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Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine
Receptors: The State of the Art. Physiol Rev 98: 1591–1625, 2018. Published May
30, 2018; doi:10.1152/physrev.00049.2017.—Adenosine is a ubiquitous endoge-
nous autacoid whose effects are triggered through the enrollment of four G protein-
coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from

cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs
and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central
nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression
patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be
both markers of pathologies and useful targets for novel drugs. This review offers an overview of
current knowledge on adenosine receptors, including their characteristic structural features,
molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and
neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest find-
ings on molecules capable of targeting adenosine receptors and report which stage of drug
development they have reached.
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I. INTRODUCTION

The first evidence of a role for adenosine in cellular physi-
ology dates back to 1927, when the presence of an adenine
compound able to slow the heart rhythm and rate was dis-
covered in extracts from cardiac tissues (90). Fifty years
later, this finding led to the introduction of adenosine in the
diagnosis and treatment of supraventricular tachycardia
(31, 81). Since then, scientists from different areas—span-
ning physiology, biochemistry, pharmacology, chemistry
and immunology—have been focusing their efforts on in-
vestigating adenosine’s many roles in health and disease,
thereby generating a new field of research.

Thanks to these studies, we now know that adenosine is an
ubiquitous endogenous molecule that affects almost all as-
pects of cellular physiology, including neuronal activity,
vascular function, platelet aggregation, and blood cell reg-
ulation. To early investigators, adenosine behavior ap-
peared to resemble that of hormones or second messengers,
but its particular mechanism of generation during condi-
tions of stress suggested that it was in fact a novel kind of
cell regulator, which was accordingly granted a new term:
“retaliatory metabolite” (288).

Adenosine mediates its effects mainly through its interac-
tion with four G protein-coupled receptors (GPCR); these,
named A1, A2A, A2B, and A3 adenosine receptors (ARs), are
expressed in several cells and tissues throughout the body
(37). Their presence was demonstrated in the cerebral cor-
tex, for example, by observing the specific antagonism of
adenosine-induced cAMP accumulation induced by meth-
ylxanthines caffeine and theophylline (348). Interestingly,
caffeine is the most widely misused psychoactive substance
worldwide (22).

The understanding that ARs are implicated in numerous
pathological functions crucial in severe human diseases
prompted researchers to search for novel potential drugs
exploiting ARs (117). These efforts have led to the identifi-
cation of several useful ligands—from agonists/partial ago-
nists, to antagonists, allosteric enhancers, and enzyme mod-
ulators—which now offer a wide spectrum of activity (310).
Nevertheless, there is still only a limited number of adenos-
inergic drugs on the market (TABLE 1). This is due to the
complexity of AR signaling; indeed, AR receptors are
widely distributed throughout the body, which may lead to
redundancy of effect. Among the commercially available
AR-mediated drugs, in addition to adenosine itself, an
A2AAR agonist is used for coronary artery imaging, and
there is an A2AAR antagonist for the treatment of Parkin-
son’s disease (PD), but this is only used in Japan. Great
efforts are being concentrated on the clinical development
of A3AR agonists, which show potential in the treatment of
various high-impact pathologies, including autoimmune
diseases and cancer (37).
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With the intention of ultimately advancing the field of aden-
osine research, this review is designed to shed light on the
pharmacological role of adenosine and ARs, and their rel-
evance in the onset of human diseases. We describe the
origin and metabolism of adenosine, and the classification,
structure, distribution, and function of ARs, focusing on
their physiological aspects in major organ systems (nervous,
cardiovascular, immune) as well as their pathological ef-
fects in inflammation, pain, and cancer. We then discuss the
therapeutic applications of AR ligands, addressing the state
of the art in clinical trials, highlighting gaps in our knowl-
edge and points of controversy throughout (TABLE 2).

II. ADENOSINE: ORIGIN AND
METABOLISM

From a phylogenetic point of view, the earliest evidence of
adenosine’s role as life-preserving molecule was published
in 1981, when excreted adenosine was identified as a cell-
density signal able to induce the formation of fruiting bod-
ies, following starvation, in the bacterium Myxococcus
xanthus (359). Subsequently, its production was linked to
energy metabolism, thanks to physiological evidence of an
increase in adenosine generation in leukocytes and heart
cells during ATP catabolism. Indeed, adenosine has been
observed to play a “helper” role in the protection of work-
ing cells, like neurons and cardiomyocytes, against stressful
conditions by enabling them to adjust their energy intake
and adapt their activity to reduce ATP requirement. This
effect is mainly brought about by reducing energy-consum-
ing activities, such as the heart inotropic effect, and by
increasing nutrients/oxygen support through vasodilation
(FIGURE 1). This disproved the existing hypothesis of its
origin as a second messenger from the cAMP pathway, and
later prompted the introduction of the term “retaliatory
metabolite” to describe this useful nucleoside. Under nor-
mal physiological conditions, extracellular adenosine levels
are between 20 and 300 nM, rising to a low micromolar
range under extreme physiological situations—like inten-
sive exercise or low atmospheric oxygen levels (e.g., at high
altitude)—and high micromolar levels (30 �M) in patho-
logical conditions such as ischemia (288).

The principal mechanism responsible for the extracellular
generation of adenosine is dephosphorylation of its precur-
sor entities: ATP, ADP, and AMP. These are released by
several cell types under stressful conditions through specific
hydrolyzing enzymes termed ectonucleoside triphosphate
diphosphohydrolase (CD39) and ecto-5=-nucleotidase
(CD73), without which nucleotide concentrations would be
relatively stable (117, 455). However, under physiological
conditions, adenosine is principally originated intracellu-
larly, from hydrolysis of AMP and S-adenosylhomocysteine
(SAH) through the endo-5=-nucleotidase, and SAH hydro-
lase, respectively (56). Once generated, extracellular adeno-
sine is captured at the intracellular level via the SLC28 family
of cation-linked concentrative nucleoside transporters (CNTs)
and the SLC29 family of energy-independent, equilibrative
nucleoside transporters (ENTs), which allow free passage of
adenosine across the cell membrane. The direction of adeno-
sine uptake or release from cells is determined by the concen-
tration difference across the membrane. The role of ENTs in
this transfer is more critical than that of CNTs. Indeed, the
four isoforms of ENT (1–4) transport nucleosides into or out
of cell membranes on the basis of adenosine concentrations,
while the three isoforms of CNT (1–3) facilitate adenosine
influx against a concentration gradient, using the sodium ion
gradient as a source of energy. Normally the flux is from ex-
tracellular to intracellular milieu, while during hypoxia, it is
reversed, as nicely reported (83–85).

After intracellular uptake, adenosine undergoes deamina-
tion to inosine by adenosine deaminase (ADA) or phos-
phorylation to AMP through adenosine kinase (AK), giving
adenosine a physiological half-life of �1 s. The respective
Michaelis constant (Km) values of these enzymes are 2 �M
(AK) and 17–45 �M (ADA), which suggests that AK is the
principal means of adenosine clearance in the physiological
milieu, while deamination occurs preferentially under path-
ological conditions featuring raised adenosine levels. In
such situations, deamination through ecto-ADA or influx
through ENTs may occur to reduce the extracellular aden-
osine concentration (FIGURE 2). In addition to its enzymatic
activity, ecto-ADA is also able to modulate the ligand bind-
ing to ARs. Specifically, A1ARs, A2AARs, and A2BARs rep-

Table 1. List of clinically approved adenosine receptors drugs

Name Mechanism of Action Therapeutic Use

Adenosine A1AR agonist Paroxysmal supraventricular tachycardia (PSVT)
Adenosine A2AAR agonist Myocardial perfusion imaging
Regadenoson
Theophylline A1AR antagonist Asthma
Doxofylline
Bamifylline
Istradefylline A2AAR antagonist Parkinson’s disease
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Table 2. Examples of ongoing clinical studies of adenosine receptor ligands

Ligands
Receptor
Selectivity Indication Phase

C.T. Identifier
Code Company

Agonists
8-Chloro-
adenosine

A1/A2A/A2B/A3 Recurrent adult acute myeloid leukemia, relapsed
adult acute myeloid leukemia, acute myeloid
leukemia arising from previous myelodysplastic
syndrome, acute myeloid leukemia arising from
previous myeloproliferative disorder

I/II NCT02509546 City of Hope Medical
Center

Neladenoson A1 Heart failure II NCT03098979 Bayer
Heart failure II NCT02992288 Bayer

Regadenoson A2A Sickle cell anemia II NCT01788631 Dana-Farber Cancer
Institute

Coronary artery disease IV NCT01446094 Dipan Shah
Coronary artery disease IV NCT02115308 Timothy M. Bateman
Ischemia IV NCT02130453 M.D. Anderson Cancer

Center
Cardiovascular diseases, coronary artery disease II NCT03103061 Medical University of

South Carolina
Heart failure, diastolic heart failure, hypertension IV NCT02589977 Marvin W.

