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Highlights

e Modeling of bonded interfaces adopting the asymptotic expansion tech-
nique. The representation form for the displacement and stress vector
fields are introduced and the effect of higher order terms is taken into
account.

e Construction of an unified interface condition, able to account different
interphase rigidities.

e Numerical comparisons of various models in different cases: similar or
different rigidities and/or thicknesses.

e In the case of similar thicknesses of adherents and adhesive (thin ad-
herents), the interface conditions are discussed.
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Abstract

The present paper deals with the modeling of bonded interfaces adopting the asymp-
totic expansion technique. The equilibrium problem of a composite body made of two
adherents in perfect contact with an elastic interface is considered and a classical rescal-
ing technique is introduced. The asymptotic expansion method is reviewed; in fact, the
representation form for the displacement and stress vector fields are introduced and the
effect of higher order terms is taken into account. Using the classical scheme of matched
asymptotic expansions, the interface conditions are obtained. The cases of hard and soft
interfaces are considered: the first is derived assuming the elasticity coefficients inde-
pendent of the adherent thickness, the second considers the elasticity properties linearly
depending on the thickness. Numerical investigations are performed in the framework of
the finite element method. In particular, comparisons of the results obtained by mod-
eling the adhesive as a continuum material (discretized in finite elements even in the
thickness) with the results carried out using hard, soft interface models at the first and
higher order expansion are performed.
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1. Introduction

During the last decades, the interest in bonded structures, obtained by assembling
different parts made of possibly different materials to compose a unique construction, is
strongly increased. Bonded structures are manufactured for civil, marine and aeronautic
applications. The advantages offered by the modern bonding techniques are numerous;
among the others, it can be mentioned that they allow the assembly of various substrates,
the assembly of materials with very different thicknesses, the connection without any de-
terioration of the adherents, the simplification in the design, the lightening of structures,
the attenuation of vibrations, the control of the stiffness of the assemblies, the easy au-
tomation. On the other hand, these techniques could lead to limited heat resistance and
short life cycle of the bonded joint; in addition, they can require some precautions of
implementation because they could present resistance only to specific loading types.
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As a consequence of the interest in assembled structures, the issues related to the
bonding techniques, in particular their modeling and analysis represent active research
fields; they concern, at least, the following subjects:

e adaptation of structures to new rules,

e reinforcement of existing structures,

e repair of existing structures,

e realization of new and more durable structures,
e development of new structural concepts.

One of the most interesting and commonly use of the bonding techniques in civil
engineering constructions consists in the application of externally bonded fiber reinforced
polymers (FRP) for the strengthening of existing structures. In particular, FRP are
successfully adopted for the reinforcement and the repair of reinforced or prestressed
concrete as well as masonry structures. They are applied on the external surfaces of
concrete or masonry element by a very thin epoxy resin layer.

Many studies have been developed in the last decades concerning the safety increase
related to the use of the structural strengthening with of FRP for concrete and for
masonry elements, as discussed, among the other, in [2, 15, 17, 16, 11, 10] and in the
references therein. The objective of these studies is the evaluation of the increase of
safety and lifetime of the structure, ensuring a reduced overall cost of intervention in the
framework of the new ecological constraints.

A further very intriguing and challenging reinforcement technique is the application of
Fiber Reinforced Cementitious Matrix (FRCM), that appears very suitable for masonry
structures. FRCM consists of fibers in the form of fabric meshes, embedded into a
cement-based matrix and directly bonded on the external surfaces of masonry support
[4, 23].

Taking into account that different adhesive materials are available in the market, the
safe and advantageous use of the bonding techniques requires the development of efficient
experimental procedures (i.e. mechanical, thermal, aging, chemical, non destructive test-
ing) and robust models for the structural analysis. It could be remarked that satisfactory
models for investigating the bonding effectiveness should take into account the signifi-
cantly different stiffness, strength and geometrical thickness of the available adhesive
materials.

A wide number of scientific works on the subject of the interface modeling can be
found in literature. They are mostly based on the assumption of a simple kinematics
governed by the relative displacement arising among the two surfaces defining the inter-
face. As a consequence of the chosen kinematics, the stress state is defined at interface
as the traction associated to the plane of the interface. Linear and nonlinear models are
available in the literature, accounting for various inelastic effects, such damage, plasticity,
unilateral contact, friction, interlocking, dilatancy, viscous behavior and so on. Interfaces
are used for very different problems and also at very different scales, from the tectonic
to the nano scale.

In literature, the first analytical method for the stress analysis of bonded joints was
the shear-lag model developed by Volkersen [30]. This model is able to account only for
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the shear stresses arising along the bonding. The Volkersen’s model was improved by
Goland and Reissner [14], by Demarkles [7] and, later, by Erdogan and Ratwani [12], in
order to include the local bending effect in the computations.

Two types of approaches can be distinguished in the interface modeling: the phe-
nomenological and the micromechanical approaches. Phenomenological models are de-
duced directly from experiments. Effective nonlinear interface phenomenological models
have been proposed, among the others, in [13, 19, 18] for the analysis of masonry walls.
Raous et al. [24] presented an interface model able to couple damage and friction in
the framework of consistent thermodynamics. The second type of approach for interface
modeling is based on micromechanical considerations and the interface response is de-
fined through homogenization or other techniques. A recent example of micromechanical
interface model can be found in Serpieri et al. [28], where the presence and evolution
of microcracks, the interlocking and dilatancy effects are accounted for considering a
simplified geometry at the interface microscale. Indeed, the model is an evolution of an
idea proposed in [1], where a simplified micromechanical analysis is performed and an
interface model is recovered for investigating the fiber pull-in and the response of hetero-
geneous masonry walls. Within the same framework, an interface model whose damage
is coupled with the bulk damage occurring in the adherent has been proposed in [20]. A
more sophisticated micromechanical model accounting for crack closure, frictional effect
and damage evolution has been presented in [27].

The asymptotic expansion techniques [5] can also be considered as belonging to the
second type of approaches, i.e., they can be regarded as micromechanical models linking
the interface response to the behavior of the material layer constituting the bonding.
According to these techniques, the thickness and, possibly, the stiffness of the glue are
considered as small parameters, vanishing in the limit theory. The glue vanishes geo-
metrically but it remains in the equations under the form of a relation linking the stress
vector to the jump in the displacement (or the rate in the displacement).

