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Abstract: The present study provides an analysis of empirical regularities in the development
of green technology. We use patent data to examine inventions that can be traced to the
environment-related catalogue (ENV-TECH) covering technologies in environmental management,
water-related adaptation and climate change mitigation. Furthermore, we employ the Economic
Fitness-Complexity (EFC) approach to assess their development and geographical distribution across
countries between 1970 and 2010. This allows us to identify three typologies of countries: leaders,
laggards and catch-up. While, as expected, there is a direct relationship between GDP per capita and
invention capacity, we also document the remarkable growth of East Asia countries that started from
the periphery and rapidly established themselves as key actors. This geographical pattern coincides
with higher integration across domains so that, while the relative development of individual areas
may have peaked, there is now demand for greater interoperability across green technologies.

Keywords: green technology; fitness; capabilities; economic development

1. Introduction

There is broad consensus among academics and policy makers that accelerating the development
of new low-carbon technologies and promoting their global application are crucial steps, albeit not the
only ones, towards containing and preventing greenhouse gas (GHG) emissions. To be sure, climate
change is a global phenomenon with marked local manifestations, which implies that geographical
areas differ significantly both in their exposure as well as in their ability to respond effectively to
climate events. Indeed the striking paradox is that while environmentally friendly technologies emerge
primarily in industrialised countries, the urgency to mitigate GHG emissions is stronger in emerging
economies. Last but not least, besides the traditional negative externalities due to non-appropriability
and non-exclusivity of knowledge, green technologies engender also positive externalities in the form
of improvements to the quality of the environment.

These features highlight the importance of institutional conditions for promoting or thwarting
sustainable economic growth. Governance mechanisms that are crucial to create incentives for efficient
use of natural resources and for environmental conservation, while minimizing the prospect of market
failures, are spatially bound [1]. Spatial features are also relevant because the generation and diffusion
of knowledge stem from the recombination of ideas [2,3] among agents that have limited access
to information, as well as imperfect capacity to absorb, process, and respond to it [4]. Because
information exchange entails costs that increase with the diversity of the attendant knowledge base,
higher coherence between activities is expected to facilitate the likelihood of innovation [5–7].
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The key point is that economic development builds on existing local capabilities to generate
distinctive technological and industrial profiles [8,9]. A major driver of the distinctiveness of these
trajectories is indeed the composition of knowledge, that is, the number of underlying inputs and the
interdependence between them [10–12]. The greater and more diverse the spectrum of know-how,
the more complex the domains to which this knowledge is applied, be they products [13,14],
industries [15] or technologies [16]. Empirical evidence provides clear indications about these patterns.
First, there are significant differences in the complexity of knowledge produced across geographical
locations. Second, only a few areas exhibit proficiency in complex activities, and this usually correlates
with their long-run economic development. However, by virtue of path-dependence, while investing
in complex technologies is beneficial in principle, many areas simply lack the necessary competences
and, most fundamentally, their underlying conditions prevent them from creating a new path of
development. As a consequence, and third, these features are dynamically self-reinforcing.

In this paper, we employ analytic techniques developed within the Economic Fitness-Complexity
(EFC) approach to economic prediction [17] in order to assess the development and geographical
distribution of green technologies between 1970 and 2010. EFC is a data-driven methodology that
originally targeted the relation between the composition of the export baskets of countries and their
potential to become more developed economies. The idea behind this methodology is that for a country
to become competitive in the production of a given good, it must first acquire the necessary skills.
However, the process leading to the acquisition of new capabilities is by its very nature cumulative
and highly path-dependent, which is consistent with the fundamental intuition that complex products
requiring advanced skills will be exported mostly, if not only, by high fitness countries that will also
be competitive in the production and trade of less complex goods. Capabilities are generally not
observable, and can be conceived as a latent intermediate layer between countries and products in
an ideal tri-partite network. Some recent successful applications of EFC [18,19] have aimed to extract
information about the effects of accumulated capabilities by studying the bipartite network of countries
and exported goods. These studies have shown that the EFC algorithm has considerable predictive
power of the future development of countries, as measured by their future per capita GDP. Among
its outputs, the algorithm features a ranking of country fitness values that proxy how advanced the
set of capabilities of each country is, and a ranking of product complexity values that proxies how
advanced are the capabilities required to produce each product. The satisfying performance of the
method on empirical data has also led to the development of a diversified array of methods and
indicators that rest on the same premises. One such derived measure, which is called sector fitness,
is a straightforward modification of the method proposed by [17]. This narrows down the analysis
to a set of similarly classified products and generates a snapshot of the strength of each country in
a specific sector of activity. Notice that the EFC method exhibits substantial versatility. For instance,
it has been applied successfully to study labour sectors instead of exported products [20]; another
recent application of directly related techniques has been employed to analyse the capability spillovers
between the patenting activity, the scientific production and the export profiles of countries [21].

For this study, we use patent applications as a proxy of capability. The main source is the European
Patent Office (EPO) Worldwide Patent Statistical Database (PATSTAT) containing patent applications
that can be traced to the environment-related technologies catalogue (ENV-TECH) developed by
the Organisation for Economic Co-operation and Development (OECD) [22] and organised in
macro-domains such as environmental management, water-related adaptation, and climate change
mitigation. The transliteration of the EFC approach to this hitherto unexplored empirical context rests
on the idea that the criteria for assigning patent applications to specific domains (i.e., technological
classes) are identifying characteristics of the expertise that is necessary for successful invention.
In particular, the co-occurrence of technological classes in a country allows us to identify the extent to
which inventions and the attending capabilities are common across countries. Accordingly, a country
that has a diversified portfolio of technologies spanning from the most to the least complex ones will
have higher fitness while, in turn, complex technologies appear almost exclusively in the portfolio
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of high-fitness countries. As a consequence, more specialised (or less diversified) countries operate
almost exclusively in less complex sectors. In other words, the portfolio of activities of low-fitness
countries is (almost) nested in that of higher-fitness countries.

