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Knowledge sources and impacts on subsequent inventions:   

Do green technologies differ from non-green ones? 

Nicolò Barbieri1 

Alberto Marzucchi2 

Ugo Rizzo3 

 

Abstract 

The paper contributes to our understanding of the nature and impact of green technological 

change. We focus on the search and impact spaces of green inventions, scrutinising the 

knowledge recombination processes leading to the generation of the invention and the impact 

of the invention on subsequent technological developments. Using a large sample of patents 

filed during 1980-2012, we analyse a set of established patent indicators that capture different 

aspects of the invention process. Technological heterogeneity is controlled for by comparing 

green and non-green technologies within similar narrow technological domains. Green 

technologies are found to be more complex and radical than non-green ones and to have a larger 

and more pervasive impact on subsequent inventions. However, the results show a variety of 

distinctive patterns with respect to the knowledge dimension considered. We derive some 

important policy implications. 
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1. Introduction 

The transition towards a greener economy revolves strongly around the role of technological 

change (see, among others, Smith, 2008; Pearson and Foxon, 2012; Barbieri et al., 2016). To 

provide new evidence on the rate and direction of “green” technological change, we reprise a 

recurrent question in the economics of innovation and investigate “the ways in which 

technological change is generated and propagated” (Griliches, 1957, p. 501). To address this 

question, requires a combined perspective that looks at the roots and impacts of the evolution 

of technologies (Rosenberg, 1976; Nelson and Winter, 1982). In other terms, both the search 

and impact space should be investigated. The former reflects the origins of inventions and the 

conditions under which new knowledge emerges (Fleming and Sorenson, 2004; Arthur, 2007). 

The latter reveals the mechanisms underlying the diffusion of the inventions and the potential 

benefits of this process (Rogers, 1983).  

It is widely acknowledged that technological change is “a cumulative process, whereby each 

innovation builds on the body of knowledge that preceded it, and forms in turn a foundation 

for subsequent advances” (Trajtenberg et al., 1997, p. 20). Building on this, studies of the 

characteristics of technological change tend to follow one of two non-exclusive and 

complementary perspectives. That is, an ‘ex-ante’ (e.g., Verhoeven et al., 2016), or ‘backward-

looking’ (Trajtenberg et al., 1997), approach that characterises inventions in terms of their 

nature by focusing on the knowledge recombination processes leading to the invention (e.g. 

Schumpeter, 1934; Fleming, 2001; Carnabuci and Operti, 2013); and an ex-post’, or a ‘forward-

looking’ approach which focuses on the impact on subsequent inventions (Ahuja and Lampert, 

2001; Schoenmakers and Duysters, 2010). 

To provide empirical insights into the shape of the technical knowledge from which technology 

emerges and evolves, we adopt the above ex-ante and ex-post perspectives. Following the 
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diffused approach proposed in the seminal work by Trajtenberg et al. (1997, p. 20), we conduct 

an empirical analysis “using detailed information contained in patents, relying heavily on 

citations to other patents, since these citations provide good evidence of the links between an 

innovation and its technological ‘antecedents’ and ‘descendants’”. The objective is to compare 

green and non-green technologies across various knowledge dimensions to study the continuity 

between the search and impact spaces. First, technological complexity is analysed in order to 

investigate whether green and non-green technologies differ in the variety of their knowledge 

sources or number of technological components. Second, radicalness is used here to examine 

the structure of the recombination process from which new artefacts stem. Finally, the impact 

on subsequent technologies is investigated to capture knowledge spillovers from green and 

non-green technological domains. 

The contributions of the present study to the extant literature are manifold. The paper compares 

green and non-green technologies by focusing on the preliminary phase of the innovation 

process, that is, the invention phase. A large part of the available evidence considers 

environmental innovation as a whole (e.g., Cainelli et al., 2015) and does not account for the 

fact that innovation activities are heterogeneous and result from different and interlinked 

phases (e.g. Kline and Rosenberg, 1986; Tidd et al., 1997), ranging from conception to market 

exploitation. In turn, distinctive environmental innovation traits with respect to “standard” ones 

can emerge in any of the different phases in the environmental innovation chain. Failing to 

account for this could lead to imprecise implications for policy and practice. To provide more 

accurate insights, we investigate the “upstream” phase of green technological development, 

that is, the inventive process. Specifically, we compare the characteristics of the green and non-

green knowledge bases of inventions and study their differences.  

The comparison is carried out across several dimensions, both ex-ante and ex-post, captured 

by a variety of established patent indicators (Squicciarini et al., 2013), that is, patent scope, 
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originality, radicalness, forward citations and generality. Thus, the analysis embraces different 

aspects of green technologies pertaining to knowledge recombination (i.e., complexity and 

radicalness) and their impact on succeeding technological developments. The relatively scant 

literature on the difference between green and non-green technologies focuses mainly on one 

of these dimensions (e.g., Popp and Newell, 2012). However, ignoring one of them could lead 

to incomplete analyses and circumscribed policy implications. Our aim is to investigate both 

the technological antecedents and descendants of inventions that contribute to linking the 

search and impact spaces (Dahlin and Behrens, 2005).  

The use of established indicators to systematically test the differences between green and non-

green technologies is also an original element with respect to the extant literature on the 

knowledge bases of environmental innovations. This literature offers insights and 

argumentation related to the peculiarities of the green knowledge base (e.g., De Marchi, 2012; 

Ghisetti et al., 2015), but does not provide direct tests of its distinctive features. 

Finally, in the empirical analysis, we control for the idiosyncratic features of each technological 

field considered. This allows us to mimic the matching between green and “similar” (i.e., in 

the same narrow technological field) non-green patents. Our approach to allow netting out of 

the confounding factors that can arise when comparing very different technologies, is another 

original contribution. Prior studies on the impact of green technologies on following 

inventions, generally focus on a few technological domains and/or do not provide fine-grained 

control of the technical specificities of inventions (e.g., Popp and Newell, 2012; Dechezleprêtre 

et al., 2014).  

Our analysis, based on the wealth of information provided by worldwide patents filed over the 

period 1980-2012, reveals that green technologies differ from non-green ones across all the 

dimensions we investigate, although to different extents. First, green patents appear to be more 

complex than non-green ones, especially in relation to the breadth of knowledge components. 



5 

 

Second, green technologies appear to be (somewhat) more radical than their non-green 

counterparts. That is, green compared to non-green inventions show more distinctive traits with 

respect to their prior knowledge. Third, if we focus on the impact on subsequent technological 

developments, our results show that green inventions pervade a larger and more diverse range 

of technological domains. These results point to relevant implications for types of and scope 

of policy actions, and their rationale.    

The paper is structured as follow. Section 2 reviews the literature and formulates the research 

questions. Section 3 identifies appropriate patent-based indicators for the empirical analysis, 

described in Section 4. Section 5 presents the results and Section 6 concludes.  

 

2. Literature review 

This section reviews the literature on environmental innovations in order to identify the main 

propositions about the differences between green and non-green technologies. To provide 

continuity in the analysis of the search and impact spaces, we build on the above-mentioned 

distinction between the ex-ante and ex-post theoretical characterization of inventions. First, we 

review the differences between green and non-green technologies from an ex-ante perspective, 

looking for patterns in the sources of knowledge leading to the generation of technologies. 

Next, we focus on the differences between green and non-green inventions from an ex post 

point of view, by describing the state of the art in the current literature on the impact of 

technologies on subsequent technological advances. In Section 3, we link the insights derived 

from this literature to appropriate indicators and proxies. 
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2.1 Ex-ante perspective: Knowledge recombination processes in green inventions 

Inventive activity is the outcome of knowledge recombination processes (Schumpeter, 1934; 

Usher, 1954; Nelson and Winter, 1982; Fleming, 2001). Recent developments in the theory of 

invention suggest that the characteristics of the search space influence the outcome of the 

recombination process. Fleming and Sorenson (2001) find that the number of components and 

the strength of their interdependence, that is, complexity, affect the success of inventive 

activities. They argue, also, that local search, that is, recombination of familiar technological 

components (Fleming, 2001), influences the degree of novelty of the invention. Moving away 

from existing practices and recombining components in a new way, increases both the risk of 

failure and the likelihood of achieving a radical invention (Ettlie et al., 1984; Nooteboom, 2000; 

Fleming, 2001; D’Este et al., 2017).  

