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PREFACE

The 13th HVAC+R Technologies Symposium organized by TTMD aimed at emphasizing the importance 
of climate proper system selections to attain the ultimate goal of a more sustainable built environ-
ment.

It is for this reason that 15 foreign lecturers, each of them experts in their respective fields, were invited 
to the symposium and delivered highly informative speeches to an audience, that consists of young 
professionals, students and academicians. Of course, the symposium served also as a platform for 
many researchers to make their contributions in relevant topics and with this book we expose them 
to your attention. 

Interested reader is urged to look into this proceedings book, not only to see the vast possibilities of 
improvement of built environment by selecting climate proper systems but also to know the major 
potentials in the related research areas. 

Dr. Murat Çakan
Head of Symposium Organizing Committee
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PREFACE

On its 25th anniversary of foundation, TTMD has organized the XIIIth International HVAC+R and Sanitary 
Technology Symposium in Istanbul-Turkey, between 12 and 14 April 2018. This book is a collection of all 
presentations made and lectures given in this Symposium. The symposium was organized in a different 
style with more emphasis on invited lectures given by eminent scientists and professionals selected 
virtually from all corners of the world. The main aim was to attract all participants and presenters in the 
same hall in order to facilitate the share of up-to-date and innovative information and research among 
all participants in a collective and simultaneous manner. This technique proved to be a success accord-
ing to several evaluations being made and many positive comments received. Of course, this approach 
did not neglect oral and poster presentation, which were carefully integrated to the main focus and 
the theme of the Symposium, namely Climate Proper HVAC System Solutions. This theme did fit very well 
with the current decarbonization efforts, issues and concerns about high-rise buildings, and a negative 
trend of using same style and structure of buildings almost in every geographic region and climate. 
Speakers have instead emphasized that climate is a very important factor in the design, selection of sys-
tems and equipment, construction, commissioning, and finally, the operation. Several examples were 
given in order to lay out a concrete road map for climate-sensitive HVAC design and architecture.

The Symposium shed influential light on global decarbonization and emphasized the importance of 
HVAC+R within the quest of decoupling CO2 emissions from sustainable development of nations. In-
deed, buildings need to be climate aware, sensitive, and responsive. In this token, it was very timely to 
discuss the potential impact of HVAC+R systems on the climate change and to collectively find robust, 
sustainable, and rational solutions beyond the so-called smart buildings. We need to widely expand 
our vision from single buildings to complete sets of the built environment at different scales and focus 
more deeply on the interactions of human activities with the environment at large. In this respect, re-
newable energy resources and rational use of these resources collectively in an optimum mix at district 
scale are becoming more and more important for the building sector, along with better and concerted 
utilization of fossil fuels -if needed- with systems and equipment like cogeneration coupled with heat 
pumps and low-exergy heat distribution and collection systems, like chilled beams in a hybridized form. 

This book is an elaborated collection of all lectures and presentation on record from the Symposium. I 
invite you to read all papers and contact us for a wider and concerted networking, in a continuous and 
productive discussion platform for today and for the future of humankind within the context of Paris 
agreement signed by a vast majority of countries. I hereby invite remaining few -in quote developed- 
countries to join, who seem to be quite unaware or negligent of the urgency of global warming.

Last but not least, I warmly thank to all members of the Organizing Committee, our TTMD members, 
the Symposium staff, who all worked meticulously over several months in order to realize this Sympo-
sium in its best format and content, and finally produced this archival foundation for the international 
scientific and professional community. I sincerely hope that this publication will enhance and positively 
provoke innovative solutions and facilitate scientific collaboration for the benefit of environment and 
humankind.

Please join us in the quest of building better and more climate rational buildings and cities in a context 
of not only smart but also rational in terms of energy and exergy. Let’s make the success of this Sympo-
sium permanent for today and for tomorrow together!