Kronenberg, M.D.
Retinal artery occlusion II NCT03090087 University of Aarhus
Hypertrophic cardiomyopathy, nonischemic

dilated cardiomyopathy, microvascular
ischemia of myocardium

IV NCT03249272 Duke University

Heart disease I NCT01433705 University of Michigan
Microvascular coronary artery disease II NCT03236311 Sanofi
Coronary microvascular disease I II NCT02045459 University of Virginia
Coronary artery disease I II NCT03331380 National Heart, Lung,

and Blood Institute
(NHLBI)

CF-101 A3 Rheumatoid arthritis III * Can-Fite BioPharma
Moderate-to-severe plaque psoriasis III * Can-Fite BioPharma

CF-102 A3 Hepatocellular carcinoma II NCT02128958 Can-Fite BioPharma
Nonalcoholic fatty liver disease, nonalcoholic

steatohepatitis
II *

Antagonists
Theophylline A1 A2A/A2B/A3 Asthma IV NCT03269318 Brighton and Sussex

University Hospitals
NHS Trust

Chronic obstructive pulmonary disease IV NCT02261727 The George Institute
End-stage renal disease, olfactory disorders II NCT02479451 Massachusetts

General Hospital
Noncardiac chest pain II/III NCT03319121 University of Science

Malaysia
Asthma IV NCT01696214 University of California,

San Diego
Istradefylline A2A Idiopathic Parkinson’s disease III NCT02610231 Kyowa Hakko Kirin

Pharma, Inc.
Preladenant A2A Neoplasm I NCT03099161 Merck Sharp & Dohme

Corp.
PBF-509 A2A Nonsmall cell lung cancer I/II NCT02403193 Palobiofarma SL
CPI-444 A2A Nonsmall cell lung cancer, malignant melanoma,

renal cell cancer, triple negative breast cancer,
colorectal cancer, bladder cancer, metastatic
castration-resistant prostate cancer

I NCT02655822 Corvus
Pharmaceuticals,
Inc.

*The C.T. Identifier Code for these trials is not yet available; information derived from Can-Fite BioPharma website at www.canfite.com.
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resent binding sites for ecto-ADA, and its interaction with
them has been reported to increase receptor affinity and
signaling (143, 301). The relation of ADA with ARs has an
important role in immune cells. In particular, the intercel-
lular interaction made by ARs on dendritic cells, ADA, and
CD26 on CD4-T cells, increases immune responses, sug-
gesting the role of ADA as a bridge between cells expressing
ARs and cells expressing CD26.

III. MOLECULAR STRUCTURE OF
ADENOSINE RECEPTORS

Adenosine mediates its physiological effects through the
activation of four ARs. These are characterized by different
tissue distribution and effector coupling and by either high
(A1, A2A, A3) or low (A2B) affinity for the parent molecule.
All four ARs have been well identified, cloned and pharma-
cologically studied, and present a common structure: each
possesses a core domain which crosses the plasma mem-
brane seven times, in which each helix is 20–27 amino acids
long and linked by three intracellular and three extracellu-

lar loops (115). The extracellular NH2 terminus contains
one or more glycosylation sites, while the intracellular
COOH terminus provides sites for phosphorylation and
palmitoylation, thereby playing a role in receptor desensi-
tization and internalization mechanisms. Different AR sub-
types present different numbers of amino acids. For in-
stance, a longer COOH terminus, with 122 amino acids, is
found on A2AAR, whereas A1AR, A2BAR, and A3AR bear
COOH-terminal tails consisting of ~30–40 amino acids
(116). Details of the structures of human A1AR and A2AAR
have been provided by crystallization studies (51, 95, 139,
170, 213, 433), which will ultimately aid in the structure-
based drug design of A1AR and A2AAR ligands (139, 377).

The generation of selective ligands is particularly desirable, as
ARs present a sequence homology of 80–95% (there is 70%
homology in their amino acids between human and rat). The
exception to this rule is A3AR, which differs significantly
among species, with the A1AR sequence being the most con-
served (323). ARs have been cloned from several species, with
A3AR being the only subtype isolated before its pharmacolog-
ical characterization (270), and the chromosome location of
human and mouse ARs genes is reported in TABLE 3. Interest-
ingly, a comparison between human (h) A1AR/A3AR and
hA2AR/hA2BR shows overall amino acid sequence identities of
46.5% and 46.6%, respectively.

Recent evidences document the presence of several GPCRs
including ARs in homomer, oligomer, and heteromer forms
(43, 101, 102, 285–287). GPCR heteromers appear as new
signaling entities characterized by different functional
properties when compared with homomers. In this field, the
adenosine A1AR-A2AAR unit represents the first reliable
structure of a macromolecular complex, including two dif-
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FIGURE 1. Physiological role of adenosine through interaction with
A1, A2A, A2B, and A3 adenosine receptors (ARs). Adenosine is an
endogenous ubiquitous mediator, highly increased following hypoxia,
ischemia, or physical activity due to ATP consumption. It exerts body
surveillance and protection by different mechanisms triggered by
ARs activation, resulting in decreased oxygen demand and inflam-
mation, increased oxygen supply and angiogenesis, as well as isch-
emic preconditioning.
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FIGURE 2. Adenosine metabolism and transport in the extra-intra-
cellular milieu. At the intracellular level, adenosine derives from
S-adenosylhomocysteine (SAH) hydrolase or cytosolic 5=-nucleoti-
dase and is degraded by adenosine deaminase (ADA) and adenosine
kinase (AK). Extracellularly, it is generated by CD73 and converted by
ADA. Equilibrative nucleoside transporters (ENTs) allow adenosine free
flux through cell membrane, following gradient concentration.
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ferent receptors plus two different G proteins coupled to
them (FIGURE 3) (43, 285). Indeed A1AR is coupled to Gi

and A2AAR to Gs, thus rendering heteromer able to trigger
opposite signals affecting the cAMP-dependent intracellu-
lar pathway. Specifically, this unit represents a cell surface
sensor of adenosine concentration, able to discriminate be-
tween low and high nucleoside level (285). When adenosine
levels are low, its interaction occurs preferentially with
A1AR protomer of the heteromer and activates Gi/o protein,
thus reducing adenylate cyclase (AC), protein kinase A
(PKA), and GABA uptake. Instead, when adenosine levels
are higher, its binding is favored to A2AR component of the
complex, which reduces A1AR activation and, through Gs

protein, associates with the AC/cAMP/PKA cascade, re-
sulting in the increase of GABA uptake (68). Therefore,
adenosine depending on its concentration may affect a
number of other physiological process, including the re-
lease of glutamate (63). Interestingly, the heteromeriza-

tion phenomenon appears as a general mechanism affect-
ing also A3ARs, forming homodimers and A1AR-A3AR
heterodimers (157, 190). This opens up new horizons in
drug development (102); in particular, A2AAR-D2 dopa-
mine receptor heterodimers have been detected in the
striatum and may be a viable therapeutic target in PD
(121, 122, 283).

IV. DISTRIBUTION, PHYSIOLOGICAL
EFFECTS, AND SIGNAL
TRANSDUCTION

ARs are found throughout the nervous, cardiovascular, respi-
ratory, gastrointestinal, urogenital, and immune systems as
well as in bone, joints, eyes, and skin (310)—a pattern of
distribution that denotes their significant control of neuronal,
cardiac, metabolic, and renal activities (3). Each AR is charac-

Table 3. Molecular characteristics of adenosine receptors

A1AR A2AR A2BR A3AR

Human (h) chromosome gene
location

1q32.1 22g11.2 17p11.2–12 1p21-p13

Mouse (m) chromosome gene
location

1 10 11 3

Amino acids (h) 326 410 328 318
Amino acids (m) 326 409 332 320
Sequence identity (%) vs. hA1AR 38.3 44.0 46.5
Sequence identity (%) vs. hA2AAR 46.6 31
Sequence identity (%) vs. hA2BAR 35.7
Cloning Human, dog, cow, rabbit Human, dog, guinea pig Human Human, rat, sheep, rabbit

Low adenosine concentration

Striatal GABAegic
efferent neuron

ATP
Glu

ATP
Glu

ATP
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ATP
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Striatal GABAegic
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FIGURE 3. Schematic representation of
A1AR–A2AAR heteromer as adenosine sen-
sor. Low adenosine concentration prefer-
entially stimulates the A1AR protomer of
the heteromer, which would inhibit gluta-
matergic transmission. On the other hand,
high adenosine concentration activates
adenosine A2AAR that blocks adenosine
A1AR-mediated effects and results in po-
tentiation of glutamate release.
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terized by unique cell and tissue distribution, secondary signal-
ing transductors (TABLE 4), and physiological effects (TABLE
5). A1AR and A3AR signals are mediated through Gi and Go

members of the G protein family, through which they reduce
AC activity and cAMP levels, while A2AARs and A2BARs are
coupled to Gs proteins, through which they stimulate AC and
increase cAMP levels, thereby leading to the activation of a
plethora of mediators, depending on the signaling triggered by
cAMP in specific cells (116).

