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Introduction 

 

  

Magnetic nanostructures have received a lot of attention in latest years, both from a fundamental point of 

view and for the several potential technological applications. In the last few years, these structures become 

one of the most important and exciting areas of the present solid state research
1
. This is due to both the 

interest towards the comprehension of magnetism and the prospect of important applications in the 

technology of solid state electronic devices and magnetic recording media. Nanostructured magnetic 

materials are known to possess further functionalities that cannot be achieved in their bulk constituents. As 

an example are effects like Giant Magnoresistance
2,3 

and Perpendicular Magnetic Anisotropy
4,5

, and they 

have a great impact on the development of new technological equipment and products. Moreover, the 

research in this field has been stimulated by the availability of sophisticated growth and characterization 

techniques. As a consequence, nowadays magnetic nanostructures can be fabricated with high precision and 

their properties are intensively investigated by means of high sensitivity experimental technique and of high 

accuracy theoretical models. A very interesting field of magnetism consists in the study of the spin 

dynamics. Spin wave is the collective excitation of the microscopic magnetization
6
. The first direct 

observation of spin waves was made using ferromagnetic resonance by Griffiths for the case of uniform 

precession
7
. Later, Brillouin light scattering experiments performed by Fleury et al confirmed the existence 

of spin waves with non-zero wave vectors
8
 . In the last years the collective excitations have been widely 

investigated both from the theoretical and experimental point of view with the aim of probing the intrinsic 

dynamic properties of the nanoparticles. Thanks to the high precision of the fabrication technique, now it is 

possible to create one, two or three dimensional magnetic nanostructures of different shapes and composed 

of different ferromagnetic materials. Indeed, the spin dynamics have been studied in thin films, in isolated 

elements and in periodic magnetic systems. Recently, it has been found that the periodic systems can support 

the propagation of collective spin waves. As a consequence, among the possible geometries, periodic 
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ferromagnetic systems are the most investigate because they give the possibility of tailoring the dynamic 

properties in the nanoscale. Periodic ferromagnetic systems are magnetic materials with periodic geometric 

modulation and are called magnonic crystals
9,10,11

. Therefore, magnonic crystal represents the magnetic 

analogue of photonic crystals. The spin wave spectrum is modified by patterning
12

 and may show a tailored 

band structure in periodic magnetic materials
13

. The band spectrum consists of bands of allowed magnonic 

states and forbidden-frequency gaps (‘band gaps’), in which there are no allowed magnonic states. One of 

the first attempts to study the propagation of spin waves in periodic magnetic structures was made by 

Elachi
14

. Presently, thanks to the multitude of studies in this field, it is possible to understand magnetization 

dynamics and (a) to design metamaterial devices
15,16

, (b) to transduce and transmit signals
17,18,19

, (c) to realize 

magnonic transistors
20

, and (d) to make logic operations 
21,22,23

. The large variety of shapes and of their 

arrangements together with magnetic configurations which can be realized in magnonic crystals
24,25,26,27

, 

makes magnonics an inexhaustible and intriguing topic of research.  

The main goal of this Thesis is to investigate from a fundamental point of view the magnetic properties of 

periodic magnetic nanostructures by means of micromagnetic methods. The analysis collected here give an 

advancement in the field of nanomagnetism providing detailed descriptions of new phenomena. In order to 

understand the effects due to different shapes geometries or materials on the spin dynamic, different periodic 

ferromagnetic systems are studied. Investigations are performed both in propagative and stationary regime 

evaluating the band structures of spin waves modes and their dependence on the geometric and magnetic 

parameters. This lead to the appearance of new physical effect previously unrevealed in magnonic crystals. 

New physical mechanisms are explained from a theoretical point of view and most of them are totally 

confirmed by experimental measurements provided by others research group. Hence, the results shown here 

are not only theoretical prediction but also confirmed experimentally in order to propose these systems as 

prototypes of new technologies and to increase the basic physics knowledge in the field of the 

nanomagnetism and magnonics. It is also important to underline that the magnonic systems considered can 

be easily created by means of fabrication technique or in some case have been already constructed.  

Theoretical basis of the nanomagnetism are introduced in Chapter 1. Here, the macroscopic, microscopic and 

micromagnetic theories are presented and compared to each others. Moreover, basic concepts of spin wave, 

magnonic crystals, magnonic devices and metamaterial are given. A brief description of the Brillouin light 

scattering technique is also provided.  

In Chapter 2, the method used to study the magnetic properties of magnetic nanostructures illustrated in this 

Thesis is presented. The calculations has been performed through a micromagnetic approach, in particular is 

used the Dynamical Matrix Method
28

. This is a finite-difference method developed in the past years in our 

research group able to calculate the dynamic properties of the magnetization.  

The main results obtained during the Ph.D are collected in Chapters 3, 4 and 5. Chapter 3 is focused on the 

analysis of the magnetic properties of mono-material two-dimensional magnonic crystals
29,30

. In the first 

Section, the presence of soft modes is demonstrated in two-dimensional periodic magnetic systems 

composed of holes embedded into a ferromagnetic matrix. Moreover, the softening mechanism is also 
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investigated from a theoretical point of view in order to understand the physical phenomena at the basis of 

the frequency softening. The second Section is devoted to the study of the effect of ground-state 

magnetization on the band structures of a two-dimensional magnetic system. Dispersion curves of the spin 

waves modes and their feature are calculated and compared for the case of in-plane magnetized system and 

for the case of out-of-plane magnetized system.  

In Chapter 4 the magnetic properties of multi-material two dimensional magnonic crystals are analyzed
31,32

. 

The systems investigated here are called bicomponent magnonic crystals because they are composed of two 

different ferromagnetic materials. In the first Section four different periodic systems made up of Permalloy 

and Cobalt are analyzed in order to understand how the position and volume of the Cobalt dot influence the 

band structures of the spin waves modes. The second Section is focused on the study of the influence of a 

non-magnetic spacer between two ferromagnetic materials on the band structure of spin waves modes in five 

different magnonic crystals is investigated
33

. In order to do this, the spin waves modes are examined in the 

first Brillouin zone and the internal total field for each system has been calculated. 

Finally, the static and dynamic properties of the magnetization in isolated elliptical Permalloy and Cobalt 

dots as a function of the external magnetic field. Here, the magnonic modes are investigated over the major 

and minor hysteresis curve, encompassing both the parallel and anti-parallel ground state.  In order to turn 

magnonic crystals as a new class of metamaterials, the metamaterial properties of these systems have been 

studied form a theoretical point of view in Chapter 5. By means of the introduction of new effective 

quantities, the effective properties of both mono
34

 and multi-material
35

 magnonic crystals are investigated. 
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Chapter 1  

Magnetic nanostructures 

 

 
Nanoscience involves the study of phenomena occurring in objects of dimensions in the range 1 to 1000 nm. 

This is the range of sizes of many molecules and viruses, and is also the characteristic length scale of many 

physical processes
36

. Moreover, the lateral dimensions of integrated circuit components, as well as the 

dimensions of grains in magnetic-recording film media, belong to the nanometer range. Nanomagnetism is 

the area of physics research concerning the magnetic properties of systems having at least one dimension in 

the submicron range. Even if the magnetism is an old scientific discipline, physics of the magnetic 

nanostructures has become one of the most interesting research fields in the last decades, driven by the 

scientific and technologic trend towards miniaturization of physical systems. Particular interest has been 

received from the analysis of magnetic nanostructures because they show magnetic properties typical of both 

magnetic systems and nanostructures. The research in this field has been stimulated by the availability of 

sophisticated growth and characterization techniques and by the discovery of new and stimulating 

phenomena, such as giant magnetoresistance (GMR)
3,37

, anti-ferromagnetic interlayer exchange coupling 

(AFC)
38

 and perpendicular magnetic anisotropy (PMA)
39,40

. Nowadays, thanks to the progress in the 

fabrication methods it is possible to fabricate magnetic nanostructures having high quality and well-defined 

shapes. For example it is possible to create nanoelements of different shapes, periodic nanostructures, and 

magnetic nanostructures composed of different ferromagnetic materials. As a consequence, also the methods 

able to characterize from a theoretical and experimental point of views this ferromagnetic systems have been 

developed.  

Measurements of the magnetic properties of nanostructures are highly demanding in view of the small 

amount of magnetic material involved
41

. The superconducting quantum interference devices (SQUID) are 

designed for measurements of the magnetic moment of thin film and can achieve sensitivities and accuracies 
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that rival any other magnetometric techniques, as exemplified by the pioneering work of Gradmann and co-

workers using a UHV compatible SQUID 
42

. It is only relatively recently that the extraordinary sensitivity of 

the magneto-optic Kerr effect (MOKE) in probing magnetic properties has been fully appreciated and now 

its use is widespread in the study of nanostructures
43,44

. Ferromagnetic resonance (FMR)
45,46

 and Brillouin 

light scattering (BLS)
47,48

 techniques have provided an important role in the study of the dynamical 

properties of magnetic nanostructures. FMR technique consists in measuring spectra of the absorption of 

microwaves in a cavity containing a magnetic sample. Differently, BLS technique is based on the 

phenomenon of Brillouin-Mandelstam inelastic scattering pumped magnon. Moreover, several powerful 

high-sensitivity imaging techniques have been developed recently: for example, atomic force microscopy, 

magnetic force microscopy, scanning Kerr microscopy and spin-polarized microscopy. As a theoretical 

counterpart, also micromagnetic and analytical methods have been developed in order to understand the 

properties of the nanostructures. As an example: Object Oriented MicroMagnetic Framework (OOMMF)
49

, 

MicroMagus
50

, Plane Wave Method (PMW)
10

 and Dynamical Matrix Method (DMM)
28

. 

 

1.1 Magnonic crystals 

Magnonic crystal (MC) consists of a periodic magnetic system. They are magnetic systems in which the 

spectrum of magnons has a band structure and contains band gaps. The artificially introduced periodicity 

modifies the energy spectrum of magnons. The dipolar or exchange interactions dominate spin waves (SWs) 

spectra depending on the absolute value of the periodicity of the MC. A frequency gap might open such that 

magnon propagation through the MCs is forbidden for a specific frequency range. In periodically 

nanopatterned magnetic media minibands are formed: they consist of allowed SW frequencies and forbidden 

frequency gaps and this depends on the structure created
51

. Due to the complicated geometry, it can be 

difficult to take into account analytically the long range magneto-dipole interaction within samples. Hence, 

numerical methods must be used.
 
From the point of view of fabrication and practical applications, MCs and 

devices with a planar geometry and, ideally, fabricated from a single magnetic material are preferred. MCs 

can be arranged in one dimensional (1D), two dimensional (2D) and three dimensional (3D) array of 

magnetic nanostructure and can be composed of one or more than one magnetic material.  
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Fig. 1.1. Schematic representation of 1D, 2D and 3D MCs. 

Planar 1D MCs are formed for example by stripes
52

 or by chain of interacting dots of various shapes
53,54

.The 

spectrum of magnons in closely packed 1D arrays of magnetic nanoelements was shown to have a band 

structure with Brillouin zone (BZ) boundaries determined by the  artificial periodicity of the arrays. The 2D 

MCs consist for example of periodically arranged magnetic dots interacting along the two in plane 

directions. The position and the width of band gaps in spectrum were investigated as a function of the period 

of the structure and the depth of modulation of the magnetic parameters. It was found that the depth of the 

modulation of the exchange coupling constant has a drastic effect upon the position and width of the band 

gaps. An example of 2D MCs are antidots (ADs): ADs consist of a mesh of nonmagnetic holes embedded 

into a continuous magnetic film, and they have been proposed as candidates for ultrahigh density storage 

media. In recent years the static properties of ADs have been widely investigated. Now it is important to 

have a control also of dynamic properties since reading and writing speeds in magnetic storage devices are 

getting closer to the time scale of spin dynamics. In AD nanostructures, collective magnetic excitations in the 

form of Bloch waves can have a dispersive behaviour. The 3D MCs are ferromagnetic systems periodic 

along the x, y and z directions. Also for these kind of MCs, the dispersion curves calculated with respect to 

the different directions of the wave vector can have a dispersive behavior. 1D, 2D and 3D MCs can be 

composed both of a single ferromagnetic material or of different materials. In the second case the MCs are 

usually called multi-component MCs and their properties are different from the case of a single component 

MCs. 

The eigenfrequencies of SWs are determined by the spin stiffness, the absolute value of the saturation 

magnetization, the Bloch wave vector, and the relative orientation between the magnetization vector and the 

wave vector. Depending on the hole size ranging from Angstroms to micrometers, SWs are dominated by 

short-range dynamic exchange interactions or long-range dipolar interactions. Both these interactions 

regulate the characteristic slope of the SW dispersion relation.  
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1.2 Magnonic metamaterials 

Metamaterials are smart materials engineered to have properties that have not yet been found in nature. They 

are made from assemblies of multiple elements fashioned from composite materials such as metals or 

plastics. The materials are usually arranged in periodic patterns, at scales that are smaller than the 

wavelengths of the phenomena they influence. Metamaterials usually gain their properties from structure 

rather than composition, using small inhomogeneities to create effective macroscopic behavior. Their precise 

shape, geometry, size, orientation and arrangement give them their smart properties capable to manipulate 

electromagnetic waves: by blocking, absorbing, enhancing, bending waves, to achieve benefits that go 

beyond what is possible with conventional materials. 

Exploiting non-volatility, multifunctional metamaterials might be formed. The primary research in 

metamaterials investigates materials with negative refractive index. Negative refractive index materials 

appear to permit the creation of super lenses which can have a spatial resolution below that of the 

wavelength. 

On the other hand, great attention has been devoted to the investigation of MCs characterized by periodically 

modulated properties and where collective spin-wave modes can propagate. MCs are a new class of 

metamaterials. First of all it can be useful to clarify what means magnonic metamaterial and what makes a 

metamaterial different from a standard material. To give an explanation in the most general sense, it should 

be clarified first as to what makes standard (i.e., nature-made) materials. A standard material is composed of 

atoms and ions joined together to collectively create a novel quality with properties that are not observed in 

the constituent atoms in isolation. An example is the presence of discrete electronic energy levels and 

associated discrete electromagnetic spectra in isolated atoms. In the case of atoms inside a material, each 

discrete electronic level is split into a continuous “electronic band.” This is due to the fact that when atoms 

are part of a material, they collectively have new properties that are different with respect to those of isolated 

atoms. The properties of a material are mainly connected to their composition. The attempt of going beyond 

this concept led to the idea of a metamaterial. Unlike standard materials, metamaterials are artificial 

materials and their properties are mainly due to their structure. Historically, the first hint of materials with 

properties similar to those of metamaterials was attributed to Kock and applied to artificial dielectrics
55,56

. 

The first theoretical prediction of unconventional phenomena that cannot occur in usual materials and that 

are instead a feature of artificial materials was given by Veselago, who predicted the existence of 

electromagnetic materials with negative refractive index
57

. This phenomenon was confirmed experimentally 

about 30 years later by Smith et al. in split-ring resonators
58

. Generally speaking, most of the dynamical 

properties of metamaterials can be considered relative to excitations with wavelengths either comparable to 

or much greater than the characteristic size of the building blocks. The characteristic size in most cases is 

given by the periodicity of the system. The former case is associated with studies of artificial band gap 

crystals in, for example, photonic
59

, plasmonic
60

, phononic
61

, and MCs
62

. In the latter case, the metamaterials 

https://en.wikipedia.org/wiki/Wavelengths
https://en.wikipedia.org/wiki/Shape
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Dimensions
https://en.wikipedia.org/wiki/Orientation_(geometry)
https://en.wikipedia.org/wiki/Electromagnetism
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are treated in terms of effectively continuous media. However, the physical object under study is the same in 

both cases. For example, metamaterials with artificial periodic modulation of the refractive index with 

periodicity comparable to the wavelength of electromagnetic waves in the visible range are known as 

photonic BG structures. These structures are very important, because it is possible to manipulate the 

direction of propagation of light along given directions. Moreover, light propagation can be confined in 

chosen channels or zones or even prohibited. In the microwave frequency range, the same structures would 

behave as effectively continuous materials. In a particular frequency region of interest, the same 

metamaterials can behave differently with respect to excitations of different kinds, for example, 

electromagnetic, sound, or SWs. Attractive opportunities arise from the use of one of the previously cited 

excitations to design a resonance feature for another excitation with respect to which the structure behaves as 

a quasi-continuous metamaterial. For example, plasmonic resonances can be used to alter effective 

electromagnetic properties from THz to visible frequency range. Magnonic resonances can be used for the 

same purpose in GHz–THz frequency range. Periodically modulated magnetic materials have been shown to 

form MCs, that is, a magnetic analogue of photonic crystals.  

 

1.3 Experimental technique: Brillouin Light Scattering 

Among the many experimental techniques able to study the SWs in magnetic nanostructures, for the 

purposes of this Thesis it is useful to briefly describe the Brillouin Light Scattering (BLS) technique. The 

results presented in the Chapters 3 and 4 (Sect. 3.1 and 4.3) are critically compared with the BLS 

measurements performed at the Department of Physics and Geology of the University of Perugia. BLS 

technique is a powerful tool able to investigate SWs and acoustic phonons in nanometric and micrometric 

systems. The physical mechanism involved is the inelastic scattering between the light and the collective 

excitations. In a typical BLS experiment one measures SWs with frequencies in the range from 1 to 100 

GHz. In order to detect the weak inelastic component of light from the elastically scattered contribution a 

high resolution spectrometer is required. In order to achieve this aim, a tandem Fabrì-Perot interferometer is 

the main component of the BLS apparatus. BLS spectra are recorded in the backscattering configuration by 

using a Sandercock-type high-contrast and high resolution (3+3) tandem Fabry-Pérot interferometer. The 

light source is a laser polarized in the incident plane (polarization p) with wavelength λi = 532 nm. By 

focusing the laser beam on the ferromagnetic sample it is possible to collected and directed towards the 

interferometer the scattered light. The Fabry-Pérot interferometer analyzes the presence of light with 

wavelength different from λi and the scattered light with wavelength λi ≠ λs  is detected by the 

photomultiplier. A system made up of diaphragms and filters is used to select only a particular frequency 

range of light. A computer collects the photon number and shows the data. The BLS apparatus is shown in 

Fig. 1.2
63

. 



20 

 

 

Fig. 1.2. BLS apparatus diagram. 

When the light wave scatters on the magnetic system an inelastic process takes place. In particular, the 

incident light wave, with wavelength λi and wave vector ki, is scattered by a SW, with wavelength λ and 

wave vector k. The wave characterized by λ and k is the SW created or destroyed by the incident light wave. 

The scattered light wave is characterized by frequency ωs and wave vector ks. Wave vectors and frequencies 

of the components of this process must satisfy the following conservation rules:   

k k k

   

 

s i

s i
                                                     (1.1) 

These conservation rules are valid for infinite magnetic systems and are not fulfilled in laterally confined 

systems due to quantization effects. The sign + indicates the destruction of SW (Stokes process) and the sign 

– is referred to the creation of SW (anti-Stokes process). In a BLS experiment it is also important to detect 

SWs with different values of wave vector. In order to change the magnitude of the wave vector it is possible 

to vary the incidence angle θ of light on the sample. The wave vector of the SW and the incident angle are 

related by means of the following equation: 
4

sink





 .  

1.4 Theoretical background 

The ferromagnetic nanostructures can be investigated from a theoretical point of view following three 

different approaches: the microscopic model, the macroscopic or analytical model and the micromagnetic 

approach. These models differ each other by their length scales. The first is based on the quantum 
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mechanical description of the phenomena and the length scale is minor than 1 nm. The macroscopic or 

analytical model describes the magnetic body from a macroscopic point of view giving an analytical 

description of the body and its length scale is higher than 1 micron. Between these two approaches it is 

placed the micromagnetic theory with a length scale that ranges from 1 nm to 1 micron and gives a 

continuous description of the magnetization. Recently, thanks to progress in the field of the micromagnetism, 

this approach allows to study magnetic properties in systems having dimension of 10 μm. 

Model Description Length Scale 

Microscopic 

theory 

Quantum mechanical 

 ab initio calculations 

<1nm 

Micromagnetic 

theory 

Discretized description  

of the magnetization 

1−1000nm 

Macroscopic 

theory 

Analytical description  

of the magnetization of the body 

>1μm 

 

Tab. 1.1. Three different theoretical approaches to the magnetism together with their lengths scale. 

In the following subsections the microscopic and macroscopic models will be shortly presented while the 

micromagnetic approach will be described in detail since most of the results of this Thesis have been 

obtained by means of a micromagnetic method.  

Before starting with the description of the previously introduced models, it can be useful to recall that the 

phenomena involved in the ferromagnetic materials arise from different spatial scales, going from few 

nanometers to few microns. In Fig. 1.3 it is shown a sketch of a short range interacting magnetic elements 

(left) and of a long range coupling magnetic element (right). The two different types of interactions depend 

on the distance between the two magnetic elements. 

 

Fig. 1.3. Magnetic elements interacting by means of short range interaction and long range interaction. 

In general, the fundamental interactions present in a ferromagnetic material are: Zeeman interaction, dipolar 

coupling, exchange interaction and the anisotropy term. Taking into account the different length scale of 

each interaction involved, it is possible to classify the exchange and the anisotropy interactions as short-

range terms and the dipolar interactions as long-range interactions.  
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1.4.1 Microscopic approach 

Historically, the first method developed is the microscopic theory of ferromagnetism which explain the 

origin of magnetism. This approach is based on an atomistic model where the spin of each atom S is 

individually considered in the Hamiltonian of the system. It is assumed that into ferromagnetic materials, at 

low temperature, the magnetic moments are parallel one to each other. The microscopic approach is used to 

study magnetic systems as the quantum dots, molecular magnetism and other magnetic systems where the 

quantum effects play a dominant role. It is also important to note that this model is not suitable to analyze 

ferromagnetic systems having macroscopic dimension (higher than 1 μm)  because of the high number of 

atoms. 

The Hamiltonian that describes the spin system responsible for the ferromagnetism in the microscopic 

approach is: 

 
  

 
ij ij

2

3 5

1
S S

2 r ri i

i ji jz z

i j

ij i ij i

   
  
     
 
 

   
2 ij ij3 r S r SS S

S Sij 0H J g H g D                (1.2) 

where β is the Bohr magneton, g is the Landè factor, Si indicates the spin in the i lattice point, Jij is the 

exchange constant between the two spin Si and Sj and rij is the distance between the two spins. The first term 

of the Hamiltonian is the exchange energy term. It has an electrostatic origin but it is explained by means of 

the quantum mechanics; indeed, it can be described by means of the Heisenberg isotropic Hamiltonian and 

its energy levels do not depends on the direction in the space in which the ferromagnetic material is 

magnetized. The exchange coupling is characteristic of ferromagnetic systems where the interaction between 

two spins is considered and is not present in the theory of diamagnetic and paramagnetic materials. It is a 

short range interaction and it is calculated over all the atomic sites by taking into account the directions of 

two spin located at the sites i and j. Jij is the exchange integral and it is related to the overlap of spatial terms 

of the wave functions of the electrons of the ferromagnetic material. The value of Jij rapidly decreases when 

the distance between the two spin increases. By evaluating the value of Jij it is possible to understand the 

configuration of the ground-state of the system: if Jij> 0 the system is in the ferromagnetic state, if Jij< 0 the 

system is in the anti-ferromagnetic state. This means that in the ferromagnetic (antiferromagnetic) state the 

energy associated to the exchange interaction is minimum (maximum) when Si and Sj are parallel while it has 

the maximum (minimum) value for antiparallel alignment of Si and Sj. The second term of the Hamiltonian is 

the Zeeman energy and describes the interaction between the spin of each lattice site and the external 

magnetic field. The Zeeman term in Eq. (1.2) refers to the case of an external magnetic field applied along 

the z-axis and the sum is over each lattice point. The third term is the dipolar interaction and it corresponds to 

the first order term of the demagnetizing energy. This a long range interaction and the energy associated is 

minimum when Si and Sj are in antiparallel configuration and is maximum if Si and Sj are parallel to each 
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other. The last term is the energy contribution due to the anisotropy term that arises from the spin-orbit 

coupling. D is the anisotropy constant and for D < 0 there is an easy plane anisotropy while for D > 0  an 

easy axis anisotropy. The anisotropy term is not related to the direction of the external field and the 

associated energy is usually smaller that the exchange energy. 

