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Abstract

Although recent advances of significant subgraph mining enable us to

find subgraphs that are statistically significantly associated with the class

variable from graph databases, it is challenging to interpret the resulting

subgraphs due to their massive number and their propositional representa-

tion. Here we represent graphs by probabilistic logic programming and

solve the problem of summarizing significant subgraphs by structure learn-

ing of probabilistic logic programs. Learning probabilistic logical models

leads to a much more interpretable, expressive and succinct representation

of significant subgraphs. We empirically demonstrate that our approach

can effectively summarize significant subgraphs with keeping high accuracy.
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1 Introduction

Pattern mining [1] is the process of finding multiplicative combinations of features

(variables), or patterns, from a dataset, which has been actively studied as one of

the central topics of data mining [42]. Various types of patterns have been used

in applications. Examples include itemsets [13], which are combinations of binary

features originally used in market basket analysis to find frequently co-purchased

items, and sequences [24], used in DNA sequence analysis and customer behavior

analysis. In this paper we focus on subgraph mining [14, 40], whose task is to

find frequently occurring subgraphs from a collection of graphs, which is often

called a graph database. Since a graph is a fundamental data structure and a

wide range of graph-structured data is available, such as chemical compounds

in PubChem [7] and protein structures in PDB [6], subgraph mining has been

studied as an important branch of pattern mining to analyze graph-base data.

As an extension of the original subgraph mining problem, significant (discrim-

inative) subgraph mining [19, 33] is recently attracting a considerable attention,

which tries to find subgraphs enriched in one class relative to another class. For

example, in drug discovery, each chemical compound is modeled as a graph

and a collection of graphs is divided into two classes, case and control, and

one can find subgraphs that are enriched in the case group while not in the

control group. Significant subgraph mining offers to find all subgraphs that

are statistically significantly associated with the class variable while correcting

for multiple testing to ensure rigorous control of the FWER (family-wise error

rate). This means that significant subgraph mining can rigorously control the
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probability to detect one or more false positive subgraphs, which is indispensable

in drug discovery and other scientific fields such as biology and medicine.

However, the challenge of significant pattern mining is that it often produces

millions of significant subgraphs in a propositional representation, resulting

in hard interpretability of the obtained subgraphs. How to summarize such

massive amount of significant subgraphs in a principled way is still an open

problem. Although pattern compression has been studied [1, Chapter 8], with

the application of the MDL (Minimum Description Length) principle [38] to

find representative patterns, or ILP based approaches have been used [11], none

of the existing methods has been successfully applied to significant subgraph

mining.

Our goal in this paper is to summarize significant subgraphs using Probabilistic

Logic Programming to achieve better interpretability of massive subgraphs.

Probabilistic Logic Programming (PLP) is gaining popularity due to its

ability to represent relational domains with many entities connected by complex

and uncertain relationships. First-order logic is a powerful language to represent

complex relational information, thanks to its intrinsic expressivity, while prob-

ability is the standard way to represent uncertainty in knowledge. One of the

most fertile approaches to PLP is the distribution semantics [30], that is at the

basis of several languages such as the Independent Choice Logic [25], PRISM [31],

Logic Programs with Annotated Disjunctions (LPADs) [37] and ProbLog [10].

Various algorithms for learning parameters and structure of probabilistic logic

programs written in these languages have been proposed, such as PRISM [32],
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LFI-ProbLog [12] and EMBLEM [4] (for parameter learning), Sem-CP-Logic [20],

CLP(BN) [8] and SLIPCOVER [5] (for structure learning).

In this paper, the key to mine a compact general representation of a collection

of significant subgraphs is to use the state-of-the-art structure learning algorithm

SLIPCOVER for probabilistic logic programs, which enables us to encode a set

of significant subgraphs as a probabilistic logical model written in the language of

LPADs. The advantages of building such a symbolic model are:

1. storing a logic program encoding significant subgraphs is significantly

cheaper than storing all subgraphs, which are often too large in size and

several in number; a single logical rule can describe many significant

subgraphs at once;

2. a first-order logic-based representation of a collection of subgraphs is

declarative and comprehensible by humans, and much more expressive

than a propositional representation;

3. probability allows the management of uncertainty in complex application

domains (such as the biological ones).

