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Abstract

The primary characteristic of interval temporal logic is that intervals, rather
than points, are taken as the primitive ontological entities. Given their gen-
erally bad computational behavior of interval temporal logics, several tech-
niques exist to produce decidable and computationally affordable temporal
logics based on intervals. In this paper we take inspiration from Golumbic and
Shamir’s coarser interval algebras, which generalize the classical Allen’s Inter-
val Algebra, in order to define two previously unknown variants of Halpern
and Shoham’s logic (HS) based on coarser relations. We prove that, per-
haps surprisingly, the satisfiability problem for the coarsest of the two vari-
ants, namely HS3, not only is decidable, but PSpace-complete in the fi-
nite/discrete case, and PSpace-hard in any other case; besides proving its
complexity bounds, we implement a tableau-based satisfiability checker for
it and test it against a systematically generated benchmark. Our results
are strengthened by showing that not all coarser-than-Allen’s relations are a
guarantee of decidability, as we prove that the second variant, namely HS7,
remains undecidable in all interesting cases.
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1. Introduction

Interval Temporal Logics (ITLs) consider time intervals as the primitive
ontological entities. This represents an advantage when dealing with some
relevant application domains such as planning and synthesis of controllers,
which are characterized by advanced features that are neglected or dealt with
in an unsatisfactory way by point-based formalisms. ITLs have been applied
in several fields such as hardware and real-time system verification, language
processing, constraint satisfaction and planning [Mos83, All83, CH04, PH05].
Moreover, due to the fact that temporal logics are considered as the natu-
ral basis for temporal extensions of Description Logics [AKRZ14], several
attempts have been made to design interval-based extensions of such for-
malisms [Sch90, Bet97, AF98, ABM+14]. ITLs can be also considered as
the temporal counterpart of TSQL, that is, the temporal extension to the
language SQL for databases, included in the standard SQL:2011 [Zem12].
Halpern and Shoham’s Modal Logic of Allen’s Relations (HS) may very well
be the most prominent ITL [HS91]. Its elegance and expressive power have
attracted the attention of the temporal and modal logic communities; how-
ever, promising applications have been hampered by the fact, already dis-
covered when the logic was first introduced, that HS is highly undecidable.
Various strategies have been considered in the literature to define fragments
or variants of HS with a better computational behavior. These include con-
straining the underlying temporal structure [MSV02], restricting the set of
modal operators [BMM+14, AMG+16], softening the semantics to a reflexive
one [MM14, MPS10a], restricting the nesting of modal operators [BDMS14],
and restricting the propositional power of the languages [BKM+17].

Allen’s Interval Algebra (IA) [All83] is the backbone of HS: modal op-
erators in the HS repertoire correspond to Allen’s interval relations. Our
proposal is based on Golumbic and Shamir’s [GS93] idea to consider interval
relations that describe a less precise relationship between intervals. They
reduce the set of binary relations of Allen’s Interval Algebra (IA) [All83] by
defining coarser relations, each corresponding to the logical disjunction of
some Allen’s relations; this approach generates two natural coarser algebras,
namely IA7 and IA3. The former involves seven relations, by preserving the
original relations before, after, and equal to, by joining meets and overlaps
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into a single relation (and similarly for their inverses), and by joining during,
starts, and finishes into a single relation (and, again, similarly for their in-
verse ones). On the other hand, the latter takes into consideration only three
relations: the original before and after, plus a relation (intersects) that can
be viewed as the disjunction of all the remaining ones (and therefore is the
inverse of itself and includes equality). The coarser algebras IA7 and IA3 in-
spire the logics HS7 and HS3 proposed in this paper. These languages follow
similar ideas to the standard SQL:2011 [Kla14], where interval relations are
not necessarily Allen’s ones (for example, later is interpreted as the disjunc-
tion of Allen’s meets and later); therefore, they can be applied not only to
classical areas of artificial intelligence, but also to temporal databases. We
prove that the satisfiability problem for HS3 is PSpace-complete in the fi-
nite/discrete case, and it is PSpace-hard when interpreted in any interesting
class of linearly ordered sets, but that coarser relations do not guarantee the
decidability of an interval temporal logic, because HS7 remains undecidable
over every interesting class of linearly ordered sets.

A partial picture of the computational behavior of the satisfiability prob-
lem for HS3 in some cases could already be drawn from recent results con-
cerning fragments of HS [MPS10b, BDM+15]. As a matter of fact, we can
prove that HS3 can be (polynomially) embedded into the ABBA fragment
of HS (the relations before and after can be immediately expressed in terms
of meets and met by, while the relation intersect can be obtained by means
of a combination of the modalities in ABBA); since ABBA is decidable, but
not primitive recursive, in the finite case [MPS10b] as well as in the case
of the rational numbers [BDM+15], so is HS3. Here we prove that its sat-
isfiability problem is, in fact, PSpace-complete (a much stronger result) in
the finite/discrete case and PSpace-hard in all other classes. Similarly, we
know that just one modality in the HS7 machinery, namely the one that cor-
responds to the disjunction of starts, finishes and during, alone implies the
undecidability of the satisfiability problem of any temporal logic that con-
tains it in the finite/discrete case [MM14]; here, we strengthen this results
for HS7, as our proof also applies to all cases already covered from [MM14].
It is worth mentioning that HS3 is a unique case in the universe of the (few)
decidable interval temporal logics; the only other example of interval tem-
poral logics with a PSpace satisfiability problem is the fragment DDBBEE
of HS, but only in the case of rational numbers [MPS15], and the fragment
D in its reflexive variant [MPS10a]. On the other hand, the maximal decid-
able fragments of HS in the finite/discrete case are the fragments ABBL and
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AEEL (the fragment ABBA, that contains both, is decidable only on finite or
rational frames), and they are not left/right symmetric, limiting their appli-
cability (already hampered by the fact that the their satisfiability problem
is ExpSpace-complete).

The paper is organized as follows. We first give the necessary preliminar-
ies, and in Section 3 we give working examples that highlight the expressive
power of HS3. Section 4 is devoted to the complexity of the satisfiability prob-
lem for HS3. In Section 5 we discuss the satisfiability problem for HS7and
prove that it is generally undecidable, and, finally, in Section 6 we describe
an implementation of a satisfiability checker for HS3 along with the results
of a series of systematic tests, before concluding in Section 7.

2. Preliminaries

In this section we give some necessary preliminaries for the rest of the
work.

2.1. Syntax

Let D = 〈D,<〉 be a strict linear order. A strict interval (respectively,
non-strict interval) over D is an ordered pair [x, y], where x, y ∈ D and
x < y (respectively, x ≤ y). In the recent literature, the strict semantics,
where only strict intervals are considered, is usually adopted. This con-
forms to the definition of interval adopted by Allen [All83], but differs from
the one given by Halpern and Shoham [HS91]. If we exclude the identity
relation, there are 12 different relations between two intervals in a linear or-
der, often called Allen’s relations [All83]: the six relations RA (adjacent to),
RL (later than), RB (begins), RE (ends), RD (during), and RO (overlaps),
depicted in Figure 1, and their inverses, that is, RX = (RX)−1, for each
X ∈ {A,L,B,E,D,O}. We interpret interval structures as Kripke struc-
tures, with Allen’s relations playing the role of the accessibility relations.
Thus, we associate a universal modality [X] and an existential modality 〈X〉
with each Allen’s relation RX . For each X ∈ {A,L,B,E,D,O}, the inverse
of the modalities [X] and 〈X〉 are the modalities [X] and 〈X〉, corresponding
to the inverse relation RX of RX . Halpern and Shoham’s logic HS [HS91]
is a multi-modal logic with formulæ built from a finite, non-empty set AP
of atomic propositions (also referred to as proposition letters), the classical
propositional connectives, and a modal operator for each Allen’s relation, as
follows:

4



HS

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

HS3/HS7

〈AO〉

〈DBE〉

〈I〉

Allen’s relations

Semantics

[x, y]RA[x′, y′]⇔ y = x′

[x, y]RL[x′, y′]⇔ y < x′

[x, y]RB [x′, y′]⇔ x = x′, y′ < y

[x, y]RE [x′, y′]⇔ y = y′, x < x′

[x, y]RD[x′, y′]⇔ x < x′, y′ < y

[x, y]RO[x′, y′]⇔ x < x′ < y < y′

〈AO〉 ≡ 〈A〉 ∨ 〈O〉

〈DBE〉 ≡ 〈D〉 ∨ 〈B〉 ∨ 〈E〉

〈I〉 ≡ 〈A〉 ∨ 〈A〉 ∨ 〈O〉 ∨ 〈O〉 ∨ 〈DBE〉 ∨ 〈DBE〉

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Figure 1: Allen’s interval relations, HS modalities, and HS3/HS7 modalities.

ϕ ::= ⊥ | p | ¬ψ | ψ ∨ ξ | ψ ∧ ξ | 〈X〉ψ | 〈X〉ψ.

In the above grammar, p ∈ AP and X ∈ {A,L,B,E,D,O}, and the other
propositional connectives and constants (e.g.,→, and >), as well as the dual
modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the standard way. In
general, given any subset S ⊆ {X,X : X ∈ {A,L,B,E,D,O}}, one can
define the relation

RS =
⋃
X∈S

RX ∪
⋃
X∈S

RX .

The corresponding modal operator can be denoted by simply juxtaposing the
original symbols to obtain a string: for example, the modal operator that is
the disjunction of Allen’s relations overlaps and during would be denoted by
〈OD〉. In some cases, such as the relation intersect, we introduce a shorthand
for the sake of readability, so that I = AABBEEOODD. Well-formed HS3

formulæ can be obtained by the above grammar with X ∈ {L, I}, while HS7
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formulæ are defined under the restriction that X ∈ {L,AO,DBE}1.

2.2. Semantics

The semantics of HS and both HS3 and HS7 is given in terms of interval
models M = 〈I(D), V 〉, where D is a linear order, I(D) is the set of all (strict)
intervals over D, and V is a valuation function V : AP 7→ 2I(D), which assigns
to each atomic proposition p ∈ AP the set of intervals V (p) on which p holds.
The truth of a formula ϕ on a given interval [x, y] in an interval model M is
defined by structural induction on formulæ as follows:

• M, [x, y]  p if [x, y] ∈ V (p), for p ∈ AP ;
• M, [x, y]  ¬ψ if M, [x, y] 6 ψ;
• M, [x, y]  ψ ∨ ξ if M, [x, y]  ψ or M, [x, y]  ξ;
• M, [x, y]  ψ ∧ ξ if M, [x, y]  ψ and M, [x, y]  ξ;
• M, [x, y]  〈X〉ψ if there is [z, t] with [x, y]RX [z, t] and M, [z, t]  ψ;
• M, [x, y]  〈X〉ψ if there is [z, t] with [x, y]RX [z, t] and M, [z, t]  ψ.

Figure 1 describes the semantics of HS7 and HS3 operators in terms of that
of HS operators. Notice that a distinguishing characteristics HS, inherited
by the fragments considered in this paper, is the fact that the truth of a
propositional letter over a given interval has no influence on the truth of
the same propositional letter on the intervals contained in it, nor its points.
Alternative choices include the locality principle, that implies assigning the
same truth value to a propositional letter over an interval as over its starting
points (see [Mos83] for the introduction of locality in ITLs, and more recent
work, such as [MMM+16], for an example of a renewed interest in constrain-
ing principles). This and other, similar, model-theoretic constraints have
been shown useful in several applications and help reduce the complexity
of problems such as satisfiability or model-checking, but here we follow the
most general approach, in which undecidability is the rule and decidability
the exception. It is worth observing that both HS3 and HS7 are expressive
enough to simulate the universal operator, and this depends essentially on
their modalities being jointly exhaustive; for HS3 we have:

1This notation should not be confused with the standard notation for fragments of
HS, indicated by the set of its modal operators, e.g., ABBA, which includes four modal
relations, namely, 〈A〉, 〈A〉, 〈B〉, and 〈B〉.
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[G]ϕ = ϕ ∧
∧

X∈{L,I}

([X]ϕ ∧ [X]ϕ),

while for HS7:

[G]ϕ = ϕ ∧
∧

X∈{L,AO,DBE}

([X]ϕ ∧ [X]ϕ).

Formulæ of HS, and therefore of HS3 and HS7, can be interpreted over
several different classes of interval models. Their frame properties sometimes
influence the computational complexity of the satisfiability problem, as wit-
nessed by the recent series of results [BMM+14, AMG+16]. Notable classes
of linear orders include Lin, that is, the class of all linear orders, the class Fin
of all finite linear orders, and the classes that are built over N,Z,Q,R. As
far as the class of all dense linear orders is concerned, a simple application
of both the downward Löwenheim-Skolem’s Theorem and Cantor’s Theorem
proves that the decidability of a fragment of HS over Q implies the decid-
ability of the same fragment on a generic dense linear order. We generically
use the expression the finite/discrete case for the cases that include Fin, N,
and Z, but also the class Dis of all discrete linear orders. Beside notable ex-
ceptions such as the fragment ABBA of HS, fragments of HS tend to behave
in a similar way in all finite/discrete cases.

3. Coarser Interval Relations at Work

In this section we discuss two working examples of temporal reasoning in
coarser interval temporal logics.

3.1. An example as a specification language

This example is inspired by Divvy, the City of Chicago’s bike sharing
system. The system consists of a fleet of bikes that are locked into a network
of docking stations located throughout the city. Bikes can be rented from
and returned to any station in the city, creating a network of trips with many
possible combinations of starting and ending points. Anonymous trip data
are stored in a temporal database and openly available through the Divvy
Data Challenge program. The database consists of two tables (see Table 1):
Trips, that stores the data on the user rentals, and Maintenance, that stores
the data on the repairs and other maintenance activities of the bikes. We
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Trips

trip id starttime stoptime bikeid from st id to st id
4118 2013-06-27 12:11 2013-06-27 12:16 316 85 28
4275 2013-06-27 14:44 2013-06-27 14:45 64 32 32
4291 2013-06-27 14:58 2013-06-27 15:05 433 32 19
4316 2013-06-27 15:06 2013-06-27 15:09 123 19 19
4342 2013-06-27 15:13 2013-06-27 15:27 852 19 55
4480 2013-06-27 19:40 2013-06-27 22:28 27 340 46

Maintenance

repair id starttime stoptime bikeid from st id to st id
5327 2013-06-28 09:05 2013-06-28 10:15 594 27 1
5335 2013-06-28 09:14 2013-06-28 10:41 227 26 1
5346 2013-06-28 09:26 2013-06-28 14:25 118 74 1
5353 2013-06-28 09:35 2013-06-28 09:50 226 24 1

Table 1: Bike sharing system database.

assume that repairs and maintenance always take place at a special station
with identifier 1. Since this is naturally temporal information, tables are
equipped, among other attributes, with a starttime and a stoptime for each
tuple; the interval identified by the two endpoints can be interpreted as the
valid time of the tuple (see, e.g. [CT98]). Interval temporal logics can be used
to reason on the database in at least two different ways: as query languages
to extract information from a current instance of the data and as specification
languages to express functional dependencies, integrity constraints and other
requirements that must be met by every instance of the data; in this example,
we follow the latter approach and use HS3 as a specification language. Once
the requirements are defined and formalized by the domain experts, one of
the first problems that one must solve is the consistency problem, namely,
the problem of checking whether they can be met by an actual instance
of the database or not. In its most general formalization, the consistency
problem can be solved by checking whether the set of formulæ representing
the requirements is satisfiable.