A. A1AR and A3AR Gi and Go-Coupled
Receptors

The A1AR subtype is expressed in the central nervous sys-
tem (CNS), mainly in the brain cortex, cerebellum, hip-
pocampus, autonomic nerve terminals, spinal cord, and
glial cells (56). This broad distribution reflects the wide
range of physiological functions regulated by A1AR, span-
ning neurotransmitter release, dampening of neuronal ex-

citability, control of sleep/wakefulness, pain reduction, as
well as sedative, anticonvulsant, anxiolytic, and locomotor
depressant effects (131, 349, 375). This subtype is also pres-
ent at high levels in the heart atria, kidney, adipose tissue,
and pancreas, where it induces negative chronotropic, ino-
tropic, and dromotropic effects, reduces renal blood flow
and renin release, and inhibits lipolysis and insulin secre-
tion, respectively (86, 263, 319, 322, 378, 397, 410). It is
also located on airway epithelial and smooth muscle cells,
where it stimulates a bronchoconstrictory response, and in
several immune cells such as neutrophils, eosinophils, mac-
rophages, and monocytes, where it promotes essentially
proinflammatory effects (165, 317, 422).

A1AR also induces phospholipase C (PLC)-� activation,
thereby increasing inositol 1,4,5-trisphosphate (IP3) and in-
tracellular Ca2� levels, which stimulate calcium-dependent
protein kinases (PKC) and/or other calcium-binding pro-
teins.

Table 4. Classification and mechanism of action of adenosine receptors

Name A1 A2A A2B A3

G protein
coupling

Gi/o Gs GsGq/11 GiGq/11

Effector system 2Adenylyl cyclase 1Adenylyl cyclase 1Adenylyl cyclase 2Adenylyl cyclase
1Phospholipase C 1MAP kinase 1Phospholipase C 1Phospholipase C
Ion channels: 1MAP kinase 1PI 3-kinase
1K� ØCa2� 1MAP kinase
1PI 3-kinase
1MAP kinase

Adenosine affinity 1–10 nM 30 nM 1,000 nM 100 nM
Agonists CCPA, R-PIA, CPA, IB-

MECA, NECA
CGS21680, UK-432,097,

HE-NECA, NECA, R-PIA
NECA, BAY60–6583,

R-PIA, IB-MECA
Cl�IB-MECA, IB-MECA,

MRS5698, NECA,
R-PIA, CGS21680

Antagonists PSB36, KW-3902, DPCPX,
caffeine, theophylline

SCH442416, ZM241385,
SCH58261, DPCPX,
caffeine, theophylline

PSB-603, ZM241385,
MRS 1754, DPCPX,
caffeine, theophylline

MRE3008F20,
MRS1523,DPCPX,
ZM241385,
caffeine,
theophylline

PAM (positive
allosteric
modulators)

T62, TRR469 LUF6000

BAY60–6583, 2-[[6-amino-3,5-dicyano-4-[4-(cyclo propylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide; CCPA, 2-chloro-N-cyclopentyladenosine;
CGS21680, 4-[2-[[6-amino-9-(N-ethyl-�-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride; Cl�IB-MECA,
CF102, 2-chloro-N6-(3-iodobenzyl)-adenosine-5=-N-methyluronamide; DPCPX, 8-cyclopentyl-1,3-dipropylxanthine; MRS5698, (1S,2R,3S,4R,
5S)-4-[6-[[(3-chlorophenyl)methyl]amino]-2-[2-(3,4-difluorophenyl)-ethynyl]-9H-purin-9-yl]-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-
carboxamide; KW-3902, 8-(hexahydro-2,5-methanopentalen-3a (1H)-yl)-3,7-dihydro-1,3-dipropyl-1H-purine-2,6-di one; LUF6000, N-(3,4-
dichloro-phenyl)-2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-amine; MRS 1754, N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-
1H-purin-8-yl)phenoxy]-acetamide; MRE 3008F20, N-[2-(2-furanyl)-8-propyl-8H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-yl]-N’-(4-
methoxyphenyl)urea; MRS1523, 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate; PAM, positive allosteric modu-
lators; PSB36, 1-butyl-8-(hexahydro-2,5-methanopentalen-3a(1H)-yl)-3,7-dihydro-3-(3-hydroxypropyl)-1H-purine-2,6-dione; PSB-603, 8-[4-[4-(4-
chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine; SCH442416, 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-
e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine; SCH 58261, 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-
amine; T62, 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-(4-chlorophenyl)-methanone; TRR469, 2-amino-4-[(4-(phenyl)piperazin-1-
yl)methyl]-5-(4-fluorophenyl)thiophen-3-yl)-(4-chlorophenyl)methanone; UK-432,097, 6-[2,2-di(phenyl)ethylamino]-9-[(2R,3R,4S,5S)-5-
(ethylcarbamoyl)-3,4-dihydroxyoxolan-2-yl]-N-[2-[(1-pyridin-2-ylpiperidin-4-yl)-carbamoylamino]-ethyl]-purine-2-carboxamide; ZM 241385, 4-(2-[7-
amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol.

BOREA ET AL.

1596 Physiol Rev • VOL 98 • JULY 2018 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (192.167.210.203) on July 25, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.

https://www.ncbi.nlm.nih.gov/protein/878113053
https://www.ncbi.nlm.nih.gov/protein/878113053
https://www.ncbi.nlm.nih.gov/protein/1052882304
https://www.ncbi.nlm.nih.gov/protein/878113053


At the neuronal and myocardial level, A1AR stimulates po-
tassium (K) pertussis toxin-sensitive and KATP channels,
while reducing Q-, P-, and N-type Ca2� channels. Further-
more, the involvement of A1AR in the intracellular phos-

phorylative cascade of the mitogen-activated protein kinase
(MAPK) family—including extracellular signal-regulated
kinase (ERK), p38, and Jun NH2-terminal kinase (JNK)—
has been reported (351, 352) (FIGURE 4).

Pharmacological agents that increase the activation of
A1AR in response to adenosine would be useful for the
treatment of CNS, cardiovascular, and inflammatory pa-
thologies. A1AR drawback effects, due to their wide distri-
bution, broad spectrum of physiological effects, and pro-
miscuous signaling pathway transduction, can fortunately
be mitigated through allosteric enhancers, which stabilize
the ternary complex formed by agonist-A1AR-G protein
molecules. This enhances the agonist action only at the site
affected by injury, where adenosine concentrations are in-
creased (330).

The A3AR subtype is widely expressed in a variety of
primary cells, tissues, and cell lines. Low levels have been
reported in the brain, where it is located in the thalamus,
hypothalamus, hippocampus, cortex, and retinal gan-
glion cells, as well as at motor nerve terminals and the
pial and intercerebral arteries. A3ARs are also expressed
in microglia and astrocytes, and the inhibition of a neu-
roinflammatory response in these cells has been associ-
ated with their induction of an analgesic effect (175).
Although A3AR is also known to have cardioprotective
effects, and to be greatly expressed in the coronary and
carotid artery, its precise location in the heart has not yet
been reported. At the peripheral level, however, A3AR
has been found in enteric neurons, as well as epithelial
cells, colonic mucosa, lung parenchyma, and bronchi.
Furthermore, A3AR has a broad distribution in inflam-
matory cells like mast cells, eosinophils, neutrophils,
monocytes, macrophages, foam cells, dendritic cells,
lymphocytes, splenocytes, bone marrow cells, lymph
nodes, synoviocytes, chondrocytes, and osteoblasts,
where it mediates anti-inflammatory effects (37). Inter-
estingly, A3AR is overexpressed in several cancer cells
and tissues and is therefore likely to have an important
antitumoral role (39).

A3ARs trigger a variety of intracellular signaling by pref-
erentially coupling to Gi proteins, by which they
reduce cAMP levels, and, at high concentrations of A3AR
agonists, to Gq proteins or G�� subunits, thereby induc-
ing an increase in both PLC and calcium. A reduction in
cAMP results in PKA inhibition, which leads to an in-
crease in glycogen synthase kinase-3� (GSK-3�); down-
regulation of beta-catenin, cyclin D1, and c-Myc; and
reduction of nuclear factor (NF)-�B DNA-binding ability
(108). A different pathway from GPCR signaling—in-
volving monomeric G protein RhoA and phospholipase
D—is important for A3AR-mediated neuro- and cardio-
protection. A3ARs are also known to regulate MAPK,
PI3K/Akt, and NF-�B signaling pathways, by which

Table 5. Biological effects of adenosine

Effects
Receptor
Subtype

Central nervous system
Inhibition of neurotransmitter release A1

Neuroprotection A1/A3

Anxiolytic activity A1

Anticonvulsant activity A1

Reduction of pain A1/A3

Excitatory activity A2A

Stimulation of glutamate and acetylcholine
release A2A

Reduction of locomotor activity A2A

Trophic effects A2A/A2B

Cardiovascular system
Negative inotropic effect A1

Negative chronotropic effect A1

Negative dromotropic effect A1

Ischemic preconditioning A1/A3

Vasodilation A2A/A2B

Inhibition of platelet aggregation A2A

Immune system
Inhibition of reactive oxygen species A2A/A3

Neutrophils A1/A3

Increase of chemotaxis A1

Decrease of chemotaxis A3

Lymphocytes
Immunosuppression A2A/A3/A2B

Monocytes/macrophages
Inhibition of proinflammatory cytokines

release
A2A/A3/A2B

Mast cells
Stimulation of degranulation A3/A2B

Respiratory system
Bronchoconstriction A1/A3/A2B

Renal system
Vasoconstriction A1

Vasodilation A2A

Reduction of the glomerular filtration rate A1

Inhibition of diuresis A1

Inhibition of renin secretion A1

Gastrointestinal system
Inhibition of acid secretion A1

Stimulation of intestinal chloride secretion A2B/A3

Cellular metabolism
Inhibition of lipolysis A1

Inhibition of insulin secretion A1

Stimulation of gluconeogenesis A2A

Production of glucose A2B
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they exert anti-inflammatory effects. Stimulation or
inhibition of HIF-1 has been also demonstrated to
have protumoral and neuromodulatory effects in
cancer cells and astrocytes, respectively (39)
(FIGURE 5).

