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The numerical simulation of steady and unsteady flows in channel networks using an 

Extended Riemann Problem at the junctions  
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2University of Ferrara, Ferrara, Italy 

E-mail: mohabd@univaq.it 

Abstract: In this work, an analysis of the numerical simulations of the channel flows in symmetrical and asymmetrical networks 

using the one-dimensional shallow water equations (SWE) was performed. Inner boundary conditions must be imposed at the 

junction nodes, and their numerical treatment is crucial to develop reliable mathematical models. Classical methods to provide 

the inner boundary conditions that are extensively based on the energy and the momentum balances at the junction nodes.  

However, such methods suffer their empirical formula based on experimental coefficients, which limit their applicability in 

practical applications (river flow, dam flow). As an alternative to such methods, we propose to solve an Extended Riemann 

Problem (ERP) at the junction nodes, consistently with the physical and mathematical properties of the SWE. No empirical 

coefficients are involved, and this approach can be easily used in practice. Furthermore, the ERP approach is supported by 

theoretical evidences (i.e., existence and uniqueness theorems), that ensure the consistency of the numerical scheme. This 

theoretical analysis can be found in literature for a star network of three identical channels, and it is extended to general network 

configurations by its authors. Considering subcritical conditions, different flow simulations are performed in symmetrical and 

asymmetrical confluences for both steady and unsteady flows. The numerical solutions are compared to experimental data from 

literature and analytical solutions obtained by the authors. The overall results show the suitability of the ERP method to 

successfully provide the inner boundary conditions for wide range of applications. 

Keywords: Channel networks, junctions, Riemann problem, shallow water equations, subcritical flows. 

1. Introduction 

Channel networks are an important research topic in hydraulics (Chow 1959), in the context of either natural 

systems such as river basins or artificial networks such as irrigation systems. Extensive studies have taken into 

account the physical structure of the network flows, see for example (Gurram et al. 1997; Herrero et al. 2016; Hsu et 

al. 1998a; Taylor 1944) and the references therein. Providing a simulation tool to understand large channel networks 

is important from multiple different points of view. For example, in hydraulic engineering, one might be interested 

in designing a control strategy at the channel junctions to govern the whole network flow. Concerning the most 

important previous contributions, the classical methods to incorporate the junctions in a one-dimensional (1D) 

channel network in a numerical model were noticed to suffer from empirical formulations that limit their 

applicability. An example of such methods can be found in (Gurram et al. 1997; Hsu et al. 1998a; Shabayek et al. 

2002).  

In literature, both theoretical and numerical investigations of the junction networks are studied. Among those 

studies, Herrero et al. 2016 recently discusses the junction flow structure. Focusing on the junction flow features, the 

most significant parameters are the junction configuration, the angles between the branches, and the bed levels 

(Biron et al. 1996). The contributions in (Ghostine et al. 2010, 2012; Kesserwani et al. 2008) studied the junction 

flows numerically, providing 1D numerical simulations of such flows. However, the junction flow shows to have 

essentially a three-dimensional (3D) structure (Wang et al. 2007). Among the numerical studies, Kesserwani et al. 

(2008) provided sufficient information to understand the limitations of the classical junction models, studying the 

junction flows in a flume. 

The 1D shallow water equations (SWE) are solved to model the branch flows. Since the 1D SWE are singular at the 

junction node, inner boundary conditions must be used to model the connection of the branches. Such boundary 

conditions are based on mass, energy, and momentum conservations, for consistency with the physical principles 

governing the SWE. The different approaches are denoted in literature Equality model (Akan 1981), Gurram model 

(Gurram et al. 1997), Hsu model (Hsu et al. 1998a), and Shabayek model (Shabayek et al. 2002). The Equality 

model shows the poorest results to reproduce the junction flows for Froude number (F) greater than 0.35, while the 



 

other models (i.e., Gurram, Hsu, and Shabayek models) show more or less acceptable results. However, those 

models are vulnerable, due to the presence of empirical coefficients that must be tuned and are not case-independent. 

Recently, Elshobaki et al. (2017) provided the theoretical background to use the solution of an Extended Riemann 

Problem as inner boundary condition, as an alternative to the classical approaches. The Riemann approach is 

promising to solve symmetric and non-symmetric network with either continuous or discontinuous bottom for 

subcritical flows. However, the validation of such approach is missing in literature. Thus, the purpose of this work is 

to validate the Riemann approach for practical applications. 

To achieve this aim, experimental data found in literature (Hsu et al. 1998a,b; Pinto Coelho 2015) are used. 

Unluckily, the experimental data are limited to subcritical steady flows in asymmetric confluences (Hsu et al. 

