong. Above all,

it is simple to learn and use. The learning curve for /0MQ is roughly one hour.

And it has odd uses thanks to its tiny CPU footprint. As Erich Heine writes, “the

[/0MQ] performance tests are the only way we have found yet which reliably fills

a network pipe without also making cpu usage go to 100

Most /0MQ users come for the messaging and stay for the easy multithreading.

No matter whether their language has multithreading support or not, they get

perfect scaling to any number of cores, or boxes. Even in Cobol.

One goal for /0MQ is to get these "sockets on steroids" integrated into the Linux

kernel itself. This would mean that /0MQ disappears as a separate technology.

The developer sets a socket option and the socket becomes a message publisher

or consumer, and the code becomes multithreaded, with no additional work.

94 Development Tools

A.0.3 CrossBar.IO

Crossbar.io is an open source unified application router implementing the WAMP

protocol, an open standard WebSocket subprotocol.

Crossbar.io directs and transmits messages between these components, which

are written with WAMP client libraries, existing for multiple languages (currently

9). Every application component can be written in any of these, and it is possible

to mix components written in multiple languages since all the interactions are

via WAMP.

With Crossbar.io as a router, it is possible to create cross-platform applications.

This enables application architectures such as Crossbar.io Node.

Crossbar.io is not just a WAMP router - it also provides and manages infras-

tructure for the application.

Features include:

• Integrated Static Web Server - it can serve HTML5 frontends directly.

• Component Hosting - start application components in any language together

with Crossbar.io and it can manage their lifecycle

• Authentication and Authorization are configurable in Crossbar.io hosting

WSGI applications

• HTTP Push Bridge for integration with legacy applications. This will often

make Crossbar.io all the infrastructure you need besides your database.

Crossbar.io is high-performant, scalable, robust and secure, and distributed

as Open Source under the AGPL v3 license.

It is Python code and runs on *nix, Windows and Mac OSX.

95

WAMP Protocol

WAMP provides Unified Application Routing in an open WebSocket protocol that

works with different languages.

WAMP allows to build distributed systems out of application components

which are loosely coupled and communicate in (soft) real-time.

The WAMP protocol offers two messaging patterns to allow components

communicate:

• Routed Remote Procedure Calls (RPCs) - components register procedures

and any other component can call this via Crossbar.io, with Crossbar.io

handling the registrations, call and result routing.

• Publish & Subscribe (PubSub) - components subscribe to topics and publish

to these, with Crossbar.io handling the subscriptions and dispatching.

The developers of WAMP think that applications have often a natural need

for both forms of communication and it shouldn’t be required to use different

protocols/means for those. Which is why WAMP provides both.

WAMP is easy to use, simple to implement and based on modern Web stan-

dards: WebSocket, JSON and URIs.

WAMP provides a feature called Unified Application Routing for applications:

routing of both events (for PubSub) and routing of calls (for RPC) between

applications components in one protocol.

Unified Routing is probably better explained by contrasting it with legacy

approaches. Lets take the old "client-server" world. In the client-server model, a

remote procedure call goes directly from the Caller to the Callee.

96 Development Tools

Remote procedure calls in the Client-Server model

In the client-server model, a Caller needs to have knowledge about where the

Callee resides and how to reach it. This introduces a strong coupling between

Caller and Callee which is bad, because applications can quickly become complex

and unmaintainable. It is easy to explain how WAMP fixes that in a minute.

The problems coming from strong coupling between application components

were long recognized and this (besides other requirements) lead to the publish-

subscribe model.

In the publish-subscribe model a Publisher submits information to an abstract

"topic", and Subscribers only receive information indirectly by announcing their

interest on a respective "topic". Both do not know about each other. They are

decoupled via the "topic" and via an intermediary usually called Broker.

A Broker decouples Publishers and Subscribers

A Broker keeps a book of subscriptions: who is currently subscribed on which

topic. When a Publisher publishes some information ("event") to a topic, the

Broker will look up who is currently subscribed on that topic: determine the

set of Subscribers on the topic published to. And then forward the information

("event") to all those Subscribers.

