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A B S T R A C T

Background: Exposure to indoor biomass fuel smoke is associated with increased morbidity and mortality. The
aim of this study is to evaluate the association between exposure to indoor biomass burning and early pulmonary
and cardiovascular damage.
Methods: The indoor levels of particulate matter (PM) [PM10, PM2.5] and black carbon (BC) were monitored in
32 houses in a Himalayan village. Seventy-eight subjects were submitted to spirometry and cardiovascular
evaluation [carotid to femoral pulse wave velocity (PWV) and echocardiography].
Results: Peak indoor BC concentration up to 100 μgm−3 and PM10 - PM2.5 up to 1945–592 μgm−3 were mea-
sured. We found a non-reversible bronchial obstruction in 18% of subjects ≥40 yr; mean forced expiratory flow
between 25% and 75% of the forced vital capacity (FEF25–75)< 80% in 54% of subjects, suggestive of early
respiratory impairment, significantly and inversely related to age. Average BC was correlated with right ven-
tricular-right atrium gradient (R=0.449,p= .002), total peripheral resistances (TPR) (R=0.313,p= .029) and
PWV (R=0.589,p < .0001) especially in subjects> 30 yr. In multiple variable analysis, BC remained an in-
dependent predictor of PWV (β= 0.556,p= .001), and TPR (β= 0.366;p= .018).
Conclusions: Indoor pollution exposure is associated to early pulmonary and cardiovascular damages, more
evident for longer duration and higher intensity exposure.

1. Introduction

According to the World Health Organization (WHO), indoor air
pollution (IAP) is the single most important environmental health risk
factor worldwide. Based on estimates of solid fuel use for cooking in
2012, exposure to air pollution causes 4.3 million premature deaths
each year, with the highest burden in low and middle-income countries
[1]. More specifically, particulate matter (PM) is considered to be as-
sociated with an increased incidence of cardiovascular and respiratory

diseases [2,3]. In particular, the black carbon (BC) component of PM
seems to be associated with both cardiovascular and respiratory mor-
bidity and mortality [4,5]. Specifically, the incomplete combustion of
solid fuels is a source of potentially toxic pollutants, including BC,
carbon monoxide, nitrogen dioxide, volatile and semi-volatile organic
compounds (e.g., formaldehyde and benzo[a]pyrene, methylene
chloride, and dioxins).

However, only a limited number of studies have focused the at-
tention on the concurrent effects of IAP on cardiovascular and

https://doi.org/10.1016/j.ejim.2018.10.023
Received 12 October 2018; Received in revised form 23 October 2018; Accepted 26 October 2018

Abbreviation: BC, black carbon; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; FVC, forced vital capacity;
FEF25–75, forced vital capacity; FEV1, forced expiratory volume in one second; FRS, Framingham risk score; IAP, indoor air pollution; PM, particulate matter; PVR,
Pulmonary vascular resistance; PWV, carotid to femoral pulse wave velocity; RV-RA gradient, pressure gradient between the right ventricle and the right atrium; SBP,
systolic blood pressure; sPAP, systolic pulmonary artery pressure; TPR, total peripheral resistances; WHO, World Health Organization

⁎ Corresponding author at: Institute of Atmospheric Sciences, National Research Council, Bologna, Italy.
E-mail address: s.fuzzi@isac.cnr.it (S. Fuzzi).

1 These authors contributed equally to this work.

European Journal of Internal Medicine xxx (xxxx) xxx–xxx

0953-6205/ © 2018 Published by Elsevier B.V. on behalf of European Federation of Internal Medicine.

Please cite this article as: Pratali, L., European Journal of Internal Medicine, https://doi.org/10.1016/j.ejim.2018.10.023

http://www.sciencedirect.com/science/journal/09536205
https://www.elsevier.com/locate/ejim
https://doi.org/10.1016/j.ejim.2018.10.023
https://doi.org/10.1016/j.ejim.2018.10.023
mailto:s.fuzzi@isac.cnr.it
https://doi.org/10.1016/j.ejim.2018.10.023


respiratory diseases [6]. IAP from biomass fuel and coal combustion in
open fires and traditional stoves causes> 2 million deaths per year in
large areas of the less developed world [6,7], and can be considered a
major avoidable risk factor for respiratory and cardiac diseases [7,8].
According to the most recent WHO report on non-communicable dis-
eases, 35% of chronic obstructive pulmonary disease (COPD) could be
prevented through a healthy indoor environment [9].