B. A2AAR and A2BAR Gs-Coupled Receptors

The A2AAR subtype occurs both centrally and peripherally,
but its greatest expression is in the striatum, the olfactory
tubercle, and the immune system, while lower levels are
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found in the cerebral cortex, hippocampus, heart, lung, and
blood vessels. In addition, A2AAR is expressed on both pre-
and postsynaptic neurons—astrocytes, microglia, and oli-
godendrocytes—where it orchestrates a number of func-
tions related to excitotoxicity, spanning neuronal gluta-
mate release, glial reactivity, blood-brain barrier (BBB) per-
meability, and peripheral immune cell migration. In the
peripheral immune system, A2AARs are particularly greatly
expressed in leukocytes, platelets, and the vasculature,
where they mediate numerous anti-inflammatory, antiag-
gregatory, and vasodilatory effects, respectively (79a).

In the brain, A2AARs are associated with the activation of a
particular neuron-specific type of Gs protein known as Golf,
which is also linked to AC (206). cAMP-dependent PKA is
the most common effector raised by A2AAR activation; this
phosphorylates and activates numerous proteins, including
receptors, phosphodiesterases, cAMP-responsive element-
binding protein (CREB), and dopamine- and cAMP-regu-
lated phosphoprotein (DARPP-32) (318). In the rat tail ar-
tery, the A2AAR facilitates the release of norepinephrine
through activation of both PKC and PKA (118).

Finally, several literature reports on different cellular mod-
els suggest that A2AAR is involved in the modulation of
MAPK signaling (26, 56). A2AAR may also interact with
different accessory proteins, D2-dopamine receptors, �-ac-
tinin, ADP-ribosylation factor nucleotide site opener
(ARNO), ubiquitin-specific protease (USP4), and translin-
associated protein X (TRAX) through its long COOH ter-
minus, which would explain the contrasting results found in
terms of A2AAR-mediated effects (26) (FIGURE 6).

The A2BAR is greatly expressed essentially in the periphery,
where they are found in the bowel, bladder, lung, vas defer-
ens, and different cell types including fibroblasts, smooth
muscle, endothelial, immune, alveolar epithelial, chromaf-
fin, taste cells, and platelets. At the central level they are

found in astrocytes, neurons, and microglia (100, 203,
307), and increasing evidence indicates a role for this sub-
type in the modulation of inflammation and immune re-
sponses in selected pathologies like cancer, diabetes, as well
as renal, lung, and vascular diseases. This contrasts previ-
ously held assumptions attributing poor physiological rele-
vance to A2BAR, due to its low affinity for adenosine in
comparison with the other ARs (380). In support of a path-
ological role for A2BAR, its expression is upregulated in
different injurious conditions such as hypoxia, inflamma-
tion, and cell stress. In fact, a hypoxia-responsive region,
which includes a functional binding site for hypoxia-induc-
ible factor (HIF), has been detected within the A2BAR pro-
moter, explaining its transcriptional regulation from HIF-1,
the master regulator of cellular responses to hypoxia (94,
197).

A2BAR signaling pathways involve AC activation through
Gs proteins, leading to PKA phosphorylation and enroll-
ment of different cAMP-dependent effectors like exchange
proteins, which are directly activated by cAMP (Epac). In-
terestingly, a role for A2BARs in enhancing gap junction
coupling through the cAMP pathway has been observed in
cerebral microvascular endothelial cells (20). In addition,
A2BARs can stimulate PLC through the Gq protein, result-
ing in Ca2� mobilization, and can regulate ion channels
through their �� subunits. Moreover, this subtype acts as
stimulator of MAPK activation in several cell models in
both central and peripheral systems (380) (FIGURE 7).

In addition, A2BARs have multiple binding partners that
modulate A2BAR responses and functions; these include
netrin-1, E3KARPP-EZRIN-PKA, SNARE, NF-�B1/
P105, and �-actinin-1. Netrin-1, the neuronal guidance
molecule, induced during hypoxia, reduces inflammation
by activating A2BAR, which inhibit neutrophils migra-
tion (333). SNARE protein interacting with A2BAR,
mostly that located inside the cell, recruits the receptor to
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the plasma membrane following agonist binding (417).
After this interaction, a multiprotein complex with
E3KARP (NHERF2) and ezrin stabilizes A2BAR in the
plasma membrane (364). Interestingly, binding of A2BAR
to P105 inhibits NF-�B activity, thereby explaining its
anti-inflammatory effects (379). Furthermore, �-ac-
tinin-1 might favor A2AAR and A2BAR dimerization,
thus inducing A2BAR expression on the cell surface
(277).

V. ADENOSINE RECEPTORS AND
PATHOLOGICAL ASPECTS IN

A. Neurological Diseases

The role of adenosine in diseases affecting the nervous sys-
tem is related to its influence on a range of mediators in-
cluding channels, receptors, second messengers, and neu-
rotransmitters, through activation of ARs. While all the
four ARs subtypes are present in the brain, the cerebral
effects of adenosine are mainly mediated by A1AR and
A2AAR, the subtypes predominantly expressed in the brain.

1. A1AR

The A1AR subtype is widely and homogeneously distrib-
uted in the brain, mainly in excitatory synapses, and plays
an important role in the control of physiological synaptic
transmission. In particular, A1AR activation depresses ex-
citatory transmission through N-type calcium-channel in-
hibition and neuronal hyperpolarization by regulation of
potassium current (146, 427). This causes a reduction in
glutamate release and inhibition of NMDA effects, which
maintains an A1ARs-dependent inhibitory tonus in the
brain (414a, 414b, 444), an effect that is beneficial in sev-
eral central disease states, including epilepsy, pain, and ce-
rebral ischemia (37). At this proposal, adenosine is recog-
nized as an endogenous anticonvulsant molecule, able to

reduce the frequency of action potentials induced by elec-
trical stimulation through enrollment of overexpressed
A1ARs (148). Several studies have reported protection
against seizures resulting from an increase in adenosine lev-
els produced by a ketogenic diet, which apparently inhibits
adenosine kinase (ADK) (244). It seems that this effect may
also be related to adenosine interfering with the S-adenosyl
methionine (SAM)-induced DNA methylation pathway—
involved in epileptogenesis—as a result of ADK reduction,
adenosine increase, SAH accumulation, and SAM inhibi-
tion (234). These data constitute the rationale supporting
ADK inhibitors as therapeutic agents. However, although
these may increase adenosine and reverse such epigenetic
changes, their toxic side effects have not yet been overcome
(35). As an alternative, adenosine-based treatments have
been proposed. For example, adenosine delivery might find
a use either as a preventative treatment or following surgical
resection of an epileptogenic focus (420).

The neuroprotective effects of A1ARs have been studied in
several models of inflammatory and neuropathic pain, in
which A1AR agonists exhibited antinociceptive and/or an-
tihyperalgesic properties. A1AR activation reduces pain by
acting on spinal, supraspinal, and peripheral neurons as
well as in glial cells. The molecular pathways involved in
pain mitigation include the classical signaling mechanisms
described for A1AR-AC and PKA reduction; PLC induc-
tion; Ca2� and K� channel regulation; and ERK, CREB,
calmodulin kinase (CaMKII�) inhibition, as well as reduc-
tion of excitatory amino acid release (349). In addition, the
pathway involving the nitric oxide/cGMP/protein kinase
G/KATP channel has been demonstrated to be a molecular
effector of A1AR-mediated pain suppression, via the induc-
tion of nociceptive neuron hyperpolarization and inhibition
of microglia hyperactivation (185). However, as systemic
A1AR agonist administration may have central and cardio-
vascular side effects, several have failed in clinical trials.
Nonetheless, partial agonists or allosteric modulators could
represent a solution to this problem; indeed, allosteric en-
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hancers, acting only on the ternary complex constituted by
agonist-A1AR-G protein, have been shown to minimize side
effects in sites expressing A1AR, but not in those involved in
injury. Unfortunately, a trial of an allosteric modulator (2-
amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)-(4-chlo-
rophenyl)methanone (T62) in postherpetic neuralgia was
terminated (330), but more recently, a potent derivative of
T62, 2-amino-4-[(4-(phenyl)piperazin-1-yl)methyl]-5-(4-
fluorophenyl)thiophen-3-yl-(4-chlorophenyl)methanone
(TRR469), produced antinociception without motor effects
in models of acute and neuropathic pain under chronic
treatment (412). Interestingly, administration of an A1AR
agonist with endomorphin decreases mechanical and ther-
mal hyperalgesia, and A1AR/opioid blockade counteracts
the analgesic effects of electroacupuncture, a popular Chi-
nese clinical practice used for pain relief (224). Prompted by
the positive data obtained with TRR469 in pain models, its
anxiolytic activity has been investigated. Specifically, this
compound displayed an anxiolytic behavior similar to diaz-
epam, without sedative drawbacks and ethanol interaction
(408, 409). A1AR’s inhibitory effect on the release of glu-
tamate is fundamental for prevention/protection against
ischemic damage. However, A1AR only seems to be effec-
tive in the early hours after damage, and chronic stimula-
tion is responsible for the opposite effects. Indeed, a role for
A1AR has been retrieved during preconditioning—a state of
tissue protection by exposure to sublethal insults—
probably occurring through modulation of NMDA precon-
ditioning-mediated increase of glutamate uptake (65).

