

Inhibitory effect of Ocotea quixos (Lam.) Kosterm. and Piper aduncum L. essential oils from Ecuador on West Nile virus infection.

Journal:	Plant Biosystems	
Manuscript ID	TPLB-2018-0017.R1	
Manuscript Type:	Original Article	
Date Submitted by the Author:	07-Apr-2018	
Complete List of Authors:	Radice, Matteo; Universidad Estatal Amazonica Pietrantoni, Agostina; Istituto Superiore di Sanita Guerrini, Alessandra; Universita degli Studi di Ferrara Tacchini, Massimo; Universita degli Studi di Ferrara Dipartimento di Scienze della Vita e Biotecnologie Sacchetti, Gianni; Universita degli Studi di Ferrara Chiurato, Matteo; Universita degli Studi di Ferrara Venturi, Giulietta; Istituto Superiore di Sanita Fortuna, Claudia; Istituto Superiore di Sanita,	
Keywords:	<i>Ocotea quixos</i> , <i>Piper aduncum</i> , essential oil, West Nile virus, antiviral activity, Ecuadorian Amazon Region	

SCHOLARONE[™] Manuscripts

1		
2		
3 4	1	Inhibitory effect of Ocotea quixos (Lam.) Kosterm. and Piper aduncum
5	2	Lessential eile from Foredon on West Nile sime infortion
6 7	2	L. essential oils from Ecuador on west Nile virus infection.
8 9	3	Matteo Radice ¹ , Agostina Pietrantoni ² , Alessandra Guerrini ³ , Massimo
10	4	Tacchini ³ , Gianni Sacchetti ³ , Matteo Chiurato ³ , Giulietta Venturi ⁴ , Claudia
12 13	5	Fortuna ⁴ *
14 15	6	¹ Universidad Estatal Amazónica, Puyo, Ecuador
16 17	7	
17	8	Sanità, Rome, Italy
20	0	³ Department of Life Sciences and Pietechnology (SU2P) University of Foundary
21 22	9 10	Malborghetto di Boara, Ferrara, Italy
23 24	11	⁴ Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
25	12	
26	13	*Corresponding author: Dr. Claudia Fortuna
27	1.4	
28 29	14	E-mail address: <u>claudia.fortuna(a).iss.it</u>
30	1.5	
31	15	
32		
33	16	Matteo Radice, Universidad Estatal Amazónica, Km 2 1/2 Via Puyo-Tena, Puyo,
34 35	17	Ecuador, mradice@uea.edu.ec, 00593 032-888-118 / 032-889-118
36 27	18	Agostina Pietrantoni, National Center for Innovative Technologies in Public Health,
38	19	Istituto Superiore di Sanità. Viale Regina Elena 299, 00161 Rome. Italy.
39	20	agostina pietrantoni@iss it +390649902092
40	21	
41	21	Alassandra Guarrini, Danartmant of Lifa Sciences and Riotechnology (SVeR)
42	22	University of Forroro, D.I. Chiennini, 2 44122 Melhorghette di Dooro, Forroro, Italy
43	23	University of Ferrara, File Chiappini, 5 44125 Maloorgneuo di Boara, Ferrara, Itary,
44	24	<u>alessandra.guerrini(@unife.it</u> , +39 0532 29 3774 +39 0532 29 3781
46	25	
47	26	Massimo Tacchini, Department of Life Sciences and Biotechnology (SVeB), University
48	27	of Ferrara, P.le Chiappini, 3 44123 Malborghetto di Boara, Ferrara, Italy,
49	28	massimo.tacchini@unife.it, +39 0532 29 3774 +39 0532 29 3781
50	29	
51	30	Gianni Sacchetti, Department of Life Sciences and Biotechnology (SVeB), University
52	31	of Ferrara P le Chiappini 3 44123 Malborghetto di Boara Ferrara Italy scg@unife it
55	32	+30 0532 20 3774 +30 0532 20 3781
55	54	· 57 0552 27 511T · 57 0552 27 5101
56		
57		
58		1
59		

33 Matteo Chiurato, Department of Life Sciences and Biotechnology (SVeB), University

- 34 of Ferrara, P.le Chiappini, 3 44123 Malborghetto di Boara, Ferrara, Italy,
- 35 <u>matteo.chiurato@gmail.com</u>, +39 0532 29 3774 +39 0532 29 3781
- 36 Giulietta Venturi, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale
- 37 Regina Elena 299, 00161 Rome, Italy, giulietta.venturi@iss.it, +390649902663
 - 38 Claudia Fortuna, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale
- 39 Regina Elena 299, 00161 Rome, Italy, <u>claudia.fortuna@iss.it</u>, +390649902663

Abstract

11	West Nile virus (WNV) is a mosquito-horne flavivirus responsible of
	west fine virus (wirv) is a mosquito-borne navivirus responsible of
45	neuroinvasive manifestations. Natural products are well-known for their
46	biological activities and pharmaceutical application. In this study the
47	inhibitory effects of essential oils (EOs) of Ocotea quixos (Lam.) Kosterm.
48	and Piper aduncum L. on WNV replication were investigated.
49	WNV was incubated with EOs before adsorption on Vero cells, viral
50	replication was carried out in the absence or presence of EO. Cells were
51	exposed to EO before the adsorption of untreated-virus. GC-MS and GC-
52	FID were used for chemical characterization of EOs.
53	Cell protection from infection was observed for both EOs. P. aduncum EO
54	was characterized by dillapiole as main compound (48.21%) and O. quixos

- 55 EO by 1,8-cineole (39.15%).
- *O. quixos* and *P. aduncum* should be considered for further investigations,
 57 such as the study of molecular and cellular mechanisms of action and *in* 58 *vivo* evaluation for the development of a compound against WNV.
- Further investigations, such as the study of molecular and cellular
 mechanisms of action and *in vivo* evaluation, should be performed on
 these essential oils to derive new potential drugs against WNV.

Page 3 of 36

Plant Biosystems

Keywords: *Ocotea quixos*, *Piper aduncum*, essential oil, West Nile virus, antiviral activity, Ecuadorian Amazon Region.

69 Introduction

West Nile virus (WNV) is a mosquito-borne flavivirus, family *Flaviviridae*, widely distributed throughout Africa, the Middle East, Asia, Southern Europe, Australia and the Americas. The virus was originally isolated from Uganda in 1937. WNV caused epidemic outbreaks in Asia, Europe and Australia and, in the 1999, it was introduced into the United States where it became endemic (Saxena et al. 2017). While birds serve as amplifier hosts, mosquitoes of the *Culex* genus function as vectors. Humans and horses are dead-end hosts (David and Abraham 2016). WNV causes asymptomatic infections in 80% of cases, while 19% of patients develop flu-like illnesses. In less than 1% of the symptomatic individuals, virus entry into the central nervous system (CNS) results in neuroinvasive manifestations, such as meningitis, encephalitis, poliomyelitis, and death (Gubler 2007). Despite the important impact of WNV infection-associated diseases on human health, there are currently no available human vaccines or specific antiviral therapies for this disease. To date, only a West Nile vaccine is available for horses. Natural products are widely used all over the world as treatment for many diseases and deepen vestigations are justified from several studies (Newman and Cragg 2007; Bhalla et al. 2013; Atanasov et al. 2015). A recent study demonstrated the antiviral potential of different polyphenols present in plants and natural products, such as wine and tea, against WNV, by affecting the attachment and entry steps of the virus life-cycle (Vázquez-Calvo et al. 2017). Further studies on the antiviral potential of

89 natural compounds against WNV are not reported to date. Moreover, Ecuador belongs 90 to a selected group of 17 countries defined "Megadiverse" due to its impressive 91 biological diversity (Mittermeier et al. 1999; Sierra et al. 2002), which is an important 92 source of bioactive compounds. EOs fron Duadorian Amazon region (EAR) have been 93 investigated in the last decades in order to deepe Deir biological activities (Bruni et al. 94 2004; Tognolini et al. 2006; Sacchetti et al. 2006; Scalvenzi et al. 2007; Guerrini et al. 95 2014).