The aim of our study is to evaluate the presence of an association
between IAP exposure and early impairment of respiratory function,
COPD prevalence and cardiovascular damages in a population with a
very low smoking habit, living in a rural village of a remote area far
from any road and vehicular traffic and also far from other specific
anthropogenic sources of pollution.

2. Methods

2.1. Chaurikharka: the ideal village to study

The study was conducted in the traditional village of Chaurikharka
(2562 m.a.s.l.), in the Khumbu Valley (Nepalese Himalayas) (supple-
mentary fig. 1) where the Sherpa population lives isolated from the
most common sources of outdoor pollution [10]. Because of cultural
and religious traditions, the Sherpa have a very low smoke habit (only
3%)9; morover other medical confounding factors (obesity and dia-
betes) are rare [11,12]. The households still rely on solid fuels (wood,
crop residues, dung) for cooking and other energy needs. In addition,
these solid fuels are often burned in inefficient, poorly ventilated
combustion devices: such as open fires and traditional stoves [13]
(supplementary fig. 2).

2.2. Population enrolled

A total of 78 villagers, living in the 32 houses submitted to IAP
monitoring, were enrolled for the medical tests.. Inclusion criteria were:
age between 16 and 75 years, residential status in the village, apparent
good health status and written informed consent. Exclusion criteria
were: alcohol abuse, active neoplasm, infective diseases, pregnancy and
the absence of informed consent. A structured interview in Nepalese
language was performed to collect data on smoking habits, job, stove
characteristics, cooking details, and history of fuel use in their house-
holds. Indoor and outdoor air quality measurements were acquired
during two field campaigns during winter 2013/14 and 2014/15. This
study follows the Declaration of Helsinki on medical protocol and was
conducted with the approval of the Nepal Health Research Council and
the Nepal Academy of Science and Technology (N° 115/2013), and
registered to Clinical Trials Gov Registration #NCT01329159.

2.3. Indoor pollution measurements

IAP was measured in the houses enrolled using a portable mon-
itoring unit developed ad hoc for the Chaurikharka experiment to
monitor BC, PM mass, and size distribution. The monitoring unit was
installed for about 24 h to obtain the diurnal trend of the different
measured parameters. Indoor PM with aerodynamic diameter lower
than 10 μm (PM10) and lower than 2,5 μm (PM2,5), as well as BC con-
centrations were measured. In addition, the outdoor air was monitored
over the same period to have a reference parameter for the IAP mea-
surements, and to evaluate the indoor/outdoor exchanges. Full methods
on the IAP measurements and device characteristics are available on
supplementary file 1.

2.4. Medical tests

2.4.1. Laboratory tests
Out of 78 subjects enrolled, 55 accepted to perform fasting blood

samples for laboratory tests. Lipid profile, electrolytes and blood

glucose were all determined in order to discriminate between the role of
IAP and the role of other cardiovascular risk factors. The glomerular
filtration rate was estimated using the Modification of Diet in Renal
Disease study equation [14].

2.4.2. Pulmonary function tests
All 78 participants underwent spirometry using a portable spi-

rometer at their household in a sitting position, in fire-off conditions, in
accordance with the American Thoracic Society/European Respiratory
Society guidelines [15]. Before the test, height and weight were mea-
sured. Two experts in respiratory functions (A.C. and E.B.) assessed the
quality of the spirometry and the best of three reproducible values was
used in the data analysis. In the presence of airflow obstruction, Sal-
butamol was administered in four separate doses of 100 μg through a
spacer, re-assessing lung function after fifteen minutes. An increase in
forced expiratory volume in one second (FEV1) of 12% and 200mL
constitutes a positive bronchodilator response. The airflow obstruction
is defined when the ratio of FEV1 to forced vital capacity (FVC) is below
the 5th percentile of the predicted value, to minimise over- or under-
diagnosis [16,17]. The normal reference values were taken from the
European Community of Coal and Steel [17] prediction equations.
Chronic bronchitis is defined as the presence of both chronic cough and
chronic phlegm for at least three months and for two consecutive years.
The COPD is defined as the presence of non-reversible bronchial ob-
struction, according to the GOLD guidelines. Early respiratory function
impairment is defined as a reduction of the mean forced expiratory flow
between 25% and 75% of the FVC (FEF25–75) below 80% of the pre-
dicted value [15].