The act of determining receivers of information (independently of the infor-

mation submitted) and forwarding the information to receivers is called routing.

Now, WAMP translates the benefits of loose coupling to RPC. Different from

the client-server model, WAMP also decouples Callers and Callees by introducing

an intermediary - the Dealer.

97

Remote procedure calls in the Dealer model

Similar to a Broker’s role with PubSub, the Dealer is responsible for routing a

call originating from the Caller to the Callee and route back results or errors

vice-versa. Both do not know about each other: where the peer resides and how

to reach it. This knowledge is encapsulated in the Dealer.

With WAMP, a Callee registers a procedure at a Dealer under an abstract

name: an URI identifying the procedure. When a Caller wants to call a remote

procedure, it talks to the Dealer and only provides the URI of the procedure to

be called plus any call arguments. The Dealer will look up the procedure to be

invoked in his book of registered procedures. The information from the book

includes where the Callee implementing the procedure resides, and how to reach

it.

In effect, Callers and Callees are decoupled, and applications can use RPC

and still benefit from loose coupling.

What if we combine both? Routed RPC and PubSub? When we combine a

Broker and a Dealer we get what WAMP calls a Router.

A Router combines a Broker and a Dealer

A Router is capable of routing both calls and events, and hence can support

flexible, decoupled architectures that use both RPC and PubSub.

Here is an example. Imagine having a small embedded device, like an Arduino

Yun, with some sensors (e.g. temperature sensor) and actuators (e.g. a light or

a motor) connected. Your aim is to integrate the device into an overall system

where users are facing a frontend component to control the actuators while

sensor values are continuously processed into a backend component.

98 Development Tools

By using WAMP, you can have a browser-based UI, the embedded device and

your backend talk to each other in real-time.

Switching on a light on the device from the browser-based UI is naturally done

by calling a remote procedure on the device. And the sensor values generated

by the device continuously are naturally transmitted to the backend component

(and possibly others) via publish & subscribe.

A.0.4 WebSocket

WebSocket is a protocol providing full-duplex communication channels over a

single TCP connection. The WebSocket protocol was standardized by the IETF as

RFC 6455 in 2011, and the WebSocket API in Web IDL is being standardized by

the W3C. WebSocket is designed to be implemented in web browsers and web

servers, but it can be used by any client or server application. The WebSocket

Protocol is an independent TCP-based protocol. Its only relationship to HTTP is

that its handshake is interpreted by HTTP servers as an Upgrade request. The

WebSocket protocol makes more interaction between a browser and a website

possible, facilitating live content and the creation of real-time application. This is

made possible by providing a standardized way for the server to send content

to the browser without being solicited by the client, and allowing for messages

to be passed back and forth while keeping the connection open. In this way a

two-way (bi-directional) ongoing conversation can take place between a browser

and the server. The WebSocket protocol is currently supported in most major

browsers including Google Chrome, Internet Explorer, Firefox, Safari and Opera.

99

A.0.5 AngularJS

AngularJS (commonly referred to as "Angular" or "Angular.js") is an open-source

web application framework mainly maintained by Google and by a community

of individual developers and corporations to address many of the challenges en-

countered in developing single-page applications. Angular.js purpose is simplify

both the development and the testing of such applications by providing a frame-

work for client-side model–view–controller (MVC) and model–view–viewmodel

(MVVM) architectures. The AngularJS library works by first reading the HTML

page, which has embedded into it additional custom tag attributes. Angular

interprets those attributes as directives to bind input or output parts of the page

to a model that is represented by standard JavaScript variables. The values of

those JavaScript variables can be manually set within the code, or retrieved from

static or dynamic JSON resources.