Prof. Dr. Birol Kılkış
President of TTMD and Symposium Chair
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SUMMARY

The Heating, Ventilating, and Air Conditioning (HVAC) control systems traditionally use thermostats, 
expending energy freely to achieve a given set point. Intelligent controllers which use programmable 
thermostats are smarter and allow users to vary set points by time of the day and day of the week. Never-
theless, none of these control systems are aware of user comfort: they focus, instead, only on controlling 
room temperature. Participation of the buildings’ occupants is essential in learning their comfort pro-
files as personalized thermal comfort driven HVAC operations do. Studies conducted in the last decade 
showed that while intelligent HVAC control systems can greatly improve thermal comfort, energy con-
sumption reduction, health, satisfaction and productivity. Personalized thermal comfort driven control 
is the most effective way of both saving energy and maintaining thermal comfort. This paper provides a 
detailed review of HVAC control techniques from traditional controllers towards personalized thermal 
comfort driven controllers. Meanwhile, the paper appraises recent advanced techniques on the design 
and control of personalized HVAC systems. As an application and case study, a personalized thermal 
comfort driven controller which is being developed in Izmir Institute of Technology will be introduced 
and the preliminary results will be discussed.

INTRODUCTION

Thermal comfort is perceived as the comfort of occupants under given thermal environment conditions 
and body sensation which is the function of six parameters: indoor air temperature (Ti), relative humid-
ity (RH), air velocity (va), clothing insulation (clo), metabolic rate (met) and mean radiant temperature 
(MRT) [1]. Predicted Mean Vote (PMV) is the most common metric to estimate the thermal comfort 
as presented in ASHRAE 55 Standard [1]. PMV uses six parameters for the calculation and refers to a 
thermal scale that runs from cold (-3) to hot (+3), originally developed by Fanger [2] and later adopted as 
ISO 7730 Standard [4]. The scale using codes in Table 1 as -3 for cold, -2 for cool, -1 for slightly cool,0 
for neutral, +1 for slightly warm, +2 for warm and +3 for hot. According to the ISO 7730 Standard [3] the 
values of PMV is 0 with a tolerance of ± 0.5 as a good thermal comfort.

Table 1. Thermal sensation scale in ISO 7730 [3].
Thermal sensations PMV
Hot +3
Warm +2
Slightly warm +1
Neutral 0
Slightly cool -1
Cool -2
Cold -3
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Predicted Percentage of Dissatisfied (PPD) is another thermal comfort index which predicts the per-
centage of occupants that will be dissatisfied with the thermal conditions. If 90% of the occupants 
are satisfied (or 10% dissatisfied) with their thermal environment, then the ISO 7730 Standard [3] 
classifies an environment as thermally acceptable. 

Along with the conventional PMV-PPD index for buildings which use HVAC equipment, the adaptive 
thermal comfort model [4] was adopted in AHSRAE 55 Standard [1] for natural ventilated buildings. 
The model assumes that, if changes occur in the thermal environment to produce discomfort, the oc-
cupants generally change their behavior and act in a way that the occupants restore their comfort [5]. 
Besides the researches on adaptive thermal comfort, a study by de Dear and Brager [6] showed that 
each occupant has different thermal preferences depending on age, gender and morphology. There-
fore, to obtain the most satisfying thermal comfort with energy efficiency becomes a challenge for 
HVAC system control. 

HVAC systems mostly use conventional control logic like On/Off and conventional Proportional-
Integral-Derivative (PID) methods and real-time temperature measurements without considering 
thermal comfort of occupants. Artificial Intelligence (AI)-based HVAC control systems can detect 
thermal comfort, however, they require complex model of the HVAC system along with thermal 
comfort model. Although the control algorithms of HVAC systems are directly applicable, determi-
nation of thermal comfort is still a problem. Furthermore, AI-based controllers merely calculate a 
unique standardized thermal sensation or operative temperature for all occupants, without giving 
them any direct feedback possibilities [7]. Individual differences or preferences can be accommo-
dated with personalized thermal comfort driven controllers. Occupant satisfaction and productivity 
can also be increased as a result of improved personalized thermal comfort and control over the 
HVAC systems.

In this paper, a review of HVAC control techniques from conventional controllers towards person-
alized thermal comfort driven controllers is provided. Moreover, a personalized thermal comfort 
driven controller which is being developed in Izmir Institute of Technology is introduced and the 
preliminary results are given.