2.4.3. Physiological parameters and cardiovascular evaluation
Out of 78 subjects (mean age 41 ± 16, female 51), enrolled, 72

accepted to perform also the cardiovascular evaluation (55 of these
performed also laboratory test). The cardiovascular evaluation was
performed in dedicated laboratory without any IAP source and was
carried out between 9 a.m. and 4 p.m. Brachial systolic (SBP) and dia-
stolic blood pressure (DBP) were measured in supine position after at
least 10- min rest. Three measurements at 2-min intervals were taken,
and averaged over the last two measurements. Finger oxygen satura-
tion, weight, height, and waist circumference were also measured and
the body mass index (BMI) was calculated. The 10-year Framingham
risk score (FRS) for cardiovascular events was calculated according to
the guidelines [18].

Carotid-femoral pulse wave velocity (PWV) was measured by ap-
planation tonometry (Sphygmocor CVPH, Atcor Medical, Sidney,
Australia), according to the international recommendations [19]. Wa-
veforms were recorded at the two recording sites, sequentially with
simultaneous electrocardiogram. PWV was calculated as the ratio be-
tween the subtracted distance between the two recording sites [(fe-
moral-suprasternal distance) - (carotid-suprasternal distance)] and
wave transit time (estimated by the foot-to-method). Two consecutive
measurements were taken and averaged.

Echocardiography was performed using a portable echo machine
with a cardiac probe (2.5–3.5MHz). The left ventricular systolic and
diastolic measures were performed according to the ASE–EAE guidelines
[20–21–22]. The pressure gradient between the right ventricle and the
right atrium (RV-RA gradient) was calculated using the modified Ber-
noulli equation from the maximal velocity of continuous Doppler tri-
cuspid regurgitation and the systolic pulmonary artery pressure (sPAP)
was estimated on the basis of inferior vena cava size and its respiratory
variations (0-15mmHg) [23]. Pulmonary vascular resistance (PVR) was
calculated as [(mean PAP-left atrial pressure)/Cardiac Output] [24].

2.5. Statistical analysis

The statistical analysis was performed using the SPSS software,
version 21.0 (IBM Corp., Armonk, NY, USA). Statistical significance for
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all tests used was set at p < .05. Clinical, pulmonary and cardiovas-
cular characteristics of the samples were assessed using descriptive
statistics and comparison of the different parameters between sex was
performed by unpaired Student t-test. Pearson's rho correlation analysis
was carried out to compare markers of pulmonary and cardiovascular
damage and different air pollutants and to evaluate the effect of IAP on
lung function. The significant correlations were then included in two
different multiple regression models. First model: to evaluate the rela-
tion between vascular markers (PWV and TPR) and IAP (PM/BC) in-
dependently from covariates (age, sex, oxygen saturation, SBP, low
density lipoproteins). Second model: to evaluate the relation between
early pulmonary impairment (FEF25–75) and IAP (PM/BC) in-
dependently from covariates (age, sex, smoking habit). Before the
multiple regression model analysis, covariates were individually tested
using univariate linear regression models. Smoking was not included in
both models because of the low smoking prevalence. Before the mul-
tiple regression model analysis, covariates were individually tested
using univariate linear regression models. Multi-collinearity between
variables was also assessed.

3. Results

3.1. Indoor particulate measurements

The indoor average BC concentration and the average PM mass in
different size ranges (PM2.5 and PM10) are reported in Fig. 1 for the 32
monitored households. The overall average indoor BC concentration
was 4.63 ± 6.61 μgm−3, (range: 0.31–36.54 0.31 μgm−3). On the
other hand, PM2.5 and PM10 average concentrations were
35 ± 24 μgm−3 (range: 1–648 μgm−3) and 113 ± 64 μgm−3 (range:
1 μgm−3 to 1945 μgm−3), respectively.