A recent strand of literature dealing with the determinants of environmental innovation looks 

at the knowledge capabilities required by firms in order to introduce environmental 

innovations. While these studies do not test directly for specific features pertaining to the search 

space of green technologies, they provide useful insights into the recombination of knowledge 

components and the novelty that this recombination entails: in other words, they provide 

insights into the complexity and radicalness of environmental technologies (e.g., Lerner, 1994; 

Trajtenberg et al., 1997; Verhoeven et al., 2016).  

In relation to the complexity of green compared to non-green technologies, previous studies 

show that environmental technologies encompass a broader range of objectives and knowledge 

inputs. In particular, De Marchi (2012) argues that the development of new and green products 

calls for competences that are far from the traditional industrial knowledge base. The higher 

complexity of green technologies is demonstrated by the multi-purpose and systemic nature of 

environmental innovations (Ghisetti et al., 2015). Environmental technologies are expected to 

satisfy different and joint objectives, related to production efficiency, and product quality, 
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dictated, for instance, by standards (Florida, 1996; Oltra and Saint Jean, 2005). At the same 

time, their development encompasses several dimensions including design, user-involvement, 

product-service delivery – comprising new products, their related services, the supporting 

network and infrastructure (e.g., Mont, 2002) – as well as institutional requirements related to, 

for example, the regulatory framework (Carrillo-Hermosilla et al., 2010; Mazzanti and Rizzo, 

2017).   

Another interesting feature of green technologies is the extent to which they embody new and 

different recombinations of knowledge with respect to prior technologies, that is, their 

radicalness. Environmental innovations are expected to imply radical change due to the 

absence of established environmental best practice and technological trajectories. In addition, 

they are characterised by technological uncertainty and require skills, which, often, are outside 

the firm’s knowledge domain (De Marchi, 2012). Environmental innovations are described as 

representing a technological frontier (Cainelli et al., 2015) where the economic actors have 

relatively scarce experience (Porter and van der Linde, 1995). In similar vein, Horbach et al. 

(2013) note that, with the exception of eco-industries whose core business is development of 

green technologies, environmental innovations encourage firms to master new knowledge 

linked to alternative production processes, and inputs that generally are associated to relatively 

new technological solutions. Acknowledging the diversity of environmental innovations (i.e., 

depending on their objective), Marzucchi and Montresor (2017) suggest that efficiency-related 

environmental technologies exhibit important elements of novelty, for instance, industrial 

design and engineering mechanisms, making them reliant on analytical knowledge inputs from 

scientific partners. The greater extent to which green innovations require new recombinations 

of existing knowledge, resonates well with the argument that they call for specific skills. In a 

study of the human capital and skill content of green jobs, Consoli et al. (2016) found that green 

jobs are characterised by greater intensity of non-routine skills and they link this finding to the 
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boundary fluctuations and constant reconfiguration of green occupations resulting from the 

early stages in the life cycles of environmental technologies. While their study focuses on jobs 

associated to environmental practices, our paper offers a complementary view concerning the 

technological dynamics.  

In sum, we can identify two main traits which differentiate green technologies from non-green 

ones: complexity and radicalness. Based on the above premises, to shed light on the search 

space of green inventions, we look at the different recombination processes that lead to the 

generation of green (and non-green) technologies. In particular, we address the following 

research questions:  

RQ1. Are green technologies more complex recombinations of technological knowledge 

compared to their non-green counterparts? 

RQ2. Do green technologies entail more radical recombinations of technological knowledge 

compared to their non-green counterparts? 

 

2.2 Ex-post perspective: impacts of green inventions on following technological development 

The characterization of an invention from an ex-post perspective is related to the capacity to 

trigger future technological developments and opening up a variety of new technological 

opportunities (Schoenmakers and Duysters, 2010). While the former characteristic refers to the 

extent to which an invention is considered as a source of knowledge for subsequent 

technologies (Griliches, 1992; Jaffe et al., 1993), the latter is close to the concept of 

pervasiveness and captures the variety of fields impacted by the invention (Helpman and 

Trajtenberg, 1994). These characteristics often are associated to General Purpose Technologies 

(GPTs), which are identified by their pervasiveness, continuous technical advances and wide 

diffusion (Bresnahan and Trajtenberg, 1995; Hall and Trajtenberg, 2004).  
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Some recent works have addressed related issues, when looking at the association between the 

green transition and past industrial revolutions or technological waves. These studies argue that 

green technologies exhibit the traits of GPTs, although at an early stage (Stern, 2011), and are 

expected to play the role, which, in the past, was played by the steam engine, electricity and 

the more recent Information and Communication Technologies (ICT) (Pearson and Foxon, 

2012; Perez, 2016). For instance, low carbon technologies are thought to have widespread 

potential use, to stimulate complementary innovations and to contribute to productivity gains 

and economic benefits (Pearson and Foxon, 2012). Ardito et al. (2016) adopt a similar 

standpoint in claiming that green technologies should be considered to be GPTs. They stress 

the relevance of GPT developments, which, while targeting new and more sustainable 

pathways rather than single technological solutions, have multiple applications and spillovers 

in related technological domains (e.g., transportation) and have the potential to trigger micro- 

and macro-economic and environmental benefits.  

In similar vein, studies of specific technological realms highlight that green technologies are 

indeed characterised by high levels of pervasiveness. For example, Cecere et al. (2014) focus 

on environmental technologies based on applications of ICT equipment or software (e.g., 

application of ICT to renewable energy and sustainable mobility) and offer evidence of the 

high level of pervasiveness of green ICTs that rely on a wide variety of knowledge sources and 

actors. Further support for the pervasiveness of green technologies comes from two studies that 

assess the social value of investing (public funds) in green innovations. Popp and Newell 

(2012) find that patents in sustainable energy domains are cited more often than other patents, 

and that their forward citations stem, in particular, from a variety of other technological 

domains. The high pervasiveness and broad applicability of these technologies in a wide set of 

domains are confirmed by the empirical investigation conducted by Dechezleprêtre et al. 

(2014) on clean (and dirty) technologies in four fields: energy production, automobiles, fuel 
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and lighting. Their findings reveal that clean technologies receive more citations than dirty 

technologies, and are characterised by more general applicability outside their domain, 

suggesting that they are more likely to display the traits of a GPT. 

Despite recent advancements, there is a lack of systematic understanding of the impact and 

pervasiveness across all technological fields, of green inventions. Extant studies focus on 

specific domains and target pivotal sectors for the green economy – such as production of green 

goods, air pollution abatement and water management. Furthermore, when comparing green 

and non-green inventions, they do not control for the idiosyncratic features of narrow 

technological domains (Popp and Newell, 2012; Dechezleprêtre et al., 2014). From an ex-post 

perspective, our study fills this gap by analysing all environmental-related technologies and 

taking account of the specificity of each technology (see Section 4.1). Building on these 

premises, we propose the following research question, which focuses on the impact space of 

green (and non-green) inventions:  

RQ3. Do green technologies exhibit a higher impact on subsequent technological 

developments relative to their non-green counterparts? 

 

3. Identifying inventions using patent data 

To address our research questions, we conduct an empirical analysis based on patent data. This 

limits the analysis to a group of inventions whose technicalities respect the criteria of 

patentability. Although patent data provide a wealth of information – detailed in Section 4 – 

their use in empirical studies is not exempt from complications (Griliches, 1990; Lanjouw et 

al., 1998). Nevertheless, various works highlight the validity of patent based indicators (e.g., 

Arts et al., 2013). 
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Patents provide three main types of information: the knowledge components used to develop 

the invention; the knowledge base on which the invention draws; and the knowledge generated 

subsequently by the patent. In this work, we distinguish between ex-ante and ex-post 

perspectives to study the characteristics of the inventions and to address our research questions 

by exploiting various patent indicators. In particular, building on Section 2, we are interested 

in testing, from an ex-ante perspective, whether green technologies are more complex and more 

radical than non-green ones and, from an ex-post perspective, whether green technologies have 

a higher impact on future technological developments. Drawing on the patent-based empirical 

literature, we can identify six indicators to proxy for complexity, radicalness and impact. 