In view of their effect on glutamate release, A1AR selective
agonists or allosteric modulators have also been proposed
as antineurodegenerative agents (141). Interestingly, activa-
tion of A1AR has been reported to reduce intraocular pres-
sure (IOP) by increasing metalloproteinase-2 (MMP-2) se-
cretion. This effect results in the digestion of collagen type
IV, a main element of extracellular matrix in the trabecular
meshwork (TM), thus contributing to an increase in out-
flow facility at the TM and IOP reduction. It is relevant that
aqueous humor of patients affected by ocular hypertension
is characterized by higher levels of adenosine in comparison
with normotensive patients, thus suggesting a potential role
of adenosine in IOP control. Trabodenoson (INO-8875), a
very selective A1AR agonist entered in phase I/II clinical
trial, and at 500 �g, the highest dose tested, it showed a
good profile of safety, tolerability, and IOP-lowering effi-
cacy in patients with ocular hypertension or primary open-
angle glaucoma (210, 279). Now the compound is under
examination in a higher range of doses in phase III clinical
trials (229). Moderate hyperemia was the most recurrent
side effect, suggesting a promising pharmacological profile.

Overall, the therapeutic potential of A1AR mimetics has
been compromised by a series of obstacles that need to be
overcome. If we are, in fact, to obtain successful A1AR
agonists, for example, their cardiovascular side effects, re-

lated to atrioventricular block, need to be eliminated (306).
Another crucial point in this regard is the desensitization of
A1AR; this reduces the neuroprotective activity of A1AR
agonists, which could otherwise be administered after inju-
ries (173). This limits the time window for the potential
neuroprotection of A1AR-activating agents in ischemia, in-
flammation, excitotoxicity, and neurodegenerative dis-
eases, as the increase in adenosine concentrations occurring
in these pathological conditions can cause AR desensitiza-
tion and downregulation.

2. A2AAR

A2AARs are recognized as the main AR subtype located in
the striatum, where they colocalize with dopamine D2 re-
ceptors (D2R). This results in A2AAR/D2R heteromers with
a crucial role in the modulation of motor function (40, 46,
120). In fact, the observation that A2AAR activation de-
creases the binding affinity of D2R for agonists was the first
proof of concept for the use of A2AAR antagonists as novel
therapeutic agents in PD (100). Indeed, these drugs have
been demonstrated to improve motor function in numerous
PD animal models by reducing A2AAR’s inhibition of D2R
activity in GABAergic neurons of the striato-pallidal path-
way (123). High concentrations of A2AAR antagonists re-
duce D2R agonists’ affinity and function, as well as D2R
antagonists’ affinity, but these allosteric modulations disap-
pear following agonist and antagonist coadministration.

This behavior has been explained by demonstrating the ex-
istence of A2AAR/D2R heterotetramers—composed of
A2AAR and D2R homodimers—in which allosteric interac-
tions between an agonist or antagonist of A2AAR and an
agonist of D2R occur, depending on the quaternary struc-
ture of the A2AAR/D2R heteromer. This model is important
from a clinical point of view, as regards adaptation of the
application of A2AARs antagonists in the treatment of PD
(36).

Thus far, several molecules that block A2AARs have been
developed and brought to the clinical arena. Istradefylline is
the only such drug that has been approved, but only in
Japan, in combination with levodopa (L-DOPA), and is cur-
rently awaiting global approval following new clinical trials
performed by Kyowa Hakko Kirin. Indeed, the American
Food and Drug Administration has thus far not approved
this drug, due to its lack of efficacy with respect to L-DOPA.
Similarly, another A2AAR antagonist, Preladenant, did not
significantly decrease off-time in comparison with a pla-
cebo. However, it has been suggested that both of these
trials may have been compromised by study design or exe-
cution issues, as their positive controls also failed (154,
284).

Tozadenant, on the other hand, appears more promising,
and following positive results from phase IIb trials, a phase
III clinical study has begun into this A2AR antagonist (153).
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Furthermore, a functional link between A2AAR and �-sy-
nuclein (�-Syn) has recently been reported, which may open
new avenues. Indeed, A2AAR knockout (KO) mice pre-
vented �-Syn-induced toxicity (182), and �-Syn aggrega-
tion and associated toxicity were reduced by A2AAR block-
ade, suggesting a strong relationship between these two
proteins, which are both harmful in PD (103). More exten-
sively, the involvement of aberrant A2AAR signaling has
been found in the pathogenesis of synucleinopathy, as its
genetic deletion reduces hippocampal pathological �-Syn
aggregation (163).

A2AAR is widely distributed in synapses, where it plays an
important role in synaptic plasticity, facilitating glutamate
release and potentiating NMDA receptor effects. Indeed, in
presynaptic A2A/A1AR heteromers, A2AAR regulates the
A1-induced inhibition of glutamate transmission, modulat-
ing corticostriatal glutamate levels in a timely fashion. In
addition, A2AARs inhibit the glutamate uptake transporter
GLT-1 and stimulate glutamate release in astrocytes. There-
fore, A2AARs in neurons and glia are also significant in the
pathogenesis of neuropsychiatric illnesses such as major
depression and schizophrenia (205, 437). Indeed, in rodent
depression models of learned helplessness (LH), A2AAR an-
tagonists improved escape deficit in LH rats with a similar
efficacy to desipramine or fluoxetine, a tricyclic antidepres-
sant and a selective serotonin (5-HT) reuptake inhibitor,
respectively (438). Moreover, A2AARs may be a therapeutic
target in other neuronal diseases such as Alzheimer’s disease
(AD), Huntington’s disease (HD), epilepsy, acute and
chronic stress, and memory fear (73, 211, 362, 396). Inter-
estingly, A2AAR expression increases in the astrocytes of
both AD patients and aging mice expressing human amy-
loid precursor protein (hAPP). Furthermore, young and ag-
ing transgenic mice lacking A2AAR in astrocytes have an
increased long-term memory, an effect that has also been
observed in aging mice expressing hAPP (298). In addition,
by inhibiting glutamate uptake, A2AAR causes the synaptic
dysfunction and excitotoxic cell death that underlies many
neurodegenerative diseases; through its upregulation,
A2AAR also reduces amyloid-� A� (1–42) glutamate trans-
porters and uptake (245, 246).

A2AAR silencing improves spatial memory deficits and
long-term hippocampal depression induced by Tau pathol-
ogy, as well as normalizing the glutamate/GABA ratio in the
hippocampus, and providing a reduction in neuroinflam-
matory markers and Tau hyperphosphorylation (211). Ge-
netic silencing, as well as antagonism, in a mouse model of
AD, also reestablished long-term synaptic potentiation
(LTP) in CA3 pyramidal cells which had been blocked by
neuronal upregulated A2AAR activation (407). Overexpres-
sion of A2AARs has also been revealed in animal models of
HD, and A2AAR antagonists have been found to reverse
cognitive deficits in HD mice, presumably by controlling
long-term depression deregulation (223, 402).

A2AARs are promoters of proinflammatory functions in the
CNS (37, 194). In particular, they are involved in process
retraction by the microglia during neurodegeneration and
neuroinflammation, playing a role in the functional change
of microglia into an activated proinflammatory phenotype
(299). Accordingly, A2AARs induce microglia proliferation
(126, 140), and their antagonism prevents hippocampal
neuroinflammation (327), interleukin (IL)-1�-induced ex-
acerbation of neuronal toxicity (361) and retinal microglia
reactivity, providing protection to retinal neuronal cells
(239). Importantly, blockade of A2AARs has been shown to
confer neuroprotection against a broad spectrum of CNS
insults (73). Specifically, the effects mediated by A2AARs on
glutamate release, neuronal inflammation, and glial activa-
tion support a role for A2AARs in cerebral ischemia, in
which their blockade has been shown to induce neuropro-
tection (141). In contrast, A2AAR activation 2 days after
ischemic insult decreases infiltration of blood cells, ischemic
brain damage, and activation of glial cells, thereby improv-
ing neurological deficiency, measurable up to 7 days after
injury. These findings indicate a protective function of
A2AARs caused by peripheral immunosuppressive effects
that mitigate central inflammatory process (255). Indeed,
central A2AARs increase neurotrophic factor levels, includ-
ing nerve growth factor (NGF) from the microglia as well as
brain-derived neurotrophic factor (BDNF) from hippocam-
pal and cortical neurons. This may explain the neurological
protective effects of their activation (140, 353); it seems that
the protective effects induced by A2AAR antagonism, on the
other hand, occur 24 h after ischemia as a consequence of a
decreased excitotoxicity, while 7 days after ischemia this
protection is surmounted by a second phase of damage
induced by migration of blood cells causing neuroinflam-
mation (256).