We observed a large fraction of coarse particle mass, with PM2.5 ac-
counting, on average, for 33% of PM10. This is probably due to the handling
of the embers when the fire is on and to re-suspended dust within the
houses. The typical diurnal trends generally exhibit BC peaks up to
100 μgm−3 and PM10 and PM2.5 peaks of 1945 μgm−3 and 592μgm−3,
respectively, regularly taking place in the evenings and mornings, when the
fire is turned on for cooking dinner and breakfast/lunch. An example of the
24 h monitoring of the house identified as CHH13 is reported in Fig. 2.

The average fire duration was between 6:00 and 9:00 a.m.) and
between 4:00 and 8:00 p.m. with a nocturnal minima (averages of
0.32 ± 0.39; 11.5 ± 29.2 and 26.5 ± 63.1 μgm−3, for BC, PM2.5 and
PM10 concentrations, respectively) that were close to the outdoor
concentrations, suggesting a significant exchange between indoor and
outdoor air. The typical increase of concentrations during cooking time
was about 40 times for BC and 10 times for PM2.5 and PM10 values with
respect to the night-time conditions.

The BC concentration accounts on average for 9% of the PM2.5 mass,
with a significant increase during the periods when the fire was on
(12% on average, with a maximum of 42% on an hourly basis), while
during night-time the BC mass was stable around 5% of that of PM2.5.

On the other hand, the PM2.5/PM10 ratio was higher during night-
time (45%) with respect to the fire-on conditions (35%), suggesting a
slow settling of coarse particles such as fly ashes and re-suspended dust
when the fire was off.

The outdoor average concentrations were lower by a factor of about
6 for both BC and PM concentration with respect to the indoor average
values. The ratio between indoor and outdoor concentrations was si-
milar for the different aerosol fractions and for BC (5.7 for PM2.5, 6.5 for
PM10 and 6.4 for BC), suggesting that the main source for the local
outdoor pollution in Chaurikharka is the indoor biomass combustion
itself. An example of outdoor monitoring is shown in supplementary fig.
3.

3.2. Clinical results

The population was not normally distributed: in fact, 50 out of 78
subjects enrolled in the study (64%) were younger than 40 years.

3.2.1. Pulmonary evaluation
Supplementary table 1 reports the demographic and pulmonary

function data. As we didn't find any difference between males and fe-
males, in the subsequent analysis we considered the group as a whole.
Six subjects (all non-smokers) showed bronchial obstruction; 4 females

Fig. 1. Average concentration of BC (panel a), PM2.5, and PM10 (panel b) monitored in 32 houses of the Chaurikharka village. Error bars represent the standard
deviation of the measurements.

Fig. 2. BC, PM2.5 and PM10 concentrations monitored in the house CHH13.
Error bars represent the standard deviation of the measurements.
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and 2 males aged 45–85 years. In one female we found a significant
reversibility, allowing diagnosing her simply as asthmatic, while in the
other five subjects no significant reversibility was detected and the
diagnosis of COPD was made. The prevalence of non-reversible bron-
chial obstruction was 5/78 (6%). The prevalence of COPD was higher in
subjects ≥40 years group and is infrequent at younger age. Taking into
account only subjects aged ≥40 years, the prevalence is 18%, rising to
20% considering only the subjects over the age of 50.

We found that only 36 out of 78 subjects exhibited normal values of
FEF25–75, (i.e.≥ 80% of the predicted values), 9 subjects had a value
between 70 and 80%, 33 subjects had a value ≤70%. A significant
linear regression was found between FEF25–75% (percentage of the
predicted values) and age (supplementary fig. 4). FEF25–75% was sig-
nificantly correlated with the average PM10 concentration (r=−
0.413, p= .017) (Table 1).

In a multiple regression analysis including age, sex, and average
PM10, only age and average PM10 concentration remained independent
predictors of the reduction of respiratory function (FEF25–75%)
(p < .001 and p= .001, respectively). Full model results are shown in
Table 2.