This paper provides the first application of Probabilistic Logic Programming

to the problem of significant subgraph mining from standard biochemical datasets.

The effectiveness of the approach, that we call LIPS for “Learning sIgnificant

Plp Subgraphs”, is empirically verified by showing that the precision and recall

of the LPADs learnt by SLIPCOVER are better than those of a baseline of

probabilistic logic programs with fixed probabilities. Since our objective is not

3



classifying graphs for predictive analysis but finding interpretable summarized

representations of significant subgraphs for descriptive analysis, existing graph

classification approaches (e.g. [15]) cannot be applied to our task.

The paper is organized as follows. Section 2 provides the necessary back-

ground about probabilistic logic programming and subgraph mining. Section

3 introduces the proposed approach based on PLP. Section 4 experimentally

evaluates the method. Section 5 presents related work and Section 6 concludes

the paper.

2 Background

2.1 Probabilistic Logic Programming

We assume that the reader is familiar with basic notions of First-Order Logic

(FOL).

In this paper we rely on Probabilistic Logic Programming under the distribu-

tion semantics [30] for representing uncertain relational information. We consider

Logic Programs with Annotated Disjunctions (LPADs) for their general syntax

and we do not allow function symbols; for the treatment of function symbols

see [29]. LPADs [37] allow to encode “alternatives” in the head of clauses in the

form of a disjunction, in which each atom is annotated with a probability.

These programs consist of a finite set of annotated disjunctive clauses Ci of

the form:

hi1 : Πi1; . . . ;hini
: Πini

:− bi1, . . . , bimi
.

Here, bi1, . . . , bimi
are logical literals which form the body of Ci, denoted by
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body(Ci), while hi1, . . . hini are logical atoms and {Πi1, . . . ,Πini} are real num-

bers in the interval [0, 1] such that
∑ni

k=1 Πik ≤ 1. Note that if ni = 1 and Πi1 = 1

the clause corresponds to a non-disjunctive clause. Otherwise, if
∑ni

k=1 Πik < 1,

the head of the annotated disjunctive clause implicitly contains an extra atom

null that does not appear in the body of any clause and whose annotation is

1−
∑ni

k=1 Πik. The grounding of an LPAD L is denoted by ground(L).

An atomic choice is a triple (Ci, θj , k) where Ci ∈ L, θj is a substitution that

grounds Ci and k ∈ {1, . . . , ni} identifies a head atom of Ci. In other words, it

represents the selection of the k-th atom from the head of the ground clause Ciθj .

It corresponds to an assignment Xij = k, where Xij is a multi-valued random

variable which corresponds to Ciθj . A set of atomic choices κ is consistent if only

one head is selected from a ground clause. In this case it is called a composite

choice. The probability P (κ) of a composite choice κ is computed by multiplying

the probabilities of the individual atomic choices, i.e. P (κ) =
∏

(Ci,θj ,k)∈κ Πik.

A selection σ is a composite choice that, for each clause Ciθj in ground(L),

contains an atomic choice (Ci, θj , k). It identifies a world wσ of L, i.e., a normal

logic program defined as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ}. Since

selections are composite choices, the probability of the worlds is P (wσ) = P (σ).

We denote by SL the set of all selections and by WL the set of all worlds of a

program L.

We consider only sound LPADs, where each possible world has a total well-

founded model, so wσ |= Q means that the query Q is true in the well-founded

model of the program wσ. The probability of a query Q given a world w is
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P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of Q is then:

P (Q) =
∑
w∈WL

P (Q,w) =
∑
w∈WL

P (Q|w)P (w) =
∑

w∈WL:w|=Q

P (w) (1)

Example 1 The following LPAD L encodes the development of an epidemic or

pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 :− flu(X), cold.