 

1.4.2 Macroscopic approach 

The macroscopic model is based on the hypothesis that the magnetization of a ferromagnetic body is treated 

as a field M(r) instead of a single individual atomic spin Si as occurs in the microscopic theory. The 

macroscopic model is usually called also continuum model for the ferromagnetism because the 

ferromagnetic material is considered as a continuum medium with a magnetization M(r) that is a slowly 

varying function of the spatial coordinates r = (x,y,z). If a ferromagnetic body having a volume V is 

considered, a small region of the body dVr contains a number N of elementary magnetic moments μi = 1,…, 

N and the average of the magnetic moments in the volume dVr varies smoothly. In this respect the 

magnetization vector field M(r), such that the product between M(r)  and dVr is equal to net magnetic 

moment of the elementary dVr is: 

 = i

i

r


M(r)

dV



                                                                         (1.3) 

The main advantage of the macroscopic approach with respect to the microscopic one is that the 

phenomenological parameters due to the anisotropy and the magnetostatic energies can be easily included in 

the macroscopic Hamiltonian. Moreover, the calculation of continuous quantities by means of integrals is 

quicker than the calculation of microscopic quantities by means of sums. Starting from the microscopic 

Hamiltonian it is possible to write the corresponding energy terms of the macroscopic approach. For all the 

energy contributions the summation over all the lattice sites is replaced with the integral calculated over the 

whole volume of the ferromagnetic object considered. The exchange energy among spins can be written in 

terms of the angles ϕij between spin i and spin j. The angles between neighbours are expected to be small, 

because the exchange interaction is very strong over a short range and will not allow any large angle to 

develop. For small angles, | ϕij| ≈ |mi - mj| where m is the unit vector parallel to the local spin direction and 

also to the local direction of the magnetization vector since it is defined as m = M(r) / Ms where Ms is the 

saturation magnetization, a parameter characteristic of each material. 
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Fig. 1.4. Schematic representation of the change in the angle between spin i and j and the position vector si between 

them. 

For such a variable, the first-order expansion in a Taylor series is |mi - mj| = | (Si∙∇) m| where Si is the 

position vector pointing from the lattice point i to j. Moreover, in the macroscopic approach a new exchange 

constant A is introduced (more properly called exchange stiffness constant) and is linked to the exchange 

integral J, namely A = 2JS
2
/a where a is the edge of the unit cell. This definition of exchange stiffness is 

valid for a simple cubic lattice, similar relations can be obtained for different kind of lattices. From the 

macroscopic point of view, the Zeeman interaction can be easily obtained by replacing in  Eq. (1.2) the 

summation over the lattice sites with the integral over all the volume of the element and by substituting M(r) 

= βgSi. In the macroscopic model the dipolar interaction, that corresponds to the first order of the 

demagnetizing field, can be obtained by inserting M(ri) = (2μ0/v0) <Si>, where v0 is the volume of the unit 

cell and <Si> indicates a statistical average, in the expression of the dipolar energy in the microscopic model. 

Following a macroscopic approach it is simple to introduce different types of anisotropies with respect to the 

microscopic model. There are several sources of magnetic anisotropy that is the directional dependence of a 

material's magnetic properties. The magnetocrystalline anisotropy is due to the atomic structure of a crystal  

that introduces preferential directions for the magnetization. The shape anisotropy term is taken into account 

when a particle is not perfectly spherical and the demagnetizing field is not equal for all directions, creating 

one or more easy axes. Moreover the magnetoelastic anisotropy is due to the tension that may alter magnetic 

behaviour, leading to magnetic anisotropy. 

 The most common anisotropy is the magnetocrystalline anisotropy that is an intrinsic property of the 

material, independent of size and shape of the magnetic element. It can be observed by measuring 

magnetization curves along different lattice directions. Magnetocrystalline anisotropy can be also regarded as 

the energy necessary to deflect M(r) from the easy to the hard direction. The second type of anisotropy is the 

shape anisotropy due to the finite shape of the body and corresponding to the demagnetizing magnetostatic 

energy. In this respect, in Fig. 1.5, left panel, it is shown a magnetized body that produces magnetic charges 

or poles at the surface. This surface charge distribution, acting in isolation, is itself another source of a 

magnetic field, called the demagnetizing field (see Fig. 1.5, right panel). It is called the demagnetizing field 

because it acts in opposition to the magnetization that produces it. 

https://en.wikipedia.org/wiki/Anisotropy
https://en.wikipedia.org/wiki/Magnetic
https://en.wikipedia.org/wiki/Crystal
https://en.wikipedia.org/wiki/Magnetization
https://en.wikipedia.org/wiki/Demagnetizing_field
https://en.wikipedia.org/wiki/Tension_(physics)
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Fig. 1.5. Distribution of apparent surface pole produced by the magnetization. Demagnetizing field due to the apparent 

surface pole distribution. 

In addition, in the macroscopic model there is another anisotropy term related to spin-orbit coupling called 

magnetostriction. Magnetostriction arises from the strain dependence of the anisotropy constants. After 

magnetization, a previously demagnetized crystal experiences a strain that can be measured as a function of 

applied field along the principal crystallographic axes. A magnetic material will therefore change its 

dimension when magnetized. 

 

1.4.3 Micromagnetic approach 

Micromagnetics is based on one hand on a continuum approximation of exchange interactions, including 

boundary conditions, on the other hand on Maxwell equations in the non-propagative limit for the evaluation 

of the demagnetizing field. The micromagnetic energy is most often restricted to the sum of the exchange, 

(self-)magnetostatic, Zeeman and anisotropy energies. The most important feature that characterize every 

micromagentic method is the discretization of the magnetic element in micromagnetic cells. When 

supplemented with a time evolution equation, including field induced magnetization precession, damping 

and possibly additional torque sources, micromagnetics allows for a precise description of magnetization 

distributions within finite bodies both in space and time. Analytical solutions are, however, rarely available. 

Numerical micromagnetics enables the exploration of complexity in small size magnetic bodies. The validity 

of the micromagnetic approach for the study of ferromagnetic nanostructures depends on the fundamental 

assumptions according to which, within a small region, a magnetization vector can be representative of the 

local average magnetic spins. This vector carries the sum of the atomic spins in a limited region or cell, and 

is ideally concentrated at the center of the cell itself, whose the magnetization is assumed uniform: this 

region has usually a nanometric extension. Among the micromagnetic methods it is possible to distinguish 

two main classes: micromagnetism based either on the finite-difference (FD) methods or on the finite-

element (FE)  methods.  

The FD methods are widely used numerical method for finding approximate values of solutions of problems 

involving partial differential equations
64

. The basic idea consists of approximating the partial derivatives of a 

function by finite difference quotients. The process of replacing partial derivatives by FD quotients is known 

as a discretization process and the associated error is the discretization error. A partial differential equation 

can be changed to a system of algebraic equations by replacing the partial derivatives in the differential 

equation with their FD approximations. The system of algebraic equations can be solved numerically by an 

iterative process in order to obtain an approximate solution. 

+

+

+
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The FE methods are numerical techniques for finding approximate solutions to boundary value problems for 

partial differential equations. They use subdivision of a whole problem domain into simpler parts, called 

finite elements, and variational methods from the calculus of variations to solve the problem by minimizing 

an associated error function. Analogous to the idea that connecting many tiny straight lines can approximate 

a larger circle, FE methods encompass methods for connecting many simple element equations over many 

small sub domains to approximate a more complex equation over a larger domain. By comparing the two 

discretization methods it is possible to note that the most attractive feature of the FE methods is their ability 

to handle complicated geometries (and boundaries) with relative ease. While the FD methods in their basic 

form are restricted to handle rectangular shapes and simple alterations thereof due to the use of a rectangular 

lattice, the handling of geometries in the FE methods is theoretically straightforward. The most attractive 

feature of FD methods is that they can be very easy to implement. 

Most of the results of this Thesis have been obtained by means of a micromagnetic approach, called DMM 

and OOMMF, that are a FD methods. In this respect, the energy contributions of each interaction involved in 

the ferromagnetic systems studied in this Thesis are now presented following the micromagnetic approach. 

The magnetic system is divided in prismatic cells where the thickness of the sample in the z-direction is 

indicated with L and lc is the side of the square micromagnetic cell. In the case when the system is a 2D 

magnetic system, the thickness L of the sample is equal also to the height of the micromagnetic cell. 

 

Fig. 1.6. Polar reference frame used in the micromagnetic method. 

The reference frame is shown in Fig. 1.6. The z-axis is along the normal to the magnetic elements and the x-y 

plane lies on the particle plane. The studied sample is subdivided into rectangular micromagnetic cells. Each 

micromagnetic cell is identified by a single index that varies from 1 to N . Hence, M
k  is the magnetization 
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in the k -th cell and r r r 
jkj k

is the distance between k -th cell and j -th cell. The index has been 

assigned so that the first line of the rectangular matrix (X×Y) corresponds to 1,...,k Y  and the second line 

to 1,..., 2k Y Y   ecc. X (Y) is the number of cells along x (y), while Z is the number of cells along z for a 

sample of thickness equal to L . 

The magnetization /m M Msk k  is expressed in a polar reference frame: 

(sin cos ,sin sin ,cos )
k k k k k k

    m      (1.4) 

where 
k
  is the azimuthal angle and 

k
  is the polar angle of the magnetization. The total energy density of 

the system is a function of 
k
  and 

k
 : ( , )E E

k k
  where k  varies from 1 to N . In particular, it has 

been evaluated the energy density that can be obtained by dividing the energy per volume cell.  

In the following explicit expressions are given for the different interactions entering into the total 

micromagnetic energy density E of a given confined magnetic system: Zeeman, exchange, demagnetizing 

and anisotropy.  

In the presence of an external magnetic field H, the Zeeman energy density can be written in the form 

ext
1

m   


H
N

E Ms kk                        (1.5) 

In micromagnetic theory the exchange energy can be expressed as a volume integral of the form 

33 22( )  ( ) .
2 1 1

exch

part

E
A

M dV A m dVj jjM js part

   
 

                             (1.6) 

where the subscript “part” denotes the volume of a general magnetic particle, A is the exchange stiffness 

constant and  denotes the gradient applied to a given component of the magnetization. In this case the 

exchange contribution is independent of z and the derivatives are calculated as finite elements. Using the 

first-neighbours model, the exchange energy density can be written as follows: 

4
(1 )

2 11
exch k n

c

NA
E

nkl
   


m m                                                   (1.7) 

where lc is the micromagnetic cell size, k varies over all micromagnetic cells and the sum over n ranges over 

the neighbours of the k -th cell. If the k micromagnetic cells are situated at the edges, one must impose 

boundary conditions.  
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In order to calculate the demagnetizing energy density, the method of the demagnetizing tensor has been 

taken into account. In the following the term “dipolar” can replace the term “demagnetizing”, because the 

higher-order terms of the expansion vanish in the practical cases examined.  

Generally, the dipolar energy density can be written as follows:  

2
1

( , , )
2 2

dem j xk yk zk

mN N Nxx xy xz xj
MsE N m m m N N N myx yy yz yj

kj
N N N mzzzx zy zj

  
  
     
  
     

k
kj

M M                     (1.8) 

This equation includes self-energy; ( )N N r
kj 

  with α,β=x,y,z are the elements of demagnetization 

tensor. Each component of the demagnetizing tensor is related to the interaction between two rectangular 

surfaces defined here with S  and 'S . Under the assumption of uniform magnetization in the calculation of 

the demagnetizing field, by using a version of Gauss’s theorem the demagnetizing tensor can be written as 

1 '
( )

'

S
r S

r r
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
N

V

d
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kj
S S

jk

.                                                        (1.9) 

where 
2

V l Lc .  

The magnetocrystalline uniaxial anisotropy contribution is: 

(1) (1) (1)2 2 2sin (1 cos ) 1 ( )
1 1 1

N N N
E K K Kani k k kk k k

               
um   (1.10) 

where 
(1)

K  is the first-order anisotropy uniaxial  coefficient that has the dimension of an energy density 

and u is the unit vector that indicates the preferential direction.  

 

1.5 Spin waves 

From a classical point of view, a SW represents a phase coherent precession of microscopic vectors of 

magnetization of the magnetic medium. From the equivalent quasi-particle point of view, SWs are known 

as magnons, which are boson modes of the spin lattice that correspond roughly to the phonon excitations of 

the nuclear lattice. As temperature increases, the thermal excitation of SWs reduces 

a ferromagnet's spontaneous magnetization. In Fig. 1.7 a schematic representation of the precession of the 

magnetization around the direction of the external magnetic field is depicted.  

https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Spontaneous_magnetization
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Fig. 1.7. Schematic representation of the dynamic magnetization together with the corresponding SW and the direction 

of the external magnetic field. 

The first experimental evidence for the existence of SWs came from measurements of thermodynamic 

properties of ferromagnets, in particular the temperature dependence of the saturation magnetization. The 

Bloch law is an indirect confirmation of the existence of SWs in nature. The first direct observation of SWs 

was made using FMR for the case of uniform precession, which can be viewed as a SW with zero wave 

vector; later BLS experiments confirmed the existence of SWs with non-zero wave vectors. In some respects 

SWs can be considered as a magnetic analogue of the sound or light wave. Experimental and theoretical 

research have demonstrated that SWs exhibit most of the properties inherent in waves of other origin: 

excitation and propagation, interference and diffraction, focusing and self-focusing, tunneling of SWs and 

Doppler effect as well as formation of SW envelope solitons were observed. The main direction of 

magnonics is connected with the ability of SWs to carry and process information on the nanoscale. Research 

is particularly challenging since the SWs exhibit several peculiar characteristic that make them different 

from sound and light waves. In the case of  thin ferromagnetic film, the dispersion relation ω(k ) for SWs is 

highly dispersive and starts from ω0 =ω (k = 0) that depends on the strength and orientation of the applied 

magnetic field as well as on the size of the ferromagnetic sample. The SWs in a ferromagnetic continuous 

thin film propagate in the whole structure. As an example are the called Damon-Esbach surface modes
65

 and 

the backward mode. In addition, ω(k ) law is anisotropic even in the case of an isotropic magnetic medium. 

SWs are also governed by different interactions dominating on different length scales: the exchange and the 

dipolar interactions dominate on nanometer and micrometre length scales, respectively 
66

. The Fig. 1.8(a) 

shows an approximate trend of the dispersion relation when different interactions dominates the frequency 

expression of the SWs. In Fig. 1.8(b) the range of wave vector in which each interaction has the dominant 

role in the determination of the SWs frequency is shown. 

H
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Fig. 1.8. (a) Indicative dispersion relation of SW together with the three different range interaction. (b) Different range 

for the interactions that influence the SW frequencies.  

Recently SWs are observed and extensively studied in laterally confined magnetic structures and in these 

media SWs quantization is observed. SWs quantization is due to the lateral finite size effect. Very interesting 

properties associated to the laterally confined isolated nanostructures are found in the SWs spectrum: in 

magnetic elements of different shapes and of different materials, the SW modes have almost flat bands
67,68

. 

Because of the small lateral dimensions, dots are in a single domain state and their magnetization orientation 

is changed in a domino like cascade whereby the orientation of the magnetization propagates along a line or 

inside a cluster of dots coupled by magnetic stray field between elements. In the elements of a closely packed 

array, the standing waves of individual elements interact via dynamic dipolar magnetic coupling and from 

collective spin excitations which show dispersive behaviour. These waves can be assumed to be Bloch-type 

modes
69

. Periodically structured materials play a special role in magnonics. Periodically modulated materials 

are now explored to form MCs that are the analogue of photonic crystals. The SW spectrum has been 

modified by patterning and shows a tailored band structure in periodic magnetic materials. The band 

spectrum consists of bands of allowed magnonic states and forbidden frequency gaps in which there are no 

allowed magnonic states. MCs have been created to have full control of SWs, similarly to what photonic 

crystals already do for light: such crystals represent the magnetic medium in which the magnetic properties 

are varied periodically.  
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Chapter 2 

Dynamical Matrix Method: 

Micromagnetic Formalism 

 

 

Chapter 2 is devoted to the micromagnetic methods used to investigate the properties of the magnetic 

nanostructures treated in this Thesis. Static properties of the magnetization in magnetic systems have been 

calculated by means of the Object Oriented MicroMagnetic Framework (OOMMF)
49

 while to study the 

dynamical properties the Dynamical Matrix Method (DMM)
51

 has been used. The dynamic matrix 

approaches has been widely used in molecular dynamics but it can be applied to the magnetic structures. It 

relates the oscillating properties of the magnetization to the results of a dynamical matrix calculation, 

especially in the context of micromagnetism. The DMM is a power software able to determine the 

frequencies and spatial profiles of all spin-wave modes in a single calculation. Through the use of both the 

OOMMF and DMM code, the outcome of the first as a input file of the latter, it is possible to determine with 

high accuracy the properties of magnetic nanostructures having different shapes, materials and geometries. 

In the Section 2.1 the OOMMF code is briefly described for the calculation of the static properties of the 

magnetization in magnetic nanostructures. The OOMMF software allows the analysis of the ground-state of 

the magnetization in non-interacting elements, periodic systems and single or multimaterials systems. The 

Section 2.2 presents the DMM in the case of non-interacting elements together with the details of the 
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calculation of the derivatives of the energy terms. In Section 2.3, the DMM is presented for interacting 

elements, and in Section 2.4 for the case of multicomponent interacting elements. The DMM presents several 

advantages with respect to other micromagnetic methos: a) all the modes are obtained in a single calculation 

giving both frequencies and eigenvectors (i.e. dynamical magnetization profiles), b) the spectrum is 

computed directly in the frequency domain, c) the mode degeneracy is successfully solved, d) the spatial 

profiles of the spin-wave modes are directly determined as eigenvectors and, finally, e) the differential 

scattering cross-section can be calculated accurately from the eigenvectors associated to each spin-wave. 

 

2.1 Object Oriented MicroMagnetic Framework 

At the present, several software based on micromagnetism have been developed to study the static and 

dynamic properties of the magnetization in magnetic nanostructures. In particular, OOMMF is a public 

domain software produced by the National Institute of Standards and Technology
49

. Given a problem 

description, the OOMMF code integrates the Landau-Lifshitz Gilbert (LLG) equation: 

 
m m

m m



 

     
 

effH
s

d d

dt M dt
                                      (2.1) 

where α is the Gilbert damping coefficient and Heff is the effective field that includes the Zeeman field, the 

exchange field, the demagnetizing field and the anisotropy field. In this Thesis the systems are studied is a 

conservative regime and according to this hypothesis the damping coefficient is set equal to zero (α = 0).  

According to this approximation the Eq. 2.1 reduces to the Landau-Lifshitz (LL) equation 

 
m

m   effH
d

dt                                          
  (2.2) 

The integration is stopped and the equilibrium is reached when the maximum value of the torque 
2

m effH

sM

is below a specific value imposed in the problem description. Thanks to OOMMF it is possible to determine 

the ground-state of the magnetization in magnetic nanostructures composed by one or several ferromagnetic 

materials and for isolated or periodic nanostructures.  
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2.2 Dynamical matrix method for non-interacting elements 

2.2.1 Dynamic equations 

The total energy density is given by E = Eext + Eexch + Edem + Eani where the different contributions are 

expressed in Chap. 1, Sect. 1.2.3.  The second derivatives of the energy density terms are included into the 

dynamic equation, their expression will be shown in the next sections. Note that the system is supposed to be 

governed by a purely precessional motion. Hence, within this formalism, the intrinsic Gilbert damping is not 

taken into account in the spin dynamics. This means that the dynamic is conservative and is thus described 

by an Hamiltonian formalism.  Hence, it is possible to derive from the Hamilton equations applied to a 

magnetic dipole the following linear and homogeneous system of equations in which are included the second 

derivatives of the energy density calculated at the equilibrium. The variables are, of course, the small 

variations of the angles: δθk and δϕk . In particular, the energy density can be expressed as a power Taylor 

expansion up to the second order in the form 

1
2

0 1 1
2

     
     

   
 


 
  

N N
E E E E E

k l k l k k lk l k l l k l

             (2.3) 

By substituting the energy density of Eq. (2.3) into the Hamilton equations  yields the 2N system of linear 

and homogeneous equations for k=1,...N: 

     (2.4) 

with

 

                     (2.5) 

the eigenvalues of the problem. The sum is extended over the total number of the micromagnetic cells. The 

unknown factors ,
l l

   represent the eigenvectors of the problem and are expressed by the small angular 

deviation from the equilibrium position of the azimuthal (
l
 ) and polar (

l
 ) angles in the l-th 

micromagnetic cell. The system above has a solution only if the determinant is zero. By suitable exchanges 

 

0
sin sin1 1

0
sin sin1 1

E E
N Nk l k l

l l kl lk k

E E
N Nk l k l

l l kl lk k

   
  

 

   
  

 

    
    

                 


   
               

    

 Msi 



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of rows (columns) the linear and homogeneous system given in Eq.(2.4) can be written as an eigenvalue 

problem:  

    v vC  .     (2.6) 

In Eq.(2.6), v is the set of the unknown factors representing the eigenvectors of the problem that take the 

form                       

1

1

2

2













 
 
 
 
 
 
 
 
 
 
 
 
 
  
 






v

d

d

d

d

d
N

d
N

                                             (2.7) 

C  is the matrix whose elements are expressed as 

              C
2 1,2 1 sin

                 C  
2 1,2 sin

1.... , 1.... .

            C    
2 ,2 1 sin

                 C   
2 ,2 sin

E
k l

k l
k

E
k l

k l
k

k N l N
E

k l
k l

k

E
k l

k l
k

 



 



 



 




 

  




  


 



 






                            (2.8) 

 

The matrix C can be seen as composed by two submatrices 2 2  for each pair of values ( , )k l . In the 

diagonal submatrices ( )k l  the following relation is verified: 

2 1,2 1 2 ,2
 

 
C C

k k k k
        (2.9) 

For the elements of two different submatrices  ( , )k l  e ( , )l k  , that are not diagonal ( )k l , are valid the 

following symmetries: 
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sin sin
2 1,2 1 2 ,2

sin sin
2 1,2 2 1,2

sin sin
2 ,2 1 2 ,2 1

sin sin
2 ,2 2 1,2 1.

C C
k k l l l k

B C
k k l l l k

C C
k k l l l k

C C
k k l l l k

 

 

 

 

 
 


 


 

 
 

      (2.10) 

 

The following sections are devoted to the calculation of the second derivatives of the energy terms that are 

considered.  

 

2.2.2 Derivatives of the energy densities 

As the dynamical matrix components are expressed in terms of the second derivatives of the energy density it 

is necessary to calculate them from the expressions given in Chap.1 Sect. 1.2.3. The first and second 

derivatives of the magnetization have been calculated with respect to the polar and azimuthal angles of the 

given micromagnetic cell that represent the degrees of freedom of the system. Indeed, the second derivatives 

of the magnetization appear in the final expressions of the second derivatives of the energy density.  

 

 

 

The first derivative of the Zeeman energy density is 

                   extE kMs
k k
 


  

 

m
H                        (2.11) 

therefore the second derivative becomes: 

( sin sin ,sin cos ,0)

(cos cos ,cos sin , sin )

2

( sin cos , sin sin ,0)
2

2

( cos sin ,cos cos ,0)

2

( sin cos , sin sin , cos ).
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k
k k k k

k

k
k k k k k

k

k
k k k k

k

k
k k k k

k k

k
k k k k k

k

   


    


   


   
 

    



 




 




  




 

 


   



m

m

m

m
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2
2

0

ext
kE M l ks

k l
k l

l k

 
 

 
   

  
  



m
H

      (2.12) 

As outlined in  Chap.1, Sect.1.2.3, for the calculation of the exchange contribution the nearest-neighbour 

model is taken into account. The first derivative with respect  to 
k

   includes in the sum a term in which 

i k and thus n k  and also the other terms with n k  and with i  one of the nearest-neighbours. Thanks 

to a proper change of indices in the second term, the following equation is obtained: 

4 4 42

2 2 21 1 1

km m m
m m m

   

   
         

     

exch k k

k k k

E A A A
n n n

n n na a ai

                        (2.13) 

where the sum over n is made up over the nearest-neighbour cells of the k -th cell. 

In the special case of the adopted first neighbours model, the second derivatives are 

2
42

2 1

2 2
, :

2

0  

c

exch k

k
c

l

l

A k l kn
n lk

E A l l k nearest neighbour

l lk

other cases

 

   
















  

 

 
   

   

m
m

mm
   (2.14) 

The first derivative of the dipolar energy density, calculated according to the demagnetizing tensor is 

1 1 12 ( , ) ( , ) ( ( , )
2 2 2

2 ( , ) ( , ) .
1,

m
m m m m

mm
m m

  

 

  
        

    


   

  

dip

k

i

i

E iM N k i N i j N i is j i ij ii k i ik

N iM N k i N i is ikk i k i

             (2.15) 

In the sum, the contribution of the terms with the same index k j i   has been separated;  moreover by 

taking into account that the tensor N is even, namely ( , ) ( , )N i k N k i and symmetric ( N Nnm mn ). 

Thanks to the previous consideration, it is possible to write whitin the expression of the first derivative 

( , ) ( , )
m m

m m
 

 
  

 

k k

k k

N k i N k ii i                                (2.16) 
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and therefore: 

 

 ( , ) ( , ) ( , )

2 ( , )

mm
m m m m

m
m

  




     

  


 



i
i i

i i

iN i i N i i N i ii i
i

iN i ii
i

    (2.17) 

By using Eqs.(2.16-2.17) one obtains the last member of Eq.(2.15).  

The second derivative must take into account the two cases: , ( )i l i l j i    

2
2 ( , ) ( , )

2 1

2 ( , ) .

k

m m m
m

m m

   

 

 

    
     
         

    
 

 

dip

i

N l l iM N k l N l i l is
kE i il l

il l iM N l i l is
l

      (2.18) 

The k i  term resulting from the derivative of the second term has been included in the sum over k. 