No significant correlation was found between the markers of re-
spiratory and cardiovascular damage (data not shown).

3.2.2. Cardiovascular and laboratory test evaluation
Seventy-two out of 78 subjects enrolled accepted the cardiovascular

evaluation and out of 72 subjects, 55 were submitted also to the blood
samples and laboratory tests. Supplementary table 2 summarises the
clinical characteristics and laboratory results of the population ex-
amined. Overall, the examined population was young, but the pre-
valence of hypertension and hypercholesterolemia were relatively high,
while diabetes, obesity and smoking habit were low. The blood level of
cholesterol (total, low and high density lipoproteins) was slightly above
normal, while triglycerides and glucose concentration were normal.
Oxygen saturation and haemoglobin concentration were compatible
with a good acclimatization to altitude. Moreover the creatinine con-
centration and the estimated glomerular filtration rate were also
normal. The 10-year FRS, evaluated for 42 subjects (age 30–75 years),
was 4.9% (3.2–8.97%).

PWV was successfully performed in 63 subjects related to technical

problems. Mean PWV was 7.2 ± 1.6m s−1. FRS and PWV were sig-
nificantly correlated with the average BC concentrations (R=0.414,
p= .017 and R=0.398; p= .002; Table 3). Including in the analysis
only people older than 30 years who, we can reasonably assume, had
been exposed continuously and for a longer time period to indoor
biomass burning emissions, the association became stronger for PWV
(R=0.589, p < .0001). In addition, BC peak concentration correlates
well with both FRS and PWV (R=0.56, p= .009 and R=0.445,
p= .001). In a multiple variable analysis, the average BC concentration
remained an independent predictor of PWV, even after adjusting data
for age, sex, systolic BP and low density lipoprotein concentration
(β=0.556, p= .001; full model R=0.734; Table 4), indicating that
long-term exposure to indoor biomass burning pollution may be asso-
ciated with subclinical cardiovascular damage independent of classical
cardiovascular risk factors. The principal echocardiographic indexes are
reported in supplementary table 3. The subjects exhibited normal left
and right systolic and diastolic function. Only sPAP, PVR and TPR were
slightly above normal in the population examined. RV-RA gradient
significantly correlated with average BC concentration (R=0.293;
p= .22) while a low, yet significant, correlation was found between
total TPR and BC average concentration (R=0.277; p= .037). After
excluding subjects younger than 30 (considering them to a have a
shorter lifespan IAP exposure), the correlation with average BC con-
centration became stronger with the RV-RA gradient (R=0.449,
p= .002) and TPR (R=0.313; p= .029), while a significant positive
correlation was found between TPR and PM10 average concentration
(R=0.359; p= .044).

Furthermore, a negative correlation was found between SV and
average BC concentration (R=−0.337; p= .024), as shown in
Table 3. From multiple regression analysis, TPR remained correlated
with BC average concentration even after adjustment for age, SBP and
oxygen saturation (β=0.366; p= .018; full model R=0.542), as
shown in Table 4.

4. Discussion

The analysis of the combined measurements of indoor PM and BC
levels together with the results of pulmonary and cardiovascular tests
for the inhabitants of this traditional Himalayan village showed early
pulmonary and cardiovascular damage, which become more evident
with the duration and the intensity of exposure to IAP. No significant
correlation was found between the markers of respiratory and cardio-
vascular damage. The individual susceptibility to the diseases can ex-
plain the lack of association in the same subjects of the first signs of
both respiratory and cardiovascular impairment [25]. In fact, the in-
halation of pollutants has different effects on the cardiovascular and
respiratory functions. Air pollution can have either a very rapid effect
on vascular dysfunction, indicative of pathways that convey signals
within hours of PM inhalation or chronic effects promoting athero-
sclerosis' mediators [2]. On the contrary, air pollution adversely affects
the lung function through structural and inflammatory changes and the
long-term exposure to noxious particles is associated with early im-
pairment as well as non-reversible chronic obstruction. A short ex-
posure mainly affects bronchial hyper-responsiveness that has not been
assessed in the present study. This explains why the cardiovascular
damage is significantly related with both PM and BC indoor con-
centrations, while the early respiratory impairment is significantly re-
lated only to the level of PM10 particles. The pulmonary and cardio-
vascular detrimental effects due to IAP were evident although the
number of hours of combustion activity observed were slightly lower
than that reported in a study carried out in Eastern Tibetan Plateau
(8.9 h) [26], and those reported from WHO in selected studies of rural
areas [9], likely due to the lack of fire activity in the central part of the
day. In any case, the values monitored during this study were much
higher than the WHO interim and guideline values [1,27]. On the other
hand, the indoor BC average values are lower than those reported for