To our knowledge, studies evaluating antiviral effec O. quixos (Lam.) Kosterm.
(Lauraceae) and P. aduncum L. (Piperaceae) EOs against WNV have not been reported. *O. quixos* (Lam.) Kosterm belongs to the Lauraceae family. It is traditionally used as
ingredient for infusions and beverages or as a flavoring for foods (Naranjo 1981;
Friedman et al. 1993). Although few studies have been carried out on the biological
properties of *O. quixos, in vivo* and *in vitro* investigations on this plant highlighted
significant anti-inflammatory activity of its EO (Ballabeni et al. 2009).

P. aduncum, from Piperaceae family, is well-known in folk medicine for the
antimicrobial and insecticide activities and for the treatment of dysentery and wound
healing (Durant-Archibold et al. 2018).

- 106 Many studies have been performed on *P. aduncum* demonstrating icacy of \bigcirc as 107 insect repellent (Mamood et al. 2017) and thanolic extract as antiviral plant-derived 108 product (Lohézic-Le Dévéhat et al. 2002). Moreover the importance of the *P. aduncum* 109 EO has been demonstrated also against *P. falciparum* indicating that this EO could be a 110 promising antimalarial agent (Monzote et al. 2017). In an effort to identify antiviral 111 therapies effective against WNV, in this study potential antiviral effect *Q* quixos and *P.* 112 *aduncum* EOs were tested *in vitro*.
- 113 Methods

114 Material and Methods

115 Plant material

Fresh leaves of *O. quixos* (Canela amazónica) and *P. aduncum* (Matiko) plants were collected from a wild population in the Amazonian region of Pastaza (Ecuador) in June 2016. Species authentication were certified by Dr. David Neill and voucher specimens from each plant were deposited at the Herbarium ECUAMZ of the Amazonian State University (UEA) in Ecuador (voucher specimen: Neill 18070B, Scalvenzi 18070C).

Isolation of EOs

The EOs were obtained by hydrodistillation in a stainless steel distiller equipped with a
Clevenger apparatus, performing three distinct distillations for 4 h. All samples for each
EO were gathered, dried over anhydrous sodium sulphate and stored in sealed amber
vials at 4°C.

128 Gas-chromatographic analysis of EOs

The compound identification was realized by GC-MS analysis and the quantification of individual components was performed by GC-FID, calculating the relative peak average area of three separated injections. The instrument used for quantitative determination was a ThermoQuest GC-Trace gas-chromatograph equipped with a FID detector and a Varian FactorFour VF-5ms poly-5% phenyl-95%-dimethylsiloxane column (i.d., 0.25 mm; length, 30 m; film thickness, 0.15 µm). Operating conditions were as follows: injector temperature 300°C, FID temperature 300°C, carrier (Helium) flow rate 1 mL/min and split ratio 1:50. The initial oven temperature was 55°C and then raised to

Plant Biosystems

100°C at a rate of 1°C/min, then raised to 250°C at a rate of 5°C/min and then kept constant at 250°C for 15 min. One microliter for each replicate was dissolved in CH₂Cl₂ (Sigma-Aldrich) and injected. The EOs percentage composition was computed by the normalization method from the GC peak areas, without using correction factors. The compound identification of EOs were performed by a Varian GC-3800 gas chromatograph equipped with a Varian MS-4000 mass spectrometer using electron impact and hooked to NIST library. The conditions were the same described for GC analysis and also the same column was used. The mass spectrometry conditions were as follows: ionization voltage, 70 eV; emission current, 10 µAmp; scan rate, 1 scan/s; mass range, 29-400 Da; trap temperature, 150°C, transfer line temperature, 300°C. The EO compounds were characterized by comparing their linear retention indices and the MS fragmentation pattern with those of other known EOs, with pure compounds and by matching the MS fragmentations patterns and linear retention indices with the above mentioned mass spectra libraries and with those in the literature (Adams 2007). The linear retention index of each component was determined adding a C8-C32 n-alkanes (Sigma-Aldrich) to the EO before injecting in the GC-MS equipment and analyzed under the same conditions reported above (Guerrini et al. 2014)[14].

Preparation of mother solution for biological assays

An aliquot of dimethylsulfoxide (DMSO; Sigma–Aldrich) was added to the stock solution of each EO in order to obtain a 84mg/mL concentration range. Serial dilutions of the DMSO/EO solution were made with virus dilution buffer for the infection and with MEM maintenance medium for maintaining.

2
3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
17
10
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
22
36
37
38
39
40
41
42
43
-т_) ЛЛ
44 45
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59

60

160

161 Cell culture and virus

African green monkey kidney (Vero) cells were grown at 37° C in a humidified 162 atmosphere, with 5% CO₂ in Dulbecco's modified Eagle's medium (DMEM; Lonza, 163 164 Milan, Italy) supplemented with 10% inactivated fetal calf serum (FCS, Flow 165 Laboratories, Irvine, UK.), 2 mM glutamine, 2% non-essential amino acids (Gibco, 166 Paisley, UK), penicillin (100 IU/mL), and streptomycin (100 µg/mL). WNV strain, lineage 1, isolated from a patient during the WNV outbreal curred in Sprdinia Region 167 168 in 2011 (Magurano et al. 2012) [15] was used for the study. For virus production 169 monolayers of Vero cells in 75-cm² tissue culture flasks were infected with WNV. After 170 5 days at 37° C, infected cells were harvested with freeze-and-thaw cycle, and cellular 171 debris was removed with low-speed centrifugation, and virus titer was measured by 172 standard plaque assay. The virus was stored at -80° C until used.

173

174 Plaque assay

175 WNV titer was determined by plaque assays in Vero cells growing in 24-well plates. 176 Briefly, serial tenfold dilutions of the viral suspension were added (0.1 mL/well) in 177 duplicate. After infection, the cells were incubated for 1 h at 37°C. Subsequently, 178 Tragacanth gum powder (SIGMA cat. G1128-100G) supplemented 1:1 with DMEM 179 medium with 5% inactivated FBS, 2 mM glutamine, 2% non-essential amino acids, 180 penicillin (100 IU/mL), and streptomycin (100 µg/mL) was added, and the plate was 181 incubated for 5 days at 37° C. The viral plaques were visualized by 1% crystal violet 182 solution (Fortuna et al. 2015). The titer was estimated by counting the number of plaques observed in each well and expressed as plaque-formation unit per milliliter
(p.f.u./mL) (viral titer: 6,93x10⁶ p.f.u./mL).

186 Cytotoxicity assay

A cytotoxicity test was performed for all EOs. Each EO was diluted 1:10 in DMSO and subsequent several dilutions were made in MEM medium. Vero cell monolayers were put in contact with the mixture of MEM medium plus oil and maintained at 37° C with 5% CO2. The cells were monitored daily to check the EO toxicity. After 24 h, the following parameters were evaluated: cell morphology and viability (determined by neutral recontrol and cell proliferation was evaluated quantitatively by microscopic counts after dispersion into individual cells with trypsin. EO dilutions that did not affect any of these parameters were considered as non-cytotoxic concentrations and utilized for antiviral assays. For neutral remaining the 50% cytotoxic concentration (CC_{50}) was defined as the concentration that reduces the optical density (OD) of treated cells to 50% with respec untreated cells (Pietrantoni et al. 2015).

