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Abstract: The interest on the use of renewable energy resources is increasing, especially towards1

wind and hydro powers, which should be efficiently converted into electric energy via suitable2

technology tools. To this end, data–driven control techniques represent viable strategies that3

can be employed for this purpose, due to the features of these nonlinear dynamic processes4

of working over a wide range of operating conditions, driven by stochastic inputs, excitations5

and disturbances. Therefore, the paper aims at providing some guidelines on the design and6

the application of different data–driven control strategies to a wind turbine benchmark and7

a hydroelectric simulator . They rely on self–tuning PID, fuzzy logic, adaptive and model8

predictive control methodologies. Some of the considered methods, such as fuzzy and adaptive9

controllers, were successfully verified on wind turbine systems, and similar advantages may thus10

derive from their appropriate implementation and application to hydroelectric plants. These issues11

represent the key features of the work, which provides some details of the implementation of the12

proposed control strategies to these energy conversion systems. The simulations will highlight13

that the fuzzy regulators are able to provide good tracking capabilities, which are outperformed14

by adaptive and model predictive control schemes. The working conditions of the considered15

processes will be also taken into account in order to highlight the reliability and robustness16

characteristics of the developed control strategies, especially interesting for remote and relatively17

inaccessible location of many plants.18

Keywords: Wind turbine system; hydroelectric plant simulator; model–based control; data–driven19

approach; self–tuning control; robustness and reliability20

1. Introduction21

The trend to reduce the use of fossil fuels, motivated by the need to meet greenhouse gas22

emission limits, has driven much interest on renewable energy resources, in order also to cover global23

energy requirements. Wind turbine systems, which now represent a mature technology, have had24

much more development with respect to other energy conversion systems, e.g. for biomass, solar, and25

hydropower [1]. In particular, hydroelectric plants present interesting energy conversion potentials,26

with commonalities and contrast with respect to wind turbine installations [2–4].27

One common aspect regarding the design of the renewable energy conversion system concerns28

the conversion efficiency. However, as wind and hydraulic resources are free, the focus is on the29

minimisation of the cost per kWh, also considering the lifetime of the plant. Moreover, by taking into30

account that the cost of the control system technology (i.e. sensors, actuators, computer, software)31
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is relatively lower than the one of the renewable energy converter, the control system should aim at32

increasing the energy conversion capacity of the given plant [5].33

The paper focuses on the development and the comparison of different control techniques34

applied to a wind turbine system and a hydroelectric plant, by using a wind turbine benchmark35

and a hydroelectric simulator, respectively. The former process was proposed for the purpose of an36

international competition started in 2009 [6], whilst the latter system was developed by the authors37

but with different aims [7]. In fact, these simulators represent high–fidelity representations of realistic38

processes, developed for the validation of fault diagnosis and fault tolerant control techniques [7,8].39

More general investigations of these plants and their components are addressed in [9] and [10],40

respectively, even if their structures were analysed for different purpose and applications.41

With reference to wind turbine systems, their regulation can be realised via ’passive’ control42

methods, such as the plants with fixed–pitch and stall control machines. These systems may not43

use any pitch control mechanisms or they rely on simple rotational speed control [6]. On the other44

hand, wind turbine rotors exploiting adjustable pitch systems are often exploited to overcome the45

limitations due to the simple blade stall, and to improve the converted power [11]. Large wind46

turbines can implement another control technique modifying the yaw angle, which is thus used to47

orient the rotor towards the wind direction [11].48

On the other hand, regarding hydroelectric plants, it is worth noting that a limited number49

of works addressed the application of advanced control techniques [12]. In fact, a high–fidelity50

mathematical description of these processes can be difficult to be achieved in practice. Some51

contributions took into account the elastic water effects, even if the nonlinear dynamics are linearised52

around an operating condition. Other papers proposed different mathematical models with the53

related control strategies [13]. To this end, linear and nonlinear dynamic processes with different54

regulation strategies are also considered [14]. In particular, a fuzzy controller that needs for the proper55

design of the membership functions was addressed in [15]. On the other hand, an advanced control56

logic combining four control schemes that rely on adaptive, fuzzy and neural network regulators57

was investigated in [13]. Finally, regarding joint wind–hydro deployments, some more recent works58

analysed the problem of frequency control of isolated systems [16,17].59

After these consideration, the main contribution of the paper aims at providing some guidelines60

on the design and the application of data–driven and self–tuning control strategies to a wind turbine61

benchmark and a hydroelectric plant simulator. Some of these techniques were already applied62

to wind turbine systems, and important advantages may thus derive from the appropriate63

implementation of the same control methods in hydroelectric plants. In fact, investigations64

considering the control problem of both wind turbine systems and hydroelectric plants present65

a limited number of common points, thus leading to little exchange of shared features. This66

consideration is particularly valid with reference to the well established wind turbine area when67

compared to hydroelectric systems. Moreover, the work analyses the application of the different68

control solutions to these energy conversion systems. In particular, the paper introduces some kind69

of common rules for tuning the different controllers, for both the wind turbine system and the70

hydroelectric plant. Therefore, the paper shows that the parameters of these controllers are obtained71

by exploiting the same tuning strategies. This represents an important characteristic of this study. The72

common parts and the working conditions of these energy conversion systems will be also taken into73

account in order to highlight the reliability and robustness characteristics of the developed control74

strategies.75

Finally, the paper has the following structure. Section 2 recalls the simulation models used for76

describing the accurate behaviour of the plants. In particular, similar functional parts that characterise77

the processes under investigation are highlighted, as they lead to similar design rules. To this78

end, Section 3 summarises the design of the proposed control techniques, taking into account the79

available tools. Section 4 shows the implementation of these control strategies, which are compared80
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to the achievable reliability and robustness features. Section 5 ends the paper summarising the main81

achievements of the paper, and drawing some concluding remarks.82

2. Simulator Models and Reference Governors83

This section recalls the basic structure and the common functional modules of the simulators84

used for describing the wind turbine and the hydroelectric processes considered in this paper.85