The aim of this paper is to propose mathematical and numerical methods based
on asymptotic expansions for the modeling of bonded interfaces and to analyze some
examples in order to show the efficiency of the methodology. In particular, the analysis
is limited to the case of linear elastic response of the adhesive and adherents and the
modeling is framed in the contest of small strains and small displacements theory.

In the first part of the paper, some recent results of asymptotic analysis for soft or
stiff interfaces are reviewed [9, 25, 26]. First, the equilibrium problem of a composite
body made of two adherents in perfect contact with an elastic interface is considered and
a classical rescaling technique is introduced. The weak form of the equilibrium equa-
tions together with the matching conditions are presented. Introducing the parameter &
controlling the interface thickness, two different cases are considered: the case of a hard
material interface, whose elasticity coefficients are independent of €, and the case of a
soft material interface, whose elasticity coefficients rescale like €.

For the two cases, the asymptotic expansions of the displacement and stress vector
fields are introduced and the effect of higher order terms is taken into account. Using the
classical scheme of matched asymptotic expansions, the interface conditions are obtained.
These conditions, modeling the behavior of a very thin adhesive interface constituted of
a soft or a hard material, are reviewed in Subsections 2.1 and 2.2. These interfaces equa-
tions are, in fact, relations linking the stress vector field and its jump to the displacement
vector field and its jump at the interface, which is the geometric limit of the adhesive
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layer as its thickness parameter € goes to zero.

Following a remark already introduced in [25], we devote Subsection 2.3 to implicit
interface conditions, which take into account at the same time the interface conditions
evaluated at the orders zero and one, for both the two considered cases of hard and soft
interfaces. This implicit form of interface conditions takes into account higher order terms
of the asymptotic expansions and it is, thus, expected to provide a better approximation
of the behavior of the thin adhesive interface when compared to the classical spring-type
interface law or to the case of perfect contact between the adherents. The second part of
the paper is devoted to the finite element implementation and the numerical simulations.
The mechanical and numerical efficiency of the proposed methodology is discussed in the
conclusion section.

2. Asymptotic analysis for soft and hard interfaces

A thin adhesive layer B® with cross-section S and uniform small thickness ¢ < ¢
is considered, S being an open bounded set in R? with a smooth boundary and / a
characteristic dimension of S. The layer B¢ lies between two adherents bodies, occupying
the reference configurations Q°4 C R3. S°. is taken to denote the two surfaces between
the interface and the adherents and Q¢ = Q° L US® L UB* is taken to denote the composite
system comprising the adhesive and the two adherents. The adhesive layer B¢ and the
adherents Q¢ , Q°_ are assumed to be perfectly bonded; in particular, the displacement
and stress vector fields, u® and ofi3, are assumed to be continuous across S€4, with iz
the versor of the direction perpendicular to the plane surfaces S§.

All materials of the composite system ¢ are assumed to be homogeneous and linear
elastic, with a1 and be the elasticity tensors of the adherents and the adhesive, respec-
tively. The tensors ai,b® are assumed to be symmetric and positive definite, with the
minor and major symmetries. The adherents are subjected to a body force density f :
Q4 — R? and to a surface force density g : s — R* on Ty C (997, \ ST)U(9Q°_\52).
Body forces in the adhesive are negligeable. The loads are assumed to be independent
of e.

The asymptotic approach proposed in [9, 25, 26] is based on the assumption that
stable equilibrium configurations of the composite body minimize its total energy:

Ef(u) = /S;E (%ai(e(u))-e(u)—f-u) de—/ g-udix

s

1
+ [ gbeletu)efu) vk )
in the space of kinematically admissible displacements:

VEi={uc H(QR*):u=0 onT%}, (2)

where H(QF; R®) is the space of the vector-valued functions on the set ¢, which are
continuous and differentiable as many times as necessary.

Given suitable regularity assumptions, a classical result provides the existence of a
unique minimizer u® in V¢ [6, Theorem 6.3-2].
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For the asymptotic analysis a standard change of variables, mapping the adhesive
domain into a domain of unit height, is introduced [6].
After the above changes of variables, the interface occupies the domain:

1
B ={(z1,72,2) € B®: (:1,22) € 8, |2s| < 5} (3)
and the adherents occupy the domains:
1
Qg = 0% & 5 (1~ e)is. (4)

The sets B and Q4 are the rescaled configuration of the adhesive interface and of the
adherents, respectively. Taken Sy = {(z1, 22, 23) € R? : (21,22) € 5,23 = £1} to denote
the interfaces between B and 24, the set @ = Q, UQ_ U B U S, US_ is the rescaled
configuration of the composite system.

Using the above changes of variables and denoting by f and g the body force and
surface force fields from the rescaled adhesive, respectively, the total energy of the rescaled
configuration takes the form:

(6, 5°) = /Q(%ai(e(ﬁs))-e(ﬁs)—_~1‘15)dVZ—/Fg-ﬁEdAz

1
b [ TR ) 4 2K ) K2 ) ) VY
B

where the matrices K7! (with j,1 = 1,2, 3) are defined as:
(Kgl)ki = bfjkl' (6)

In view of the symmetry properties of the elasticity tensor b, the matrices KY have the
property that KI' = (KY)T with 5,1 = 1,2, 3.

For an isotropic material with Lamé coefficients ;\57 fle, the matrices KY take the
simple form

K'Y = (204 M) i @y + fie (im @iy +in @1p), m#1L n#l (7)
K" = ﬂeil®ij+5\aij®ila L#3]. (8)
Next, the existence of asymptotic expansions of the original displacement fields u®

and of the rescaled displacement fields G, ° with respect to the small parameter ¢ is
assumed:

u(x) = u’(x) 4+ eut(x) + e*u?(x) + o(e?), (9)
0 (z) = 0%(z) + et (z) + £20%(z) + o(e?), (10)
a°(z) = 0(z) + eal(z) + 2a%(z) + o(c?). (11)

Lastly, matching conditions are introduced based on the continuity of the traction
and displacement vector fields 0°iz, u® at the interfaces S% in the initial configuration
5



and on the continuity of the traction and displacement vector fields 6¢iz, G, 6%i3, 0 at
the interfaces Sy in the rescaled configuration [25].