Bearing in mind the benefits and the shortcomings of using patent data for the study of technology
development (see e.g., [23–25]), the juxtaposition of the above database and methodology yields proxies
of environment-related inventive activities that allow cross-country and cross-technology comparisons.
In particular, the set of indicators proposed here informs a ranking of countries propensity to create new
green technology as well as of the development these technologies. While we remain agnostic about the
pathways through which countries develop and apply capabilities to environmental issues, we provide
insights into the extent to which each country contributes to the global network of technological
capabilities, as well as into the extent to which the technologies grow and develop as a result of
distributed inventive efforts. Furthermore, we expect that a thorough mapping of who is inventing and
in what can enrich the current debate on leaders and laggards in the transition to sustainable societies.
A detailed analysis of the contextual institutional processes that shape the accumulation of innovative
competences within countries—such as i.e., research and development, labour markets, etc.—and how
this affects differential performance between countries is beyond the scope of the current study, and is
left for future research.

2. Materials and Methods

2.1. Data

The main data source is the PATSTAT database [26] of patent applications. In particular, we exploit
patent classification codes to identify inventions in the domain of environment-friendly technologies
within the classification ENV-TECH elaborated by the OECD [22], which groups International Patent
Classification (IPC) and Cooperative Patent Classification (CPC) codes into 94 green technologies.
The IPC and CPC are two widespread technology classification systems employed by patent offices
to classify the patent documents based on the technological areas in which they claim to be novel.
Both systems exhibit a hierarchical structure that describes the technical content of the patents in
progressively finer detail at lower levels of aggregation [27].

We also exploit information in PATSTAT about patent families—i.e., collections of patents that can
be linked to one or more common ‘ancestor’ patent documents. These collections typically contain
documents relating to the multiple applications involved in protecting the same inventions in multiple
countries, and are our unit of analysis [28]. We identify 1,179,657 patent families (or 2,690,606 patent
applications) to which at least one ENV-TECH classification code is assigned. The resulting data set
includes patent families, filed between 1970 and 2010, concerning a large share of green technologies
in the following fields (and the associated 1-digit ENV-TECH code):

• environmental management (1)
• water management (2)
• climate-change mitigation technologies (CCMTs) related to energy production (4)
• capture and storage of greenhouse gases (5)
• CCMTs related to transportation (6)
• CCMTs related to buildings (7)
• CCMTs related to waste-water and waste management (8)
• CCMTs in the production of goods (9)

To measure national knowledge bases, we assign patent applications to countries using the
inventor’s address information in PATSTAT. This procedure yields a weighted matrix W(y) in
which each element Wc,t(y) represents the fractional count of inventions attributed to country c
and technology t in year y (see Figure 1 for a detailed example). Such a value can be considered a
proxy for the degree of involvement in green technology t of inventors residing in c (see Appendix C
for a more detailed description of the procedure and the data sources).
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Figure 1. Example of data construction. (a) Assume that the there are only three patent families to
account for in a given period y: one (top) developed in a single country c1 that innovates in three
distinct fields (t1, t2, and t3); another one (centre) developed by inventors residing in two countries
that innovates in a single technology; and (bottom) a single-country, single-technology patent family.
All patents are attributed equal weights and the attribution to country-technology pairs is fractional.
(b) The union of the country-technology combinations of all inventions is combined into the weighted
matrix W(y). (c) W(y) is binary to reflect revealed comparative advantage yielding M(y), which is the
input of the EFC algorithm.

2.2. A Fitness Approach to Green Technology

As mentioned in Section 1, we focus on the green sector-fitness of countries that host inventors
of green technologies and the complexity of the green technology classes included in the inventions.
Recall that the peculiarity of sector-fitness lies therein, to compute it, we do not extract information
from the whole technology spectrum (all possible IPC and/or CPC classes) but, rather, we restrain
to a subset of classes that identify the relevant area for the study of a particular sector of activity,
in our case, green technologies. Furthermore, recall that this approach has already been employed
successfully in the study of country exports to break down the fitness profile into individual industries.
No doubt, applying sector-fitness to technologies does imply some risks. The main issue is that the
interpretation of the sector fitness might not be as straightforward for technologies as it is for industries.
In fact, defining an industrial sector from an aggregation of products implies grouping together objects
that are classified unequivocally and generally assigned to only one sector. The same cannot be said
for technologies, since multiple technological fields, namely the objects that we use to define the
technological equivalent of a sector, usually contribute to the same patent, and these fields tend to
be quite distant within the classification tree. For this reason, studying green technology classes in
isolation neglects a wealth of non-green classes that however are part of green inventions. Bearing
in mind these caveats, we expect that the selection of the data involved in applying the sector fitness
approach to studying green technologies still yields reasonable results. The interested reader is referred
to Appendix B for a more detailed discussion.

Computations involve EFC algorithm wherein inputs are binary matrices of countries (rows) and
classes (columns). The underlying assumption is that each patent family weights one unit which is
shared between (country, class) pairs. Since patent applications can be unambiguously attributed to
their filing year, it is natural to build a series of yearly weighted matrices W(y), where each matrix
element Wc,t(y) is the sum of the shares of applications filed in year y that can be traced back to country
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c and green-technology class t. The EFC algorithm requires a binary matrix as input, thus, for each year
y, we binarize W(y) based on Revealed Comparative Advantage [29,30] and obtain M(y) such that:

Mc,t(y) =

1 if Wc,t
∑t′ Wc,t′

>
∑c′ Wc′ ,t

∑c′ ,t′ Wc′ ,t′

0 otherwise.
(1)

The binary matrices are then fed to the EFC algorithm to yield non-negative scores and rankings
for fitness as well as complexity. In formulae:



F̃(n)
c = ∑t Mc,tQ

(n−1)
t , Q(n)

t =
Q̃(n)

t

< Q̃(n)
t >

Q̃(n)
t =

1

∑c Mc,t
1

F(n)
c

, F(n)
c =

F̃(n)
c

< F̃(n)
c >

(2)

with initial condition:

∑
t

Q(0)
t = 1 ∀t. (3)

The fitness of a country is thus defined as the average complexity of its technologies.
The definition of the complexity of a technology, instead, involves a non-linear equation that attributes
lower complexity to the technologies patented by low-fitness countries. It should be noted that,
depending on the structure of M(y), the scores of the lower-ranked entities can converge to zero [31].
Fortunately, rankings remain consistent and can therefore be trusted. For this reason, focusing on
country and technology rankings is a good strategy.