First, this work proposes a horizontal–axis wind turbine device, as nowadays it represents the86

most common type of solution for large–scale deployments. Moreover, this three–bladed wind87

turbine follows the principle that the wind power activates its blades, thus producing the rotation88

of the low speed rotor shaft. This rotational speed required by the electric generator is increased via89

a gear–box with a drive–train [6]. The schematic diagram of this benchmark that helps to recall its90

main variables and function blocks developed in the Simulink environment is depicted in Figure 1.91
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Figure 1. Block diagram of the wind turbine simulator.

The wind turbine simulator has 2 controlled outputs, i.e. the generator rotational speed ωg(t)92

and its generated power Pg(t). The wind turbine model is controlled by means of two actuated93

inputs, i.e. the generator torque τg(t) and the blade pitch angle β(t). The latter signal controls the94

blade actuators, which are implemented by hydraulic circuits [6].95

Several other measurements are acquired from the wind turbine benchmark. ωr(t) represents
the rotor speed and τr(t) is the reference torque. Moreover, the aerodynamic torque τaero(t) is
computed from the wind speed v(t), which is usually available with limited accuracy. Moreover,
τaero(t) depends on the power coefficient Cp, as shown by the relation of Eq. (1):

τaero(t) =
ρ A Cp (β(t), λ(t)) v3(t)

2 ωr(t)
(1)

ρ being air density, A the area swept by the turbine blades during their rotation, whilst λ(t) is the96

tip–speed ratio. The nonlinear relations of Eq. (1) is represented in Figure 2, which is also depicted97

for different values of β.98

It is worth noting that the relation of Eq. (1) representing the driving force of the wind turbine99

process has a similar formulation in hydroelectric plant model, as shown in the following.100

The continuous–time model of the wind turbine benchmark can be described by the system of
Eq. (2): 

ẋ(t) = fc (x(t), u(t))

y(t) = x(t)
(2)

where u(t) = [τr(t) β(t)]T and y(t) =
[
ωg(t) Pg(t)

]T is the input vector. fc (·) is described by means of101

a continuous–time nonlinear function representing the dynamic behaviour of the controlled process.102

Moreover, since this paper will analyse several data–driven control approaches, the system of Eq. (2)103

will be used to acquire N sampled data sequences u(k) and y(k), with k = 1, 2, . . . N.104
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Figure 2. Example of power coefficient function Cp(β, λ).

Finally, the wind turbine simulator includes a control scheme that maintains the generator speed105

ωg(t) at its nominal value ωnom = 1551.76 rpm, and the generated power Pg(t) near to the rated106

power Pr = 4.8MW. This is achieved by properly actuating both β and τg, depending on the operating107

conditions, which move the wind turbine system from the partial load to the full load working regions108

(the operating regions 2 and 3, respectively) [6].109

On the other hand, the hydroelectric plant considered in this work consists of a high water head110

and a long penstock, which includes also upstream and downstream surge tanks, with a Francis111

hydraulic turbine [18], as recalled in Figure 3. Therefore, the hydroelectric simulator consists of a112

reservoir with water level HR, an upstream water tunnel with cross-section area A1 and length L1,113

an upstream surge tank with cross–section area A2 and water level H2 of appropriate dimensions.114

A downstream surge tank with cross–section area A4 and water level H4 follows, ending with a115

downstream tail water tunnel of cross–section area A5 and length L5. Moreover, between the Francis116

hydraulic turbine and the two surge tanks, there is a the penstock with cross–section area A3 and117

length L3. Finally, Figure 3 highlights a tail water lake with level HT . The levels HR and HT of the118

reservoir and the lake water, respectively, are assumed to be constants.119
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Figure 3. Scheme of the hydroelectric process.

The overall model of the hydroelectric simulator is described by the relations of Eq. (3), which
express the non–dimensional variables with respect to their relative deviations [7,19]:

Q
Qr

= 1 + qt
H
Hr

= 1 + ht
n
nr

= 1 + x
G = 1 + y

(3)

where qt is the turbine flow rate relative deviation, ht the turbine water pressure relative deviation,120

x the turbine speed relative deviation, and y the wicket gate servomotor stroke relative deviation. In121
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particular, in Eq. (3), Hr = 400m represents the reservoir water level, Qr = 36.13m3/s is the water122

flow rate, nr = 500rpm is the rated rotational speed. The hydraulic turbine power is Pr = 127.6MW123

with rated efficiency ηr = 0.90.124

In the following, the non–dimensional performance curves of the hydraulic turbine considered
in this work are briefly summarised, as they represent an important nonlinear part of the hydroelectric
plant. In particular, the non–dimensional water flow rate Q/Qr is expressed as function of the
non–dimensional rotational speed n/nr, and represented by the second order polynomial of Eq. (4):

Q
Qr

= G

[
a1

(
n
nr

)2
+ b1

(
n
nr

)
+ c1

]
= f1 (n, G) (4)

Moreover, the relation of Eq. (4) includes the wicked gate opening, described by the non–dimensional125

parameter G, varying from 0 to 100%. As an example, Figure 4 represents the function of Eq. (4)126

for different values of the wicked gate opening G, which defines the operating conditions of the127

Francis hydraulic turbine.128
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Figure 4. Francis turbine map for different values of G.