The first derivative of the anisotropy term is:  

(1)
2( ) ( )aniE

K
k

k k
 


    

 
v v

m
km                                      (2.19) 

and the second derivative results:   

22
(1)

2 ( ) ( ) ( ) ( )    for  ,

2
(1) 2                2 ( ) ( ) ( )                    for    ,  or ,

2

aniE k k kK
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k kK
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k k
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     

   
 

             
      
 

  
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  
 

v v v v

v v v

m m m
m

m m
m

 (2.20) 
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E

j 





 
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2.2.3 Generalized Hermitian eigenvalue problem  

The equations of motion can be recast as a generalized Hermitian eigenvalue problem: 

 

Av = λBv      (2.22) 

 

where B  is a Hessian matrix expressed by the second derivatives of the energy density at equilibrium. B  is 

given by: 

2 1,2 1

2 1,2
1.... , 1... ;

2 ,2 1

2 ,2

 

 



 
















 




 






B E
k l

k l

B E
k l

k l
k N l N

B E
k l

k l

B E
k l

k l

    (2.23) 

The matrix A is an Hermitian matrix: 

0 sin 0 0 ...
1

sin 0 0 0 ...
1

0 0 0 sin ...
2

0 0 sin 0 ...
2

... ...

i

i

A i

i









 
 
 
 
 
 
 
 
 
 







     (2.24) 

and
Ms





  are the eiegenvalues. 

The matrix B  is symmetric (also in the case of interacting dots). Moreover, since the static magnetization 

corresponds to a minimum of the energy and the matrix B  is its Hessian, the matrix B  is also defined 

positive. The matrix A  is Hermitian. This allows to solve the system as a generalized eigenvalue Hermitian 

problem. To further reduce the numerical calculation time it is possible to evaluate only some eigenvalues 

and eigenvectors (that are in a specific range). Once the eigenvectors v  are obtained, the dynamic 

magnetization δmk in Cartesian coordinates and in unit of M
S

  is given by : 

 sin sin cos cos ,sin cos cos sin , sinm                  
k k k k k k k k k k k k k k k

        (2.25) 
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For each solution of eigenvalue problem, the collection of all δmk defines the mode profile. It must be 

remarked that δmk is a complex vector, because ,
k k

  are, in general, complex. 

The expression of the components of the generic dynamic magnetization δm: 

( sin sin cos cos ,sin cos cos sin , sin )                
 

 
      
 

m m
m   (2.26) 

yielding to    
2 2 2 2sin .m     

Thanks to these equations, the tangential and the radial components of the dynamic magnetization can be 

calculated in the k-th micromagnetic cell.  

1tan if 0
x
k y

k ky
k

      

cos sin

sin cos .

m m mx yt k k

m m mr x yk k

    

    

 

  

 

with 
k

  the angle between the radial direction and x-axis in the k -th cell. The tangential component is 

oriented clockwise whereas the radial component is oriented outward. 

 

2.3 Dynamical matrix method for interacting elements 

The DMM is also extended to interacting and periodic system . Let’s suppose to have a 2D periodic array of 

interacting nanodots characterized by the primitive a1 and a2; for example, for the specific case of a 

rectangular lattice their values are a1=λx x and a2=λy y where λx and λy represent the periodicity along x-axis 

and y-axis. The primitive vector of the reciprocal lattice are b1 and b2 and result 

 

 

 

 

2 1 2 1 2 1

1 2

1 2 1 2

 and 2 2
2 2

 
   

 
 

a a a a a a
b b

a a a a

. For the specific case of a rectangular lattice the primitive 

vectors become 
1 2

2 2
 and 

x y

 

 
 b x b y . Thanks to the analogy with the Bloch wave (analogy and not 

identity, because the wave function has not a physical meaning like instead has the magnetization) it is 

possible to write the following periodicity rule valid for the dynamic magnetization 
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( ) ( )K R
m r R m r   ie

      (2.27) 

where R is a vector of the lattice defined as  

 R = i1a1 + i2a2 (2.28) 

 With ,  and their values are in the range , .... 1;
1 2 1 2 2 2

N Ni ii i i i     and r is confined into the first cell and 

the Bloch vector takes the following values: 1 2 , , .... 1;
1 2 2 2

1 2

n n N Ni in ni iN N
     K b b

1 2,N N   and they are even natural numbers and indicate the number of cells n  in direction a1 and a2 

respectively. In order to confirm the hypothesis on the magnetization 1 2,N N  must be very large.  

 

2.3.1  Equation of motion 

If the magnetizations of the different primitive cells and of the different micromagnetic cells were 

independent, then one would have a dynamic system with variables 
k


R

 and 
k


R
, where the k  index 

changes inside the magnetic particle and R can assume the values indicated in Eq. (2.28). In this case the 

system of 2N linear and homogeneous equations of motion is 

 

     

'' 0
' 'sin sin, ' ,

'' 0
' 'sin sin, ' ,

R R
R R

R R
R R

R R RR R'R R

R R RR R'R R

  
   

 

  
   

 

   
           

      


   
         

       

EE
k lk l

l l kl lk jk

EE
k lk l

l l kl lk k

   (2.30) 

 

where the sums over l  runs from 1 to N, 1...k N , R is expressed in Eq.(2.28) , the sum over R’ is on the 

same values of R and with 
Msi 


  the eigenvalues of the problem. Instead, thanks to the Bloch 

condition expressed in Eq. (2.27), one can consider the equations only at R =0; moreover, taking into account 

the same condition, the variables appearing for R’≠0 can be replaced by using the same condition. Now, 
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rewriting the system, the index R is omitted when it has value equal to 0 or is irrelevant. Owing to these 

considerations, the system given in Eq.(2.30) can be rewritten in the form 

 

' '

' '' ' 0
sin sin1 1

' '

' '' ' 0
sin sin1 1

R R

R R

K R K R

R R

K R K R

R R

   
   

 

   
  

 

      
    

         
        

    


      
   

      
        
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i iE e E e
N Nk l k l
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N Nk l k l
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             (2.31) 

 

Eq.(2.31) is similar to Eq.(2.4) making the following replacement 

'

'' 0

K R

RR
   

 
iE e E

k l lk

     (2.32) 

and recalling that now the energy is referred to the whole system of particles. The symmetry for the matrix 

elements that was valid for a single cell now is not respected except in K=0 or K=G/2: 

' ' ' ''

' ' ' ''0 ' ' 0 0 ' 0 ''

' , 0,
2' 0 '

i i i ie E e E e E e E
k l l k l k l k

ie E
l k

       

 

         


  

R R R R

R

K R K R K R K R

R R R R

GK R
K K

R

       (2.33) 

where R’’= - R’. 

Eq.(2.31) is again an eigenvalue problem like for the case of isolated element and can be solved as a complex 

generalized Hermitian eigenvalue problem.  

 

2.3.2  Calculation of energy derivatives 

The primitive cell has at the centre a single dot that occupies only a part of it. The interdot exchange 

coupling is zero. Because of the latest considerations and due to the fact that derivatives of Zeeman, 

exchange, anisotropy, energy density are referred only to the cell of the first variable (
0k

 ) or at most to the 

nearest-neighbour, all terms of the sum in Eq.(2.31) with R’≠0  are zero. Hence, for these energy density 

terms the equations are the same as those of the single particle case and the same occurs for their 

corresponding derivatives appearing the equations of motion. The only energy density term that differs from 
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the one obtained for the isolated element is the demagnetizing energy density. For a system of interacting 

nanoelements, the demagnetizing energy density is: 

1
( ) ( , ') ( ')

dem '2 , , ,
E N k k

k kk k
 


m R R,R', m R

R R'
    (2.34) 

where, in addition to the sum over the k and kmicromagnetic cells belonging to the primitive cell, one must 

take into account also the sum (labeled generically by R and R’) over the primitive cells. In order to calculate 

the first derivative, two properties of the demagnetizing tensor have been considered: 

* tv N N v N v N v N v                      (2.35) 

where v and w are two vectors. Since N  is real and symmetric and 
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thanks to the inversion symmetry. Hence, the first derivative of the energy density is: 
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The second derivative is:             
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In the sum it is included the case in which ( ', ') (0, )k kR  that is generated from the derivative of the 

second term in Eq.(2.37). Now it is possible to calculate the terms that enter into system of Eq.(2.31), 

starting with the one corresponding to l k :  

0 0
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When l k the term turns out to be: 
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Due to the properties of the demagnetizing tensor the symmetry  
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R R

K R K R
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is fulfilled when l k , but it is not fulfilled when l k .  

The formalism previously developed can be extended to a system of ADs. In this case it is necessary to add 

the exchange interaction between primitive cells 
70

. In extended magnetic system like AD arrays in addition 

to the usual nearest-neighbours exchange interaction between micromagnetic cells, the exchange 

contribution across the nearest-neighbours micromagnetic cells belonging to adjacent surface primitive cells 

must be taken into account. Hence, the exchange energy density of the given primitive cell takes the form:  

4 (1 )

2

N

c

nkE A
exch nk l

kn

 
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m m

     (2.42) 

The first sum runs over all the micromagnetic cells of the primitive cell, the second sum runs over the 

nearest-neighbours of the k-th micromagnetic cell. The variable lc is the distance between the centers of two 
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adjacent cells of index k and n respectively. When the k th micromagnetic cell is on one of the edges 

(vertices) of the given primitive cell, the interaction with one (two) micromagnetic cell(s) belonging to the 

correct nearest primitive cell must be added.    

 

2.4 Dynamical matrix method for multicomponent periodic systems 

The DMM with periodic boundary conditions (PBCs), developed for extended and periodic ferromagnetic 

systems composed by one material and described in the previous Sections, is generalized to systems 

composed by j different ferromagnetic materials  with j = 1,2,3,…F
31

.  As for the case of the single 

component ferrromagnetic system, the index  k labels the micromagnetic cells with k = 1,2,… N where N is 

the total number of micromagnetic cells within the primitive cell. The number of micromagnetic cells 

assigned to the jth ferromagnetic material within the primitive cell is Nj such that N1 + N2 +…+ NF = N.   For 

each micromagnetic cell the reduced magnetization takes the form  / sM k
k k
Mm  where 

k
M (  sM k ) 

is the magnetization (saturation magnetization) in the kth cell. Since the system understudy contains different 

magnetic materials, also the saturation magnetization depends on the jth ferromagnetic material through the 

index k. Hence, in a polar reference frame the reduced magnetization reads 

(sin cos ,sin sin ,cos )
k k k k k k

    m
                                          

(2.43) 

where 
k
  (

k
 ) is the azimuthal (polar) angle of the magnetization (the time dependence is omitted). The 

total energy density 
E

E =
V

 , with E  the energy and V the volume of the system, respectively, is a function 

of 
k

  and 
k
 , namely ( , )

k k
E E    with H E  being H the Hamiltonian in a conservative system

30
.  

While the expressions of Eext, Edem and Eani are similar to the ones of the one-component system, the physics 

underlying in the exchange energy density term Eexch is different. Indeed, Eexch includes also the interaction 

between two micromagnetic cells belonging to two adjacent ferromagnetic materials. Using the first-

neighbours model, the exchange energy density in the primitive cell takes the form
31

 

 
 

1
,                                              (2.44)

21  n.n.
exch

N nkE A k n
k an

kn

 
  

 

m m
 

where A is the exchange stiffness constant depending on the ferromagnetic materials through the indexes k 

and n, respectively and the variable akn is the distance between the centers of two adjacent micromagnetic 

cells of indexes k and n, respectively. In the first sum on the second member of Eq. (2.44) k varies over all N 

micromagnetic cells, while the second sum depending on n ranges over the nearest neighbouring (n.n.) 

micromagnetic cells of the k th micromagnetic cell that can belong to a different ferromagnetic material. As 
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for the case of 2D AD lattices
71

, when the kth micromagnetic cell is on one of the edges (vertices) of the 

proper primitive cell, the interaction with the micromagnetic cells belonging to the correct nearest supercell 

(primitive cell) must be taken into account. Like for the one-component systems, by substituting the energy 

density into the Hamilton equations
31

 yields the 2N system of linear and homogeneous equations                               
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where  k  is the gyromagnetic ratio in the kth cell. Also the gyromagnetic ratio depends on the jth 

ferromagnetic material through the index k. In order to find the final form of the equations of motion it is 

necessary to introduce: 1) the time dependence of the small angular deviations from the equilibrium 

magnetization in the usual exponential form 2) the Bloch condition applied to the dynamic magnetization of 

a periodic system.  

The dynamic magnetization in the kth cell may be represented in the form 

  s sin sin cos cos ,sin cos cos sin , sinM k
k k k k k k k k k k k k k k k

                  m

  

(2.46) 

where the dependence on the Bloch wave vector is implicit.  Note that, like for the one-component systems 

in the form either of isolated or periodic magnetic elements, 
k

m is a complex vector, because the small 

angular deviations 
k

  and 
k

  are, in general, complex. Due to the PBCs and the Bloch rule, the number 

of independent variables in the system is limited to the number N of micromagnetic cells in the primitive cell 

also for an infinite array. 

By omitting the index R  when it has value equal to 0, because of the Bloch condition, or when it is 

irrelevant and by taking into account that the Bloch rule can be applied to the dynamical variables for 

 R 0 , the 2N system of linear and homogeneous equations can be rewritten in a form similar to the ones of 

the one- component periodic system
31

, namely 
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where   
 

 
sM k

k i
k

 


  are the complex eigenvalues. The indexes k and l range over the total number N of 

micromagnetic cells inside the primitive cell which are assigned to F different ferromagnetic materials. Note 

that Eq. (2.47) represents an eigenvalue problem  that can be written in the compact form C v v  where C 

is a complex and non-symmetric matrix containing the second derivatives of the energy density calculated at 

the equilibrium and  
T

1 1 2 2, , , ,......, ,N Nv        are the eigenvectors. For each solution of the 

eigenvalue problem, the collection of all 
k

m  given in Eq. (2.46) defines the mode profile. For 

computational reasons, as done for the one- component periodic ferromagnetic systems, it is convenient to 

recast the eigenvalue problem in the form of a complex generalized Hermitian one.  In a compact form, like 

for the one-component systems
31

 

                                                                                                     (2.48)                     

 

Because of the presence of different magnetic parameters (magnetization and gyromagnetic ratio) a different 

definition of the eigenvalue  is given with respect to the one-component systems. It is convenient to define 

the real eigenvalues as 1
 

ω
   to make them independent of the ferromagnetic material. The new defined 

eigenvalues turn out to be inversely proportional to the angular frequency of the collective modes. The 

energy density terms entering in the Hessian matrix B express the second derivatives of the energy density 

calculated at equilibrium and is given by: 
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where ' '

' '' '

i i
E e E e

k l l k
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K R K R

R RR R
   

  and , = , for and
2

 
G

K 0  K  with G a primitive 

vector of the reciprocal lattice. Hence, like for the one-component periodic magnetic system,  matrix B is not 

symmetric. In a compact form its matrix elements can be written as                                                                             

A Bv v .  
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While the matrix A takes the form 
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Matrix A depends on saturation magnetizations  sM k  and on the corresponding gyromagnetic ratios 

 .k It  may be decomposed into F submatrices 2N1  2N1, 2N2  2N2 , …2NF  2NF  fulfilling the 

condition N1 + N2 +…+ NF = N.  Moreover,  it is Hermitian like for the one-component ferromagnetic 

periodic systems.   

 

2.5 Scattering cross-section 

It is useful to give the expression of the differential scattering cross section used to interpret the 

micromagnetic results obtained in Chapter 3, 4 and 5. The evaluation of the differential cross section allows 

to assign unambiguously to a given spin-wave mode a given BLS peak. The differential scattering cross 

section associated to each magnonic mode
68

 of the spectrum turns out to be proportional to the square 



48 

 

modulus of the amplitude of the scattered field, viz. 
scattE , and takes thus the form                       
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,                                       (2.52)                                               

where   is the scattering cross section, d  is the differential solid angle and the subscripts p and s refer to 

the p- and s-polarization of the incident and scattered light, respectively. C is a constant depending on 

geometric and optical parameters,  N   is the Bose-Einstein thermal factor with   and   the 

angular frequency of the scattered and incident light, respectively, the sum 
 

1

N
i

e
 


R

k+q R

R=R

is performed over N 

illuminated cells, 
0  is the amplitude of the incident electric field, k k k     ,       is the 

Dirac delta and   is the angular frequency of the given collective mode. Here k    k  is the  –

component ( ,x y ) of the scattered (incident) wave vector projected on the surface and  A r  is a 

quantity depending on the dynamical magnetization and optical properties of the media. In the numerical 

calculations, the differential scattering cross section associated to each collective mode at a given frequency 

and for a given Bloch wave vector is determined, because it is assumed in Eq.(2.52) the selection rule 

= -k q , which holds rigorously only when the area illuminated by light is infinite. 
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Chapter 3 

Mono-material 2D magnonic 

crystals 

 

 
Two-dimensional (2D) mono-material MCs can be realized in the form of a periodic array of interacting 

nanomagnets (dots)
53,54

 or holes in a ferromagnetic film (i.e., AD array)
70

. In this respect, propagation of 

SWs in AD lattices, consisting of 2D periodic arrays of nanopatterned holes etched into a continuous 

ferromagnetic film, has been extensively investigated in the last years because of the possibility to control 

SW propagation on the nanoscale
71,72

. On the other hand great attentions has been devoted to the study of 

soft and Goldstone modes in condensed matter physics. Thanks to a detailed investigation, both experimental 

and theoretical, the softening of phonon modes was observed and proved by theoretical calculations in 

superconductors
73,74,75

. In magnetic nanostructures a lot of investigations concern the analysis of soft and 

pseudo-Goldstone modes as a function of the external magnetic field have been performed. Soft modes of 

acoustical nature and pseudo-Goldstone modes have been found, respectively, in antiferromagnetically in-

plane magnetized Fe/Cr multilayers and trilayers
76,77

. The frequency of these modes, in both cases, vanishes 

at a critical magnetic field. In recent years, the investigation is focused on the softening mechanism in 

confined magnetic systems. As an example, the mode softening has been studied in the case of isolated 

elliptical dots showing that the frequency of the end mode vanishes for  a particular value of the external 

magnetic field  corresponding to the magnetization reversal
78

. Recently, the static and dynamic properties of 

ferromagnetic2D AD lattices as prototypes of MCs have been deeply investigated
79,80,81

. An investigation of 

the frequency dependence on H for AD lattices with different hole size was carried out by using the 

FerroMagnetic Resonance technique and by describing the field dependence of the most relevant modes with 

the Kittel equation
81

. In the range of magnetic fields explored, neither end-modes (EMs), i.e. modes localized 

close to the border of holes, nor softening of the resonance modes was found with FMR, while these modes 
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were observed by means of BLS technique
81

. Interestingly, 2D mono-material MCs show also interesting 

properties in the SWs manipulation and propagation. Recently some combined theoretical and experimental 

studies analyze the SW propagation in in-plane and in out-of-plane magnetized ADs
82

. However, there are 

not studied that shows the dependence of the static and dynamic properties on the ground-state 

magnetization.  

Hence, this Chapter focuses on the study of the static and dynamic magnetic properties of 2D mono-material 

MCs. Principally, two different analysis have been performed. In the Section 3.1 is proved the existence of 

soft modes in 2D AD lattices, that is the softening of the EM and of the Fundamental (F) mode (the quasi-

uniform mode of the spectrum) frequencies, both characterized by the presence of finite frequency gaps. This 

phenomena is totally confirmed by the experimental measurements obtained by means of the BLS technique 

performed at the Department of Physics and Geology of the University of Perugia. The underlying physics at 

the basis of the softening mechanism is explained by means of a simple phenomenological model that 

describes the occurring reorientational and continuous phase transition. The effect of the demagnetizing field 

on the frequency behaviour of the most relevant collective modes is also discussed. 

Moreover in section 3.2, the effect of the ground-state magnetization on the SWs frequencies in the ADs 

system has been studied by means of the DMM. Moreover the group velocity and the band width of the most 

relevant modes have been evaluated for both the static magnetization distributions.  

 

3.1 Soft magnonic modes in 2D antidot lattices 

3.1.1 Antidot lattices 

A systematic investigation of the dependence of the magnetic normal modes on the magnetic field H for four 

arrays of AD lattices has been carried out. The samples have been fabricated by the Professor Adeyeye at the 

National University of Singapore. The geometric parameters of the four samples are the following: the lattice 

constant (a = 420 nm) and the thickness (L = 30 nm)  are fixed while the circular holes have different 

diameter di (separation si) with i =1,2,3,4: d1 = 140 nm (s1 = 280 nm), d2 = 180 nm (s2 = 240 nm), d3 = 220 

nm (s3 = 200 nm) and d4 = 260 nm (s4 = 160 nm). In Fig. 3.1 are shown the SEM images provided by the 

Professor Adeyeye at the National University of Singapore of the four systems investigated. 
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Fig. 3.1. SEM images of the four samples studied provided by Professor Adeyeye, National University of Singapore. (a) 

sample with d1 = 140 nm, (b) d2 = 180 nm, (c) d3 = 220 and (d) d4 = 260 nm. 

The ground-state magnetization is calculated by means of the OOMMF code with periodic boundary 

conditions
49

  by subdividing the system into micromagnetic cells of 5 nm  5 nm  30 nm. Thanks to the 

DMM with implemented 2D boundary conditions, the spectrum of magnetic normal modes has been 

calculated. The parameters used in the simulations have been obtained by fitting the dispersion curve of the 

DE mode in the corresponding continuous Permalloy (Py) (Ni80Fe20) film in the dipolar-exchange regime for 

a fixed value of K = 0 according to Eq. (3.1) 

          
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                          (3.1) 

where L indicates the thickness of the sample and H is the external magnetic field that ranges from 0 to 2000 

Oe. The magnetic parameters obtained are: γ/2 = 2.8 GHz/kOe with γ the gyromagnetic ratio, saturation 

magnetization Ms = 800 emu/cm
3
 and exchange stiffness constant A = 1.3  10

-6
 erg/cm.  

 

3.1.2 Collective mode classification  

The collective excitations has been classified by taking into account their spatial profiles calculated by means 

of the DMM calculations. In Fig. 3.2 are shown the spatial profiles of the most relevant modes for the system 

with d = 260 nm and for an external field of H = 2 kOe, but the collective mode classification is valid also 

for the AD lattices with holes of different diameter
70

. Starting from lower frequency part of the magnonic 

spectrum it is present the edge mode (EM), that is a SW mode strongly localized at the border of the ADs in 

the direction of H and along the local static magnetization M (it is important to remember that EM indicates 

in case of analysis of antidot array the edge mode while in the next chapter EM will indicates the end mode). 

The fundamental (F) mode has frequency higher than the EM and it is the quasi-uniform resonance modes of 

the spectrum. The F mode spreads in the horizontal channel comprised between ADs. The fundamental 

localized (F
loc

) mode is similar to the F mode but it has maximum amplitude in the horizontal rows 

containing ADs. The F
2loc

  4BA mode exhibits two nodal planes perpendicular to the local static 

magnetization M along the horizontal rows of AD lattices, but, in addition, it has four nodal planes of 
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backward-like (BA) type along the horizontal channels (perpendicular to the local static magnetization M). 

This mode is mainly localized in the horizontal rows close to AD lattices and this kind of localization 

increases with decreasing H.   

 

Fig. 3.2. Spatial profiles (real part of the out-of-plane component of the dynamic magnetization) in 3  3 primitive cells 

of the relevant modes are plotted for d = 260 nm and H = 2 kOe. 

At high frequency it is present the Damon-Eshbach-like (DE) mode, named 
loc

2BZDE  where 2BZ indicates that 

this mode has the largest calculated cross-section in the second BZ. Note that the calculated scattering cross-

section of the 
loc

2BZDE mode is non-negligible up to K close to the centre of the 1BZ and vanishes exactly at K 

= 0. In addition, in the sample with d4 = 260 nm, the 
2BZDE  mode which is mainly concentrated in the 

horizontal channels and exhibits the same cross-section features as the 
loc

2BZDE  has been studied. This is due 

to the fact that for this diameter the large demagnetizing field in the horizontal channels deforms the spatial 

profile of the detected 
2BZDE mode which becomes detectable at K = 0.   

 

3.1.3 Softening of collective modes 

The SWs frequencies obtained by means of the DMM as a function of H are reported in Fig. 3.3. The 

calculated frequencies are compared to the SWs frequencies measured experimentally by means of the BLS 

technique provided by the Department of Physics and Geology of the University of Perugia. As a general 

comment, by looking at Fig. 3.3, it is possible to note a very good agreement between the DMM calculations 

and the BLS measurements for all the diameters. The small discrepancies can be attributed to the fact that the 

periodic distribution of fabricated holes tends to become more irregular with increasing hole size. The 
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frequencies of the collective excitations have a common trend: they decrease by decreasing the intensity of 

H. It is also very interesting to note that for all the systems analyzed according to the DMM simulations, the 

softening of both the F mode and EM occur when H is reduced below a critical field Hc. Furthermore, by 

inspection of the Fig. 3.3, one observes that Hc monotonically increases upon increasing the hole diameter. 

