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Abstract
In this paper a composite body is considered. This body is made of three solids, two linear
elastic adherents and a piecewise linear thin adhesive. The composite occupies a bounded domain
depending naturally on a small parameter ε, which is the thickness, supposed constant, of the
adhesive. Classically, it is possible to derive an interface imperfect law using asymptotic expansions
as the thickness ε tends to zero. In this work, the material in the interphase is supposed to be graded,
i.e. its elasticity properties vary along the thickness. Moreover, an unilateral condition is considered
to avoid penetrations. A first result of the paper is that it is possible to apply the above methodology
based on asymptotic expansions to this kind of materials. Then, a finite element method is introduced
to solve the initial problem (with three layers) and the limit one (with two layers in imperfect contact ).
Various types of graded materials are numerically analyzed. In particular, different types of stiffness
distributions are studied in detail.
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Introduction

Functionally Graded Materials (FGM) are characterized by smooth variations of thermal, physical,
chemical or/and mechanical properties16, usually in a specific direction. These variations are due
to gradual changes in composition, morphology and crystalline structure over volume. This kind of
inhomogeneous revolutionary materials can be designed for particular, and often unique, function or
applications. The overall properties of FGM are different from any of the constituents that form it.
Nowadays, there is a wide range of real applications. Even if FGMs are typical in natural material (bone,
teeth, etc.), the first technological development is due to Japanese researchers, who had to answer the
challenge to create a material capable of bearing a thermal gradient of 1000 ◦C on a thickness of only
10 mm14. It is at present in the nuclear sector (thermonuclear fusion) that the need for the FGM is most
vivid. Specifications (tenacity, heat resistance, strength to corrosion or irradiation) become more and
more binding, often leading to contradictory requests that a unique monolithic material cannot perform.
As an example, certain kind of steels are characterized by a conflict between the thermal resistance and
the tenacity. In front of these requirements and as a supplement to the usual strategies of microstructure
optimization, optimal designs based on material structuring at the mesoscopic scale are also explored.
Other structural applications require a joint between two basic constituents, for example ceramic and
metal (see fig. 1). This class of FGMs offers many advantages; in particular, the ceramic face is able
of suppling high strength to wear, while the opposite metal face offers high hardness and mechanical
strength. Such materials are expected to be very desirable for tribological applications, where wear
resistance and high hardness are simultaneously required.

FGM

Metal

Ceramic

Figure 1. Example of Functionally Graded Material application: adhesive bonding of two basic constituents
with specific thermic and mechanical properties.

In this paper, we are interested in modeling the behavior of FGM thin films, whose thickness is very
small with respect to that of the adherents (metal and ceramic for example). The thickness of the FGM
is consider as a small parameter and the limit problem is analyzed as the thickness tends to zero. In the
present paper, a simple case is considered: the stiffness of the FGM linearly rescales with its thickness
(soft material hypothesis). The limit problem is derived using matched asymptotic expansions1,9–12,15
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Dumont, Lebon and Rizzoni 3

and the obtained limit condition turns to be a law of imperfect interface. Here, the term perfect interface
means that the jumps in the displacement and in the traction vectors across the interface are equal to
zero. This situation arises for example when the rigidity of the interphase is of the same order of the
rigidity of the adherents. On the contrary, the term imperfect interface means that either the jumps in the
displacement or/and the jumps in the traction vectors are not vanishing. This last type of interface has
been widely studied in previous works and in several applications (see for example4–7)

The paper is divided in four parts. Section 2 is devoted to the mechanical problem and to some
notations. In Section 3, an asymptotic analysis is performed in order to obtain a law of imperfect interface.
The finite element implementation is presented in Section 4. Section 5 focuses on a numerical study of
some academic examples.

The mechanical problem
Let us now consider the adhesive bonding of two linear elastic three dimensional bodies, where the
mechanical properties of the adhesive may vary along the thickness (the third direction).