In line with the neurotoxic and proinflammatory role of
A2AARs, it may be that caffeine, the most widely used drug
in the world, exerts its effects, at least in part, through
antagonism of A2AAR; this interaction could be responsible
for the numerous beneficial prophylactic effects of caffeine
against PD, AD, amyotrophic lateral sclerosis (ALS), atten-
tion deficit hyperactivity disorder (ADHD), brain injury,
incidence of suicide, depression, and stroke (73, 88, 212,
235, 433). Indeed, epidemiological studies have indicated
that caffeine offers protection against a range of different
neurodegenerative diseases, an effect that has been attrib-
uted to A2AAR antagonism in animal models of PD (19, 57,
334, 435). In addition, several studies have displayed a
protective effect of caffeine intake against cognitive impair-
ment in both humans and animals (76, 85). Indeed, A�
levels of brain and plasma decrease in AD transgenic mice
following consumption of caffeine, which also inhibits
memory deficits in beta-amyloid injected mice (47, 75).
Moreover, plasma caffeine levels in human subjects with
mild cognitive impairment (MCI) who later progressed to
dementia were lower than those whose MCI remained sta-
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ble, providing preliminary evidence for a link between high
caffeine levels and protection against dementia (47, 426).
Caffeine consumption has also been correlated with a re-
duction in the mood and memory dysfunction caused by
chronic stress, through modulation of neuronal A2AAR; it
also reverts performance deficits in rats after treatment with
reserpine (186, 271). In addition, administering caffeine to
helpless mice (HM), an animal model of depression, ap-
peared to restore memory deficits through upregulation of
functional hippocampal A2AAR. By regulating synaptic glu-
tamate release, it reverted the depletion of synaptic markers
in the hippocampus, without affecting helpless or anxiety
behavior (236).

3. A2BAR

There are fewer A2BARs expressed in the CNS and spinal
cord than there are on astrocytes, in which A2BAR expres-
sion is upregulated following lipopolysaccharide (LPS) and
hypoxic stimulation (133). In human astroglial cells,
A2BARs induce astrogliosis, and after short-term tumor ne-
crosis factor (TNF)-� treatment, undergo to desensitiza-
tion, a mechanism of cell defense (391). As for the role of
A2BARs in the brain, it has been reported that their block-
ade inhibits the inflammatory cascade and neuronal injury
following global cerebral ischemia by interfering with the
p38 pathway (145). It therefore appears that in this condi-
tion, mirroring the behavior of A2AARs, A2BAR signaling
may be harmful due to its action on brain cells. Whatever
the case, A2BARs may have a potential indirect role in hyp-
oxia/ischemia as a consequence of angiogenesis resulting
from increased endothelial cell functions (97, 307).

Other observations point towards a pronociceptive and
proinflammatory role for A2BARs in the periphery (349).
Recently, it has been shown in two different chronic pain
models that A2BARs on myeloid cells contribute to pain
perception by stimulating IL-6 receptor signaling and pro-
moting immune-neuronal interactions (164). Even more re-
cently, secretion of IL-6 and a consequent increase in cell
proliferation mediated by A2BARs and a pathway involving
p38 has been observed in microglial cells, suggesting that
this subtype may have a proinflammatory role (258). That
being said, an anti-inflammatory effect, linked to IL-10 pro-
duction and TNF-� inhibition, has also been provoked by
A2BAR activation (201, 264).

4. A3AR

Even though A3ARs in the brain are not as abundant as in
the periphery, these receptors are influential in several neu-
ronal diseases. In cerebral ischemia, for example, A3ARs
play an initial protective role in synergy with A1ARs by
inhibiting excitatory synaptic transmission. Once again,
however, longer activation raises excitotoxicity and the risk
of damage, possibly via the activation of PKC and conse-

quent calcium increase. This suggests that the protective or
deleterious role of A3ARs depends on the severity and du-
ration of the ischemic episode (257). In addition, plastic
changes in A3ARs may occur following prolonged stimula-
tion by either agonists or antagonists before and after isch-
emia/hypoxia with similar results (320). This counterintui-
tive response may be the result of rapid A3AR desensitiza-
tion occurring after sustained receptor activation by an
exogenous A3AR agonist and concomitant endogenous
adenosine, which is increased during ischemia (307).

Other evidence also supports a role of A3ARs in brain isch-
emia through immunomodulation. Specifically, A3ARs af-
fect glial functions by regulating cell migration and TNF-�
production in microglial cells (61, 217, 295). Furthermore,
it has been found that in astrocytes A3ARs decrease HIF-1
expression in both normoxic and hypoxic conditions,
thereby inhibiting proinflammatory genes including those
for inducible nitric oxide synthse and A2BAR. This suggests
an anti-inflammatory role of this AR subtype in the CNS
(133).

A3ARs involvement has also been investigated in pain con-
ditions, albeit with mixed results. Even though some stud-
ies, performed with nonselective ligands as well as KO mice,
have attributed them a pronociceptive function, several
other studies have suggested A3ARs as an antinociceptive
drug target (176, 350, 428). Indeed, A3ARs agonists show
beneficial effects in neuropathic pain models by their inhi-
bition of mechano-allodynia onset after chronic constric-
tion injury and by increasing the potency of classical anal-
gesic drugs including morphine and gabapentin (60, 225).
Importantly, the antinociceptive activity of these agents has
been evidenced in neuropathic pain induced by chemother-
apy in animal models of bone metastasis associated with
breast cancer (131, 175, 177, 404). As ongoing clinical
trials of A3AR agonists in other medical diseases are reveal-
ing an absence of side effects during their administration,
the recent discovery of their antinociceptive role is a highly
encouraging avenue of exploitation in drug development.

B. Cardiovascular Diseases

In the heart, adenosine is associated with regulatory func-
tions, including control of cardiac contractility and adren-
ergic responsiveness, impulse generation and conduction,
coronary vascular tone, and cardiac substrate utilization
(156). In particular, adenosine indirectly modifies cardiac
contractility via the modulation of adrenergic responses
and the inhibition of norepineprhine release from cardiac
nerves (89). It is well known that adenosine reduces heart
rate and impulse generation in supraventricular tissues and
the His-Purkinje system (90), but it also modifies vascular
tone and regulates vasculogenesis and angiogenesis by mod-
ulating vascular cell growth (2). In addition, adenosine may
also regulate glucose metabolism and fatty acid availability,
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an effect that has important consequences on myocardial
metabolism and responses to hypoxic or ischemic stress
(155).

1. A1ARs

A1AR expressed in smooth muscle cells and cardiomyocytes
in atria and ventricular tissues may be exploited by several
cardiovascular therapies for diseases like angina pectoris,
control of cardiac rhythm, and ischemic injury during acute
coronary syndrome or heart failure (44). Indeed, A1AR ac-
tivation regulates tissue transglutaminase activity in cyto-
protection, and in cardiomyocyte-like cell survival during
hypoxia-induced cell death (415). Moreover, several litera-
ture reports suggest that A1ARs mediate antiadrenergic ef-
fects via the inhibition of �-adrenoceptor-stimulated PKA
activation and Gs cycling (98). It has also been reported that
A1ARs may inhibit �-adrenergic signaling through PKC
and PLC activation, leading to the modulation of p38-
MAPK and HSP27 (99).

In ischemic heart tissue, an unexpected A1AR-mediated
positive inotropic response to adenosine has been observed
in atria from coronary heart disease patients; indeed, aden-
osine activity via A1ARs has for some time been associated
with a negative inotropic effect in human atrial prepara-
tions (127). Nevertheless, A1AR activation does mediate
negative chronotropic effects involving the inhibition of K�

and Ca2� currents, as well as the hyperpolarization-acti-
vated “funny” current (30).

It is well reported that A1ARs stimulate smooth muscle
proliferation and are involved in promoting stenosis, their
expression being increased in proximity to vascular stents;
in this context, they play a role in atherosclerosis and vas-
cular remodeling (96). Furthermore, several studies report
A1AR involvement in atrial fibrillation in infarct and coro-
nary artery bypass graft patients (442). The electrophysio-
logical action of A1ARs and their involvement in arrhyth-
mogenesis has led to the use of adenosine (Adenocard) as a
therapeutic agent for supraventricular tachycardia, and as
an “off-label” drug in electrophysiological diagnostics (32).
More selective A1AR agonists have been shown in clinical
trials to be efficacious type IV antiarrhythmics for su-
praventricular tachycardia and atrial fibrillation (314).