Complexity captures the variety of knowledge bases, components and competences required 

to develop the new technology and is proxied by patent scope (Lerner, 1994; Shane, 2001) and 

originality (Trajtenberg et al., 1997; Hall et al., 2001). Patent scope measures the variety of the 

knowledge components and originality measures the variety of the knowledge sources. 

Radicalness captures the distance between the new technology and its knowledge sources, that 

is, it captures the extent to which the new technology differs from previous technologies. It is 

proxied by the homonymous indicator developed by Shane (2001) and refined by Squicciarini 

et al. (2013).  

To investigate the impact of green inventions on following patents, we consider whether green 

inventions become the seeds for future technological developments. The most frequent 

indicators are number of forward citations and generality index (Trajtenberg et al., 1997; Hall 

et al., 2001). The former is a quantitative measure of the number of times the invention is cited 

as prior art in new technological advances; the latter measures the variety of technological 

domains in which the invention is prior art, that is, its pervasiveness across different 

technological domains. 



12 

 

  

3.1 Indicators to characterize ex-ante recombination processes 

The ex-ante perspective characterises the invention by looking at the recombination of 

knowledge components processes (Schumpeter, 1934). As already mentioned, we use two 

proxies for complexity – originality and scope,- and one for radicalness.  

3.1.1 Scope 

The number of a patent’s distinct International Patent Classification (IPC)4 codes is a proxy for 

the technological breadth or scope of the invention (Lerner, 1994). Research shows that at firm 

level, higher patent scope is associated to higher firm value (Lerner, 1994) and that patent scope 

is a main predictor of the probability the patent will be licensed (Shane, 2001). Patent scope is 

measured as the number of distinct IPC 4-digit codes to which the patent belongs (Lerner, 

1994; Shane, 2001; Squicciarini et al., 2013). Since it measures how many distinct knowledge 

components are required for the invention, patent scope is associated to invention complexity 

(Lerner, 1994). Higher levels of patent scope correspond to higher levels of invention 

protection with respect to the number of other inventions that can infringe it (Shane, 2001). 

3.1.2 Originality 

The originality index developed by Trajtenberg et al. (1997) and used widely in the literature 

(e.g., Hall et al., 2001, Hicks & Hegde, 2005), measures the extent to which a patent draws on 

previous inventions dispersed across different technological fields. Exploiting the information 

on backward citations, the originality index of the focal patent captures the variety of 

technological domains, proxied by the number of IPC 4-digit codes to which the cited patents 

                                                      
4 International Patent Classification (IPC) and Cooperative Patent Classification (CPC) are technology 

classification systems that describe the technicalities of patents. Their hierarchical structure enables the 

assignment of patents to broad or narrow technological fields as the number of digits increases.   
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belong. The higher level of the patent’s originality index, the greater the diversification of 

knowledge sources across technological fields. Originality is measured as: 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑖 = 1 − ∑ 𝑠𝑖𝑗
2

𝑛𝑖

𝑗
 

where sij is the percentage of citations made by patent 𝑖 in the 4-digit patent classes j among ni 

patent classes. The originality index is calculated as a Herfindahl-Hirschman (HH) 

concentration index of patent classes and ranges from 0 to 1. High levels of the HH index 

indicate that the cited patents come from a wide variety of different technological classes, 

meaning that the focal patent is the outcome of the combination of numerous technological 

fields.  

3.1.3 Radicalness 

A radical invention is defined as a new combination of components that “depart in some deep 

sense from what went before” (Arthur, 2007).5 To be characterized as radical, an invention 

needs to show processes of recombination that differ from those characterizing incremental 

inventions. Radicalness is often conceptualized at firm level and is recognised when the 

invention emerges from the integration in the firm’s knowledge base of knowledge from 

outside the firm’s boundaries (Rosenkopf and Nerkar, 2001; Ahuja and Lampert, 2001). 

In similar vein, Shane (2001) conceptualizes radicalness at the invention level, as the 

knowledge distance between the focal patent’s technological classes and those of its cited 

patents. Shane (2001, p. 210) argues that “when a patent cites previous patents in classes other 

than the ones it is in, that pattern suggests that the invention builds upon different technical 

                                                      
5 The broad definition of a radical invention includes the capacity of the invention to affect the future generation 

of technological developments. In Section 3.2 we consider the impact-related aspects of inventions, thereby 

encompassing ex-post radicalness (see, e.g., Schoenmakers and Duysters, 2010). Therefore, in this paper, we refer 

to radicalness only in terms of recombinant processes.  
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paradigms from the one in which it is applied” (see, also, Rosenkopf and Nerkar 2001). The 

indicator proposed by Shane (2001) is calculated as the number of distinct IPC 4-digit codes 

included in the cited patents, but which are not assigned to the focal patent. Squicciarini et al. 

(2013) refines the indicator calculating it as follows:  

𝑅𝑎𝑑𝑖𝑐𝑎𝑙𝑛𝑒𝑠𝑠𝑃 = ∑
𝐶𝑇𝑗

𝑛𝑝
 ; 𝐼𝑃𝐶𝑝𝑗 ≠ 𝐼𝑃𝐶𝑝

𝑛𝑝

𝑗
  

where CTj is the count of IPC codes of patent/s j (cited by patent p) which are not present in 

the focal patent p; np is the number of IPC codes in the backward citations of the focal patent 

p for which the indicator is calculated. 

 

3.2 Indicators to characterize ex-post impact of inventions 

From an ex post perspective, inventions are characterised by the extent to which they impact 

future technological developments (Ahuja and Lampert, 2001). This conceptualisation 

revolves around the idea that inventions can be distinguished by their ability to become the 

seeds for future technological developments. The literature tends to investigate the impact of 

technologies using two indicators: forward citations and generality index. The former is 

employed here to measure the number of subsequent inventions influenced by the patent under 

investigation; the latter is used to capture the variety of technological fields affected by the 

focal patent.  

3.2.1 Forward citations (5 years and 7 years) 

The use of forward citations is probably the most diffused measure of patent quality. Prior 

studies use forward citations counts to proxy for invention value (Harhoff et al., 2003; Hall et 

al., 2005; Sapsalis et al., 2006), diffusion and knowledge spillovers (Trajtenberg, 1990; Hall & 
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Helmers, 2013; Sorenson & Fleming, 2004; Bacchiocchi & Montobbio, 2009; Dechezleprêtre 

et al., 2014), and importance (Dahlin and Behrens, 2005; Trajtenberg et al., 1997). 

In the present paper, we use patent citations to investigate the impact on subsequent inventions, 

indicating a knowledge flow from one invention to the other. Patent citations are commonly 

used to assess the role of an invention as the starting point for further inventions (e.g., Hall & 

Helmers, 2013). The OECD patent quality indicators report (Squicciarini et al., 2013) develops 

two indicators of forward citations that differ in the time intervals (5 and 7 years after the patent 

publication date) at which the citations are observed. 

3.2.2 Generality 

The generality index is the forward citations counterpart of the originality index. It measures 

“the extent to which the follow-up technical advances are spread across different technological 

fields, rather than being concentrated in just a few of them” (Trajtenberg et al., 1997, p. 27). 

The generality index of a focal patent characterizes the degree to which citing patents belong 

to a variety of technological fields. The higher the patent’s generality index, the higher its 

impact on a variety of different technological fields.  

The generality index is measured as: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦𝑖 = 1 − ∑ 𝑠𝑖𝑗
2

𝑛𝑖

𝑗
 

where sij is the share of IPC 4-digit codes j present in patent i among the overall number of ni 

patent classes to which the citing patents belong. The index ranges from 0 to 1.  

The generality index is used frequently in the innovation literature. Trajtenberg et al. (1997) 

argue that higher levels of generality correspond to higher levels of basicness of the knowledge 

exploited, while Hall and Trajtenberg (2004) show that GPT tend to have higher generality 

indexes than the average invention.  
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4. Data and Methods  

4.1 Data  

The comparison between green and non-green patents is based on two data sources. First, from 

the EPO Worldwide Patent Statistical Database (PATSTAT) – Autumn 2016, we gathered 

information for patents filed at the European Patent Office (EPO) in the period 1980-2012,6 on 

patent families, citations, technological classification codes and patent applicants’ 

geographical information. Second, the OECD Patent Quality Indicators database (Squicciarini 

et al., 2013) makes available a wide array of patent indicators, which we employ to proxy for 

the knowledge dimensions described in Sections 2 and 3.  