Note that the function of Eq. (4) plays the same role of the curve represented by Eq. (1).129

The parameters of the hydroelectric model were selected in order to represent a realistic130

hydroelectric plant simulator [19]. Moreover, as for the wind turbine benchmark, the signals that can131

be acquired from the hydroelectric plant simulator are modelled as the sum of the actual variables132

and suitable stochastic processes [7]. For this benchmark, a standard PID regulator was proposed to133

compensate the hydraulic turbine speed [19]. Due to its nonlinear characteristics, this solution may134

lead to unsatisfactory responses, with high overshoot and long settling time, as highlighted in [19],135

since a gain scheduling of the PID parameters would have been required. Thus, advanced control136

strategies that were already proposed for the wind turbine benchmark and recalled in Section 3 will137

be briefly summarised and applied to the hydroelectric simulator, as shown in Section 4. Extended138

simulations, comparisons, and the sensitivity analysis of the proposed solutions represent one of the139

key points of this paper.140

Finally, it is worth noting that some relations of the hydroelectric system have been linearised, see141

e.g. the system of Eq. (3). However, these linear approximations are performed so that the remaining142

nonlinear parts of the considered processes are closer, as highlighted by Eqs. (1) and (4).143

3. Control Techniques for Energy Conversion Systems144

This section describes briefly several control schemes consisting of self–tuning, data–driven, and145

Artificial Intelligence (AI) strategies, such as fuzzy logic and adaptive methods, as well as Model146
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Predictive Control (MPC) approach. First, with reference to the process output, the desired transient147

or steady–state responses can be considered, as for the case of self–tuning PID regulators summarised148

in Section 3.1. On the other hand, if the frequency behaviour is taken into account, the desired149

closed–loop poles can be fixed as roots of the closed–loop transfer function. This represent the150

design approach used by the adaptive strategy considered in Section 3.3. Moreover, when robust151

performances are included, the minimisation of the sensitivity of the closed–loop system with respect152

to the model–reality mismatch or external disturbances can be considered. This approach is related to153

the fuzzy logic methodology reported in Section 3.2. Some other strategies provide solutions to this154

optimisation problem when it is defined at each time step, as for the Model Predictive Control (MPC)155

with disturbance decoupling considered in Section 3.4. This strategy integrates the advantages of the156

MPC solution with the disturbance compensation feature.157

3.1. Self–Tuning PID Control158

Industrial processes commonly exploit closed–loop including standard PID controllers, due to
their simple structure and parameter tuning [20]. The control law depends on the tracking error e(t)
defined by the difference between the desired and the measured output signals, i.e. e(t) = r(t)− x(t).
This signal is injected into the controlled process after Proportional, Integral and Derivative (PID)
computations. Therefore, the continuous–time control signal u(t) generated by the PID regulator has
the form of Eq. (5):

u(t) = Kp e(t) + Ki

∫ t

0
e(τ) dτ + Kd

de(t)
dt

(5)

with Kp, Ki, Kd being the PID proportional, integral, and derivative gains, respectively. The most159

common strategy exploited for the computation of the parameters of the PID governor relies on160

the relations of Ziegler–Nichols [20]. However, with the development of relatively recent automatic161

software routines, the optimal parameters of the PID regulator can be easily determined by means162

of the tuning algorithm implemented in the Simulink environment. This strategy requires the163

implementation of the controlled process by means of the Simulink functional blocks, since it tries164

to optimise the input–output performances of the monitored system in terms of response time and165

stability margins (robustness) [20]. In particular, the automatic tuning procedure implemented by166

the PID Simulink block performs the computation of the linearised model of the energy conversion167

systems studied in this paper. The logic scheme of this procedure is sketched in Figure 5.168

+
_

r(t)

u(t)

y(t)e(t)

y(t)

PID parameter
optimiser
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model

PID automatic tuning
Simulink toolbox

PID controller

Energy conversion
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Figure 5. Block diagram of the monitored system controlled by the PID regulator with self–tuning
feature.