The calculated values of Hc for each diameter are: a) Hc (d1) = 0.2 kOe b) Hc (d2) = 0.32 kOe c) Hc (d3)= 0.5 

kOe and d) Hc (d4)= 0.75 kOe. Moreover, at Hc the calculated frequency curves exhibit a finite gap whose 

value decreases by decreasing the hole diameter. These trends are confirmed by the BLS measurements, 

although in the experiments the softening is less pronounced. This discrepancy between theory and 

experiment may be ascribed to the size and shape distribution of the holes that could mask the observation of 

frequency softening for large diameters. For d3 = 220 nm and d4 = 260 nm the simulations predict a further 

minimum for the EM frequency below Hc due to a sudden jump of M towards the x direction. In Fig. 3.3 the 

BLS and calculated frequencies of the Damon-Eshbach mode of the unpatterned reference film are also 

shown as empty up triangles and dashed black lines, respectively.  

 

Fig. 3.3. Frequencies of spin-wave modes vs. H for (a) d1 = 140 nm, (b) d2 = 180 nm, (c) d3= 220 nm, (d) d4 = 260 nm. 

Solid red lines: calculated frequencies of EM and F mode. Solid black lines: calculated frequencies of the other relevant 

modes of the spectrum. Blue circles: BLS frequencies. Dashed black lines: calculated frequencies of the Damon-

Eshbach mode of the continuous film. Empty up triangles: BLS frequencies of the Damon-Eshbach mode of the 

continuous film. The magnitude of the critical field Hc is shown and marked by an arrow for each diameter. In panel (a) 

a reference frame with the direction of H is shown.  
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It is important to note that in these AD lattices the softening does not involve only the lowest-frequency 

mode of the spectrum, that is the EM, but also the F mode
78

. This phenomena is in contrast with the mode 

softening and magnetization reversal in isolated nanorings where only the lowest-frequency mode softens
83

. 

In order to explain the softening mechanism of the EM and F mode it is necessary to observe the evolution of 

the mode localization as a function of the direction of M. The Fig. 3.4 shows the calculated ground-state 

magnetization distribution and the spatial profiles of the EM and F mode for d4 = 260 nm and H = 1000 Oe. 

If the applied magnetic field is strong enough to saturate the system, the magnetization in every cell is almost 

parallel to H. In this case the EM is localized along the y direction close to the border of the ADs while the F 

mode spreads in the horizontal channels.  

 

Fig. 3.4.  Spatial profiles of the EM and of the F mode for d4 = 260 nm in 3  3 primitive cells calculated at H = 1000 

Oe (H > Hc) together with the ground-state magnetization distribution in the primitive cell.  

If the applied magnetic field decreases in order that H < Hc a continuous rotation of M from the hard axis, 

that is placed along the principal symmetry of the lattice (y direction), to the easy axis at  = 45
o
 with  

denoting the in-plane angle formed by M with the y axis takes place (see Fig. 3.5). The continuous phase 

transition associated to the rotation of M corresponds to a lowering of the symmetry taking place with 

increasing H. This means that the phase where M is aligned along the y direction (H > Hc) is more ordered 

with respect to that where M forms an angle  = 45
o
 with the y direction (H < Hc)

84,85
. By decreasing H, the 

spatial localization of the F mode and of the EM follows the rotation of M and, as a consequence, their 

amplitude is mainly concentrated along the diagonal of the primitive cell (see Fig. 3.5). 
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Fig. 3.5.  Spatial profiles of the EM and of the F mode for d4 = 260 nm in 3  3 primitive cells calculated at H = 250 Oe 

(H < Hc) together with the ground-state magnetization distribution in the primitive cell.  

For H < Hc the rate of decrease of the mean demagnetizing field is lower with respect to that of H resulting in 

an increase of the mean internal field 
int dem H H H       with 

demH   the y-component of the 

demagnetizing field averaged both over the y direction and over the x direction inside the primitive cell. 

Unlike the case of the surface mode in perpendicularly magnetized iron and cobalt (Co) films
78,86

, the 

calculated finite frequency gaps of the F mode and of the EM are only due to the internal field contribution. 

This contribution is directly related to the strong localization, around Hc, of both modes close to the border of 

holes where the y-component of the demagnetizing field changes sign.  

 

3.1.4 Demagnetizing fields of the most relevant collective modes 

It is very interesting to investigate the frequency behaviour of the F and F
loc

 modes, which are the most 

relevant modes of the spectrum as a function of the geometric parameters of the samples. Since the 

frequencies of the SWs excitations are related to the internal magnetic field experienced by the SWs modes, 

it is useful to discuss the features of the mean demagnetizing field. Due to the surface magnetic charge 

distribution at the border of the ADs, Hdem is parallel to H in the horizontal rows and antiparallel to H in the 

horizontal channels . As a consequence, the F mode, that is mainly localized in the horizontal channels, 

experiences a negative mean demagnetizing field, whereas the F
loc

 mode, that is mainly concentrated in the 

horizontal rows, feels a positive mean demagnetizing field. The Fig. 3.6 shows the F and F
loc

 frequencies 

calculated at H = 2.0 kOe  as a function of the aspect ratio  = L/s  and compare them to the experimental 
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frequency values. It is important to note that in the micromagnetic calculation of the mean demagnetizing 

field the average along the y direction for the F and F
loc

 modes is done considering the micromagnetic cells 

corresponding to the mode localization. The aspect ratio  for the F mode is calculated by taking into 

account the mode localization along the y direction in the horizontal channels that is less than the separation 

between holes.  

By looking at the Fig. 3.6 it is possible to observe that the F mode frequencies decrease with increasing the 

aspect ratio, while the F
loc 

mode frequency has an opposite trend. Indeed, on increasing the diameter of the 

holes, the separation between holes reduces and, as a results, the mean demagnetizing field (y component) 

increases negatively leading to a decrease of the F mode frequencies. Instead, by increasing the hole 

diameter, increase also the mean demagnetizing field experienced by the F
loc

 mode yielding to a gain of the 

corresponding frequencies. In Fig. 3.6(b) is shown the trend of the mean demagnetizing field calculated by 

OOMMF with PBCs at H = 2 kOe experienced by the F and F
loc

 mode as a function of .  
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 Fig. 3.6. (a) Measured (red points) and calculated (black lines) frequency behaviour vs. the aspect ratio for the F and 

F
loc

 modes, at H = 2.0 kOe. (b) Continuous black line: calculated mean demagnetizing field (y-component) vs. the 

aspect ratio for the F mode. Continuous blue line: calculated mean demagnetizing field (y-component) vs. the aspect 

ratio for the F
loc

 mode.  

In order to completely understand the frequencies trend shown in Fig. 3.6, the mean demagnetizing field (y-

component) averaged over the micromagnetic cells along the y-direction experienced by the F mode as a 

function of x  has been calculated at H = 2.0 kOe. In Fig. 3.7(a) it is drawn in for two different diameters d = 

140 nm and d = 180 nm, respectively, while in Fig. 3.7(b)  it is plotted the corresponding one felt by the F
loc

 

mode.                     

Aspect ratio

Aspect ratio

H = 2.0 kOe

H = 2.0 kOe
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Fig. 3.7. (a) Continuous black (red) line: calculated mean demagnetizing field as a function of x for the F mode in the 

primitive cell at d1= 140 nm (d2= 180 nm). (b) As in panel (a), but for the F
loc

 mode.  

 

3.2 Effect of the ground-state magnetization on the dynamic properties 

3.2.1 System and method 

The square ADs array is composed of circular nanoholes with diameter d = 200 nm, periodicity a = 610 nm 

embedded into a Cobalt-Iron-Borum (CoFeB) film having thickness of 41 nm
82

. The Fig. 3.8(a) shows the 

top of view of the ADs system including the primitive cell. The ground-state magnetization is calculated by 

means of the OOMMF code with PBCs
49 

 by subdividing the system into micromagnetic cells of 5 nm  5 

nm  41 nm. Thanks to the DMM with implemented 2D boundary conditions, the spectrum of magnetic 

normal modes has been calculated for a fixed external magnetic field having an intensity of H = 20 kOe.  In 

the simulations, the following magnetic parameters are used for CoFeB: γ/2 = 2.8 GHz/kOe with γ the 

gyromagnetic ratio, saturation magnetization Ms = 1330 emu/cm
3
 and exchange stiffness constant A = 2.75  

10
-6

 erg/cm. The saturation magnetization is an effective magnetization because its value includes the 

perpendicular surface anisotropy typical of this ferromagnetic alloy. For the CoFeB material the value of the 

anisotropy constant is K = 3.7 erg/cm
2 .  
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Fig. 3.8. (a) ADs square lattice with a the periodicity of the system and d the diameter of the ADs. (b) The 1BZ in the 

reciprocal space is draw and the x direction along which the SWs propagate is indicated.  

The analysis of the SWs frequency is carried out along the x direction (see Fig. 3.8(b)) that is varying K x  

and fixing K y . K x  and K y  are the component of Bloch wave vector 
2 2

,n nx y
a a

 

 
 
 

K  with 

2 2
 and K n K nx x y y

a a

 
  . Since the ADs system is periodic, with a periodicity a  in direct lattice and 

periodicity K  in reciprocal lattice, it is sufficient to calculate the frequency of SWs in the first BZ to obtain 

the frequency of SWs in all points in x direction of the reciprocal space. 

 

3.2.2 Static and dynamic properties  

The external magnetic field has been applied along two different directions: a) first H is parallel to the z-axis 

and secondly b) H is placed along the y direction. As a results, the ADs system is in the first case with an 

out-of-plane magnetization while in the second case in-plane magnetized. The Fig. 3.9 shows top of the 

views of the ground-state magnetization distributions in the primitive cell of the ADs system calculated by 

means of the OOMMF with PBCs. In the case of H placed parallel to the z direction, the static magnetization 

rotates in the out-of-plane direction and it is aligned with H (see Fig. 3.9(a)). Instead, when H is parallel to 

the y direction, it is possible to observe in Fig. 3.9(b) that the static magnetization is in-plane and along the y 

direction. By further inspection of the Fig. 3.9(a) and (b), a small bending of the static magnetization close to 

the ADs edges can be noted for both the ground states of the magnetization distributions due to the presence 

of the ADs. 
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Fig. 3.9. (a) Top of the view of the distribution of the ground-state magnetization for the case of the out-of-plane external 

magnetic field in the primitive cell together with the H and M direction. (b) As in panel (a) but in the case of in-plane external 

field. 

Starting from the two different distribution of the static magnetization, the dynamical properties of the ADs 

system have been calculated by means of the DMM. The analysis is focused on the SWs modes having an 

appreciable scattering cross section in the center of the BZ. When the H is applied along the z direction, it is 

present only one SW mode having relevant differential scattering cross-section. The characteristic mode of 

the out-of-plane magnetized ADs system is called relevant mode (RM) and it spreads in the whole primitive 

cell. The calculated spatial profile in the center of the BZ is shown in Fig. 3.10(a). While, in the case of the 

in-plane magnetization there are two SWs excitations with non-negligible scattering cross-section that are 

classified by taking into account their spatial localization in the primitive cell. The mode with lower 

frequency is the EM that is strongly localized at the edges of the holes and, at a higher frequency, the DE 

mode that spreads in the whole primitive cell and corresponds to the F mode in the center of the BZ. The 

spatial profiles of the EM and DE mode are shown in Fig. 3.10(b) and (c), respectively. 



61 

 

 

Fig.  3.10. (a) Calculated spatial profiles of the RM, real part of the y component of the dynamic magnetization, in 3  3 

primitive cells for the out-of-plane magnetized AD lattice. (b) Spatial profile of the EM, real part of the out-of-plane 

component of the dynamic magnetization,  in 3  3 primitive cells for the in-plane magnetized AD lattice. (c) As in 

panel (b), but for the DE mode.  

In order to investigate the effect of the ground-state magnetization on the frequency of the SWs, the band 

structure for the collective excitations previously introduced are calculated at fixed external magnetic field H 

= 20 kOe for both the configuration according to the DMM. The dispersion curves are reported in Fig. 

3.11(a) in the case of out-of-plane magnetization
83

 and Fig. 3.11(b) in the case of in-plane magnetized ADs 

system.  

 

Fig. 3.11. Dispersion relation along the x direction perpendicular to the external magnetic field. (a) Dispersion curve of 

the RM in the case of H parallel to the z-axis. (b) Dispersion curves of the EM and DE mode in the case of H parallel to 

the y-axis. 
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As a general comment, it is possible to note that the frequencies of the RM in the out-of-plane magnetized 

system are lower than the frequencies of EM and DE mode in the in-plane magnetized one. This effect is 

related to the different internal magnetic field present in the two static configurations. The internal magnetic 

field (Hint) can be decomposed in the sum of the demagnetizing field Hdem and the exchange field Hexch, Hint 

= Hdem + Hexch. While the Hexch minor influences Hint,  Hdem gives an important contribution to Hint . In 

particular, by comparing the intensity of the internal magnetic field calculated for the case of in-plane 

magnetized system and in the case of out-of-plane magnetized system, it is possible to note that Hint is higher 

in the first case with respect to the latter. This can be attributed to the fact that the corresponding 

demagnetizing field that reduces the internal magnetic field is minor in the case of the out-of-plane 

magnetized system with respect to the one of the in-plane magnetized system. Moreover it is possible to 

observe the presence of band gaps at the border of each BZs for both the RM and DE mode. The formation 

of band gaps is due to the inhomogeneitiy of the Hint felt by the collective excitations. This explanation is 

valid for the in-plane and out-of-plane magnetized system, indeed due to the presence of the holes, the 

demagnetizing field influences the trend of the internal field when M is in-plane and also when M is out-of-

plane. 

By further inspection of Fig. 3.11, one observes that the band gaps amplitude decreases by increasing K for 

both the geometries analyzed. In particular, the values of the band gaps have been calculated as the 

frequencies difference of the RM and DE mode at the nBZ and (n+1)BZ (where n indicates the number of 

the BZ and n = 1,2,3,4.). Due to the frequency scale the band gaps of DE mode in Fig. 3.11(b) are not clearly 

visible, but their calculated values are collected in Tab. 3.1 together with the band gaps calculated for RM 

mode. 

Δν
K  

(GHz) RMnBZ DEnBZ 

Δν
X 

(GHz) 0.61 0.57 

Δν
 Γ

‘ (GHz) 0.18 0.34 

Δν
X’

 (GHz) 0.21 0.07 

 

Tab. 3.1. Frequency band gaps calculated for the most representative modes.  

By looking at Tab. 3.1, it is possible to observe that the band gaps amplitude are almost similar for the RM 

and DE modes in the out-of-plane and in-plane magnetized system. This means that band gaps amplitude is 

not strictly related to the ground-state magnetization. Indeed, the amplitude of band gaps is always minor 

than 1 GHz and it decreases by increasing the Bloch wave vector. A different dependence from the static 

configuration is found for the bandwidth amplitude. In Tab. 3.2 are reported the bandwidths of the RM and 

DE mode calculated according to Eq. (3.2) 

Δν = | ν (Kx= nπ/a) - ν (Kx= (n-1)π/a) |                          (3.2) 
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where n indicates the number of the BZ and n = 1,2. 

 

Band width (BW) RMnBZ DEnBZ 

BW 1BZ (GHz) 1.33 0.72 

BW 2BZ (GHz) 1.28 0.75 

 

Tab. 3.2. Frequency bandwidths calculated for the most representative modes. 

Tab. 3.2 shows that the band width of the RM is higher than the one of the DE mode both for the 1BZ and 

the 2BZ. This means that it is influenced by the distribution of the static magnetization. Therefore, the RM in 

the out-of-plane magnetized ADs system is more propagative than the DE mode in the in-plane magnetized 

system. 

 

3.3 Conclusions 

Summarizing, here the magnetic properties of different mono-material MCs have been studied. In particular, 

in Sect. 3.1, it has been shown that in 2D Py AD lattices with hole size in the nanometric range, the softening 

of the two lowest-frequency modes (EM and F mode) is the consequence of a continuous phase transition of 

the static magnetization which progressively rotates from the hard axis to the easy axis. It was also by means 

of micromagnetic simulations that frequencies of soft modes exhibit a finite gap at the critical field, because 

of internal field contributions related to their localization features. Moreover, the different trend of the 

frequencies at high external magnetic field of the most relevant collective modes, namely F and F
loc

 modes, 

as a function of the aspect ratio has been explained in terms of demagnetizing fields. 

Finally, in Sect. 3.2 the effect of the ground-state magnetization on the spin dynamics has been investigated. 

Thanks to the micromagnetic simulations it has been demonstrated that the in the case of out-of-plane 

magnetization it is present only one relevant mode while in the case of in-plane magnetization there are two 

important different SWs excitations. The frequencies of the RM are higher with respect to those of the DE 

mode at a fixed external magnetic field. In addition the band gaps and the band widths of the RM and DE 

modes have been calculated. It can be seen that the values of the band gaps do not depend on the ground-

state magnetization while the band widths are connected to the ground-state magnetization. 
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Chapter 4 

Multi-material  2D magnonic 

crystals 

 

 
Chapter 4 is devoted to the investigation of the static and dynamic magnetic properties in MCs composed of 

different ferromagnetic materials. In the following the term “bicomponent MCs” refers to a MCs composed 

of two different ferromagnetic materials. Several theoretical and experimental investigations have been 

carried out for characterizing collective modes and for determining the magnonic band structure in 1D and 

2D MCs
87,88

. Among them, very recently, a 1D bicomponent MC consisting of arrays of nanostripes made by 

alternating Py and Co materials and exhibiting allowed minibands and frequency gaps was experimentally 

investigated
89

. Moreover, a micromagnetic study of magnonic band structures for exchange SWs propagating 

in 1D bicomponent MCs made by arrays of alternating Co and nickel stripes was carried out
90

. The recent 

works on 2D bicomponent ferromagnetic systems deal either with time-domain analysis of SW dynamics
91

 

or with modelling of dispersion and opening of band gaps at edges of Brillouin zones (nBZs with n =1,2,..) 

based on analytical approaches confirming BLS measurements
92

. More specifically, the experimental BLS 

dispersion was measured for a bicomponent MCs consisting of Co cylindrical dots partially embedded into a 

Py continuous film and was theoretically determined by using an analytical approach, called plane wave 

method (PWM)
10

. Another important feature of MCs with a complex base, i.e. where two dots or stripes of 

different shape or constituting materials form the basic unit cell, is that the magnetic order may not coincide 

with the geometrical one and, as a consequence, the dynamic response can be tuned in a reprogrammable 

way by varying the magnetic field strength
48,93,94,95

. With the aim of investigate this phenomena, very 

recently the dynamic properties of array of bicomponent structures consisting of closely-spaced Py/Co 

elliptical dots have been investigated by all-optical time-resolved magneto-optical Kerr effect microscopy
91

. 

Similar arrays of bicomponent Py/Nickel elliptical dots, with integrated coplanar wave guide, have been 
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studied by Ding et al
55,96 

in both the parallel and anti-parallel ground state by using broadband FMR. 

Moreover, changes of dot or AD shape, their rotation with respect to the crystallographic axes, imperfections 

in their shape or at their edges can further modify SW spectra. In particular, no enough attention has been 

given to the study of collective dynamics in bicomponent MCs where a non-magnetic spacer separates the 

two magnetic materials. 

In order to improve the basic knowledge of SWs in bicomponent MCs, in this Chapter three different 

analysis have been performed. These studies focuse on the important part of magnetism devoted to SW 

phenomena in composite structures, which is almost unexplored in the case of large scale 2D bicomponent 

nanopatterned systems. This investigation is also of interested for technological applications in the area of 

magnonics, magnetic memories and metamaterials. In particular in Section 4.1, four different MCs composed 

of Co circular dots embedded into a Py matrix are analysed with the aim of investigating the effect of the 

presence of the two ferromagnetic materials on the SWs modes propagating in the MCs. By the calculation 

of the band structures of the magnonic modes, it is possible to examine the effect of the position and of the 

volume of the Co circular dots inside the Py matrix. Moreover, by introducing the notion of effective surface 

magnetic charges, the dispersion curves and demagnetizing field can be explained from a physical point of 

view. Since the magnetization contrast between the two ferromagnetic materials plays a crucial role in the 

magnetic properties of the four systems, the corresponding systems with interchanged materials have been 

studied. In addition, the band structures of the Co/Py systems have been compared with the corresponding 

ones of the Py/Co systems. Finally, some analytical calculations are presented in order to give a quantitative 

behaviour of effective surface magnetic charges.  

Section 4.2 is devoted to the study of  the static and dynamic properties of the magnetization in bicomponent 

elliptical dots. The system is composed of Py and Co elliptical dots, interacting each other and placed into an 

array of non-interacting elements. It is interesting to note that this system shows a ferromagnetic and an 

antiferromagnetic phases. For both the magnetic configurations, the collective excitations have been 

analysed as a function of the external magnetic field. The theoretical results obtained by means of the DMM 

have been compared with the BLS experimental measurements performed at the Department of Physics and 

Geology of the University of Perugia. Finally, the effect of the gap between the two dots on the spin 

dynamics of the system have been investigated by varying the separation between the two ferromagnetic 

materials. In order to explain this effect, the dipolar dynamic coupling has been evaluated together with the 

amplitude distribution of the SWs modes for both the P and AP state, attained by sweeping the applied field 

along the major and minor hysteresis loop. This latter field sequence provides a simple method to identify 

the mode localization inside the dot of different magnetic materials. 

Finally, in Section 4.3, study of the effect of a non-magnetic spacer in 2D MCs on the dispersions of the 

relevant SWs is theoretically studied. This is done to investigate the important spin dynamics effects due the 

significant spatial variations experienced by the total inhomogeneous magnetic field because of the non-

magnetic material at the interface between two ferromagnetic materials. In this respect, it is studied the 

magnetization dynamics in square lattice 2D MCs with square ADs partially filled with different magnetic 
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materials; however the obtained results can be easily generalized to other geometries. In this study two types 

of separation between dots and Py matrix are considered: a) with the non-magnetic spacer located only 

below the dot, and b) with the spacer fully around the dot. In order to understand the effect of the non-

magnetic spacer on the dispersion curves and on the spatial profiles of SWs modes of the investigated 

structures, the in-plane components of the total (effective) magnetic field  has been calculated at different 

values of z. The group velocity and band width have been calculated in order to study additional effects of 

the presence of the non-magnetic spacer.  

 

 

4.1  Band structure of bicomponent magnonic crystals 

4.1.1 Bicomponent magnonic crystals 

The systems studied here are bicomponent MCs composed of Py and Co. Using the DMM
51,31

 extended to 

the case of multicomponent MCs composed of different ferromagnetic materials, the dynamical properties of 

four Py/Co systems have been studied. To refer to the MCs the first material (Py) indicates to the continuous 

film, while the second one (Co) to the cylindrical dot. In the calculations it is taken j=1,2 so that: 

   s s,Py s s,Co
1 2M = M M = M,  ,  (1)  = Py,  (2) = Co and  exch

Py

exch
1A A  and  exch

Co

exch
2A A . The four 

systems are depicted in Fig. 4.1. The geometric parameters of these systems are the following: the lattice 

constant is a = 600 nm, the Co circular dot has a diameter d  = 310 nm and the thickness of the continuous 

film is LPy = 16 nm for every system. In system 1 (see Fig. 4.1(a)) the Co circular dot is totally embedded 

into the Py film.  In system 2 it is partially embedded into Py film (LCo = 8 nm) (Fig. 4.1(b)).  In system 3 the 

thickness of the Co circular dot is LCo = 16 nm, but it is etched only 8 nm into Py film, while in system 4 it is 

above the Py film (LCo = 8 nm) (Fig. 4.1(c) and (d)). The bicomponent MCs studied are 2D periodic (in the x-

y plane), but they can be regarded as 3D, since the magnetization is assumed non uniform not only in the x-y 

plane, but also along z. The non uniform magnetization along the thickness which is mainly due to the 

contrast between the two ferromagnetic materials is taken into account by subdividing in the simulations the 

systems into a stack of layers along z. 

The top view of the four systems together with the directions of the external magnetic field H along the y-

axis and of K along the x-axis are also shown in Fig. 4.1(e). 
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Fig. 4.1. (a) Pictorial sketch of system 1. (b) as in panel (a) but for system 2.  (c) as in panel (a) but for system 3. . (d) as 

in panel (a) but for system 4. The thickness LPy of the Py film and the thickness LCo of the Co cylindrical dots are 

indicated . (d) The top view of the four Py/Co bicomponent MCs together with the reference frame and with the 

directions of H and of  K are also shown.  