1998a,b; Pinto Coelho 2015). Therefore, an unsteady flow test case is also used to validate the Riemann approach: 

the analytical solutions (Elshobaki et al. 2017) of the Extended Riemann Problem in a Y-shaped confluence. 

In this work, the 1D SWE are solved for each branch using the Dumbser-Osher-Toro (DOT) Riemann solver 

(Dumbser and Toro 2011). The numerical scheme has to be completed with proper boundary conditions. The 

inflow-outflow boundary conditions are provided according to (Abbott 1966; García-Navarro and Savirón 1992) 

while the internal boundary conditions, needed at the junction node, are provided by the Riemann approach. It is 

worth noting that the application of the Riemann approach is not limited to a specific numerical scheme, see (Briani 

et al. 2016; Chang et al. 2016; Toro 2009). 

The rest of the paper is organized as following: In section 2, the mathematical model and its numerical discretization 

are presented. In section 3, the Riemann approach is introduced to supply the internal boundary conditions for 1D 

simulations. The Riemann approach is solved iteratively using the hybrid Newton method (Powell 1970). The 

numerical results of steady and unsteady flow simulations are shown in section 4. Finally, conclusions about the 

results appear in section 5. 

 

Figure 1.  Channel network of three branches with equal width. 

2. One Dimensional Shallow Water Equations in Channel Network 

In this section the 1D SWE for a single open channel is briefly described.  

2.1.  Mathematical Model 

The 1D SWE are written as follows: 

𝜕𝑈

𝜕𝑡
+ 𝐴(𝑈)

𝜕𝑈

𝜕𝑥
= 0 (1) 

Where 𝑈 is the vector of conservative variables,  𝐴(𝑈) 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑛𝑑  𝑥 (m) and 𝑡 (s) are the space and 

the time, respectively. The state variables and the system matrix are: 

𝑈 = (ℎ ℎ𝑢 𝑧 ), 𝐴(𝑈) = (0 1 0 𝑔ℎ − 𝑢2 2𝑢 𝑔ℎ 0 0 0 ) (2) 



 

Where ℎ m is the water depth 𝑢 ms-1
 is the flow velocity, 𝑧 m is the bottom elevation; 𝑔 m2s-1 is the gravity. Equation 

(1) is written in quasi-linear form. Because the junction node spatial extension is small in comparison to the overall 

length in each branch, the friction can be neglected.  

2.2. Numerical Method  

In this paper, the finite volume method (Toro 2009) based on the Dumbser-Osher-Toro (DOT) solver (Dumbser and 

Toro 2011) is used to discretize the mathematical model. However, any other solvers such as the HLL, Rusanov, or 

Roe  can be used. This model is summarized by the following equation: 

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 −
∆𝑡

∆𝑥
(𝐷

𝑖+
1

2

− + 𝐷
𝑖−

1

2

+ ) (3) 

Where the conservative variables are averaged over the 𝑖th spatial domain and 𝑛th time step. ∆𝑥 = 𝑥
𝑖+

1

2

−𝑥
𝑖−

1

2

 is the 

uniform spatial step and ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 is the time step. Choosing a linear integration path 𝜓(𝑠) (Dumbser and 

Toro 2011) the parameter 𝑠 belong to the interval [0,1]:  

𝜓(𝑠) = 𝜓(𝑈−,𝑈+, s) = 𝑈−+ s (𝑈+ − 𝑈−) (4) 

The fluctuations 𝐷
𝑖±

1

2

±
 becomes: 

𝐷
𝑖±

1

2

± =
1

2
(∫

1

0
𝐴(𝜓( 𝑠))𝑑𝑠 ± ∫

1

0
|𝐴(𝜓( 𝑠))|𝑑𝑠)(𝑈𝑖+1 − 𝑈𝑖) (5) 

Using the Gauss-Legendre quadrature rule, Eq. (6) can be written as:  

𝐷
𝑖±

1

2

± =
1

2
(∑𝐺

𝑗=1 𝜔𝑗[𝐴(𝜓( 𝑠𝑗)) ± |𝐴(𝜓( 𝑠𝑗))|])(𝑈𝑖+1 − 𝑈𝑖) (6) 

where G is a given number of point in the quadrature in the interval [0,1] with nodes sj and weights 𝜔j , see (Stroud 
1971). The scheme in Eq. (3) must be completed with boundary conditions. We treat each branch of the network as 

a single open channel. Therefore, there are two types of boundary conditions needed. The first type is the well-

known inflow and outflow conditions. Since we consider only the subcritical flow, one condition is needed at the 

inflow boundary and one at the outflow boundary. The specific discharge is provided at the inflow boundaries. At 

the outflow boundary, the water depth is provided. Both boundary conditions are numerically treated according to 

the method of characteristics (Abbott 1966; Kesserwani et al. 2008). The second type is the inner boundary 

conditions, which connect the branches of the network at the junction. Here, it is proposed that those conditions are 

supplied by the solution of an extended Riemann problem (Elshobaki et al. 2017), defined at the junction. In the next 

section, the Riemann approach is analyzed, which provides the internal conditions at the junction (i.e., the junction 

model). 