Merging these two data sources, results in a dataset that provides information on patent 

documents and indicators. Following standard practice in the literature, we exploit the former 

information to identify environment-related patents based on a technology classification 

search. Specifically, for each patent, we obtained the list of IPC and CPC assigned to it. Then, 

using the OECD Env-Tech classification (2016),7 which provides a list of technological 

classification codes associated to selected environment-related technologies, we can define 

patents as green if they include an Env-Tech classification code. The OECD patent 

classification list enables us to focus on a greater number of green technologies compared to 

previous studies (e.g., Popp and Newell, 2012; Dechezleprêtre et al., 2014), in particular: 

environmental management, water-related adaptation technologies, climate change mitigation 

                                                      
6 The EPO was established in 1978. However, during the first two years of its existence, trends in the number of 

patents filed at this patent office were characterised by large fluctuations. Hence, we decided to drop the first two 

years and focus on patents filed from 1980 onwards.   
7 See Haščič and Migotto (2015) for an exhaustive explanation of this classification. 
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technologies related to transportation, buildings, environmental goods, carbon capture and 

storage, and energy generation, transmission and distribution.  

We use patent family as our unit of analysis to deal with multiple equivalents of the same 

invention (Hall and Helmers, 2013), that is, patents issued in more than one country, which 

could lead to double counting of the same patent filed at different patent offices. Although the 

patents pertain to the same family, this does not guarantee that their claims and disclosure 

conditions are identical. Patent filing procedures vary among patent offices and patent issuing 

authorities (Simmons, 2009).8 This heterogeneity of information within patent families leads 

to slight differences in the values of the patent indicators within a family, for example, number 

of citations, technological classification codes, etc. To deal with this issue, we follow 

Verhoeven et al. (2016) and take the maximum value of each indicator within the patent family. 

Although this practice has been operationalised in the literature, we further tested the stability 

of our results using alternative values for the patent indicators (see Section 5.2).  

Table 1 provides descriptive statistics of the variables employed in the empirical analysis. We 

observe that 8.4% of the patent families in our sample are related to environmental 

technologies. Note that the number of observations used in our estimates varies according to 

the indicator considered. This variation stems from the way the indicators are built. In 

particular, it is impossible to calculate originality and radicalness indicators if the focal patent 

does not cite any prior patents; similarly, computing the generality index if the focal patent is 

not cited by subsequent patents is not feasible (see Section 3).  

 

                                                      
8 E.g., at the United States Patent and Trademark Office (USPTO) applicants are legally required to provide a list 

of citations during the application process, whereas at the EPO such requirement does not exist. 
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4.2 Methodology 

To investigate the differences between green and non-green inventions, across different 

dimensions, such as complexity, radicalness and impact, we estimate the following model: 

𝑝𝑎𝑡. 𝑖𝑛𝑑𝑖𝑐𝑖
𝐴 =  𝛼 +  𝛽 𝐺𝑟𝑒𝑒𝑛𝑖

0,1 + 𝛾 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖
𝐴 + 𝐼𝑃𝐶. 3𝑑𝑖𝑔𝑖

0,1 + 𝑔𝑒𝑜𝑖
0,1 + 𝑡𝑖𝑚𝑒𝑖

0,1 + 𝜀𝑖 

where 𝑝𝑎𝑡. 𝑖𝑛𝑑𝑖𝑐𝑖
𝐴 refers to the patent indicator A, that is, scope, originality, radicalness, 

forward citations and generality. The nature of the indicator dictates the choice of estimation 

method. When focusing on indicators for originality, radicalness and generality, we are dealing 

with censored dependent variables (i.e., by definition, their values cannot go below 0 or exceed 

1), therefore, we rely on Tobit regressions.9 Conversely, scope and forward citation are count 

indicators , thus, we rely on Poisson estimations. 𝐺𝑟𝑒𝑒𝑛𝑖
0,1

 is the main variable of interest and 

is equal to 1 if at least one patent within the patent family 𝑖 is green, that is, it belongs to 

technological fields included in the OECD Env-Tech list, and 0 otherwise. 𝐼𝑃𝐶. 3𝑑𝑖𝑔𝑖
0,1

 is a 

set of IPC 3-digit dummy variables that capture the specific features of each technological 

domain (a detailed description is provided below). 𝑔𝑒𝑜𝑖
0,1

 are geographical dummies employed 

to control for heterogeneous effects across geographical areas.10 We also include time 

dummies, 𝑡𝑖𝑚𝑒𝑖
0,1

, to control for unobservable factors related to changes in patenting patterns 

through time. These dummies capture whether the earliest priority year of the patent family 

falls within one of three time windows: 1980-1990, 1991-2001, 2002-2012.11 This allows us to 

control for unobservable heterogeneity that affects patent indicators equally and varies over 

time (e.g., patenting intensity, etc.).  Finally, 𝜀𝑖 is the error term. 

                                                      
9 In our sample, the originality and generality indicators never reach the upper “theoretical” limit (i.e. 1) (see Table 

1). Hence, in these two cases, in our regressions, we impose only the left-censoring limit at 0.  
10 We assign patents to geographical areas on the basis of country of origin of the (highest share of) applicants. 

Geographical dummies refer to: Europe; United States; Japan; Other OECD countries; and Non-OECD countries.  
11 As a robustness check, we use time dummies, each of which captures a 5-year period. The different lengths of 

the “time windows” do not influence the results (available upon request), which remain extremely stable compared 

to those reported in Section 5. 
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We also include a set of control variables. First, we control for number of applicants, which 

might affect the extent to which the patent can rely on a larger pool of knowledge (Staats et al., 

2012) and, consequently, the complexity, radicalness and impact of the invention. In some 

cases, choice of the controls is dictated by the way the patent indicators are built. For patent 

indicators that rely on information about prior knowledge, that is, originality and radicalness, 

we control for backward citations (Hall et al., 2001). In addition, since backward citations are 

considered to proxy for invention quality (Harhoff et al., 2003), if scope, forward citations and 

generality are the dependent variables, we include, as a control, the variable capturing 

backward citations. Moreover, since the generality index relies on citations from subsequent 

patents, we control for the number of forward citations (Hall et al., 2001). Finally, for the scope 

and radicalness indicators, which are built using technological classification codes, that is,  we 

control for the number of full digit IPC codes (e.g., Sapsalis et al., 2006).  

 

4.2.1 Controlling for technological specificities 

We include a technology dummy, 𝐼𝑃𝐶. 3𝑑𝑖𝑔𝑖
0,1

, because, unlike other related studies (e.g. Popp 

and Newell, 2012; Dechezleprêtre et al., 2014), we control for the invention’s technical 

specificities by comparing green and non-green patent families within narrow technological 

fields. This allows us to compare green and non-green inventions that are expected to be 

similar,12 that is, belong to the same technological domain. Comparison between patent 

families relies on the fact that patents with similar technical features are assigned to the same 

IPC 3-digit code.  