The reference filling fraction ff  is defined as the ratio between the Co volume VCo and the primitive cell 

volume VCell, namely VCo/VCell, when the Co cylindrical dots are completely embedded into the Py film, 

namely 

2

2

R
ff

a
  where R is the Co dot radius. In order to distinguish the spin dynamics in the four 

systems, each system has been characterized by means of the ratio VCo/VCell.  in the form                                                                          

1 2 3 4

2
,  ,  , 

2 2 2

ff ff ff
ff

ff ff
      

 
                                          (4.1) 

with i =1,2,3,4. The above ratios indicates the quantity of Co and the Co position within the primitive cell 

and are expressed in terms of the reference filling fraction ff. The numerical values are: 1 21 %,  2 11 %, 

3 19 % and 4 10 %. The ground-state magnetization is determined by using OOMMF with PBCs
49

 by 

dividing the systems in micromagnetic cells of  7.5 nm  7.5 nm  8 nm size. Since the position involves 

also the thickness,  the systems can be regarded as 3D bicomponent MCs. The magnetic parameters used in 

the simulations are within the values used in the literature. For Py: Py/2 = 2.96 GHz/kOe, 

3

s Py
740 emu/cm

,
M  , 

Py -6

exch
1.3 10 erg/cm A , while for Co: Co/2 = 3.02 GHz/kOe, 

3
1000 emu/cm

s Co
M

,
 and 

Co
exch

A = 1.5  10
-6

 erg/cm (this value is typical of polycrystalline Co). The size 

of the micromagnetic cell is comparable to the exchange lengths of Py and Co, according to 

Py CoPy Co5 nm    and   6 nm,
exchexch 2 22 2

s,Py s,Co
 

 A Al l
M M

 respectively. The exchange constant at the 

interface between the two ferromagnetic materials is considered equal to the average between the exchange 

stiffness constant of the two ferromagnetic materials, namely  Py-Co Py Co
exch exchexch

/ 2 A A A . Simulations 

(a) (b) (c) (d)

(e)

a

d
Py

Co
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are performed at a fixed H applied parallel to the y-axis of intensity H = 500 Oe sufficient to reach a quasi-

collinear ground-state magnetization along the y-direction. 

 

4.1.2 Dispersion behaviour  

The effect of the Co volume VCo and of the Co position within the primitive cell on mode dispersion is 

investigated calculating the band structures of the most relevant SWs modes of the systems. By giving a 

simple description of the underlying physics the notion of effective “surface magnetic charges” is introduced. 

Moreover, the band gaps at the boundaries of the nBZ of the most representative modes are calculated and 

the effect of the interchange between the two ferromagnetic materials on the modes dispersions is analyzed. 

Note that the obtained results can be considered of general validity for other lattice constants in the 

submicrometric range, for other dot diameters of nanometric size and for different couples of magnetic 

materials having an appreciable magnetic contrast. 

Prior to starting the analysis of the band structures of the collective excitations it is important to discuss the 

distribution of “surface magnetic charges” across the interface between the two ferromagnetic materials and 

the corresponding demagnetizing fields in the Py film and inside the Co cylindrical dots. The effective 

“surface magnetic charge” picture is valid for systems 1, 2 and 3 where there are common lateral surface 

between Py and Co but it reduces to real “surface magnetic charges” for system 4. In Fig. 4.2 the effective 

“surface magnetic charges” distribution is shown.     

 

Fig. 4.2. Top of the view of the distribution of “surface magnetic charges” for the Py/Co systems 1, 2 and 3. The 

positive and negative effective “surface magnetic charges” are shown and labeled with the subscript “eff”. The 

directions of MPy, MCo and H together with those of the Co and Py static demagnetizing fields 
Co
demH  and 

Py
demH , 

respectively, are also displayed.  
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The external magnetic field is applied along the y-axis and induces the orientation along the same direction 

both MPy and MCo, in the Py film and inside the Co dot, respectively. A small deviation from the collinear 

state of the MPy and MCo can be observed close to the dot surface. This leads to the formation of “surface 

magnetic charges” of opposite sign and of different magnitude at the interface between Py and Co. The net 

effect is the creation of effective “surface magnetic charges” that have the same signs of the ones resulting 

from MCo, because of the larger value of Ms,Co with respect to Ms,Py. This effect is shown in Fig. 4.2 even if 

the effective “surface magnetic charge” picture is strictly valid for systems 1, 2 and 3. For system 4, where a 

common lateral surface between the two ferromagnetic materials is absent, the effective “surface magnetic 

charges” reduce to the real “surface magnetic charges” at the edge of the Co circular dots. As a result, the 

static demagnetizing field (y-component) is parallel to H in the Py horizontal channels, while it is anti-

parallel to H in the Co cylindrical dots and in the horizontal rows comprised between them. Note that the 

static demagnetizing fields, denoted by 
Py
demH  and 

Co
demH , respectively are the demagnetizing fields placed in 

the horizontal channels and horizontal rows, respectively, but are not only due to either Py or Co. Indeed, 

both demagnetizing fields have a non local origin and are due to the combination of Py and Co effects.  

The relevant magnonic modes of these systems have Damon-Eshbach-like (DE) character with nodal planes 

parallel to the local direction of the static magnetizations MPy and MCo. The mode classification is similar to 

that for 2D AD lattices
 71

 introduced in Chapter 3.  The two most relevant modes found in bicomponent 

magnetic systems are called DEnBZ and HR
BZDEn , where n indicates the number of the Brillouin zone (nBZ) 

with n=1,2,... . The 
HR

BZDEn modes are mainly localized in the horizontal rows containing Co cylindrical dots 

with a lower amplitude inside the Co cylindrical dots, but their amplitude can be rather large also along the 

horizontal channels. Instead, the DEnBZ modes have amplitudes spreading mainly in the Py film with maxima 

in the horizontal channels, but with appreciable amplitude also in the horizontal rows containing Co 

cylindrical dots especially towards the edges of nBZs with n=1,2,... . The Fig. 4.3 shows the spatial profiles 

of the DE1BZ and the HR
1BZDE  modes at the  point and at the X point calculated for the system 1 at z = LPy = 16 

nm (top surface of Py film). Indeed, according to the calculation their localization properties along the 

thickness do not essentially change. Moreover, spatial profiles of the DEnBZ and HR
BZDEn collective modes for 

the systems 2, 3 and 4 (not shown) have features similar to those shown for system 1 and do not exhibit 

appreciable differences in their amplitude behavior along the z direction. This similar behaviour is in turn 

due to the fact that collective modes experience an effective field resulting from the combined contribution 

of the static demagnetizing fields of the two ferromagnetic materials also in the regions along the thickness 

where there is only one material. 
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Fig. 4.3. Spatial profiles (Re[mz], real part of the z-component of the dynamic magnetization) of the DE1BZ and  HR
1BZDE  

modes in 3  3 primitive cells both at the center of the 1BZ ( point) and at the border of the 1BZ (X point) for the 

Py/Co system 1 plotted at z = LPy. A reference frame is also shown together with the directions of H and K. 

 

By comparing the band structure of the four different systems, it is possible to study: 1) the effect of  VCo 

within the primitive cell and 2) the effect of the position of Co inside the primitive cell on mode dispersion. 

In order to investigate the effect of VCo, a comparison between the calculated dispersion for systems 1 and 2 

and for systems 3 and 4, having the same value of VCo respectively is needed
 
(see Fig. 4.4(a) and (b), 

respectively).  In particular, VCo for systems 2 and 4 is half the corresponding values assumed in systems 1 

and 3, respectively. For both cases, the HR
BZDEn  dispersion is always downshifted with respect to that of DEnBZ. 

This behaviour can be explained by taking into account that the HR
BZDEn modes frequencies experience a larger 

negative static demagnetizing field, because of their larger localization in the horizontal rows comprised 

between Co cylindrical dots where 
Co
demH is antiparallel to H.  
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Fig. 4.4. Frequency dispersion of the two most relevant collective modes for the Py/Co bicomponent MCs. (a) 

Frequency dispersion for systems 1 and 2. Solid (dashed) blue lines:  HR

BZ BZDE DEn n  for system 1. Solid (dashed) 

black lines:  HR

BZ BZDE DEn n for system 2. (b) As in panel (a) but for systems 3 and 4. Solid (dashed) green lines: 

 HR

BZ BZDE DEn n for system 3. Solid (dashed) red lines:  HR

BZ BZDE DEn n for system 4.  

 

Fig. 4.4(a) shows that the frequencies of the HR
BZDEn and the DEnBZ modes for system 2 are slightly 

downshifted with respect to the corresponding ones for system 1. This phenomena can be attributed to the 

larger demagnetizing effects on mode frequencies. Albeit the magnitude of 
Co
demH  which is antiparallel to H is 

smaller for system 2, there is also a strong reduction, passing from system 1 to system 2, of the magnitude of 

Py
demH which is antiparallel to 

Co
demH  and thus parallel to H (see Fig. 4.2). As a consequence, the magnitude of 

the total static demagnetizing field antiparallel to H is small, but enough to lead to the slight downshift of 

frequencies in system 2 with respect to the corresponding ones in system 1. In Fig. 4.4(b) the calculated 

dispersions for systems 3 and 4 are shown. Interestingly, when the Co cylindrical dots are above the Py film 

(system 4), both dispersions (red lines) are slightly downshifted with respect to those of system 3 (green 

lines) with the only exception of the 
HR
1BZDE  mode. This is due to the effect of the negative magnitude of the  

Co
demH in system 4 that is slightly larger (negatively) than the corresponding one in system 3. As a matter of 

fact, in system 3 the large magnitude of 
Co
demH  is partially counterbalanced by the magnitude of 

Py
demH  which 

has an opposite direction (see Fig. 4.2). Note that, due to the non local nature of 
Co
demH , also in system 4 there 

is an effect on BZDEn mode dispersion of the Co static demagnetizing field. Moreover, the band gap at the 

border of the 1BZ between the
HR
1BZDE  and the 

HR
2BZDE for systems 3 and 4 is very large due to the presence 

of Co above the Py surface that acts like a band gap amplifier.  
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Secondly, the effect of the position of Co for a fixed VCo inside the primitive cell on the frequency dispersion 

of the most relevant magnonic modes is investigated. With this aim, the frequency dispersion of systems 1 

and 3 and that of systems 2 and 4, are compared in Fig. 4.5(a) and (b), respectively. In systems 1 and 3 the 

VCo is twice with respect to systems 2 and 4.  

 

Fig. 4.5. Frequency dispersion of the two most relevant collective modes for the Py/Co bicomponent MCs. (a) 

Frequency dispersion for systems 1 and 3. Solid (dashed) blue lines:  HR

BZ BZDE DEn n
 for system 1. Solid (dashed) green 

lines:  HR

BZ BZDE DEn n
for system 3. (b) Frequency dispersion for systems 2 and 4. Solid (dashed) black lines: 

 HR

BZ BZDE DEn n
for system 2. Solid (dashed) red lines:  HR

BZ BZDE DEn n
for system 4. 

 

By looking at the 
HR

BZDEn
 dispersion in Fig. 4.5(a), it is possible to note that the collective mode frequencies 

in system 3 (green lines) are slightly downshifted with respect to the ones in system 1, especially in the 1BZ 

and 2BZ, while for nBZs with n = 3, 4,… they merge asymptotically. This behaviour can be understood by 

taking into account that in system 3 the Co cylindrical dots are only partially embedded into the Py film 

resulting in a higher and more negative magnitude of the total static demagnetizing field experienced by the 

collective modes. The higher total static demagnetizing field is not related to the 
Co
demH itself that is 

approximately the same in the two systems, but is due to the decrease of the magnitude of 
Py
demH  in system 3 

with respect to that of 
Py
demH in system 1. For increasing Bloch wave vector the static effective field effect is 

masked by the increase of the dynamic dipolar and exchange effects which become predominant. The 

BZDEn
 dispersion is essentially at the same frequencies independently of the Co position. Indeed, the 

BZDEn

collective modes are mainly confined in the Py film and experience slightly the variation of the static 

demagnetizing field due to the change of position of the Co cylindrical dot passing from system 1 to system 

3. Similar conclusions can be drawn by discussing the dispersion in systems 2 and 4, respectively  shown in 

Fig. 4.5(b).  
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Moreover, each dispersion exhibits BGs at nBZ boundaries caused by the Bragg diffraction of collective 

modes, with no exceptions
 70,92

. Hence, the behaviour of BGs and bandwidths (BWs) found according to 

DMM simulations for the four systems studied is briefly discussed. The amplitudes of BGs of BZDEn

collective modes decrease with increasing the nBZ order for the range of Bloch wave vectors investigated 

(up to the 4BZ) exhibiting a similar behaviour to that shown by BGs of extended modes in AD lattices
 70

. For 

example, for system 1, the BG amplitude reduces to about 0.39 GHz at the border of 4BZ. A similar trend, 

but with different BG amplitudes, is exhibited for the other systems investigated. On the other hand, the 

amplitudes of BGs for system 1 of the
HR

BZDEn collective modes have the same trend as that of  the BZDEn

ones by reducing to about 0.10 at the border of 4BZ. Instead, for systems 2, 3 and 4 the amplitudes of BGs of 

HR
BZDEn  decrease up to the 2BZ, but they have an oscillating trend for n >2.  Concerning amplitude of BGs, 

note that it is larger at each nBZ boundary for systems 1 and 3 characterized by larger 1 and 3. Hence, the 

perturbation which produces the BGs is proportional to the quantity of Co. Also the presence of Co above the 

Py surface plays a role in increasing the BG amplitude, which is larger for system 4 with respect to system 2, 

although 4  2. Instead, BWs of BZDEn collective modes have a weak dependence on the system studied, 

reducing approximately on average from about 1.6 GHz (first band) to about 1 GHz (fifth band) for all 

systems studied. A different behaviour is exhibited by BWs of 
HR

BZDEn , which tend to slightly increase with 

increasing n passing, for every system, from approximately 1 GHz (first band) to about 1.2 GHz (fifth band). 

This trend may be attributed to the exchange effect due to Co which could become important for 

intermediate and large Bloch wave vectors.  

  

4.1.3 Effective surface magnetic charge 

At the border of Co cylindrical dots, an effective “surface magnetic charge” density can be defined for Py/Co 

systems, as the linear combination of the “surface magnetic charge” densities of the two ferromagnetic 

materials, viz. ˆ ˆ
Py Coeff

   M Mn+ n . Here n̂  is the unit vector associated to MPy external to Py film, 

but internal to Co cylindrical dot, while n̂  is the corresponding unit vector associated to MCo external to Co 

cylindrical dot, but internal to Py film. In Fig. 4.6 both unit vectors are depicted along the direction of the 

static magnetizations. It is important to note that this scheme is valid for systems 1, 2 and 3 where the lateral 

surface of the cylinder (or part of it) is in common between Co and Py. 
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Fig. 4.6. Pictorial sketch of the orientation of the unit vectors normal to the Py/Co interface in the plane of the system. 

The direction of the vector 
Co-PyM  together with the effective “surface magnetic charges” for systems 1, 2 and 3 are 

also depicted. An in-plane reference frame together with the cylindrical coordinates (, ) is also illustrated. 

 

Moreover it is possible to express the quantity 
eff  in the form                                                                    

                                               eff Co-Py n̂ ,   M                                          (4.2) 

 with ˆ ˆn= -n'  and the vector 
Co-Py Co PyM = M - M . The effective “surface magnetic charge” density is thus 

proportional to the difference between the magnetizations of the two ferromagnetic materials. In particular, 

for system 1, Eq. (4.2) holds for 
Py0 z L  , where z = 0 indicates the bottom surface of the primitive cell, 

while for system 2 it holds for Py Py/ 2L z L  . In system 3 a part of the Co cylindrical dot is above the Py 

film so that the effective “surface magnetic charge” density takes different expressions depending on the z 

coordinate,  

Co-Py Py Py

eff

Co Py Py Co

ˆ if   / 2
.

ˆ if

n      L z L

n              L z L L


   
 

   

M

 M

                                              (4.3) 

Finally, for system 4 
eff  becomes Co Co n̂  M , because the “surface magnetic charges” are solely due 

to the Co dot above the Py film. 

In the general case, the ground-state magnetization is not collinear and has a three-dimensional spatial 

dependence on r = (x,y,z), so that it is possible to define an effective magnetic potential expressed in terms of 

both the “volume magnetic charges” and the effective “surface magnetic charges” for Py/Co system, viz. 

  
cell dot dot

PyPy/Co Co eff
M

S
V -V V

,
 

     
    

M M
r r r + S

r - r r - r r - r
d d d

 
                         (4.4)                                        
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where r = (x,y,z) and S is the common lateral surface between the two ferromagnetic materials. Note that, 

while the volume contribution to the magnetic potential comes from the terms that refers separately to the 

two ferromagnetic materials, this is not true for the surface contribution where the effective “surface 

magnetic charge” density is related to the contrast between the magnetizations of the two ferromagnetic 

materials expressed by Eq. (4.2). From Eq. (4.4) it is straightforward to obtain, for the Py/Co systems, the 

static demagnetizing field    Py/Co

dem M H r r that has a spatial dependence and which includes 

contributions from both materials. From micromagnetic simulations applied to the most representative 

system 1 it was found that  demH r  has an appreciable y-component (along the direction of H)  and is 

uniform along z so that    dem demH r H ρ  and    dem dem
ˆyHH jρ ρ  with  = (x,y). As underlined 

previously, the demagnetizing field for investigating the MM propagating mode frequency has been 

determined via micromagnetic simulations that have confirmed that the demagnetizing field has 

contributions from both materials according to Eq. (4.4)). 

 

4.1.4 Interchange between Co and Py: Co/Py systems 

The Co/Py systems consist in a bicomponent MCs where the first material (Co) corresponds to the 

continuous film, while the second one (Py) to the cylindrical dot. Some interesting properties related to the 

study of the invariance of the effective magnetic potential of Eq. (4.4) under the interchange of the two 

ferromagnetic materials have been found. The effective magnetic potential of Eq.(4.7) is not invariant, that is 

Co/Py Py/Co

M M   , due to the two volume contributions appearing in the first and second integral on the 

second member. However, by assuming that, for a quasi-collinear magnetization state like the one considered 

here, volume contributions are small and negligible, the effective magnetic potential of the Py/Co systems 

takes the simple form 

             Py/Co eff
M

S
.d


 

r S
r - r

                                                              (4.5)                                                                     

By introducing the cylindrical coordinates (,,z) so that the surface integral of Eq. (4.5) for systems 1 and 2 

reads      

 
     

max

min

2

Py/Co

M s
2 2 2

0

sin
,         







   
       r

z

z

R M d dz
x x y y z z

                        (4.6)                                                                     

with x = R cos and y = R sin, R the radius of the cylinder and s s,Co s,PyM M M    the difference in 

modulus of the two saturation magnetizations. In Py/Co systems it is s,Co s,Py s,Co s,PyM M M M   , 

because s,Co s,PyM > M . In particular, for system 1, zmin=0 and zmax = LPy, while for system 2 zmin = LPy/2 and 
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zmax = LPy.  Unlike Eq. (4.3), the magnetic potential of Eq. (4.4) expressed only in terms of surface 

contributions is invariant with respect to the interchange of the two ferromagnetic materials, viz. 

Py/Co Co/Py

M M  , because it depends on 
sM .  Instead, for system 3  

 
           

Py Py Co

Py Py

2 2

Py/Co

M s s,Co
2 2 2 2 2 2

0 / 2 0

sin sin
,

 
 

 
 

      
                 r

L L L

L L

R M d dz R M d dz
x x y y z z x x y y z z

         (4.7)                                                                                                 

by accounting for the region where the Co dot is above the Py film.  

For system 3 the invariance of the magnetic potential is broken, because of the presence of the second 

integral on the right member which would be proportional to 
s,PyM  upon interchange of the two 

ferromagnetic materials. This is in turn related to the fact that the second integral on the right member is 

expressed in terms of the “surface magnetic charge” density depending on one ferromagnetic material only. 

Finally, for system 4, where the Co cylindrical dot is above the Py film, the magnetic potential becomes that 

of a Co cylindrical dot, namely  Co

M r  (second integral on the right member of Eq. (4.7)). As a result, 

since the Py contribution to the magnetic potential vanishes, the static demagnetizing field given in Eq. (4.7) 

reduces to the Co static demagnetizing field  Co

demH r  with    Co Co

dem M H r r . By applying the thin 

film limit the static demagnetizing field of a thin cylindrical dot is obtained
97

. 

Further interesting properties arise from the interchange between the two ferromagnetic materials. In the 

Co/Py systems the investigation of the propagation of collective modes in an array of Py cylindrical dots 

embedded into a Co film can be performed. In order to understand the dispersion behaviour that will be 

discussed later, it is useful to illustrate the corresponding distribution of effective “surface magnetic charges” 

shown in Fig. 4.7(a) for Co/Py systems 1 and 2 and in Fig. 4.7(b) for Co/Py system 3. Interestingly, for 

systems 1 and 2, the distribution of effective “surface magnetic charges” is opposite to that of Py/Co systems 

1 and 2, while for systems 3 and 4 the charge distribution is the same as that of Py/Co system 3 and 4. First, 

the discussion is focused to the Co/Py systems 1 and 2. The effective “surface magnetic charges” at the 

interface between Py and Co take the sign of those of Co, because the “surface magnetic charge” density due 

to Co at the interface is higher with respect to that of Py. As a result, the interchange of the two 

ferromagnetic materials leads to a reversal of the orientations of 
Py
demH  and 

Co
demH static demagnetizing fields 

with respect to the corresponding 
Co
demH  and 

Py
demH  ones of Py/Co systems 1 and 2, respectively. Note that, 

also for Co/Py systems, 
Py
demH (

Co
demH ) is not only due to Py (Co), but to their combined effect. Now, systems 

3 and 4 are discussed. For system 3, despite the interchange of the two ferromagnetic materials, the 

orientations of 
Co
demH  and of 

Py
demH  do not reverse with respect to the corresponding 

Py
demH  and 

Co
demH  of Py/Co 

system 3.              
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Fig. 4.7. (a) Distribution of “surface magnetic charges” for Co/Py systems 1 and 2: top view. (b) The same, but for 

Co/Py system 3. The meaning of the other symbols and of the vectors is the same as in Fig. 4.2.  

 

This, in turn is due to the fact that the effective “surface magnetic charges” do not change sign with respect 

to the corresponding ones in the Py/Co systems 3 and 4. In particular, for system 3 there is a prevalence of 

the effect due to the Py “surface magnetic charges” corresponding to the portion of the Py dot above the Co 

film, while for system 4, where Py dots are completely above the Co film, the effective “surface magnetic 

charges” reduce to the ones created by MPy.  

Interestingly, the effect of the interchange of the two ferromagnetic materials reflects also on the frequency 

dispersion. The localization features of the two relevant families of collective modes in Co/Py systems 

change with respect to those of the corresponding modes in Py/Co systems and become more soft especially 

in system 1. However, it is still possible to distinguish the main differences. By looking at the spatial profiles 

of 
HR

1BZDE and 
1BZDE modes in Co/Py system 1 shown in Fig. 4.8 and plotted at z = LCo, (top surface of the 

Co film), the
HR

BZDEn
modes are mainly localized inside Py cylindrical dots with a less accentuated localization 

in the portion of the horizontal rows comprised between Py dots, but spread also in the Co film.  
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Fig. 4.8. Spatial profiles (Re[mz], real part of the z-component of the dynamic magnetization) of the 1BZDE  and 

HR
1BZDE  modes in 3  3 primitive cells at the centre (  point) and at the border of the 1BZ (X point) for Co/Py system 1 

at z = LCo. The reference frame (not shown) is the same as in Fig. 3. 

 

On the other hand, 
BZDEn

modes have a large amplitude in the Co film, but extend also in the horizontal 

rows, especially inside the Py dots where they eventually have the largest amplitude. It has been found that 

in every Co/Py system spatial profiles are essentially uniform along the z-direction.  In Fig. 4.9(a) the 

dispersion of the two most relevant collective modes in Co/Py system 1 is shown. The interchange of the two 

ferromagnetic materials does lead in Co/Py system 1 also to the interchange of the two frequency dispersion. 

As a matter of fact, the 
HR

BZDEn
modes have frequencies higher than those of 

BZDEn
modes. This different 

behaviour can be understood by studying the distribution of effective “surface magnetic charges” and the 

corresponding static demagnetizing fields illustrated in Fig. 4.7(a). The 
HR

BZDEn
 modes mainly experience the 

Py
demH  that is parallel to H which causes an increase of the frequencies. Instead, the 

BZDEn
 modes mainly 

experience the 
Co
demH  which is antiparallel to H leading to a lowering of the corresponding frequencies. More 

generally, the frequency dispersion of each collective mode is upshifted with respect to the corresponding 

interchanged one in Py/Co system 1. The frequency dispersion of collective modes are interchanged also in 

Co/Py system 2 (not shown) with respect to the corresponding ones in Py/Co system 2, because of the similar 

distribution of “surface magnetic charges” (see Fig. 4.7(b)). Frequency dispersion in Co/Py system 3 are 

illustrated in Fig. 4.9(b) and can be considered representative qualitatively also of those in Co/Py system 4 

(not shown). Dispersion curves of the two relevant families of modes having localization features very 

similar to the ones in Co/Py system 1 are not interchanged. Again, this can be understood by looking at the 
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distribution of effective “surface magnetic charges” (see Fig. 4.7(b)) that is qualitatively analogous to the one 

of Py/Co corresponding system 3 leading to 
Co
demH   parallel to H and to 

Py
demH  antiparallel to H. However, the 

dispersion curves in Co/Py systems 3 and 4 are up shifted with respect to the corresponding ones in Py/Co 

systems 3 and 4.      