For that purpose, we define the following domains:

• Ω ⊂ IR3 is the whole structure, of boundary ∂Ω;
• Bε = {(x1, x2, x3) ∈ Ω : |x3| < ε

2} is the glue, also called the interphase;
• Ωε± = {(x1, x2, x3) ∈ Ω : ±x3 >

ε
2} are the adherents;

• Sε± = {(x1, x2, x3) ∈ Ω : x3 = ± ε2};
• Γ = {(x1, x2, x3) ∈ Ω : x3 = 0} is the interface, the geometrical limit of Bε as ε vanishes;
• B = {(x1, x2, x3) ∈ Ω : |x3| < 1

2} is the rescaled interphase;
• Ω± = {(x1, x2, x3) ∈ Ω : ±x3 >

1
2} are the adherents in the rescaled configuration;

• S± = {(x1, x2, x3) ∈ Ω : x± = ± 1
2} are the surfaces between the adhesive and the adherents in

the rescaled configuration;
• Ω0

± = {(x1, x2, x3) ∈ Ω : ±x3 > 0} are the domains occupied by the adherents in the limit
configuration obtained as ε vanishes.

On a part Γ1 of ∂Ω, an external load g is applied, and on Γ0 ⊂ ∂Ω, such that Γ0 ∩ Γ1 = ∅, a
displacement ud is imposed. Moreover, we suppose that Γ0 ∩Bε = ∅ and Γ1 ∩Bε = ∅. A body force f
is applied in Ωε±. We consider also that the interface Γ is a plane normal to the third direction e3. We are
interested in the equilibrium of such a structure.

The equations of the mechanical problem are
divσε + f = 0 in Ωε± ∪Bε
σεn = g on Γ1

uε = ud on Γ0

σε = A±e(u
ε) in Ωε±

σε = Ai (e(uε)) in Bε

(1)

where e(uε) is the strain tensor (eij(uε) = 1
2 (ui,j + uj,i), i, j = 1, 2, 3), A± are the elasticity tensors of

the deformable adherents. Moreover, uε is considered as continuous across the interfaces Sε+ and Sε−. The
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piecewise linear operator Ai which defines the constitutive equation of the adhesive interphase is defined
in the sequel. In the interphase Bε, two isotropic regimes (traction vs compression) are considered:{

σε = λ̂tr(e(uε))Id+ 2µ̂e(uε) if tr(e(uε)) ≥ 0
σε = λ̄tr(e(uε))Id+ 2µ̂e(uε) if tr(e(uε)) ≤ 0

(2)

Let us emphasize that the strictly positive Lamé’s coefficients of the interphase depend on the thickness
ε of the interphase, i.e. we consider in this study that:

λ̂ = λ(x3)ε, µ̂ = µ(x3)ε, λ̄ = λ̄(x3) (3)

As a consequence, in this study the adhesive has a non symmetric behaviour in traction (soft) and in
compression (hard).

Asymptotic analysis
The thickness of the interphase being very small, we seek the solution of problem (1) using asymptotic
expansions with respect to the small parameter ε:{

uε = u0 + εu1 +O(ε2)
σε = σ0 + εσ1 +O(ε2)

(4)

Figure 2. Geometry of the interphase/interface problem. Left: the initial problem with an interphase of
thickness ε – Middle: the rescaled problem with interphase height equal to 1 in which the asymptotical analysis
is realized – Right: the limit interface problem.

At this level, in order to work in a configuration independent of ε, the domain is rescaled using the
classical procedure:
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Dumont, Lebon and Rizzoni 5

• In the glue, we define the following change of variable

(x1, x2, x3) ∈ Bε → (z1, z2, z3) ∈ B,
with (z1, z2, z3) = (x1, x2,

x3

ε
)

(see configuration 2 of figure 2) and we denote ûε(z1, z2, z3) = uε(x1, x2, x3) and
σ̂ε(z1, z2, z3) = σε(x1, x2, x3).

• In the adherents, we define the following change of variable

(x1, x2, x3) ∈ Ωε+ → (z1, z2, z3) ∈ Ω+,
with (z1, z2, z3) = (x1, x2, x3 + 1/2− ε/2)

and
(x1, x2, x3) ∈ Ωε− → (z1, z2, z3) ∈ Ω−,
with (z1, z2, z3) = (x1, x2, x3 − 1/2 + ε/2)

We denote ūε(z1, z2, z3) = uε(x1, x2, x3) and σ̄ε(z1, z2, z3) = σε(x1, x2, x3). We suppose that
the external forces and the prescribed displacement ud are assumed to be independent of ε.
As a consequence, we define f̄(z1, z2, z3) = f(x1, x2, x3), ḡ(z1, z2, z3) = g(x1, x2, x3) and
ūd(z1, z2, z3) = ud(x1, x2, x3).