Using the matching conditions, any trasmission condition obtained in terms of the
rescaled felds G°i3, a® can be reformulated in terms of the stress and displacement vector
fields o'iz,u’,i = 0,1,2,... defined on the limit configuration, which is the geometric
limit of the initial configuration as the thickness of the adhesive interface € vanishes. This
is possible because the matching conditions provide a link between the fields evaluated
at 3 = 0F and the rescaled fields evaluated at z3 = (41/2)*. In particular, one notes
the following useful relations:

[[u’)] = [@°], (12)
'] = [@']- < u% >, (13)
[[u’]] = [0°] — e < U > + o(e), (14)
[[o3]] = 73], i=1,2,3, (15)
[[ois]] = [0is]— < ot3.5 >, i=1,2,3, (16)
[[05]] = [053] — e < 0,‘?3,3 > +o(e), i=1,2,3, (17)
< u’ >=<a’ >, (18)
1
<u' »>=<i > —Z[[u?g]], (19)
<K u® >»>=<i > —i[[u‘fg,]] + o(e), (20)
K Ok >=< 5% >, i=1,2,3, (21)
1
K Ol >=< b}y > _Z[[0?3’3]]’ i=1,2,3, (22)
<05 >=< 05 > —(loh ]l + o), i=1,2.3, (23)

where the notations

[f(z)] = (f(z,(+1/2)7) = f(=z,(-1/2)7)), z € 5, (24)
<flx)> = %(f(i, (+1/2)%) + f(z,(-1/2)7)), z€S, (25)
f&) = (f(x07)—f(x,07)), X€S, (26)

< f(x) > = %(f(2,0+)+f(>2,0*)), x €S, (27)

have been introduced.

In the next subsections, two different cases of material behavior for the interface can
considered. In the first case, the interface is considered hard, meaning that the elasticity
coefficients bfj ; are assumed to be independent of ¢; in the second case, the interface
is considered soft, meaning that the elasticity coefficients bf;;, are assumed to linearly
rescale with the thickness €.

2.1. Adhesive made of a hard material
The elasticity coeflicients b5, of an adhesive made of a hard material are assumed
to be independent of ¢ :

bijrr = ijki- (28)
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Accordingly, K’! are taken to denote the matrices such that (K1) := bijni-
In [25], it is shown that the transmission conditions obtained for the hard interface
in the rescaled configuration are

[6%s] = o0, (29)
@ = o, (30)
[l = —K*(K*®) (%) - (Kw+KMG@%1K“)a@ (31)
] = (K7 (o - Ko, ) (32)

The matching conditions (12), (13), (15), (16) allow to transform the above trans-
mission conditions into interface conditions appropriate for a hard interface:

[0°i5]] = o, (33)
[ = o (34)
o da]] = —K () (00i) — (K7 + K (K¥) 7 Kl

— < 0% iy >, (35)
W] = (K33)-( — Ky 0) <l > (36)

In the particular case of an interface made of an isotropic material, relations (7) and
(8) can be applied to specialize the interface laws (33)-(36) as follows:

o)l = 0, =123

[Wf]] = 0, i=1,2,3,

ofs]] = —4p(p+ )\)(2M + >\) “1 11 ﬂug,zz a(2f + 3)‘)(2N + )\) U2 21
A+ A) oy << oy >,

[o3s]] = —4p(i+ N2+ A)7" Uz 22 [Wg 1= 20+ 30 (20 + A) 7l 22
M+ N 093 9— << 0933 >,

lo33)) = _‘7(1)3 17 ‘733,2_ < 0555 >, (37)

(wh]] = i 'olds— Ugm_ < ug,s >, a=1,2

]l = i+ 3" (o8 = Al +ufa)) - << ufy >,

(38)
where /i = fi. and A = A. are the Lamé’s coefficients of the adhesive, independent of e.

2.2. Adhesive made of a soft material

An adhesive soft material is defined to be such that its elasticity coefficients b5,
rescale linearly with € :

bijrr = €bijkt- (39)
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Accordingly, K7! are still taken to denote the matrices such that (K7 = bijx1, with
bijri as in (39).

In [25], it has been shown that for the soft interface in the rescaled configuration the
following trasmission conditions can be obtained:

[60i3] = 0, (40)
@ = (K¥) ("), (41)
[0lis] = —K*(K*)"'(a%is), (42)
@] = (K¥) '(<o'is>-K* <1, >). (43)

Using the matching conditions (12), (13), (15), (16), the following interface laws
appropriate for a soft interface are obtained:

[0°i]] = o, (44)
] = (K*)™ ("), (45)
lo'is)]] = —-K**(XK*) (o%is)— < 0% is >, (46)
‘ 1
'] = (K33)‘1< < oliz > + Z[[afgi?)]] -K* <), > )— < uly > .(47)
In case of a soft isotropic interface, the above relations specialize as
[[U?d]] = 07 1= 172737
[[ug]] = (ﬂ)_10237 a=1,2,
[w3l] = (24X "o,
loasl] = —M2a+ )\)_1033,0— < Ug:s,s >, a=12
lossl] = —of5) — 0950~ << 0835 >>, (48)
- 1
] = A7t ( < oby >+ 7l0%a]) o= < s>, a=12
A RN— 1 2
] = @i+ 37 (<< oy >+ lloall = Ay +18))— < u 5 >
(49)

with i, = fie and Ae = Ae.

2.8. Implicit form of the transmission conditions

In [25], it has been shown that it is possible to obtain a condensed form of transmission
conditions summarizing both the orders zero and one of the two cases of soft and hard
interface materials in only one couple of equations. The result is the following implicit
formulation of transmission conditions for the rescaled interface:

o%) = (KK < o5y > (K + KE(KE) K < 0> ),

] = e (KP) (<o > -KP <w, > ). (51)
8



These latter equations are clearly implied by (29)-(32). Indeed, they can be directly
obtained by substituting (30) ((29)) summed with (32) ((31)) multiplied for ¢ into the
asymptotic expansions for the displacement (traction) field. Angle bracket parentheses
have been introduced in (50) and (51) where necessary, i.e. to take into account that 5¢
and @° suffer jumps.

To see that (50) and (51) imply (40)-(43), it is sufficient to substitute inside (50)
and (51) the asymptotic expansions of the displacement and the traction fields together
with the rescaling (39) of the elasticity coefficients adopted for the case of soft material,
neglect the second order terms in € and consider the term at the orders 0 and 1 in .