 

 

Fig. 4.9. (a) Frequency dispersion of the two main representative modes for the Co/Py system 1. Solid black line: 

HR

BZDEn
 modes. Dashed black line: 

BZDEn
modes. (b) As in panel (a), but for system 3. Solid red line: HR

BZDEn
 modes. 

Dashed red line: 
BZDEn

modes.  

 

Finally, it is discussed the influence of the interchange between the two ferromagnetic materials on 

amplitudes of BGs and BWs. The general trend of both 
HR

BZDEn
and 

BZDEn
modes for the Co/Py system 1 is 

the decrease of amplitudes of BGs with increasing the nBZ order for the range of Bloch wave vectors 

investigated showing a similarity with the dispersion in the corresponding Py/Co system 1. Also magnitudes 

of BG amplitudes are of the same order as those in Py/Co system 1. On the other hand, the behaviour of BWs 

for the two representative families of modes is opposite with respect to that in Py/Co system 1. As a matter 

of fact, in Co/Py system 1 BWs of 
BZDEn

 increase with increasing nBZ, at least for n = 1,2, while BWs of 

HR

BZDEn
 decrease with increasing nBZ. The increasing trend of BWs of 

BZDEn
 with increasing nBZ may be 

attributed to the large exchange Co effects due to the mode confinement at intermediate Bloch wave vectors. 

However, for both families of modes in Co/Py system 1, BWs have approximately on average the same 

magnitude as that in Py/Co system 1. Similar conclusions can be drawn for BGs and BWs of frequency 

dispersion in Co/Py system 3 shown in Fig. 4.9(b) and in Co/Py systems 2 and 4 (not shown).  
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4.2  Collective excitations in bicomponent magnonic crystals in the presence of a   

non-magnetic spacer 

 

4.2.1 Systems and method 

In order to investigate from a theoretical point of view the dynamical properties of 2D MCs in the presence 

of a non-magnetic spacers between ferromagnetic materials, the dispersion curves of the most relevant SWs 

modes for five different MCs have been calculated. The magnetic systems considered here are composed of 

Py, Co and non-magnetic material and are supposed to be infinite in plane (along x and y directions). All the 

systems have a square lattice structure with a  lattice constant  a = 400 nm and the magnetic dots have  

square shape. In Fig. 4.10 are shown the five systems analyzed: (a) System 1 (S1): bicomponent MC 

composed of 30 nm thick Py film with an array of 20 nm deep square grooves of 200 nm size. In the bottom 

of grooves there is 10 nm thick non-magnetic material and then Co dots (20 nm thick) partially immersed 

into the grooves. The Co dots are in direct contact with Py only at lateral edges of the dot that is along the x 

and y directions. (b) System 2-Co (S2
Co

): bicomponent MC similar to S1 but with 10 nm width spacer 

around the Co dots (200 nm wide). In S2
Co

, Co dots and Py matrix are totally separated by a non-magnetic 

spacer. (c)  System 2-Py (S2
Py

): one component MC with the same geometry of S2
Co

 but with Py dots. (d) 

MC composed of square Py dots (10 nm thick and 200 nm wide) surrounded by non-magnetic spacer and 

fully immersed in the Py matrix. This is system 3 (S3). (e) An array of squared Co dots (20 nm thick and 200 

nm wide) constitutes the system 4 (S4). The magnetic  parameters used in the simulations are the typical 

parameters for Py and Co materials
31,92

 : saturation magnetization for Py MS,Py = 750 emu/cm
3
 and for Co 

MS,Co = 1200 emu/cm
3
, exchange constants APy = 1.3  10

-6
 erg/cm and ACo = 2.0  10

-6
 erg/cm, 

gyromagnetic ratios Py/2 = 2.96 GHz/kOe and Co/2 = 3.02 GHz/kOe. The static and dynamic properties 

of these magnetic systems have been investigated from a theoretical point of view by means of two 

micromagnetic codes: OOMMF code
49

 and DMM program
28,31

. In particular, the ground-state magnetization 

is calculated by using OOMMF with 2D periodic boundary conditions and the obtained magnetic 

configuration is used as input to DMM. The DMM with implemented boundary conditions is applied to 

study the spin dynamic properties.  Since the systems considered are composed of different materials, in the 

DMM two indexes have to be used: 1) an index k to label micromagnetic cells, with k = 1,2,… N,  where N is 

the total number of micromagnetic cells in the primitive cell; 2) an index  j = Py, Co indicates the 

ferromagnetic material. The number of micromagnetic cells assigned to the j-th ferromagnetic material is Nj 

such that NPy + NCo = N.  Further details concerning the methods, OOMMF and DMM,  were presented in 

Chapter 2.  The size of the micromagnetic cells used in the static and dynamic simulations is 5  5  10 nm 

along x, y and z, respectively.  
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Fig. 4.10. (a) System 1: Top view of the primitive cell together with its perpendicular cross-section in a bicomponent 

MC consisting of square Co dots partially embedded in Py matrix. Non-magnetic spacer (white area) of 10 nm thick 

separates the bottom of Co dots from Py. (b) System 2-Co: similar to S1 but with total separation of Co dots  from Py 

by means of 10 nm of non-magnetic spacer from the bottom and lateral sides of Co. (c) System S2-Py: one component 

MC with geometry equals to S2
Co 

but with Py dot. (d) System 3: MC created by square array of square grooves in Py 

film partially filled with Py dots. Dots are separated from the matrix by 10 nm thick non-magnetic spacer. (e) System 4: 

square array of square Co dots. Red-dashed lines in the perpendicular cross-sections point at the planes (z = 5 and 25 

nm) used in Figs. 4.21(a), (b), (c), (d)  and (e) to show the spatial profiles of SW modes.  

 

The systems have been studied in the DE so-called geometry i.e. by applying an external magnetic field (H) 

of magnitude fixed at 2000 Oe parallel to the y-axis and with the Bloch wave vector (k) parallel to the x-axis. 

 

4.2.2 Spin wave excitations  

In 2D AD lattices and bicomponent MCs a full magnonic spectra calculated by means of the DMM is very 

rich with plenty of SW excitations
98

. As an example, the differential scattering cross-section computed at the 
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center of the BZ is displayed in Fig. 4.11 for S1. It can be seen that a large number of SW modes results 

from the calculation. However, for the purposes of this study focused on the dispersion behavior in the first 

BZ only three modes belonging to the lowest frequency part of the spectrum, namely the ones exhibiting an 

appreciable differential scattering cross-section, have been selected in S1. The same conclusions on the 

differential scatting cross-section can be drawn also for the other systems.  
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Fig. 4.11. Differential scattering cross-section calculated for S1 at the center of the BZ. The arrows label the modes 

with the highest intensity of the scattering cross section in the center of the first BZ investigated in this paper. 

 

In Fig. 4.12 are collected the dispersion relations calculated for all the five systems studied for the SW 

modes exhibiting the largest differential scattering cross-section. The dispersion relations calculated for  S1 

are shown in Fig. 4.12(a). The collective modes have been classified by taking into account the region inside 

the primitive cell where they have the maximum amplitude, finding: 1) end mode of the dot (EMd) (where 

the subscript “d” labels dot) that is a mode strongly localized at the borders of the square dots, 2) Damon-

Eshbach-like mode is concentrated in the horizontal rows (DE
HR

) and 3) Damon-Eshbach-like (DE) mode. 

The corresponding frequencies are 9.94, 12.89 and 14.06 GHz, respectively. The modes 2) and 3) are called 

Damon-Eshbach-like because they have nodal planes parallel to the local static magnetization in the higher 

BZs and no nodal planes in the center of the BZ (Fig. 4.13(a)). This agree with the classification of collective 

modes given for bicomponent MCs described in Sect. 4.1. The DE
HR

 mode is localized in the horizontal rows 

containing the square dots (with amplitude concentrated mainly in Py), while the DE mode has the maximum 

amplitude in Co dots and non-negligible amplitude in the Py film. It is interesting to note  that the end mode 

detected here has been previously found only in one component MCs
29,30

 but not in the bicomponent MCs
31,92

 

. The appearance of the end mode and the different SW amplitude distribution between Py and Co of DE and 

DE
HR

 modes underlines the difference between the S1 and the Co/Py bicomponent MC investigated in Sect. 

4.1. These differences with respect to previous by studied systems are mainly due to: a) the presence of 10 
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nm thick non-magnetic spacer between Co dots and Py matrix placed at the bottom of the dots, and b) the dot 

shape (these effects will be discussed in the next paragraph). The next step is to investigate the effect of a full 

separation of Co dots from Py matrix on magnonic spectra. In Fig. 4.12(b), the calculated dispersion curves 

for S2
Co

 are presented. By looking at Fig. 4.12(b) it is possible to observe the appearance of two new modes:  

the end mode of Py film (EMf) with a frequency of 11.9 GHz (where the subscript “f” labels film) that is 

strongly localized at the border of Py film and the backward-like mode (BA
HR

) with frequency of 13.86 GHz 

that is mainly concentrated in the horizontal rows. BA
HR

 mode exhibits nodal planes perpendicular to the 

local static magnetization (see Fig. 4.13(b) for the profiles of these modes). The frequency of the BA
HR

 in 

S2
Co

 is higher than that of DE
HR

 and this is due to the strong localization of the BA
HR

 in the region filled by 

Co dots having magnetic parameters with values higher than that of Py. By comparing the frequency at the 

center of the BZ of S1 and S2
Co

 systems, it is possible to observe a significant decrease of the EMd frequency 

from 9.94 GHz in S1 to 4.217 GHz in S2
Co

 and a slight increase of the DE (DE
HR

) frequencies from 14.06 

GHz in S1 (12.89 GHz) to 14.67 GHz (13.48 GHz) in S2
Co

. The presence of five dispersion curves in S2
Co

 is 

attributed to the fact that the differential scattering cross-section is comparable for the five SW excitations at 

the BZ center. 

 In order to understand the effect of the Py matrix on the SW excitation in Co dots, the dispersion curves of 

S4 (see Fig. 4.10 (e)), array composed of square Co dots, have been calculated. By inspection of Fig. 4.12(e) 

it is possible to see that the frequency of the EMd in S4 (3.5 GHz) is about 6 GHz lower than in S1 and 2.5 

GHz lower as compared to the corresponding one in S2
Co

. Instead, the frequency of the DE mode (18.4 GHz) 

is 4 GHz higher than that in S1 and 3.5 GHz higher than that in S2
Co

. Therefore, the effect of Py matrix is to 

lower the frequencies of the DE mode and to raise the frequencies of the EMd. This behavior can be 

understood by taking into account the variation of the magnitude of the interdot dipolar dynamic coupling 

and of the static demagnetizing field passing from an array of dots (S4) to a MCs (S1 and S2
Co

) composed by 

two ferromagnetic materials.  

To study the effect of dot material and thickness in a Py matrix, the SW spectra of 2D MCs composed of Py 

dots in a Py matrix have been calculated. It is important to underline that S2
Py

 and S3 are neither 

bicomponent MC, nor AD lattices, but these structures preserve properties of both with the use of a single 

ferromagnetic material. The kind of modes present in S2
Py

 and S3 is similar to the one found in S2
Co

. In S2
Py

, 

the EMd has a frequency of 8.92 GHz and is the lowest frequency mode as in S2
Co

. The EMf (10.46 GHz)  in 

S2
Py

 has a dispersion curve similar to that of EMd. After these two modes it is present the DE mode with a 

frequency of 12.8 GHz at the center of the BZ. The frequencies of BA
HR 

mode (13.8 GHz) are lower than the 

ones of the DE
HR

 mode (14.12 GHz). By looking at Figs. 4.12(a) and (b) it is possible to observe that in S2
Py

 

the frequency sequence of DE, DE
HR

 and BA
HR 

modes is different from that in S1 and S2
Co

. In particular, the 

DE mode frequencies are lower than the DE
HR

 mode ones as in the case of 2D one component AD 

lattices
29,70

. This can be explained by investigating the total field experienced by the modes, further details 

can be found in Sect. 4.2.3.
 
The effect of the thickness of Py dots can be investigated by calculating the 

dispersion curves for S3. Fig. 4.20(d) shows the dispersion curves of the SW modes in S3. The EMf (8.92 
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GHz) is the lowest frequency mode of the spectrum in S3. The EMd frequency at the center of the BZ (12.84 

GHz) is larger than that of the DE mode (12.36 GHz), however the corresponding dispersion curves have a 

similar trend. This frequency inversion as compared to S2
Py

 is not surprising because the total magnetic field 

experienced by the EMd is higher with respect to the field felt by the DE mode. The DE
HR

 and BA
HR

 modes 

have frequencies 14.68 and 14.12 GHz at the center of the BZ, respectively. Comparing the dispersion 

curves in S2
Co

 and S3, it is possible to observe that the order of DE and DE
HR

 frequency mode in S3 is 

interchanged with respect to those in S2
Co

. Moreover, also the frequency order of the EMf and the EMd is 

interchanged with respect to that in S2
Py

 and S2
Co

.
 
This interchange can be attributed to the effect of the 

reduction of the dot thickness that induces a lowering of the total magnetic field in the Py film where the 

EMf is localized. The intensities of the differential scattering cross-section of the DE, EMd, EMf and BA
HR

 

modes are comparable but are 40% lower than that of DE
HR

. 

 

Fig. 4.12. Dispersion relation in the first BZ along the direction perpendicular to the external magnetic field. (a) 

Dispersion relation of the EMd, DE and  DE
HR

 modes in S1are shown. (b) Dispersion relation in S2
Co

. The additional 

dispersion relation of the EMf and BA
HR

 are shown. (c) Dispersion relation of the most relevant modes in S2
Py

. (d) 

Dispersion relation in S3. (e) Dispersion relation in the array of Co dots (S4). The black dashed lines in Figs. 4.20(b), 

(c) and (d) mark dispersion relation of DE mode in homogeneous Py film of 10 nm thickness calculated according to 

Ref. 
6,99

. 
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Fig. 4.13.  Spatial profiles (real part of the out-of-plane component of the dynamic magnetization vector) for SWs with 

large differential scattering cross-section calculated in the center of the BZ. The spatial profiles of SW modes from the 

bottom part of the Py film (in the plane z = 5 nm in left column) and in the plane crossing dots (for z = 25 nm in right 

column) are shown in 3×3 primitive cells, i.e., on the planes marked in Fig. 4.18 with red dashed lines. (a) Spatial 

profiles of EM, DE
HR

 and DE modes in S1. (b) Spatial profiles of EMd, EMf, DE
HR

, BA
HR 

and DE modes in S2
Co

. (c) 

Spatial profiles of EMd, EMf, DE, BA
HR 

and DE
HR

 modes in S2
Py

. (d) Spatial profiles of EMf, DE, EMd, BA
HR

and DE
HR

 

modes in S3. (e) Spatial profiles of EM and DE modes in S4. 

 

Fig. 4.13 displays  the spatial profiles of the real part of the out-of-plane component of the dynamic 

magnetization for the main modes at the center of the BZ of the systems studied. The spatial profiles are 

presented at planes z = 5 nm and z  = 25 nm, left and right column of each panels respectively, along the 

cross-sections indicated in Fig. 4.18 with red dashed lines. Looking at Fig. 4.13(a), it can be seen that the 

EMd is strongly localized at the borders of Co dots and its amplitude decreases at z = 5 nm where only Py is 

present with respect to z = 25 nm. The presence of the Co dots in S1 induces a strong DE
HR

 amplitude 

decrease inside the region containing the Co dots: indeed, for z < 10 nm the amplitude of the DE
HR 

mode is 

uniform in the whole rows, while for 20 nm < z < 30 nm its amplitude decreases in the Co dots region. In 

contrast, for the EMd the square Co dots induce an opposite behavior. The amplitude distribution of the DE 

mode takes contribution from both Co dots and Py matrix through its whole thickness. The DE is also the 

mode with largest differential scattering cross-section. Its intensity at kx is three times larger than that of 

the EMd or the DE
HR

 mode (see Fig. 4.11). Fig. 4.13(b) displays the spatial profiles of the characteristic SW 

modes of S2
Co

. The presence of the non-magnetic spacer around the Co dots induces the appearance of the 

EMf that is strongly localized at the border of the Py matrix close to the non-magnetic spacer. The amplitude 
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of this mode is almost uniform along the thickness, while that of the EMd decreases by decreasing z. The 

DE
HR

, BA
HR

 and DE modes have uniform amplitude in the region of Py matrix along the thickness. On the 

other hand, in the region filled by Co dots their amplitude strongly decreases for z > 20 nm.   

In Fig. 4.13(c) the spatial profiles of the collective excitations in S2
Py 

are shown. The amplitude variation of 

the EMd, DE, BA
HR

 and DE
HR

 modes as a function of z is the same as that in S2
Co

. Moreover, in S2
Py

 the 

amplitude of EMf  decreases by decreasing z following a trend similar to that of the EMd. The amplitude of 

SW modes of S3 are illustrated in Fig. 4.13 (d). Similarly to what occurs in S2
Co

 and S2
Py

, the SW amplitude 

of the DE mode is almost homogeneous across the thickness of the whole structure and larger in the rows 

between dots. The DE
HR

 and BA
HR

 modes amplitude is almost uniform along z in the Py matrix but decreases 

for z > 20 nm in the region filled by Py dots. In Fig. 4.13(e) are depicted the spatial profiles of collective 

modes in S4. In this system there is only Co along z and the amplitudes of EM and DE mode are uniform 

along the thickness.  

 

4.2.3 Total magnetic field  

In order to completely understand the dispersion curves and the spatial profiles of SWs modes of the 

investigated structures, it is useful to evaluate the in-plane components of the total (effective) magnetic field 

at different values of z. The total static magnetic field is the sum of the exchange field, the demagnetizing 

field and the Zeeman field, calculated for each micromagnetic cell by the OOMMF code, and averaged along 

the x direction for different values of z and y. The behavior of the total magnetic field is strictly related to the 

orientation of the static magnetization in the magnetic system. In Fig. 4.22 four regions along the thickness 

are considered: a) 0 nm ≤ z ≤ 10 nm where only Py is present; b) 10 nm < z ≤ 20 nm where there are Py and 

non-magnetic spacer; c) 20 nm < z ≤ 30 nm where in S1 there are Py and Co, in S2
Co

 there are Py, non-

magnetic spacer and Co and in S2
Py

 and S3 are present Py and non-magnetic spacer; d) 30 nm < z ≤ 40 nm 

where in S1 and S2
Co

 there is Co, in S2
Py

 is present Py. Looking at Fig. 4.14 it is possible to note the 

presence of  wells or  walls in the total magnetic field that are due to the saturation magnetization contrast 

present at interfaces between two different materials. Moreover, in MCs showing magnetization in-

homogeneities across the thickness, the total magnetic field at interfaces between two materials, present for 

10 nm < z < 30 nm, influences also collective excitations in the homogeneous part of the structure (for 0 nm 

< z < 10 nm).  
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Fig. 4.14. The y component of the total magnetic field calculated for (a) S1, (b) S2
Co

, (c) S2
Py

 and (d) S3 along the y-

axis and averaged along x, for four different values of z: z = 5 nm (in full Py film, black dot-dashed line), z = 15 nm 

(crossing Py and spacer below the dots, red dashed line), z = 25 nm (crossing Py matrix and middle of dots, green 

dotted line) and z = 35 nm crossing Co dots (only in S1 and S2
Co

, blue solid line). The gray vertical rectangles mark the 

non-magnetic spacer which separate the dot from the matrix. The insets on the top show a sketch of MCs with lines 

along which the total magnetic field is calculated. 

 

The appearance of end modes in MCs is related to the presence of a strong inhomogeneity of the total field 

resulting in deep wells close to the border of the dots and the matrix. This feature of the total magnetic field 

in 2D bicomponent MCs depends on two main factors: the shape of the dot and the contrast between the 

saturation magnetization of the different materials. In particular, the magnetization saturation contrast 

enhanced by the presence of the non-magnetic spacer leads to the formation of an inhomogeneous 

demagnetizing field and, as a consequence, to strong in-homogeneities of the total magnetic field at the 

border between two materials (Co/Py, Co/non-magnetic spacer and Py/non-magnetic spacer). Therefore, the 

presence of a thin non-magnetic spacer between two ferromagnetic materials not only influences 
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significantly the SW spectra but can also be an end mode’s creating factor. It is important to underline that 

this important feature, namely the appearance of end modes, either as EMf or EMd, does not depend on the 

dot shape or on the ferromagnetic material for MCs having geometric parameters in the range of the ones 

typical of the recently studied bicomponent systems. Hence, this picture is different from the one occurring 

in bicomponent systems
31

 where a crucial rule to determine the appearance of end modes was played by a 

specific combination of the magnetization saturation contrast and the dot shape. As an example, in a 

bicomponent MC composed of circular Co (Py) dots in direct contact with a Py (Co) matrix, the end mode is 

present when |MS| = |MS,Co - MS,Py| > 250 emu/cm
3
, but disappears when |MS| = 200 emu/cm

3
. Instead, if 

the bicomponent system is composed of square Co (Py) dots in direct contact with Py (Co) matrix, an end 

mode is present when |MS| > 200 emu/cm
3
.  In the following, the shape of the total magnetic field in 2D 

bicomponent MCs introduced by non-magnetic spacers around dots and its relation to the end modes is 

discussed. Fig. 4.14(a) shows the total magnetic field calculated for S1 vs. y for different values of z. Two 

deep wells are present inside the region of the Co dot above the Py matrix corresponding to z > 30 nm. The 

two wells are still present for 20 nm < z < 30 nm, although with decreasing depth. The two wells disappear 

for z < 20 nm, however the walls appear in this range. For this reason the EMd is strongly localized in the 

well of the total magnetic field at the border of Co dot for z > 20 nm and disappears in the homogeneous part 

of the system where there is the Py matrix (z < 20 nm) (see Fig. 4.13(a)).  

The Fig. 4.14 (b) shows the calculated total magnetic field for S2
Co

 as a function of y at different values of z. 

It can be seen that the positions of the minima of the total magnetic field depend on the value of z. In 

particular, the total magnetic field has its minimum value in the Py region for z < 20 nm while in the Co 

region for  z > 20 nm. These two wells close to the border between Py and the non-magnetic spacer and the 

non-magnetic spacer and Co give rise to the two localized modes EMf and EMd, respectively. Thus, the 

presence of these two end modes is strictly related to the non-magnetic material that surrounds the Co dots 

responsible for the appearance of the two minima in the total magnetic field.  

Comparing the profiles of the total field at z =15 nm and z = 25 nm (red dashed and green dotted line in Figs. 

4.14(a) and (b)), an increase of the depth of the magnetic wells can be noted in S2
Co

 with respect to the one 

in S1. This explains the decrease of the frequency of the EMd in S2
Co

 as compared to the one in S1. 

Moreover, the wells of the total field corresponding to the region filled by the Py matrix close to the non-

magnetic spacer at z =15 nm, although less deep than the ones in the Co dot, are deep enough to permit 

localization of the EMf. 

By looking at Fig. 4.14(a) it is also possible to understand that the variation of the total magnetic field due to 

the non-magnetic spacer induces a change of DE
HR

 and DE mode profiles as a function of z. It is possible to 

observe that the uniform amplitude of DE
HR

 in the horizontal rows (see Fig. 4.13(a)) is due to the trend of the 

total magnetic field. Indeed, by looking at Fig. 4.14(a) (black dot-dashed line), one can note that the total 

magnetic field does not present significant in-homogeneities along the y direction at z = 5 nm. Instead, at z = 

25 nm the DE
HR

 mode is localized only in the Py region (see Fig. 4.13(a)) and its amplitude vanishes inside 
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the Co dot. On closer inspection of the corresponding total magnetic field [Fig. 4.14(a) green dotted line] it 

can be observed the presence of a high wall at the border between Py and Co that prevents the spreading of 

DE
HR

 inside the Co dot. The DE mode has higher frequency than DE
HR

 and its amplitude spreads also in Co 

dot for z > 20 nm. In S2
Co

, there is an increase of the total magnetic field in-homogeneity as compared to S1 

for each value of z, apart from z > 30 nm where there is a small reduction (see Figs. 4.14(a) and (b)). This 

results in an increase of the frequencies of the DE and DE
HR

 modes.  