It is worth mentioning that patenting intensity (and coverage) in several countries has grown
sharply in the past decades. Moreover, filing of new patent applications in specific technological areas
is relatively intermittent, meaning that for a given pair (c, t), the corresponding cell in matrix M(y) is
often different from that in M(y + 1). This is more apparent if technological codes are disaggregated,
and can induce some noise. A possible solution is to give up details for inter-temporal stability by
aggregating ENV-TECH technology classes from 3 to 2 digits [32]. A further complementary approach
entails averaging over multiple yearly snapshots of W(t)

W(y, δ) =
1
δ

δ−1

∑
t=0

W(y− t) (4)

before bin arising to obtain M(y, δ). For our analysis, we choose δ = 10 and divide the data into four
non-overlapping windows—1971–1980, 1981–1990, 1991–2000, and 2000–2010—each labeled using
the latest included year (e.g., 2010 stands for the period 2000–2010). Unless otherwise stated, 2-digit
technology classes are employed throughout. The interested reader is referred to Appendix D for a
more detailed account of the trade-off implied by inter-temporal and technological aggregation of
the data as well as the trade-off implied by the choice of the extremes of the time interval included
in the analysis.

3. Results and Discussion

3.1. Green Fitness Ranking: Countries and Technologies

Figure 2 shows the green fitness rankings of all countries across all four time windows. The higher
the ranking the more complex the country’s portfolio of green technologies and, thus, the more
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advanced the invention competences. We provide a synthetic sketch focus on how countries’ innovation
capacity evolves over time using colour coding to distinguish three groups depending on the initial
ranking: leaders (black), followers (purple), and laggards (orange). To begin with, most of the countries
that were leaders in 1980 are still in the top ranking in 2010. Even so, we observe some heterogeneity
in their long-term paths. A first group of global leaders such as the United States (USA), France
(FRA), Germany (DEU) (in black in Figure 2) maintained a steady high ranking throughout the period,
while others—e.g., Japan (JPN), Sweden (SWE), India (IND)—remained mostly in the upper echelons,
but also declined slightly and were caught up with in the ranking by some follower and laggard
countries. Among these, it is worth mentioning some fast-growing countries, listed by increase in the
green fitness ranking, such as Malaysia (MYS), South Korea (KOR), China (CHN), Slovakia (SVK),
Portugal (PRT) and Saudi Arabia (SAU). These all started from mid-to bottom positions in 1980 and
after an impressive, and steady, acceleration have reached the top part of the ranking. Notice that
over time the geographical distribution of inventive activity spreads out, primarily towards Asia,
while the presence of Latin American and African countries is only marginal. As regards Europe,
the distinction between leaders and followers resonates with the differences between countries in the
core and those in the periphery. Notice also that laggard countries exhibit similar stability to leaders,
meaning that countries starting in such groups in the 1980 time window tend, with some notable
exceptions, to remain in the same group throughout.

Figure 2. Time evolution of the green fitness ranking of countries from 1980 to 2010. The country labels
on the left and right vertical axes are listed from bottom to top in order of increasing fitness in the first
and last period of analysis respectively. The lines trace the changes in ranking of each country across
decades. Label and line colours refer to the position of countries in the initial ranking: black, violet
and purple are associated respectively to the top-, middle-, and bottom-third of the 1980 green fitness
ranking. Colours are mixed in 2010, meaning that positions in the ranking have changed substantially
for several countries (see e.g., the constant growth of China and South Korea highlighted by the thicker
purple lines). The names of the countries associated to the abbreviations reported on the y-axis of the
plot are reported in Table A2 of Appendix A.
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Figure 3 lists the Green Complexity of 2-digit environmental technologies in our database and the
associated ranking. Again, the idea is that a higher complexity ranking indicates that a technology
entails a more advanced array of capabilities. Compared to countries, green technologies exhibit more
fluidity, at least in the bottom half of the list, as about half of them have at least one appearance in the
top 10 (conversely, only 4 have been in the the top 5). Looking more in detail, three groups of green
technologies emerge. The first cluster comprises technologies that consistently rank highest (black in
Figure 3), namely ‘Nuclear Energy’ (4_4), ‘Environmental Monitoring’ (1_5), ‘Enabling Technologies
for GHG Emissions Mitigation’ (8_3) and ‘Enabling Technologies in Transport’ (6_5)—in fact, each one
of them has been top of the list in the period under analysis. In the second cluster (purple in Figure 3)
are technologies that, while being consistently high ranking, have at least once slipped out of the top 10.
Among these we observe a variety of patterns, some stable technologies—such as ‘Capture or Disposal
of Greenhouse Gases other than CO2’ (5_2)—some oscillating technologies—such as ‘Technologies for
Efficient Electrical Power Generation, Transmission or Distribution’ (4_5), ‘CO2 Capture or Storage’
(5_1) or ‘Air Transport’ (6_3)—as well as steady growers—i.e., ‘Road Transport’ (6_1), ‘Rail Transport’
(6_2), ‘Enabling Technologies’ (4_6)—and steady decliners – like ‘Technologies Relating to Chemical
Industry’ (9_2) and ‘Climate Change Mitigation Technologies for Sector-Wide Applications’ (9_7).
The third cluster (orange in Figure 3) contains technologies that have only been in the top 10 once, e.g.,
‘Water Pollution Abatement’ (1_2) and ‘Renewable Energy Generation’ (4_1).