• The classical matching at the interface adherent/adhesive is

u0(x1, x2, 0
±) ≈ u0(x1, x2,±ε/2) = û0(x1, x2,±1/2) = ū0(x1, x2,±1/2)

σ0(x1, x2, 0
±) ≈ σ0(x1, x2,±ε/2) = σ̂0(x1, x2,±1/2) = σ̄0(x1, x2,±1/2)

(5)

From the equilibrium equation in the adhesive (eq. 1-1) it follows that

σ̂εij,j = 0

and using (4), the 1
ε term in the development is identified as

σ̂0
i3,3 = 0,

leading to [[
σ̂0
i3

]]
= 0 (6)

and
σ̂0
iα,α = 0

for i = 1, 2, 3 and α = 1, 2, where for a given function h, the following notation has been introduced:
[[h]] = h(z1, z2,+

1
2 )− h(z1, z2,− 1

2 ).

Let us consider the term tr(e(uε)), whose first term in the expansion (i.e. the 1
ε term) is u0

3,3. Thus,
after integration in the third direction, the two regimes, respectively tr(e(uε)) ≥ 0 and tr(e(uε)) ≤ 0,
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lead to the conditions
[[
u0

3

]]
≥ 0 and

[[
u0

3

]]
≤ 0, respectively.

For the first regime (traction), the constitutive equation (2) at the first order of expansion (i.e. ε0 term)
gives {

(λ+ 2µ)û0
3,3 = σ̂0

33,
µû0

α,3 = σ̂0
α3.

(7)

Because from (6), σ̂0
i3 is independent of x3, we can rewrite these equalities as follows:

û0
3,3 =

1

λ+ 2µ
σ̂0

33,

û0
α,3 =

1

µ
σ̂0
α3,

(8)

leading, by an integration over the interval [− 1
2 ,+

1
2 ], to

[[
û0

3

]]
=

(∫ 1
2

− 1
2

1

λ(x3) + 2µ(x3)
dx3

)
σ̂0

33,

[[
û0
α

]]
=

(∫ 1
2

− 1
2

1

µ(x3)
dx3

)
σ̂0
α3.

Then, by using the reverse change of variables (see for example10 for more details) and the matching
conditions (5), we can go back to Ω0

± to obtain the following jump conditions across the interface at order
zero {

σ0
33 = M̄

[
u0

3

]
on Γ

σ0
α3 = µ̄

[
u0
α

]
on Γ,

(9)

which hold on Γ when
[
u0

3

]
≥ 0 and where we have defined the quantities

1

M̄
=

1

ε

∫ ε
2

− ε
2

1

λ(x3) + 2µ(x3)
dx3

1

µ̄
=

1

ε

∫ ε
2

− ε
2

1

µ(x3)
dx3

(10)

with [h] = lim
x3→0+

h(x1, x2, x3)− lim
x3→0−

h(x1, x2, x3) for a given function h.

For the second regime (compression), the constitutive equation gives

û0
3,3 = 0 (11)

and thus, [[
û0

3

]]
= 0 (12)
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Then, going back to Ω0
± and using the matching conditions (5), we obtain that[

u0
3

]
= 0 (13)

which holds when
[
u0

3

]
≤ 0.

Using (2) and (11), it can be observed that the following conditions also hold for the second regime:{
û0

1,1 + û0
2,2 + û1

3,3 ≤ 0
σ̂0

33 = λ̄
(
û0

1,1 + û0
2,2 + û1

3,3

)
+ 2µû0

3,3 = λ̄
(
û0

1,1 + û0
2,2 + û1

3,3

)
.

(14)

Thus we find σ̂0
33 ≤ 0 and using matching conditions (5), we further obtain that σ0

33 ≤ 0 on Γ.

[u3]

t3

Figure 3. Unilateral contact law obtained by asymptotic expansions

To summarize, unilateral conditions of Signorini type are obtained (see fig. 3) and the approximated
interface equilibrium problem at order 0 is as follows:

divσ0 + f = 0 in Ω0
±

σ0n = g on Γ1

u0 = ud on Γ0

σ0 = A±e(u
0) in Ω0

±
σ0n = C

[
u0
]
+

+ τ0 on Γ[
u0

3

]
≥ 0, τ0

3 ≤ 0,
[
u0

3

]
τ0
3 = 0 on Γ

(15)

where

C =

 µ̄ 0 0
0 µ̄ 0
0 0 M̄

 (16)

τ0 =

 0
0
τ0
3

 (17)
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and with [
u0
]
+

=

 [
u0

1

][
u0

2

][
u0

3

]
 (18)

if
[
u0

3

]
> 0,

[
u0
]
+

=

 [
u0

1

][
u0

2

]
0

 (19)

if
[
u0

3

]
≤ 0.