C2 = cold : 0.7.

C3 = flu(david).

C4 = flu(robert).

This LPAD models the fact that if somebody has the flu and the climate is cold the

possibility that an epidemic arises has probability 0.6 to be true, that a pandemic

arises has probability 0.3 or that no event happens (the implicit atom null) has

probability 0.1. There is uncertainty about the climate, it may be cold with a

probability of 0.7 but surely David and Robert have the flu.

Clause C1 has two groundings, C1θ1 with θ1 = {X/david} and C1θ2 with

θ2 = {X/robert} so there are two random variables X11 and X12. L has 18

possible worlds, the query Q = epidemic is true in 5 of them and its probability

is obtained as P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 ·

0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588.

The semantics associates one random variable with every grounding of a clause.

In some domains, this may result in too many random variables, so we may

introduce an approximation at the level of the instantiations, at the expenses of
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the accuracy in modeling the domain. A typical compromise is to consider the

grounding of variables in the head only: in this way, a ground atom entailed by

two separate ground instances of a clause is assigned the same probability, all

other things being equal, of a ground atom entailed by a single ground clause,

while in the standard semantics the first would have a larger probability as more

evidence is available for its entailment. In the approximate semantics clause

C1 of Example 1 is associated to a single random variable X1. In this case L

has 6 instances, the query epidemic is true in 1 of them and its probability is

P (epidemic) = 0.6 · 0.7 = 0.42.

An efficient technique for computing the probability of a query consists of

building a Binary Decision Diagram (BDD), representing the disjunction of its

explanations, and performing inference over it. Inference can be performed with

a dynamic programming algorithm that is linear in the size of the BDD [10].

Algorithms that adopt such an approach for inference include [26, 27, 28]. BDDs

can be built in practice by highly efficient software packages such as CUDD1.

2.2 Significant Subgraph Mining

In significant subgraph mining, each graph is defined as a triple G = (V,E, φ)

composed of the vertex set V , the edge set E ⊆ V ×V , and the label mapping φ :

V ∪E → Σ with the range Σ of vertex and edge labels. A graph H = (V ′, E′, φ′)

is a subgraph of G, denoted by H v G, if V ′ ⊆ V , E′ ⊆ (V ′ × V ′) ∩ E, and

φ′(A) = φ(A) for all A ∈ V ′ ∪E′ are satisfied. Given two collections of graphs G

and G′ with |G| = n and |G′| = n′, we assume n ≤ n′ without loss of generality.

1Available at http://vlsi.colorado.edu/~fabio/CUDD/
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G and G′ represent two different classes of graphs that we want to distinguish.

In Figure 1, we have four graphs in G and also four graphs in G′, and colors of

vertices and line types of edges denote their labels.

For each subgraph H v G with G ∈ G ∪G′, we test the statistical association

between the occurrence of H and the class membership, where the null hypothesis

is that the occurrence of the subgraph H is independent of the class membership

of G. More precisely, we measure the statistical association between two binary

random variables: the indicator vector of the class membership of graph G and

the occurrence/absence of the subgraph H in each graph G in the G and G′

databases.

Let x and x′ be the frequencies of H in G and G′, respectively. That is,

x = |{G ∈ G | H v G}|, x′ = |{G ∈ G′ | H v G}|.

Then the occurrence of H can be represented as the following 2× 2 contingency

table:

Occurrences Non-occurrences Total

G x n− x n
G′ x′ n′ − x′ n′

Total x+ x′ (n− x) + (n′ − x′) n+ n′

For example, for the subgraph shown in Figure 1, x = 4, x′ = 0, and n = n′ = 4.

The association between two binary random variables is measured by Fisher’s

exact test as the p-value, which is the probability of false positives assuming

that the null hypothesis is true, that is, occurrences of the subgraph and classes

are statistically independent. The false positive occurs if we reject the null

hypothesis while it is true. We say that a subgraph H is statistically significant
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if its p-value is smaller than a predetermined significance level α.