Figure 3. Time evolution of green complexity ranking of ENV-TECH technologies from 1980 to
2010. The technology labels on the left and right vertical axes are listed from bottom to top in order
of increasing complexity in the first and last period of analysis respectively. The lines trace the
changes in ranking of each technology across decades. Label and line colours refer to the position
of technologies in the initial ranking: black, violet and purple are associated respectively to the top-,
middle-, and bottom-third of the 1980 green complexity ranking. Colours are mixed in 2010, meaning
that positions in the ranking have changed substantially for several technologies. For instance, notice
the constant growth of the ENV-TECH technology ‘Road Transport’ (6_1), and the steady decline of the
ENV-TECH technology ‘Technologies Relating to Chemical Industry’ (9_2), highlighted respectively
by a thicker orange and purple line. The definitions of the technological codes associated to the
abbreviations reported on the y-axis of the plot are reported in Table A1 of Appendix A.
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Again, a closer look indicates heterogeneity of patterns over time: the most notable are the
ascent of ‘Road Transport’ (6_1) and ‘Technologies in the Production Process for Final Industrial or
Consumer Products’ (9_6) in contrast with the decline of ‘Soil Remediation’ (1_4) and ‘Architectural
or Constructional Elements Improving the Thermal Performance of Buildings’ (7_3). An interesting
indication is that Mitigation technologies rank in general higher than Adaptation. Another notable
feature is that almost all Enabling Environmental Technologies—that is, horizontal technologies with
potential applicability in a variety of fields—feature high in the ranking, thus reaffirming the complex
nature of the underlying capabilities that are needed for their design and creation.

3.2. The Most Complex Green Technologies and the Main Innovators

Let us now juxtapose the information gathered so far and look into combined country-green
technology patterns. In Figure 4 we plot the green fitness based on the country-green technology
matrices M(y, 10) against per capita GDP(y), for y ∈ [1980, 2010]. By pooling all countries and
years in our database, we estimate the expected value of green fitness through a non-parametric
Nadaraya-Watson estimation with a Gaussian kernel [33]. The corresponding 95% confidence interval
is computed with a bootstrap resampling. Figure 4 provides a generalization of what has emerged so
far, namely that there is a positive relationship between average GDP per capita and our measure of
green fitness. We opt for GDP as a proxy of living standards in a country for two reasons. The first
is that GDP is a gold standard which helps us ground our exploratory study on green innovation
better within the existing literature, primarily prior studies that use EFC approach on trade. For all the
known limitations that GDP carries it remains the most widely used measure. The second reason is
that when we contemplated the Human Development Index (HDI) [34] as an alternative (and more
comprehensive) measure, we found a strong correlation with GDP and, thus, that findings were
substantially unaltered.

Figure 4. Correlation between green fitness ranking and per capita GDP over the time interval
1980–2010. Green fitness, as a proxy for the green innovative capacity of countries, is positively
correlated with income per capita. The figure is obtained by pooling countries and years in our
database. The expected value of green fitness is obtained through a non-parametric kernel estimation
(black line), while the 95% confidence interval of the expected value (purple shadow) is computed
with bootstrap.

In turn, the triangular shape of the country-technology matrix of Figure 5 indicates that countries
with higher levels of GDP per capita possess, as several scholars advocate, more developed capabilities
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that allow them to be major producers of more complex green technologies. By the same token,
inventive efforts in poorer countries are limited to less complex technologies as a reflection of overall
lower capabilities. These two snapshots confirm that the distribution of inventive capacity in green
technology is broadly in line with prior literature [17,20,35].

Figure 5. 3-digit M(2010, 10) with rows and columns ordered by green fitness and green complexity
respectively. Colour represents the share of each technology within the technology basket of each
country. The matrix shows a semi-triangular shape, accordingly to the EFC narrative, the highest
green fitness countries are competitive in almost all technologies, from the most to the least complex,
while the basket of technologies of lower fitness countries is limited to less complex technologies.

Looking more in detail, Table 1 shows the ten most complex green technologies over the entire
time period of the analysis (1971–2010) and, for each one, it lists the top five inventor countries,
the share in total world green innovation and the corresponding RCA index. A few features
emerge from this table. First, eight out of ten of the most complex technologies are for Climate
Change Mitigation—the only two exceptions being GHG Capture and Storage, and Environmental
Management. Second, in the upper part of the list are three types of enabling technologies, which
indicates that the most advanced inventive efforts are currently devoted to perfecting existing
technologies for wide, cross-sectoral purposes. Third, and related to the former, the list provides a
balanced mix between mature technologies (i.e., enabling or nuclear energy) and very experimental
ones (i.e., carbon capture, superconducting elements for efficient energy distribution). Fourth, the table
also portrays a balanced picture as the key environmental priorities encompass areas like transport,
waste, industrial production, energy and buildings. Fifth, as already anticipated earlier, the leading
producers are all high-income countries. Another notable feature is the recurrence of Asian catching-up
countries in various domains. South Korea ranks high in all but two (i.e., environmental management
and rail transport) as a reflection of the environmental challenges due to a wide industrial mix
(e.g., [36]). China excels in waste management, rail transport, industrial production and energy, a
profile that resonates with the heterogeneity of emission sources due to remarkable regional and
sectoral differences [37]. Conversely, Taiwan only appears in waste management, plausibly as a
result of targeted policy efforts (e.g., [38]). Table 2 reports the same information as Table 1, but for the
lower-complexity technologies. Unsurprisingly, also in this case the top 5 innovators per technology are
high-fitness countries, which consistently with the triangular structure of Figure 5, have the necessary
capabilities to excel across the spectrum, while low-fitness countries perform relatively well only in
mundane technologies.
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Table 1. Top innovators in the most complex green technologies.