Formulæ expressing the requirements will be built from the following
propositional letters: trip (i, j, k) to represent that the bike i performed a
trip from station j to station k, and repair (i, j, k) to represent that bike i
was collected at station j and brought to station k to be repaired. Although
HS3 is not nearly as expressive as full HS, some very natural requirements can
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be written in this language. To start with, we can enforce on the Trip table
that at any time instant a given bike can belong to at most one trip. More
formally, for every bike identifier i, no pairs of intervals satisfying trip (i, j, k)
and trip (i, l,m) can share any point (in particular, a trip cannot start at the
same time when the previous trip ended):∧

i,j,k

[G](trip (i, j, k)→
∧

(j,k)6=(l,m)

¬trip (i, l,m)),

Similarly, we can ensure that two repairs for the same bike do not overlap:∧
i,j,k

[G](repair (i, j, k)→
∧

(j,k)6=(l,m)

¬repair (i, l,m)).

Here and below, whenever necessary, we use trip (i) as syntactic sugar for∨
j,k trip (i, j, k), and repair (i) as syntactic sugar for

∨
j,k repair (i, j, k):∧

i

[G](repair (i)→ (¬〈I〉repair (i))).

During maintenance a bike cannot do any trip (and vice-versa):∧
i

[G](repair (i)→ (¬trip (i) ∧ ¬〈I〉trip (i))),

∧
i

[G](trip (i)→ (¬repair (i) ∧ ¬〈I〉repair (i))).

Then, we guarantee that a repair finishes in station 1 and starts from a
station different from 1:∧

i,j

[G](¬repair (i, 1, j) ∧
∧
k 6=1

¬repair (i, j, k)).

Finally, we guarantee that maintenance is performed regularly:∧
i

[G]〈L〉repair (i).

The above formalization is arguably simple and intuitive. While it may
seem that a similar, maybe less immediate, formalization could be carried
out in some point-based temporal logic such as LTL, it is easy to extend our
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model to include pure interval-based properties. Indeed, it is not uncommon
that systems such as the above one are paired up with meteorological in-
formation, for statistical or knowledge extraction purposes. Moreover, such
meteorological information can be enriched with data concerning the pol-
lution levels, and, in particular, with anti-pollution measures taken by the
city councils. Now, suppose that in order to promote the use of bike sharing
systems over private cars it is decided that rates for those trips that occur
during intervals of time in which anti-pollution measures are active must be
discounted. In order to make the service more appealing, it is decided that
such discounts apply to all trips that overlap in any way an interval of time
in which anti-pollution measures are active. Assuming that anti pollution
labels all intervals in which some measure is active, and that discount (i), as
a shortcut for

∨
j,k discount (i, j, k), labels all and only those trips that will

be eligible for a discount, we can state:∧
i

[G]((trip (i) ∧ 〈I〉anti pollution )→ discount (i)).

3.2. An example in natural language processing

Natural language processing is a well-established branch of Artificial Intel-
ligence, and it is well-known that the structure of natural language can be, at
least partly, described with interval temporal logic constructs [PH05, All15].
Recently, the rise of automatic personal assistants (e.g., chatbots) has given
a new meaning to natural language processing, and tools for this task are
being studied and developed. One of the major challenges in the automatic
processing of a text is context retrieval [Bae04], and, as a consequence, con-
text description. A context can be seen as an interval during a conversation
in which a particular topic is being discussed. Because of its nature, a con-
text cannot be forced to be an uninterrupted sequence of instants in which
that particular topic is being discussed; therefore, intervals are labeled with
propositional letters that represent contexts without using any projection
principles such as locality or homogeneity (see Section 2). Moreover, in a
conversation the contexts may overlap each other, and more generally, they
may be in any Allen’s relation with each other.

In this example, a certain company is designing a natural language pro-
cessing tool to analyze conversations between agents and clients. The agents
contact the clients with the aim of selling a certain product, and the com-
pany has specific requirements concerning the ordering and structure of the
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conversation, which can be described as requirements on the various contexts
that arise during a conversation. They impose that some essential contexts,
such as the price of the product (denoted by price ), its known advantages
(advantages ) over other products, and its possible minor defects (defects )
must arise during the conversation:

〈L〉price ∧ 〈L〉advantages ∧ 〈L〉defects .

The company also wants that the disadvantages of the product are never dis-
cussed together with the price, in order to keep these two concepts separated
during the conversation:

[G](price → ¬〈I〉defects ).

In order to stress the positive message, the company also requires that the
advantages are mentioned, separately, before and after mentioning the defects
of the product:

[G](defects → (〈L〉advantages ∧ 〈L〉advantages )).

Finally, the company wants that the price is never mentioned without recall-
ing the advantages of the product:

[G](price → 〈I〉advantages ).

4. HS3 is PSpace-Complete

In this section, we first prove that the satisfiability problem for HS3 is
PSpace-hard, regardless of the class of linearly ordered sets on which inter-
preted, and, then, that it is also in PSpace when it is interpreted in the class
of all finite linear orders or in N/Z. As usual, the constructions and the un-
derlying ideas in the finite case are emblematic for the entire range of classes
of discrete structures; therefore, for the finite case we give a small model
theorem in detail, a PSpace, non-deterministic, algorithm, and a possible
deterministic implementation in the form of a tableau, while for the case of
N we simply outline a small periodic model theorem. The cases of Z and
the class of all discrete linear orders Dis can be considered simple (albeit
technically not trivial) generalizations of the case of N.

11



4.1. Compass structure interpretation

Given a linear order D one can alternatively think of an HS model as a
compass structure G = (D,L), where strict intervals [x, y] are seen as points
(x, y) in the half-plane D × D identified by the constraint x < y, L is an
extended labeling L : D × D → 2Cl(ϕ), Cl(ϕ) is the set of all sub-formulæ
of a given formula ϕ, and L(x, y) denotes the subset of Cl(ϕ) of precisely
those formulæ that are true at the interval [x, y] (including propositional
letters). Modal operators are then immediately interpreted in a geometric
way (e.g., the modality 〈B〉, 〈B〉 correspond to moving on a vertical line in
the plane, while 〈E〉, 〈E〉 correspond to moving on a horizontal line). Such
an interpretation, that works nicely also for its fragments of HS3 and HS7,
was introduced in [Ven90], and it has been used, among others, in [MPSS10,
MR99], as an advanced tool for undecidability proofs.

4.2. Hardness

A Quantified Boolean (QB) formula is an expression of the form

θ = Q1p1 . . . Qnpnf,

where f is a formula of propositional logic and, for all 1 ≤ i ≤ n, Qi is either
∀ or ∃. When every variable in a formula f is quantified, f is said the be a
closed formula, and the truth problem for a closed QB formula is known to be
PSpace-hard [SM73]. In the following, we provide a (LogSpace) reduction
from the truth problem for closed QB formulæ to the satisfiability problem
for HS3. Let P∀ (respectively, P∃) be the set of the indexes of the universally
(respectively, existentially) quantified variables in θ. The strategy of our
reduction is as follows. We want to encode a tree-like structure onto the linear
ordering that underlies the model, without committing to any particular
property of the ordering itself. Such a tree represents the QB formula θ in
a very natural way: at each level i > 1, pi−1 occurs at least once if the i-
th quantifier is existential (and it occurs either positive or negative), and at
least twice if the i-th quantifier is universal (and it occurs both positively and
negatively). So, for example, if f is a propositional formula where p1 occurs,
then the quantified formula ∀p1f is encoded in a binary tree with empty root
and two children: one with p1 and the other one with ¬p1. For a tree of
height n (which corresponds to the encoding of a quantified formula with n
propositions), we use n + 1 propositional letters h1, . . . , hn+1 to encode the
levels of the (at most binary) tree. The idea of the construction is exemplified
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(x, y)

h5, p4

h4,¬p3
h3, p2

h5,¬p4
h4, p3

h2,¬p1
h1

h5, p4

h4,¬p3
h3,¬p2
h4, p3

h2, p1

h5,¬p4

∅

¬p1 p1

¬p1, p2 p1,¬p2

¬p1, p2,¬p3 ¬p1, p2, p3 p1,¬p2,¬p3 p1,¬p2, p3

¬p1, p2,
¬p3, p4

¬p1, p2,
p3,¬p4

p1,¬p2,
¬p3, p4

p1,¬p2,
p3,¬p4

p1/0 p1/1

p2/1 p2/0

p3/0 p3/1 p3/0 p3/1

p4/1 p4/0 p4/1 p4/0

Figure 2: A tree-model for θ = ∀p1∃p2∀p3∃p4((p1∨p2)∧(¬p1∨¬p2)∧(p3∨p4)∧(¬p3∨¬p4))
(right-hand side) and its embedding into a compass structure (left-hand side).

in Figure 2, in which the colors are consistent with the intervals in which each
letter hi is true.

Let ϕstart be the following formula:

ϕstart = h1 ∧
∧

1≤i≤n+1

[G](hi → ¬
∨

i<j≤n+1

hj)) (1)

∧
∧

1≤i≤n+1

[G](hi →
∨

i<j≤n+1

¬〈I〉hj). (2)

It is easy to see that, if M, [x, y]  ϕstart, then: (i) M, [x, y]  h1; (ii) if an
interval [z, t] satisfies hi, then it does not satisfy any other hj with j 6= i, and
(iii) for every interval [z, t], then there is no interval [z′, t′] that intersects
[z, t] and satisfies any other hj with j 6= i.

By interpreting the h intervals as nodes of the tree, we know, thanks
to ϕstart, that the root of the tree (h1) exists. The idea is to encode f
quantifier-by-quantifier, so that at each level we need to take care of the spe-
cific quantifier. The interval labeled by h1 does not carry any propositional
letter of f , and the truth values of p1, . . . , pn are encoded in hi-intervals with
2 < i ≤ n+1. In the following, we say that [z′, t′] is a descendant of a given hi-
interval [z, t] if one of two conditions apply: (i) either t < z′ < t′ < s for each
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hj-interval [s, s′] and each j ≤ i (right descendant), or (ii) s < z′ < t′ < z
for each hj-interval [s′, s] and each j ≤ i (left descendant). Now, let ϕquant
be the following formula:

ϕquant = [G]
∧
i∈P∀

(hi → 〈I〉(
∧

1≤j<i

[I]¬hj ∧ 〈I〉(hi+1 ∧ pi))) (3)

∧ [G]
∧
i∈P∀

(hi → 〈I〉(
∧

1≤j<i

[I]¬hj ∧ 〈I〉(hi+1 ∧ ¬pi))) (4)

∧ [G]
∧
i∈P∃

(hi → 〈I〉(
∧

1≤j<i

[I]¬hj ∧ 〈I〉hi+1)). (5)

Lemma 1. Let M, [x, y]  ϕstart ∧ ϕquant.
(i) If M, [z, t]  hi and the i-th quantifier of f is universal, then there exist

distinct descendants [z′, t′] and [z′′, t′′], such that M, [z′, t′]  hi+1 ∧ pi
and M, [z′′, t′′]  hi+1 ∧ ¬pi;

(ii) If M, [z, t]  hi and the i-th quantifier of f is existential, then there
exists a descendant [z′, t′] such that M, [z′, t′]  hi+1 ∧ pi or M, [z′, t′] 
hi+1 ∧ ¬pi.

Proof Suppose that M, [x, y]  ϕstart ∧ ϕquant, that M, [z, t]  hi, and that
the i-th quantifier of f is universal. Then, (3) applies to [z, t], and, therefore,
there must be an [z′, t′] such that M, [z′, t′]  hi+1∧pi. At the same time, (4)
applies, so that there must also be an [z′′, t′] such that M, [z′′, t′′]  hi+1∧¬pi;
clearly, [z′, t′] 6= [z′′, t′′]. Consider now the relative position of [z′, t′] with
respect to any other hj-interval. First, notice that [z′, t′] can neither coincide
nor intersect [z, t], thanks to ϕstart. Therefore, either z′ > t or t′ < z; let
us assume the latter, without loss of generality. Let now be [s′, s] the hj-
interval, with j = i − 1 (if there are no such interval, then the position of
[z′, t′] is trivially correct) such that s < z, for each s < s′′ < z, no interval
of the type [s′′′, s′′] is a hj-interval (in other words, [s′, s] can be regarded to
as the immediate hj-predecessor of [z, t]; such an intuitive notion, however,
is imprecise over dense models). By ϕstart, we know that [z′, t′] can neither
coincide nor intersect [s′, s]. Towards a contradiction, suppose that t < s′,
and that no interval [u, u′] with s < u < u′ < z is a hi+1-interval. Then,
(3) and (4) are both not satisfied; indeed, in this situation, every interval
that intersects both [z, t] and [z′, t′] (and, so, every candidate to satisfy (3)
or (4)) intersects also [s′, s], which is a contradiction. Therefore, it must be
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the case that s < z′ < t′ < z, which is to say that [z′, t′] is a descendant of
[z, t]. Since the same argument can be applied to [z′′, t′′], (i) follows. As for
(ii), one simply replicates the same argument as above, using (5), but only
once. 2

Finally, we need to make sure that once a decision over the truth value
of a given pi is taken, it is always respected. This means that the truth
value of pi on a given node in the tree must be copied over every node in
its own subtree. Since the tree is encoded in a linear ordering, there must
be a way to distinguish the right subtree of a node from the left one; this is
not guaranteed from the encoding so far (i.e., point (i) of the above lemma
may be satisfied by two intervals on the same side with respect to the current
node); it is, however, a consequence of the remaining part of the construction,
where ϕcasc is the following formula:

ϕcasc = [G]
∧

2≤i≤n

((hi ∧ pi−1)→ [I](
∧

1≤j≤i−1

[I]¬hj → [I]pi−1)) (6)

∧ [G]
∧

2≤i≤n

((hi ∧ ¬pi−1)→ [I](
∧

1≤j≤i−1

[I]¬hj → [I]¬pi−1)). (7)

Lemma 2. Let M, [x, y]  ϕstart ∧ ϕquant ∧ ϕcasc, and let M, [z, t]  hi for
some 2 ≤ i ≤ n+ 1.

(i) If M, [z, t]  pi−1, then each descendant of [z, t] is labeled by pi−1;
(ii) If M, [z, t]  ¬pi−1, then each descendant of [z, t] is labeled by ¬pi−1.