According to Fig. 5, the PID block performs the computation of a linearised model of the169

controlled system, if required. Therefore, the optimiser included in the PID block and implemented in170

the Simulink environment derives of the PID parameters that minimise suitable performance indices,171

as described in [20].172
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3.2. Data–Driven Fuzzy Control173

Fuzzy Logic Control (FLC) solutions are often exploited when the dynamics of the monitored174

process are uncertain and it can present nonlinear characteristics. The design method proposed175

in this work exploits the direct identification of rule–based Takagi–Sugeno (TS) fuzzy prototypes.176

Moreover, the fuzzy model structure, i.e. the number of rules, the antecedents, the consequents and177

the fuzzy membership functions are estimated by means of the Adaptive Neuro–Fuzzy Inference178

System (ANFIS) toolbox implemented in the Simulink environment [21].179

The TS fuzzy prototype relies on a number of rules Ri, whose consequents are deterministic
functions fi(·) in the form of Eq. (6):

Ri : IF x is Ai THEN ui = fi(x) (6)

where the index i = 1, 2, . . . , K describes the number of rules K, x is the input vector containing the
antecedent variables, i.e. the model inputs, whilst ui represents the consequent output. The fuzzy set
Ai describing the antecedents in the i–th rule is described by its (multivariable) membership function
µAi (x) → [0, 1]. The relation fi(x) assumes the form of parametric affine model represented by Eq.
(7):

ui = aT
i x + bi (7)

the vector ai and the scalar bi being the parameters of the i–th submodel. The vector x consists of180

a proper number n of delayed samples of input and output signals acquired from the monitored181

process. Therefore, the term aT
i x is an Auto–Regressive eXogenous (ARX) parametric dynamic model182

of order n, and bi a bias.183

The output u of the TS fuzzy prototype is computed as weighted average of all rule outputs ui
in the form of Eq. (8):

u =
∑K

i=1 µAi (x) yi(x)

∑K
i=1 µAi (x)

(8)

The estimation scheme implemented by the ANFIS tool follows the classic dynamic system184

identification experiment. First, the structure of the TS fuzzy prototype is defined by selecting a185

suitable order n, the shape representing the membership functions µAi , and the proper number of186

clusters K. Therefore, the input–output data sequences acquired from the monitored system are187

exploited by ANFIS for estimating the TS model parameters and its rules Ri after the selection of a188

suitable error criterion. The optimal values of the controller parameters represented by the variables189

ai and bi of the TS model of Eq. (7) are thus estimated [21].190

This work proposes also a strategy different from ANFIS that is exploited for the estimation of191

the parameters of the TS fuzzy model. This method relies on the Fuzzy Modelling and Identification192

(FMID) toolbox designed in the Matlab and Simulink environments as described in [22]. Again,193

the computation of the controller model is performed by estimating the rule–based fuzzy system194

in the form of Eq. (8) from the input–output data acquired from the process under investigation.195

In particular, the FMID tool uses the Gustafson–Kessel (GK) clustering method [22] to perform a196

partition of the input–output data into a proper number K of regions (clusters) where the local affine197

relations of Eq. (7) are valid. Also in this case, the fuzzy controller model of Eq. (8) is computed198

after the selection of the model order n and the number of clusters K. The FMID toolbox derives the199

variables ai and bi, as well as the identification of the shape of the functions µAi by minimising a given200

metric [22].201

The overall digital control scheme consisting of the discrete–time fuzzy regulator of Eq. (8)202

and the controlled system includes also Digital–to–Analog (D/A) and Analog–to-Digital (A/D)203

converters, as shown in Figure 6.204

Figure 6 highlights that the fuzzy controller block implemented in the Simulink environment205

includes a suitable number n of delayed samples of the signals acquired from the monitored process.206



Version February 12, 2019 submitted to Electronics 8 of 19

r

u(t)

y(t)

D/A

A/D
y

u
k

k

Fuzzy
inference
system

z -1

u
k-2

k

z -1

k-1

Fuzzy controller

r
k

z -1

y
k-1

r

y
k

z -1

u
k-1

Fuzzy logic Simulink block

Energy conversion
system

Figure 6. Block diagram of the monitored system controlled by the fuzzy regulator.

Moreover, the fuzzy inference system in Figure 6 implements the TS model of Eq. (8). The delay n, the207

membership functions µAi , and the number of clusters K are estimated by the FMID and the ANFIS208

toolboxes, as described in [21,22].209

3.3. Data–Driven Adaptive Control210

The adaptive control technique proposed in this work relies on the recursive estimation of a
discrete–time 2–nd order transfer function G(z) with time–varying parameters in the form of Eq. (9):

G(z) =
β1 z−1 + β2 z−2

1 + α1 z−1 + α2 z−2 (9)

where αi and βi are identified on–line at each sampling time tk = k T, with k = 1, 2, . . . , N, for N211

samples, and T being the sampling interval. z−1 indicates the unit delay operator.212

This work proposes to derive the model parameters in Eq. (9) by means of the Recursive
Least–Square Method (RLSM) with directional forgetting factor, which was presented in [23]. Once
the parameters of the model of Eq. (9) have been derived, this paper suggests to implement the
adaptive controller of Eq. (10):

uk = q0 ek + q1 ek−1 + q2 ek−2 + (1− γ) uk−1 + γ uk−2 (10)

where ek and uk represent the sampled values of the tracking error e(t) and the control signal uk
at the time tk, respectively. With reference to the description of Eq. (10), by following a modified
Ziegler–Nichols criterion, the variables q0, q1, q2, and γ represent the adaptive controller parameters,
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which are derived by solving a Diophantine equation. As described in [23], by considering the 2–nd
order model of Eq. (9), this procedure leads to the relations of Eq. (11):

q0 = 1
β1

(d1 + 1− α1 − γ)