In order to investigate the effect of the change of the material filling the dots the total magnetic field for S2
Py

 

has been computed and shown in Fig. 4.14(c). There are two minima of the total magnetic field: the absolute 

minimum is located in the Py matrix for 10 nm < z < 20 nm and the other minimum is placed in the Py dot 

for 30 nm < z < 40 nm. In correspondence of the above mentioned minima, also in S2
Py

 there is the 

appearance of the EMd  and of the EMf, respectively. By looking at Figs. 4.14(b), (c) and (d), a qualitative 

similarity of the behavior of the total magnetic field as a function of y in S2
Co

, S2
Py

 and S3, respectively, can 

be noted. In Fig. 4.14(d),  where the Py dot thickness is 10 nm, the magnetic field well in the dot is less deep 

than the one in S2
Py

, while in the Py matrix it has a significant minimum (green dotted line, z = 25 nm). This 

explains the interchange of the frequencies of the EMf and EMd modes found in S3 with respect to the ones 

in S2
Co

 and S2
Py

.  Detailed inspection of the total magnetic field profiles shown in Fig. 4.14 (b), (c) and (d) 

allows to notice also the relative change of the magnetic field values among S2
Co

, S2
Py

 and S3 in the 

channels parallel to the x-axis containing dots [i.e., area of the DE
HR

 mode, for 100 nm <  y < 300 nm in 

Fig. 4.14] and lying between the dots [i.e., area of the DE mode for 0 nm < y < 90 nm and 310 nm < y  < 400 

nm]. In the middle part of these areas the average value of the total magnetic field is almost constant across 

the full thickness. In S2
Co

 the values of the field are 2.06 and 1.85 kOe in center of the areas of DE and DE
HR

 

mode, respectively, while in S3 the respective values are 1.82 and 2.1 kOe. This behavior of the field can 

explain the frequency exchange of the DE and DE
HR

 modes between S2
Co

, S2
Py

 and S3 in Fig. 4.12 (b), (c) 

and (d), respectively. 

 

4.2.4 Properties of the dispersion relation 

The different position and size of the non-magnetic spacer modify also important features of  the propagation 

of SWs. In order to investigate this effect,  the group velocity and the band width for the most relevant 

modes have been calculated The group velocity is important e.g. in the transmission measurements with the 

use of coplanar waveguide transducers, where SW with low wave number are usually excited
100

. A wide 

band width is important in order to accommodate incoming and transmitted signal; moreover, it can be used 

as an indicator of the interaction strength in the MC. The group velocity (vg) has been calculated in the DE 

geometry for selected modes close to the center of the BZ, as: 

x

g
k

v






2 ,                                                                (4. 8) 
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where  indicates the variation of the SW frequency due to the change of the wave vector along the x-axis 

and kx is the change of the wave vector. In calculations kx = 0.05 /a because the group velocity is 

calculated close to the center of the BZ. The band width for selected mode has been calculated as a change of 

its frequency between BZ center and BZ border  

bw = |(kx = /a) – (kx = )|                                                         (4. 9) 

 The group velocity and the band width of the investigated SW excitations (EMd, EMf, DE and DE
HR

) are 

calculated and collected in Tab. 4.1. 

 

 

S1 S2
Co

 S2
Py

 S3 S4 

vg 

[m/s] 

Band 

width 

[GHz] 

vg 

[m/s] 

Band 

width 

[GHz] 

vg 

[m/s] 

Band 

width 

[GHz] 

vg 

[m/s] 

Band 

width 

[GHz] 

vg 

[m/s] 

Band 

width 

[GHz] 

EMd 64 0.162 48 0.154 0 0.21 48 0.446 40 0.154 

DE
HR

 144 0.750 368 0.272 160 1.378 160 0.668 - - 

DE 256 0.355 522 0.810 256 1.097 152 0.410 68 0.203 

EMf - - 80 0.226 48 0.49 48 0.173 - - 

 

Tab. 4.1.  Group velocity vg in the BZ center and band width for EMd, EMf, DE and DE
HR

 modes in the MCs 

investigated here.  

 

It is possible to see from Tab. 1 that for vanishing wave vector, the DE and DE
HR

 modes in S2
Co

 exhibit the 

largest group velocities. This is an interesting result since S2
Co

 can be regarded as the most disruptive 

structure with respect to a homogeneous thin film.  This effect can be attributed to a combination of higher 

contrast between Co and non-magnetic spacer and Py and non-magnetic spacer and to a higher Co 

gyromagnetic ratio. Moreover, by looking at Tab. 4.1  it is found that the DE
HR

 modes in S1, S2
Py

 and S3 

have similar group velocities, while the DE mode of S3 has a group velocity smaller than the ones of the DE 

modes in S1 and S2
Py

. The decrease of the group velocity in S3 can be due to the thickness reduction of the 

Py dots. It is interesting to compare these group velocities to that of the DE magnetostatic SW in 

homogeneous Py film of 10 nm thickness calculated according to Eq. (4.8). In this special case the latter 

turns out to be 880 m/s, a value larger than the ones of the systems studied as expected. The dispersion 

relation of the DE magnetostatic SW is superimposed in Figs. 4.12(b), (c) and (d) with black dashed line. It 
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is possible to observe that it matches very well with the DE mode in S2
Co

 and the DE
HR

 modes in S2
Py 

and 

S3. This shows that the DE and DE
HR

 modes, in S2
Co

, S2
Py

 and S3 respectively, propagate in a way similar to 

that of the DE magnetostatic SW in homogeneous Py film and they travel mainly in the lower part of the 

structure where the dots influence on the internal field is smallest, nevertheless it changes the group velocity 

and band width.  

Comparing the group velocities of DE and DE
HR

 modes of S1, S2
Co

, S2
Py

, S3 and S4 with the one of the DE 

magnetostatic SW mode in homogeneous Py film, it can be noted that the presence of two different magnetic 

materials and a non-magnetic spacer reduces the speed of propagation in the BZ center. This is probably due 

to the presence of different magnetic material and non-magnetic spacer that induce the SW confinement in 

particular regions of the primitive cell. The DE and DE
HR

 mode of S2
Py

 have the largest band width. It is 

interesting to note that also the end modes with higher frequency, EMf and EMd in S2
Co

 and S3 have a band 

width comparable to that of the propagative DE
HR 

and DE modes. This means that also the localized modes 

can propagate in this kind of MCs and their properties can be exploited for transmitting signal.  

 

 

4.3 Spin wave modes in bicomponent Py/Co structures in the parallel and 

antiparallel state 

4.3.1. Bicomponent elliptical dots 

The system is composed of two close elliptical dots of Py and Co with a small gap of 35 nm that separates 

them. The Scanning Electron Microscopy (SEM) image of the sample, provided by the group of the 

Professor Adeyeye at the National University of Singapore, is shown in Fig. 4.15. Each elliptical dot has a 

width of 225 nm, a length of 1000 nm and a thickness of 25 nm. To reproduce the exact shape of the dots, a 

bitmap image of the basic unit of the bicomponent dots was created from the SEM image of Fig. 4.15, and 

used as input for the simulations. Periodic boundary conditions have been applied to account for the chain 

arrangement of the Py/Co dots in the investigated sample. The micromagnetic cells have been chosen to be 5 

nm  5 nm  25 nm. The magnetization ground-states as well as the hysteresis loops were determined by 

using the OOMMF
49

 software. The magnetic parameters used in the calculations have been theoretically 

determined on the basis of the BLS data of the frequency dependence of the magnetic modes on the applied 

magnetic field, furnished by at the Department of Physics and Geology of the University of Perugia. For Py: 

Ms (Py)= 740 emu/cm
3
, A (Py) =1.3×10

-6
 erg/cm, (Py)= 1.86×10

7
 (Hz/Oe) while for Co: Ms (Co)= 1300 

emu/cm
3
, A (Co) =3.0×10

-6
 erg/cm, (Co) = 1.90×10

7
 (Hz/Oe).  
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Fig. 4.15. SEM image of the Py/Co elliptical dots obtained by the group of Professor Adeyeye at the National 

University of Singapore. A reference frame together with the direction of the external magnetic field is also shown. 

 

The dynamical properties of the Py/Co systems have been calculated according to the DMM developed and 

extended for periodic and multicomponent system by Professor Giovannini at the Ferrara University
28

 (see 

Chapter 2 for further details). The dynamics is studied in the purely conservative regime, hence no damping 

terms are included in the equations of motion. 

The SWs modes are classified by taking into account their spatial profiles. Generally for the Py/Co system it 

is used the following labels
101

: (a) EM denotes the end modes, i.e. modes localized near the particle edges in 

the direction of the applied magnetic field, (b) m-BA indicates the modes with nodal lines perpendicular to H 

(backward-like modes), and (c) n-DE stands for modes with nodal lines parallel to the direction of H 

(Damon–Eshbach-like modes). The fundamental (F) mode without nodal lines corresponds to the Kittel 

resonant mode in the long wavelength limit. In addition, in this analysis it is found that the eigenmodes 

exhibit a preferential localization into either the Co or the Py dot. Therefore each mode has been identified 

with a label containing the localization region (either Py or Co) and the spatial symmetry (EM, F, DE, etc). 

In spite of the aforementioned preferential localization of each mode in a particular sub-unit, however, the 

inter-dot dynamic dipolar interaction causes the coupling between the relative phase of the precessional 

motion in Py and Co dots. For this dot geometry, the coupling via the in-plane dynamic magnetization 

component my is by far more relevant than that of the out-of-plane component mz. Therefore it is possible 

to observe either an in-phase (acoustic) or an out-of-phase (optical) character of the modes, with respect to 

the precession of the in-plane magnetization components in adjacent Py and Co dots
54

. 

 

4.3.2 Field dependent calculations 

The magnetic properties of the Py/Co elliptical dots have been investigated as a function of the external 

magnetic field. First of all, the hysteresis loop (M-H loop) has been calculated by means of OOMMF 

software and it is shown in Fig. 4.16. The corresponding hysteresis loop measured experimentally with the 

use of the magneto-optical Kerr effect at the Department of Physics and Geology of the University of 
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Perugia (not shown in Fig. 4.16) totally confirms the shape and the feature of the simulated one. 

 

Fig. 4.16. Calculated normalized major hysteresis loop plotted to show the transition fields occurring during the reversal 

process of the dots. Arrows mark the direction of the magnetization in the Py and Co elliptical dots. 

 

The hysteresis loop displays a two-step switching process due to the distinct magnetization reversal of the Py 

and Co sub-elements, characterized by a different coercivity. Starting from high external magnetic field, the 

magnetization of both Py and Co elements have the same direction, indeed in this case the system is in the 

parallel state. On reversing the applied field, one observes a drop of the magnetization  proportional to the Py 

magnetization fraction within each bicomponent unit associated with the magnetization reversal of the 

(softer) Py sub-elements. Then a plateau is observed for -370 < H < -730 Oe where the Py and Co 

magnetizations point in opposite directions, thus realizing the antiparallel ground state of the system. A 

second jump is seen which corresponds to the reversal of Co sub-elements until about -730 Oe, when the 

systems is completely saturated in the negative field direction. 

Then, the dynamic magnetic properties of the Py/Co elliptical dots have been studied as a function of the 

external magnetic field
32

. In Fig. 4.17 are shown the frequencies obtained by means of the DMM simulations 

plotted as a function of the applied field magnitude starting from positive values (dashed lines) together with 

the BLS data (filled dots) measured at the Department of Physics and Geology of the University of Perugia. 

The detected modes are identified and labeled on the basis of their calculated spatial profiles, shown in Fig. 

4.18 for H= 500 and -500 Oe. They exhibit marked localization into either the Co or the Py dots, as stated at 
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the end of the previous Section, were it was introduced the labeling notation containing the dominant 

localization region (either Py or Co) and the spatial symmetry (EM, F, DE, etc).   

 

 

Fig. 4.17. Dependence of the magnetic SWs mode frequency on the applied field strength. Dashed curves indicate the 

calculated mode frequencies obtained by DMM and the labels indicate the modes nomenclature based on their spatial 

profiles. Black (blues) curves represent the calculated modes localized into Py (Co) dots. Filled dots are experimental 

frequencies measured by BLS apparatus at the Department of Physics and Geology of the University of Perugia on 

sweeping the applied magnetic field from positive to negative saturation (i.e. following the upper branch of the 

hysteresis loop). The normalized major hysteresis loop is also plotted for showing the transition fields (vertical dashes 

lines) occurring during the reversal process of the dots. Arrows mark the field regions of the different relative alignment 

of the magnetization for the Py and Co dots: parallel (P) or anti-parallel (AP).  

According to the DMM simulations, when the dots are in the P state, up to five modes exists. On the basis of 

the calculated spatial profiles (right panel of Fig. 4.18), in the P state the two modes at lowest frequencies as 

the EM(Py) and the F(Py), with a very small spin precession amplitude into the Co dot are indentified. This 

is because their frequency is lower than the frequency threshold for this material for the existence of SWs. A 

similar effect has been observed in periodic array of alternating Py and Co nanostripes
102

 and nanodots
103

.    
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Fig. 4.18. Calculated spatial distribution of the in-plane dynamic magnetization (Im[my], imaginary part) for different 

modes at the field values indicated on the top of the figure. In the top two lines the magnetization distribution in the top 

(Co) and bottom (Py) dots, as calculated by the micromagnetic simulations, is also shown, for both the AP and P states.   

 

The F(Py) mode has a spatial profile rather uniform, while the EM(Py) mode exhibits some oscillations with 

nodal planes perpendicular to the field direction. This particular feature of the EM depends on the arrow-

shaped and sharp profile of the edges of our dots and is different from what previously observed in circular, 

elliptical, or rectangular dots, where the most intense EM has no nodes. At higher frequencies, two modes 
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with preferential localization into the Co dot are identified, namely the EM(Co) and F(Co) modes. Both of 

them show an appreciable amplitude also in the adjacent Py dot. Between these two modes, it is present the 

1DE(Py) mode which is characterized by one nodal surface parallel to the local magnetization direction. 

Note that the nodal lines present in the spatial profile of the F(Co) mode perpendicular to the long axis of the 

ellipse do not correspond to a real change of sign of the dynamic magnetization and are due to the partial 

hybridization of the F mode with higher-order modes having frequencies close to the one of the F mode. 

Interestingly, the frequency slope of modes localized into the Co dots is larger than that of Py modes, due to 

larger values of the Co magnetization and gyromagnetic ratio
104

. An overall good agreement between the 

calculated (dotted curves) and measured frequency (full points) has been achieved (see Fig. 4.17) even if 

some discrepancies are observed for the frequency of the EM and 1DE (Py) modes.   

A very interesting point is to examine what happens when the external field is reduced and reversed to 

around H= -300 Oe, where the Py dots reverse and the AP ground state occurs. In correspondence of the AP 

state, it is possible to observe a discontinuous jump in the frequencies of all the modes localized into the Py 

dot while the F(Co) mode continues its monotonic evolution. This discontinuity of the Py modes frequency is 

confirmed by the experimental measurements and the jump marks the P to AP ground state transition. It is 

noteworthy, in the AP field region, that the Py mode frequencies are characterized by an almost field-

independent slope vs H. The corresponding spatial profiles of the modes are shown in the left panels of Fig. 

4.18. Here it is possible to see that the only mode which is purely localized in one dot is the EM of Co, 

because now it is sub-threshold for Py. A further reduction of H, which is sufficient to cause the Co 

magnetization reversal, produces a P state at negative fields and the frequency starts to increase again as a 

function of the applied field. In this field range the frequencies of modes in the Py dots monotonously 

increase in a way similar to that measured in the P state for positive field values while an abrupt change in 

the frequency of Co modes occurs. 

Another interesting analysis is to study the magnetization dynamics at the remanence when the system is in 

the AP state. In order to reach this configuration it is necessary to stop increasing the negative field to about -

300 Oe and come back towards positive applied fields. The DMM calculations can be performed following 

the minor hysteresis loop. In Fig. 4.19 the mode frequency is shown calculated along the minor loop and 

compared with values calculated along the major M-H loop (open points).  
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Fig. 4.19. Dashed black and blue curves are frequencies calculated by means of the DMM along the minor hysteresis.  

Full point are the frequencies measured by BLS apparatus at the Department of Physics and Geology of the University 

of Perugia along the minor hysteresis (also shown in the figure). The frequencies measured along the major hysteresis 

loop of Fig. 4.16 are also plotted as open points, for the sake of comparison. 

By inspection of the frequency slope of the modes, it is possible to understand the localization of modes into 

dots of different materials looking at their slope
105

. In particular, three (two) modes have a negative (positive) 

frequency slope with an almost linear dependence on H. It is evident that modes with negative frequency 

slope are modes localized into the Py dot (EM, F and 1DE) while the two with positive slope are the F(Co) 

and the EM(Co) modes. This can be easily explained in terms of differences of the internal magnetic field 

(sum of the Zeeman and magnetostatic fields) inside the dots. Indeed, for the modes localized in the Co dots 

the applied field is parallel to the magnetization direction, so it is present a positive slope as in the upper 

branch of the M-H loop. In contrast, along the minor M-H loop, the applied field (directed in the positive 

direction) and the Py magnetization are anti-parallel and therefore, it is possible to observe a negative slope 

for those modes localized into the Py dot, because an increase of the external field corresponds to a decrease 

of the total internal field. Obviously, when the external field exceeds about +300 Oe, a reversal jump in the 

minor loops is observed in correspondence with the alignment of the Py dot magnetization with H. At this 
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field an abrupt variation of Py mode frequencies also takes places and the frequencies resume the same 

values measured along the major M-H loop.   

 

4.3.3 Analysis of the dynamic coupling as a function of the gap size  

An interesting point which emerges from analysis of Figs. 4.19 and 4.20 is that the frequencies of the 

eigenmodes are not the same at +500 Oe and at -500 Oe. This is expected for modes localized into the Co 

element, since the external field is either parallel or antiparallel to their magnetization. However, for those 

mode localized into the Py sub-element, one could have predicted to find the same frequencies at ±500 Oe, 

unless the dipolar coupling arising from the adjacent Co dot plays a significant role. In fact, as seen in Figs. 

4.19 and 4.20, reversing the field from +500 to – 500 Oe, the frequencies of EM(Py) and 1DE(Py) modes 

increase by about 0.2 GHz and 0.6 GHz, respectively, while that of F(Py) decreases by 0.25 GHz. The reason 

of this complex behavior will be addressed in the following, analyzing the interplay of both static and 

dynamic dipolar coupling between the adjacent Py and Co dots. In Fig. 4.20 the calculated frequencies of the 

most representative eigenmodes at +500 Oe (FM state) and – 500 Oe (AP state) are plotted as a function of 

the gap size d between the Py and Co sub units (please remind that in the real sample studied here, d=35 

nm). As a general comment, it can be seen that the frequencies for the system in the AP state are more 

sensitive to d than those of the P state. In particular, the lowest three frequency modes of the AP state 

(EM(Co), EM(Py) and F(Py)) are downshifted with respect to the case of isolated elements (dotted lines) and 

show a marked decrease with reducing d, while the two modes at higher frequencies (F(Co) and 1DE(Py)) 

have an opposite behavior even though they exhibit a reduced amplitude. In the P state (right panel), the 

modes concentrated into the Py dots exhibit a moderate decrease with reducing d, while an opposite but less 

pronounced behavior is exhibited by the F(Co) mode.   
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Fig. 4.20. Calculated frequency evolution of modes vs the gap size d for two different values of applied magnetic field: 

(left panel) H= - 500 Oe (AP state) and (right panel) H= +500 Oe (P state). Red (black) curves represent the calculated 

frequencies for modes localized into the Py (Co) dots. Horizontal dotted lines shown in the right panel represent the 

calculated frequency values for non-interacting (isolated) Py and Co dots.  

 

In order to explain the mode frequency behavior both the internal field profiles within the Py and Co dots 

and the spatial profile of the specific modes should be taken into account. In Fig. 4.21 (a) and (d) are 

reported the calculated profiles of the inhomogeneous internal fields  FM

int PyH x  and  AFM

int PyH x for Py dot in 

the P and AP states, respectively, obtained by averaging  FM

int Py ,H x y  and  AFM

int Py ,H x y  over the 45 

micromagnetic cells along y (all the dots width is considered), for two values of d, namely 10 nm and 50 nm. 

Looking at Fig. 4.21 (a) and (d), one notes that the spatial profile of the internal field does not vary 

appreciably with d. However, due to the static dipolar interaction among the Py and Co dots, for small values 

of d the intensity of the internal field in the central portion of the Py dot is slightly lower (larger) than for 

isolated dots in the case of the P (AP) configuration. (Instead, the internal field within the Co dot, Fig. 4.21 

(g), is almost independent of d, given the relatively larger magnetic moment of Co with respect to Py). It is 

clear that the above modification of the static internal field cannot explain the evolution of mode frequencies 

reported in Fig. 4.17, neither qualitatively, nor quantitatively. Instead, it has been found that a useful hint 

about the physical mechanism which is responsible for the frequency evolution shown in Fig. 4.20 comes 

from a detailed analysis of the spatial profile of the modes.   



100 

 

Moreover, it is possible to see in Fig. 4.20 that the frequency of the F(Py) mode decreases with decreasing d, 

for both the P (H = + 500 Oe) and AP (H= -500 Oe) states. First, this behavior can be due to the “acoustic” 

character of this mode, being in-phase the oscillation of the in-plane components of the dynamic 

magnetization in the Py and Co dots. Secondly, by comparing the spatial profiles shown in Fig. 4.21 (b)-(c) 

and (e)-(f), it is possible to note that the spin precession amplitude reduces its localization region with 

increasing d. Indeed, for d = 50 nm the F(Py) mode amplitude is concentrated in the center of the Py dot and 

experiences the maximum value of the internal magnetic field leading to a higher frequency. On the other 

hand, for d = 10 nm the mode amplitude extends in a larger portion of the Py dot and experiences the average 

of the internal field causing a frequency downshift.  

    

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.21. Panels (a) and (d) show the profile of the averaged internal field in the Py dot in the P (H= + 500 Oe) and AP 

(H= - 500 Oe) states, respectively at d =10 nm (black lines) and d = 50 nm (red dashed lines). Panel (g): as in panels (a) 

and (d), but in the Co dot in the P state. Blue dashed lines in panels (a), (d) and (g) give the magnitude of the external 

magnetic field. Panels (b) and (e): spatial profiles (Im[my]) of the F(Py) mode in the P and AP ground states, 

respectively at d =10 nm. Panels (c) and (f): corresponding spatial profiles (Im[my]) at d =50 nm. Panel (h): spatial 

profile (Im[my]) of the F(Co) mode in the P state at d = 10 nm. Panel (i): as in panel (h), but at d = 50 nm. In panels 

P: H = + 500 Oe AP: H = - 500 Oe P: H = + 500 Oe 
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(b), (c), (e), (f), (h) and (i) are depicted also the spatial profiles in the micromagnetic cells placed in the central line 

either of Py or Co dot. 

 

Similar considerations can be applied to the case of the frequency trend of the 1DE(Py) mode in the P state, 

even if the calculated profiles are not shown here. Instead, for the AP state, it can be seen that the 1DE(Py) 

mode increases its frequency with reducing d, because in this case one can recognize an appreciable 

“optical” character of this mode, with an out-of-phase oscillation of the in-plane dynamic magnetization 

components (see Fig. 4.18). Concerning the F(Co) mode, it is found that, for both P and AP ground states, 

the profile of the internal field does not vary appreciably versus d (see Fig. 4.21 (g)). Therefore the variation 

of the spatial profile of this mode (panels (h) and (i) of Fig. 4.21) can be related to the influence of the inter-

dot dynamic dipolar coupling. This term gives rise to a perturbation potential affecting the spin precession 

and inducing a modulation of the spatial profiles in both P and AP states. 