Technology Family Technology Group Top 5 Innovators Share RCA

CCMT for transportation Enabling Technologies 6.5 (example:
Electric vehicle charging)

JPN 0.441 1.126
USA 0.196 1.100
DEU 0.172 1.543
FRA 0.054 1.394
KOR 0.049 0.676

Environmental management
Environmental Monitoring 1.5
(example: Tools for environmental
data analysis)

JPN 0.279 0.713
DEU 0.267 2.400
USA 0.243 1.366
FRA 0.104 2.706
SWE 0.020 3.700

CCMT for wastewater
treatment or waste
management

Enabling Technologies 8.3 (example:
Landfilling with gas recovery)

JPN 0.522 1.333
USA 0.177 0.991
CHN 0.082 1.039
KOR 0.066 0.901
TWN 0.037 1.980

CCMT for transportation Rail Transport 6.2 (example:
Reducing energy consumption)

JPN 0.461 1.176
DEU 0.129 0.725
USA 0.112 1.420
FRA 0.094 0.847
KOR 0.056 1.464

Capture, storage,
sequestration, or disposal of
GHGs

Capture or Disposal of Gases other
than CO2 5.2 (example: Chemical
nitrification inhibitors)

JPN 0.430 1.098
USA 0.238 1.333
DEU 0.080 0.720
KOR 0.049 0.669
FRA 0.041 1.068

CCMT for production or
processing of goods

Enabling Technologies 9.8 (example:
Direct digital manufacturing)

JPN 0.492 1.254
USA 0.165 0.927
CHN 0.124 1.585
DEU 0.088 0.789
KOR 0.033 0.458

CCMT for energy generation,
transmission or distribution

Nuclear Energy 4.4 (example:
Nuclear fusion reactors)

JPN 0.501 1.277
USA 0.163 0.915
KOR 0.135 1.853
FRA 0.053 1.373
DEU 0.047 0.424

CCMT for energy generation,
transmission or distribution

Technologies for Efficient Electrical
Power Generation, Transmission
or Distribution 4.5 (example:
Superconducting electric elements
or equipment)

JPN 0.384 0.979
CHN 0.228 2.901
USA 0.120 0.671
KOR 0.076 1.048
DEU 0.073 0.657

CCMT for transportation Road Transport 6.1 (example:
Hybrid vehicles)

JPN 0.548 1.397
DEU 0.145 1.307
USA 0.124 0.696
FRA 0.049 1.284
KOR 0.048 0.662

CCMT for buildings

Architectural or Constructional
Elements Improving Thermal
Performance 7.3 (example: Retrofit
insulation)

JPN 0.437 1.114
DEU 0.124 1.117
USA 0.104 0.582
CHN 0.098 1.242
KOR 0.088 1.207
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Table 2. Top innovators in the least complex green technologies.

Technology Family Technology Group Top 5 Innovators Share RCA

Environmental Management Water Pollution Abatement 1.2
(example: Oil spill cleanup)

USA 0.338 1.899
DEU 0.1340 1.255
JPN 0.110 0.281
FRA 0.065 1.681
KOR 0.038 0.526

CCMT related to energy
generation, transmission or
distribution

Renewable Energy Generation 4.1
(example: Wind energy)

JPN 0.278 0.707
USA 0.168 0.944
CHN 0.127 1.616
KOR 0.111 1.524
DEU 0.102 0.920

Environmental Management Waste Management 1.3 (example:
Material recycling)

USA 0.281 1.58
JPN 0.132 0.339
DEU 0.122 1.110
FRA 0.081 2.098
ITA 0.050 4.199

CCMT for buildings Energy Efficiency in Buildings 7.2
(example: Lighting)

JPN 0.303 0.773
USA 0.213 1.197
CHN 0.132 1.683
KOR 0.121 1.661
DEU 0.055 0.497

CCMT for buildings

Enabling Technologies in Buildings
7.4 (example: Enabling technologies
or technologies with a potential
or indirect contribution to GHG
emissions mitigation)

JPN 0.418 1.066
USA 0.162 0.911
CHN 0.116 1.472
KOR 0.079 1.080
DEU 0.077 0.696

CCMT in the production or
processing of goods

Technologies Related to Metal
Processing 9.1 (example: Reduction
of greenhouse gas [GHG] emissions)

JPN 0.412 1.052
CHN 0.166 2.119
USA 0.096 0.542
DEU 0.084 0.754
KOR 0.063 0.866

CCMT for energy generation,
transmission or distribution

Energy Generation from Fuels of
Non-Fossil Origin 4.2 (example:
Biofuels)

JPN 0.279 0.7111
USA 0.245 1.378
CHN 0.120 1.526
DEU 0.086 0.777
KOR 0.059 0.815

CCMT in the production or
processing of goods

Technologies Relating to
Chemical Industry 9.2 (example:
Improvements relating to chlorine
production)

JPN 0.313 0.797
USA 0.233 1.306
CHN 0.123 1.572
DEU 0.086 0.774
KOR 0.0515 0.707

CCMT for wastewater
treatment or waste
management

Solid Waste Management 8.2
(example: Waste collection,
transportation, transfer or storage)

JPN 0.439 1.121
CHN 0.125 1.593
USA 0.108 0.604
KOR 0.104 1.434
DEU 0.055 0.499

CCMT for energy generation,
transmission or distribution

Enabling Technologies 4.6 (example:
Energy storage)

JPN 0.614 1.566
USA 0.113 0.635
KOR 0.089 1.219
DEU 0.058 0.520
CHN 0.045 0.579

Figure 6 focuses on a sample of top countries as of 2010 and shows that there is heterogeneity
in the composition of the portfolios of such top innovators. Therein each panel contains the shares
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of patenting in all green technologies (ordered by increasing green complexity from left to right)
in the first and final decade. For instance, Japan is relatively focused on the the most complex
technologies. This contrasts with the country profiles of, say, the US or France which instead have a
more balanced portfolio of green innovation across the complexity spectrum. The above is informative
of the differential contribution of countries to the advancement of the green technology frontier.
Moreover, this broad and long-term view allows us to discern countries that have been leaders since
the beginning of the period, such as Japan, the US, France and Germany, from the latecomers like China
and South Korea, which indeed only started to patent in the 1990s. The distribution of the patenting
shares for each country-decade panel reveals the direction of inventive efforts. For instance, in the
last decade Japan (Panel A of Figure 6) stands out as rather proactive in complex technologies with
high and low complexity, rather than those in the middle. By contrast, the relative contribution of the
US (Panel B of Figure 6) has decreased after the 1990s, due to the entry of other actors, as highlighted
earlier in regards to Figure 1. In relative terms, and compared to Japan, the distribution of US shares
in green technology is higher in technologies with middle levels of complexity. The relative shares
of Germany and France (Panels C and D of Figure 6) are somewhat constant over time and spread
evenly across the whole technological spectrum. Interestingly, newcomers like China and South Korea
(Panels E and F of Figure 6) join the global path of green technology innovation with contributions to
both less and more complex technologies.