Table 1
Correlation between pulmonary function and indoor air particulate con-
centrations.

PM2.5 PM10 BC

FEV1/FVC (%) R=−0.12 R=−0.213 R=−0.031
p= .506 p= .234 p= .608
N=33 N=33 N=54

FEV1 (%) R=−0.023 R=−0.044 R=−0.063
p= .898 p= .81 p= .65

N=33
N=33 N=55

FEF25–-75 (%) R=−0.243 R=−0.413 R=0.071
p= .173 p= .017 p= .608
N=33 N=33 N=54

FEV1: expiratory volume in the first second; FVC: forced vital capacity;
FEF25–75: flow in the middle part of the expiration curve.

Table 2
Multiple regression analysis between FEF25–75% and age, sex, smoking history
and indoor pollution concentrations.

Variable β P value

Variable: FEF25–75 (%) Age −0.620 <0.001
Full model Sex 0.148 0.273
R=0.724 Average PM10 −0.499 0.001

FEF25–75: flow in the middle part of the expiration curve.
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villages of Northern India by Kar et al. [28], where measurements were
performed only in fire-on conditions; however the cooking peaks
measured in the present study were comparable with the measurements
performed in the breathing zone (1m above the stove and 0.5 m on the
side) in dwellings where wood is burned in traditional stoves [28].

From the respiratory tests, we found a high percentage of subjects
with reduced peripheral flow (FEF25–75) and non-reversible bronchial
obstruction, characteristic of COPD. The reduction of the flow in the
middle part of expiration is considered an early impairment of the re-
spiratory function. In fact, the earliest change associated with airflow
obstruction is a slowing of the expiratory flow, reflected in a pro-
portionally higher reduction in FEF25–75 than in FEV1. As the airway
disease becomes more advanced and more central airways become in-
volved, the FEV1 will be reduced out of proportion to the reduction in
VC and the ratio FEV1/FVC decreases [29]. A reduction in FEF25–75 has
been reported in smokers [30], but also in non-smokers chronically
exposed to tobacco smoke [31], and in subjects with occupational and
environmental exposures [32]. White et al. also found that exposed
non-smokers had a lower forced mid-expiratory flow with respect to
non-exposed non-smokers [31].

Since 64% of the subjects examined in the present study were
younger than 40 years, we could hypothesize in advance that an early
impairment of the respiratory function would have been the main
finding. In fact, we found a high prevalence of FEF25–75 reduction below
80% of the predicted values. An intriguing finding of our study is the
significant correlation between FEF25–75 as a percentage of predicted
and age. In fact, the predicted values already take into account the
effect of aging and the decreasing values (compared to the predicted

ones) with age reflect the effect of continuous exposure to high levels of
noxious particles. This is confirmed by the correlation of FEF25–75 with
indoor PM10 concentration. Similarly we can interpret the progressive
reduction of the ratio FEV1/FVC with exposure to IAP. It has recently
been suggested that biomass smoke may contribute to the onset of re-
spiratory diseases by fostering a pulmonary and systemic inflammatory
state, and the first effect of chronic inflammation is the structural
change and narrowing of the small airways [33]. The onset of non-fully
reversible airflow obstruction (COPD) is a slow, gradual process and
only a longitudinal study could assess the progression of early impair-
ment to COPD.