HVAC CONTROL SYSTEMS

HVAC control systems have been investigated by various techniques such as standard On/Off con-
trol, PID-type control and AI-based control methods like Artificial Neural Network (ANN), Ar-
tificial Neuro-Fuzzy Inference System (ANFIS), Fuzzy Logic (FL) and Model Predictive Control 
(MPC) approaches and summarised in Table 2.
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Table 2. HVAC control systems.
Type of 

Controller Method Year Output 
variable Advantages Disadvantages References

C
O

N
V

EN
TI

O
N

A
L 

CO
N

TR
O

LL
ER

S
On/Off 1930s Temperature Simple and common No feedback [8-12]

PID-type 1980s Temperature Easy to operate

Do not produce fast 
response, suffer a 

problem of overshoot, 
large settling time

[13-16]

A
I-B

A
SE

D
CO

N
TR

O
LL

ER
S

ANN 1990s Thermal 
Comfort

Requires mathematical 
model of both HVAC 
system and thermal 
comfort sensation

Difficult to find 
proper construction 
of layers and neuron 

numbers

[17-20]

FL 1990s Thermal 
Comfort

Preferable for HVAC 
systems that are hard 
to model and control 

mathematically

Requires time and 
experts to construct 

rules
[21,22]

ANFIS 1990s Thermal 
Comfort

Self-learning ability
simple structure

Combination of ANN 
and FL disadvantages [23-25]

MPC 2000s Thermal 
Comfort

Anticipate future 
events,

optimization procedure

Require building 
models,

Difficult to apply in 
larger buildings

[26-29]

PERSONALIZED THERMAL COMFORT DRIVEN CONTROL

Individual differences are neglected in conventional PMV-PPD method. However, studies in literature 
show that individual differences such as gender and age are significant on thermal comfort [30,31]. 
Conventional HVAC system controllers merely regulate the indoor air temperature where thermostats 
are used for the feedback control of temperature. But the controllers do not detect the occupant’s ther-
mal comfort. On the other hand, AI-based controllers calculate a unique standardized thermal sensa-
tion or operative temperature for all occupants instead of taking into account individual differences. 
Therefore, researchers have started exploring the ways and methods to make HVAC systems adaptive 
to the occupant’s thermal sensation and individual differences instead of using average models. In 
2003, Lin et al. [32] developed a thermal comfort control model by using multi-sensors for HVAC 
systems. The study addressed this multi-sensor, single-actuator control problem which was solved 
by a computer program and optimization technique. In the study, each room equipped with multi-
sensors and a sensor network and the controller operated only on the temperature reading from the 
room sensors. As a conclusion, the authors demonstrated that the comfort-optimal strategy reduces 
energy consumption by 4% while reducing PDD from 30% to 20%. Occupancy measurements play 
an important role to achieve energy saving and thermal comfort. Brooks et al. [33] used motion detec-
tors with low-cost, wireless sensor nodes. A building in University of Florida campus which uses 3 
AHUs, was selected as a test chamber. The controller consists of a wireless sensor network (Fig.1a), a 
software infrastructure for data management, control execution (MATLAB) and a control algorithm 
for computing commands. A Passive Infrared (PIR) sensor (for measuring occupant presence) and a T/
RH sensor were deployed with a microprocessor to collect real-time measurements. The experiments 
showed that the controller achieved 37% energy saving without scarifying thermal comfort. In 2014, 
Jazizadeh et al. [34] implemented occupant thermal comfort profiles to the HVAC control logic which 
is called personalized thermal comfort driven control. The estimation of the profiles was applied by 
FL approach. The controller used user interference and thermal preference scale (Fig1b). Participa-
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tory sensing approach which relies on computing devices such as notebooks and mobile phones, were 
adapted to the study and occupants reported their preferences under different indoor environmental 
conditions through the user interface. Thus, the controller learned occupant’s thermal comfort profiles 
which are used in HVAC control. Moreover, the results showed a 39% reduction in daily average air-
flow when the HVAC system used personalized thermal comfort driven controller.

Figure 1. (a) Wireless sensors [33], (b) User interface of thermal preference scale [34].