200 Dose-Response Assay

The antiviral activity of *O. quixos* and *P. aduncum* EOs was assayed by neutral re assay. Briefly, in 96-well culture plate, monolayer cultures of Vero cells were incubated with different concentrations of *O. quixos* and *P. aduncum* starting from 2.6 μ g/mL during the virus attachment step (1h 4° C). As viral inoculum was utilized WNV at a multiplicity of infection (m.o.i.) of 0.1 p.f.u./cell. After adsorption, Vero cells were

Plant Biosystems

rinsed thoroughly and incubated with the same concentrations of EO. The cells were maintained at 37° C in 5% CO₂. The cytopathic effect (CPE) induced by WNV was measured 72 hours after infection by the neutral remetake assay. Briefly, treated and untreated cells were stained for 3 h at 37° C with neutral re0 mg/mL, thereafter cells were washed with Phosphate Buffered Saline (PBS) and fixed with 4% formaldehyde, 10% CaCl₂. The uptaken dye was extracted by 1% acetic acid in 50% ethanol and the optical density was measured at 540 nm in a spectrophotometer (Pietrantoni et al. 2015). Results were expressed as percentage of cell viability with untreated infected control cultures. The concentration that reduced the absorbance of infected cells to 50% when compared to cell and virus controls was considered the effective concentration (EC₅₀). The EC₅₀ was calculated according to the following equation: $[(A - B) / (C - B) \times 100]$, where A is the control sample absorbance, B is the cell control absorbance, and C is the virus control absorbance. The selectivity index (SI) was calculated using the CC_{50} and EC_{50} data and applying the formula SI = CC_{50}/EC_{50} .

221 Antiviral activity

The antiviral activity of the EOs was measured using the neutral representations as already described. The antiviral assays were performed at 24 h after seeding, using confluent Vero cell monolayers cultured in 96-well plates. EOs and components were always used at the non-cytotoxic concentration as follows (33.6, 16.8, 2.1, 1 μ g/mL). Cells without the EO were used as a control. The EOs were included in free point it follows:

i. To evaluate the presence of virucidal activity, direct inactivation of WNV by theextracts was tested. Viral inoculum was mixed with varying concentrations of the EO

incubated at 37° C in 5% CO₂ for 1 h. After that, viral inoculum was used to infect monolayer cultures of Vero cells, at a m.o.i. of 0.1 p.f.u./cell. After incubation at 37° C in 5% CO₂ for 1 h, the cells were washed and DMEM maintenance medium was added and the cells were maintained at 37° C in 5% CO₂.

ii. Cell monolayers were pre-treated 1h at 37° C with EO prior to inoculation with virus by adding the EO at varying concentrations. After pre-treatment, the EO was removed and cells were infected with virus at a m.o.i. of 0.1 p.f.u./cell and incubated at 37° C in 5% CO₂ for 1h. Then MEM maintenance medium was added and the cells were maintained at 37° C in 5% CO₂.

iii. Experiments were also performed to determine the viral inhibitory effect of the
selected EOs during the adsorption step. Vero cells grown in 96-well plates were
infected in triplicate with 0.1 p.f.u./cell of virus and EO at concentration described
above.

For all the treatments the neutrine dassay procedure was performed 72 h later, according to the protocol described in cell viability assay (Pietrantoni et al. 2015).

246 Statistical analysis

The experiments were performed in triplicate. Relative standard deviations and statistical significance (Student's t test; $p \le 0.05$) were calculated using software STATISTICA 6. Tatisoft Italia srl).

- 251 Results
- 252 Chemical composition of EOs

Plant Biosystems

2
3
Δ
5 6
0
/
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
29
30
21
21
3Z
33
34
35
36
37
38
39
40
41
42
43
44
45
75 76
40 47
4/
48
49
50
51
52
53
54
55
56
57
58
50
60
00

253	The yield of distillation for O. quixos EO was 0.13±0.01% (w/v). The main component
254	(Table 1) was represented by 1,8 cineole (39.15%), followed in less amount by α -
255	terpineol (7.65%), sabinene (6.46%), α-pinene (6.27%), p-cymene (6.12%), E-
256	caryophyllene (4.73%), terpinen 4-ol (4.22%). Monoterpenes represented the main
257	fraction of EO. Methyl cinnnamate, a characteristic phenylpropanoid of floral calice EO
258	(Bruni et al 2004), was a minor compound in EO obtained from leaves (1.53%). For P.
259	aduncum EO, the yield was 0.16±0.01% (w/v). The phenylpropanoid dillapiole
260	(48.21%), trans ocimene (7.53%) and E-caryophyllene (4.80%) were the main
261	compounds.
262	

- 263 Cytotoxicity of EOs
- A neutral red assay was used to determine the cytotoxicity effect of *O. quixos* and *P. aduncum* on Vero cells in which the half maximal cytotoxic concentration (CC50) value
 of each compound was calculated. Results illustrate a cytotoxic value of CC50 = 163
 µg/mL for *P. aduncum* compared to *O. quixos* with CC50 = 840 µg/ml. Treated cells
 with vehicle control, 1% DMSO did not show any cytotoxicity against Vero cells.

269

270 Dose-Response Assay

- 271 In order to evaluate the effect of O. quixos and P. aduncum on viral replication, Vero
- 272 cells were infected with WNV at 0.1 m.o.i. p.f.u./cell and exposed to various two-folds
- 273 concentrations of EO starting from 2.6 μg/ml for 72 h post-infection (p.i.).
- 274 Results are presented in Fig 1 as percentage of cell viability and represent the average of
- 275 three independent experiments. As showed in the figure both EOs were able to inhibit

URL: http://mc.manuscriptcentral.com/tplb

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 24	
34 25	
22	
20	
25	
20	
<u> </u>	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

viral replication but *O. quixos* was more effective at concentration of 268 and 134,4
µg/ml respect *P. aduncum* that showed a viral inhibition similar for all concentration.
The 50% effective concentration (EC50) for *O.quixos* was 372 µg/ml whit a selectivity
index (SI) of 2.2 as showed on (Table 2).

280

281 Antiviral activity of O. quixos on WNV

282 In order to better investigate the inhibitory effects of O. guixos on WNV, EO was added 283 at different stages during viral infection. As showed on Fig 2 (A), pre-treatment of virus 284 with O. quixos showed relevant virucidal activity at concentrations of 33.6 µg/ml and 285 16.8 µg/ml. The EO was also effective at these concentrations when host cells were pretreated with drugs prior to infection, showing a percentage of cell vitality of 60% (Fig 2 286 287 (B)). Same results were obtained when O. quixos EO at concentration of 33.6 µg/ml and 288 16.8 µg/ml was present during the adsorption step (Fig 2 (C)). We, therefore, observed 289 similar inhibition effect on viral replication in all three conditions studied, when the EO 290 was used at the concentrations of 33.6 µg/ml and 16.8 µg/ml, with a percentage of cell 291 viability around 60%. No relevant inhibition was observed when the WNV was pre-292 treated with EO at the concentrations of 2.1 µg/ml and 1 µg/ml, for all conditions used 293 (Fig 2 (A,B,C)).

294

295 Antiviral activity of *P. aduncum* on WNV

As showed on Fig 3 (A) antiviral activity of the *P. aduncum* was most pronounced
when viruses were treated before inoculation showing a percentage of cell viability of
79% at the concentrations of 33.6 µg/ml, 88% at 16.8 µg/ml, 87% and 78% at 2.1 an 1
µg/ml, respectively. When cells were incubated with EO only 1 µg/ml showed a small
protection (68% of cell viability) while no relevant antiviral activity was showed by the