γ = s1
r1

β2
α2

q1 = α2
β2
− s1

r1

(
β1
β2
− α1

α2
+ 1
)

q2 = s1
r1

(11)

where: 
r1 = (b1 + b2)

(
a1 b2 b1 − a2 b2

1 − b2
2
)

s1 = a2 ((b1 + b2) (a1 b2 − a2 b1) + b2 (b1 d2 − b2 d1 − b2))

(12)

The design technique represented by the relations of Eqs. (11) and (12) assumes that the behaviour
of the overall closed–loop system can be approximated by a 2nd order transfer function with
characteristic polynomial represented by Eq. (13):

D(s) = s2 + 2 δ ω s + ω2 (13)

with δ and ω being the damping factor and natural frequency, respectively. s is the derivative
operator. Furthermore, if δ ≤ 1, the following relations are used [23]:

d1 = −2 e−δ ω T cos
(

ω T
√

1− δ2
)

d2 = e−2 δ ω T

(14)

The on–line control law of Eq. (10) is exploited for the regulation of the continuous–time nonlinear213

system by including D/A and A/D converters, as highlighted in the scheme of Figure 7.214
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Figure 7. Block diagram of the monitored system controlled by the adaptive regulator.

The adaptive control sketched in Figure 7 is implemented via the Self–Tuning Controller215

Simulink Library (STCSL) block in the Simulink environment. It includes the module performing216

the on–line identification of the ARX model of Eq. (9), which is used for the design of the adaptive217

Eq. (10) [23].218
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3.4. Model Predictive Control with Disturbance Decoupling219

The general structure of the proposed Model Predictive Control (MPC) scheme is illustrated in220

Figure 8. This scheme works as standard MPC controller when the nominal plant is considered, and221

generates the reference inputs, by taking into account objectives and constraints. However, in the222

presence of disturbance or uncertainty effects, the considered solution provides the reconstruction of223

the equivalent disturbance signal acting on the plant. This represent the key feature of this structure,224

which compensates the disturbance effect, thus ’hiding’ it to the overall system. In this way, it225

decouples the nominal MPC design from the disturbance effect.226
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l

x r

d
^
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x

l

u r

x r x
l

Energy conversion
system

Reference r

Disturbance estimator

MPC Controller

Figure 8. Block diagram of the disturbance compensated MPC scheme.

The complete scheme is thus represented by the MPC design that includes the disturbance227

compensation module, such that the compensated system has response very similar to the nominal228

system and the constraints are not violated.229

The disturbance compensation problem within the MPC framework is defined as follows.230

It is assumed that a state–space representation of the considered system is available, affected by231

disturbance and uncertainty. This formulation can be derived by nonlinear model linearisation or232

identification procedures, as suggested in Sections 3.1 and 3.3, respectively.233

On the other hand, its nominal reference model has the form of Eq. (15):{
ẋr = Al xr + Bl ur

yr = Cl xr
(15)

The disturbance compensation problem is solved by finding the control input u that minimises
the cost function of Eq. (16):

J =
∫ t+Nc ∆t

t

(∥∥xl − xr
∥∥2

Q +
∥∥u̇
∥∥2

R

)
dτ (16)

given the reference input ur.234

The matrices Al , Bl , Bd and Cl are of proper dimensions. xl is the state of the model with235

disturbance, whilst xr is the reference state, and yr the reference output, corresponding to the236

reference inputs ur and the output measurements yl of the nominal model.237

The terms w and v represent the model–reality mismatch and the measurement error,238

respectively. d is the equivalent disturbance signal. In Eq. (16), t is the current time, ∆t is the control239

interval, and Nc is the length of the control horizon. Q and R are suitable weighting matrices.240
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This work proposes to solve the problem in two steps. First , the reconstruction of the
disturbance d, i.e. d̂, is provided by the disturbance estimation module. Then , the MPC design
is executed. Due to the model–reality mismatch and the measurement error in the representation of
Eq. (17): {

ẋl = Al xl + Bl u + Bd d + w
yl = Cl xl + v

(17)

the Kalman filter of Eq. (18) is exploited to provide the estimation of the state vector xl and the output
yl of the system affected by the estimated disturbance d̂:{

ẋl = Al xl + Bl u− Bl d̂ + K f (yl − Cl xl)

yl = Cl xl
(18)

where K f is the Kalman filter gain. In this way, based on the estimations d̂ and xl , the MPC

with disturbance compensation is designed, which consists of the model of Eq. (17) and the

system of Eq. (18), with d̂ provided by the Kalman filter. Moreover, the MPC has the objective
function of Eq. (19): ∫ t+Nc ∆t

t

[
(xl − xr)

T Q (xl − xr) + u̇T R u̇
]

dτ (19)

in which xl and xr are the states of the filtered and the reference models, respectively. The MPC241

scheme including the Kalman filter solves the disturbance compensation problem, as long as the242

estimations of both the state and the disturbance terms are correct. An illustration of the structure of243

the disturbance compensated MPC is shown in Figure 8.244

The proposed technique leads to a nonlinear MPC problem that includes the nominal model245

of the considered energy conversion system of Eq. (17), the estimator of the disturbance d, and the246