There is an increasing amount of evidence of a high incidence of
chronic bronchitis, respiratory function impairment and COPD among
people exposed to high levels of IAP, PM in particular [4,34]. With
respect to the prevalence of COPD, it is well known that a variable
percentage of COPD-affected subjects have never smoked but have been
exposed since childhood to inhalation of noxious particles. In fact, in
developing countries, indoor/outdoor air pollution and poor socio-
economic status play an important role in the pathogenesis of non-
smoking-related COPD [35,36]. Furthermore, it has been shown that
the children of mothers using biomass fuel for cooking and heating have
a lower weight at birth than those whose mothers used other energy
sources [37]. This fact, associated to the higher incidence of respiratory
infection in the childhood of the exposed subjects, can predispose an
individual to developing COPD in the adulthood. Any factor that affects
lung growth during gestation and childhood has the potential for in-
creasing an individual's risk of developing COPD. Many surveys on
COPD in never-smokers have reported that a history of hospitalization
in childhood for respiratory illness and exposure to passive smoke or
biomass fuel were discriminative for children and women, respectively
[38–42]. All studies available in the literature examined the prevalence
of the disease in population aged 40 and older with a reported pre-
valence among never-smokers between 3 and 11% [43]. In the present
study, we found a prevalence of COPD among never-smokers aged
40 years and older of 18%, higher than the previously reported values.
In developed countries a higher prevalence of chronic bronchitis and
COPD is shown generally in men, instead in the rural areas of devel-
oping countries, the prevalence is either similar between men and
women or much higher in women, even in the case of very limited or no
smoking habit [44]. Norboo and coauthors showed in a Himalayan
village a prevalence of COPD in subjects over 50 years of 24% in men
and 32% in women [45]. Moreover the relative risk for COPD in sub-
jects over 30 years exposed to IAP has been found to be 3.2 in women

Table 3
Correlation analysis between average and peak BC and cardiovascular parameters.

Pearson correlations PM2.5 PM10 BC PM2.5 PM10 BC

(Only age > 30) (Only age > 30) (Only age > 30)

FRS⁎ R=0.021 R=−0.063 R=0.414
p= .925 p= .774 p= .017
N=23 N=23 N=33

PWV R=0.079 R=−0.023 R=0.398 R=0.066 R=0.108 R=0.589
p= .654 P= .895 p= .002 p= .729 P= .569 p < .0001
N=35 N=35 N=57 N=30 N=30 N=45

RV-RA gradient R=0.206 R=0.067 R=0.293 R=0.188 R=0.108 R=0.313
p= .208 p= .685 p= .022 P= .287 p= .545 p= .029

N34
N=39 N=39 N=61 N=34 N=49

TPR R=0.134 R=0.269 R=0.589 R=0.161; R=0.359 R=0.449
P= .430 P= .108 p= .037 p= .379; p= .044 p= .002
N=37 N=37 N=57 N=32 N=32 N=45

SV R=−0.115 R=−0.247 R=0.051 R=−0.209 R=−0.325 R=−0.337
P= .499 P= .140 p=.714 p= .252 p= .070; p= .024
N=37 N=37 N=53 N=32 N=32 N=45

BC: black carbon; FRS: Framingham risk score; PWV: pulse wave velocity; RV-RA: Right ventricle – right atrium; TPR: total peripheral resistance; SV: Stroke volume; *
FRS was calculated only for the subjects aged over 30 years.

Table 4
Multiple variable correlation models between PWV, TPR and BC concentration.

Variable β P value

Variable Age 0.271 0.105
PWV Sex 0.119 0.40
Full model Systolic blood pressure 0.072 0.64
R=0.734 LDL −0.017 0.90

BC average concentration 0.556 0.001
Variable TPR Age −0.09 0.526
Full model Oxygen saturation 0.155 0.259
R=0.542 Systolic blood pressure 0.279 0.070

BC average concentration 0.404 0.008

PWV: pulse wave velocity; TPR: total peripheral resistance; LDL: Low density
lipoprotein; BC: black carbon.
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and 1.8 in men [46]. The higher COPD prevalence in women and
children was associated to longer time near the fireplace, especially
during the winter months in the mountain regions [47–50]. Surpris-
ingly, in the present study we did not find any difference of COPD
prevalence between females and males. We explain this result because
females in this area are mainly farmers working outside and most of the
dwellers (both males and females) spend the night in the same room of
the brazier. Therefore, the length of exposure would not be significantly
different.