Proof If M, [x, y]  ϕstart ∧ ϕquant ∧ ϕcasc, M, [z, t]  hi, and M, [z, t]  pi,
then (6) applies. It is immediate to see that its consequent captures precisely
the two maximal intervals2 (one to the left and one to the right) such that
each h-type interval that intersect either of them is a descendant of [z, t] (or
it is [z, t] itself). Since these intervals are precisely where pi is forced to hold,
(i) is proved. The argument for (ii) is identical. 2

Observe now that Lemma 1 and Lemma 2, combined, force any hi-interval
that correspond to an universal quantifier to have both a left and a right

2Over dense linear orders such intervals may not belong to the model, but the argument
still holds.
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descendants, one with pi and the other with ¬pi, as we wanted. Let us now
set

ϕθ = [G](hn+1 → f) ∧ ϕstart ∧ ϕquant ∧ ϕcasc.

Lemma 3. Let θ = Q1p1 . . . Qnpnf be a closed quantified Boolean formula.
Then θ is true if and only if ϕθ is satisfiable.

Proof Suppose first that θ is true; we want to prove that ϕθ is satisfiable
on a finite model. Let us proceed by induction on the number of variables
of θ making sure that, at each step, the construction remains finite. As base
case, suppose that θ has only one proposition, that is, θ = Q1p1f , and f is
a propositional formula in which only p1 occurs. If Q1 is universal, then f
is satisfied no matter the value of p1; we can easily build a model M over
the domain D = {0 < 1 < 2 < 3 < 4 < 5}, where V (p1) = V (h2) =
{[0, 1], [4, 5]} and V (h1) = {[2, 3]}, and it is immediate to see that M, [2, 3] 
ϕQ1p1f . The case in which Q1 is existential can be treated in a similar way.
As far as the inductive step is concerned, assume that Q1p1Q2p2 . . . Qnpnf
is satisfiable. By the inductive hypothesis, we know for every quantified
formula with n − 1 propositional variables, the corresponding HS3 formula
is satisfiable. Let us assume that Q1 is universal. This means that the
two formulæ Q2p2 . . . Qnpnf [p1/0] and Q2p2 . . . Qnpnf [p1/1] are satisfiable as
well, and, since they have both n − 1 propositional variables, the inductive
hypothesis applies. Let M1 and M2 be their respective models with finite
domains D1 and D2. (Notice that we are assuming that M1,M2 are models
over the letters h2, . . . , hn+1, p2, . . . , pn). Now, let M ′

1 (respectively, M ′
2) be

the model obtained from M1 (respectively, M2) by simply making p1 true
(respectively, false) everywhere in the model. We now build a model M based
on the domain D1 ∪ {0 < 1} ∪ D2, where we assume that 0, 1 are new two
fresh points and that 0 is greater than every point of D1 and, respectively, 1
is smaller than every point of D2. The valuation of M can be built as follows:
(i) V (h1) = {[0, 1]}; (ii) V (p) = V ′1(p) for each interval that belongs to M ′

1

and each propositional variable; (iii) V (p) = V ′2(p) for each interval that
belongs to M ′

2 and each propositional variable; (iv) for each [x, y] 6= [0, 1]
such that x ∈ D1 ∪ {0, 1} and that y ∈ D2 ∪ {0, 1}, [x, y] /∈ V (hi) for any
1 ≤ i ≤ n. It can be checked now that M, [0, 1]  ϕQ1p1Q2p2...Qnpnf as we
wanted. The case in which Q1 is existential can be treated in a similar way.

Let us focus on the converse direction, and let us assume that ϕθ is
satisfiable; we want to prove that θ is true. Let us proceed, as before, by
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induction on the number of propositional variables of θ. As base case, let
θ = Q1p1f , and let M be a linear model such that M, [x, y]  ϕQ1p1f ; assume
that Q1 is universal. By, ϕstart, Lemma 1, and Lemma 2, we know that
M, [x, y]  h1, that there exist two descendants [x′, y′] and [x′′, y′′] such that
either y′ < x and x′′ > y, or x′ > y and y′′ < x, and that one of the following
two cases hold: either M, [x′, y′]  h2 ∧ p1 ∧ f and M, [x′′, y′′]  h2 ∧¬p1 ∧ f ,
or M, [x′, y′]  h2 ∧ ¬p1 ∧ f and M, [x′′, y′′]  h2 ∧ p1 ∧ f . Either way,
f is satisfied no matter the value of p1, so that Q1p1f is true. The case
in which Q1 is existential can be treated in a similar way. As far as the
inductive case is concerned, assume that θ = Q1p1Q2p2 . . . Qnpnf and that
Q1 is universal. Since ϕθ is satisfiable by the hypothesis, for some linear
model M and some interval [x, y], we have that M, [x, y]  ϕθ. Let D be the
linear ordering on which M is based. By ϕstart, M, [x, y]  h1. Let D1 ⊂ D
be set of points such that for each interval [x′, y′] such that x′, y′ ∈ D1, [x′, y′]
is a left descendant of [x, y], and let D2 ⊂ D be set of points such that for
each interval [x′′, y′′] such that x′′, y′′ ∈ D1, [x′′, y′′] is a right descendant of
[x, y]. By combining Lemmas 1 and 2 we know that D1,D2 are not empty,
and that either M, [x′, y′]  p1 and M, [x′′, y′′]  ¬p1 for each [x′, y′] ∈ I(D1)
and each [x′′, y′′] ∈ I(D2), or M, [x′, y′]  ¬p1 and M, [x′′, y′′]  p1 for each
[x′, y′] ∈ I(D1) and each [x′′, y′′] ∈ I(D2). Notice that D1 (respectively, D2)
can be seen as the underlying linear order of a model M1 (respectively, M2)
for the propositional letters h2, . . . , hn+1, p2, . . . , pn. We also know that either
M1, [x

′, y′]  ϕQ2p2...Qnpnf [p1/0] for some [x′, y′] ∈ I(D1) and that M1, [x
′′, y′′] 

ϕQ2p2...Qnpnf [p1/1] for some [x′′, y′′] ∈ I(D2), or M1, [x
′, y′]  ϕQ2p2...Qnpnf [p1/1]

for some [x′, y′] ∈ I(D1) and that M1, [x
′′, y′′]  ϕQ2p2...Qnpnf [p1/0] for some

[x′′, y′′] ∈ I(D2). Thus, by inductive hypothesis, Q1p1Q2p2 . . . Qnpnf is true.
The case in which Q1 is existential can be treated in a similar way. 2

Theorem 1. The satisfiability problem for HS3 interpreted over any class of
linear orders is PSpace-hard.

Proof Since Lemma 3 proves that the satisfiability problem for QB formulæ
can be reduced in LogSpace to the satisfiability problem for HS3, the result
is immediate. 2

4.3. PSpace membership: the finite case

Now, we prove that the satisfiability problem for HS3 is decidable in
PSpace in the particular case of finite linear orders.
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We start by proving the small model property for HS3 interpreted over
finite models, which is key to showing decidability (and complexity) of the
satisfiability problem. This is taken care by Lemma 4 below; given its im-
portance, it is convenient to understand the driving concepts before getting
into the technical details. In the finite case, every satisfiable formula has a
finite model; we compute a bound for the size of such model, and we prove
that every model exceeding the bound can be reduced to a smaller model
that satisfies the same formula. To this end, we provide a description of
each row of the compass structure that represents a model; such a (finite)
description is carefully designed to achieve two goals: first, there must be a
finite number of different descriptions, and, second, when two rows with the
same description occur, the portion of the model above each of them must
be (essentially) the same. So, the number of different descriptions will be
our computed bound, and we shall refer to a model G (bigger than such a
bound) and its contracted version G ′, where the portion of the model that
exists between two rows with the same description is eliminated. The initial
part of the proof is devoted to defining the description of a row; the sec-
ond part to the definition of contracted model; and the last two parts of the
proof to showing that in the resulting structure every universal formula is
respected and every existential formula is eventually satisfied. Observe that
each formula ϕ is equi-satisfiable with

ϕ′ = ϕ ∨ 〈I〉ϕ ∨ 〈L〉ϕ.
Indeed, it is easy to see there exists a compass structure G = (D,L) for
ϕ if and only if there exists a compass structure G ′ = (D,L′) for ϕ′ with
ϕ′ ∈ L(0, 1); this notion is also called initial satisfiability. Then, without loss
of generality, we focus on initial satisfiability only, that is, we search only for
models whose domain is of the type {0, 1, 2, . . .}, where [0, 1] is the initial
interval.

Lemma 4. Let ϕ be a finitely satisfiable HS3 formula. Then it is satisfied
on a model M with D of cardinality 2O(|ϕ|3).

Proof Let G = (D,L) be a compass structure that (initially) satisfies the
formula ϕ. We prove that if the size of D exceeds the bound, then there exists
a compass structure G ′ = (D′,L′) for ϕ with |D′| < |D|. The contraction
method obtained in this way can be iterated in order to obtain a model
whose cardinality does not exceed the given bound.
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Definitions. Given G = (D,L) that satisfies ϕ, for a point (x, y) we
can define the set of its requests as the subset of Cl(ϕ) that holds on the
interval [x, y]. Intuitively, a request is a temporal formula to be satisfied
somewhere; it may be existential, and therefore must be witnessed by some
interval, or universal, and therefore it influences only the labels of the already
existing intervals. A set of requests behaves differently depending on the
modal operators that are involved in it. We choose to consider the requests
of the type 〈I〉, 〈L〉 together, and separate them from the requests of the
type 〈L〉, as follows: we define the set RIL(x, y) as the subset of L(x, y)
that contains only formulas of the type 〈I〉ψ, [I]ψ, 〈L〉ψ, or [L]ψ, and the
set RL(x, y) as the subset of L(x, y) that contains only formulas of the type
〈L〉ψ, [L]ψ. By exploiting the properties of our modal operators we can
represent the requests in a more convenient way. Indeed, observe that given
two intervals [x, y] and [x′, y] with x > x′, every existential request 〈I〉ξ on
[x′, y] is also on [x, y], and every universal request [I]ξ on [x′, y] is also on
[x, y]; moreover, every existential request 〈L〉ξ on [x, y] is also on [x′, y] and
every universal request [L]ξ on [x′, y] is also on [x, y]. These two properties
together allow us to define the set of requests of a row y in G, as follows:

RIL(y) = {RIL(x, y) : 0 ≤ x < y}.

Then, we can represent it as a sequence (which we call a chain) R1, R2, . . . ,
R|RIL(y)|, because there is an implicit (set-containment) ordering among its
elements. In a similar way, for every 0 ≤ x, x′ ≤ y, we have RL(x, y) =
RL(x′, y) and, thus, on a row y, we can define:

RL(y) = RL(x, y), for any 0 ≤ x < y.

(The asymmetry between types of requests is due to the inherent asymmetry
of compass structures.) Now, observe that |RIL(x, y)|, |RL(x, y)| ≤ |ϕ| for
every interval [x, y]. This immediately implies that |RL(y)| ≤ |ϕ|, but also
that |RIL(y)| ≤ |ϕ|. To see this, recall that every element R of a chain
RIL(y) can be ideally separated into four components, namely the existential
and the universal requests of type 〈I〉 and 〈L〉: the regularity property that
we have observed above effectively limits the maximal cardinality of each
component, and therefore also the cardinality of different Rs that may occur
on a single row. As a consequence, the number of possible different chains
RIL(y) is bounded by |ϕ|! ≤ |ϕ||ϕ| = 2|ϕ| log(|ϕ|). Now, if 0 is the first point
of the model, then a chain RIL(y) contains sets of requests for the intervals
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[0, y], [1, y], . . ., and so on; since, as we have already observed, the requests in
(the components of the) successive Rs grow monotonically bigger or smaller,
there will be a subset of points 0, . . . ,m ≤ y in which all sets of requests are
identical, and they change at the interval [m + 1, y]: this structure repeats
itself along the chain, so that we can count, for each set of request that
occurs in it, the number of consecutive points in which it appears. Now let
S : I(D)→ 2Cl(ϕ) be a function such that

S(x, y) = {ψ ∈ Cl(ϕ) : there are x′, y′such that 0 ≤ x′ ≤ x < y ≤ y′

and ψ ∈ L(x′, y′)}.

Intuitively, S associates to each point (x, y) all the formulæ (in the closure
of ϕ) that occur in the maximum rectangle that has (x, y) as it lower right
corner (this notion is well defined as G is a finite compass structure and it is
geometrically interpreted); we call S(x, y) the rectangle of (x, y). If we fix a
row y, then it is easy to prove that the sets S(x, y) enjoy similar regularity
properties as the sets of requests, so that S(0, y) ⊆ S(1, y) ⊆ . . . ⊆ S(y−1, y).
As before, this allows us to effectively bound the cardinality of any such set; in
fact, we have |S(x, y)| ≤ 2·|ϕ|. Therefore, we can represent these components
on a row y as we did for the requests; if Ψ(y) = {S(x, y) : 0 ≤ x < y} is
the chain of sets S(x, y) on the row y, then |Ψ(y)| ≤ 2 · |ϕ| (observe that
the sets S(x, y) do not need to be consistent, so that it can contain both
a formula and its negation). Each element of a chain Ψ(y) can be chosen
among 22·|ϕ|, so that the number of possible different chains Ψ(y) is bounded
by 22·|ϕ| · 22·|ϕ|−1 · . . . · 1, which, in turn, can be bounded by 2|ϕ|

2
. Let us

associate to a single row y a function

count(y) : RIL(y)×Ψ(y)→ {1, . . . , 4 · |ϕ|+ 1},

such that, for each R ∈ RIL(y) and every L ∈ Ψ(y), we have that

count(y)(R,L) = min{4 · |ϕ|+ 1, |{x : RIL(x, y) = R and S(x, y) = L}|}.

Observe that, for a row y, a chain RIL(y), and a chain Ψ(y), there can be
at most (4 · |ϕ|+ 1)|ϕ|

2
= 2|ϕ|

2 log(4·|ϕ|+1) possible count(y) functions; this can
be justified by observing that a given chain can be associated to a different
function depending on how many times a given set of requests and how many
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times a given rectangle occur at a given position. At this point, for each y
we define

row(y) = (RL(y),RIL(y), count(y),Ψ(y)).

This can be regarded as a complete description of the row y of the compass
structure (limited to the information that we need to perform the contrac-
tion). Taking into account the number of different component of each row(y),
the number of the possible values for row(y) is bounded by

|ϕ|·2|ϕ|·log(|ϕ|) ·2|ϕ|2·log(4·|ϕ|+1) ·2|ϕ|2 = |ϕ|·2|ϕ|·(|ϕ|·log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|) = 2O(|ϕ|3),

as we wanted.