 

4.4 Conclusions 

Concluding, in this Chapter the magnetic properties of bicomponent MCs have been investigated. As a 

general comment, it is important to highlight that the presence of two different ferromagnetic materials 

strongly modify the spin dynamics in MCs leading to some new magnetic properties with respect to the 

mono-material MCs investigated in Chapter 3. In particular, the analysis reported in Sect. 4.1 focuses on the 

band structure of Py/Co MCs. The presence of two different ferromagnetic materials along the thickness of 

the periodic system allowed us to treat Py/Co MCs as 3D systems albeit with 2D periodicity. It was studied 

the dependence of band structure on the volume and on the position of Co with respect to the Py film by 

introducing the notion of effective “surface magnetic charges” resulting from the superposition of the 

“surface magnetic charges” arising from the static magnetizations of Py and Co. The effective “surface 

magnetic charges” explain the different orientations of the demagnetizing fields of the two ferromagnetic 

materials. It was also shown that, when the Co dot is above the Py film, the Co has the physical effect of 

widening the BGs. A magnetic effective potential was expressed as a function of effective “surface magnetic 

charges” and the effects of the related demagnetizing field on collective mode dispersion were evaluated by 

means of micromagnetic simulations. The effect of the interchange of the two ferromagnetic materials on the 

distribution of the effective “surface magnetic charges” and on the dispersion was also investigated. In 

addition, in Sect. 4.2 a detailed theoretical investigations of the SWs spectra in 2D bicomponent MCs with 

the DMM have been performed in order to investigate the influence of a non-magnetic spacer on the 

magnonic band structure. Five square arrays of square grooves in thin Py film filled (or partially filled) with 

Co or Py square dots have been studied. The conclusions drawn for these kind of MCs can be generalized to 

other kind of 2D  lattices and of different dot shapes in the nanometric range. The non-magnetic spacer 

breaks exchange interactions between the magnetic materials of the matrix and the dot. However, most 

importantly, this non-magnetic spacer strongly modifies the total magnetic field, especially also at the dot 

edges. Due to these changes of the magnetic field, two types of end modes appear in the same structure. 
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These are the end mode localized in the dot and that localized in the matrix. Their frequencies strongly 

depend on the magnetization of the matrix and of the dot material. Moreover, it has been shown that by 

employing a single material (Py in our case), it is possible to design a MC preserving the main properties of 

bicomponent MCs and magnonic AD lattices. In addition it has been demonstrated that the introduction of a 

non-magnetic spacer and the change of the magnetic dot material allow to tailor in different ways the SW 

spectra in MCs. This includes even the interchange of the SW frequency order. This property can be further 

exploited for modeling the magnonic band structure and magnonic band gaps towards the properties desired 

for practical applications. Moreover, the non-magnetic spacer breaks the exchange interaction at the border 

between the two ferromagnetic materials and allows the fabrication of structures where magnetization 

reversal of the dots can take place at magnetic field values different from those causing magnetization 

reversal in the matrix (due to different shape or crystalline magnetic anisotropy). Here, there are more 

possibilities than in 1D re-programmable structures
94,106

 , because the anisotropy axis (and the magnetization) 

of the dots can be in an oblique direction with respect to the magnetization of the matrix. The results of this 

study are interesting also for the investigation of the dynamical properties of bicomponent MCs composed of 

hard and soft ferromagnetic materials, where stray magnetic field originating from the dots (made of hard 

ferromagnetic material) influences formation of the domain pattern
107

 but SW dynamics has not been 

investigated so far in such structures. Finally, in Sect. 4.3 is presented the theoretical study of the spin 

eigenmodes in dipolarly coupled bicomponent Co and Py elliptical nanodots. Several eigenmodes have been 

identified and their frequency evolution as a function of the intensity of the applied magnetic field has been 

calculated by means of the DMM, encompassing the ground states where the Co  and Py dots magnetizations 

are parallel or anti-parallel, respectively. In correspondence to the transition between the two different 

ground states, the mode frequency undergoes an abrupt variation and more than that, in the anti-parallel state, 

the frequency is insensitive to the applied field strength. A detailed micromagnetic investigation of the 

properties of the eigenmodes as a function of the gap distance between Co and Py elliptical dots has been 

performed and the consequent variation of the internal field has been calculated. It has been shown that the 

inter-dot dynamic dipolar coupling plays a crucial by affecting the spin-wave mode frequencies as a function 

of the gap size and induces a modulation of the corresponding spatial profiles both in Co and Py dots.  
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Chapter 5 

Magnonic crystals: a new class 

of metamaterials 

 

 
The research on metamaterials is rapidly grown in the last decade both for their challenging and unusual 

properties and for their strong impact on the technological field. Several classes of materials have been 

classified as metamaterials including electromagnetic materials, artificial dielectrics, artificial magnetics, 

chiral materials, anisotropy and bi-anisotropy materials, etc
108

. The description of metamaterial properties in 

terms of effective quantities has been topical in most of the above mentioned classes. Recently, a new class 

of metamaterial belonging to periodic magnetic structures with modulated periodicity called MCs has been 

introduced by describing their dynamical properties in terms of effective quantities. The effective medium 

description is used to study both mono-material
31,109 

and bicomponent
110

 MCs. Even though there are recent 

works investigating the dynamical properties of 2D AD lattices
30

 and of bicomponent MCs, it is not given 

enough attention to investigate the effective properties of the SW excitations. This Chapter treats the 

metamaterial properties of mono-material and multi-material MCs. In this way it is possible to include MCs 

in the field of metamaterials and these magnetic systems can be regarded as a new class of metamaterials. 

In Sect. 5.1, the metamaterials properties of a mono-material MCs are discussed. The system studied consists 

in a 2D AD lattice constituted by a periodic arrangement of circular holes embedded into a ferromagnetic 

matrix. Other interesting properties of this kind of system has been described in Chapter 3, Sect. 3.2. In 

analogy with what occurs for the spin dynamics in the in-plane magnetized 2D MCs
110,111

, by means of the 

DMM simulations and analytical calculations, it is possible to give an effective medium description by 

defining a characteristic wavelength for the relevant mode of the spectrum. This wavelength has the role of 

an effective wavelength commensurable with the periodicity of the system and linked to the Bloch 

wavelength and fulfils the condition d/eff <<1 with d the hole diameter. Moreover, also a corresponding 
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(small) effective wave vector can be defined for each collective mode together with its relation with the 

corresponding Bloch wave vector. Finally, it is proved that the effective dynamical properties do not depend 

on the orientation of the external magnetic field, but only on the collective character of the modes and on 

their scattering process with the holes which act as point defects
111

.  

The new effective quantities introduced for the case of AD lattices are also extended in order to characterize 

the SWs modes propagating in the bicomponent MCs presented in the Chapter 4, Sect. 4.1. The recent 

studies on bicomponent systems deal with modeling of dispersion and opening of band gaps at edges of 

Brillouin zones (nBZs with n =1,2,..) based on micromagnetic or analytical methods, but they do not focus 

the analysis on effective properties
93

. By contrast, in Section 5.2 some interesting effective properties of a 

bicomponent ferromagnetic systems composed by cylindrical Co dots etched into a Py film are investigated. 

The investigation is carried out: a) by using DMM in the case of periodic magnetic systems b) by performing 

an effective medium approximation in the propagative regime (far from edges of nBZs). The effective 

medium approximation is made by introducing some effective magnetic parameters for describing the spin 

dynamics within bicomponent systems. In addition, the notions of effective quantities defined in the case of 

mono-material Mc are extended to 2D periodic bicomponent magnetic systems This is done by defining the 

effective wavelength and the effective wave vector for all collective modes of the 2D bicomponent magnetic 

systems having frequencies of a few GHz in the microwave range typical of MCs on the nanometric scale. 

Interestingly, as found in 2D AD lattices
112

, also in 2D periodic bicomponent magnetic systems the effective 

wavelength and the small effective wave vector, that can be defined for each collective mode in both 

ferromagnetic materials, are not necessarily equal to the corresponding Bloch wavelength and Bloch wave 

vector. This means that the presence of a second ferromagnetic material does not alter the effective dynamic 

description and the found rules characterizing the effective quantities remain valid. 

 

5.1 Two dimensional antidot lattice as a magnonic metamaterial 

5.1.1. Antidot lattice: structure  

The system considered here is a mono-material MC composed of circular holes embedded into a CoFeB 

matrix. The geometric and magnetic parameters used in the calculations are the same reported in Sect 3.2 in 

Chapter 3, viz.: the periodicity is a = 610 nm, thickness of CoFeB film LCoFeB = 41nm, hole diameter d =200 

nm,  γ/2π = 2.8 GHz/kOe with γ the gyromagnetic ratio of the electron, 4 Ms = 16.70kG, Ms the saturation 

magnetization and exchange stiffness constant A = 2.75×10
-6

 erg/cm. The value of Ms corresponds to an 

effective magnetization which includes the effect of the surface anisotropy typical of this ferromagnetic 

alloy. In the geometry considered here H is placed either perpendicularly to the sample plane along the z-axis 

inducing an out-of-plane rotation of the static magnetization M, a parallel to the y directions in order to 

obtain an in-plane magnetized system, while the in-plane Bloch wave vector K is kept parallel to the x-axis.                                                          
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Fig. 5.1. Top view of the sample including the unit cell and the direction of the Bloch wave vector. 

The ground-state magnetization is determined by using the OOMMF code
49

 with periodic boundary 

conditions and by subdividing the primitive cell into prismatic cells of 5 nm  5 nm  41 nm. Indeed, it is 

assumed that the most representative collective modes are uniform along z. The ground-state magnetization 

bends close to the holes due to the magnetization discontinuity between the ferromagnetic material and the 

holes. The band structures of the RM for the case of the out-plane magnetized system and of the DE mode 

for the case of the in-plane magnetization, is calculated according to the DMM. The RM and the DE modes 

have the largest scattering cross-section and become the Fundamental mode for vanishing K, that are the 

resonant modes of the spectrum as for the case out-of-plane and in-plane magnetized MCs. 

 

5.1.2 Effective rules 

The spatial profiles of the RM and DE mode calculated at the border of the 3BZ and 4 BZ  in the case of out-

of-plane and in-plane magnetized system, are shown in Fig. 5.2.  By inspection of Fig. 5.2, it is possible to 

define the effective wavelength λeff expressed as the distance between two maxima (or two minima) of the 

wave.  
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Fig. 5.2. Calculated spatial profiles of SWs modes. (a) Spatial profiles of RM3BZ at the X′ point for the out-of-plane 

magnetized system. (b) Calculated spatial profiles of the RM4BZ at the  Γ′′ point . (c) Spatial profiles of DE3BZ at the X′ 

point for the in-plane magnetized system. (d) Spatial profiles of DE4BZ at the XΓ′′ point for the in-plane magnetized 

system. For all the collective modes the effective wavelength eff and the Bloch wavelength B are indicated. 

 

For both the geometries studied, out-of-plane and in-plane magnetized AD lattice, the λeff is commensurable 

with the AD lattices periodicity (see Fig. 5.2 (a) and (b) for the case of out-of-plane AD lattice, (c) and (d) 

in-plane magnetized AD lattice). In particular, for the RM and the DE mode λeff  fulfil the following rule: 

 

2    if  is oddBZ   
eff      if  is even

a nn
a n








      (5.1) 

In addition it is possible to link λeff with the Bloch wavelength defined as B= 2/K where K is the modulus 

of the Bloch wave vector: 
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The corresponding relation between the (small) effective wave vector k and the Bloch wave vector K is 

expressed as: 

 

 
(2 1)BZ (2 1)BZ

 

(2 2)BZ (2 2)BZ

l+ l+
=

l+ l+
=





k K G

k K G

      (5.3) 

where G =(l b
x
, 0) is a reciprocal lattice vector with l= 0,1,2,.... and b

x
 = 2/a. The effective description of 

collective modes remain valid also in the propagative regime, viz. far from nBZ boundaries. 

 

5.2 Metamaterial properties of bicomponent MCs  

5.2.1 Description of the systems and micromagnetic framework 

In this Section metamaterial properties of the bicomponent MCs previously introduced in Sect. 4.1 are 

investigated. The four systems are sketched  in Fig. 5.3. The magnetic and geometric parameters used in the 

calculation are the same defined in Sect. 4.1. The ground-state magnetization is determined by using the 

OOMMF code with periodic boundary conditions and by subdividing the primitive cell into micromagnetic 

cells of 7.5 nm × 7.5 nm × 8 nm. The frequencies of the collective modes are determined according to the 

DMM with implemented two-dimensional boundary conditions
31

 . The magnetic systems are studied in the 

Damon-Eshbach geometry, that is the external magnetic field H is applied along the y-direction, while the 

Bloch wave vector K is parallel to the x-direction (see Fig. 5.3, inset of panel (e)). The analysis of collective 

mode frequency dispersion is carried out along the x-direction at a fixed external magnetic field of intensity 

H= 500 Oe. The ground-state magnetization M is almost collinear with H. 

 

Fig. 5.3. (a) Pictorial sketch of system 1. (b) as in panel (a) but for system 2.  (c) as in panel (a) but for system 3. . (d) as 

in panel (a) but for system 4. The thickness LPy of the Py film and the thickness LCo of the Co cylindrical dots are 
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indicated . (d) The top view of the four Py/Co bicomponent MCs together with the reference frame and with the 

directions of H and of  K are also shown. 

 

5.2.2 Effective medium approximation 

A very interesting point discuss are the effective properties of the Py/Co bicomponent systems in the 

propagative regime by means of the effective medium approximation. With this aim, it is useful to define an 

effective magnetization
113

 by means of the i ratios expressed above in Eq. 4.1, namely             

                                                                                                       

 eff s,Py s,Co1    i

i iM M M                                                   (5.4) 

with i = 1,2,3,4. The effective magnetization takes into account the presence of both Py and Co materials and 

their volumes inside the primitive cell. Moreover, also the effective magnetic field playing the rule of an 

internal field experienced by the metamaterial (MM) wave and depending on both materials can be expressed 

according to the effective medium approximation in the form 

 

eff dem Cell +  i y

iH H H                      (5.5) 

where 
 

dem Cell 

y

iH  indicates the average of the y-component of the static demagnetizing field over the 80 

micromagnetic cells of the primitive cell along both x and y directions calculated by means of OOMMF. 

Indeed, the results of the calculations shows that the static demagnetizing field is uniform along the thickness 

for every system. Since the calculated contribution of the exchange field gives a minor contribution to the 

effective field, this terms is not considered. In principle, it can be useful to define also an effective 

gyromagnetic ratio eff and an effective stiffness constant Aeff following the same definition given in Eq. (5.4) 

for the effective magnetization. By performing a numerical check of these quantities it results eff  Py and 

Aeff  
Py
exchA . By means of these approximations it is possible to write the frequency of the MM wave in the 

propagative regime for the different systems. To describe the dynamics of the MM mode in the propagative 

regime it is possible to follow the dispersion of the frequency of the Damon-Eshbach surface mode of the 

thin continuous film in the dipole-exchange regime and in the absence of losses
66

. For this MM the 

dispersion can be written in the approximated form as follows 

 

   

1

Py Py 2
2exch exchPy 2 2 2

MM eff eff eff eff

eff eff

2 2
4  + 2 1

2

i i i i i qL

i i

A A
H + q M H + q M e

M M


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


    
       
        

         (5.5) 
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where q indicates the Bloch wave vector and L is the thickness of the system studied. The DE mode of the 

MM corresponds to the effective medium description of the 
BZDEn

 collective modes in the bicomponent 

MCs, because 1) 
BZDEn

 propagating modes have an appreciable amplitude in the whole primitive cell and 

spread also in the horizontal rows comprised between Co circular dots experiencing an internal field which is 

very close to the calculated effective field; 2) for the ratios i studied, the effective magnetization is close to 

that of Py which fills the region of the magnetic film in the bicomponent MCs. In Fig. 5.4 (a), (b), (c) and (d) 

the MM wave dispersions are compared to the 
BZDEn

 ones for system 1, 2, 3 and 4, respectively. The 

BZDEn
 modes are mainly localized in the Py film, but spread also into the horizontal rows containing Co 

dots and have nodal planes parallel to the local direction of M. Note that, at lower frequency, also collective 

modes, whose amplitudes are mainly concentrated in the horizontal rows containing Co dots, are found in the 

calculations. However, these modes are less appealing for giving a full description of metamaterial properties 

and are not shown in the following.  

The frequencies of the MM mode have been calculated according to Eq. (5.5) where the numerical values 

obtained from micromagnetic simulations are: 1
eff 476 OeH ,

1 3
794 emu/cmeff M  for systems 1, 

2
eff 477 OeH , 

2 3
767 emu/cmeff M for system 2, 3

eff 474 OeH , 
3 3

788 emu/cmeff M for system 3 and 

4
eff 475 OeH , 

4 3
763 emu/cmeff M  for system 4. In Fig. 5.4 the magnonic mode frequencies of the DEnBZ 

extended modes with n =1,2,.. the band index calculated as a function of the Bloch wave vector up to the 

5BZ are shown for the four systems studied. The effective magnetization values are close to the 

magnetization saturation of Py because the systems are mainly composed of Py.  
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Fig. 5.4. (a) Calculated DMM frequency dispersion of the 
BZDEn

 modes (dashed blue lines) compared to the Damon-

Eshbach dispersion of the MM mode (solid blue line) calculated by means of Eq. (5.5) for Py/Co system 1. (b) As in 

panel (a) but for system 2. (c) As in panel (a) but for system 3. (d) As in panel (a) but for system 4.  

 

For all the systems investigated it is possible to note a very good agreement between the calculated MM 

waves frequencies and the DMM frequencies of the DEnBZ modes. In particular, the calculated frequencies 

intersect, at the nBZ borders, the middle frequencies of the corresponding BGs determined by means of 

DMM. In principle, also the MM wave corresponding to the 
HR

BZDEn
 dispersion could be determined. 

However, in this case the calculation of the effective field experienced by the mode would be more 

complicated, because in performing the average it should be taken into account also the variability of the 

region of largest amplitude as a function of the Bloch wave vector of the mode itself inside the primitive cell.  

Moreover, it is possible to note that at edges of nBZs there is the opening of band gaps due to Bragg 

diffraction, because of the magnetic contrast between Py and Co due to their different saturation 

magnetizations. Band gap amplitude at the edge of the BZs reduces with increasing band index. Band gap 
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behavior is similar to the one found for extended modes in a 2D AD lattice
71

. Also band widths follow a 

similar trend showing a decrease of their amplitudes by increasing band index. 

 

5.2.3 Effective rules 

By looking at the spatial profiles of the magnonic modes propagating in this bicomponent MC, it is possible 

to define an effective wavelength λeff for each collective mode that corresponds to the distance between two 

maxima (or two minima) of the wave similar to the case of the 2D AD lattices. In the 2D periodic 

bicomponent magnetic system the collective excitations are supposed to fulfil the Bloch rule, m(r+R) = 

m(r)e
iKR

 where m(r) is the dynamic magnetization, R is the in-plane lattice vector and K is the Bloch wave 

vector. The effective wavelength is the characteristic wavelength of the collective mode and is directly 

related to the scattering of collective modes at the interface between the two ferromagnetic materials due to 

the contrast between the two saturation magnetizations. Instead, the Bloch wavelength λB is related to the 2D 

system periodicity and can be expressed for each collective mode as λB = 2 /K  with K the modulus of the 

Bloch wave vector. In order to show that the value of λeff is independent of the ferromagnetic materials, in 

Fig. 5.5 are depicted, as an example, the spatial profiles of two modes at the border of the 3BZ not only for 

Py/Co system, but also for Co/Py system, namely for the same periodic bicomponent system with 

interchanged ferromagnetic materials. For both magnetic systems it is possible to give the same definition of 

λeff.  

      

 

Fig. 5.5. (a) Calculated spatial profiles (Re[mz], real part of the out-of-plane component of the dynamic magnetization) 

in 3  3 primitive cells of the HR
3BZDE collective mode at the ’ point for the Py/Co system . (b) As in panel (a), but for the 

Co/Py system. 

 

Collective modes shown in Fig. 5.5 ( HR
3BZDE ) belong to the family of HR

BZDEn localized modes with n =3 and the 

superscript “HR” refers to their strong localization in the horizontal rows containing the cylindrical dots. For 

ν = 10.91 GHz ν = 13.70 GHz

(a) Py/Co system (b) Co/Py system
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the HR
3BZDE  collective modes shown it is λeff =2a and λB=2/3 a as indicated. This means that at the border of the 

3BZ the effective wavelength is three times the Bloch wavelength. At a given nBZ border the same value of 

the effective wavelength characterizes also the other family of collective modes, the extended modes DEnBZ 

whose amplitudes spread mainly in the horizontal channels comprised between the cylindrical dots. It is also 

possible to define a corresponding effective wave vector keff  and to establish the following general rules 

between the effective and the corresponding Bloch quantities: 

1) The effective wavelength is a function of the Bloch wavelength, viz. 

 

BZ
BBZ

eff BZ
B

 if  is odd
      

  if  is even
2

n

n

n

n n

n
n









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

      (5.6)                                                                                                                               

The effective wavelength is commensurable with the periodicity and assumes either the value 2a or a 

depending on n with n =1,2,... 

2) The small effective wave vector can be written in terms of the Bloch wave vector, viz.  

 

 (2 1)BZ(2 1)BZ
eff    l+l+ = k K G                                                                         (5.7) 

(2 2)BZ (2 2)BZ

eff  l+ l+= k K G                                                                           (5.8) 

where G =(l b
x
, 0), l= 0,1,2,.... and b

x
 =2π/a. The small effective wave vector can be interpreted as a Bloch 

wave vector shifted by a reciprocal lattice vector G, but not necessarily shifted into the 1BZ and assumes 

either the value keff = (/a,0) for n odd with n =1,3, …or the value keff = (2/a,0) for n even with n=2,4,... 

Hence, this scheme does not correspond to the well-known shift from the extended to the reduced zone 

scheme where the meaning of the wave vector is always that of a Bloch wave vector differing by a vector G 

multiple integer of b, the primitive reciprocal wave vector. It is interesting to note that, as d→0, the effective 

wavelength becomes equal to the Bloch wavelength and the description of the spin dynamics in terms of 

effective properties breaks down
8
. 

 

5.3 Conclusions 

In summary, in Chapter 5 are discussed the metamaterials properties of both mono-materials and multi-

materials MCs leading to the introduction of MCs in the field of metamaterials. In particular in Sect. 5.1 it is 

shown that both perpendicularly magnetized and the in-plane magnetized 2D AD lattices exhibit effective 

properties. Most importantly, it has been proved that the effective medium description of collective mode 

dynamics in terms of effective quantities remain valid both for out-of-plane magnetized and the in-plane 

magnetized 2D MCs. It is thus possible to classify also this type of MCs as magnonic metamaterials 
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exploiting the higher symmetry related to the perpendicular and in-plane magnetization for technological 

applications based on propagation of spin-wave modes in AD lattices. 

Metamaterial properties of four different bicomponent MCs consisting of Co cylindrical dots etched into a 

Py film have been investigated in Section 5.2. Here, it was found that the most relevant collective modes 

dispersions exhibit band gaps at the edges of nBZs. Interestingly, in the propagative regime, thanks to the 

definition of some effective magnetic parameters, a quantitative description of the metamaterial wave 

dispersions for all the systems analyzed is given. Because of the dependence on the effective field, the 

calculated dispersions of the metamaterial waves could be useful for measuring the internal field experienced 

by magnonic modes in order to control spin-wave propagation in bicomponent periodic systems. In addition 

the metamaterial properties of  bicomponent MCs have been investigated by defining effective quantities that 

characterize collective modes. Simple relations between the effective wavelength and the effective wave 

vector and the corresponding Bloch quantities for each collective mode have been obtained. These properties 

are valid not only for the Py/Co system, but also for the Co/Py system and can be extended also to 

bicomponent MCs composed by other ferromagnetic materials. 
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Conclusions 

 

 
In this Thesis the magnetic properties of periodic magnetic nanostructures have been studied  in order to 

propose these systems as prototypes of new technologies and to increase the basic physics knowledge in the 

field of the nanomagnetism and magnonics. Results of different investigations are carefully commented and, 

in the case of available experimental data, critically compared with them. 

The study of collective excitations in four different arrays of ADs performed as a function of the external 

magnetic field have demonstrated the presence of soft modes in two-dimensional periodic magnetic 

nanostructures. Moreover, thanks to this analysis, it has been possible to completely understand the physical 

mechanism at the basis of the softening: this phenomena is strictly related to the re-orientational phase 

transition of the static magnetization from the hard to the easy axis caused by the decrease of the external 

magnetic field. Another interesting point highlighted in this study consisted in the dependence of the critical 

field on the system geometry.  In addition, the frequency of the SW modes is also examined as a function of 

the aspect ratio for all the systems. The micromagnetic results are totally confirmed by the BLS experimental 

measurements. 

In order to investigate the effect of the ground-state magnetization on the collective excitations, the magnetic 

properties of an array of ADs, first with in-plane magnetization and, secondly, with out-of-plane 

magnetization, have been analyzed. The calculations showed the presence of different types of SWs modes 

in the two different static configuration. It has been also found the presence of band gaps at the border of the 

Brillouin zone for both the static configuration and, interestingly, the band gap amplitude does not depend on 

the ground-state magnetization. 

Moreover, the magnetic properties have been studied in multi-material MCs. Four different MCs composed 

of Co circular dots embedded into a Py matrix have been investigated to understand the effect of the position 

and of the volume of the Co dots in the primitive cell. Frequency band structures have been calculated and 

thanks to the introduction of the effective “surface magnetic charges” the feature of the dispersion curves and 

the different orientations of the demagnetizing fields in the two ferromagnetic materials were explained. In 
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addition, the effect of the interchange of the two ferromagnetic materials on the distribution of the effective 

“surface magnetic charges” and on the dispersion has been investigated.  

An exhaustive theoretical investigation of the SWs spectra in two-dimensional bicomponent magnonic has 

been performed in order to study the influence of a non-magnetic spacer on the magnonic band structure. 

Five square arrays of square grooves in thin Py film filled (or partially filled) with Co or Py square dots were 

analyzed. The non-magnetic spacer strongly modifies the total magnetic field, especially at the dot edges, 

leading to the generation of up to two types of end modes in the same structure. These are the end mode 

localized in the dot and that localized in the matrix. In addition, it has been  demonstrated that the 

introduction of a non-magnetic spacer and the change of the magnetic dot material allow to tailor in different 

ways the SW spectra in MCs.  

Furthermore, an array of bicomponent structures consisting of closely-spaced Py/Co elliptical dots has been 

analyzed in both the parallel and anti-parallel ground state. Several eigenmodes were identified and their 

frequency evolution has been calculated as a function of the intensity of the applied magnetic field 

encompassing the ground states where the Co and Py dots magnetizations are parallel or anti-parallel, 

respectively. In addition, a detailed micromagnetic investigation of the properties of the eigenmodes as a 

function of the gap distance between Co and Py elliptical dots has been performed and the consequent 

variation of the internal field has been evaluated. 

Finally, the metamaterials properties of two-dimensional MCs were investigated. By means of the 

introduction of some effective quantities, the effective properties of the MCs have been studied. In this way 

it is possible to treat magnonic crystals as a new class of metamaterials. 
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