                                                      
12 Consoli et al. (2016) employ a similar empirical setting in the context of green jobs. They compare the skill 

content and human capital indicators for green and non-green occupations. In our work, a similar model is applied, 

using technological classification structures instead of occupational categories, to compare the difference between 

green and similar (i.e., belonging to the same technological fields) non-green patents. 
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Comparing green and non-green patents within the same IPC 3-digit codes adds to the 

robustness of the analysis. Rather than focusing on macro-technological groups (e.g., energy 

production, transportation, etc.), we investigate the difference between green and non-green 

inventions within narrow technological fields, for example, “Basic electric elements” (H01 - 

IPC); “Steam generation” (F22 - IPC); “Organic chemistry” (C07 - IPC), etc. Failing to take 

account of the idiosyncratic features of technological domains – such as, availability of a 

consolidated prior art, propensity to cite or be cited by other patents, tendency to rely on a 

wider range of knowledge components – could bias estimation of the true difference between 

green and non-green patents. Indeed, without controls for technological heterogeneity, 

estimation of the coefficient of the green variable could be driven by differences in complexity, 

radicalness and impact across technological fields, rather than by the true particularities of 

green compared to non-green patents. It should be noted that including these dummies, limits 

the analysis to those IPC 3-digit codes which include at least one green and one non-green 

patent family.13 

In order to assign an IPC 3-digit code to each patent family, we rely on use of the primary 

codes, that is, the main IPC code assigned to each patent (Thompson and Fox-Kean, 2005; 

Leydesdorff et al. 2014).14 Since primary codes are provided only by the USPTO, where 

‘Primary’ and ‘Secondary’ classification codes are mandatory for patent applications, we focus 

on patent families with patents filed at both the EPO and the USPTO. This results in the 

inclusion in our sample of high-quality patents, reduces the heterogeneity arising from 

differences in the patenting processes across patent offices and allows us to obtain a coherent 

                                                      
13 Some environmental-related patent classification codes included in the OECD Env-Tech list are at the IPC/CPC 

4-digit level. This implies that the lowest digit level at which we can find both green and non-green patent families 

is the 3-digit level. It follows that, in order to compare both green and non-green patent families within the same 

3-digit code, we must adopt the IPC system since some of the CPC codes relate entirely to green technologies 

(e.g., Y02 - CPC).  
14 Verspagen (1997) points out that primary or main classification codes are good proxies for the sector in which 

the knowledge is produced, whereas supplementary codes can be considered as proxying for sectors to which 

knowledge spills over. 
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and homogeneous set of patent families. As an alternative approach, we exploit Breschi et al. 

(2003), which assumes no difference between primary and supplementary codes. Hence, we 

retrieve the full set of IPC 3-digit codes assigned to patent families. This alternative approach, 

in turn, increases the size of the patent family sample as it allows the inclusion of a set of 

USPTO patent applications with missing information for primary code.15 

Both approaches retrieve multiple IPC 3-digit codes within each patent family. While this is to 

be expected from the alternative approach, we observe that some patent families have multiple 

primary codes. This is not surprising since primary codes are assigned to patents rather than to 

patent families. In both cases, we choose the most frequent IPC 3-digit code assigned to each 

patent family in order to obtain a unique code. Although, for the vast majority of patent 

families, we can identify a unique 𝐼𝑃𝐶. 3𝑑𝑖𝑔, some families still have multiple IPC codes with 

the same frequency. In these cases, we identify the 3-digit code of the earliest dated patent 

document. However, this procedure failed to identify unique IPC 3-digit codes for 4.53% of 

patent families which, thus, are excluded from the analysis.16  

 

                                                      
15 In PATSTAT, almost half of the patents include this information. Further details on the IPC position field in 

PATSTAT are available from the PATSTAT Data Quality Report, available at:  

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiAqr

Tv7ffWAhVHKFAKHcq5CdIQFggnMAA&url=https%3A%2F%2Fcircabc.europa.eu%2Fwebdav%2FCircaBC

%2FESTAT%2Finfoonstatisticsofsti%2FLibrary%2Fmethodology%2Fpatent_statistics%2FPATSTAT-

DataQuality_December%25202013.pdf&usg=AOvVaw3Wuf24IJ9w5TDKzM0NP89e (last accessed January 

2018) 
16 The same approach is implemented to identify a unique geographical code for each family. After collecting 

information on the geographical location of each applicant, we identify the most frequent applicant’s geographical 

area within each patent family. In the case that some patent families have multiple geographical codes with the 

same frequency, we assign the patent family to the geographical area of the earliest patent document within the 

family. Since across country co-patenting is not frequent (Hagedoorn, 2003; Belderbos et al., 2014), the number 

of families not eventually assigned to a unique geographical area is 0.54% of the sample. 

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiAqrTv7ffWAhVHKFAKHcq5CdIQFggnMAA&url=https%3A%2F%2Fcircabc.europa.eu%2Fwebdav%2FCircaBC%2FESTAT%2Finfoonstatisticsofsti%2FLibrary%2Fmethodology%2Fpatent_statistics%2FPATSTAT-DataQuality_December%25202013.pdf&usg=AOvVaw3Wuf24IJ9w5TDKzM0NP89e
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiAqrTv7ffWAhVHKFAKHcq5CdIQFggnMAA&url=https%3A%2F%2Fcircabc.europa.eu%2Fwebdav%2FCircaBC%2FESTAT%2Finfoonstatisticsofsti%2FLibrary%2Fmethodology%2Fpatent_statistics%2FPATSTAT-DataQuality_December%25202013.pdf&usg=AOvVaw3Wuf24IJ9w5TDKzM0NP89e
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiAqrTv7ffWAhVHKFAKHcq5CdIQFggnMAA&url=https%3A%2F%2Fcircabc.europa.eu%2Fwebdav%2FCircaBC%2FESTAT%2Finfoonstatisticsofsti%2FLibrary%2Fmethodology%2Fpatent_statistics%2FPATSTAT-DataQuality_December%25202013.pdf&usg=AOvVaw3Wuf24IJ9w5TDKzM0NP89e
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiAqrTv7ffWAhVHKFAKHcq5CdIQFggnMAA&url=https%3A%2F%2Fcircabc.europa.eu%2Fwebdav%2FCircaBC%2FESTAT%2Finfoonstatisticsofsti%2FLibrary%2Fmethodology%2Fpatent_statistics%2FPATSTAT-DataQuality_December%25202013.pdf&usg=AOvVaw3Wuf24IJ9w5TDKzM0NP89e
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5. Results  

5.1 Comparing green and non-green inventions 

In this section, we present the results of our empirical analysis. First, we compare green and 

non-green patents without controlling for the technological specificities of each invention, that 

is, by calculating a simple t-test on the mean difference across the indicators presented above. 

Table 2 shows whether green technologies are different from non-green technologies. On 

average, green and non-green technologies are significantly different (at the 99.99% level) 

along the search and impact spaces. In particular, green patents are characterised by higher 

complexity in their recombination, relative to non-environmental technologies, in both scope 

(+14.18%) and originality (+7%). Also, green patents are characterised by higher levels of 

radicalness (+3.13%) than non-green inventions. In relation to impact on subsequent patents, 

inventions with environmental-related application are 6.25% more general and receive 12.83% 

(or 10.9%) more citations on average than non-green patents, within 5 (or 7) years of 

publication.  

However, these results do not account for the different types of technologies characterising the 

sample. That is, the positive difference between green and non-green patent families may be 

driven by a subset of technological domains in which green technologies perform relatively 

better. Figure 1 depicts average values of each patent indicator over the IPC 3-digit codes for 

green and non-green patent families (respectively solid and dashed lines) and their difference 

(black bars). We observe that the average value of green patent indicators is higher than the 

value of non-green indicators across almost all IPC 3-digit codes. This finding provides 

heuristic evidence that, even when considering narrow technological fields, green patent 

families exhibit greater complexity and radicalness and have a greater impact on subsequent 

technologies compared to non-green patent families. 
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<<Table 2 around here>> 

<<Figure 1 around here>> 

The core of our econometric analysis is intended to test and quantify the differences between 

green and non-green technologies by controlling for technological characteristics and other 

factors that might influence the patent indicators. Table 3 includes two columns for each patent 

indicator, depending on the strategy used to identify the IPC 3-digit dummy variables, that is, 

primary code or all classification codes (see Section 4.2). A first insight is that differences 

between green and non-green technologies persist along all the dimensions we consider, even 

when controlling for patent citation patterns, number of applicants, geographical dummies, 

time dummies and technological fields. More precise insights emerge from inspection of the 

specific indicators that capture ex-ante recombination and ex-post impact patterns. 

Let us focus on the first group of indicators, which measure complexity based on indicators of 

scope and originality, and radicalness. First, we see that the controls have the expected signs 

and significance. Patent families with larger pools of applicants tend to be characterised by 

higher originality and scope and greater radicalness. When looking at backward citations, 

inventions that develop upon a larger body of prior knowledge appear to be broader in scope, 

more original and radical. As expected, Scope (Full-digit) exerts a positive and significant 

effect on patent scope. Finally, we notice a negative coefficient of Scope (Full-digit) when 

radicalness is the dependent variable, which is in line with how the indicator is built (see 

Section 3.1.3).17 

Moving to the main analysis, including environmentally-sound technological solutions in a 

patent increases, ceteris paribus, complexity in recombination in a non-homogeneous way. 