3. The Riemann Approach at the Junction 

The Riemann Problem for the SWE in junction network is first investigated in (Goudiaby and Kreiss 2013) for 

symmetric network with continuous bottom and recently extended in (Elshobaki et al. 2017) for a non-symmetric 

network with a discontinuous bottom. The Extended Riemann Problem (ERP) is defined by Eq. (1) for each branch 

and coupled with piecewise initial constant states (ho, uo) in the three branches as a Riemann problem established at 

the junction of three channel and distinguished from the classical Riemann problem in a single channel. Considering 

the channel network shown in Fig. 1, the Riemann solution is obtained solving the following nonlinear system:  

𝑄1 + 𝑄2 = 𝑄3  (7) 
𝑢1

2

2𝑔
+ ℎ1 + 𝑧1 =

𝑢2
2

2𝑔
+ ℎ2 + 𝑧2 (8) 

𝑢2
2

2𝑔
+ ℎ2 + 𝑧2 =

𝑢3
2

2𝑔
+ ℎ3 + 𝑧3  (9) 

𝑢1 − 𝑢1𝑜 = −𝑓(ℎ1𝑜, ℎ1) (10) 

𝑢2 − 𝑢2𝑜 = −𝑓(ℎ2𝑜, ℎ2) (11) 

𝑢3 − 𝑢3𝑜 =   𝑓(ℎ3𝑜, ℎ3) (12) 

𝑓(ℎ𝑜, ℎ) = {2(√𝑔ℎ𝑜 − √𝑔ℎ), ℎ <  ℎ𝑜          (ℎ𝑜 − ℎ)√
𝑔

2
(

1

ℎ𝑜
+

1

ℎ
),   ℎ ≥  ℎ𝑜      (13) 

Where 𝑄 m3s-1
 is the volumetric water discharge, u is the water velocity. The sub-indices 1, 2, and 3 refer to the 

network branch as the upstream main channel, the lateral channel, and the downstream main channel, respectively. 



 

The sub-index o refers to the initial value of the associated variable. Equation (7) is the continuity equation, while 

Eq. (8) and Eq. (9) are derived imposing the total head equality between branches as justified in (Valiani and Caleffi 

2009) for a single open channel. The remaining equations are obtained using the Rankine-Hugoniot and Riemann 

invariant relationships. The system (7)-(13) is solved iteratively using hybrid Newton method (Powell 1970). Here, 

the Riemann approach that represent by Eqs. (7)-(13) is well established in terms of existence and uniqueness of the 

solution admitted as shown in (Elshobaki et al. 2017).  

4. Results  

4.1. Steady State Results  

In this subsection, we give the simulation results of the water flow in a channel network with different junction 

angle 𝛿 and a fixed Ω = 0o. The test cases (Hsu et al. 1998a,b; Pinto Coelho 2015) were carefully chosen because 

most of the existing work in this field was based on them. Although other test cases are available, but they are 

omitted due to the space limit. Figure 2 shows the relation between the depth ratio and the discharge ratio, where the 

Riemann approach is used to provide the predicted depth and discharge at the junction. The numerical solutions 

were compared with experimental data (Hsu et al. 1998a,b). There is a good match between the Hsu et al. (1998a) 

data and the numerical solution produced by the Riemann approach, for junction angle of 30o, 45o, and 60o; between 

the Hsu et al. (1998b) data and the Riemann approach for the junction angle of 90°. Table 1 shows the 

corresponding errors, defined as the non-dimensional difference between the numerical solution and the 

experimental data. The percentage error (E) is computed according to the following equation:  

𝐸 = 100 𝑥 |
𝑌𝑒−𝑌𝑛

𝑌𝑒
| (11) 

where Ye is the depth ratio between the upstream main channel and the downstream main channel. Yn is the 

computed depth ratio using the Riemann approach. According to Table 1, the errors are small in comparison with 

Hsu et al. (1998a) data (E=3%) where the effect of the junction angle appears to be small. On the other hand, the 

error is doubled for the Hsu et al. (1998b) data with the 90o junction angle. However, the error remains acceptable 

according to the error threshold (E=8%) suggested in (Kesserwani et al. 2008). 