Notably, the transmission conditions (50) and (51) can be transformed into interface
equations, by making use of the relations (14), (17) and of the following newly derived
ones:

S, =< T, >~ W] + ofe), (52)
_ 3

K ulyy >=< U5 > _Z[[uix,ﬁ’S]] + o(e), (53)

< 05,05 >=< 5515 > —Z[[afa3i3]] + o(e). (54)

The new interface conditions equivalent to (50) and (51) are, up to second and higher
order terms in €,

lo%i] = —g(Kga(K‘f’)—l << 05iz >> (K2 + K2 (KP)T'KP) < u’5 > )
—& < 05i3 > +o(e), (55)
u]] = ¢ (K§3)‘1< < 0%i3 > +§[[af3i3]] —K® <u’, > - < ufy> )
+o(e). (56)

Substituting (7,8) into the implicit interfacial equations (55,56), the latter ones spe-
cialize as
[lofs]l = —Ape(pe + M) (20 + )T Ui gy > —pe KU 99 > (57)
— e (2 + 3X0) (2pe + X)) T < U3 91 >
“Ae(pe +A)TH K 055, > — K 0555 >,
[lo3s]] = —4pe(pe + Ae)(2pe + As)_l < u§,22 > e <K ug,ll >> (58)
—/.LE(QILLE + 3)\5)(2,U5 + AE)_l << Uv{iz? >4
“Ae(pe +A) T K 0535 > — K 0555 >,

[[o53]] = — <K oi31 > — K 0539 > — K 0533 >>, (59)
g
[ug]] = enst(<<omy > +=llofasl) —s <o +uis > a=12
13
[us]] = e@ue + )7 (<< 08y > + {0850l — A << uf g s, > )

—e <K uzz > . (60)

As discussed in [25], the implicit interfacial equations establishes a formal equivalence
between the soft interface law and the hard interface law (cf. also [25, 5.5]). These
9



equations can thus be viewed as the interface laws for a thin isotropic interface condensing
in an unique form the two cases of a soft and a hard interface. As already remarked in
the Introduction, equations (56) and (55) take into account higher order terms of the
asymptotic expansions and they are thus expected to provide a better approximation
of the behavior of the thin adhesive interface when compared to the classical spring-
type interface law or to the case of perfect contact between the adherents. This issue is
explored in the next Sections by means of several numerical examples.

3. Finite element implementation and numerical tests

3.1. Soft at order 0 and 1

First, let us notice that the jump conditions for soft interfaces (40)-(43) both at order
0 and 1 can be written
[u] = C <oiz> + D°
[oi3] = S°

where we have omitted the bar sign for simplicity of notation and where

(61)

a0 0
C=| 0 4 0
0 0 2\+4
and
SV =80=0, a=1,2,
{Dgng: a=1.2,

at order 0, while

SO = —A2a+ Nt < 030> —<0033>, a=12
Sy = _0?3,1 - 083,2— < U§3,3 >
DY = %[03373]— < ug_’a > - < ug,3 >, a=1,2,
DY = i[gg?,,?,] - /A\([U(fl] + [ug,z])_ < ug,:’, >
at order 1.
Then, in order to write the variational form of the mechanical problem, one write the

variational form of the equilibrium problem on each sub-domain Q= and QF. The sum
of the two equations is

/Qi ay(e(u))-e(v)dVv, — /Fa(z,OJr)n(z7 0") dA, — /Fa(z,(]_)n(z,O_) dA, =

/ f-ude—i—/g~udAz (62)
Jay

JTy

which can be written

/ ai(e(n))-e(v)dV, + /[(an) -v] dA, = £4(v) (63)
Qi

r

choosing n(z,0) = n(z,07) = —n(z,01), {(v) = / f-udV, + / g-udA,.
Jy .
10



Then, using the property [ab] =< a > [b] + [a] < b >, and using (61), we obtain
/ as (e(u))-e(v) de+/(C_1[u])~[v] A, = K(v)—i—/(C_lDO)-[v] dAz—/ S0 < v > dA,.
0. r r r

Finally, a standard finite element method is used to solved this equation. In order
to take into account the jumps in the displacements across the interface, a “flat” finite
element is considered on the interface I' that has all nodes on I', the first ones related to
I'_, and the other ones related to . It is then possible to write a stiffness matrix of
this problem that is invertible and with standard error estimates (for more details, see
for example [21]).

Remark: It is also possible to treat hard interface law at order one with this meth-
ods. After the computation at order 0, the term u® = u® + cu! that satisfy the jumps
conditions can be computed using (37) with the following approximation that is equal
to the previous one up to order 1

ug)] = plofs—ul,— <<udsz>=p"lois+D5. a=1,2

[us]] = (a+A)~ (033 _/\(“11+ Ug, 2))‘ K ufy>= (2ft+ A)"loss + DY,

[o5s]] = —4a(i+ N2+ A1) 11 IW1 227 (20 + 30) (20 + M)~ u 51
_)\(AH')\) 0’331 K 0f55 >>= 5137

loss]] = —4aii+ N2+ A~ “2 22 lmz,n (24 + 3N) (241 + M)~ ul 22
—A(ji+ A)” 10859~ << 0933 >>= S,

[o5s]] = —of51 — 093~ << 0933 >= S35.

(64)

The finite element method applied to this formulation will be called the semi-implicit

formulation hereinafter, since the constraints in the jumps in displacements are treated
implicitly.

3.2. Hard at order 0 and 1

The hard interface laws in equations (29)-(32) both at order 0 and 1 can be written
in a general form
[u] = D°

o] = S° (65)

Unfortunately, it is no longer possible to write a standard variational formulation
of the problem. However, a discontinuous Galerkin method can be used to solve the
problem (see [9]).

More precisely, going back to equation (63) and using (65), we have

/ ay(e(u))-e(v) dV, +/ (< ar(e(u))n > [v]+ [u]- < ai(e(u))n >)dA,
QL r

=4(v) — / S* <v>dA,. + / D’ < are(v)n > dA,.
r r

(66)

This formulation, known as the Nitsche’s method [22] is unstable and the discrete
operator can be non invertible after a discretization. It is then necessary to add a
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stabilization term such as % [u] - [v]dA, = % / D . [v]dA,, where h is the size of
r

the smallest element of the ﬁniFte element discretization of ()4 considered and 8 > 0 is
a fixed number that must be sufficiently large to ensure the stability of the method. It
can be shown that this formulation is equivalent to the initial problem in the sense that
solutions of (66) are weak solutions of the initial problem (see [3, 8, 29] for the complete
study of this method and for a priori and a posteriori error estimates in the case DY = 0).