Finite element implementation and numerical tests
In this section, we propose a numerical procedure to solve problem (15). For the classical equations of
elasticity in Ω0

±, a standard finite element method is used.
In order to properly take into account the jump conditions across the interface Γ, it is necessary to

consider a test function v which can be discontinuous across the interface Γ. Multiplying the contact
condition by the jump of this test function and integrating this relation among the interface, one obtains∫

Γ

[v]σ0n ds =

∫
Γ

[v]C[u0] ds.

On the other hand, on each subdomain Ω0
− and Ω0

+, we have∫
Ω0

±

e(v)A±e(u
0) ds+

∫
∂Ω0

±

vσ0n ds = 0.

Then adding the three last equalities (on Γ, Ω0
− and Ω0

+), the weak formulation of problem (15)
becomes ∫

Ω0
±

e(v)A±e(u
0) ds+

∫
Γ1

vg ds+

∫
Γ

[v]C[u0] ds = 0 (20)

Finally, using a standard finite element method where the test functions are discontinuous across the
interface, it is possible to write a stiffness matrix of problem (20) that is invertible and with standard error
estimates (for more details, see for example2,8,13).

Numerical study
In this section, we propose a numerical study of the influence of the rigidity distribution in the glue on the
overall structure behavior. For that purpose, we consider a two dimensional problem, derived from the
three dimensional one using plane strain assumptions. In view of these considerations, the interface is now
orthogonal to the second direction x2 and the interface law (16) remains the same (see for example2). A
solution of the mechanical problem described in the previous section for a particular stiffness distribution
in the glue is represented in figure 5. The mesh is realized using the software GMSH3.
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In all the simulations below, the two adherents have the same material properties, with the Young’s
modulus equal to E = 20000 MPa and the Poisson’s ratio equal to ν = 0.4.

The adhesive consists of three phases with different glues, characterized by diverse rigidities and
varying according to the numerical simulations.

The thickness of each phase is equal to ε = 0.01m.

The geometry of the mechanical problem is represented in figure 4, and an example of a solution is
shown in figure 5.

Figure 4. Geometry of the problem (ε = 0 for the interface problem)

In the simulations hereinafter, the subscript ε represents the solution of equilibrium problem (1)
computed considering the interphase of thickness proportional to ε, whereas the subscript “soft,0”
represent the solution of equilibrium problem (15) computed using the interface approximation at order
0 developed in the present paper.

Figure 5. An example of a deformed structure, obtained considering the interphase problem made of three
different phases

For the simulations considering the real three phases interphase, the finite element mesh contains
42,803 nodes and 21,314 finite elements (the total number of degree of freedom is equal to 85,468),
whereas for the simulations with the interface law, the mesh consist of 11,186 elements and 22,530 nodes
(the number of degrees of freedom is equal to 44,922).
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Tests 1 (small rigidities for the glues)

In this first set of simulations, we consider a three phases interface, consisting of three glues with different
rigidities that are all very small compared to those of the adherents.

Results for increasing rigidities In this paragraph, we consider a three phases interphase with a
monotone distribution of rigidities, which are from 10 to 200 times smaller than those of the adherents
(see table 1).

Table 1. Mechanical properties of the three phases of the interphase.

Young’s modulus Poisson’s ratio
Glue 1 2000 MPa 0.4
Glue 2 500 MPa 0.4
Glue 3 100 MPa 0.4

I will add the legend on the figures In the following figures, the displacement (figure 6) and the stress
(figure 7) fields on the section drawn in figure 4 are represented. In figures 8 and 9, the jumps of the
displacements and of the traction along the interface Γ are represented.
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Figure 6. Displacements on the section (left: u1, right: u2): case of small and monotone distribution of
rigidities for the glues.
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Figure 7. Stresses on the section (left: σ12, right: σ22): case of small and monotone distribution of rigidities for
the glues.
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Figure 8. Jumps in the displacements across the interface (left: [u1], right: [u2]): case of small and monotone
distribution of rigidities for the glues.
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Figure 9. Jumps of the traction across the interface (left: [σ12], right: [σ22]): case of small and monotone
distribution of rigidities for the glues.