The technique of significant subgraph mining proposed in [19, 33] finds all

subgraphs that are statistically significantly associated with the class variable,

that is, the above null hypothesis is rejected, while correcting for multiple testing

to ensure rigorous control of the FWER (family-wise error rate). The FWER

is the probability that at least one subgraph is a false positive in the set of

all subgraphs (hypotheses). Since the FWER approaches one even if the false

positive rate is controlled under the significance level α for each subgraph, the

significant subgraph mining technique performs multiple testing correction by

decreasing the significance level α so that the condition FWER ≤ α is guaranteed.

3 The Proposed Method: LIPS

We provide here a detailed description of our proposed method, called LIPS

(Learning sIgnificant Plp Subgraphs), in three subsequent steps, which summarize

a given set of significant subgraphs as a probabilistic logic program.

3.1 First-order Logic Representation of Subgraphs

Here we introduce the first step, which provides a FOL representation of a given

set of subgraphs.

Interestingly, the significant subgraph mining technique [33] always produces

the set of testable subgraphs as an intermediate result for the FWER control.

Mathematically, a testable subgraph is defined in the following. The tight lower
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bound ψ(H) of the p-value for a subgraph H is given as

ψ(H) =


(
n

x

)/(
n+ n′

x

)
if 0 ≤ x+ x′ ≤ n,

1

/(
n+ n′

x

)
otherwise,

This was firstly considered in [35] and used in [33]. Assume that the set of

subgraphs is sorted in increasing order according to the lower bound ψ, resulting

in the sequence

ψ(H1) ≤ ψ(H2) ≤ ψ(H3) ≤ . . . .

Let k be the natural number such that

k · ψ(Hk) < α and (k + 1) · ψ(Hk+1) ≥ α.

The subgraphs H1, H2, . . . ,Hk are defined to be testable subgraphs and each

testable subgraph Hi, i ∈ {1, 2, . . . , k} is statistically significant if its actual

p-value is smaller than α/k [34].

Given two sets of graphs G and G′, let T and S be the sets of testable sub-

graphs and significant subgraphs respectively, produced by significant subgraph

mining. Since we always have the relationship S ⊆ T , we formulate the problem

of summarization as discriminating positive instances (significant subgraphs) S

from negative instances (testable but non-significant subgraphs) T \ S.

Our method takes as input a set of testable subgraphs, which includes

positive and negative instances, and transforms them into a set of corresponding

logical interpretations (sets of ground facts). Let G = (V,E, φ) ∈ T be a graph

such that V = {v1, v2, . . . , vm}, E = {{vi1 , vj1}, {vi2 , vj2}, . . . , {vil , vjl}}, and
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φ : V ∪ E → Σ assigns labels to vertices and edges with the range Σ. Its logical

representation is defined as:

node(v1, φ(v1)).

node(v2, φ(v2)).

. . .

node(vm, φ(vm)).

edge(vi1 , vj1 , φ({vi1 , vj1})).

edge(vi2 , vj2 , φ({vi2 , vj2})).

. . .

edge(vil , vjl , φ({vil , vjl})).

In the above representation, node/2 describes a node by means of the node’s id

and the node’s label (node(id,label)), while edge/3 describes an edge by means

of the two nodes linked by the edge and the edge’s label (edge(id1,id2,label)).

For example, ifG = (V,E, φ) is given as V = {0, 1, 2, 3, 4}, E = {{0, 1}, {1, 2},

{2, 3}, {3, 4}}, node labels are given as φ(0) = 3, φ(1) = 3, φ(2) = 3, φ(3) = 3,

φ(4) = 6, and edge labels as φ({0, 1}) = 47, φ({1, 2}) = 47, φ({2, 3}) = 47,

φ({3, 4}) = 50, the resulting logical interpretation for G is:

node(0,3).

node(1,3).

node(2,3).

node(3,3).
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node(4,6).

edge(0,1,47).

edge(1,2,47).

edge(2,3,47).

edge(3,4,50).