Unfortunately, this method does not work properly to solve the problem (66) as soon
as DY # 0. To overcome this difficulty, the initial problem with the two jump conditions
is split into two parts, the first one to treat the jump in the displacements, the second
one for the jump in the constraints.

More precisely, the unknown displacement u® is written u
and w¥ solve the problems

+ +

= z* + w* where z

divo(z¥) =0  inQy div {_L(Wi =0 in Q.
o(z5)n=0 onT o(w=n =0 onI',
+ u wE=0 on Tog
zt =0 on Ty o N . (67)
o(z*) =are(zt) in Oy o(w*) = are(w™) in Q.
zt =+1DO onT (w]=0 onTl
’ [G(W Il] =80~ [U(z)n] on I’
since (W] =wr —w~ =[ul—z"+z" = (1 - % _ %)DO — 0. The two first problems

in the left, defined in both Q4 and Q_, are standard and can be solved simultaneously
using a standard finite element method. The problem on the right of (67) is solved using
the Nitsche’s method developed above.

4. Numerical study

4.1. Bond of two square bodies

Aim of the first study is to derive the different responses obtained adopting the soft
and hard interface models, described in the previous sections, comparing that solutions
with a reference solution evaluated performing a finite element analysis, which considers
adherents and adhesive as solid continua.

A structural system obtained assembling two adherents by means of an adhesive
interface, as schematically illustrated in figure 1, is considered. Each adherent is approx-
imatively a square with dimensions 5 x (5 — ¢/2), while the adhesive thickness is e, so
that the total height of the structural system is L = 10, where all lengths are measured
in meters. The structural scheme is subjected to a uniform vertical load on the top edge
F = 2 MPa, and to a horizontal load P = 1 MPa distributed on a length equal to 1
above the top.

The materials constituting the adherents and the adhesive are assumed to be isotropic;
in particular, the Young’s modulus of the adherents is set equal to E, = 100 GPa, while
the Poissons’s ratio of all components is equal to v = 0.3. The Young’s modulus of the
interface is denoted by F;. The analyses are carried out under plane strain hypothesis,
considering different geometrical (thickness) and mechanical (stiffness) properties of the
interface.
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[
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L=10 m.
—— £ m.

55 m

5 m.
Figure 1: Geometry of the problem (¢ = 0 for the interface problem).

The influence of two parameters
e the relative thickness of the interphase %;

e the relative stiffness of the interphase %,

is investigated in order to evaluate the accuracy of the various modeling proposed in the
previous sections. In particular, the quality of the solutions is evaluated considering the
Lo-relative error:

[ — upradel

[lus]]

where u® is the reference solution computed using the three-phases problem with a fine
finite element mesh, and u274¢" indicates the different interface model solutions, with
model = soft or hard and order =0 or 1.

In particular, the relative errors for the following models are reported:

e soft interface at order 0 (table 1);

hard interface at order 0 (table 2);

e soft interface at order 1 (table 3);

hard interface at order 1 (table 4);

hard interface at order 1 using semi-implicit formulation (64) (table 5).
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P 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
E,
10=% | 1.389-10 7 2 30310 T | 6.449-10 T | 4.490-10 7 | 8.077-10 7 | 4.286-1072 | 8.581-1072
1072 | 247810 4151071 | 1434107 | 3.064-107 | 6.614-107° | 4.127-1072 | 8.433-1072
1072 | 2.691-10~" 4 510-107* | 6.696-10~" | 9.984-10* | 1.014-10"" | 2.863-1072 | 7.111-1072
107t | 2.723.10 ¢ 49021) 17069101 | 2.822:10 7 | 5.002:10 % | 1.042:1072 | 2.087-1072
1| 2.809-10~* 4111071 ] 9.082:107* | 3.655-10°7% | 7.179-107° | 3.451-1072 | 6.832-1072
10 | 3.714-10~* 1.019~1( 11823107 | 7.030-1077 | 1.251-1072 | 4.900-1072 | 9.493-1072
Table 1: Relative difference ||u® — ugoft||/||u5|| at order O
PN 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Ey
10~% | 4.049-107 | 7.757-107" | 8.743-10° | 9.722.10~" | 9.860-10~' | 9.972.10" | 9.986-10!
1072 | 6.376:1072 | 2.530-107% | 4.049-107' | 7.763-10"" | 8.750-10~! | 9.732-107" | 9.868-107!
1072 | 6.650-10 % | 3.281-1072 | 6.335-1072 | 2.525-10 % | 4.050-10* | 7.817-10"* | 8.811-10*
107 | 1.693-107" | 2.991-107° | 6.112:107° | 3.052-1072 | 5.931-1072 | 2.459-10~" | 4.030-10~!
1] 2.204-107% | 2.160-107* | 2.434.107% | 2.178-107* | 2.923-10* | 2.227-107* | 2.219-10~*
10 | 3.648-10 * | 9.865-10 * | 1.756-10 ° | 6.701-10 ° | 1.184-1072 | 4.546-1072 | 8.752.1072
Table 2: Relative difference ||u® — u%ard||/||u5|| at order 0
PN 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Eq
107% [ 1.597-10~% | 1.583-10 7 245107 [ 4.026-10 7 | 7.189-10 7 | 3.809-1072 | 7.895-10~ 7
1073 | 2.654-107" | 3.544-107" | 3.239-107" | 2.370-1077 | 5.494.107° | 2.597-1072 | 7.784-1072
1072 | 2.800-107* | 5.277-107* | 8.493-10~* | 1.950-107% | 1.663-10° | 8.694-107° | 6.794-1072
107 | 281810 | 5.449-107" | 911810 % | 3.451-10° % | 6.223-10 7 | 2.516-1072 | 2.336:102
1] 2.904-107% | 5938107 | 1.013-107% | 4.092-1077 | 7.778-107% | 3.726-1072 | 2.204-1072
10 | 3.817-107% | 5938107 | 1.936-107% | 7.477-107° | 1.307-1072 | 3.878-1072 | 3.790-1072
Table 3: Relative difference ||u® — ugoﬂ — suioft||/||u5|| at order 1
£
B L 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Ey
107% | 3.029-1072 | 5.567-10°2 | 6.265-10"2 | 7.242-10~2 | 7.636-10"2 | 1.073-10" ' | 1.434-107!
1072 | 58681077 | 1.990-107* | 3.055-107* | 5.851-107> | 6.819-107> | 1.049-10"" | 1.41810~"
1072 | 559310 " | 3.173-107% | 5848107 | 2.085-1072 | 3.330-1072 | 8.555-1072 | 1.275-10"!
1071 | 1.560-107" | 1.622:107" | 4.673-107" | 3.004-1077 | 5.820-107° | 2.942:1072 | 6.059-1072
1| 2.216-107% | 2.221-107* z 55 5 107% | 2.788:107* | 4.147-107% | 8.396-107* | 1.459-1073
10 | 2.236:10" | 2.036-10" 77107 | 1.813:107° | 5260107 | 4.347-1072 | 9.851-1072