We can observe that, both in terms of displacements (cf. figure 6) and in terms of stress (cf. figure
7), the interface law is a very good approximation and correctly reproduces the overall behavior of
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the structure. Moreover, figures 6 and 8 show that the jumps in the displacements across the interface
[uε]ε := uε(x1,

ε
2 )− u2(x1,− ε2 ) and [usoft,0] are numerically very close.

According to equation (6), the jumps in the stresses [σsoft,012 ] and [σsoft,022 ] have to be equal to
zero across the interface. This is reproduced by our simulations, as it can be observed in figure 9.
Consequently, the proposed finite element method is appropriated, and in the case of a very small rigidity
of the glue in the interphase, the approximation that leads to consider a vanishing jumps in the constraint
is justified. (To be developed ! − > give a ratio)

Results with non monotone rigidities In this paragraph, we consider a three phases interphase with
rigidities much smaller than those of the adherents but now with a non monotone distribution, given in
table 2.

Table 2. Mechanical properties of the three phases of the interphase.

Young’s modulus Poisson’s ratio
Glue 1 2000 MPa 0.4
Glue 2 100 MPa 0.4
Glue 3 500 MPa 0.4

In figures 10 to 13 we present some comparisons between the results obtained considering the three
phases problem (1) and its approximated problem (15) using jumps in displacement across the interface
Γ.
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Figure 10. Displacements on the section (left: u1, right: u2): case of small and non monotone distribution of
rigidities for the glues.
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Figure 11. Stress on the section (left: σ12, right: σ22): case of small and non monotone distribution of rigidities
for the glues.
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Figure 12. Jumps in the displacements across the interface (left: [u1], right: [u2]): case of small and non
monotone distribution of rigidities for the glues.

0 0.2 0.4 0.6 0.8 1
-5

0

5

10

15

20

25

[σ
12

ǫ

](x
1
,x

2
=0.3015)

[σ
soft,0

12
](x

1
,x

2
=0.3015)

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

2

3

4

5

[σ
22

ǫ

](x
1
,x

2
=0.3015)

[σ
soft,0

22
](x

1
,x

2
=0.3015)

Figure 13. Jumps in the constraints across the interface (left: [σ12], right: [σ22]): case of small and non
monotone distribution of rigidities for the glues.

In figures 10 and 11, one can observe that the overall response of the structure is very similar than
in the case of a monotone distribution of the rigidities in the interphase. The jumps, both in terms
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of displacements (figure 12) and constraints (figure 13), are also very close for the two cases. As a
consequence, the interface law given by formula (10) provides a good approximation of the behavior of
the structure.

Comparison We compare here the results obtained with both monotone and non monotone distribution
of the rigidities in the interphase. For that purpose, we present in figures 14 and 15 a zoom of the
displacement and the constraint around the interphase, respectively.
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Figure 14. Displacements u1 at the interface on the section for monotone (left) and non monotone (right)
increasing rigidity
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Figure 15. Displacements u2 at the interface on the section for monotone (left) and non monotone (right)
increasing rigidity

One can observe that we obtain very similar results for both monotone and non monotone rigidities
in the glues, and the interface condition provides a very good approximation of the jumps both for the
displacement and the constraint.

Tests 2 (very different rigidities for the glues)
We present in this section the results with an interphase in which the rigidity is strongly varying, from
values close to the rigidity of the adherents to values much smaller.
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In this case, we compare results with both a monotone (see table 3) and a non monotone (see table 4)
rigidity distribution in the interphase.

Let us notice that, as in the previous example, the interface law is identical for the both cases, since it
is given only by an average using formula (10).

Table 3. Mechanical properties of the three phases of the interphase: case of a monotone distribution of
rigidities in the interphase

Young’s modulus Poisson’s ratio
Glue 1 10000 MPa 0.4
Glue 2 5000 MPa 0.4
Glue 3 1000 MPa 0.4

Table 4. Mechanical properties of the three phases of the interphase: case of a non monotone distribution of
rigidities in the interphase

Young’s modulus Poisson’s ratio
Glue 1 10000 MPa 0.4
Glue 2 1000 MPa 0.4
Glue 3 5000 MPa 0.4
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Figure 16. Zoom of the displacements u1 at the interface on the section for monotone (left) and non
monotone (right) increasing rigidity
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Figure 17. Zoom of the displacements u2 at the interface on the section for monotone (left) and non
monotone (right) increasing rigidity
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Figure 18. Zoom of the shear stress σ12 at the interface on the section for monotone (left) and non monotone
(right) increasing rigidity

Figures 16,17,18 show zooms of the displacements u1 and u2 and the shear stress σ12 around the
interphase. The jumps in the displacements [uε]e at the interphase are very similar for the two cases, even
if we can observe the differences in the distribution of the rigidities inside the interphases (black curves
in figures 16 and 17). Moreover, these jumps are correctly approximated by the interface law (red curves)
and [uε]e and [usoft,0] are very close.