                                                      
17 A higher number of IPC classes in the focal patent reduces the probability of the presence of technological 

classes in the cited patents which are not included in the focal patent, which is what the radicalness indicator 

measures (see Section 4.2).    
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Green inventions are more original and have a broader scope than their non-green counterparts. 

In other words, green technologies stem from a more dispersed search space and, at the same 

time, include more distinct knowledge component branches than their non-green counterparts. 

More specifically, belong to a green technology domain increases patent originality by around 

3% (from +2.8% to +3.2%, depending on the technology dummies used, that is, 𝐼𝑃𝐶. 3𝑑𝑖𝑔𝑖 , 

see Section 4.2), and increases the scope of an invention by more than 10% (i.e., from +10% 

to +13%).18 Hence, it appears that including an environmental objective in an invention 

increases its technological breadth (as captured by the scope indicator) more than dispersion of 

the different technological fields upon which this is based (as captured by the originality 

indicator). In other words, our results suggest that green compared to non-green patents, draw 

on slightly more diversified knowledge fields, but, in particular, combine a markedly higher 

number of technological components.19  

The third indicator of ex-ante recombination pertains to the radicalness of the invention. In this 

case, we notice that the effect of including an environmentally-sound technological component 

is limited (although not negligible) compared to the effect of the scope and originality 

indicators. The evidence still points to a positive, albeit relatively small, and significant effect 

of the Green dummy on the radicalness indicator. Green patent families are more differentiated 

from their knowledge sources than non-green patent families. In particular, the green 

orientation of an invention increases its radicalness by around 1.5% (+1.3% to +1.5%). 

<<Insert Table 3 here>> 

                                                      
18 Table 3 presents the β-coefficients of our Tobit and Poisson regressions. In order to provide a quantification of 

the results, given the non-linear nature of our models, in Section 5.1 we present the marginal effects of Green. For 

the Tobit estimates, we follow Cameron and Trivedi (2005, p. 542) and compute the marginal effect ∂E(y|x)/∂x of 

Green, focusing on the partial derivative of the conditional mean of the observed dependent variable, y.    
19 The following examples help to explain the possible coexistence of high values for scope and more limited 

values for originality. Patent EP1354631(A2) covers a relatively large number (4) of IPC 4-digit classes, and its 

backward citations are not evenly distributed across IPC 4-digit classes, but rather are concentrated in one class 

(i.e., more than 50% of the IPC classes of the cited patents are related to the IPC B03C code).   
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Following the results for ex-ante recombination, we focus next on the characteristics of the 

impact space according to the ex-post indicators described in Section 3.1, that is, number of 

forward citations and the generality index. Again, we find the expected positive sign of the 

coefficients of our controls for number of applicants and backward citations patterns and, when 

the generality indicator is used as dependent variable, for forward citations.  

In the case of green patents and their impact on future inventions, captured by the effect on 

forward citations in 5 (and 7) years, our estimates reveal a positive and significant effect. Green 

patents receive 29%-30% (27%-29%) more citations from subsequent inventions than non-

green patents. This is evidence that green inventions are more likely to become the seeds for 

future inventions than their non-green counterparts. Our results show that green patents, on 

average, are more likely than their non-green counterpart to exhibit an impact on a variety of 

technological domains. In particular, our estimates show that, on average, the generality of a 

green patent increases by more than 4.5% (from +4.3% to +4.6%). In this sense, our results 

confirm the pervasiveness of green inventions in technological realms that are different from 

the original domain of the patent, thus, corroborating the idea that environmentally-sound 

technologies shows traits typical of GPTs (Hall and Trajtenberg, 2004).  

 

5.2 Robustness checks 

In this section we provide a series of robustness checks to test the stability of our results. The 

so-called “p-value problem” concerns the inverse relationship between this measure and 

sample size (Chatfield, 1995): p-values and standard errors decrease with increasing sample 

size, leading us to question whether the significance of the coefficients can be interpreted as a 

meaningful or only a statistical effect. This is particular relevant in the case of our analysis: our 

conclusions about the statistical significance of the coefficients could be driven by the large 
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sample size (Lin et al., 2013). To deal with this issue, in Tables 2 and 3 we adapt the p-value 

threshold for significance to the sample size, by considering the coefficients as statistically 

significant if their p-value is smaller than 0.01%. Following Benjamin et al. (2018), who point 

to the need to adopt more stringent p-value thresholds, our claim of statistical significance is 

one hundred times more restrictive than the usual p < 1%. Second, to reduce issues arising from 

the sample size, we ran the analysis using a smaller number of observations. We reran the 

regressions on subsamples obtained from a stratified random sampling procedure, to maintain 

representativeness in terms of share of patents per year and technological field, and share of 

green patents. Appendix Table A1 reports the results using two subsamples, that is, amounting 

to 5% and 10% of the original dataset. We observe that the sign and statistical significance of 

our results hold even with these smaller representative samples. This suggests that our findings 

are not driven by the relative large sample size, but, instead, capture truly significant and 

meaningful effects. 

In Section 4.1, we follow the methodology employed in Verhoeven et al. (2016) by taking the 

maximum value of the patent indicators within each patent family (our unit of analysis). In 

order to check whether our results are robust to this choice, Appendix Table A2 presents the 

results obtained using the minimum values of the indicators within each patent family. We 

observe that the significance and sign of the key variable green and the control variables do 

not change when we use the lower bound of the indicator values within the patent families. The 

results confirm that, although there may be heterogeneity in patent indicator values within the 

same patent family, their variance is relatively low and does not affect the regression estimates. 

Finally, we consider the quality of the patents included in our dataset. As an additional 

robustness check, we focus on triadic patent families (Dernis and Khan, 2004), that is, those 

patents filed at the three most important patent offices: the EPO, USPTO and Japan Patent 

Office. This enables us to focus on high-quality inventions, since the size of the patent families 
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is considered to be a good proxy for high-value inventions (Lanjouw et al. 1998; Harhoff et al. 

2003). Appendix Table A3 presents the results for the triadic patent family subsample. We 

observe that the significance and signs of the coefficients do not vary with respect to our main 

results.  

 

6. Discussion and conclusions 

In this paper, we focused on green technologies to assess whether they differ from their non-

green counterparts. Using patent data and a set of established patent indicators provided by 

Squicciarini et al. (2013), we sought to link the search and impact spaces. The search space 

was investigated from an ex-ante perspective that captured the knowledge recombination 

processes leading to an invention. The impact space was explored using an ex-post approach 

that assessed the impacts of inventive activities on subsequent technological developments. We 

focused on the upstream phase of the innovation process, that is, inventive activity, to net out 

differences between green and non-green technologies that might relate to the adoption and 

commercial exploitation of innovations. Also, we accounted for possible confounding factors 

arising from technological heterogeneity and citations patterns to identify differences due 

directly to the environmental orientation of the inventions.  

Our first set of findings provides an original and direct test of whether the generation of 

technological knowledge differs between the green and non-green realms. Our results confirm 

the distinctiveness of the green knowledge base found in prior studies (e.g., Cainelli et al., 

2015; Ghisetti et al., 2015). Green technologies are more complex and, to a lesser extent, also 

more radical than non-green ones. Overall, our results for the ex-ante recombination of 

knowledge lead to three potential conclusions. First, green technologies combine a higher 

number of technological components than their non-green counterparts. Second, green patents 
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rely on more diverse branches of knowledge for their generation compared to their non-green 

patent counterparts. Third, green inventions develop based on new combinations of knowledge, 

which are different from their knowledge sources. The size of the coefficients of our estimates 

suggests the first conclusion is stronger than the second and, in particular, than the third one.  