Table 4: Relative difference [[u® —u9 ., —
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£
oA L 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
Ey
1077 | 112510 T 2.880-10 T 7.085-10 T | 454110 7 | 8.104-10 © | 4.269-107% | 8.546-10"2
1072 | 2.02810 % | 8.602-10 2 | 2.506-10 * | 3.645-10 % | 7.247-10 ° | 4.176-1072 | 8.452:10" 2
1072 | 2.199-107% | 1.993-107" | 1.805-10* | 1.189-107% | 3.539-10° | 3.432-1072 | 7.610-10~2
101 | 2.209-107% | 2.197-107* | 2.480-10* 39110 % | 447310 % | 1.194-1072 | 3.591- 10—
1 um; 1074 | 2.369-107* | 2.717-107% | 2.744-107* | 4.026-10* | 8.274-10™* | 1.432:10~
10 2541077 | 4.350-107" | 1.230-107° | 2.158-107% | 5.803-10° | 4.658-1072 | 1.047-10~*
Table 5: Relative difference |lu® — @, —e@l |I/||uf| at order 1, using the semi-implicit formulation

It can observed that, in all the cases herein considered, the soft interface modeling,
both at order 0 and 1 (see tables 1 and 3), is able to provide an acceptable solution, with
a relative error less than 10%.

If the relative thickness of the interface is less than 1%, then the relative error is
also less than 1%, except in the case of a relative stiffness between the adhesive and the
adherents equal to 10 (representing a very hard adhesive).

In table 2, it can be highlighted that the hard interface modeling at order 0 is not
suitable when the interface is thick or when its relative stiffness is small. In that cases,
the hard interface modeling at order 1 (see table 4) significantly improves the results,
except if the interface has both a large thickness and a small stiffness.

Table 5 presents the results obtained considering the semi-implicit formulation (64)
of the hard interface at order 1. This formulation provides generally satisfactory results,
excepted in the case of a very stiff and large thickness interface. Except in the latter case,
the results numerically confirms that the semi-implicit formulation (64) is equivalent to
the soft interface modeling at order 1.

Figure 2 presents the plot of the convergence to zero of the relative error versus the
thickness of the glue computed for the various models, in the case of the relative stiffness
of the glue equal to 0.1% (second lines of the tables), that can be considered as a soft
interface (small relative stiffness). The figure confirms and clarifies the remarks above
described from the analysis of the results reported in the tables.
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Figure 2: Convergence results for % =10"3

As expected, the hard interface modeling both at order 0 and 1 converge slowly,
whereas the soft interface modeling at order 0 and 1, and the semi-implicit modeling
provide close results and converge faster. This demonstrates that, in this case, the soft
interface modeling is able to correctly approximate the solution u®, and the implicit
formulation for hard interface is equivalent to the soft one.

16



——— Soft order 0

—-—- Soft order1

—— Hard order 0

—-—-Hard order 1

—— Hard order 1 semi implicit

—_
o
N
T
1

Relative error

10 103 102 10"
e/L

Figure 3: Convergence results for % =2

In figure 3, the convergence of the relative error is presented for a stiffer interface,
setting E;/F, = 2. In this case, since the interface can be considered as rigid, the plot
shows that the soft interface modeling both at order 0 and 1 converge slowly, whereas
the hard interface modeling at order 0 and 1 converge faster. It can be noticed that the
semi-implicit formulation provides good results, equivalent to the explicit hard one at
order 1 in this case.

4.2. Single lap joint

The response of a structural system consisting in two beams joined by a single lap
bond is studied; the structural scheme is illustrated in figure 4. The upper beam is
clamped on the left, while the lower beam is submitted to a distributed horizontal load
F =2 MPa on the right.

L, m.

L m.

L1

F=2 MPar—— f.l—% m.

Lz m.

Figure 4: Geometry of the problem (¢ = 0 for the interface problem)
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The structure is characterized by the following geometrical and mechanical parame-
ters:
Ly =10, L=1, e=0.01

where, as in the previous application, all the lengths are measured in meters. Note
that L represents the length of the glued zone. The bonded beams system is modeled
considering a two-dimensional plane strain assumption, so that each beam has a width
equal to 1 m.

Different values for the beam height L; and for the elastic moduli ratio E' are con-
sidered in the computations in order to investigate on effectiveness of the hard and soft
interface models and on the matching condition between the external and the internal
displacement jump. Three cases are studied:

e thick beams bonded by hard interface
e thin beams bonded by hard interface
e thin beams bonded by soft interface

In the following, the displacement jump computed for the surfaces S, and S_ as-
sumed to belong to the boundary of the two adherents is named as external jump of
displacement; analogously, the displacement jump computed for the surfaces S and S_
assumed to belong to the boundary of the adhesive is named as internal jump of dis-
placement. The matching conditions (12), (13) and (14) enforce that the external jump
is equal to internal jump.

In the following, the internal jump of the displacement u;, evaluated as:

[[wr]](x1, 22 = 0) = uy (21,07) — uy(22,07), (68)

and the external jump of the displacement u;, evaluated as:

9

[ur]e(z1, 22 = 0) = uy (21, +o)— uy (21, —5)’ (69)

2 )
are computed for:

1. the three phases computation;
2. the hard interface modeling at order 0;
3. the solution obtained at order 1, prescribing the relative displacement equal to:

20 +v
I o0 00.0) — 11,0 — ) 0, 0):

4. the hard interface modeling at order 1, computed considering the solution provided
from the prescribed jump introduced above.