Finally, an additional predicate active/0 is used to discriminate between

positive and negative instances: a fact active. or neg(active). will be respec-

tively added to each logical interpretation. It is clear that each graph G and its

logical representation are in a one-to-one relationship.

3.2 Learning a representation of Significant Subgraphs by
Probabilistic Logic Programming

Given the set of significant subgraphs S and the set of testable subgraphs T ,

LIPS learns rules that can probabilistically discriminate significant subgraphs

S from non-significant subgraphs T \ S by means of a compact probabilistic

logic program (in particular, LPAD). In other words, the problem of significant

subgraph mining is converted in a structure learning problem of probabilistic logic

clauses imposing constraints on the labels and connection structure of the original

subgraphs. We illustrate an overview of LIPS in Figure 2. To learn LPADs we

employ the SLIPCOVER algorithm, which is a state-of-the-art learning algorithm

and has been successfully applied in various relational domains [5]. The reason

for this choice is the fact that graph-structured datasets characterized by links

between nodes are inherently relational. We briefly summarize SLIPCOVER in

the following and give a detailed execution example in the next subsection for a
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better understanding of its behavior.

Input consists of a set of logical interpretations I, i.e. sets of ground facts

as seen in subsection 3.1, corresponding to the testable subgraphs which need

to be discriminated. The algorithm is targeted at discriminative learning, that

is the user has to indicate which predicate(s) of the domain is/are target, the

one(s) for which we are interested in good predictions. The interpretations

must contain also negative facts for target predicates. The ground atoms for

the target predicates represent the positive and negative examples (queries) for

which Binary Decision Diagrams will be built, encoding the disjunction of their

explanations.

SLIPCOVER is built upon a two-phase search strategy: (1) a beam search

in the space of clauses in order to find a set of promising clauses and (2) a

greedy search in the space of theories. In the first phase the beam for each target

predicate is initialized with a number of bottom clauses built as in Progol [21],

which are repeatedly refined according to a “language bias”. The second phase

starts from an empty theory which is iteratively extended with one target clause

at a time from those generated in the previous phase. If the log-likelihood (LL)

of the new theory does not increase, SLIPCOVER discards the clause, otherwise

it adds it to the current theory.

BDDs are employed to efficiently perform the parameter learning phase of the

LPAD, i.e. to compute the optimum probabilities for the clauses’ heads. This is

done by the algorithm EMBLEM [4], based on an Expectation Maximization

(EM) cycle. Both parameter and structure learning use the log-likelihood of the
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data as the guiding heuristic to find the best parameters and the best theory.

This guarantees that the final LPAD returned by SLIPCOVER locally maximizes

the (log-)likelihood with respect to the set of positive and negative examples

(subgraphs) for the target predicate(s). LIPS is shown in Alg. 1, while a simplified

version of SLIPCOVER (relevant for the understanding of the method) in Alg. 2.

Algorithm 1 Function LIPS
1: function LIPS(G,G′, target)
2: (T ,S) =MineSignificantSubgraphs(G,G′) .
3: L =Slipcover(I, target) . Input interpretations I = T ∪ S; L: learned LPAD
4: return L
5: end function

Algorithm 2 Function SLIPCOVER
1: function SLIPCOVER(I, target)
2: IBs =InitialBeams(I, target) . Beam search returns a set of beams, one for each target

predicate
3: TC ← [] . TC: list of promising clauses with target predicate in the head
4: for all Beam ∈ IBs do
5: Steps← 1
6: NewBeam← []
7: repeat
8: while Beam is not empty do
9: Remove the first BC from Beam . BC: Bottom Clause