Kalman filter of Eq. (18) as predictor. The local observability of the model of Eq. (17) is essential247

for state estimation, which is easily verified. The implementation of the proposed disturbance248

compensation strategy has been integrated into the MPC Toolbox of the Simulink environment.249

4. Simulation Results250

The results obtained from the application of the developed control techniques are evaluated via
the percent Normalised Sum of Squared Error (NSSE%) performance index in the form of Eq. (20):

NSSE% = 100

√√√√∑N
k=1 (rk − ok)

2

∑N
k=1 r2

k

(20)

with rk being the sampled reference or set–point r(t), whilst ok is the sampled continuous–time signal251

representing the generic controlled output y(t) of the process. In particular, this signal is represented252

by the wind turbine generator angular velocity ωg(t) in Eq. (2), and the hydraulic turbine rotational253

speed n in Eq. (3) for the hydroelectric plant.254

Note that the wind turbine benchmark and the hydroelectric plant simulator of Section 2 allow255

the generation of several input–output data sequences driven by different wind speed v(t) processes256

and hydraulic transient under variable loads, respectively. Moreover, in order to obtain comparable257

working situations, the wind turbine benchmark operates from partial to full load conditions (from258

region 2 to region 3). It is thus considered the similar maneuver of the hydroelectric system operating259

from the start–up to full load working conditions. After these considerations, Section 4.1 summarises260

the results obtained from the wind turbine benchmark. Then, the same control techniques will be261

verified when applied to the hydroelectric simulator.262
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4.1. Control Technique Performances and Comparisons263

This section reports the results achieved from the application of the control techniques and the264

tools summarised in Section 3 to the wind turbine and the hydroelectric simulators recalled in Section265

2.266

In particular, Figure 9 depicts the wind turbine generator angular velocity ωg when the wind267

speed v(t) changes from 3m/s to 18m/s for a simulation time of 4400s [6].268
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Figure 9. Wind turbine controlled output compensated by (a) the self–tuning PID regulator, (b) the
fuzzy controller, (c) the adaptive regulator, and (d) the MPC approach with disturbance decoupling.

With reference to Figure 9 (a), the parameters of the PID regulator of Eq. (5) have been269

determined using the self–tuning tool available in the Simulink environment. They were settled to270

Kp = 4.0234, Ki = 1.0236, Kd = 0.0127. The achieved performances are better than those obtained271

with the baseline control law developed in [6].272

Moreover, Figure 9 (b) shows the simulations achieved with the data–driven fuzzy identification273

approach of Section 3.2. A sampling interval T = 0.01s has been exploited, and the TS fuzzy274

controller of Eq. (8) has been obtained for a number K = 3 of Gaussian membership functions,275

and a number n = 2 of delayed inputs and output. Therefore, the antecedent vector in Eq. (7) is276

x = [ek, ek−1, ek−2, uk−1, uk−2]. Both the data–driven FMID and ANFIS tools available in the Matlab277

and Simulink environments provide also the identification of the shapes of the fuzzy membership278

functions µAi of the fuzzy sets Ai in Eq. (6).279

On the other hand, Figure 9 (c) shows the capabilities of the adaptive controller of Eq. (10). The280

time–varying parameters of this data–driven control technique summarised in Section 3.3 have been281

computed on–line via the relations of Eq. (11) with the damping factor and the natural frequency282

variables δ = ω = 1 in Eq. (13).283

Finally, Figure 9 (d) highlights the results achieved with the MPC technique illustrated in284

Section 3.4. A state–space model with n = 5 in Eq. (2) of the wind turbine nonlinear system is285

exploited to design the MPC and the Kalman filter for the estimation of the disturbance, with a286

prediction horizon Np = 10 and a control horizon Nc = 2. The weighting factors have been settled287

to wyk = 0.1 and wuk = 1, in order to reduce possible abrupt changes of the control input. In this288
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case, the MPC technique has led to the best results, since it exploits a disturbance decoupling strategy,289

whilst its parameters have been iteratively adapted in the Simulink environment in order to optimise290

the MPC cost function of Eq. (16), as addressed in Section 3.4.291

The second test case concerns the hydroelectric plant simulator, where the hydraulic system292

with its turbine speed governor generates hydraulic transients due to the load changes. In order293

to consider operating situations similar to those of the wind turbine benchmark, the capabilities of294

the considered control techniques applied to the hydroelectric simulator have been evaluated during295

the start–up to full load maneuvers. To this end, an increasing load torque mg0 has been imposed296

during the start–up to full load phase, which is assumed to last 300s, because of the large size of the297

considered Francis turbine, and for a simulation of 900s.298

Under these assumptions, Figure 10 summarises the results achieved with the application of299

the control strategies recalled in Section 3. In particular, for all cases, Figure 10 highlights that the300

hydraulic turbine angular velocity n increases with the load torque mg0 during the start–up to full301

working condition maneuver.302
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Figure 10. Hydroelectric system with (a) the self–tuning PID regulator, (b) the fuzzy controller, (c) the
adaptive regulator, and (d) the MPC approach with disturbance decoupling.