Page 13 of 36		Plant Biosystems	
1			
2 3	301	other concentrations (Fig 3(B)). When the EO was added during infection, the results	
4 5 6	302	showed an antiviral activity at all the concentrations with a percentage of cell viability	
7 8	303	of around 68% at 1 μg/ml (Fig 3 (C)).	
9 10	304		
11 12	305	Discussion and conclusion	
13 14	306	Viral diseases are still a major problem for human health worldwide. Although natural	
15 16	307	products have inherently high chemical diversity, plant based products or bioactive pure	
17 18 10	308	compounds obtained from EOs may be a new source of antiviral drugs but a few	
20 21	309	number of studies focus on this research field. So far, only a limited number of drugs	
22 23	310	are effective against many of these viruses, which has prompted research into finding	
24 25	311	new antiviral lead molecules (Li et al. 2013, Elizaquível et al. 2013, Tanu and Harper	
26 27	312	2016, Schnitzler et al. 2007, Astani et al. 2010, Lohézic-Le Dévéhat et al. 2002,	
28 29	313	Ocazionez et al. 2010, Swamy et al. 2016). P. aduncum EO has been investigated by	
30 31	314	several authors mainly focusing chemical characterization, antimicrobial, insecticidal,	
32 33	315	larvicidal and anti-protozoic (Guerrini et al. 2009, Bernuci et al. 2016, Oliveira et al.	
34 35 36	316	2013, Villamizar et al. 2017, Ling A et al. 2009, Monzote et al. 2017), but no data are	
37 38	317	available regarding antiviral activity. Also O. quixos EO was characterized and tested	
39 40	318	for its antimicrobial, antiplatelet and antithrombotic activity (Sacchetti et al. 2006,	
41 42	319	Naranjo 1981, Rolli et al. 2014, Tognolini et al. 2006, Ballabeni et al. 2007); from our	
43 44	320	knowledge no antiviral activities test were performed until now. The limited efficacy of	
45 46	321	the current treatment of WNV infection enhances the need for novel therapies that	
47 48 40	322	include substances with innovative viral targets and/or mechanisms of action. Our study	
49 50 51	323	has been performed to analyse the potential capacity of O. quixos and P. aduncum EOs,	
52 53	324	collected in the Ecuadorian Amazon, to reduce the WNV replication in infected cells.	
54 55			
56 57			
58 59		13	
60		URL: http://mc.manuscriptcentral.com/tplb	

Plant Biosystems

325	The chemical composition of leaf O. quixos EO, showing 1,8-cineole (39.15%) as main
326	component, cinnamate derivatives and E-caryophyllene among minor compounds, did
327	not reflect our previously results (Sacchetti el al. 2006), where E-caryophyllene,
328	cinnamyl acetate and other derivatives were the characteristic molecules. The yield was
329	instead comparable with our previous results. However, it should be noted that the
330	variation of chemical composition for this EO has not yet been studied extensively. P.
331	aduncum EO showed an overlapping composition to our previously data (Guerrini et al.
332	2009), with small quantitative differences regarding minor compounds: furthermore,
333	germacrene D (3.05%) was not detected in the previous studies. P. aduncum EO have
334	been largely studied in the last two decades and the formation of two chemotypes by
335	different biosynthetic routes has been evidenced. In fact, according to our data, Maia et
336	al. (1998), Cicció and Ballestero (1997), Fazolin et al. (2007), De Almeida et al. (2009)
337	isolated EOs from leaves of <i>P. aduncum</i> in different localities of Amazonian region and
338	determined that dillapiole, formed by the shikimate pathway, was the main compound
339	with a variability from 31.5% to 97.3%. The study of P. aduncum cultivation in
340	Western Amazonian region confirmed dillapiole as major component (Silva et al. 2014).
341	If the leaves were instead collected from species in Atlantic Forest, and Northeastern
342	and Southeastern Brazil, terpene compounds such as (E) nerolidol and linalool were
343	detected as main components (De Almeida et al. 2009, De Oliveira et al. 2006,
344	Navickiene et al. 2006). The yield of dillapiole chemotype EO in literature ranged from
345	0.35% to 4.0% (Guerrini et al. 2009, Fazolin et al. 2007, De Almeida et al. 2009, Silva
346	et al. 2014, Rali et al. 2007), our results instead showed a lower level (0.16%)
347	
348	EOs were tested for their cytotoxicity on Vero cells, prior to the determination of their
349	inhibitory effect against WNV. P. aduncum resulted relatively more toxic than O.

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

2
3
4
5
6
7
8
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
20
29
30
31
32
33
34
35
36
37
38
39
40
л 0 Л1
41
42
45
44
45
46
47
48
49
50
51
52
53
54
55
56
50
5/
58
59

60

quixos. The potential antiviral effect of different EOs was determined against WNV on
 Vero cells in vitro and both EOs tested exhibited a reduction of infectivity at non *cytotoxic concentration.*

High antiviral activity was observed for selected EOs when WNV was incubated whit
this substances prior host cell infection (virucidal activities). WNV is an enveloped
virus and the results of our study highlighted that both *O. quixos* and *P. aduncum* show
virucidal activity.

357 Experiments aimed to assess the antiviral activity of EOs have been most frequently 358 conducted on viruses of the herpes group, enveloped viruses (Novak 2011). Schnitzler 359 et al. (2007) demonstrated a virucidal effect of peppermint oil, when herpes simplex 360 virus was mixed with the essential oil prior to inoculation. The application of tea tree 361 oil, the EO of Melaleuca alternifolia, for the treatment of recurrent herpes labialis has 362 been recently reported (Carson et al. 2001, Schuhmacher et al. 2003). Accordingly, a 363 virus lacking of envelope, like adenovirus, was not affected by eucalyptus EO (Cemelli 364 et al. 2008). Therefore our results suggest that O. quixos and P. aduncum could directly 365 inactivate WNV and might interfere with virion envelope structures or mask viral 366 structures which are necessary for adsorption or entry into host cells.

In this study, experiments were also performed to determine the viral inhibitory effect treating the cells with EOs before adsorption. This different approach was important to better investigate on mechanisms of antiviral action of the EOs. In our study, *O. quixos* showed a protection of the cells from viral infection unlike *P. aduncum*. These findings would suggest an ability of *O. quixos* to inhibit viral replication by interfering with the virus binding to the cells. *P. aduncum* didn't result protective when added to the cells before inoculum. In this case we might, in some ways, assume that the oil does not act

Plant Biosystems

C		
3	374	by co
4 5	375	direct
6 7	376	For G
8 9	377	the E
10 11 12	378	conce
12 13 14	379	WNV
15 16	380	which
17 18	381	of ant
19 20	382	All to
21 22	383	85 89
23 24	384	Amaz
25 26	295	those
27 28	200	trest
29 30	380	topica
31 32	387	Previe
33 34	388	have-
35 36	389	infect
37 38	390	terpin
39 40	391	EO, r
41 42	392	Howe
43 44	393	comp
45 46	394	
47 48	395	Resul
49 50	396	The li
51 52	397	novel
55 54	398	of act
56 57		
58		
59		
60		

4	by competing with the virus for binding to the cell, and that part of its activity relies on
5	direct inactivation of the viral particles after virus adsorption.
6	For O. quixos we observed a good and similar protection from WNV infection adding
7	the EO to the DMEM medium during the intracellular replication period, up to an EO
8	concentration of 16.8 µg/ml. These results suggest that O. quixos could act directly on
9	WNV virus and might interfere with virion envelope structures or mask viral structures,
0	which are necessary for adsorption or entry into host cells. Thus different mechanisms
1	of antiviral activity of different EOs and compounds seem to be present.
2	All together, these results support the potential use of EOs in toto from medicinal plants
3	as agents for the treatment of viral infections. The effectiveness of the EOs from
4	Amazonia against the viruses tested was variable, but their virucidal properties against
5	these viruses suggest the application of this type of natural products as disinfectants or
6	topical medicaments.
7	Previous studies with EOs from eucalyptus, tea tree and thyme (Astani et al. 2010),
8	have shown the direct inactivating action of EOs and their components on virion
9	infectivity (HSV-1), with the exception of 1,8 cineole. In particular, α pinene, α -
0	terpineol, terpinen 4-ol and p-cymene, detected in considerable amount in O. quixos
1	EO, revealed a high antiviral activity and could be responsible for inactivation action.
2	However, in our research, further investigation is required to better elucidate the active
3	components and their mixture responsible of the inhibitory effect on virions.
4	
5	Results and Discussion
5 6	The limited efficacy of the current treatment of WNV infection enhances the need for

- 398 of action. So far, only a limited number of plant-derived products are effective against

Plant Biosystems

2
כ ₄
4
2
6
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
<u>1</u> 2 <u></u> 22
4J 44
- 15
45 46
40
4/
48
49
50
51
52
53
54
55
56
57
58
59

60

viruses, which has prompted research into finding new antiviral lead molecules
(Lohézic-Le Dévéhat et al. 2002; Schnitzler et al. 2007; Astani et al. 2010; Ocazionez et
al. 2010; Elizaquível et al. 2013; Li et al. 2013; Swamy et al. 2016; Tanu and Harper
2016).