Linking our analysis to the evidence from firm-level studies investigating the knowledge bases 

of environmental innovations, our results suggest that meeting the additional requirements of 

complexity and radicalness is not straightforward and requires difficult knowledge-sourcing 

efforts, such as, exploitation of open innovation modes and external knowledge providers (e.g., 

De Marchi, 2012; Ghisetti et al., 2015; Marzucchi and Montresor, 2017). However, it is 

important to stress two issues, which suggest caution in making a direct link between our results 

and the available firm-level evidence, based mainly on survey data. First, as already mentioned, 

in our study, we focused on the process of knowledge recombination at the basis of the 

inventive activity that generates new technologies. It might be that, “downstream” phases, 

including adoption of technologies or the economic exploitation of environmental innovations, 

add complexity, which needs to be dealt with, and require radically new competences, which 

induces firms to look for knowledge outside their boundaries. Second, compared to the firm-

level evidence available in the literature, we looked at another type of difference, namely that 

between the knowledge content of a green patent and the knowledge base of all non-green 

inventions in the same technological field. Prior studies consider firms’ knowledge-sourcing 

activities that are dictated by differences between their internal competences and those required 

to increase their environmental innovation performance. As a result, our findings cannot be 

translated directly into firm-level implications for knowledge sourcing strategies. This would 

require consideration of firms’ actual capacities to identify, assimilate (and exploit) knowledge 

from the external environment, that is, their absorptive capacity (Cohen and Levinthal, 1989; 

Zahara and George, 2002). This is beyond the scope of the analysis in this paper, but should be 
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addressed in future research: not considering firms’ idiosyncratic capacity to access the pool 

of patented knowledge “underestimates” firms’ challenges and reactions related to 

technological complexity and radicalness.  

This first set of results not only provides insights into the knowledge base underlying 

environmental innovation, it also suggests some important policy implications. The fact that 

green technologies rely on more and diversified branches of knowledge resonates with the idea 

that these technologies are in an early stage of their life cycle (Consoli et al., 2016): the need 

to draw on multiple technological fields would seem to suggest that established green 

technological development trajectories have yet to be defined (Barbieri, 2016). This implies 

the need to devise technology policy interventions that support multidisciplinarity, to favour 

knowledge diversification rather than specialisation and ease knowledge transfer. By the same 

token, network-type policy actions emerge as fundamental tools to facilitate connections 

among actors involved in different technological arenas. These actions would seem to 

constitute a viable strategy to trigger the introduction of radical technical change, which is 

recognised as fundamental to achieve environmental sustainability (Mazzanti and Rizzo, 

2017). 

The second set of results relate to the impact of green technologies on future technological 

developments. Without restricting our analysis to specific technological domains, we 

contribute to previous work (e.g. Popp and Newell, 2012) by providing more general evidence 

of whether green patents differ from similar non-green ones in terms of forward citations and 

generality. We found that green technologies are characterised by more forward citations and 

higher generality. Our results show that, while effective for triggering subsequent patented 

technologies (forward citations), green inventions also affect a higher variety of technological 

domains as highlighted by the generality index. In other words, green inventions are 

characterised by higher impact and pervasiveness, a major trait of GPTs. As such, green 
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technologies may not (yet) offer unique solutions; rather, they open opportunities for 

technological developments in different sectors. Moreover, their economic and environmental 

impact rests on the technological complementarities within application fields (Bresnahan and 

Trajtenberg, 1995; Cantner and Vannuccini, 2017).  

This connects to two sets of technology policy implications. Given the high potential for 

spillovers across a variety of technological fields, public interventions (e.g., R&D subsidies) 

to support green technologies seem to be well justified. This is consistent with prior analyses, 

for example, Dechezleprêtre et al. (2014). In addition, the traits that green inventions share 

with GPTs call for actions to support the development of downstream technological 

applications. This would increase the economic and environmental returns to advances in green 

technologies. Direct interventions by policy makers could ease coordination problems and 

realign the incentives of actors that are distance in terms of sectors and technologies (Bresnahan 

and Trajtenberg, 1995). However, this would involve much selection of the applications to be 

supported. In an evolutionary approach, given the uncertainty surrounding the green 

technological development trajectory, excessive selection could lead to inefficient outcomes if 

it becomes detrimental to the variety of the alternatives (Metcalfe, 1994). 

Our work sets the stage for further research. We focused on a specific phase in the innovation 

process: generation of inventions. It is important to ascertain whether the adoption and 

exploitation of green technologies represent complex and radical changes for firms. This would 

help to clarify whether resorting to external knowledge to augment the firm’s existing 

knowledge, is the solution to issues that arise in one or all the different phases in the innovation 

process. Second, the availability of a reliable match between patent and firm level data, would 

allow future research to scrutinise the role of firms’ absorptive capacity and prior experience 

of developing green technologies (or related non-green ones). Finally, our analysis is confined 

to the technological realm. Going beyond this scope is required to assess whether (and which) 
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green technologies provide increasing (environmental and) economic returns to scale, which is 

an important trait of GPTs (Hall and Trajtenberg, 2004).  
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Figures 

Figure 1 – Indicators within each IPC 3-digit code: mean differences between green and non-green patent families 

 

Note: IPC 3-digit codes are listed in alphabetical order in the x-axis. Left axis reports the average value of the patent indicators within each IPC 3-digit code for green patent 

families (solid line) and non-green patent families (dashed line). The bar graphs (right axis) measure the difference in the mean value of the patent indicators. 
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Tables 

Table 1 – Descriptive statistics 

Variable Variable description Obs Mean Std. Dev. Min Max 

Scope (4-digit) Number of IPC 4-digit codes 1,856,311 2.411 1.380805 1 61 

Originality 
Herfindahl–Hirschman Index of IPC codes in the cited patents 

(Trajtenberg et al., 1997) 1,799,369 .674 .2371565 0 .987 

Radicalness 
Number of IPC codes assigned to the cited patents which are not 

included in the citing patent (Squicciarini et al., 2013) 1,799,808 .319 .2664022 0 1 

Forward citations (5 years) Citation count in the 5 years after patent application 1,856,311 .832 2.177193 0 655 

Forward citations (7 years) Citation count in the 7 years after patent application 1,856,311 1.051 2.546413 0 674 

Generality 
Herfindahl–Hirschman Index of IPC codes in the citing patents 

(Trajtenberg et al., 1997) 702,194 .350 .2817849 0 .944 

Backward citations Count of backward citations 1,856,311 5.52 6.957807 0 1,002 

Number of applicants Number of applicant - team size 1,856,311 2.646 2.114494 1 100 

Scope (Full-digit) Number of IPC full-digit codes 1,856,311 5.729 5.318183 1 247 

Green Dummy variable equal to 1 if the patent is green and 0 otherwise 1,856,311 .084 .277942 0 1 
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Table 2 – Statistics on patent indicators  

Variable Mean Diff Std. Dev. t-test z-test 

 Green Non-Green Green – Non-green Green Non-Green Difference Ranksum 

Scope 2.745 2.404 0,341 1.495 1.358 -89.36*** -99.62*** 

Originality .719 .672 0,047 .203 .238   -87.91*** -75.43*** 

Radicalness .329 .319 0,010 .257 .267 -15.38*** -21.98*** 

Forward citations (5 years) .923 .818 0,105 2.353 2.135 -17.50*** -22.46*** 

Forward citations (7 years) 1.149 1.036 0,113 2.764 2.496 -15.98*** -18.04*** 

Generality .374 .352 0,022 .280 .281 -19.56*** -19.46*** 

*** p< 0,01%  



41 
 

 

Table 3 – Regression results   

 Complexity 
 

Radicalness 
 

Impact 

 

Scope (4-

digit) - 

Primary 

Scope (4-

digit) - 

All-IPC 

Originality - 

Primary 

Originality - All-

IPC 

 

Radicalness - 

Primary 

Radicalness - All-

IPC 

 

Forward citations 

(5 years) - 

Primary 

Forward citations 

(5 years) - All-

IPC 

Forward citations 

(7 years) - 

Primary 

Forward 

citations (7 

years) - All-

IPC 

Generality 

- Primary 

Generality 

- All-IPC 

          
 

    
 

            

     
 

  
 

      

Green 0.096*** 0.118*** 0.028*** 0.032*** 
 

0.015*** 0.013*** 
 

0.258*** 0.266*** 0.240*** 0.252*** 0.043*** 0.046*** 

 (0.003) (0.003) (0.001) (0.001) 
 

(0.001) (0.001) 
 

(0.014) (0.009) (0.013) (0.008) (0.003) (0.002) 

Forward citations (5 

years)     

 

  

 

    0.014*** 0.019*** 

     
 

  
 

    (0.002) (0.002) 

Number of 

applicants 0.011*** 0.013*** 0.007*** 0.009*** 

 