In another study by Erickson et al. [35], Power-efficient Occupancy-based Energy Management Sys-
tem was developed. The HVAC system was controlled based on actual occupancy levels and utilizes 
a purpose-built wireless network of camera sensors with a parallel network of PIR sensors to sense 
the presence of occupants to find the optimal personalized thermal comfort. Some of the researches 
preffered localized thermal comfort control instead of large control systems [35, 36]. Watanabe et al. 
[36] used a chair with local heating and cooling strips and fans to ensure personalized thermal comfort 
(Fig.2a). Authors concluded that even at a room temperature of 30oC, the occupants were able to create 
acceptable thermal environments by using the chairs with fans. Lopez et al. [37] achieved personal-
ized thermal comfort by heating wrist instead of heating the whole thermal environment (Fig.2b). The 
authors indicated that the personalized thermal comfort controller which consumes less energy could 
be used instead of conventional control systems.

Figure 2. Examples of personalized thermal comfort controllers.

Wearable sensors are becoming more common in prediction of personalized thermal comfort. For 
instance, Fieldmeier [38] developed a portable wearing thermal comfort system (Fig.3) where the sen-
sors are located on finger (rings), wrist (watches), neck (necklaces), chest (necklaces) and shirt exterior 
(pendants). The system was worn and trained by a single user in order to learn the preferences of its 
owner. These comfort signals were then used to control the HVAC system. 
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Figure 3. Wearable sensors used for personalized thermal comfort [38]

Ranjan and Scott [39] used thermographic imaging technique for personalized thermal comfort con-
trol. The controller used real-time thermal preferences of the occupants by machine learning model 
(Fig.4a). The authors indicated that energy could be saved if realtime thermal preferences were used 
rather than using standard air temperature based control in HVAC systems. Similarly, Ghahramani et 
al. [40] utilized infrared thermography with the help of sensors which is installed on eyeglass frame 
(Fig.4b). The authors proposed a hidden Markov model learning approach to capture dynamic thermal 
comfort of occupants. Surveys were conducted for four days at the same time with the measurements 
and the proposed learning algorithm predicted uncomfortable conditions with an accuracy of 82.8%. 
The authors concluded that real-time measurements of personalized thermal comfort allows HVAC 
system controllers to optimize energy consumption while ensuring better thermal comfort.

Figure 4. (a) Thermographic data collection points [39], (b) the infrared sensing system installed on 
an eyeglass frame [40].

CASE STUDY 

As an application and case study, a new real time personalized thermal comfort driven control system 
is being developed in a case building in İzmir Institute of Technology, İzmir, Turkey. The objective of 
the controller is to maintain a particular comfort level based on objective sensor measurements, sub-
jective occupant data and its control over the operation of an air conditioner. The controller consists 
of temperature/RH sensor, O2 sensor and PMV sensor to make real-time measurements, microcon-
trollers to communicate among the devices (Fig.5a), a mobile application to obtain subjective thermal 
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comfort preferences of the occupant (Fig.5b), a server to control all the systems, an actuator and an IR 
sensor to control the actuator remotely. 

Figure 5. The developed personalized thermal comfort driven controller a) Sensor network b) Mobile 
application

With the mobile application, the controller learns the thermal preference of the occupant, then, con-
trols the future actions of air conditioner according to thermal preference of the occupant. A fuzzy 
logic model predicts the future desired thermal comfort preferences of the occupant following a day 
training period. Moreover, low-cost digital sensor network implements the real-time PMV calculation 
and directs the data to the controller (Fig.6).

Figure 6. The developed personalized thermal comfort controller

The developed personalized thermal comfort driven controller was tested from July 3rd, 2017 to De-
cember 3rd, 2017 and compared with conventional PID controller of air conditioner in the case build-
ing. The developed controller decreased the electricity consumption by 8.2% compared to the PID 
controller whilst achieving better thermal comfort.

CONCLUSIONS

The personalized HVAC system aims to provide a comfortable and healthy environment locally and with 
respect to individual need of the users. Beside comfort improvements, personalized HVAC controllers 
also reduce energy consumption due to higher effectiveness compared to conventional HVAC design. 
The studies in this paper showed that personalized HVAC systems can save the energy up to 40%. For a 
case study and application, a new personalized thermal comfort driven controller was developed in Izmir 
Institute of Technology. The controller was tested for 5 months and compared with the conventional PID 
controller. The results showed that the developed controller decreased electricity consumption by 8.2% 
while achieving better thermal comfort.
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Though the development and application of new sensors, this review indicates that a better understand-
ing of occupants in the controller level can enhance the robustness of the personalized HVAC systems.
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