403 Our study has been performed to analyze the potential capacity of O. quixos and P. 404 aduncum EOs, collected in the Ecuadorian Amazon, to reduce the WNV replication in 405 infected cells. O. quixos EO was characterized and tested for its antimicrobial, 406 antiplatelet and antithrombotic activity (Naranjo 1981; Sacchetti et al. 2006; Tognolini 407 et al. 2006; Ballabeni et al. 2007; Rolli et al. 2014); from our knowledge no antiviral 408 activities test were performed until now. P. aduncum EO has been investigated by 409 several authors mainly focusing on chemical characterization, antimicrobial, 410 insecticidal, larvicidal and anti-protozoic activities (Guerrini et al. 2009; Ling et al. 2009; Oliveira et al. 2013; Bernuci et al. 2016; Monzote et al. 2017; Villamizar et al. 411 412 2017). In addition, *P. aduncum* was found active on Poliovirus (Lohézic-Le Dévéhat et 413 al. 2002).

414 In the present work the chemical composition of O. quixos and P. aduncum EOs was 415 determined by GC-MS and GC-FID. The yield of distillation for O. quixos EO was 416 $0.13\pm0.01\%$ (w/v), comparable with our previous results (Sacchetti el al. 2006). The 417 main component was represented by 1,8-cineole (39,15%), followed in less amount by 418 α -terpineol (7.65%), sabinene (6.46%), α -pinene (6.27%), p-cymene (6.12%), E-419 caryophyllene (4.73%), terpinen-4-ol (4.22%) (Table 1): monoterpenes were therefore 420 the main fraction of EO. This chemical profile did not reflect our previous data 421 (Sacchetti el al. 2006), where E-caryophyllene, cinnamyl acetate and other derivatives 422 were the characteristic molecules. Moreover, methyl cinnamate, a typical 423 phenylpropanoid of floral calyx EO (Bruni et al. 2004), was a minor compound derived

Plant Biosystems

60

1

from leaves (1.53%). The chemical characterization of leaf EO has not been studied extensively in literatur date. However, it can be highlighted that highlighted that highlighted that highlighted the highlighted that have have highlighted the highlighted that have highlighted the have have highlighted that highlighted the have highlighted that highlighted the have highlighted that highlighted the highligh

429 Regarding P. aduncum EO, the data were similar to those previously published 430 (Guerrini et al. 2009) with environmentation lapiole (48.21%), *trans*-ocimene (7.53%) 431 and E-caryophyllene (4.80%) as main compounds and small quantitative differences on 432 minor compounds and germacrene D (3.05%) that was not detected in the past research. 433 The yield was 0.16±0.01% (w/v). P. aduncum EO have been largely studied in literature 434 in the last two decades and the formation of two chemotypes by different biosynthetic 435 routes has been evidenced. In fact, according to our data, different studies on EOs from 436 leaves of P. aduncum leaf OEs, "derived from different localities of Amazonian region", showed that dillapiole, formed by the shikimate pathway, was the main 437 438 compound with a variability from 31.5% to 97.3%, (Cicció and Ballestero 1997, Maia et 439 al. 1998, Fazolin et al. 2007 and De Almeida et al. 2009). In addition, the study of P. 440 aduncum cultivation in Western Amazonian region confirmed dillapiole as major 441 component (Silva et al. 2014). If the leaves were instead collected from species in 442 Alantic Forest, and Northeastern and Southeaster Drazil, terpene compounds such as 443 (E)-nerolidol and linalool were detected as main components (De Oliveira et al. 2006; 444 Debonsi Navickiene et al. 2006; De Almeida et al. 2009). The yield of dillapiolechemotype EO in literatur piged from 0.35% to 4.0% (Fazolin et al. 2007; Rali et al. 445 446 2007; De Almeida et al. 2009; Guerrini et al. 2009; Silva et al. 2014), our results instead 447 showed a lower level (0.16%).

Plant Biosystems

448	EOs were tested for their cytotoxicity on Vero cells prior to the determination of their
449	inhibitory effect against WNV, by using a neutral regardsay in which the half maximal
450	cytotoxic concentration (CC ₅₀) value of each compound was calculated. P. aduncum
451	resulted relatively more toxic than O . <i>quixos</i> . Indeed, the results illustrated a CC_{50} value
452	of 163 µg/mL for <i>P. aduncum</i> and 840 µg/mL for <i>O. quixos</i> . Treated cells with vehicle
453	control, 1% DMSO, did not show any cytotoxicity against Vero cells (Table 2).
454	In order to evaluate the effect of O. quixos and P. aduncum on viral replication, Vero
455	cells were infected with WNV at 0.1 m.o.i. p.f.u./cell and exposed to various two-folo
456	concentrations of EO starting from 2.6 μ g/mL for 72 h post-infection (p.i.).
457	Results are presented in Figure 1 as percentage of cell viability and represent the
458	average of three independent experiments. As shown in the figure, both EOs were able
459	to inhibit viral replication but O. quixos was more effective at concentration of 268 and
460	134.4 µg/mL respect P. aduncum that showed a viral inhibition similar for all
461	concentratio the 50% effective concentration (EC ₅₀) for <i>O. quixos</i> was 372 μ g/mL
462	wh selectivity index (SI) of 2.2 (Table 2).
463	In order to better investigate the inhibitory effects of O. quixos and P. aduncum on
464	WNV, EOs was added at different stages during viral infection. As shown on Figure 2,
465	no relevant differences between the antiviral activities of OE of O. quixos OE were
466	observed in all conditions studied. The highest percentages of cell viability (>60%)
467	were observed when the EO was added to the host cells at the concentrations of 16.8
468	and 33.6 $\mu g/mL$ prior to the infection. Similar results were obtained when 33.6 $\mu g/mL$
469	of EO were added during the adsorption step. Differently, when the EO was added at
470	low concentrations (1 and 2.1 μ g/mL) no relevant antiviral activity was observed in any
471	conditions.

Antiviral activity of the *P. aduncum* was most pronounced when the virus was treated before inoculation (Figure 3A) showing a percentage of cell viability of 79% at the concentrations of 33.6 μ g/mL, 88% at 16.8 μ g/mL, 87% and 78% at 2.1 and 1 μ g/mL, respectively. When cells were incubated with EO only 1 µg/mL showed protection (68% of cell viability) while no relevant antiviral activity was shown by the other concentrations (Figure 3(B)). When the EO was added during infection, the results showed an antiviral activity at all the concentrations with a percentage of cell viability of around 68% at 1 μ g/mL (Figure 3 (C)).

Results of the present paper showe \bigcirc at the antiviral activity of *P. aduncum* EO had manly virucidal activity. In literature there aren't many studies of virucidal effect of EOs on WNV periments aimed to assess the antiviral activity of EOs have been most frequently conducted on viruses of the herpes group, enveloped viruses (Novak 2011). Schnitzler et al. (2007) demonstrated a virucidal effect of peppermint oil, when herpes simplex virus was mixed with the EO prior to inoculation. The application of tea tree oil, the EO of Melaleuca alternifolia, for the treatment of recurrent herpes labialis has been recently reported (Carson et al. 2001; Schuhmacher et al. 2003). Concerning antiviral activity on others members of the Flaviviridae family, many studies with dengue virus (DENV) have been reported (Garcia et al. 2003; Duschatzky et al. 2005; Raquel Elvira Ocazionez et al 2010; Klawikkan 2011). Thes Otter data support the hypothesis that P. aduncum EO components may directly contribute to the inactivation of viral particles by interfering wit velope or masking viral glycoproteins that are necessary for entering host cells.

494 Accordingly, a virus lacking of envelope, like adenovirus, was not affected by
495 *Eucalyptus* EO (Cermelli et al. 2008). Therefore our results suggest that *O. quixos* and
496 *P. aduncum* could directly inactivate WNV and might interfere with virion envelope

Plant Biosystems

497 structures or mask viral structures which are necessary for adsorption or entry into host498 cells.