Appendix B

Relevant Source Code

Database Tables

Listing B.1 Current Daemon State options Table

1 CREATE TABLE CURRENT_STATE_OPTIONS (

2 valueID TEXT PRIMARY KEY NOT NULL,

3 value TEXT NOT NULL,

4 state TEXT KEY NOT NULL

5);

Listing B.2 Current Daemon State

1 CREATE TABLE CURRENT_STATE (

2 id INTEGER PRIMARY KEY NOT NULL,

3 state TEXT KEY NOT NULL

4);

Listing B.3 Escalation Table

1 CREATE TABLE ESCALATION (

102 Relevant Source Code

2 id INTEGER PRIMARY KEY NOT NULL,

3 user_id INTEGER ,

4 request_time INTEGER NOT NULL,

5 priviledge_grant_time INTEGER NOT NULL,

6 force_enabling_time INTEGER NOT NULL

7);

Listing B.4 Released Priviledge Table

1 CREATE TABLE PRIVILEDGE (

2 id INTEGER PRIMARY KEY NOT NULL,

3 user_id INTEGER,

4 priviledge_expiration INTEGER,

5 no_answer_count INTEGER

6);

Listing B.5 Users table

1 CREATE TABLE USERS (

2 id INTEGER PRIMARY KEY NOT NULL,

3 name TEXT NOT NULL,

4 username TEXT NOT NULL,

5 password TEXT NOT NULL,

6 user_role INTEGER NOT NULL,

7 user_can_escalate BOOLEAN NOT NULL,

8 can_login BOOLEAN NOT NULL

9);

Listing B.6 Roles Table

103

1 CREATE TABLE ROLES (

2 id INTEGER PRIMARY KEY NOT NULL,

3 role_name TEXT NOT NULL,

4 role_can_escalate BOOLEAN NOT NULL,

5 priviledge_will_expire BOOLEAN NOT NULL,

6 is_super_user BOOLEAN NOT NULL,

7 can_edit_user BOOLEAN NOT NULL,

8 session_will_expire BOOLEAN NOT NULL

9);

Listing B.7 Sessions Table

1 CREATE TABLE SESSIONS (

2 user_id INTEGER PRIMARY KEY NOT NULL,

3 token TEXT NOT NULL,

4 expire INTEGER NOT NULL

5);

Listing B.8 Audit Table

1 CREATE TABLE AUDITLOG (

2 id INTEGER PRIMARY KEY NOT NULL,

3 user_id INTEGER NOT NULL,

4 timestamp INTEGER NOT NULL,

5 description TEXT NOT NULL

6);

Appendix C

Example of Datacard

Listing C.1 Audit Table

1 {

2 "DETECTOR_GEOMETRY": {

3 "PMTS": "6",

4 "FLOORS": "14",

5 "TOWERS": "4"

6 },

7 "INTERNAL_SW_PARAMETERS": {

8 "DELTA_TS": "200",

9 "PMT_BUFFER_SIZE": "1000000",

10 "STS_READY_TIMEOUT": "5",

11 "TTS_READY_TIMEOUT": "30",

12 "STS_IN_MEMORY": "100"

13 },

14 "FCM_ENDPOINTS": [

15 {

106 Example of Datacard

16 "DATA_HOST": "172.16.1.101",

17 "DATA_PORT": "16000"

18 },

19 {

20 "DATA_HOST": "172.16.1.101",

21 "DATA_PORT": "16001"

22 },

23 {

24 "DATA_HOST": "172.16.1.101",

25 "DATA_PORT": "16002"

26 },

27 {

28 "DATA_HOST": "172.16.1.101",

29 "DATA_PORT": "16003"

30 },

31 {

32 "DATA_HOST": "172.16.1.101",

33 "DATA_PORT": "16004"

34 },

35 {

36 "DATA_HOST": "172.16.1.101",

37 "DATA_PORT": "16005"

38 },

39 [CUT..]