0.004*** 0.007*** 

 

0.076*** 0.074*** 0.074*** 0.070*** 0.012*** 0.011*** 

 (0.001) (0.001) (0.000) (0.000) 
 

(0.000) (0.000) 
 

(0.004) (0.004) (0.004) (0.003) (0.000) (0.000) 

Backward citations 0.002*** 0.002*** 0.004*** 0.005*** 
 

0.003*** 0.004*** 
 

0.006*** 0.006*** 0.005*** 0.006*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) 
 

(0.000) (0.000) 
 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Scope (Full-digit) 0.022*** 0.024***   
 

-0.003*** -0.004*** 
 

      

 (0.001) (0.001)   
 

(0.000) (0.000) 
 

      

     
 

  
 

      

Observations 1,013,182 1,856,311 983,528 1,799,369 
 

983,686 1,799,808 
 

1,013,182 1,856,311 1,013,182 1,856,311 311,534 701,802 

Regional Dummies YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

Year Dummies YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

IPC.3dig YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

F 
  

686.7 1607 
 

470 1249 
 

    274.4 625.6 

Chi2 136729 311621     
 

    
 

19986 50132 24041 65676     

Robust standard errors in parentheses 

*** p< 0,01 
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Appendix 

Table A1 – Regression results using smaller samples of the patent dataset 

 5% patent sample  10% patent sample 

 Complexity Radicalness Impact  Complexity Radicalness Impact 

 

Scope (4-

digit) - 

Primary 

Originality - 

Primary 

Radicalness - 

Primary 

Forward citations 

(5 years) - 

Primary 

Forward 

citations (7 

years) - 

Primary 

Generality - 

Primary  

Scope (4-

digit)- 

Primary 

Originality - 

Primary 

Radicalness - 

Primary 

Forward 

citations (5 

years) - 

Primary 

Forward citations 

(7 years) - 

Primary 

Generality - 

Primary  

                          

Green 0.102*** 0.026*** 0.010* 0.260*** 0.297*** 0.033***  0.091*** 0.033*** 0.009*** 0.256*** 0.259*** 0.021** 

 (0.008) (0.003) (0.005) (0.051) (0.044) (0.012)  (0.008) (0.002) (0.004) (0.032) (0.031) (0.009) 

Forward citations (5 

years)      0.014***       0.020*** 

      (0.004)       (0.002) 

Number of 

applicants 0.009*** 0.007*** 0.005*** 0.068*** 0.106*** 0.011***  0.012*** 0.007*** 0.004*** 0.100*** 0.102*** 0.012*** 

 (0.002) (0.000) (0.001) (0.012) (0.008) (0.001)  (0.002) (0.000) (0.000) (0.005) (0.005) (0.001) 

Backward citations 0.003*** 0.005*** 0.003*** 0.013*** 0.012*** 0.001***  0.002*** 0.003*** 0.003*** 0.006*** 0.005*** 0.001*** 

 (0.000) (0.000) (0.001) (0.001) (0.001) (0.000)  (0.000) (0.000) (0.000) (0.001) (0.001) (0.000) 

Scope (Full-digit) 0.022***  -0.004***     0.020***  -0.003***    

 (0.002)  (0.000)     (0.002)  (0.000)    

              

Observations 50,574 49,083 49,092 50,574 50,574 15,444  101,355 98,387 98,401 101,355 101,355 31,106 

Regional Dummies YES YES YES YES YES YES  YES YES YES YES YES YES 

Year Dummies YES YES YES YES YES YES  YES YES YES YES YES YES 

IPC.3dig YES YES YES YES YES YES  YES YES YES YES YES YES 

F  38.84 25.81   16.94   70.34 44.83   29.77 

Chi2 8643     6384 5084    16798     9473 4148   

Robust standard errors in parentheses 

*** p< 0,01%  
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Table A2 – Regression results using the minimum indicator values within each patent family 

 Complexity 
 

Radicalness 
 

Impact 

 

Scope (4-

digit)  - 

Primary 

Scope (4-

digit) - 

All-IPC 

Originality - 

Primary 

Originality - All-

IPC 

 

Radicalness - 

Primary 

Radicalness - All-

IPC 

 

Forward citations 

(5 years) - 

Primary 

Forward 

citations (5 

years) - All-

IPC 

Forward citations 

(7 years) - 

Primary 

Forward 

citations (7 

years) - All-

IPC 

Generality - 

Primary 

Generality - 

All-IPC 

          
 

    
 

            

Green 0.045*** 0.082*** 0.026*** 0.029***  0.010*** 0.005***  0.243*** 0.221*** 0.220*** 0.212*** 0.035*** 0.038*** 

 (0.007) (0.007) (0.001) (0.001)  (0.001) (0.001)  (0.009) (0.006) (0.009) (0.006) (0.003) (0.002) 

Forward citations (5 

years)             0.039*** 0.040*** 

             (0.001) (0.001) 

Number of applicants 0.019*** 0.015*** 0.012*** 0.011***  0.028*** 0.029***  -0.198*** -0.144*** -0.230*** -0.159*** 0.017*** 0.014*** 

 (0.002) (0.002) (0.001) (0.001)  (0.001) (0.001)  (0.012) (0.008) (0.013) (0.008) (0.003) (0.002) 

Backward citations 0.000 -0.001*** 0.005*** 0.007***  0.004*** 0.005***  0.004*** 0.005*** 0.003*** 0.005*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Scope (Full-digit) 0.027*** 0.029***    -0.015*** -0.011***        

 (0.002) (0.001)    (0.000) (0.000)        

     
 

  
 

      

Observations 1,012,249 1,856,311 982,608 1,799,369  982,766 1,799,808  1,012,249 1,856,311 1,012,249 1,856,311 310,861 701,205 

Regional Dummies YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

Year Dummies YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

IPC.3dig YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

F   609.7 1422  506 1253      228.6 622.9 

Chi2 59781 217446             23404 69477 28660 85507     

Robust standard errors in parentheses 

*** p< 0,01%  
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Table A3 – Regression results using triadic patent families 

 Complexity 
 

Radicalness 
 

Impact 

 

Scope (4-

digit) - 

Primary 

Scope (4-

digit) - All-

IPC 

Originality 

- Primary 

Originality - 

All-IPC 

 

Radicalness - 

Primary 

Radicalness - 

All-IPC 

 

Forward 

citations (5 

years) - Primary 

Forward 

citations (5 

years) - All-

IPC 

Forward 

citations (7 

years) - 

Primary 

Forward 

citations (7 

years) - All-

IPC 

Generality - 

Primary 

Generality - 

All-IPC 

          
 

    
 

            

Green 0.094*** 0.116*** 0.026*** 0.031***  0.010*** 0.011***  0.229*** 0.257*** 0.220*** 0.247*** 0.035*** 0.039*** 

 (0.003) (0.003) (0.001) (0.001)  (0.001) (0.001)  (0.018) (0.010) (0.017) (0.009) (0.003) (0.002) 

Forward citations (5 

years)             0.011*** 0.017*** 

             (0.001) (0.002) 

Number of 

applicants 0.008*** 0.009*** 0.007*** 0.009***  0.004*** 0.007***  0.080*** 0.078*** 0.078*** 0.073*** 0.012*** 0.010*** 

 (0.000) (0.001) (0.000) (0.000)  (0.000) (0.000)  (0.005) (0.003) (0.004) (0.003) (0.000) (0.000) 

Backward citations 0.002*** 0.002*** 0.003*** 0.005***  0.003*** 0.004***  0.006*** 0.006*** 0.005*** 0.006*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Scope (Full-digit) 0.020*** 0.023***    -0.003*** -0.003***        

 (0.000) (0.000)    (0.000) (0.000)        

     
 

  
 

      

Observations 595,028 1,246,468 580,384 1,209,152  580,469 1,209,473  595,028 1,246,468 595,028 1,246,468 201,817 517,487 

Regional Dummies YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

Year Dummies YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

IPC.3dig YES YES YES YES 
 

YES YES 
 

YES YES YES YES YES YES 

F   466.9 1208  306.3 879.4      200.5 493.9 

Chi2 99779 251855             15497 32113 18359 41214     

Robust standard errors in parentheses 

*** p< 0,01%  
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