In this study, experiments were also performed to determine the viral inhibitory effect $\overline{\text{(p)}}$ ating the cells with EOs before adsorption. This different approach was important to better investigate of $\overline{\text{(p)}}$ echanisms of antiviral action of the EOs. In our study, *O. quixos* showed a protection of the cells from viral infection unlik $\overline{\text{(p)}}$ aduncum.

Previous studies with EOs from eucalyptus, tea tree and thyme have shown the direct inactivating action of EOs and their components on virion infectivity (HSV-1), with the exception of 1,8-cineole (Astani et al. 2010). Although 1,8-cineole was the main component of O. quixos, our results showed a good antiviral effect of this EO. In particular, Astani et al monstrated that α -pinene, α -terpineol, terpinen-4-ol and p-cymene, components detected also in O. quixos EO, revealed a high antiviral activity and could be responsible for inactivation action. These data highlight the need to analyze the efficacy of the single components of O. quixos EO in further studies.

For *O. quixos* we observed a good and similar protection from WNV infection ding the EO to the DMEM medium during the intracellular replication period, up to an EO concentration of 16.8 μ g/mL. These results suggest that *O. quixos* could act directly on WNV virus and might interfere with virion envelope structures or mask viral structures, which are necessary for adsorption or entry into host cells. Thus different mechanisms of antiviral activity of different EOs and compounds seem to be present.

P. aduncum didn't result betective when added to the cells before inoculur this 518 case we might, in some ways, assume that the oil does not act by competing with the 519 virus for binding to the cell, and that part of its activity relies on direct inactivation of 520 the viral particles after virus adsorption.

Plant Biosystems

All together, these results support the potential use of EOs in toto from medicinal plants as agents for the treatment of viral infections. The effectiveness of the EOs from Amazonia against the viruses tested was variable, but their virucidal properties against these viruses suggest the application of this type of natural products as disinfectants or topical medicaments.

However, in our research prther investigation is required to better elucidate the active
components and their mixture responsible on the inhibitory effect on virions.

528 Viral diseases are still a major problem for human health worldwide. Althoug ple
529 intrinsic complexity of natural products, the research trenc plant530 based products will be among the most important sources of new drugs in the future

531 (Atanasov et al. 2015).

534 Acknowledgements

This research has been supported by gran on the Universidad Estatal Amazónica, Ecuador, the University of Ferrara, Italy (FAR 2016-Guerrini) and the National Reference Laboratory for Arboviruses, Istituto Superiore di Sanità. The accomplishment of the present article is framed in the activitie the agreement MAE-DNB-CM-2015-0027 in force between the Ministry of the Environment of Ecuador and the State University Amazon.

542 Statistical analysis

543 The experiments were performed in triplicate and were determined by logarithmic

544 regression curves with 95% confident limits. Relative standard deviations and statistical

Plant Biosystems

3	545	significance (Student's t test; $p \le 0.05$) were calculated using software STATISTICA
4 5	546	6.0 (StatSoft Italia srl)
6		
7 8	547	
9		
10	548	References
11	210	
12		
13	549	Adams RP. 2007. Identification of Essential Oil Components by Gas
14		
15	550	Chromatography/Masspectrometry, 4th ed.Carol Stream (IL): Allured Publishing Co
16		
17		
18	551	Astani A, Reichling J, Schnitzler P. 2010. Comparative Study on the Antiviral Activity of
19		
20	552	Selected Monoterpenes Derived from Essential Oils. Phytother- Res. (24):673-679.
21		
22		
23	553	Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P,
24		
25	554	Temml V, Wang L, Schwaiger S, Heiss EH. 2015. Discovery and resupply of
26		
27	555	pharmacologically active plant-derived natural products: A review. Biotechnol- Adv.
28	55(
29	220	(33):1582-1614.
30		
31	557	Dollahani V. Tagnalini M. Dartani S. Druni B. Guarrini A. Marana Duada C. Daragalli E.
32	557	Banademi v, Tognonimi M, Bertoni S, Bruni K, Guernini A, Moreno Kueda G. Baroceni E.
33	558	2007 Antiplatalat and antithrambatic activities of accential ail from wild Ocated duives
34	558	2007. Antiplatelet and antimomobile activities of essential of from whe ocoled quixos
35	559	(II am) kKosterm (I lauraceae) calices from amazonian Ecuador. Pharmacol. Res. (55):23-
36	557	(Tham.) KROSterin (Lifadraceae) cances from amazonian Ecuador. Finannacor: Res. (55).25-
3/	560	30
38	500	50.
39		
40	561	Bernuci ZK, Iwanaga CC, Fernandez-Andrade CMM, Brusco Lorenzetti F, Caio Torres-
41		
42	562	Santos E, dos Santos Faiões V, Goncalves JE, do Amaral W, Deschamps C, de Lima Scodro
43		, , , , , , , , , , , , , , , , , , ,
44	563	R, Fressatti Cardoso R, Vanessa PietrowskiBaldin V, Garcia Cortez DA. 2016. Evaluation
45		
40	564	of Chemical Composition and Antileishmanial and Antituberculosis Activities of Essential
47		
40	565	Oils of Piper Species. Molecules. (21):1698.
49 50		
51		
52	566	Bhalla Y, Gupta VK, Jaitak V. 2013. Anticancer activity of essential oil: A review. J- Sci-
53	_	
54	567	Food Agric. (93):3643–3653.
55		
56		
57		
58		22
59		25

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

568	Bruni R, Medici A, Andreotti E, Fantin C, Muzzoli M, Dehesa M, Romagnoli C, Sacchetti
569	G. 2004. Chemical composition and biological activities of ishpingo essential oil, a
570	traditional ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower
571	calices. Food Chem. (85):415-421.
572	Carson CF, Ashton L, Dry L, Smith DW, Riley TV. 2001. Melaleuca alternifolia (tea tree)
573	oil gel (6%) for the treatment of recurrent herpes labialis. J Antimicrob Chemother. (48):
574	450–451.
575	Cicció JF, Ballestero CM. 1997. Constituyentes volátiles de las hojas y espigas de Piper
576	aduncum (Piperaceae) de Costa Rica. Rev Biol Trop. 45(2):783-790.
577	Cermelli C, Fabio A, Fabio G, Quaglio P. 2008. Effect of Eucalyptus Essential Oil on
578	Respiratory Bacteria and Viruses. CurrMicrobiol. 56(1):89-92.
570	David S. Abroham AM 2016 Enidemiological and alinical aspects on West Nile views a
519	David S, Abraham AW. 2010. Epidemiological and chinical aspects on west type virus, a
580	globally emerging pathogen. Infect Dis (Lond). 48(8):571-86.
581	De Almeida RRP, Souto RNP, Bastos CN, Da Silva MHL, Maia JGS. 2009. Chemical
582	variation in Piper aduncum and biological properties of its dillapiole-rich essential oil.
583	ChemBiodivers. 6(9):1427-1434.
584	Debonsi Naviskiene HM, Morandim ADA, Alásio AC, Regasini LO, Bergamo DCR
505	The Market Hill And
282	Telascrea M, Cavalheiro AJ, Lopes MN, Bolzani VDS, Furlan M, Marques MOM, Young
586	MCM, Kato MJ. 2006. Composition and antifungal activity of essential oils from Piper
587	aduncum, Piper arboreum and Piper tuberculatum. Quím. Nova. 29(3):467-470.
588	De Oliveira JCS, Dias IJM, Da Camara CAG. 2006. Volatile Constituents of the Leaf Oils
589	of Piper aduncum L. from Different Regions of Pernambuco (Northeast of Brazil). J Essent
590	Oil Res <mark>ESSENT OIL RES</mark> . 18(5):557-559.