Figure 6. Composition of national green technology baskets. Each panel illustrates the share of patents
produced by a selection of countries in each 2-digit technological field in 1980 (upper part) and 2010
(bottom). Technologies are ordered by increasing complexity. The colour of the bars indicates the
ranking of each technology in 1980, while the background colour stands for the 1-digit technology to
which each bar belongs (see list on p. 3). The hatched pattern is for technologies that are observed in
both time windows.
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3.3. How Does Green Innovation Capacity Vary with Income and Trade?

Coherent with the argument that the accumulation of competences is a vehicle for fostering
growth [39], Figure 4 in the previous subsection hints at a strong positive correlation between green
innovation and per capita income. At the same time, Figure 2 highlights a divide between mid-ranking
countries, whereby some manage to climb up the green technology complexity ladder (i.e., China and
South Korea) while others do not (i.e., Argentina, Bulgaria). No doubt, the structural characteristics of
a country play a fundamental role in unleashing the innovation potential, and in this part of the paper
we investigate some of these characteristics and the extent of their impulse. Given the exploratory
nature of our analysis, in Figure 7 we focus on GDP per capita (as a proxy of standards of living and
economic growth potential in each country) and export fitness (as a proxy of the trade performance of
each country) [40]. We propose a graphical analysis based on a colour map which portrays the relation
between GDP per capita and export fitness on the x-y axes, and the entire range of green technological
fitness for all the countries in our database on the z-axis, represented with colour variation. In this
case, as for Figure 4, green fitness is computed for each year as a moving average over a δ = 10.
The colour map is obtained through a 3-dimensional Nadaraya-Watson non-parametric estimation [33]
fed with a pooling of all countries in our database over the period 1980–2010. Figure A4 in Appendix E
provides information about the green fitness estimation error, for ease of comparability with Figure 7
the iso-levels of green fitness are superimposed on the plot. Notice that the confidence level of the
Nadaraya-Watson estimation is heterogeneously distributed in the export fitness-GDP per capita plane.

Figure 7. The three-dimensional relation between export fitness, GDP per capita, and green
fitness. The colour map represents the variation of green fitness obtained with a non-parametric
Nadaraya-Watson kernel estimation by pooling all countries in our database over the time interval
1980–2010.

The areas of Figure 7 with higher intensity are those of greater interest. The purple-coloured
portion at the bottom left-hand of the graph indicates that, as expected, countries with low GDP and
low export fitness exhibit the lowest green technology fitness; also expected is the growth of green
fitness as one moves towards the top right corner of the plot.

Another interesting portion of this diagram is on the right-hand side, where intermediate levels
of (log) GDP per capita (between 8 and 9.5) and very high export fitness correspond to very high
levels of green fitness. This indicates that a highly diversified portfolio of trade matters for unleashing
innovation capacity among both high- and mid-level income countries. Put otherwise, a country’s
level of wealth is not a barrier to developing advanced competences for environmental innovation
insofar as they engage trade of more complex products. The diagonal movement of colour is in
agreement with the EFC narrative according to which countries with higher export fitness than per
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capita GDP show a level of complexity that has not yet translated into higher income, but indicates
higher development and growth potential [35]. This finding resonates with the descriptive analysis
of the rankings in the previous subsections, where the performance of emerging countries in green
innovation has been commented on. It also resonates with the recombinant nature of the technology at
hand, and the fact that green patents exhibit more diversity of technical components and of know-how
relative to non-green ones [41]. Openness to trade and strategic specialization in key components
for green technologies are thus likely to enable middle-income countries to accelerate in the pursuit
of environmental innovation. This is especially true if we consider the high levels of fitness of
enabling technologies that bring together different pools of know-how into coherent solutions for
wide applicability.

4. Conclusions

This paper uses a Economic Fitness-Complexity approach to analyse green innovation trends
across countries and technological fields over a forty year period. The main questions we
have addressed are: which countries innovate the most? What are the most complex green
technologies? What is the relationship between economic development and specialisation in
environmental technologies?

We make three major contributions to the literature. First, we provide an overview of spatial
and temporal characteristics of green innovation by exploiting the geo-localisation of patent data.
Second, we move beyond aggregate trends and delve into the relative performance of each country in
relation to the complexity of the technology. This allows us to identify three typologies of countries:
leaders, followers, and laggards. As expected, there is a direct relationship between GDP per capita
and innovation capacity. That said, we also observe the growing relevance of countries that started
from behind but that managed to become prominent actors. Most of these are based in East Asia.
Third, we complement previous studies on green technology with a deeper understanding of how
innovation capacity is distributed across areas of specialisation. The fitness ranking approach reveals
that, after a period of deeper specialisation within diverse domains, innovation in green technology has
become more horizontal, with bigger efforts being observed in cross-domain, or enabling, technologies.
This trend seems to indicate that while the relative stage of development of individual areas—such as
i.e., renewable energy generation or waste management—may have peaked in terms of technology life
cycle, there is now demand for greater interoperability across green technologies—i.e., the integration
of Information and Communication Technologies for monitoring energy distribution. A combination
of more general characteristics of economic performance, such as greater cost efficiency and openness
to trade, may entail that opportunities exist for countries that have remained at the margin of the
geo-politics of climate change adaptation and mitigation. We hope that the empirical findings of
our exploratory study will encourage further analysis of the untapped development potential of
environmental sustainability, especially for fast growing countries at the periphery.
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Appendix A. Countries and Technologies: Codes and Descriptions

Table A1. 2-digit ENV-TECH codes and labels.