Contraction. If |D| exceeds the above bound, then, by a simple combina-
torial argument, there must exist two rows y1 < y2 with row(y1) = row(y2).
Indeed, let us analyze the component of the above bound: |ϕ| takes into
account the number of different RL(y) (in order for the contraction to work
on the diagonal), 2|ϕ| log(|ϕ|) counts the number of possible different chains
of requests (so that we make sure to have two rows with the same chain),
2|ϕ|

2 log(4·|ϕ|+1) counts the number of possible different functions count(y) for
the given row (so that we make sure that we have two row with the same
chain and the same count), and 2|ϕ|

2
is the number of possible chains Ψ(y)

(to make sure that the rectangles identified by y1 and y2 is the same). In
order to prove that we can safely contract the model between y1 and y2,
let us focus our attention on the set Rec(y2) in G that contains all and
only such points (z, t) where z ≤ y and t > y. For each ψ ∈ Cl(ϕ), if
ψ ∈ L(z, t) and (z, t) ∈ Rec(y), then we can identify four points (z∗, t∗) with
∗ ∈ {right, left, up, down} and ψ ∈ L(z∗, t∗) as follows: for every (z′, t′), if
ψ ∈ L(z′, t′) then zleft ≤ z′ ≤ zright and tdown ≤ t′ ≤ tup. In other words, the
points (z∗, t∗) with ∗ ∈ {right, left, up, down} are, respectively, the right-
most, leftmost, highest, and lowest occurrences of ψ in the rectangle of y.
We define the set W(y) ⊆ {0, . . . , y}, for a given y, as a minimal subset
of {0, . . . , y} such that contains all rightmost, leftmost, highest, and lowest
witnesses of ψ in y for each ψ ∈ Cl(ϕ). Thus, we can define the following
non-decreasing monotone function:

g : {0, . . . , y1} → {0, . . . , y2}.
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In the above definition we have that (i) for every x ∈ {0, . . . , y1}, we have
RIL(x, y1) = RIL(g(x), y2), (ii) for every x ∈ {0, . . . , y1}, we have S(x, y1) =
S(g(x), y2), (iii) Wy2 ⊆ Img(g), and y2 − 1 ∈ Img(g), where Img(g) is the
image of g. Let ∆ = y2 − y1; we can finally build the compass structure
G ′ = (D′,L′) with |D′| = |D|−∆, where L′ is defined as follows:(i) L′(x, y) =
L(x, y) for every 0 ≤ x ≤ y ≤ y1, (ii) L′(x, y) = L(x + ∆, y + ∆) for every
y1 < x ≤ y ≤ |D′|, and (iii) L′(x, y) = L(g(x), y + ∆) for every y1 < x ≤
y1 < y ≤ |D′|. In the following, we shall denote the coordinates in G with
x, y, . . ., and those of G ′ with x′, y′, . . .. There exists a natural correspondence
between points in G and points in G ′, which depends on the particular area
of G from which a certain point is copied; such a correspondence is key to
the rest of the proof.

Consistency. Let us now prove that our new, smaller, compass structure
is consistent, that is, that every universal request is respected. Given two
points (x, y) and (z, t) in a compass structure, and given X ∈ {L,L, I}, we
say that (x, y) →X (z, t) if and only if the following holds: if (x, y)RX(z, t)
and [X]ξ ∈ L(x, y), then ξ ∈ L(z, t). In other words, (x, y) →X (z, t) if
and only if (z, t) is consistent with the universal requests of (x, y) along the
relation X. The following cases may arise for two points (x′, y′), (z′, t′) in G ′.

• If y′, t′ ≤ y′1, then both points are located in an area of G ′ (the down-
left triangle) that has been preserved after the contraction; therefore,
(x′, y′) →X (z′, t′) in G ′ for each X ∈ {L,L, I} thanks to the fact that
(x, y)→X (z, t) in G.
• If x′, z′ ≥ y′1, then both points are located in an area of G ′ (the up-right

triangle) that has been moved without changing its structure, that is,
x′ = x+ ∆ and y′ = y + ∆; therefore, (x′, y′)→X (z′, t′) in G ′ for each
X ∈ {L,L, I} thanks to the fact that (x, y)→X (z, t) in G.
• If y′ ≤ y′1 and z′ ≥ y′1, then clearly (x′, y′) belongs to the down-left

triangle and two sub-cases arise: y′ < z′, or y′ = y′1 = z′. In the first
case, (x′, y′)RL(z′, t′) in G ′; this means that (x, y)RL(z + ∆, t + ∆),
and, since (x, y) →L (z + ∆, t + ∆) in G, we immediately obtain
that (x′, y′) →L (z′, t′) in G ′. In the second case, (x′, y′)RA(z′, t′),
that is, (x′, y′)RI(z

′, t′). By construction, L′(x′, y′1) = L(g(x), y2) and
L′(y′1, t′) = L(g(y1), t′+∆). Observe that (g(x), y2)RI(x̄, ȳ) in G for ev-
ery (x̄, ȳ) 6= (g(x), y2) with ȳ ≥ y2 and x̄ ≤ y2; therefore, in G, we have
that g(y1) ≤ y2 and t′ + ∆ > y2, and this implies that (g(x), y2) →I

(g(y1), t′ + ∆) in G, which, in turn, implies that (x′, y′1) →I (y′1, t
′) in
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G ′.
• The case z′ ≤ y′1 and y′ ≥ y′1 is symmetric to the above one.
• If y′ ≤ y′1 and z′ < y′1 < t′ then, as before, (x′, y′) belongs to the

down-left triangle; moreover, there exists x̄ ≤ y′1 such that L′(z′, t′) =
L(g(x̄), t′ + ∆). Again, two sub-cases arise, namely: y′ < z′ or y′ ≥ z′.
In the first case, (x′, y′)RL(z′, t′) in G ′ and, then, since g is monotonic
non-decreasing, (x, y)RL(g(x̄), t′ + ∆) in G; this means that (x, y) →L

(g(x̄), t′ + ∆) in G, which, in turn, implies that (x′, y′) →L (z′, t′) in
G ′. If, on the other hand, y′ ≥ z′, then (x′, y′)RI(z

′, t′) in G ′ and
there are two further sub-cases. If (x, y)RI(g(x̄), t′ + ∆) in G, then,
as before, (x, y) →I (g(x̄), t′ + ∆) in G implies (x′, y′) →I (z′, t′)
in G ′. If, on the other hand, (x, y)RL(g(x̄), t′ + ∆) in G, then, by
construction, (x, y)RI(x̄, y1) and L(x̄, y1) = L(g(x̄), y2). Then, since
S(x̄, y1) = S(g(x̄), y2), we have that (x, y) →I (g(x̄), ȳ) in G for every
ȳ ≥ y2; in particular (x, y)→I (g(x̄), t′+∆), and thus, (x′, y′)→I (z′t′)
in G ′.
• The case t′ ≤ y′1 and x′ < y′1 < y′ is symmetric to the one above.
• If x′ > y′1 and z′ < y′1 < t′ then, by construction, there exists x̄ ≤
y1 such that L′(z′, t′) = L(g(x̄), t′ + ∆). Once again, two sub-cases
may arise. If t′ < x′, then (x′, y′)RL(z′, t′) in G ′, which implies that
(x, y)RL(g(x̄), t′ + ∆) in G, and, since (x, y) →L (g(x̄), t′ + ∆) in G,
we have that (x′, y′) →L (z′, t′). If, on the other hand, t′ > x′, then
t′ + ∆ > x′ + ∆; so, since (x, y) →I (t′ + ∆) in G, we have that
L′(x′, y′)→I L(z′, t′).
• The case z′ > y′1 and x′ < y′1 < y′ is symmetric.
• If z′ < y′1 < t′ and x′ < y′1 < y′, then in this situation we have

(x′, y′)RI(z
′, t′), since y′1 belongs to both intervals. Then, by construc-

tion, there exist x̄, ¯̄x ≤ y1 such that L′(x′, y′) = L(g(x̄), y′ + ∆) and
L′(z′, t′) = L(g(¯̄x), t′ + ∆). Since (g(x̄), y′ + ∆)RI(g(¯̄x), t′ + ∆) in G
(where y2 is the shared point in such case), we have that (g(x̄), y′ +
∆)→I (g(¯̄x), t′ + ∆) in G, which implies that (x′, y′)→I (z′, t′) in G ′.

Fulfillingness. Finally, it remains to prove that G ′ is fulfilling, that is, that
every existential request is eventually satisfied. Given (x′, y′) ∈ I(D′), three
cases may arise, depending on where the existential request has originated:

• If y′ ≤ y′1, then as far as the requests of the type 〈L〉 in L′(x′, y′)
are concerned, since these originate and are satisfied in the down-left
triangle of the structure which has not been modified by the con-
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y1 y1 = y2

y2

G G′

Contraction

Figure 3: A picture of the contraction method. In grey, the contracted area; in red, the
down-left triangle (preserved); in yellow, the up-right triangle (moved without changes);
and, in green, the vertical segments that have been copied from G to G′.

traction, fulfilling is guaranteed. Consider now a request of the type
〈L〉ψ ∈ L′(x′, y′) = L(x, y), for which, in G, there exists (z, t) with
z > y such that ψ ∈ L(z, t); three sub-cases arise, depending on the po-
sition of (z, t) in the structure G. If t ≤ y1, then ψ ∈ L′(z′, t′) = L(z, t)
(again, everything is confined to the down-left triangle). If t > y2, then,
by construction, ψ ∈ L(z − ∆, t − ∆) (in this case, fulfilling is guar-
anteed by the fact that the up-right triangle has been moved without
changing its structure). If, finally, z ≤ y1 < t then, since g is monotone
non-decreasing, there exists x̄ such that x ≤ x̄ ≤ y1 and ψ ∈ L(g()̄, ȳ)
for some ȳ > y2 and g(x̄) is the rightmost vertical segment starting
at y2 and exhibiting ψ; thus ψ ∈ L′(x̄′, ȳ − ∆), which is in relation
RL with (x′, y′). It is important to notice that if z > y1, then we are
back to the second sub-case, as (in G) 〈L〉ψ belongs to both RL(y1)
and RL(y2), which must be equal. Now, let 〈I〉ψ ∈ L′(x′, y′); then,
in G, there exists (z, t) such that (x, y)RI(z, yt) and ψ ∈ L(z, t). Two
cases may arise, depending on the position of (z, t). If t ≤ y1, then
ψ ∈ L′(z′, t′) = L(z, t) (again, everything is confined to the down-left
triangle). If, on the other hand, t > y1, then z ≤ x < y1 < t, given that
(z, t) must intersect (x, y). Let x̄ ≤ y be the leftmost index for which a
vertical segment (starting at y1) starts that exhibits ψ: by construction,

24



g(x̄) is the index which starts the leftmost vertical segment (starting
at y2) that exhibits ψ. This means that there exists ψ ∈ L(g(x̄), ȳ) for
some ȳ > y2, and, thus, ψ ∈ L′(x̄, ȳ −∆).
• If x′ > y′1, then x′ = x −∆ and y′ = y −∆. As far as the requests of

the type 〈L〉 in L′(x′, y′) are concerned, since these are originated and
satisfied in the up-right triangle of the structure which has been move
without modifications to its structure, fulfilling is guaranteed. Consider
now a request of the type 〈L〉ψ ∈ L′(x′, y′) for which, in G, there exists
(z, y) with t < x such that ψ ∈ L(z, t); three sub-cases arise, depending
on the position of (z, t) in the structure G. If z ≥ y2, then ψ ∈ L′(z −
∆, t − ∆) (again, everything is confined to the up-right triangle). If
t ≤ y2, then either 〈L〉ψ belongs to some label L(¯̄x, y2) or ψ belongs to
some label L(¯̄x, y2); either way, ψ ∈ L′(z̄′, ȳ′) for some z̄′, ȳ′ ≤ y′1 (notice
that, since ψ occurs somewhere in the down-left triangle, it fulfills the
request originated in (x′, y′) independently from its precise position).
If, finally z < y2 < t then there exists x̄ ≤ y2 and ȳ < x such that
ψ ∈ L(x̄, ȳ) and x̄ is the vertical segment (starting at y2) that exhibits ψ
at the lowest coordinate; since g is monotone non-decreasing, and since
we may assume x̄ ∈ Img(g), there exists ¯̄x ≤ y1 such that g(¯̄x) = x̄,
and, thus, ψ ∈ L′(¯̄x′, ȳ − ∆) (in G ′). Now, let 〈I〉ψ ∈ L′(x′, y′), for
which, in G, there exists (z, t) with (x, y)RI(z, t) such that ψ ∈ L(z, t);
two sub-cases arise, depending on the position of (z, t) in the structure
G. If z ≥ y2, then ψ ∈ L′(z − ∆, t − ∆) = L(z′, t′) (one more time,
everything is confined to the up-right triangle). If, on the other hand,
z < y2, then t > x (since the intervals [x, y] and [z, t] must intersect
each other). We have that there exists x̄ ≤ y2 such that the vertical
segment that starts at y2 exhibits ψ at the highest coordinate; since
g is monotone non-decreasing, and since we may assume x̄ ∈ Img(g),
there exists ¯̄x ≤ y1 such that g(¯̄x) = x̄. Now, we know that, for some
ȳ ≥ t, ψ ∈ L(x̄, ȳ) (in G); by construction, ψ ∈ L′(¯̄x′, ȳ − ∆) (in G ′)
and (¯̄x′, ȳ −∆)RI(x−∆, y −∆), proving that the request is fulfilled.
• If x′ ≤ y′1 and y′ > y′1, then there exists x̄ ≤ y1 such that L′(x′, y′) =
L(g(x̄), y + ∆). Clearly, x̄ ≤ x, as g is monotonic non-decreasing.
Let 〈L〉ψ in L′(x′, y′)) = L(g(x̄), y + ∆). Then, since G is fulfilling
and RL(g(x̄), y2) = RL(x̄, y1), there exists (z, t) with t < y1 such that
ψ ∈ L(z, t). By construction, L(z, t) = L′(z′, t′) (since (z, t) belongs
to the down-left triangle), and, in G ′, (x′, y′)RL(z′, t′); therefore, the
request is satisfied. Let 〈L〉ψ be in L′(x′, y′) = L(g(x̄), y + ∆). Then,
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since G is fulfilling, there exists (z, t) with z > y + ∆ such that ψ ∈
L(z, t). By construction, L(z, t) = L′(z −∆, t−∆) and (x′, y′)RL(z −
∆, t − ∆), and, thus, the request is satisfied. Finally, let 〈I〉ψ be in
L′(x′, y′) = L(g(x̄), y+ ∆). Then, since G is fulfilling, there exists (z, t)
such that, in G, (g(x̄), y + ∆)RI(z, t) for which ψ ∈ L(z, t). Three
cases may arise, depending on the position of (z, t). If t ≤ y1, then
L(z, t) = L′(z′, t′) (that is, (z, t) is in the down-left triangle, preserved
by the contraction), and, since g is monotonic non-decreasing, we have
that x̄ ≤ g(x̄); therefore, (x′, y′)RI(z

′, t′), and the request is satisfied.
If z > y2 (that is, (z, t) is in the up-right triangle) then L(z′, t′) =
L′(z − ∆, t − ∆), and, since (x′, y′)RI(z − ∆, t − ∆), the request is
satisfied. If, on the other hand, z ≤ y2 < y and none of the previous
case applies, then, by construction, there exist x̄ ≤ y1 such that ψ ∈
L(g(x̄), ȳ) for some ȳ > y2 and, since L(g(x̄), ȳ) = L′(x̄′, ȳ − ∆) and
(x′, y′)RI(x̄

′, ȳ −∆), the request is satisfied.