10: Refs←ClauseRefinements(BC) . Find all refinements Refs of BC
11: for all Cl ∈ Refs do . Cl:refined clause
12: (LL′, Cl′)←EMBLEM(Cl) . Parameter learning: updates Cl’s parameters

and computes the log-likelihood LL′ of the new clause Cl′

13: NewBeam←Insert(Cl′, LL′, NewBeam)
14: TC ←Insert(Cl′, LL′, TC)
15: end for
16: end while
17: Beam← NewBeam
18: Steps← Steps+ 1
19: until Steps > NI . NI: max number of iterations
20: end for
21: L ← ∅, LLL ← −∞ . Greedy search: initial LPAD empty
22: repeat
23: Remove the first couple (Cl, LL) from TC
24: (LL′,L′)←EMBLEM(L ∪ {Cl})
25: if LL′ > LLL then
26: L ← L′, LLL ← LL′

27: end if
28: until TC is empty
29: return L
30: end function
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3.3 Execution Example

The analyzed domains are graphs of chemical compounds, with nodes labeled

according to the atom type (predicate node/2) and edges that represent the bonds

(predicate edge/3). Significant subgraph mining produces testable subgraphs

including significant ones from a given set of graphs, and our method summarizes

them. The target predicate is active/0, where significant subgraphs are encoded

as active and testable but not significant subgraphs are encoded as non-active.

A language bias is given to specify modeh/modeb declarations for building the

bottom clauses and their refinements. Such declarations are templates for literals

in the head or body of a clause [21]. For all the considered domains the language

bias has been defined as follows.

output(active/0).

input(node/2).

input(edge/3).

modeh(1,active).

modeb(*,node(-node,-label)).

modeb(*,edge(+node,-node,-label)).

modeb(*,edge(-node,+node,-label)).

modeb(*,edge(+node,+node,-label)).

output indicates the target predicate, while input the other predicates of the

domain, together with their arity. The modeh predicate indicates that at most 1

occurrence of active must be used in the clauses’ heads. The modeb predicates
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indicate that any number of occurrences (*) of the node and edge predicates

can be used to build the clauses’ bodies. Each different graph is represented by

a different input FOL interpretation.

The output of SLIPCOVER consists of LPAD theories whose clauses predict

the target predicate with a given probability Πi1, as a function of a specific

configuration of typed nodes connected by typed edges. Πi1 indicates the proba-

bility of the first head atom (the only one, since we specified modeh(1,active))

for each clause i. An example of LPAD (composed of a single clause) returned

by the algorithm on one of the domains (MUTAG 5) is:

active:0.0411023 :- node(A,B),edge(A,C,D),node(C,B),edge(C,E,D),

edge(C,F,D),node(E,B),node(F,B).

The clause states that a subgraph where some nodes A, C, E, F are of type B,

and there is a direct edge between nodes A and C, C and E, C and F of type D

is testable significant (active), which is illustrated in Figure 3. The figure shows

how several subgraphs can be compactly represented by a single clause. The

value Π11 = 0.0411023 represents the probability with which each grounding

satisfying the clause body (i.e., an explanation) is active. This means that if

there are more explanations, the probability of describing a significant subgraph

pattern increases, according to the formula of the probability of the union of

compatible events (P (A∪B) = P (A)+P (B)−P (A∩B) for two events A and B).

In this example, by asking the probability of two positive (active) interpretations

in the test set we get P = 0.2226 for both, while for two negative interpretations

(labelled as neg(active)) in the test set we get probabilities P = 0.0411 and
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0.0805, which are much smaller than 0.2226. The clause has assigned larger

probabilities to the positive instances (significant subgraphs).

4 Experimental Validation

In this section we empirically evaluate the performance of LIPS on standard

graph datasets. These datasets include: MUTAG, NCI1 and NCI1092. The

MUTAG dataset consists of graphs representing 188 chemical compounds, and

aims to predict whether each compound shows mutagenicity. The NCI1 and

NCI109 datasets consist of graphs representing two balanced datasets of chemical

compounds screened for activity against non-small cell lung cancer and ovarian

cancer cell lines respectively. For each dataset, we first enumerated the set of

testable subgraphs by the significant subgraph mining algorithm technique [33]3.