4.2.1. Thick beams bonded by hard interface
Initially, the case of thick beams is investigated. The thickness of the two beams is
set as L1 = 4, while the elastic moduli ratio is taken as E;/E, = 1/2, corresponding to a
hard interface. In figure 5 the geometry of the problem, with the very fine mesh adopted
for the computations, is illustrated.
18



Figure 5: The beam with L1 =4

It can be remarked that in the second case, the displacement jump has to be equal
to zero, as perfect material continuity is ensured for the two adherents; indeed, in this
case, the adhesive phase is reduced to zero.

0.03 .
0.02
I
001} ]
E
9 0
o
%
X -0.01f ]
';,'- [[u}]] from three phases
= 002} —— [0 _
— Imposed internal [[u:‘ard'1]]
-0.03 - [[ul11ard,0+ . u?alrdj]] i
-0.04 L
-0.5 0 0.5
X, (m)

Figure 6: Internal jumps in the displacement uj

In figure 6, the internal jumps of the displacement 11, evaluated from formula (68), for
the four considered cases are plotted. It results that the curve of the second case is equal
to zero, while the three remaining ones overlap each other, showing that the numerical
computation is able to take into account the prescribed value. Thus, the expected results
are recovered from the computations.

Analogously, the external jumps of the displacement w1, evaluated from formula (69),
are presented in figure 7 for the same cases investigated above.

19



0.04 T

0.02
—_ 0 B
E
S -0.02 .

o

=
X -0.04 1
_o
el ——[u}], from three phase

-0.06 [Uhard,o] T

1 e
0.08 —— Expected external [u'f‘"d'1 1,
) - [u:mard,o_'_ c ul:ard,1]e
-0.1 -
-0.5 0 0.5
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Figure 7: External jumps in the displacement wu

In this case, one can observe that curves obtained from assumptions corresponding to
points 1, 3 and 4 overlaps each other. Thus, the prediction of the external jump (curve
3) and the observed one (curve 4) correspond to that of the three phase computations
(curve 1). So the modeling and the matching are correct.

4.2.2. Thin beams bonded by hard interface

In this section, the same computations above described are performed considering the
case of two thin bonded beams. In particular, it is set L1 = 4. The structural scheme
with the mesh adopted for the computation is illustrated in figure 8. Computations are
performed assuming the elastic moduli ratio is taken as E;/E, = 1/2, corresponding to
a hard interface.

Figure 8: The beam with L; =1

In figure 9, the internal jump of the displacement u; given by formula (68) is plotted
for the different solutions.
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Figure 9: Internal jumps in the displacement uj

As for the case of thick beams, it can be observed that the curve corresponding to
the second case is everywhere equal to zero, and the two last ones overlap each other,
showing that also for thin beams with hard interface, the numerical computation is able
to take into account the prescribed value.

Figure 10 provides the external jump of the displacement u; determined by formula
(69). In this case, it is observed that only curves 1 and 3 overlap each other, showing
that the prediction of the external jump (curve 3, before the matching) is the good one
and correspond to that of the three phases computation (curve 1), but the observed one
(curve 4), computed as internal jump with matching, is not the correct one when the
beam is thin.
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Figure 10: External jumps in the displacement uj

If the matching is not enforced, i.e. if the jumps between the two adherents (with no
materials between them) is considered directly, one can observe in figure 11 that curves
1, 3 and 4 overlaps each other. This means that for thin beams, the computation without
internal jump with matching leads to satisfactory results. Moreover, it is noticed that in
this case the solution on the whole structure is better than in the other simulations.

0.005 T
0
-0.005 - e [ui]e external, three phases modeling
. [uhard,O]
e 1 e
=~ -0.01f — Imposed external [u:‘am“]e
)
:N 0015 o [ul11ard,0+ A |JI11ard,1]e
x
-—‘-“_’ -0.02 + E
=
-0.025 - i
-0.03 i
-0.035 1
-0.5 0 0.5
X, (m)

Figure 11: External jumps in the displacement uj
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4.2.3. Thin beams bonded by soft interface

Finally, the case of soft interface, obtained setting the moduli ratio F;/E, = 0.001
for very thin beams (Lg = 0.1) is considered.

In that case, the jump in the displacements for the first component is not correctly
approximated, due to the matching (see figure 12). If the matching is not considered,
the results is improved (see figure 13). It is noticed that for soft interface, unsatisfactory
results are obtained for thinner beams than in the case of hard interface.

0 .

-0.02} o T T T
E 004t i
=)

8
x -0.06 |- T
x
—~-0.08} il
= [u{], from three phases
0.1} Y, .
- [U?Oﬂ’0+e u?ofm]e

-0.12 :

_ 0 5

X, (m)

Figure 12: External jumps in the displacement u; with soft interface and matching
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Figure 13: External jumps in the displacement u; with soft interface and no matching
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5. Conclusion

In this paper, mathematical and numerical methods based on asymptotic expansions
are proposed for the modeling of bonded interfaces. A linear elastic response of the ad-
hesive and adherents is considered, in the frame of small strains and small displacements
theory. Two different types of material adhesive are considered: the case of a hard ma-
terial, whose elasticity coefficients are independent of the adhesive thickness, ¢, and the
case of a soft material, whose elasticity coefficients rescale like ¢.

In the first part of the paper, some recent results of asymptotic analysis for soft
or stiff interfaces are reviewed [9, 25, 26]. For the two cases of material behavior, the
asymptotic expansions of the displacement and stress vector fields are introduced and
the effect of higher order terms is taken into account. Using the classical scheme of
matched asymptotic expansions, the interface conditions are obtained, linking the stress
vector field and its jump to the displacement vector field and its jump at the interface,
which is the geometric limit of the adhesive layer as its thickness parameter € goes to
zero. Following a remark already introduced in [25], an implicit interface condition is
presented, able to account for the interface conditions for both the two considered cases
of hard and soft interfaces at the orders zero and one.