40

41],

107

42 "HM": {

43 "LOG_LEVEL": "DEBUG",

44 "BASE_CTRL_PORT": "16100",

45 "DUMP_FLAG": "0",

46 "DUMP_FILENAME_PREFIX": "\/tmp\/hm_dump_",

47 "DUMP_MAX_SIZE": "500",

48 "HOSTS": [

49 {

50 "CTRL_HOST": "192.168.253.114",

51 "N_INSTANCES": "1"

52 },

53 {

54 "CTRL_HOST": "192.168.253.115",

55 "N_INSTANCES": "1"

56 },

57 {

58 "CTRL_HOST": "192.168.253.116",

59 "N_INSTANCES": "1"

60 },

61 {

62 "CTRL_HOST": "192.168.253.117",

63 "N_INSTANCES": "1"

64 }

65]

66 },

67 "TCPU": {

108 Example of Datacard

68 "LOG_LEVEL": "DEBUG",

69 "DUMP_FLAG": "0",

70 "DUMP_FILENAME_PREFIX": "\/tmp\/tcpu_dump_",

71 "DUMP_MAX_SIZE": "500",

72 "BASE_CTRL_PORT": "16200",

73 "BASE_DATA_PORT": "16300",

74 "OFFLINE_FLAG": "0",

75 "SIMULATION_FILENAME": "\/tmp\/simulated_events.txt",

76 "PARALLEL_TTS": "2",

77 "PLUGINS_DIR": "\/tmp\/plugins",

78 "HOSTS": [

79 {

80 "CTRL_HOST": "192.168.253.118",

81 "DATA_HOST": "10.0.80.118",

82 "N_INSTANCES": "1"

83 },

84 [CUT]

85],

86 "TRIGGER_PARAMETERS": {

87 "L1_EVENT_WINDOW_HALF_SIZE": "600",

88 "L1_DELTA_TIME_SC": "4",

89 "L1_DELTA_TIME_FC": "20",

90 "L1_CHARGE_THRESHOLD": "500",

91 "L1_FLAG_RT": "1",

92 "L1_FREQUENCY_RT": "5",

93 "L1_DELTA_TIME_RT": "200000",

109

94 "L1_DELTA_TIME_SEQHIT": "200",

95 "L1_N_SEQHIT": "7"

96 },

97 "PLUGINS": {

98 "RANDOM": {

99 "NAME": "TrigRandom",

100 "ID": "0",

101 "PARAMETERS": {}

102 },

103 "SCALER_10": {

104 "NAME": "TrigScaler",

105 "ID": "1",

106 "PARAMETERS": {

107 "SCALE_FACTOR": "10"

108 }

109 }

110 },

111 "TSV": {

112 "LOG_LEVEL": "DEBUG",

113 "CTRL_HOST": "192.168.253.113"

114 },

115 "EM": {

116 "CTRL_HOST": "192.168.253.112",

117 "DATA_HOST": "192.168.253.112",

118 "DATA_PORT": "16400",

119 "NETWORK_THREADS": "1",

110 Example of Datacard

120 "LOG_LEVEL": "DEBUG",

121 "LOG_TO_SYSLOG": "0",

122 "FILE_MAX_SIZE": "2000000000",

123 "PT_FILE_PREFIX": "/home/tridas/nemo_f3_pt",

124 "PT_FILE_POSTFIX": ".dat"

125 },

126 "MONITOR": {

127 "CTRL_HOST": "lxantares3.bo.infn.it",

128 "CTRL_PORT": "9999",

129 "TIME_INTERVAL": "3"

130 },

131 "TSC": {

132 "DATACARD_SHAREDDIR": "/lxstorage1_home/km3/datacard/tsc"

133 },

134 "TOWER_0": {

135 "FLOOR_1": {

136 "PMT_0": {

137 "X": "38.325",

138 "Y": "3.122",

139 "Z": "130.297",

140 "CX": "-0.884",

141 "CY": "-0.467",

142 "CZ": "0",

143 "TIME_OFFSET": "5",

144 "PEDESTAL": "5",

145 "THRESHOLD": "25"

111

146 },

147 "PMT_1": {

148 "X": "38.767",

149 "Y": "3.356",

150 "Z": "130.017",

151 "CX": "0",

152 "CY": "0",

153 "CZ": "-1",

154 "TIME_OFFSET": "5",

155 "PEDESTAL": "5",

156 "THRESHOLD": "25"