Code 1-Digit Class Description 2-Digit Class Description

1 ENVIRONMENTAL MANAGEMENT

1_1 Air pollution abatement
1_2 Water pollution abatement
1_3 Waste management
1_4 Soil remediation
1_5 Environmental monitoring

2 WATER-RELATED ADAPTATION TECHNOLOGIES

2_1 Demand-side technologies (water conservation)
2_2 Supply side technologies (water availability)

4 CCMTS RELATED TO ENERGY GENERATION,
TRANSMISSION OR DISTRIBUTION

4_1 Renewable energy generation
4_2 Energy generation from fuels of non-fossil origin
4_3 Combustion technologies with mitigation potential

(e.g., Using fossil fuels, biomass, waste, etc.)
4_4 Nuclear energy
4_5 Efficiency in electrical power generation,

transmission or distribution
4_6 Enabling technologies in energy sector
4_7 Other energy conversion or management systems

reducing ghg emissions

5 CAPTURE, STORAGE, SEQUESTRATION OR
DISPOSAL OF GREENHOUSE GASES

5_1 CO2 capture or storage (ccs)
5_2 Capture or disposal of greenhouse gases other than

carbon dioxide (N2O, CH4, pfc, hfc, SF6)

6 CCMTS RELATED TO TRANSPORTATION

6_1 Road transport
6_2 Rail transport
6_3 Air transport
6_4 Maritime or waterways transport
6_5 Enabling technologies in transport

7 CCMTS RELATED TO BUILDINGS

7_1 Integration of renewable energy sources in buildings
7_2 Energy efficiency in buildings
7_3 Architectural or constructional elements improving

the thermal performance of buildings
7_4 Enabling technologies in buildings

8 CCMTS RELATED TO WASTE WATER TREATMENT
OR WASTE MANAGEMENT

8_1 Wastewater treatment
8_2 Solid waste management
8_3 Enabling technologies or technologies with a

potential or indirect contribution to ghg mitigation

9 CCMTS IN THE PRODUCTION OR PROCESSING OF
GOODS

9_1 Technologies related to metal processing
9_2 Technologies relating to chemical industry
9_3 Technologies relating to oil refining and

petrochemical industry
9_4 Technologies relating to the processing of minerals
9_5 Technologies relating to agriculture, livestock or

agroalimentary industries
9_6 Technologies in the production process for final

industrial or consumer products
9_7 Climate change mitigation technologies for

sector-wide applications
9_8 Enabling technologies with a potential contribution

to ghg emissions mitigation
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Table A2. ISO3 country codes and names.

ISO3 Code Country Name ISO3 Code Country Name ISO3 Code Country Name

ARG Argentina GRC Greece NOR Norway
AUS Australia HRV Croatia NZL New Zealand
AUT Austria HUN Hungary PHL Philippines
BEL Belgium IDN Indonesia POL Poland
BGR Bulgaria IND India PRT Portugal
BHS Bahamas IRL Ireland ROU Romania
BLR Belarus IRN Iran RUS Russian Federation
BRA Brazil ISR Israel SAU Saudi Arabia
CAN Canada ITA Italy SGP Singapore
CHE Switzerland JAM Jamaica SRB Serbia
CHL Chile MAR Morocco SVK Slovakia
CHN China MCO Monaco SVN Slovenia
COL Colombia MEX Mexico SWE Sweden
CYP Cyprus MYS Malaysia THA Thailand
CZE Czech Republic NLD Netherlands TWN Taiwan
DEU Germany JPN Japan UKR Ukraine
DNK Denmark KAZ Kazakhstan USA United States of America
ESP Spain KOR South Korea UZB Uzbekistan
FIN Finland LIE Liechtenstein VEN Venezuela
FRA France LUX Luxembourg ZAF South Africa
GBR United Kingdom

Appendix B. Column Selection and Technological Sector Fitness

In general, the fitness and complexity rankings produced by the EFC algorithm are not invariant
to the addition (or subtraction) of rows or columns in the binary matrix. Figure A1 depicts a toy
example illustrating this point. The right part of panel (a) depicts a 3-by-3 matrix M with rows and
columns sorted by fitness and complexity respectively. In particular, row c1 has higher fitness than
c3, which in turn has higher fitness than c2; columns instead can be ordered in decreasing order of
complexity as follows: t1, t2, t3. Panel (b) represents the same matrix to which one additional column
τ1 was added. Ordering the rows and columns of the new matrix with the EFC algorithm, both the
ranking of rows and columns changes. In particular, c2 is now fitter than c3 and t2 is more complex
than t1.

This example indicates that applying sector fitness to technologies might yield biased results.
However, two remarks mitigate this concern. First, while the figure shows that it is in general possible
to alter the ranking by simply adding a column, we had to choose a rather extreme case to make
the point. In fact, column τ1 is built in such a way to bring very close together the compositions of
the most and least fit row of panel (a). However, this is quite unrealistic because it would be much
harder to achieve if the matrix were substantially larger (as are the empirical matrices of the analysis).
On the other hand, adding τ1 is akin to adding adding the information that a country the was thought
to patent only in a very ubiquitous agricultural field and nothing else, also patents in ground breaking
medical technologies. This however looks intuitively implausible and contrasts with the evidence
shown e.g., in Figure 5.

Finally, it is worth noting that, although it is true that applying sector fitness to green technologies
cuts some potentially relevant columns from M, it is also the case that these omitted fields are
not exclusively linked to green technologies, otherwise they would certainly be included in the
classification. Hence, even if we were to include them, we would only account for them partially,
and, since we know that they can potentially influence the fitness and complexity rankings, adding
them to the analysis would not make us feel any safer about the eventual introduction of biases in the
results of the analysis performed with the EFC algorithm. For this reason, we believe that omitting the
columns that are not exclusively (or very predominantly) linked to green technologies should not be a
major shortcoming.
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Figure A1. Panel a) depicts a binary country-technology matrix M consisting of three countries (c1,
c2, and c3) and three technologies (t1, t2, and t3); ordering the rows by fitness and the columns by
complexity (right), we see that t1 is more complex than t2 and c3 has higher fitness than c2. Panel b)
depicts the same matrix M of panel a), to which an additional column τ1 has been added; ordering the
rows by fitness and the columns by complexity (right), we see that now t2 is more complex than t1 and
c2 has higher fitness than c3. The figure shows that, in general, the addition (or subtraction) of columns
to M(y) can potentially affect fitness and complexity rankings.