We created different versions of testable subgraphs from these datasets with a

different maximum number N ∈ {3, 5, 10} of subgraph nodes. In Table 1, we

denote by “ N” following the dataset’s name the maximum number N of nodes.

For example, MUTAG 5 means that the number of nodes of every testable

subgraph is less than or equals to 5. More information about the characteristics

of the datasets is shown in Table 1.

For training and test we employed a k-fold cross validation, with k depending

on the dataset (see below).

In order to verify the effectiveness of the approach, we tested the same LPADs

2These datasets are available at https://www.bsse.ethz.ch/mlcb/research/

machine-learning/graph-kernels/weisfeiler-lehman-graph-kernels.html
3Implementation is available at https://github.com/BorgwardtLab/

significant-subgraph-mining
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Table 1: Characteristics of graph datasets. #Pos ex denotes the number of
positive examples (significant subgraphs), while #Neg ex denotes the number
of negative examples (testable but non-significant subgraphs). The number of
ground facts (column 5) does not include facts for the target predicate. #Graphs
is the total number of subgraphs in each dataset.

Datasets #Pos ex #Neg ex #Ground facts #Graphs

MUTAG 5 8 221 2121 188
MUTAG 10 1054 2277 67065 188
NCI1 3 121 254 2338 4110
NCI1 10 83,300 133,606 4,620,649 4110
NCI109 3 118 250 2293 4127

learnt by SLIPCOVER where parameters were replaced with fixed and randomly

chosen values, i.e. we tested the same clauses with non-optimized parameters on

the datasets. All experiments were performed on GNU/Linux machines with an

Intel Xeon Haswell E5-2630 v3 (2.40GHz) CPU with 128 GB RAM.

4.1 Learning

In order to reach a compromise between accuracy (performance) and learning

time, we tuned the following SLIPCOVER settings: the type of semantics

(standard or simplified), the limit on the number of different solutions retrieved

when computing the probability of a query, the maximum number of theory

search iterations, the maximum number of clause search iterations, the size of

the beam, the maximum number of variables in a rule.

For MUTAG 10 and NCI1 10, we employed a 10-fold cross-validation due to

the large number of positive and negative examples. For NCI1 3 and NCI109 3

we employed a 5-fold cross-validation. For MUTAG 5 we employed a 4-fold

cross-validation due to the presence of only 8 positive examples. This information

is reported in Table 2.
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As an example, we report in the following the output of the learning algorithm

on one fold of the MUTAG 10 dataset, a LPAD composed of 3 probabilistic

logical clauses:

active:0.00245023 :- node(A,B),edge(C,A,D),node(E,B),edge(A,F,D),

node(G,B),edge(A,E,D),edge(G,H,D),edge(H,I,D),

node(H,B),edge(I,J,D),node(J,B),node(F,B).

active:0.00372679 :- node(A,B),edge(C,A,D),node(E,B),edge(A,F,D),

node(G,B),edge(A,E,D),edge(G,H,D),edge(H,I,D),

node(C,B),edge(I,J,D),node(H,B),node(I,B),

node(J,B),node(F,B).

active:0.00488592 :- node(A,B),edge(C,A,D),node(E,B),edge(A,F,D),

node(G,B),edge(A,E,D),edge(G,H,D),edge(H,I,D),

node(C,B),node(H,B),node(I,B).

4.2 Test

We computed the Area Under the Precision-Recall Curve (AUC-PR) for the

probabilistic logic programs learned by SLIPCOVER and for the programs with

the same structure but fixed parameters (“baseline”).

The Precision-Recall Curves have been obtained by collecting the testing

examples, together with the probabilities assigned to them in testing by the

LPADs, in a single set and then building the curves with the method reported
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in [9].

Table 2 shows the comparison between LIPS (in terms of area under the PR

curve, SLIPCOVER learning time, number of LPAD clauses and number of body

literals per clause, all averaged over the folds) and the baseline (in terms of area

under the PR curve averaged over the folds). The comparison with a baseline

of LPADs with fixed parameters demonstrates that LIPS successfully learned

a more accurate summarization for significant subgraphs in a short time in all

cases except for the NCI1 10 dataset. Even in the case of NCI1 10, composed of

thousands of examples, the obtained AUCPR is larger than the baseline.