Now, G ′ is a compass structure for ϕ, and it is consistent and fulfilling.
Clearly, |D′| < |D|. If |D′| is less than the claimed bound, we are done;
otherwise, we repeat the entire process. 2

A small model for HS3 is any model for a HS3 formula ϕ whose domain
contains at most 2O(|ϕ|3) points. Small models are, evidently, exponential
in length; this means that Lemma 4 proves that HS3 is decidable in non-
deterministic exponential time. A little more work is needed to prove that,
in fact, it is decidable in polynomial space. To this end, we now describe a
non-deterministic algorithm that uses only polynomial space, and, then, we
obtain the result thanks to Savitch’s Theorem (PSpace = NPSpace - see,
e.g., [Pap94]).

The idea underlying our polynomial-space algorithm is that we can check
the satisfiability of a HS3 formula by non-deterministically generating a
model within the limits of Lemma 4 in such a way that, at any given mo-
ment, at most two (compass) rows are kept in memory, so that a single row
must contain enough information to allow us to generate the next one. To
this end, we need to introduce some more notation and definitions. An atom
is any non-empty set F ⊆ Cl(ϕ) such that, for every ψ ∈ Cl(ϕ), ψ ∈ F if
and only if ¬ψ /∈ F , and, for every ψ ∨ ξ ∈ Cl(ϕ), either ψ ∈ F or ξ ∈ F ;
in other words, an atom is a maximally consistent subset of Cl(ϕ) (labels
on a compass structure are, in fact, atoms). We denote by A(ϕ) the set
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of all possible atoms for ϕ. For X ∈ {L,L, I}, we denote by Rϕ
X the set

that contains all and only existential requests (that is, formulæ of the type
〈X〉ξ) in Cl(ϕ), and, given the set Rϕ

I and any subset Ψ of Cl(ϕ), we call
observable, denoted by O(Ψ), the set Ψ ∩Rϕ

I . Intuitively, we are restricting
our attention to the existential part of the requests, and, in particular, those
along the relation RI . In order to efficiently describe a row, we define a
counting tuple as a triple (R,R∗, n) such that R ⊆ Rϕ

I , R∗ ⊆ R and n ∈ N+;
a counting tuple can be seen as the realization of an element of RIL(y) along
with its count (the number of times that it occurs in a row). Intuitively, R
contains requests yet to be satisfied or satisfied at the row y, and R∗ contains
requests already satisfied (somewhere below y in the compass structure). For
us, a row abstraction is a word

CR = (R0, R
∗
0, n0) . . . (Rm, R

∗
m, nm)

of counting tuples such that: (i) (Ri, R
∗
i ) 6= (Ri+1, R

∗
i+1); (ii) Ri ⊇ Ri+1 for

every i < m, and (iii) R∗i ⊇ R∗i+1 for every i < m. The size of a given
row abstraction CR is the number |CR| =

∑
0≤i≤m ni, and we access its

elements as follows: we write CR[i] (respectively, CR∗[i]), for 0 ≤ i ≤ |CR|,
to indicate the set Rj (respectively, R∗j ) such that

∑
0<l<j nl < i ≤

∑
0<l≤j nl.

In the algorithm shown in Figure 4, CR and CR′ are row abstractions.

Consider now the algorithm in Figure 4. Clearly, to guarantee the com-
pleteness of the approach LIM must take the value is set to the theoretical
bound for the dimension of any possible finite model for a given formula
ϕ, as explained in Lemma 4. Each let step must be considered as a non-
deterministic step, in which the requested object is guessed; then, the algo-
rithm verifies its properties, and if any given property is not respected, the
algorithm rejects (so, our algorithm may be seen as a PSpace verifier). The
requests of the type 〈L〉 that ϕ may have are handled in the following way:
fL(〈L〉ψ) represents an interval [z, t] on the model being built such that [z, t]
satisfies ψ and that no other interval [z′, t′] does, for z′ > z; requests of the
type 〈L〉 are handled in a symmetric way. So, our algorithm correctly guesses
all requests of the type 〈L〉/〈L〉, and considers them satisfied within the lim-
its given by fL and fL; in the function Initialize, we write I(LIM) to denote
all intervals that can be built in the set {0, . . . , LIM}. Then, a correct initial
atom (F ) is guessed, and its properties must be checked (within the func-
tion CheckFirstAtom). Obviously, the checked formula ϕ must belong to F ,
which, in turn, cannot contain any request of the type 〈L〉, because F holds
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procedure HS3-Sat(ϕ,LIM)
begin

Initialize(fL, fL, LIM)
let F ∈ A(ϕ) such that CheckF irstAtom(F, fL, fL)
CR ← 〈(RF

I , ∅, 1)〉
ΨCR ← F
LCR ← RF

L

step ← 0
while step < LIM do

if LCR = ∅ and ∀i(0 ≤ i ≤ |CR| → CR[i] = CR∗[i]) then
return Y es

row ← step+ 2
let CR′ be a row abstraction
let ΨCR′ ⊆ Cl(ϕ)
LCR′ ← {ψ : [0, row] RL fL(ψ)}
Ψ∗CR′ ← ∅,
if |CR′| 6= |CR|+ 1 then

return No
for i = 0 . . . |CR′| do

if i = |CR′| then
CR∗pre ← ∅

else
CR∗pre ← CR[i]∗

if CR′[i]∗ 6= CR∗pre ∪ O(ΨCR′ ∪ΨCR) then
return No

if i < |CR′| and CR′[i] 6⊇ CR[i] then
return No

let F ∈ A(ϕ) such that CheckAtom(CR′, fL, fL)
Ψ∗CR′ ← Ψ∗CR′ ∪ F

if Ψ∗CR′ 6= ΨCR′ then
return No

CR ← CR′

ΨCR ← ΨCR′

step ← step+ 1

return No

Figure 4: A PSpace-Algorithm for HS3 formulæ satisfiability checking.
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procedure Initialize(fL, fL, LIM)
begin

let L ⊆ Rϕ
L

let fL : L→ I(LIM − 1)
let L ⊆ Rϕ

L

let fL : L→ I(LIM − 1)

procedure CheckF irstAtom(ϕ, fL, fL)
begin

if ϕ ∈ F ∧RF
L

= ∅
and RL(F ) = {ψ : [0, 1] RL fL(ψ)}
and F ⊇ {ψ : fL(ψ) = [0, 1] ∨ fL(ψ) = [0, 1]}
and F ∩ {ψ : ¬([0, 1] = fL(ψ))} = ∅ then

return True
return False

procedure CheckAtom(CR, fL, fL)
begin

if F ⊆ ΨCR

and ReqI(F ) = CR[i]
and RF

L
= {ψ : [i, row] RL f

L(ψ)}
and RF

L = {ψ : [i, row] RL f
L(ψ)}

and F ⊇ {ψ : fL(ψ) = [i, row] ∨ fL(ψ) = [i, row]}
and F ∩ {ψ : ¬([i, row] R← fL(ψ))} = ∅
and F ∩ {ψ : ¬([i, row] R→ fL(ψ))} = ∅ then

return True
return False

Figure 5: Auxiliary procedures for the algorithm in Figure 4

on [0, 1] (first line of the conditions for F ). Moreover, the requests of type
〈L〉 that are in F are precisely those satisfied anywhere to the right of [0, 1],
as collected in the function fL (second line), and F contains, among others,
those formulæ ever requested that are satisfied nowhere after (or before) [0, 1]
(third line). Finally, to be coherent with fL, F contains no formulæ whose
leftmost satisfying interval is not [0, 1] (fourth line). Right before the while
loop, we describe the initial part of the compass structure that represent the
model being guessed: it has only one level corresponding to y = 1, the row
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abstraction CR of such line contains precisely one counting tuple formed by
non-starred requests only (nothing can be satisfied below 1). We take into
account any formula ever mentioned on a line in the component ΨCR, of the
requests of the type 〈L〉 in the component LCR, and of the current step (at
this point, 0).

The compass structure is guessed row-by-row, starting with line 1 (that
corresponds to the set of all intervals ending at the point 1). Therefore,
it is easy to check if, at a given point y, we have already finished: it is
enough to verify that the current row abstraction has no request of type 〈L〉
and that every request in every set R of a counting tuple is matched into
its corresponding set R∗, and therefore already satisfied. This explains the
first part in the while loop. At any given step, the row step + 2 is being
guessed, and its abstraction is called CR′ (with set of formulæ ΨCR′). The
remaining part of the code deals with checking that CR′ is a correct guess.
To this end, we first set the set of its requests of type 〈L〉 as precisely those
insisting on the last point of the line (the point row), and we use a temporary
variable Ψ∗CR′ initially set at ∅. Then, we check CR′. First, we check that
the number of components of CR′ is correct (that is, it is precisely one more
than CR); then, we check CR′ tuple-by-tuple. Consider, then, the problem
of checking the correctness of the i-th tuple, that corresponds to the interval
[i, row]. The temporary variable CR∗pre takes the value of the set of requests
already satisfied below (and it is empty when i = row − 1). The guess CR′

is rejected if: either the set of requests of type 〈I〉 already satisfied is not
equal to the set of those that were already satisfied at the same point in CR
plus those that are being satisfied in the line (that is, anywhere in a interval
of the type [x, row] - they all intersect the interval [i, row]), or the chain of
requests in CR′, at the component i in CR′ is not a correct chain. If CR′,
at the i-th component, has passed all above tests, then it only remains to
be seen (guessed) which atom may occupy the label for the interval [i, row];
this is one key point to keep the complexity of the algorithm in PSpace:
atoms are only checked to exist, but never stored. The conditions for such
an atom F to exist are: (i) its formulæ are in ΨCR′ ; (ii) its requests of type
〈I〉 are those in the i-th component of CR′; (iii) its requests of type 〈L〉
(respectively, 〈L〉) are precisely those formulæ whose leftmost (respectively,
rightmost) satisfying interval is yet to be seen (respectively, has already been
seen); (iv) its formulæ include those satisfied precisely at [i, row] and never
again to the left or to the right; (v) finally, its formulæ cannot contradict
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the functions f (e.g., F cannot witness a formula whose leftmost satisfying
interval starts somewhere before i): for a better readability, we denote, in
Figure 4, by R← the union of the identity relation between intervals plus the
relation RX for X ∈ {E,E,D,O,A, L}, and by R→ the union of the identity
relation between intervals plus the relation RX for X ∈ {B,B,D,O,A, L}.
Now, Ψ∗CR′ certainly includes F , and having guessed an atom for each i, the
algorithm compares Ψ∗CR′ (the set of all formulæ that should be on CR′ with
ΨCR′ , and rejects if they are different.

Theorem 2. The finite satisfiability problem for HS3 is PSpace-complete.

Proof Our procedure requires to store only two counters (row and step) and
at most two row abstractions at the same time; therefore, it suffices to prove
that they can be represented in polynomial space with respect to |ϕ|. Since
none of the counters may exceed 2O(|ϕ|3), clearly K = O(|ϕ|3) bits are enough
to store each one of them. Now, consider a row abstraction

CR = (R1, R
∗
1, n1), (R2, R

∗
2, n2), . . .

and analyze its components. By definition, R1 ⊇ R2 ⊇ . . ., and since each
Ri is a subset of Rϕ

I , in the worst case each Ri differs from Ri−1 because it
has precisely one formula less. Therefore, if we focus on the R component
only, there can be at most 2 · |ϕ| different elements in CR. The component
R∗ follows the same pattern (reversed), so that, in total, there can be at
most 4 · |ϕ| different counting triples in a row abstraction. Each one of them
requires (2 · log(|ϕ| + 1) + K) bits to be represented, and the entire row
abstraction requires (2 · log(|ϕ| + 1) + K) · K bits. To such quantity, one
has to add the space to store three instances of ΨCR (one for CR, one for
CR′, and one temporary instance), each one of which requiring log(2 · |ϕ|+1)
bits, and the space for a single atom F , requiring, again, log(2 · |ϕ|+ 1) bits.
Summing up, the algorithm in Figure 4 works in polynomial space. Since
Theorem 1 gives us a matching lower bound, we have the claim. 2

Our PSpace algorithm is impractical. Each non-deterministic choice
must guess very complex objects, and atoms must be generated in full at the
beginning of the computation, which, alone, is a very time-demanding step.
In Section 6 we describe a possible deterministic implementation of a finite
satisfiability checker for HS3, along with the result of a systematic series of
tests.
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4.4. PSpace membership: the case of natural numbers

The satisfiability problem for HS3 in the (general) discrete case, i.e, with-
out assuming the finiteness of the models, can be decided using essentially
the same principles as in the finite case; we give here the details for the case
of N.

The most relevant difference between the finite case and the case of N lies
in the problem of model representation; in order to define a suitable (finite)
representation for infinite models based on the natural numbers, we make use
of the technical machinery defined in Lemma 4. First, given any compass
structure G = (D,L) and any index 0 < y, we denote G|y = ({y ∈ D : y <
y},L|y), where L|y is the labeling function defined as L|y(x, y) = L(x, y) for
every 0 ≤ x < y ≤ y, the y prefix of G. It is essential to understand that
stepping from G to G|y may have the effect of changing the content of row(y)
for some y ≤ y: indeed, requests that were satisfied in G might not be satisfied
anymore in G|y. Therefore, we denote by row|y(y) the value of the function
row at y in the reduced compass structure G|y. A finite compass structure G
based on a domain D = {0, . . . , ymax} is said to be pseudo-fulfilling if there
exist two points y < y < ymax such that (i) row(y) = row(y), (ii) for every
0 ≤ x ≤ y and for every ψ ∈ RI(x, y), there exists 0 ≤ x′ ≤ y and 0 ≤ y′ ≤ y
such that ψ ∈ L(x′, y′), (iii) for every ψ ∈ RL(x, y) there exists y < x′ < y′ <
y such that ψ ∈ L(x′, y′), and (iv) row|y(y) = row(y). The key point is that
a pseudo-fulfilling structure is self-contained, so that every existential request
originated on intervals that end before or at y, are satisfied on intervals that
end before or at y; notice, however, that the position of ymax plays an essential
role in satisfying the last condition: even if conditions from (i) to (iii) are
satisfied, a structure is pseudo-fulfilling only if, ideally, the portion of the
model between y and y can be replicated infinitely often. Proving that HS3

is decidable in PSpace when interpreted over N requires three steps: first,
proving that a model exists if and only if a pseudo-fulfilling structure (with ϕ
in the label of the interval [0, 1]) does, second, that we can effectively bound
the maximum cardinality of a pseudo-fulfilling structure, and, third, that
checking the existence of a pseudo-model can be done in PSpace. The first
two steps are dealt with in Lemma 5 below, which is focused on the precise
bound given that proving that pseudo-fulfilling structures can be converted
into models is not essentially different from the proof of Lemma 4 (although
a notion of periodicity is involved); as far as the third step is concerned, a
simple modification of the algorithm in Figure 4 is sufficient.
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Lemma 5. Let ϕ a HS3 formula satisfiable over N. Then there exists a
pseudo-fulfilling structure for ϕ with domain D of cardinality 2O(|ϕ|3).