Figure 3 presents the comparison between the Pinto Coelho (2015) data and the Riemann approach, where the 

junction angle are 30o and 60o. A good match between the numerical solutions and the Pinto Coelho (2015) data is 

noticed. Table 1 shows that the error remains bounded below the critical error value (Kesserwani et al. 2008). It can 

be noticed also that the error for the junction angle of 60o is increased up to 5.6%, which is greater than the one in 

the previous test case with the same junction angle. This might be due to the different combination between the 

Froude number and the junction angle in each test case. However, the relevant effect of the junction angle does not 

overcome the Riemann approach to match experimental data in both cases. 

 

Figure 2. Numerical solutions obtained by Riemann approach (circles) compared with experimental data, for (Hsu et al. 1998a) 

experiments, for junction angle 𝛿 = 300, 45𝑜 𝑎𝑛𝑑 60𝑜; for (Hsu et al. 1998b) experiments, for 𝛿 = 90𝑜 (stars). 

Table 1. Percentage errors between the Riemann approach and experimental data (Hsu et al. 1998a,b). 



 

Junction angle  Riemann approach 

30o 2.68 

45o 2.87 

60o 2.88 

90o 5.84 

 

 

Figure 3. Numerical solutions obtained by Riemann approach (circles) compared with experimental data, for (Pinto Coelho 

2015) experiments, for junction angle 𝛿 = 300 𝑎𝑛𝑑 60𝑜 (stars). 

Table 2. Percentage errors between the Riemann approach and experimental data (Pinto Coelho 2015). 

Junction angle  Riemann approach 

30o 2.83 

60o 5.62 

4.2. Unsteady State Results 

We present the numerical solution of the water flow in the channel network shown in Fig. 1 with δ = 45o and Ω = 

45o. The numerical solution is compared to the analytical one (Elshobaki et al. 2017). The simulation started with 

piecewise constant initial discharges and depths of 0.1 m3s-1 and 0.5 m in the main upstream channel and in the 

lateral channel, and 0 m3s-1 and 1.0 m in the main downstream channel. Figure 4 shows the simulation results, 

showing the evolution of the discharge in the spatial domain in each branch of the network. The analytical solution 

is plotted in solid lines and the numerical one in dot-dashed lines. The 𝑙1 error is shown in Table 3, which is 

computed in according to the following equation: 

𝑒𝑘 = ∆𝑥 ∑𝑁
𝑖=1 |𝑄𝑘

∗ (𝑥𝑖 , 𝑡) − 𝑄𝑘(𝑥𝑖 , 𝑡)| (14) 

where k is the branch index: k = 1 refers to the main upstream channel, k = 2 to the lateral channel, k = 3 to the main 

downstream channel. N refers to the number of mesh cells and 𝑄∗ is the analytical discharge according to (Elshobaki 

et al. 2017).  

Figure 4 shows the perfect match between the numerical solution and the analytical one (Elshobaki et al. 2017). The 

𝑙1 error is very small in all the three branches, as reported in Table 3. This result proved the Riemann approach 

capability to predict the flow depth and the flow discharge at the junction network for unsteady flow. This result is 

not found in existing literature concerning classical methods. 

Table 3. 𝑙1 error in the computed discharge in each branch, comparing the Riemann approach and the analytical one (Elshobaki 

et al. 2017). 



 

Branch  The Riemann 

approach 

Branch1 4.2644E-3 

Branch2 4.2644E-3 

Branch3 8.8333E-3 

 

 

Figure 4.  Analytical discharge profiles in each branch according to (Elshobaki et al. 2017), solid line, compared with the 

numerical solution using the Riemann approach, dash dot lines. Time is 0.2 s. 

5. Conclusions  

This paper uses an Extended Riemann problem (ERP) solution to model the inner boundary conditions for numerical 

simulation of open channel network flows. The classical methods presented in literature suffer their empirical 

formulations, which limit their practical applicabilty. On the contrary, the proposed ERP methodology does not 

depend on empirical formulations that require tuning parameters. Experimental data (Hsu et al. 1998a,b; Coelho 

2015) are used to validate the ERP approach for steady state flow in asymmetrical confluences. Moreover, an 

analytical solution (Elshobaki et al. 2017) for unsteady flows is used to validate the ERP approach in Y-shaped 

confluences. Good results in matching both experimental data and analytical solution are shown, as the error for the 

steady flow simulation remains bounded below the critical 8% error value estimated in (Kesserwani et al. 2008). 

Very good matches between the numerical solution and the analytical one is obtained. Present results are valid for 

subcritical flows only, as supported by theoretical findings in (Elshobaki et al. 2017). However, obtaining similar 

results concerning supercritical flows in the future appears to be a reasonable target from the mathematical point of 

view.  
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