Taking into account higher order terms of the asymptotic expansions, this implicit
form of interface condition is expected to provide an improved approximation of the be-
havior of the thin adhesive interface when compared to the classical spring-type interface
law or to the case of perfect contact between the adherents. To verify this conjecture,
some numerical examples are analyzed in the second part of the paper. The numerical
results show that

e when the thickness of the adhesive is much smaller than a characteristic length of
the adherents,

— for adhesives with stiffness much lower than that of the adherents, the soft
interface model shows a small relative error with respect to the exact solution,
i.e. the numerical solution for the three layers;

— for adhesives with stiffness comparable to that of the adherents, the hard
interface model shows a small relative error with respect to the exact solution;

— in both cases, the interface models at order one converges better than the
interface models at order zero;

— the semi-implicit model is always a better approximation;

e when the thickness of the adhesive becomes comparable with a characteristic length
of the adherents,

— the solution obtained using matching conditions calculated for the order one
is not a good approximation of the exact solution;

— an improved solution can be obtained if the matching at order one is taken to
be the same of the order zero, i.e. the continuity of all fields without additional
terms;

— a possible explanation of the failing of the matching at the order one is that
a problem with to parameters occurs when the adhesive and adherents have
24



comparable thicknesses. This occurrence has be studied using an adapted
asymptotic expansion methods.

The last remark has to be carefully taken into account when studying the bonding of two
beams or layered structures with comparable thicknesses. This case, which has relevant
applications in many fields, is addressed in a work in progress.

References

(1]
2]
(3]

(4]

G. Alfano and E. Sacco. Combining interface damage and friction in a cohesive-zone model.
International Journal for Numerical Methods in Engineering, 68(5):542-582, 2006.

L. Ascione, V.P. Berardi, L. Feo, and G. Mancusi. A numerical evaluation of the interlaminar stress
state in externally frp plated rc beams. Composites Part B: Engineering, 36(1):83-90, 2005.
Roland Becker, Peter Hansbo, and Rolf Stenberg. A finite element method for domain decomposition
with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis, 37(2):209-225,
2003.

F.G. Carozzi, G. Milani, and C. Poggi. Mechanical properties and numerical modeling of fabric
reinforced cementitious matrix (frcm) systems for strengthening of masonry structures. Composite

Structures, 107:711-725, 2014.

P. G. Ciarlet. A justification of a nonlinear model in plate theory. Computer Methods in Applied
Mechanics and Engineering, 17:227-258, 1979.

P.G. Ciarlet. Mathematical Elasticity: Three-dimensional elasticity. Number 1 in Mathematical
Elasticity: Three-dimensional Elasticity. North-Holland, 1994.

L.R. Demarkles. Investigation on the use of rubber analogue in the study of the stress distribution
in riveted and cemented joint. Technical Report TN No. 3413, NASA, 1955.

S. Dumont, O. Goubet, T. Ha-Duong, and P. Villon. Meshfree methods and boundary conditions.
Int. J. Numer. Meth. Engng., 67:989-1011, 2006.

S. Dumont, F. Lebon, and R. Rizzoni. An asymptotic approach to the adhesion of thin stiff films.
Mechanics Research Communications, 58:24-35, 2014.

T. Triantafillou (Editor). Textile Fibre Composites in Civil Engineering. Woodhead Publishing,
2016.

Y. Kim (Editor). Advanced Composites in Bridge Construction and Repair. Woodhead Publishing,
2014.

F. Erdogan and M. Ratwani. Stress distribution in bonded joints. J. Composite Materials, 5:378
393, 1971.

F. Fouchal, F. Lebon, and I. Titeux. Contribution to the modelling of interfaces in masonry
construction. Construction and Building Materials, 23(6):2428-2441, 2009.

M. Goland and E. Reissner. Stresses in cemented joints. Journal of Applied Mechanics (ASME),
11:A17-A27, 1944.

E. Grande, M. Imbimbo, and E. Sacco. Finite element analysis of masonry panels strengthened
with frps. Composites Part B: Engineering, 45(1):1296-1309, 2013.

L .C. Hollaway and J.G. Teng (Editors). Strengthening and Rehabilitation of Civil Infrastructures
Using Fibre-Reinforced Polymer (FRP) Composites. Woodhead Publishing, 2008.

L. C. Hollaway and M. Leeming. Strengthening of Reinforced Concrete Structures. Woodhead
Publishing, 1999.

H.R. Lotfi and P.B. Shing. Interface model applied to fracture of masonry structures. Journal of
structural engineering, 120(1):63-80, 1994.

P.B. Lourengo and J.G. Rots. Multisurface interface model for analysis of masonry structures.
Journal of engineering mechanics, 123(7):660-668, 1997.

S. Marfia, E. Sacco, and J. Toti. A coupled interface-body nonlocal damage model for frp strength-
ening detachment. Computational Mechanics, 50(3):335-351, 2012.

J.A Nairn. Numerical implementation of imperfect interfaces. Comput. Mater. Sci., 40:525-536,
2007.

J. Nitsche. Convergence of nonconforming methods. In Mathematical Aspects of Finite Elements
in Partial Differential Equations. pages 15-53, Proc. Sympos., Math. Res. Center, University of

Wisconsin, Madison, 1974. Academic Press: New York.

25



23]

[24]
[25]
[26]
[27]
28]
[29]

30]

R.S. Olivito, R. Codispoti, and O.A. Cevallos. Bond behavior of flax-frcm and pbo-frcm composites
applied on clay bricks: Experimental and theoretical study. Composite Structures, 146:221-231,
2016.

M. Raous, L. Cangémi, and M. Cocu. A consistent model coupling adhesion, friction, and unilateral
contact. Computer Methods in Applied Mechanics and Engineering, 177(3):383-399, 1999.

R. Rizzoni, S. Dumont, F. Lebon, and E. Sacco. Higher order model for soft and hard elastic
interfaces. International Journal of Solids and Structures, 51(23-24):4137-4148, 2014.

R. Rizzoni and F. Lebon. Asymptotic analysis of an adhesive joint with mismatch strain. European
Journal of Mechanics, A/Solids, 36:1-8, 2012.

E. Sacco and F. Lebon. A damage-friction interface model derived from micromechanical approach.
International Journal of Solids and Structures, 49(26):3666-3680, 2012.

R. Serpieri, M. Albarella, and E. Sacco. A 3d two-scale multiplane cohesive-zone model for mixed-
mode fracture with finite dilation. Comput. Methods Appl. Mech. Engrg., 313:857-888, 2017.

R. Stenberg. On some techniques for approximating boundary conditions in the finite element
method. J. Comput. Appl. Math., 63:139-148, 1995.

O. Volkersen. Die niektraftverteil ung in zugbeanspruchten mit konstanten laschenquerschritten.

Luftfahrtforschung, 15:41-47, 1938.

26