Concerning the shear stress, one can observe that the jumps at the interphase are similar for monotone
and non monotone distribution. Moreover, the ratio between the jumps in the shear stress and the mean
value of the shear stress around the interface is comparable to the previous ones, equal to 4 · 10−2. Let
us notice that in this test, the jumps in the stress σ22, which is not represented here, is of the same order
of the one obtained in the previous test.

Tests 3 (example with 5 different glues)
We now compare results obtained with two distributions of glues within the interface, provided
respectively in table 5 and 6.

Prepared using sagej.cls



Dumont, Lebon and Rizzoni 17

Table 5. Exemple with 5 glues in the interface: the monotone case

Young’s modulus Poisson’s ratio
Glue 1 1000 MPa 0.4
Glue 2 1000 MPa 0.4
Glue 3 1000 MPa 0.4
Glue 4 10000 MPa 0.4
Glue 5 10000 MPa 0.4

Table 6. Exemple with 5 glues in the interface: the non monotone case

Young’s modulus Poisson’s ratio
Glue 1 1000 MPa 0.4
Glue 2 10000 MPa 0.4
Glue 3 1000 MPa 0.4
Glue 4 10000 MPa 0.4
Glue 5 1000 MPa 0.4
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Figure 19. Zoom of the displacements u1 around the interface on the section for monotone (left) and non
monotone (right) increasing rigidity for interfaces made of 5 different glues
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Figure 20. Zoom of the displacements u2 around the interface on the section for monotone (left) and non
monotone (right) increasing rigidity for interfaces made of 5 different glues
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Figure 21. Zoom of the shear stress σ12 around the interface on the section for monotone (left) and non
monotone (right) increasing rigidity for interfaces made of 5 different glues

In figures 16, 19 and 21, one can observe that the results are very similar if the rigidity distribution is
monotone or not, and the interface law provides a good approximation of what occurs in the interphase.

Tests 4: an exemple with traction

In this paragraph, we present an example of a structure with an adhesive composed by three layers,
submitted to a a traction loading (see figure 22). The mechanical properties of each layer is provided in
table 7. The distribution of the rigidity is not monotone.
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Figure 22. Geometry of the problem (ε = 0 for the interface problem)

Table 7. Mechanical properties of the three phases of the interphase: case of a monotone distribution of
rigidities in the interphase

Young’s modulus Poisson’s ratio
Glue 1 1000 MPa 0.4
Glue 2 10000 MPa 0.4
Glue 3 5000 MPa 0.4

Figure 23 represents a zoom around the interface of the displacement u1 (left) and the shear stress σ12

(right). One can observe that, in this situation, the approximation of the multi-layers initial problem is
correctly approximated by the soft interface modeling proposed in the first part of the paper.
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Figure 23. Zoom of the displacement u1 (left) the shear stress σ12 (right) around the interface on the section
for non monotone rigidity for interfaces made of 3 different glues submitted to a traction loading

Conclusion on the numerical results
In all the numerical examples presented, one can observe that the interface law given in (10) and in (15)
always provides a good approximation of the initial multi-phase problem, even if some of the layers on
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the interphase are rigid (which is not the case in the theory where the stiffness is of order ε), or if the
rigidity distribution in the interphase is not monotone.

Conclusion

In this paper, we have presented a study of a composite made of three elastic bodies, two adherents and
a thin adhesive. The elastic properties of the adhesive are supposed to depend on the thickness direction
and to have two regimes, one in traction (soft) and one in compression (hard). After the derivation of an
interface law for such a structure, we have numerically compared the response of the initial three phases
composite and the approximated one, using two phases and an interface law. We have shown that the
responses for low thickness (with a ratio 0.01 mm/0.3 m) are in a good agreement, especially in terms of
displacements, for various distributions of rigidities in the adhesive, and even if the rigidity in some parts
of the adhesive is of the same order of that of the adherents.
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