Nonetheless, the cardiovascular effects of A1ARs could be
associated with several side effects and receptor desensiti-
zation that may represent a potential impediment to the
chronic use of full agonists (331). That being said, the de-
velopment of partial A1AR agonists, low efficacy ligands
that elicit only a submaximal response, could be used to
trigger some of the physiological responses of receptor ac-
tivation inducing less A1AR desensitization than full ago-
nists, making them ideal for chronic treatment with broader
dose ranges (5). In fact, neladenoson, a prodrug of a partial
A1AR agonist, has recently demonstrated potential cardio-

protection without negative effects on heart rate, atrioven-
tricular conduction, or blood pressure in clinical trials
(254). A1ARs are also involved in myocardial tissue protec-
tion during ischemia-reperfusion (421), and the activation
of A1ARs exerts protective effects following ischemia-rep-
erfusion injury in both male and female hearts through an
increase in protein S-nitrosylation (358). Interestingly, the
postconditioning-dependent reduction in infarct size is
modulated via A1AR activation, and targeted deletion of
these receptors results in a loss of cardioprotective effects
(431).

In the ischemic myocardium, A1ARs are able to slow con-
duction via Gi protein activation (434), and A1AR stimula-
tion attenuates cardiac hypertrophy and prevents heart fail-
ure following adrenergic stimulation in both a rat neonatal
cardiac myocyte model and in mice (62, 321). Intriguingly,
recent research has revealed a threefold greater A1AR ex-
pression in the right atrium with respect to the left; this
suggests that the right atrium is more sensitive to repolar-
ization in response to adenosine than the left (221).

2. A2AARs

Some evidence suggests that A2AARs have a direct inotropic
effect and are able to counteract the antiadrenergic action of
A1AR activation (388). However, A2AARs are primarily
involved in coronary vascular control through their expres-
sion in the smooth muscle and endothelium, where they
induce vasodilation. The A2AAR-mediated coronary re-
sponse seems to involve PKA activation, and some studies
have indicated the participation of p38 MAPK and IP3 sig-
naling (1, 384). It has also been reported that adenosine
prompts the generation of large amounts of nitric oxide, a
well-known vasodilator, through A2AAR-mediated activa-
tion of endothelial nitric oxide synthase (326). Increased
A2AAR expression has been detected in a streptozotocin
mouse model of type 1 diabetes, resulting in augmented
coronary flow in the heart (209). Indeed, A2AAR activation
mediates a significant increase in coronary flow in isolated
mouse hearts, via a mechanism that is partially mediated by
Nox2-derived H2O2 (454).

The cardioprotective actions of A2AARs are primarily due
to their potent anti-inflammatory effects, and it has been
proposed that A2AAR stimulation results in cardioprotec-
tion by reducing neutrophil accumulation (181). Cardio-
protection is abolished in mice with CD4� T cells lacking
A2AAR (440), while A2AAR activation provided protection
against infarction in isolated myocardium by inhibiting
mast cell degranulation (332). Furthermore, an A2AAR ag-
onist has been recently shown to prevent the development
of cardiac dysfunction and cardiac remodeling in a dose-
dependent fashion following myocardial infarction in spon-
taneously hypertensive rats (74a). Increased A2AAR expres-
sion, on the other hand, has been associated with sponta-
neous calcium release from the sarcoplasmic reticulum in
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atrial fibrillation patients, and blocking A2AARs results in
calcium inhibition (226). Moreover, stimulation of A2AARs
in human atrial myocytes can induce beat-to-beat irregular-
ities in the calcium transient. This suggests a novel role for
A2AAR antagonists in atrial fibrillation: maintaining uni-
form beat-to-beat responses at higher beating frequencies
(273).

A2AARs could be also very important in atherosclerosis
onset and treatment, due to their role in inhibiting foam cell
formation. This effect seems to be related to the ability of
A2AAR to stimulate the expression of proteins involved in
reverse cholesterol transport (329). In particular, it has been
reported that A2AAR activation increases the expression
and function of cholesterol 27-hydroxylase, resulting in en-
hanced ABCA1-dependent cholesterol efflux (33). Never-
theless, despite several papers reporting the repression of
foam cell formation among isolated cells by A2AARs, their
deletion in apolipoprotein E-deficient mice inhibits the for-
mation of atherosclerotic lesions, suggesting a pro-athero-
genic role for A2AARs (416). That being said, upregulation
of A2AARs has also been reported in apolipoprotein E KO
mice, leading to speculation that they may represent a com-
pensatory mechanism for counteracting the compromised
endothelial function (450).

The beneficial actions of A2AARs include the inhibition of
neointimal formation following arterial injury (248).
A2AARs may also exert a protective function by switching
macrophages from inflammatory to angiogenic phenotypes
(144). Furthermore, in dermal microvascular endothelial
cells of human flaps, hypoxic postconditioning protects
against apoptosis induced by reoxygenation via activation
of A2AARs (48).

3. A2BARs

It has been reported that the activation of A2BARs inhibits
cardiac fibroblast proliferation, as well as vascular smooth
muscle cell growth and collagen synthesis (91, 92). Re-
cently, an A2BAR agonist has been shown to reduce trans-
forming growth factor (TGF)-�1- and angiotensin II-medi-
ated collagen synthesis in isolated neonatal rat cardiac
fibroblasts, suggesting that A2BAR activation has an antifi-
brotic effect (405). A role for A2BARs has also been pro-
posed in the inhibition of postinfarct remodeling, an action
that seems to involve modulation of caspase-1 activity
(389).

In fact, there is growing evidence regarding the cardiopro-
tective action of A2BARs. In particular, the cardioprotec-
tion exerted by A2BARs has been associated with the inhi-
bition of GSK-3� and the permeability transition pore
(430), whereas another report has suggested that A2BARs
lead to myocardial metabolic adaptations by inducing sta-
bilization of the circadian rhythm protein period 2 (Per2)
(93). Moreover, it has been reported that A2BARs cardio-

protection may be related to the modulation of TNF-� and
neutrophil function (192), and in vivo experiments have
implicated A2BARs in cardioprotection in ischemic pre- and
postconditioning (207, 315). In fact, a novel tissue-specific
approach has recently been used to indicate that A2BARs
exert different functions related to ischemic precondition-
ing and/or reperfusion in different tissues. In particular,
A2BAR is important for ischemic preconditioning-mediated
cardioprotection in vascular endothelial cells and cardiac
myocytes, while A2BAR signaling was critical in inflamma-
tory cells during ischemia/reperfusion (354).

Literature data suggest that A2BARs may also be beneficial
in atherosclerosis, reducing vascular injury. Indeed, the de-
letion of A2BARs in apolipoprotein E-deficient mice wors-
ens the atherosclerosis induced by a high-fat diet (203).
Furthermore, increased expression of A2BARs has been re-
ported in macrophages following interferon (IFN)-� and
arterial injury, resulting in the inhibition of macrophage
activation (429). In the same vein, a study performed in
A2BAR KO mice has suggested that, through the stimula-
tion of A2BAR, adenosine suppresses IFN-�-induced major
histocompatibility class II (MHC II) transcription activa-
tion and collagen transcription repression in mouse vascu-
lar smooth muscle cells by downregulating MHC II trans-
activator (436). More recently, it has been reported that
A2BAR signaling suppresses MHC II transactivator expres-
sion in human aortic smooth muscle cells by manipulating
the interaction between STAT1 and the epigenetic machin-
ery (432). Moreover, A2BAR activation under hypoxic con-
ditions promotes foam cell formation and induces an in-
crease in IL-8 secretion in an ERK 1/2, p38, and Akt kinase-
dependent fashion (258).

4. A3ARs

A considerable body of evidence shows that A3ARs limit
injury processes within myocardial tissue and mediate ben-
eficial anti-inflammatory actions during reperfusion (155).
In this regard, A3AR agonists could protect against post-
ischemic neutrophil-mediated injury and may be involved
in the regulation of bone marrow-derived cells (125). In this
context, the activation of A3ARs has been shown to induce
a biphasic hemodynamic response that is partially mediated
by A2AAR activation. Specifically, the cardioprotective ef-
fect of IB-MECA, a well-known A3AR agonist, has been
ascribed to the initial activation of A3AR followed by
A2AAR stimulation in bone marrow-derived cells (387). It
has been found that Cl�IB-MECA protects against cardio-
toxicity induced by doxorubicin through restoration of the
oxidant/antioxidant status and consequential reduction of
inflammatory responses and the resultant apoptotic signals
(124). Moreover, an A3AR agonist significantly reduces in-
farct size in both isolated perfused rat hearts and primary
rat cardiac myocytes subjected to ischemia/hypoxia and
reperfusion/reoxygenation by upregulating the status of
p-ERK1/2 and p-AKT. During the reoxygenation phase,
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A3AR stimulation significantly reduces apoptosis and ne-
crosis, indicating a role for the prosurvival signaling path-
ways that decrease caspase-3 activity (166).