Proof Since ϕ is satisfiable over N there exists a compass structure G =
(N,L) for it. We want to prove that there exists a bounded pseudo-fulfilling
structure that describes it.

Definitions. Since the set of possible different row descriptions is finite,
we take the smallest y ∈ N such that for every y′ ∈ N there exists y′′ > y′

with row(y) = row(y′′) (that is, the smallest y such that its own description
repeats infinitely often). Then, we choose y > y in such a way that for every
0 ≤ x ≤ y and for every ψ ∈ S(x, y) there exists x′ ≤ x and y < y′ ≤ y with
ψ ∈ L(x′, y′), and for every ψ ∈ RL(y) there exists y < x′ < y′ ≤ y with
ψ ∈ L(x′, y′). In an identical way, we can also choose ymax > y as the smallest
index such that 0 ≤ x ≤ y and for every ψ ∈ S(x, y) there exists x′ ≤ x and
y < y′ ≤ ymax with ψ ∈ L(x′, y′), and for every ψ ∈ RL(y) there exists
y < x′ < y′ ≤ ymax with ψ ∈ L(x′, y′). Observe that row(y)|ymax = row(y)
and row(y)|ymax = row(y); so, Gymax is a pseudo-fulfilling structure (and
ϕ ∈ L(0, 1)), and we have to prove that we can contract it within the given
bound.

Contraction. Given two points ŷ, ŷ′, we define

Occ(ŷ, ŷ′) = {ψ : there are x, y′ such that 0 ≤ x ≤ ŷ < y′ < ŷ′

and ψ ∈ L(x, y′)}.

By construction, Occ(y, y) = Occ(y, ymax). As in Lemma 4, we can identify,
for each ψ ∈ Occ(y, y) four points (z∗, t∗) with ∗ ∈ {right, left, up, down}
and ψ ∈ L(z∗, t∗), z∗ ≤ y, and t∗ ≤ y, as follows: for every (z′, t′), if ψ ∈
L(z′, t′), z′ < y, and y ≤ t′ < y, then zleft ≤ z′ ≤ zright and tdown ≤ t′ ≤ tup.
In other words, the points (z∗, t∗) with ∗ ∈ {right, left, up, down} are, re-
spectively, the rightmost, leftmost, highest, and lowest witnesses of each
formula in Occ(y, y). We collect all coordinates of the type z∗ so defined in
a set V er(ψ, y, y), and all coordinates of the type t∗ in a set Hor(ψ, y, y).
In a similar way, we define the sets V er(ψ, y, ymax) and Hor(ψ, y) for each
ψ ∈ Occ(y, ymax). Clearly, for each ŷ′, and each pair ψ, ŷ, it is the case
that both |V er(ψ, ŷ, ŷ′)|, |Hor(ψ, ŷ, ŷ′)| ≤ 4. We can now identify a set
V b ⊆ {x : 0 ≤ x ≤ ymax} of blocked verticals, which is a minimal set that
satisfies the following conditions: (i) V er(ψ, y, y) ∪ V er(ψ, y, ymax) ⊆ V b
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for every ψ ∈ Occ(y, y); and, for every (R,L) ∈ dom(count(y)), (ii) if
count(y)(R,L) < 4 · |ϕ| + 1 then |{x ∈ V b : RIL(x, y) = R and S(x, y) =
L}| = |{x ∈ V b : RIL(x, y) = R and S(x, y) = L}| = count(y)(R,L),
and (iii) if count(y)(R,L) ≥ 4 · |ϕ| + 1 then |{x ∈ V b : RIL(x, y) =
R and S(x, y) = L}| = |{x ∈ V b : RIL(x, y) = R and S(x, y) = L}| =
4 · |ϕ|+ 1. Observe that |V b| < 2 · |ϕ|(4 · |ϕ|+ 1). Moreover, we can identify a
set Hb ⊆ {y′ : 0 ≤ y ≤ ymax} of blocked horizontals, which as a minimal set
that satisfies the following conditions: (i) Hor(ψ, y, y) ∪ rows(ψ, y, ymax) ⊆
Hb for every ψ ∈ Occ(y, y), and (ii) {0, y, y, ymax} ⊆ Hb. Observe that
|Hb| ≤ 2 · |ϕ| + 4. For every row 0 ≤ y ≤ ymax we can now define an addi-
tional counting function countV (y) : RIL(y)×Ψy → {1, . . . , 2·|ϕ|·(4·|ϕ|+1)}
such that, for every (R,L) ∈ RIL(y)×Ψy,

countV (y)(R,L) = |{x : RIL(x, y) = R and S(x, y) = L}|.

Similarly to Lemma 4, we conclude that the number of possible countV (y)
functions is (2 · |ϕ|(4 · |ϕ| + 1))|ϕ|

2
= 2|ϕ|

2·log(2·|ϕ|·(4·|ϕ|+1)). Now, consider two
rows 0 ≤ ŷ < ŷ′ ≤ ymax such that for every pair y′ < y′′ ∈ Hb we have y′′ < ŷ
or ŷ′ < y′′ or y′ < ŷ < ŷ′ < y′′, that is, consider two rows ŷ and ŷ′ strictly
contained between two consecutive elements in Hb. If row(ŷ) = row(ŷ′) and
countV (ŷ) = countV (ŷ′), then we can directly apply Lemma 4 and obtain
a smaller structure G ′, which is, still, pseudo-fulling. If Gymax is based on a
domain D, then G is based on a domain D′ such that |D′| = |D| − (ŷ′ − ŷ).
But two rows ŷ < ŷ′ with the required properties are guaranteed to exists
whenever the number of rows strictly contained between any two consecutive
elements y′ < y′′ in Hb is greater than or equal to

N∆ = |ϕ| · 2|ϕ|·(|ϕ|·log(2·|ϕ|·(4·|ϕ|+1))+log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|).

We can then iterate the contraction until y′′− y′ < N∆ for every two consec-
utive elements y′ < y′′. The pseudo-fulfilling structure obtained at the end
of this process has cardinality less than or equal to

|Hb| ·N∆ = (2 · |ϕ|+ 4) · |ϕ| · 2|ϕ|·(|ϕ|·log(2·|ϕ|·(4·|ϕ|+1))+log(4·|ϕ|+1)+log(|ϕ|)+|ϕ|) = 2O(|ϕ|3),

as we wanted.

The pseudo-fulfilling structure obtained in this way can be now trans-
formed into a compass structure based on the natural numbers, and there-
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fore a model based on the natural numbers, by applying essentially the same
technique already seen in Lemma 4. 2

Dealing with the satisfiability of formulæ of HS3 interpreted over the
set of the integers does not require any mathematical tool different from
those used above; the notion of pseudo-fulfilling structures can be generalized
to be symmetric on the interval [0, 1], and its limits suitably re-computed.
Then, Lemma 5 works in the same way to prove its existence. A similar
argument can be used to show that deciding the satisfiability of a formula
of HS3 interpreted in the class Dis of all discrete linear orders has the same
computational properties.

Theorem 3. The satisfiability problem for HS3 in the case of natural num-
bers, in the case of the integers, and in the case of Dis is PSpace-complete.

5. HS7 is Undecidable

In this section we show that the satisfiability problem for HS7, interpreted
in any class of linearly ordered set that contains at least one infinite order,
is undecidable; all finite/discrete cases were already covered by the results
in [MM14]. Undecidability is proven via a reduction from the so-called Octant
Tiling Problem (OTP) (as, for example, in [BDG+14]). This is the problem
of establishing whether a given finite set of tile types T = {τ1, . . . , τN} can
tile the second octant of the integer plane O = {(n,m) ∈ Z2 : 0 ≤ n ≤ m}.
For every tile type τ ∈ T , let right(τ), left(τ), up(τ), and down(τ) be the
colors of the corresponding sides of τ . To solve the problem, one must find
a function f : O → T such that right(f(n,m)) = left(f(n + 1,m)) and
up(f(n,m)) = down(f(n,m + 1)). A simple application of König Lemma
and of the Compactness Theorem for first-order logic allows one to prove
that the OTP is undecidable; a similar argument is used in [BGG97] to
prove the undecidability of the Quadrant Tiling Problem.

In the following we reduce the OTP to the satisfiability problem for
HS7. Our construction is similar to other undecidability reductions for in-
terval temporal and spatial logics [MR99, BDG+14], which, however, must
be adapted due to the loss of expressive power of coarser operators. The
reduction exploits (i) a correspondence between the points (x, y) of the oc-
tant and a suitable set of unit intervals (u-intervals from now on) labeled
by the propositional letter u; (ii) propositional variables to represent tiles in
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T ; (iii) the modal operators of HS7 to enforce the constraints of the prob-
lem. The starting point of our construction consists of building an infinite
sequence of u-intervals. Let ϕuchain be the following formula:

ϕuchain = u0 ∧
∧
l=0,1

[G](ul → 〈AO〉u(l+1) mod 2) (8)

∧ [G](u↔ (u0 ∨ u1)) (9)

∧ [G](u→ [DBE]¬u) (10)

∧
∧
l=0,1

[G](ul → [DBE]u′l) (11)

∧ [G]((u′0 ∧ u′1)→ ⊥). (12)

Lemma 6. Let M, [x, y]  ϕuchain. Then, there exists an infinite increasing
sequence of points y0, y1, y2, . . . such that

(i) y0 = y;
(ii) for each i ≥ 0, M, [yi, yi+1]  u;

(iii) if [z, t] 6= [yi, yi+1], for each i ≥ 0, then M, [z, t]  ¬u, unless t ≤ x or
z > yi for each i ∈ N.

Proof By hypothesis, M, [x, y]  ϕuchain ; therefore, M, [x, y]  u0. Because
of (8) there must be an interval [y0, y1] such that M, [y0, y1]  u1, and that
x < y0 ≤ y. To prove (i) we suppose, for the sake of contradiction, that
y0 < y. By (11) we obtain M, [y0, y]  u′0 and also M, [y0, y]  u′1, contrary
to (12). Consequently, y = y0. Following the same argument and taking (9)
into account, one immediately sees that ϕuchain forces the existence of a chain
y = y0 < y1 < y2 . . . of u-intervals verifying (ii). Suppose now, for the sake
of contradiction, that M, [z, t]  u for some [z, t] 6= [yi, yi+1] for all i ∈ N,
where t > x and z < yi for some i ∈ N. Let us analyze all possible cases
that may occur. If yi ≤ z < t ≤ yi+1 for some i ∈ N, or x ≤ z < t ≤ y0,
then we have a contradiction with (10), because [z, t] is a u-interval contained
(via RDBE) in another u-interval, [yi, yi+1] or [x, y0]. If yi ≤ z < yi+1 and
t ≥ yi+k for some i, k ∈ N and k > 1, or x ≤ z < y0 and t ≥ y1, then we
have, again, a violation of (10). If yi ≤ z < yi+1 and yi+1 < t < yi+2, or
x ≤ z < y0 and y0 < y < y1, then, thanks to (9), either M, [z, t]  u0 or
M, [z, t]  u1. Assume that [yi, yi+1] is a u0-interval: in the first case, we
have a contradiction with (12) because [yi+1, t] is both a u′0-interval and a
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u′1-interval, while in the second case we have a contradiction because [z, yi+1],
in turn, is both a u′0-interval and a u′1-interval. If [yi, yi+1] is a u1-interval,
then the symmetric argument applies. If t > yi for each i ∈ N, then, since
by the hypothesis z < yi for some i ∈ N, we have a contradiction with (10).
Finally, if z < x, then t < y0 because of (10). Thanks to (9), M, [z, t]  u0

or M, [z, t]  u1. In the first case, (8) ensures the existence of a u1-interval
that will cause a conflict with the u0-interval [x, y0]. Otherwise, since x < t,
the interval [x, t] satisfies u′0 and u′1, which, again, is a contradiction. 2

By the following formula, which we call ϕube , we can easily identify those
intervals that start and those that end u-intervals:

ϕube = [G](u→ (〈DBE〉> ∧ [DBE]u′) (13)

∧ [G]((u′ ∧ [AO]¬u)→ ub) (14)

∧ [G]((u′ ∧ [AO]¬u)→ ue) (15)

∧ [G](ub → [AO]¬u) (16)

∧ [G](ue → [AO]¬u). (17)

Lemma 7. Let M, [x, y]  ϕuchain ∧ ϕube, and let y0, y1, y2, . . . be the infinite
sequence of points whose existence is guaranteed by Lemma 6.

(i) For each i ≥ 0, every interval of the form [yi, z], where z < yi+1,
satisfies ub but not ue (and there exists at least one interval of this
form);

(ii) For each i ≥ 0, every interval of the form [z, yi+1], where z > yi,
satisfies ue but not ub (and there exists at least one interval of this
form).

Proof Consider, first, a u-interval [yi, yi+1] of the sequence, and a point z
such that yi < z < yi+1. Such z exists thanks to (13). Also by (13), the
interval [yi, z] is certainly a u′-interval; since, by Lemma 6, that neither [z, t]
for any z < t < yi+1, nor any [t′, t] for any yi < t′ < z, can be a u-interval,
(14) applies, and [yi, z] must be a ub-interval. Since [yi−1, yi] is u-interval,
(17) applies, and [yi, z] cannot be a ue-interval, proving (i). Point (ii) is
proven likewise.