Appendix C. Measurement of National Knowledge Bases

The geographical coordinates of each inventor’s address were obtained through the GeoNames
database [42], which contains worldwide geographical information on, among others, administrative
borders and postal codes. We first try to detect a postal code in the address string and use GeoNames
postal code information to assign geographical coordinates to it. For the remaining addresses, we try
to identify the name of a city and use GeoNames city information to obtain the coordinates. Finally,
for the addresses not geolocalised in the first two steps, we send the address to the Google Maps
API which returns geographical coordinates. However, even if the EPO is improving and updating
every year the PATSTAT database, an important share of inventor’s addresses is still missing. To deal
with this issue, we exploit the work by the Institut Francilien Recherche Innovation Société (IFRIS)
filling missing addresses with other patent databases i.e., REGPAT and National Patent Databases
[43]. Although PATSTAT assigns an unambiguous identifier to each applicant or inventor, multiple IDs
assigned to the same person could be retrieved. In these cases, information on the applicant/inventor
address may be fully provided by some IDs and missing in others. Hence, to reduce the number of
applicants/inventors with a missing address, we focus on patent families and analyse multiple IDs in
order to detect non-missing address assigned to the same person. To do so, for each missing address
we calculate the Levenshtein distance between the inventor name and each of the other names with
a complete address. In those cases in which the indicator value is lower than three, we assign the
address of the inventor found to complete the missing one [44]. In so doing, we obtain 799,011 (67.7%)
green patent families with at least one inventor geo-localised, distributed among 141 countries. Patent
families without geo-localised inventor (either because inventor information is missing or because
address is not found) has been dropped from the dataset. Variations of the geo-localisation rate across
ENV-TECH families and patent offices are very small: the standard deviation is 0.089 in the first case
and 0.118 in the second case, when you take into account the top 10 patent offices (accounting for 93%
of all the patent families), thus we can conclude that the bias introduced by dropping non geo-localised
inventors is negligible.
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Appendix D. Data Aggregation: Possible Advantages

Figure A2 suggests that the length of the time window we choose to study and its extremes can
have a significant effect on the composition of each snapshot of data. For instance, Figure A2a shows
that the number of active [45] technology classes (Figure A2a) and active countries (Figure A2b) has
grown considerably over time, which implies that a clear trade-off exists between the length of the
time series and the size of the intersection of the data available in each year. This is also due to the fact
that the the number of applications containing green technologies has remained quite small until the
1980s (Figure A2a, inset). Notice that the trade-off is quite sharp also if we move the right extreme of
the time interval too far forward, since there is a sharp drop in the number of filed patent applications,
and hence in the density of the data matrices after 2012. This is compatible with the presence of a
constant backlog of applications that have been filed but not yet examined and, for this reason, not yet
added to the databases. The delay between filing and inclusion into PATSTAT varies depending on the
patent office that received the application. For example, the backlog at the United States Patent and
Trademark Office (USPTO) is estimated at around 40 months on average; this implies that the data for
2012 contained in the 2016a edition of the database is most likely still incomplete.

(a) Time series of the number of green classes
and applications.

(b) Time series of the number of active countries for
different time windows.

Figure A2. Yearly green classes, applications, and active countries.
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Figure A2 shows that by averaging over a longer time window (δ) and counting the number of
non-zero rows in the average weighed matrix the upper bound on the number of potentially active
countries in matrix Mδ(y) defined by applying Equation (1) to Equation (4) increases substantially,
especially since the mid 1970s. The further advantage of averaging over a reasonably long time window
is that it would also help get rid of small “holes” in the presence of some technology classes, especially
at the 2-digit level, as shown in figure the right panel of Figure A3, which counts the frequency of
each 2-digit class within every M1(y) over the period 1940–2015. The left panel, which reports the
yearly count of 3-digit classes, clearly shows that, at this disaggregation, some classes are too recent
and inconsistently represented in the data to be included into an inter-temporal comparison.

Figure A3. Yearly frequency of green technology classes (left:3-digits, right: 2-digits).

Appendix E. The Relationship between Export Fitness, GDP Per Capita and Green Fitness:
Estimation Error

To validate the three-dimensional analysis of the relationship between export fitness, GDP per
capita and green fitness represented as a colour map in Figure 7, we compute the standard error (SE)
of the green fitness Nadaraya-Watson estimation. As can be observed in Figure A4, where the portions
of the plot with SE & 0.4% are in black, and those with SE . 0.2% are in white, the standard error is
very heterogeneous. In fact, since GDP per capita and export fitness are positively correlated [35,46],
most of the points used in our estimation lie on the diagonal of the x-y plane. Only a few countries
show different trends, for instance China has higher export fitness than per capita GDP and lies in the
bottom-left corner of the graph, by contrast most of the oil exporters have higher income than export
fitness, and thus they are placed in the opposite corner. The diagonal shades of grey and white are
consistent with our narrative. The green technological competitiveness of countries, proxied by green
fitness, is determined by the interplay of export fitness and GDP per capita, and the role of export
fitness can compensate low levels of income per capita.



Entropy 2018, 20, 776 21 of 23

Figure A4. Estimation error of the green fitness colour map in Figure 7. The plot is built with the same
data of Figure 7. Two layers of information are represented in this figure. (1) In the grey scale, the green
fitness ranking estimation error in the Nadaraya-Watson kernel method. White indicates a standard
error of ∼0.2% or less, and black a standard error of ∼0.4% or more. (2) The iso-lines of the green
fitness ranking levels (lowest in deep purple, highest in clear yellow). The plot is obtained by pooling
all countries in our database over the time interval 1980–2010. The different shades of black and white
confirm our findings: export fitness and GDP per capita are complementary in determining the green
technological capabilities of countries.
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