The cardiovascular evaluation has shown an association between BC
exposure and subclinical cardiovascular damage in particular, in long-
time exposed subjects older than 30 years. Moreover, BC concentration
was significantly correlated with the RV-RA gradient and TPR and,
again, these correlations were stronger in subjects older than 30 years.
In a multivariate analysis, the 24-h average indoor BC concentration
was an independent predictor for PWV and TPR, even after adjustment
for possible confounding factors: age, sex, SBP and low density lipo-
proteins for PWV and age, SBP and oxygen saturation for TPR. The
measurement of aortic stiffness as carotid-femoral PWV by arterial to-
nometry, is a well-known subclinical marker of cardiovascular damage
that can serve in the clinical practice as “intermediate” or “surrogate”
endpoint for cardiovascular events and cardiovascular mortality, be-
yond the classic cardiovascular risk factors [19,51]. The correlation
between PWV and BC suggests that long-term exposure to BC and other
air pollutants accelerate atherosclerosis and induce vascular damage
increasing the risk of cardiovascular morbidity and mortality. On the
other hand, the correlation between BC and the RV-RA gradient, al-
though in the absence of any significant RV dysfunction, may indicate a
tendency to increased pulmonary pressure in subjects exposed to IAP.
Noteworthy in the multiple regression analysis, TPR remained corre-
lated with BC average concentration even after adjustment for age, SBP
and oxygen saturation.

The cardiovascular findings are in agreement with previous studies
showing higher risk of cardiovascular diseases in subjects exposed to
IAP. A 10-year cohort study in Bangladesh showed an increased risk of
cardiopulmonary death in populations using solid fuel compared to
those using gas fuel [52], while two large-scale cohort studies con-
ducted in China and in Pakistan showed that IAP due to solid fuel use is
associated with an increased risk of coronary heart disease and acute
coronary syndrome, with a higher risk in subjects over 40 years
[53,54]. Many studies have shown increasing risk for hypertension
development in subjects exposed to IAP and in some studies an im-
provement after interventions on the chimney of the stoves was shown
[55,56]. Furthermore, a cross-sectional study of Indian women evi-
denced that hypertension had a prevalence of 30% among biomass fuel
users, and of only 11% among liquid gas users [56]. The prevalence odd
ratio risk for hypertension was 1.41 times higher for women experi-
encing indoor fine PM concentration levels above the median of the
study population. In addition, women older than 50 years appear to
have a higher risk of hypertension compared to men. In addition, a
recent study conducted in Shanghai, China, showed that IAP increases
the risk of hypertension but also demonstrated that the effect is re-
versible reducing the exposure to indoor PM [58].

4.1. Strengths and limitations of the study

In most published studies on the health effects of indoor biomass
smoke the enrolled subjects were usually also exposed to cigarette
smoke and/or outdoor environmental pollution. In the present study,
the monitored outdoor pollution was low and similar for the entire
population living in the small village, isolated from the most common
sources of pollution. In addition, the other confounding factors were
also very low in the population sample examined.

Some limitations of the study should also be acknowledged. First:
the indoor air quality measurements initiated during the winter 2013
campaign, were completed only in winter 2014/2015, due to

instrumental failure. To ensure a uniformity of the monitored condi-
tions between the two campaigns, a lifestyle habits and household
procedures questionnaire survey was performed. Second: lack of follow-
up evaluation after interventions on the chimney of the stoves. A follow
up study was hypothesized after 2 years but failed due to the 2015
Nepal earthquake that destroyed also Chaurikharka.

5. Conclusions

This study confirms that indoor air pollution due to biomass smoke
in inefficient stoves and in the absence of stove chimney is deleterious
and induces a significant early impairment of airways function and
subclinical cardiovascular damage. Moreover, a long term PM and BC
exposure, as in the case of the older subjects enrolled, was associated to
substantial burden of COPD and of cardiovascular dysfunction. Simple
interventions supporting the use of clean cook stoves and fuels these
communities could dramatically reduce indoor combustion emissions
and the resulting exposure and adverse health effects.
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