In more detail, Figure 10 (a) shows the performance of the PID regulator whose parameters are303

determined via the self–tuning procedure recalled in Section 3.1. Furthermore, Figure 10 (a) shows304

that the PID governor with self–tuning capabilities is able to keep the hydraulic turbine rotational305

speed error n− nr null (r(t) = nr, i.e. the rotational speed constant) in steady–state conditions.306

Figure 10 (b) reports the results of the TS fuzzy controller of Eq. (8). This fuzzy controller was307

implemented for a sampling interval T = 0.1s, with K = 2 Gaussian membership functions, and308

n = 3 delayed inputs and output. Therefore, the antecedent vector exploited by the relation of Eq. (7)309

is x = [ek, ek−1, ek−2, ek−3, uk−1, uk−2, uk−3, ]. Moreover, as recalled in Section 3.2, the data–driven310

FMID and ANFIS tools implemented in the Simulink toolboxes are able to provide the estimates of311

the shapes of the membership functions µAi used in Eq. (8).312

On the other hand, Figure 10 (c) reports the simulations obtained via the data–driven adaptive313

controller of Eq. (10), whose time–varying parameters are computed by means of the relations of314

Eq. (11). The damping factor and the natural frequency parameters used in Eq. (13) were fixed to315
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δ = ω = 1. The STCSL tool recalled in Section 3.3 implements this data–driven adaptive technique316

using the on–line identification of the input–output model of Eq. (9) [23].317

Finally, regarding the MPC technique with disturbance decoupling proposed in Section 3.4,318

Figure 10 (d) reports the simulations obtained using a prediction horizon Np = 10 and a control319

horizon Nc = 2. Also in this case, the weighting parameters have been fixed to wyk = 0.1 and320

wuk = 1, in order to limit fast variations of the control input, as it will be remarked in the following.321

Furthermore, the MPC design was performed using a linear state–space model of order n = 6 for the322

nonlinear hydroelectric plant simulator of Eq. (3).323

In order to provide a quantitative comparison of the tracking capabilities obtained by the324

considered control techniques for the wind turbine benchmark, Table 1 summarises the achieved325

results in terms of NSSE% index.326

Table 1. Performance of the considered control solutions for the wind turbine.

Simulated Working Standard Self–tuning Fuzzy Adaptive MPC
system Condition PID PID PID PID Scheme
Wind From partial

turbine to full load 11.5% 7.3% 5.7% 4.1% 2.8%

In particular, the NSSE% values in Table 1 highlight that the fuzzy controllers lead to better327

performances than the PID regulators with self–tuning feature. This is motivated by the flexibility328

and the generalisation capabilities of the fuzzy tool, and in particular the FMID toolbox proposed329

in [22]. Better results are obtained by means of the adaptive solution, due to its inherent adaptation330

mechanism, which allows to track the reference signal in the different working conditions of the wind331

turbine process. However, the MPC technique with disturbance decoupling has achieved the best332

results, as reported in Table 1 , since is able to optimise the overall control law over the operating333

conditions of the system, by taking into account future operating situations of its behaviour, while334

compensating the disturbance effects.335

On the other hand, the results achieved by the application of the considered control techniques336

to the hydroelectric plant simulator are summarised in Table 2.337

Table 2. Performance of the considered control solutions for the hydroelectric plant.

Simulated Working Standard Self–tuning Fuzzy Adaptive MPC
system Condition PID PID PID PID Scheme
Hydro From start–up
plant to full load 6.2% 4.9% 3.1% 1.8% 0.9%

In this case, the values of the NSSE% index are evaluated for the considered conditions of338

varying load torque mg0 from the plant start–up to the full load maneuver. According to these results,339

good properties of the proposed self–tuning PID regulator are obtained, and they are better than the340

baseline PID governor with fixed gains developed in [19]. In fact, the self–tuning design feature of341

the Simulink environment is able to limit the effect of high–gains for the proportional and the integral342

contributions of the standard PID control law. On the other hand, the data–driven fuzzy regulator343

has led to even better results, which are outperformed by the adaptive solution. However, also for the344

case of the hydroelectric plant simulator, the best performances are obtained by means of the MPC345

strategy with disturbance decoupling.346

Finally, in order to highlight some further characteristics of the developed control strategies,347

the actuated inputs β(t) and τr(t) feeding the wind turbine system are depicted in Figure 11, i.e. the348

blade pitch angle and the generator reference torque. On the other hand, Figure 12 depicts the control349
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input u of the hydraulic turbine of the hydroelectric plant. For the sake of brevity, only the results for350

the data–driven fuzzy controller and the MPC with disturbance decoupling have been reported .351
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Figure 11. Wind turbine inputs (a) & (c) from the fuzzy control strategy and (b) & (d) by MPC scheme.
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By considering these control inputs, with reference to the data–driven methodologies, and in352

particular to the design of the fuzzy controllers, off–line optimisation strategies allow to reach quite353

good results. However, control inputs are subjected to faster variations, as shown in Figure 11 (a)354

and (c), and Figure 12 (a). Other control techniques take advantage of more complicated and not355

direct design methodologies, as highlighted by the MPC scheme. In this case, due to the input356

constraint, its changes are reduced, as shown in Figure 11 (b) and (d), and Figure 12 (b). This357

feature is attractive for wind turbine systems, where variations of the control inputs must be reduced.358

This represents another important benefit of MPC with disturbance decoupling, which integrates359

the advantages of the classic MPC scheme with disturbance compensation capabilities. Therefore,360

with reference to these two control methods, they can appear rather straightforward, even if further361

optimisation and estimation strategies have to be applied.362

4.2. Sensitivity Analysis363

This section analyses the reliability and robustness properties of the developed controllers when364

the simulations include parameter variations and measurement errors. This further investigation365

exploits the Monte–Carlo tool, since the control behaviour and the tracking capabilities depend366

on both the model–reality mismatch effects and the input–output error levels. Therefore, this367

analysis has been implemented by describing the parameters of both the wind turbine system and368

hydroelectric plant models as Gaussian stochastic processes. Their average values corresponding to369

the nominal ones are summarised in Table 3 for the wind turbine benchmark.370

Table 3. Wind turbine benchmark parameters for the sensitivity analysis.