Page 25 of 36		Plant Biosystems			
1					
2 3	591	Durant-Archibold AA, Santana AI, Gupta PM. 2018. Ethnomedical uses and			
4 5	592	pharmacological activities of most prevalent species of genus Piper in Panama: A review.			
б 7	593	Journal of Ethnopharmacol. (217): 63–82			
9 10	594	Elizaquível P, Azizkhani M, Aznar R, Sánchez G. 2013. The effect of essential oils on			
11 12 13	595	norovirus surrogates. Food Control. (32):275-278.			
14 15	596	Fazolin M, Estrela JLV, Catani V, Alécio MR, de Lima MS. 2007. Insecticidal properties of			
16 17	597	essential oils of Piper hispidinervum C. DC.; Piper aduncum L. and Tanaeciumnocturnum			
18 19 20	598	(Barb. Rodr.) Bur. & K. Shum against Tenebrio molitor L. Ciênc- agrotec. 31 (1):113-120			
21 22	599	Fortuna C, Remoli ME, Di Luca M, Severini F, Toma L, Benedetti E, Bucci P, Montarsi F,			
23 24	600	Minelli G, Boccolini D, Romi R, Ciufolini MG. 2015. Experimental studies on comparison			
25 26	601	of the vector competence of four Italian Culexpipiens populations for West Nile			
27 28	602	virus.Parasit Vectors. (8):463.			
29 30 31	603	Friedman J, Bolotin D, Rios M, Mendosa P, Cohen Y, Balick M.J. 1993. A novel method			
32	604	for identification and domestication of indigenous useful plants in Amazonian Ecuador.			
34 35	605	New crops. 167-174.			
36 37 20	606	García, CC, Talarico L, Almeida N, Colombres S, Duschatzky C and Damonte EB. 2003.			
39 40	607	Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother			
40 41 42	608	Res. 17:1073-1075.			
43 44 45	609	Gubler DJ. 2007. The continuing spread of West Nile virus in the western hemisphere. Clin-			
46 47	610	InfectDis. 45(8):1039–1046.			
48 49 50	611	Guerrini A, Rossi D, Grandini A, Scalvenzi L, Noriega Rivera PF, Andreotti E, Tacchini M,			
50 51	612	Spagnoletti A, Poppi I, Maietti S. 2014. Biological and chemo-diverse characterization of			
52 53 54 55	613	Amazonian (Ecuador) Citruspetitgrains. J Appl Bot Food Qual. (87):108–116.			
56 57 58		25			
59 60		URL: http://mc.manuscriptcentral.com/tplb			

Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M,

3	614	Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M,
4 5	615	Maldonado ME, Bruni R. 2009. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz
6 7	616	&Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ Toxicol Pharmacol.
8 9 10	617	27(1):39-48.
11 12	618	Li D, Baert L, Uyttendaele M. 2013. Inactivation of food-borne viruses using natural
13 14 15	619	biochemical substances. Food Microbiol. (35):1-9.
16 17	620	Ling A I, Sulaiman S, Othman H. 2009. Evaluation of Piper aduncum Linn. Essential Oil
18 19	621	(Fam:Piperaceae) against Periplanetaamericana (L.). Iranian J Arthropod-Borne Dis. 3(2):
20 21 22	622	1-6.
23 24	623	Lohézic-Le Dévéhat F, Bakhtiar A, Bézivin C, Amoros M, Boustie J. 2002. Antiviral and
25 26 27	624	cytotoxicactivities of some Indonesianplants. Fitoterapia. (73):400-405.
28 29	625	Magurano F, Remoli ME, Baggieri M, Fortuna C, Marchi A, Fiorentini C, Bucci P,
30 31	626	Benedetti E, Ciufolini MG, Rizzo C, Piga S, Salcuni P, Rezza G, Nicoletti L. 2012.
32 33	627	Circulation of West Nile virus lineage 1 and 2 during an outbreak in Italy. ClinMicrobiol
34 35 36	628	Infect. (12) 545-547.
37 38	629	Maia, JGS, Zohhbi MDGB, Andrade EHA, Santos AS, Da Silva MHL, Luz AIR, Bastos
39 40	630	CN. 1998. Constituents of the essential oil of Piper aduncum L. growing wild in the
41 42 43	631	Amazon region. Flavour Fragr- J. 13(4):269-272.
44 45	632	Mamood SN, Hidayatulfathi O, Budin SB, Ahmad Rohi G, Zulfakar MH. 2017. The
46 47	633	formulation of the essential oil of Piper aduncum Linnaeus (Piperales: Piperaceae) increases
48 49	634	its efficacy as an insect repellent. Bull Entomol Res. (1):49-57.
50 51	635	Mittermeier RA, Mittermeier CG, Gil PR. 1999. Megadiversity: Earth's biologically
52 53 54 55 56 57	636	wealthiest nations. Chelonian Conserv. Biol. (3):537-537.
58		27

Plant Biosystems

2 3	637	Monzote L, Scull R, Cos P, Setzer WN. 2017. Essential Oil from Piper aduncum: Chemical
4 5	638	Analysis, Antimicrobial Assessment, and Literature Review. Medicines. 4(49).
7 8 9	639	Naranjo P. 1981. Ocotea quixos, American cinnamon. J. Ethnopharmacol. (4):233 – 236.
10 11	640	Newman DJ, Cragg GM. 2007. Natural products as sources of new drugs over the last 25
12 13 14	641	years. J . Nat . Prod. (70):461-477.
15 16	642	Nowak A. 2011. The inhibitory effect of essential oil on HSV-1 and HSV-2 virus. Post
17 18 19	643	Fitoter. (4):243–247.
20 21	644	Ocazionez RE, Meneses R, Torres FA, Stashenko E. 2010. Virucidal activity of Colombian
22 23	645	Lippia essential oils on dengue virus replication in vitro. Mem Inst Oswaldo Cruz, Rio de
24 25 26	646	Janeiro. 105(3):304-309.
27 28	647	Oliveira GL, Cardoso SK, Lara Júnior CR, Vieira TM, Guimães EF, FiguereidoLS, Martins
29 30	648	ER, Moreira DL, Kaplan MAC. 2013. Chemical study and larvicidal activity against
31 32 33	649	Aedesaegypti of essential oil of Piper aduncum L. (Piperaceae). An AcadBrasCienc. 85(4).
33 34 35	650	Pietrantoni A, Fortuna C, Remoli ME, Ciufolini MG, Superti F. 2015. Bovine lactoferrin
36 37	651	inhibits Toscana virus infection by binding to heparan sulphate. Viruses. Jan 29;7(2):480-
38 39	652	495.
40 41	653	Rali T, Wossa SW, Leach DN, Waterman PG. 2007. Volatile chemical constituents of Piper
42 43	654	aduncum L and Piper gibbilimbum C. DC (Piperaceae) from Papua New Guinea. Molecules.
44 45 46	655	12(3):389-394.
47 48	656	Rolli E, Marieschi M, Maietti S, Sacchetti G, Bruni R. 2014. Comparative phytotoxicity of
49 50	657	25 essential oils on pre- and post-emergence development of solanum lycopersicum l.: A
51 52 53 54	658	multivariate approach. Ind Crops Prod. (60):280-290.
55 56 57		
58 59		27

659	Sacchetti G, Guerrini A, Noriega P, Bianchi A, Bruni R. 2006. Essential oil of wild
660	Ocoteaquixos (Lam.) Kosterm. (Lauraceae) leaves from amazonian Ecuador. FlavourFragr-
661	J. (21):674-676.
662	Saxena V, Bolling BG, Wang T. 2017. West Nile Virus. Clin Lab Med. Jun;37(2):243-252.
663	Scalvenzi L, Grandini A, Spagnoletti A, Tacchini M, Neill D, Ballesteros JL, Sacchetti G,
664	S. Guerrini A. 2017. Myrciasplendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceace)
665	essential oil from Amazonian Ecuador: A chemical characterization and bioactive profile.
666	Molecules. (22)(7) :E1163.
667	Schnitzler P, Koch C, Reichling J. 2007. Susceptibility of Drug-Resistant Clinical Herpes
668	Simplex Virus Type 1 Strains to Essential Oils of Ginger, Thyme, Hyssop, and
669	Sandalwood. Antimicrob. Agents Chemother. May 51(5):1859–1862.
670	Schuhmacher J, Reichling J, P. Schnitzler P. 2003. Virucidal effect of peppermint oil on the
671	enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. (10)(6-
672	7):504–510.
673	Sierra R, Campos F, Chamberlin J. 2002. Assessing biodiversity conservation priorities:
674	Ecosystem risk and representativeness in continental Ecuador. Landsc Urban Plan. Int. J.
675	Geogr. Inf. Sci. (59(2)):95-110.
676	Silva AL, Chaves FCM, Lameira RC, Bizzo HR. 2014. Yield and composition of the
677	essential oil from Piper aduncum L., cultivated in Manaus, AM, regarding plant density and
678	cutting period. Rev- bBras- pPlantas mMed. 15(4)(SUPPLSuppl1):670-674.
679	Swamy MK, Akhtar MS, Sinniah UR. 2016. Antimicrobial Properties of Plant Essential
680	Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid-
681	Based Complement- Alternat- Med. Article ID 3012462:, 21
682	pageshttp://dx.doi.org/10.1155/2016/3012462
	28

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

Tanu B, Harpreet K. 2016. Benefits of essential oil. J Chem Pharm Res. 8(6):143-149.