As for the number of clauses and body literals of the learned LPADs, Table

2 shows that we can get a very concise description of significant subgraphs, with

less than 8 clauses in the analyzed domains, and with short clauses in most cases.

The possibility of tackling the problem of summarizing significant subgraphs

by means of the SLIPCOVER system comes from the relational nature of the

tested domains and from the discriminative learning setting of the algorithm;

this property has been exploited to distinguish significant from non-significant

subgraphs by means of a target predicate (active) in the first-order logic repre-

sentation.

5 Related Work

Significant pattern mining have been firstly achieved in [35] in the context

of itemset mining [2, 3] using the Tarone’s testability trick [34] and further

developed in [19, 36] by considering Westfall-Young permutation test [39]. Such
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Table 2: Results of the experiments comparing LIPS with a baseline of LPADs
with fixed parameters for each dataset, in terms of average Area Under the PR
Curve (AUC-PR), SLIPCOVER average execution time (in seconds), average
number of LPAD clauses and average number of body literals per clause. Column
“Folds” specifies the number of folds used for cross-validation.

Dataset Folds
Baseline LIPS
AUC-PR AUC-PR Time(s) Clauses Literals

MUTAG 5 4 0.66 0.82 156.15 1 7.25
MUTAG 10 10 0.61 0.73 0.38 3.9 12.28
NCI1 3 5 0.40 0.41 33.86 5.6 3
NCI1 10 10 0.38 0.48 58889.45 2.3 2
NCI109 3 5 0.34 0.45 35.67 7.2 3.56

methods can find all statistically significant patterns from databases while

rigorously controlling the FWER. Recently, significant pattern mining has been

applied to various data including interval data [17] and datasets with categorical

covariates [23]. The software library of significant pattern mining is available [18]

and an efficient parallelized implementation is also available [41].

Sugiyama et al. [33] applied significant pattern mining to graph structured

data using subgraph mining algorithms [22, 40] and established significant

subgraph mining. The technique can find all statistically significant subgraphs

while controlling the FWER. However, since significant subgraph mining tends

to generate a huge number of significant subgraphs, how to summarize such

subgraphs is a challenging task for further analysis in applications. This paper

has addressed the problem using probabilistic logic programming for the first time.

The ProbLog language was employed in the context of local query mining from

probabilistic biological databases [16], but with a different goal than significant

subgraph mining.
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6 Conclusions

We proposed the first method to find a compact general representation of a collec-

tion of significant subgraphs in the form of (probabilistic) logic programs. This

was achieved through the application of a structure learning algorithm for prob-

abilistic logic programs, SLIPCOVER, to standard graph-based datasets. The

key idea is to formulate the problem of summarization of significant subgraphs

as classification of testable and significant subgraphs to allow the application of

learning algorithms of probabilistic logic programs. Experiments show that we

can massively compress the set of significant subgraphs with reasonably high

precision and recall. Since significant pattern summarization is the problem of

not only subgraph mining but the general setting of pattern mining including

itemset mining and sequence mining, our approach combining significant pattern

mining and probabilistic logic programming has an impact to a wider range of

applications of significant pattern mining. For instance, the approach might be

applied to many interesting applications in chemoinformatics, structural biology,

and precision medicine. In the future, we plan to apply other structure learning

algorithms of logic programs targeted to big knowledge bases in order to reduce

the computational time.
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Figure 1: The problem setting of significant subgraph mining.
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Figure 2: Overview of the proposed method LIPS.
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Figure 3: The left graph corresponds to node(A,B), edge(A,C,D), node(C,B),

edge(C,E,D), edge(C,F,D), node(E,B), node(F,B). If the domain contains
three node labels (blue, green, red) and two edge labels (straight, zigzag) then
there could be six possible subgraphs (instances).
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