157 },

158 "PMT_2": {

159 "X": "41.64",

160 "Y": "4.875",

161 "Z": "130.297",

162 "CX": "-0.331",

163 "CY": "0.625",

164 "CZ": "-0.707",

165 "TIME_OFFSET": "5",

166 "PEDESTAL": "5",

167 "THRESHOLD": "25"

168 },

169 "PMT_3": {

170 "X": "42.082",

171 "Y": "5.108",

112 Example of Datacard

172 "Z": "130.297",

173 "CX": "0.331",

174 "CY": "-0.625",

175 "CZ": "-0.707",

176 "TIME_OFFSET": "5",

177 "PEDESTAL": "5",

178 "THRESHOLD": "25"

179 },

180 "PMT_4": {

181 "X": "44.955",

182 "Y": "6.628",

183 "Z": "130.017",

184 "CX": "0",

185 "CY": "0",

186 "CZ": "-1",

187 "TIME_OFFSET": "5",

188 "PEDESTAL": "5",

189 "THRESHOLD": "25"

190 },

191 "PMT_5": {

192 "X": "45.397",

193 "Y": "6.861",

194 "Z": "130.297",

195 "CX": "0.884",

196 "CY": "0.467",

197 "CZ": "0",

113

198 "TIME_OFFSET": "5",

199 "PEDESTAL": "5",

200 "THRESHOLD": "25"

201 }

202 },

203 "FLOOR_2": {

204 "PMT_0": {

205 "X": "43.731",

206 "Y": "1.455",

207 "Z": "110.297",

208 "CX": "0.467",

209 "CY": "-0.884",

210 "CZ": "0",

211 "TIME_OFFSET": "5",

212 "PEDESTAL": "5",

213 "THRESHOLD": "25"

214 },

215 "PMT_1": {

216 "X": "43.497",

217 "Y": "1.897",

218 "Z": "110.017",

219 "CX": "0",

220 "CY": "0",

221 "CZ": "-1",

222 "TIME_OFFSET": "5",

223 "PEDESTAL": "5",

114 Example of Datacard

224 "THRESHOLD": "25"

225 },

226 "PMT_2": {

227 "X": "41.978",

228 "Y": "4.771",

229 "Z": "110.297",

230 "CX": "0.625",

231 "CY": "0.331",

232 "CZ": "-0.707",

233 "TIME_OFFSET": "5",

234 "PEDESTAL": "5",

235 "THRESHOLD": "25"

236 },

237 "PMT_3": {

238 "X": "41.744",

239 "Y": "5.213",

240 "Z": "110.297",

241 "CX": "-0.625",

242 "CY": "-0.331",

243 "CZ": "-0.707",

244 "TIME_OFFSET": "5",

245 "PEDESTAL": "5",

246 "THRESHOLD": "25"

247 },

248 [CUT...]

249 }

115

250 }

	Table of contents
	List of figures
	List of tables
	1 The KM3NeT Experiment
	1.1 Neutrino Detection Techniques
	1.2 Detection Principles
	1.2.1 Background

	1.3 The Experiment challenges
	1.3.1 Data Flowing Challenge
	1.3.2 The Throughput Challenge
	1.3.3 The Computational Challenge
	1.3.4 The analysis Challenge

	2 Design and implementation of the Trigger and Data Acquisition System
	2.1 FCM
	2.2 HM
	2.3 TCPU
	2.3.1 TCPU Offline

	2.4 TSV
	2.5 EM

	3 Design and implementation of the TriDAS control
	3.1 TSC
	3.2 Interface to the TriDAS Control
	3.2.1 The web service
	3.2.2 The APIs exposed by the web service

	3.3 A graphical Gui
	3.3.1 Purpose

	4 Tests
	4.0.1 The farm
	4.0.2 Configuration
	4.0.3 Results

	5 Conclusion
	References
	Appendix A Development Tools
	A.0.1 Boost
	A.0.2 ZMQ
	A.0.3 CrossBar.IO
	A.0.4 WebSocket
	A.0.5 AngularJS

	Appendix B Relevant Source Code
	Appendix C Example of Datacard