- Tognolini M, Barocelli E, Ballabeni V, Bruni R, Bianchi A, Chiavarini M, Impicciatore M. 2006. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sciences. (78):1419-1432.
- Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, Garcia-Moruno E, Saiz JC. 2017. Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front Microbiol. 8:1314.
 - Villamizar LH, Cardoso MDG, de Andrade J, Teixeira ML, Soares MJ. 2017.Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi
 - - trypomastigote forms at 4°C. Mem Inst Oswaldo Cruz, Rio de Janeiro. 112(2):131-139.

. Metri i....

Figure 1. Antiviral activity of *O. quixos* (\blacklozenge) and *P. aduncum* (\blacksquare) against WNV during intracellular virus replication. Results are presented as measure three independent experiments ± SD (p<0.05)

Figure 2. Antiviral activity of *O. quixos* against WNV at 0.1 m.o.i.p.f.u./cell (**A**) after incubation of \bigcirc us with different concentratio f EO 1h at 37° C before infection ; (**B**) after pre-treatment of cells with drugs before viral infection 1h at 37° C (**C**) after treatment with different concentratio **(C)** EO during infection. CC = cell control; CV = virus control

Figure 3. Antiviral activity of *P. aduncum* against WNV at 0.1 m.o.i. p.f.u./cell (**A**) after incubation of virus with different concentratio $\mathbf{P}^{\mathbf{F}}$ EO 1 h at 37° C before infection; (**B**) after pre-treatment of cells with drugs before viral infection 1 h at 37° C (**C**) after treatment with different concentratio $\mathbf{P}^{\mathbf{F}}$ EO during infection. CC = cell control; CV = virus control

Table 1. Chemical composition of O. quixos and P. aduncum EOs

Na	Common out	O. quixos	P. aduncum	DI	RI lit ⁴
INO.	Component	(Area %) ²⁴	(Area%) ²⁴	кі ехр	lett ³
1	α-thujene	1.50±0.09	0.23±0.02	922	924
2	α-pinene	6.27 ±0.47	1.63±0.14	929	932
3	camphene	0.16±0.02	-	944	946
4	sabinene	6.46 ±0.39	-	967	969
5	β-pinene	3.45±0.21	0.99 ± 0.08	973	974
6	myrcene	0.83±0.06	0.42±0.03	987	988
7	α-phellandrene	0.31±0.03	0.78±0.05	1005	1002
8	p-mentha-1(7),8-diene	0.48 ± 0.04	0.16±0.01	1006	1005
9	α-terpinene	1.73±0.11	0.63±0.04	1014	1014
10	p-cymene	6.12 ±0.42	1.48±0.13	1021	1020
11	o-cymene	-	1.21±0.10	1025	1023
12	limonene	1.84±0.11	1.10±0.11	1026	1024
13	1,8-cineole	39.15 ±2.32	-7	1028	1026
14	cis-ocimene	-	3.33±0.27	1032	1032
15	trans-ocimene	-	7.53 ±0.48	1043	1044
16	γ-terpinene	3.05±0.18	1.99±0.16	1053	1054
17	p-mentha-2,4(8)-diene	0.35±0.02	1.27±0.10	1082	1085
18	δ-terpineol	0.47±0.04	-	1167	1162
19	terpinen-4-ol	4.22±0.25	1.63±0.12	1176	1174
20	α-terpineol	7.65 ±0.51	-	1193	1186
21	piperitone	-	3.78±0.25	1250	1249
22	δ-elemene	-	0.10±0.01	1337	1335

23	α-cubebene	0.40±0.03	0.18±0.02	1351	1345
24	cyclosativene	-	0.36±0.03	1369	1370
25	α-ylangene	-	0.18±0.01	1371	1373
26	α-copaene	1.44±0.08	1.23±0.11	1376	1374
27	β-cubebene	-	0.11±0.01	1387	1387
28	β-elemene	-	0.58±0.03	1388	1389
29	trans-methylcinnamate	1.53±0.06	-	1389	1388
30	α-gurjunene	-	0.50±0.02	1398	1409
31	E-caryophyllene	4.73 ±0.33	4.80 ±0.35	1410	1416
32	α-santalene	0	0.10±0.01	1414	1417
33	β-copaene	9	0.31±0.02	1424	1430
34	γ-elemene	-	0.18±0.01	1427	1434
35	aromadendrene	-	0.29±0.02	1432	1439
36	α-humulene	2.96±0.21	1.74±0.16	1451	1452
37	trans-cadina-1(6),4-	_	0 17+0 02	1470	1475
51	diene		0.17=0.02	11/0	1475
38	γ-muurolene	-	0.54±0.05	1473	1478
39	germacrene D	-	3.05±0.29	1477	1484
40	β-chamigrene	0.13±0.02	-	1480	1480
41	β-selinene	2.00±0.18	0.32±0.02	1484	1489
42	γ-amorphene	-	0.28±0.02	1487	1495
43	viridifilorene	-	0.52±0.04	1491	1496
44	bicyclogermacrene	0.79±0.06	-	1491	1500
45	α-muurolene	-	0.33±0.03	1495	1500
46	n-pentadecane	-	0.24±0.01	1500	1500

	Total identified	99.42	98.77		
59	dillapiole	-	48.21 ±2.65	1622	1622
58	humulene epoxide II	0.19±0.02	0.27±0.02	1609	1608
57	viridiflorol	- /	1.13±0.11	1593	1592
56	caryophyllene oxide	0.44±0.03	0.48±0.03	1581	1582
55	spathulenol	0.10±0.01	0.64±0.04	1577	1577
54	germacrene B	0 -	0.50±0.04	1557	1559
53	α-cadinene	-	0.10±0.01	1535	1537
52	<i>trans</i> -cadina-1(2),4- diene	-	0.16±0.01	1531	1533
51	trans-γ-bisabolene	0.26±0.02	-	1526	1531
50	myristicin	-	0.64±0.05	1524	1517
49	δ-amorphene	0.43±0.04	1.39±0.12	1516	1511
48	γ-cadinene	-	0.44 ± 0.04	1509	1513
47	(E,E)-α-farnesene	-	0.53±0.05	1504	1506

¹Components are listed in order of elution and their nomenclature is in accordance of the NIST (National Institute of Standards and Technology) library; ² Relative peak areas \pm SEM (standard error media), calculated by GC-FID; ³ RI exp: linear retention indices calculated on a Varian VF-5ms column; ⁴ RI lit: linear retention indices (Adams et al. 2007).

Table 2. $CC_{50} = 50\%$ cytotoxic concentration	(μ g/mL); EC ₅₀ = 50% effective concentration
($\mu g/mL$); SI 50 = selectivity index (CC ₅₀ / EC ₅)	

	CC ₅₀	EC ₅₀	SI
O. quixos	840 μg/mL	372 μg/mL	2.2
P. aduncum	163 μg/mL	163 μg/mL	1

tor peer peries only