Consider now the following formula, in which L = {∗} ∪ T (we abuse of
notation and identify tile symbols with the propositional letters that repre-
sent them):
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ϕconf = C0 ∧
∧
l=0,1

[G](Cl → 〈AO〉C(l+1) mod 2) (18)

∧ [G](C ↔ (C0 ∨ C1)) (19)

∧
∧
l=0,1

[G](Cl → [DBE]C ′l) (20)

∧ [G]((C ′0 ∧ C ′1)→ ⊥) (21)

∧ [G](C → ([AO]¬ue ∧ [AO]¬ub)) (22)

∧ [G](C → ([DBE]¬C ∧ 〈DBE〉>)) (23)

∧ [G](u↔
∨
s∈L

s)) (24)

∧ [G]
∧

s,s′∈L,s 6=s′
(s ∧ s′ → ⊥) (25)

∧ 〈AO〉(∗ ∧ 〈AO〉(
∨
τ∈T

τ ∧ 〈AO〉∗)) (26)

∧ [G]((u ∧ 〈AO〉C)→ 〈AO〉∗) (27)

∧ [G]((u ∧ 〈AO〉C)→ 〈AO〉∗) (28)

∧ [G](∗ → (〈AO〉C ∨ 〈AO〉C). (29)

Lemma 8. Let M, [x, y]  ϕuchain ∧ ϕube ∧ ϕconf , and let y0, y1, y2, . . . be the
infinite sequence of points whose existence is guaranteed by Lemma 6. Then
there exists an infinite sequence of indexes k0, k1, k2, . . . such that

(i) each u-interval of the type [yi, yi+1] satisfies precisely one letter in L;
(ii) for each j ≥ 0, M, [ykj , ykj+1

]  C;
(iii) the C-interval [yk0 , yk1 ] is composed of exactly three units, the middle

one of which is τ ∈ T ;
(iv) if [z, t] 6= [ykj , ykj+1

] for each j ≥ 0, then M, [z, t]  ¬C, unless t ≤ x
or z > yi for each i ∈ N;

(v) each C-interval of the type [ykj , ykj+1
] is such that both its first unit

[ykj , ykj+1] and its last unit [ykj+1−1, ykj+1
] satisfy ∗;

(vi) if [z, t] 6= [ykj , ykj+1] and [z, t] 6= [ykj+1−1, ykj+1
] for each j ≥ 0, then

M, [z, t]  ¬∗, unless t ≤ x or z > yi for each i ∈ N.

Proof Point (i) is an immediate consequence of (24) and (25). SinceM, [x, y] 
C0 by (18), there must be an interval [z, t] such that x < z ≤ y and t > y
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such that M, [z, t]  C1. Suppose, for the sake of contradiction, that z < y.
By (20), we obtain M, [z, y]  C ′0 and also M, [z, y]  C ′1, contrary to
(21). Therefore z = y = y0, and we set k0 = 0. Now we prove (iii), i.e.,
t = y3 = yk1 . First, note that (22), in combination with Lemma 7, avoids
that yi < t < yi+1 for any i ∈ N. Formulæ (24) and (26) imply that [y0, y1],
[y1, y2], and [y2, y3] are, respectively, ∗-, τ -, and ∗-intervals, for some tile τ .
Therefore, t = y1 contradicts (27) and t = y2 contradicts (28), because of (i);
applying (29), (19), (20), and (21) to [y2, y3], it is easy to see that t > y3 is
not possible. Then, yk1 = y3 = t. By a similar argument, one can prove the
existence of an infinite chain of indexes k0, k1, . . . as stated in (ii) and (iv).
Formulæ (27) and (28) immediately imply (v). Finally, in order to prove (vi),
it suffices to observe that, first, ∗-intervals can only be units, and, second,
that, thanks to (29), a ∗-interval on some interval [yi−1, yi] for some i implies
that yi−1 ends a C-interval or yi starts a C-interval. Thus, if, for the sake of
contradiction, [z, t] is a ∗-interval different from the first or the last unit of a
C-interval, we have a contradiction with point (iv).

Given the structure built in Lemma 8, we can refer to the m-th ¬∗-interval
of a level C as the m-th tile of that level, and we are therefore interested in
connecting the m-th tile of a given level with the m-th tile of the next one.
In particular, we say that the tile [z, t] is connected to the tile [z′, t′] if and
only if the interval [t, z′] is a Corr-interval, where Corr is a propositional
letter introduced in the following formula:

ϕcorr = [G](u ∧ ¬∗ → 〈AO〉Corr) (30)

∧ [G]((u ∧ ¬ ∗ ∧[AO]¬∗)→ 〈AO〉Corr) (31)

∧ [G](Corr → [AO]¬ue) (32)

∧ [G](Corr → [AO]¬ub) (33)

∧ [G](∗ → [AO]¬Corr) (34)

∧ [G]((u ∧ 〈AO〉∗)→ [AO]¬Corr) (35)

∧ [G](Corr → ([DBE]¬Corr ∧ [DBE]¬C
∧[DBE]¬C ∧ ¬C)). (36)

Lemma 9. Let M, [x, y]  ϕuchain∧ϕube∧ϕconf∧ϕcorr, let y0, y1, y2, . . . be the
infinite sequence of points whose existence is guaranteed by Lemma 6, and let
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k0, k1, k2 . . . be the infinite sequence of indexes whose existence is guaranteed
by Lemma 8.

(i) For each i, j ≥ 0, if the interval [ykj+i, ykj+i+1] is a ¬∗-interval, then
the point ykj+i+1 starts a Corr-interval;

(ii) For each i, j > 0, if the interval [ykj+i+1, ykj+i+2] is a ¬∗-interval, then
the point ykj+i ends a Corr-interval;

(iii) If [z, t] 6= [yi, ym] for each i,m ≥ 0, then M, [z, t]  ¬Corr, unless
t ≤ x or z > yi for each i ∈ N;

(iv) For each j > 0, none of the points ykj , ykj−1, and ykj−2 finish any
Corr-interval;

(v) The m-th tile of every level is connected to the m-th tile of the next
level, and, if the level is not the first one and m is not the index of the
last tile of a level, the m-th tile is also connected to the m-th tile of the
preceding level;

(vi) Every level has precisely as many tiles as the preceding level plus one.

Proof Reasoning as in Lemma 7, point (i) is an immediate consequence of
(30) and (33), and point (ii) is an immediate consequence of (31) applied to
the interval [ykj+i, ykj+i+1]. To prove (iii), observe that (32) and (33) mandate
that Corr-intervals begin and end on points of the type yi. As far as (iv)
is concerned, it turns out that neither ykj or ykj−1 may end a Corr-interval
because of (34), and ykj−2

may not, either, because of (35). A combinatorial
argument, whose cornerstone is (36), proves now (v) and (vi). As a matter of
fact, Corr-intervals that start at a given tile cannot end within the same C-
interval or after the next C-interval (thanks to (36)). But then, it is easy to
observe that if the m-th tile of a certain C-interval is connected with the l-th
tile (l 6= m) of the next C-interval one has a contradiction, again, with (36).
Finally, thanks to (iv), the last tile of every C-interval cannot be connected
to any tile of the previous C-interval, completing the argument.

We complete our construction (pictured in Figure 6) by forcing that the
tiling constraints are respected. Let ϕcolor be the following formula:

ϕcolor =
∧
τ∈T

[G](τ → [AO](Corr → 〈AO〉(
∨

τ ′∈T ,up(τ)=down(τ ′)

τ ′))) (37)

∧
∧
τ∈T

[G]((τ ∧ [AO]¬∗)→ [AO](
∨

τ ′∈T ,right(τ)=left(τ ′)

τ ′)). (38)
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Figure 6: A model of ϕT and its interpretation as a tiling of the second octant.

Lemma 10. The satisfiability problem for HS7 interpreted over any class
of linear frames that contains at least one infinitely ascending order can be
reduced to the OTP.

Proof Let T be an instance of the OTP, and let

ϕT = ϕuchain ∧ ϕube ∧ ϕconf ∧ ϕcorr ∧ ϕcolor.

Suppose, first, that M, [x, y]  ϕT , where M is a model whose frame belongs
to the class of linear frames. By Lemma 8, the point y = y0 starts a first level
of three units, containing precisely one tile. By Lemma 9, each successive
level contains precisely one more tile than the preceding one, and, by (37)
and (38), each m-th tile respects the horizontal constraint with the m+ 1-th
tile (if exists), and the vertical constraint with the m-th tile of the successive
level. Therefore, M represents a correct tiling of the second octant, and, in
summary, the fact that ϕT is satisfiable (for a given set of tiles T ) implies
that the OTP has a solution (for that specific set T ). On the contrary, given
a solution to the OTP, it is immediate to build a model for ϕT by simply
placing every tile in its correct position on each level, and suitably filling up
the model with the evaluation of ∗, C, and Corr. In other words, for a given
set T , T tiles the second octant if and only if ϕT is satisfiable. 2

Theorem 4. The satisfiability problem for HS7 interpreted in the class Fin,
Dis,N,Z,Q,R, and Lin, is undecidable.

Proof The class of all finite linear orders is covered by [MM14]. By Lemma 10,
the satisfiability problem for HS7 in every other case can be reduced to the
OTP, and therefore it is undecidable as well. 2
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6. Experimental Results

The results of Section 4 imply that we can implement a relatively efficient
finite satisfiability checker for HS3. In this section, we describe the data
structures, the implementation strategies, and the policies we have used;
most of the ideas can be also used to implement a satisfiability checker for
the case of natural numbers, and, in general, for the discrete case.

Implemented decision procedures for interval temporal logics are not com-
mon in the literature. Among the few exceptions, a procedure for the frag-
ment A of HS has been implemented in [BDMMS13, MMST14]; the for-
mer is an experimental implementation not aimed to computational effi-
ciency, and the latter is an attempt to use an automatic tableaux generator,
namely MetTeL2 [TSK12]. The only previous attempt to apply a generic
theorem prover to an interval temporal logic can be found in [BGMS10],
where a tableau-based decision procedure for the fragment D, interpreted
over dense linear orders, was developed in LoTREC [dCFG+01]. Unfortu-
nately, there are no benchmark problems for satisfiability of interval logic
formulæ, which makes it difficult to compare different implementations.

6.1. Implementation

We have chosen to develop a semantic tableau satisfiability checker for
HS3. Both the tableau and the formula to be checked are represented as
rooted decorated trees. A rooted tree is a tree G = (V,E, r), where V is
a nonempty set, E ⊆ V × V , |E| = |V | − 1, and r ∈ V is its root; every
element of V is called a node. A rooted decorated tree [GMS03] is a rooted tree
enriched with a function that associates every node with its decoration, which
can be thought of as the information carried by that node: when we represent
formulæ, a decoration is a propositional letter or an operator, while when we
represent semantic tableaux, a decoration consists of the information needed
to expand the tableau or to close it. In any (rooted decorated) tree, nodes
without successors are called leaves, and every finite path from the root to a
leaf is called a branch.

Formulæ are represented as binary rooted decorated trees. Each node of
the tree is decorated with a code that represents a Boolean or a modal opera-
tor or a propositional letter. Formulæ are read and contextually represented
as trees; a simple recursive procedure eliminates all implications and pushes
all negations in front of propositional letters, obtaining equivalent formulæ
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in negated normal form. Moreover, before checking its satisfiability, our pro-
cedure transforms a formula ϕ into the formula ϕ∨〈L〉ϕ∨〈I〉ϕ, whose initial
satisfiability is checked (see Section 4).

A tableau is represented as a k-ary tree in the form of left-child right-
sibling. Each node of this tree contains a pointer to the node in the formula
tree that represents the sub-formula under analysis, the interval over which
it holds, an active/inactive flag, a leaf/internal flag, and the pointers to the
left child, the right sibling, and the parent. Domains are represented as
totally ordered sets of floating point numbers, so that an interval is a pair
of floats. This has a very specific purpose: whenever a new point must
be added in between a pair of already existing ones, it can be created by
simply computing their average; yet, the model remains always finite by
construction. Some tableau nodes are leaves during the construction of the
tableau; they (temporally) represent their branch, so that they also store
domain information, plus other data that help us choosing the next branch
depending on the expansion policy.

In addition to the two trees (a formula tree and a tableau tree - the
former is fixed during the satisfiability checking process of a given formula,
the latter evolves), there are additional data structures that help us to apply
the tableau expansion rules. In particular, the collection of all current leaves
is stored in a linked list. Each element of the list points to the tableau node
that represents that leaf (and therefore its branch) which may be chosen
in the next expansion step. A non-trivial adaptation of a generic tree visit
algorithm must be implemented in order to correctly identify, given a tableau
node, the set of all and only those leaves that belong to the sub-tree rooted
at it. Finally, a dynamic data structure is built (and destroyed) before each
expansion step that allows us to examine the branch on which the next to-
be-expanded tableau node lies, in order to establish if the branch is closed
(because it is contradictory), or it represents a model (in which case the
procedure stops and returns that the given formula is satisfiable). Such a
structure may be thought of as an hash table that contains the intervals and
the formulæ that are (currently) true on them, with an efficient (constant
time) lookup method.

The initial tableau for a formula ϕ whose initial satisfiability must be
checked is a tableau tree composed of a single tableau node with the following
decoration: its formula node pointer has the address of the root of the formula
tree that represents ϕ, its interval is [0, 1], its active flag and its leaf flag are
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ψ ∨ τ, [x, y],D
ψ, [x, y],D | τ, [x, y],D

ψ ∧ τ, [x, y],D
ψ, [x, y],D
τ, [x, y],D

〈X〉ψ, [x, y],D
ψ, [x1, y1],D1 | . . . | ψ, [xn, yn],Dn

where


n = ν♦(X, [x, y],D)
Di = µ♦(i,X, [x, y],D)
[xj, yj] = λ♦(j,X, [x, y],D)

[X]ψ, [x, y],D
ψ, [x1, y1],D
ψ, [x2, y2],D

. . .
ψ, [xm, ym],D

where

{
m = ν2(X, [x, y],D)
[xj, yj] = λ2(j,X, [x, y],D)

Table 2: Expansion rules of the semantic tableau-based procedure.

both 1, its domain is {0, 1}, and all the other pointers are null. Given a leaf
of the current tableau (that is, the branch represented by it), the following
two operations are performed: (i) branch closing checking and branch model
checking, and (ii) choosing the next to-be-expanded tableau node. Assuming
that the current branch B is not closed and is not a model, the next to-be-
expanded tableau node is chosen according to the following policy: it is the
active node on B that is closest to the root. Expansion rules are described
in Table 2. Boolean rules are standard, while the rules for modal operators
are designed as follows. Let I be the set of all intervals in any finite domain.
As for the existential cases, we define a function

ν♦ : {I, L, L} × I× Fin→ N,

with the following meaning. Given an interval [x, y] and a domain D, ν♦(X,
[x, y],D) returns the number of already existing different intervals in the
relation RX with [x, y] plus the number of new intervals that should be
created in the relation RX in order to explore all qualitatively distinct pos-
sibilities. For example, ν♦(L, [0, 1], {0, 1, 2}) = 5: indeed, if 〈L〉ψ holds on
[0, 1] and the current domain is {0, 1, 2}, then ψ may hold on some inter-
val [1.25, 1.75], [1.5, 2], [2, 2.5], [3, 4], or [1.5, 2.5]. Notice that, for example,
adding [1.25, 1.75] is necessary as it represents a new interval completely
between existing points; something similar happens for [3, 4], because 〈L〉ψ
holding on [0, 1] may be satisfied by a new interval starting after the point 2.
Similarly, as for the universal case, we define a function ν2, with the same
parameters, that returns only the number of already existing different inter-
vals in the relation RX with [x, y] (indeed, in order to expand a universal
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modality, no new intervals are created). Moreover, expanding an existential
modality may require that some branch have a new (bigger) domain (be-
cause, as we have seen above, existential modalities may require new points);
the i-th domain (in no particular order) is returned by the function

µ♦ : N× {I, L, L} × I× Fin→ Fin.