Variable R χ ωn Bdt Br

Nominal value 57.5 m 0.6 106.09 rpm 775.49 N m s rad−1 7.11 N m s rad−1

Variable Bg Kdt ηdt Jg Jr

Nominal value 45.6 N m s rad−1 2.7 · 109 N m rad−1 0.97 390 kg m2 55 · 106 kg m2

Moreover, Table 3 shows that these model parameters have standard deviations of ±30% of the371

corresponding nominal values [6].372

On the other hand, Table 4 reports the hydroelectric simulator model variables with their373

nominal values varied by ±30% in order to execute the same Monte–Carlo analysis [7].374

Table 4. Hydroelectric simulator parameters for the sensitivity analysis.

Variable a b c H f1
H f3 H f5 Ta

Nominal value -0.08 0.14 0.94 0.0481 m 0.0481 m 0.0047 m 5.9 s
Variable Tc Ts2 Ts4 Tw1 Tw3 Tw5

Nominal value 20 s 476.05 s 5000 s 3.22 s 0.83 s 0.1 s

Therefore, the average values of NSSE% index have been thus evaluated by means of 1000375

Monte–Carlo simulations. They have been reported in Tables 5 and 6 for the wind turbine benchmark376

and the hydroelectric plant simulator, respectively.377

It is worth noting that the results summarised in Tables 5 and 6 serve to assess the overall378

behaviour of the developed control techniques. In more detail, the values of the NSSE% index379

highlights that when the mathematical description of the controlled dynamic processes may380

be included in the control design phase, the MPC technique with disturbance decoupling still381

yields to the best performances, even if an optimisation procedure is required. However, when382

modelling errors are present, the off–line learning feature of the data–driven fuzzy regulators383
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Table 5. Sensitivity analysis applied to the wind turbine benchmark.

Standard Self–tuning Fuzzy Adaptive MPC
PID PID PID PID Scheme

13.8% 9.2% 7.6% 5.3% 3.9%

Table 6. Sensitivity analysis applied to the hydroelectric plant simulator.

Standard Self–tuning Fuzzy Adaptive MPC
PID PID PID PID Scheme
9.1% 7.4% 5.6% 3.5% 2.2%

allows to achieve better results than model–based schemes. For example, this consideration is384

valid for the PID controllers derived via the self–tuning procedure. On the other hand, fuzzy385

controllers have led to interesting tracking capabilities. With reference to the adaptive scheme,386

it takes advantage of its recursive features, since it is able to track possible variations of the387

controlled systems, due to operation or model changes. However, it requires quite complicated388

and not straightforward design procedures relying on data–driven recursive algorithms. Therefore,389

fuzzy–based schemes use the learning accumulated from data–driven off–line simulations, but the390

training stage can be computationally heavy. Finally, concerning the standard PID control strategy391

, which represented the baseline regulator for the considered processes, it is rather simple and392

straightforward. Obviously, the achievable performances are quite limited when applied to nonlinear393

dynamic processes. It can be thus concluded that the proposed data–driven self–tuning approaches394

seem to represent powerful techniques able to cope with uncertainty, disturbance and variable395

working conditions. The plant simulators, the control solutions, and the data exploited for the396

analysis addressed in this paper are directly and freely available from the authors.397

5. Conclusions398

The work considered two renewable energy conversion systems, namely a wind turbine399

benchmark and a hydroelectric plant simulator, together with the development of proper data–driven400

control techniques. In particular, the three–bladed horizontal axis wind turbine benchmark401

reported in this work consisted of simple models of the gear–box, the drive–train, and the electric402

generator/converter. On the other hand, the hydroelectric plant simulator included a high water403

head, a long penstock with upstream and downstream surge tanks, and a Francis hydraulic turbine.404

Standard PID governors were earlier developed for these processes, which were rather simple and405

straightforward, but with limited achievable performances. Therefore, the paper proposed advanced406

control strategies mainly relying on data–driven approaches. Their performances were analysed407

first. Then, the reliability and robustness of these solutions were also verified and validated with408

respect to parameter variations of the plant models and measurement errors via the Monte–Carlo409

tool. The achieved results highlighted that data–driven approaches, such as the fuzzy regulators were410

able to provide good tracking performances. However, they were easily outperformed by adaptive411

and model predictive control schemes, representing data–driven solutions that require optimisation412

stages, adaptation procedures and disturbance compensation methods. Future investigations will413

consider the verification and the validation of the considered control techniques when applied to414

higher fidelity simulators of energy conversion systems.415
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