Finally, while expanding any existential modality, every new node in a branch
is decorated with an interval that belongs to the (possibly new) domain.
The j-th interval (in no particular order) of the expansion is returned by the
function

λ♦ : N× {I, L, L} × I× Fin→ I.

Following up with the previous example, µ♦(1, L, [0, 1], {0, 1, 2}) = {0, 1, 1.25,
1.75, 2} and λ♦(1, L, [0, 1], {0, 1, 2}) = [1.25, 1.75]. Because we are restricting
ourselves to initial satisfiability, these functions never return domains or in-
tervals with new points between 0 and 1, nor smaller than 0. In this way for
each existential operator 〈X〉ψ we have an existential disjunctive rule that
creates enough branches to search for every possible location of ψ. Univer-
sal operators are easier to treat: given the current interval and the current
domain, we use the function λ2, analogous to the previous one, to obtain all
intervals on which a formula must be applied, and since universal operators
do not add points to the domain, the latter, as we have already observed,
does not change.

Given the node to be expanded, the correct rule is chosen for its expansion
(clearly, precisely one rule can be applied on it); the result of such a step is
applied to all leaves in the sub-tree rooted at the chosen node. For efficiency
reasons, decorations are never duplicated. A given branch B, identified by
its leaf, is closed if one of the following two conditions hold: a propositional
contradiction is found on it, that is, there exist two nodes on B such that
their decorations show p, [x, y] and ¬p, [x, y], respectively, or the cardinality
of the domain in the decoration of its leaf exceeds the bound (see Lemma 4).
When a given leaf is selected for the next expansion step, the branch that
contains it is checked for contradictions. If a contradiction is found, the leaf
is simply eliminated from the list of leaves; if all leaves are eliminated, then
the formula is found unsatisfiable. Otherwise, the node is expanded and
the protocol for managing active/inactive flags, after every expansion, is as
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follows: nodes are inactivated after being expanded, but in case of universal
nodes, they are copied at the end of the branch with the active flag at 1.
Therefore, the current branch B is a model if and only if, for every active
node on B, that node is universal, and, if D is in the decoration of its leaf,
then, for every [X]ψ, [x, y] in the decoration of some node of B there exists
a node with ψ, [xj, yj] in B, for every 1 ≤ j ≤ ν2(X, [x, y],D).

The soundness and the completeness of our procedure are shown in the
following result.

Theorem 5. A formula ϕ of HS3 is finitely satisfiable if and only if the
tableau-based method, with the rules in Table 2, returns ‘Satisfiable’.

Proof Let us introduce first the following notion. Consider a node n on
a tableau for a formula ϕ, and let S(n) be the set of all decorations on
nodes between n and the root. We denote with D(n) the domain in the
decoration of n. We say that S(n) is satisfied on an extension of D(n) if
there exists a model M based on some extension of D(n) such that, for each
(ψ, [x, y]) ∈ S(n) it is the case that M, [x, y]  ψ.

We now show that for every finitely satisfiable formula of HS3 the pre-
sented method terminates and returns ‘Satisfiable’, that is, contra-positively,
whenever the procedure closes all branches, the formula is not finitely satis-
fiable. To do so, we prove a stronger claim: for any node n at height h on
a tableau for ϕ, if every branch that contains n is closed, then S(n) is not
satisfied on any extension D′ of D(n) such that |D′| ≤ LIM (where LIM is
the maximum number of points on a domain as shown in Lemma 4). No-
tice that, when n is the root, this is to say that ϕ is not finitely satisfiable.
We proceed now to prove the claim by induction. If h = 0, either the only
branch that contains n also contains two nodes with decorations (p, [x, y])
and (¬p, [x, y]), and therefore S(n) is simply not satisfiable, or the number
of points ever named in the decorations of its nodes is more than LIM , for
which S(n) can never be satisfied on any extension of D(n). If h > 0, then
n has been expanded by some rule, some nodes n1, n2, . . . exist that are de-
scendants of n, and the inductive hypothesis applies to all of them. If the
rule that has been applied is Boolean, then the claim follows immediately. If
it is the universal rule, then suppose that ([X]ψ, [x, y]) is in the decoration of
n. Every branch that contains n also contains all nodes that are the result of
its expansion, and, in particular, some node n′ with decoration (ψ, [z, t]) for
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some interval [z, t] such that [x, y]RX [z, t]. If S(n) were satisfiable on some
extension of D(n), then, in particular, S(n) ∪ {(ψ, [z, t])} = S(n′) would be
too, but this is in contradiction with the inductive hypothesis. Finally, if it
is the existential rule, then suppose that (〈X〉ψ, [x, y]) is in the decoration of
n. If S(n) were satisfiable on some extension of D(n), then there would be a
model whose domain extends D(n) such that it satisfies 〈X〉ψ on [x, y] and ψ
on some [z, t] such that [x, y]RX [z, t]. By construction, there must be some
successor n′ of n that contains the decoration (ψ, [z, t]), independently of z, t
being already in D(n). This means that S(n′) would be satisfiable on some
extension of D(n′), which is in contradiction with the inductive hypothesis.

Now, we must argue that our method is also sound, that is, for every
formula ϕ of HS3 for which it returns ‘Satisfiable’, there exists a model M
such that M, [0, 1]  ϕ. Consider a branch B such that it is not contradictory,
all its active nodes are universal, and every node with universal decoration
has been already expanded on every possible interval of the domain D of the
branch. Now, let M be a model based on D, and whose valuation function
is defined as follows: for each interval [x, y] and each propositional letter p,
[x, y] ∈ V (p) if and only if (p, [x, y]) decorates some node on B. We want to
prove, by structural induction, that, for each node n in B with decoration
(ψ, [x, y]), M, [x, y]  ψ. If ψ is a propositional letter or its negation, we have
the result immediately. If ψ is a composite formula, two cases arise: either it
is a universal formula, or it is not. In the latter case, the fact that B is not
closed implies that n has been expanded, and such expansion has been applied
to all branches that contain n: if ψ is a conjunction, then both conjuncts
have been included as decorations in nodes of B, if it is a disjunction then at
least one disjunct has been included as decoration in some node of B, and, if
it is ψ = 〈X〉ξ, then at least one node in B must be decorated with (ξ, [z, t]),
for some [z, t] such that [x, y]RX [z, t]. In all cases, the inductive hypothesis
applies, and therefore M must satisfy ψ on [x, y]. In the former case, if ψ
is a universal formula, i.e. ψ = [X]ξ, since B cannot be further extended,
it must be the case that a node n′ with decoration (ξ, [z, t]) occurs in B for
each [z, t] such that z, t ∈ D and that [x, y]RX [z, t], and again, the inductive
hypothesis applies. 2

6.2. Benchmark and experimental results

Our procedure is programmed object-oriented in C++ standard language
with threads capabilities. Threads are run virtually in parallel, and carry a
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Finitely satisfiable

name formula

ϕ1 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉p2))
ϕ3 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉ϕ+2

1 ))
ϕ5 p0 ∧ [I]¬p2 ∧ [L]¬p2 ∧ 〈L〉p1 ∧ [L](p1 → ([I]¬p3 ∧ [L]¬p3 ∧ 〈L〉ϕ+2

3 ))
. . . . . .

Table 3: A benchmark for (finitely) satisfiable formulæ of HS3.

specific policy for choosing the next leaf to be examined. Each policy is
fair, that is, every branch is eventually examined; the advantage of using
different policies is the improved execution time, especially for satisfiable
formulæ. We took into account two key aspects: domain cardinality and
branch sparseness. The sparseness degree of a branch allows us to estimate
how many distinct intervals in the domain are actually used; to compute
such an estimation, we calculate the average of positive propositional letters
assigned to each interval, and define the sparseness of the branch as the
variance of the distribution associated to assigning positive propositional
letters to intervals. We implemented the following policies: (i) branches
with smaller domain and less sparse first (SBF); (ii) branches with longer
domain and more sparse first (LBF); (iii) branches in Last-In-First-Out order
(LIFO) - that is, the tableau tree is explored depth-first. All experiments
have been carried out on an Intel(R) Core(TM) i7-6700HQ, with a clock of
2.60Ghz, four cores, and 16GB RAM.

Robustness and scalability. In order to test the robustness and the scal-
ability of our implementation, we designed the sequence of finitely satis-
fiable formulæ shown in Table 3, which are systematically generated for
k = 1, 3, 5, . . ., so that their length can be put in relation with the time
that our program takes to establish its satisfiability. Formulæ are generated
inductively: given ϕk, we obtain ϕ+2

k by replacing each propositional letter
pi with pi+2, and, from ϕ+2

k , we generate ϕk+2; each ϕk is finitely satisfiable
and it has only few different models. More importantly, the formulæ ϕk grow
in length and in modal depth; following [BHS00], length, modal depth, and
number of different models are three of the most important indicators to
measure the experimental difficulty of proving the satisfiability of a formula.
The results of our scalability experiment are shown in Figure 8.

For the sake of clarity, Figure 7 shows a four points model of ϕ1 (from
Table 3), as returned by our algorithm. In Figure 7, on the left-hand side,
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0 1 2 3

p0p0 ∧ . . .

¬p2
¬p2
¬p2

¬p2

. . . ∧ [I]¬p2 ∧ . . .

p1
. . . ∧ 〈L〉p1 ∧ . . .

¬p3
¬p3
¬p3

¬p3

. . . ∧ [L](p1 → ([I]¬p3 ∧ . . .))

p2
. . . ∧ [L](p1 → (. . . ∧ 〈L〉p2))

Figure 7: Example of a possible model for ϕ1 from Table 3.

we consider a sub-formula of ϕ1 and, correspondingly, on the right-hand side,
we show how the considered sub-formula is, in fact, satisfied in the model.
Observe that, in line with classical tableau-based algorithms, only necessary
requests are shown: for example, there is no obligatory truth value for p1 on
[0, 1] because ϕ1 does not require it. Moreover, trivially satisfied sub-formulas
are not shown: for instance, on [0, 1], the sub-formula [L]¬p2 is satisfied by
the fact that 0 is the first point of the model.

Semi-randomized test. In order to test our implementation in a more real-
istic scenario, we need formulæ whose satisfiability status is not fixed. Purely
random formulæ are not necessarily challenging for a satisfiability tester: as
a matter of fact, random formulæ tend to be satisfiable, often admitting sev-
eral different models. Moreover, testing the scalability of the system using
only unsatisfiable formulæ of increasing length is not appropriate, as the ef-
fort needed to prove that a formula is unsatisfiable depends on many aspects
besides its length, such as, for example, the depth (in the tableau) at which
a contradiction is found. Therefore, we proceeded as follows.
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Figure 8: Elapsed time for satisfiable formulæ (by length and modal depth).

First, we designed a simple technique to systematically generate scalable
unsatisfiable formulæ. To this end, we listed a certain number of proposi-
tional tautologies, such as

(p ∧ (p→ q))→ q,

(p ∧ q)→ p,

(p→ (p ∨ q)),

as well as a certain number of modal tautologies of HS3, such as

〈L〉〈L〉p→ 〈L〉p,
〈L〉p→ [L]〈L〉p.

Then, we systematically applied several cycles of uniform substitution to our
initial group of tautologies, obtaining longer ones. Once we were satisfied of
the average length of the resulting formulæ (around 150 symbols each), we
negated them, obtaining unsatisfiable formulæ.

Second, we designed a simple method to generate randomized formulæ of
controllable length, over an alphabet AP of propositional letters, by employ-
ing a very intuitive schema that recursively produces a formula tree: given
the current height h, we randomly choose a Boolean or a modal operator
(with probability directly proportional to h), or a propositional letter in the
alphabet (with probability inversely proportional to h), and perform one (or
two, depending on the case) recursive call(s) with height h − 1. It may be
argued that such procedure does not guarantee that the obtained formula
has a specific length; it does, however, guarantee that all formulæ generated
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Figure 9: Timeouts versus number of finalized formulæ.

Class HS HS7 HS3

Fin, N, Z, Dis Undec. [HS91] Undec. [MM14] PSpace-complete
Lin, Q Undec. [HS91] Undec. PSpace-hard

Table 4: A summary of the results of this paper.

with it are, on average, of the same length, and we can suitably modulate
the initial value of h to obtain formulæ that tend to be of the desired length.
Modulating the proportion between h and |AP | gives us some control on
the probability that the generated formula is indeed satisfiable (following the
same principles as in [GW94]).

Finally, we created a database of 5000 formulæ, of comparable length,
that contains formulæ from both groups, on a proportion 40% (the former,
certainly unsatisfiable) and 60% (the latter, probably satisfiable).

We tested our procedure against this problem in order to establish which
fraction of the entire group could be solved under different timeout settings,
from 5 to 30 seconds. The results of this experiments are depicted in Figure 9.
As it can be seen, a timeout of 15 seconds was enough to establish the
satisfiability of over the 97% of our tested formulæ.

7. Conclusions

In this paper we studied two previously unknown variants of Halpern and
Shoham’s logic (HS), inspired by Golumbic and Shamir’s interval algebras,
which generalize the classical Allen’s Interval Algebra with coarser interval
relations. While the finer HS7 is still generally undecidable, the coarser HS3
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becomes PSpace-complete in the finite case, the case of the natural num-
bers, and the integers, and PSpace-hard in the other cases. A summary of
the known results on coarser interval temporal logics can be found in Table 4.
Undecidability of HS in the finite case can be proven as in [HS91], although
the authors do not mention this particular case; many of the stricter undecid-
ability results for fragments of HS such as, for example, those in [BDG+08],
actually imply that HS is undecidable in this case as well. Fragments of HS
have been extensively studied in the recent literature; unfortunately, there is
no natural comparison between coarser fragments (such as HS3 and HS7) and
syntactical fragments of HS. The latter have been systematically analyzed
both from the relative expressive power [AMG+16] and from the computa-
tional complexity point of view [BMM+14, BDM+15].

There are a number of open problems and interesting research directions
in this topic. Besides the natural interest in completing the picture of the de-
cidability and the complexity of the satisfiability problem for coarser interval
temporal logics, there are obvious questions that arise from our results. For
example, it has been proved that in the finite/discrete case the fragment LL
is NP-complete [BMM+14], which means that there may exist natural and
useful logics expressively in between LL and HS3. Moreover, there exists a
recently emerged interest in interval temporal logic under sub-propositional
restrictions [BMS14, AKRZ15, BKM+17], and it makes sense to explore a
logic such as HS3 under similar restrictions.
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[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision
Problem. Perspectives of Mathematical Logic. Springer, 1997.

[BGMS10] D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableaux
for logics of subinterval structures over dense orderings. Journal
of Logic and Computation, 20(1):133–166, 2010.

[BHS00] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark
method for the propositional modal logics K, KT, S4. J. Autom.
Reasoning, 24(3):297–317, 2000.

54



[BKM+17] D. Bresolin, A. Kurucz, E. Muñoz-Velasco, V. Ryzhikov, G. Sci-
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