It has been also reported that A3ARs stimulate the prolifer-
ation of human coronary smooth cells by the activation of
PLC and the induction of the transcriptions factors EGR2
and EGR3 (158), while others have reported that A3AR
activation induces coronary vasodilation, and that the ex-
pression of A3ARs in cardiovascular tissues is altered in
hypertension. In particular, a reduction of A3ARs has been
noted in hypertensive hearts, which is presumably associ-
ated with the limited vasodilator responses to A3AR ago-
nists observed in coronary vessels (159). Similarly, A3AR
expression has recently been detected in the renal microcir-
culation. Stimulation of these receptors led to dilation of a
preconstricted afferent arteriole by norepinephrine and re-
duced the vasoconstrictive effect of both A1AR activation
and angiotensin (ANG) II on the afferent arteriole (230).

C. Inflammatory and Autoimmune Diseases

1. A1AR

The role of A1ARs on immune cells is not univocal, as both
pro- and anti-inflammatory effects have been revealed, de-
pending on both the cell type and the pathological state
involved.

In multiple sclerosis (MS), for example, A1AR activation
seems to play a protective role, as A1AR-deficient mice pres-
ent exacerbated demyelination, axonal injury, and in-
creased reactivity of microglia/macrophages in comparison
to wild-type (WT) animals. Interestingly, reduction of
A1AR expression in microglia during experimental autoim-
mune encephalomyelitis (EAE) was followed by neuroin-
flammation, and EAE severity was reduced through caffeine
treatment and consequent increase in A1AR levels in the
microglia (394). Moreover, in endotoxemic mice and LPS-
activated macrophages, stimulation of A1ARs decreases
TNF-�, nitrite, and nitrate production (151).

Accordingly, several studies have also reported a protective
effect of A1AR activation in renal and hepatic ischemia/
reperfusion (I/R) injury (180, 189, 322, 398). A1AR-null
mice presented high creatinine levels and aggravated renal
histology, and prestimulation of A1ARs in WT mice de-
creased various inflammatory markers of renal inflamma-
tion, including myeloperoxidase activity, renal tubular neu-
trophil infiltration, ICAM-1, IL-1�, and TNF-�. This sug-
gests that preischemic stimulation of A1ARs exerts
protective effects versus renal I/R injury (216). Interest-
ingly, an allosteric enhancer of A1AR-induced strong renal
protection against I/R damage by decreasing inflammation,
necrosis, and apoptosis (305).

In contrast with the protective effects described above,
A1AR activation in leukocytes increases neutrophil che-
motaxis and endothelial adhesion, as recently confirmed
with ticagrelor, which potentiated neutrophil chemotaxis
and phagocytosis by increasing adenosine concentration
(10, 69, 70). Such A1AR-mediated effects have been thor-
oughly investigated in airway inflammation, in particular in
preclinical models of asthma (316). However, initial find-
ings reporting a reduction in bronchoconstriction with an
antisense oligonucleotide or following A1AR antagonist
treatment have not been confirmed in clinical trials per-
formed in patients with asthma (21, 52, 280). That being
said, antagonism of A1ARs has more recently been found to
block acute lung injury induced by infection with Yersinia
pestis. This suggests that it may be useful as an adjunctive
therapy for antibiotics in infections by this Gram-negative
bacillus (423, 424).

Furthermore, blockade of A1ARs may beneficially modu-
late glucose homeostasis by affecting oxidative stress and
immune cells effects (309). Specifically, A1AR-deficient
mice present a reduction in oxidative stress, IL-1�, IL-6,
TNF-�, and IL-12, and lesser infiltration of T cells in vis-
ceral adipose tissue. It may, therefore, offer protection
against age-dependent metabolic disorders such as glucose
intolerance, insulin resistance, and obesity (439). The hy-
pothesized mechanism behind this is inhibition of NOX
activity, which would be an important finding, considering
the increase of adenosine and A1AR expression induced by
oxidative stress (309).

2. A2AAR

As for the function of A2AARs in inflammation, this is par-
adoxical; it is proinflammatory in the CNS but coordinates
several anti-inflammatory signaling pathways in the periph-
eral system (37). In general, A2AAR stimulation reduces
neutrophils’ inflammatory functions and inhibits cytokine
production, T cell activation, eosinophil and monocyte se-
cretion, and mast cell migration (178). Indeed, mice lacking
A2AARs develop a more pronounced inflammatory re-
sponse, suggesting that it may play a role in regulation of
the immune response (297). In this context, A2AAR activa-
tion is involved in different inflammatory pathologies af-
fecting the brain, joints, bone, lung, kidney, and bowel (8).

In MS A2AAR is upregulated in the CNS tissue, but its
activation induces contrasting effects, depending on which
stage of the disease is underway. Specifically, the early phase
of EAE, a model for MS, is characterized by a peripheral
immune response that is inhibited by A2AAR activation, but
later on there is an involvement of CNS cells, in which
A2AAR activation is deleterious (168).

Methotrexate (MTX), the gold standard therapy for rheu-
matoid arthritis (RA), increases adenosine production, and
its efficacy is predicted by the ability of Treg cells to produce
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the nucleoside (55, 71, 150, 312). A2AAR activation delays
arthritis progression by hampering oxidative and nitrosa-
tive damage, and reducing levels of TNF-�, IL-1�, and IL-6
(247). Furthermore, mice with collagen-induced RA pres-
ent A2AAR upregulation in neutrophils and monocytes at
the arthritic knee joint, which is mirrored by an increase in
CD73 in the macrophages, neutrophils, and monocytes of
the synovial fluid. Hence, a phosphorylated class of selec-
tive prodrugs for A2AARs has been developed requesting
CD73 presence to be activated. These have been shown to
reduce joint inflammation through selective interaction
with A2AARs on immune cells, thereby escaping the cardio-
vascular side effects typical of systemic A2AAR agonist ad-
ministration (113). In a similar vein, adenosine is known to
play a role in the suppression of inflammatory bone resorp-
tion. In addition, MTX reduces bone degradation in RA
patients and mediates anti-inflammatory effects through
A2AARs (55, 250, 251), which inhibit osteoclast differenti-
ation and modulate bone regeneration by reducing NF-�B
activation (252, 253).

Through its generation from ATP by lung T cells and action
on overexpressed A2AARs, adenosine also inhibits inflam-
mation following acute lung injury (ALI) (119). As men-
tioned, A2AARs play a fundamental role in the suppressive
mechanism of regulatory T cells (Tregs). Accordingly, air-
way inflammation was significantly higher in Cd39(�/�)
mice in comparison to wild-type animals, which possess
Tregs with stronger A2AARs-dependent inhibitory effects
on airway inflammation (222). Furthermore, A2AAR acti-
vation during sensitization in response to initial allergen
exposure decreased lung T helper (Th1 and Th17) cell num-
bers, and enhanced Treg expansion in response to rechal-
lenge, suggesting an interesting idea that coadministration
of A2AARs agonists may increase the efficacy of immuno-
therapies used for allergic asthma and rhinitis prevention
(308). Indeed, a reciprocal inhibitory regulation between
miR-214 and A2AARs has been reported to increase proin-
flammatory TNF-� and IL-6 cytokines; blocking miR-214
and contemporaneously stimulating A2AARs exerts several
anti-inflammatory effects, rather than modulating just one
of them, as demonstrated by the inhibition of neutrophil
infiltration and coexpression of inflammatory cytokines
(448). Interestingly, however, in spite of several reports at-
tributing the inhibitory effect of adenosine on proinflam-
matory cytokines to A2AAR-dependent NF-�B inhibition
(233), novel findings suggest that the pathway involved is
instead the inhibition of MAPKs, through A2AARs-depen-
dent regulation of dual specific phosphatase 1, in macro-
phages (199). This lends weight to the idea that targeting
A2AARs may be a promising treatment for human inflam-
matory lung diseases, especially in those in which inflam-
mation is a strong component. Indeed, proinflammatory
stimuli mitigate their own effects by upregulating A2AARs
(6), and this observation has led to the development of
selective agonists; these, inhaled or administered intrana-

sally to avoid cardiovascular and systemic side effects such
as tachycardia and hypotension, are being clinically trialled
in asthma, allergic rhinitis, and chronic obstructive pulmo-
nary disease (COPD) therapies. Unfortunately, however,
the compounds Glaxo Wellcome GW328267X and Pfizer
UK432097 have been discontinued due to lack of efficacy
(178).

Nonetheless, through A2AAR activation, adenosine is an
important modulator of immune cell functions in renal in-
jury. The A2AAR is present on both renal and hematopoi-
etic cells and has a high level of expression in the glomeru-
lus, and it has been demonstrated that A2AARs on hemato-
poietic cells protect the kidney from ischemia reperfusion
injury (IRI) (79, 414). Moreover, the presence of A2AARs
on macrophages is important in kidney inflammation, as
recently demonstrated in A2AAR-deficient mice, in which a
lack of A2AAR increased inflammation; this led to glomer-
ular damage, suggesting that endogenous A2AARs on mac-
rophages are crucial for hampering progressive kidney fi-
brosis (393). In addition, adenosine produced by Treg has
demonstrated a protective effect in an animal model of kid-
ney IRI, an effect that was linked to the presence of CD73
and A2AARs on Treg (191). Furthermore, adenosine also
acts via A2AAR activation to prevent renal IRI by control-
ling dendritic cells; indeed, cells lacking A2AARs are more
sensitive to kidney damage (220).

Increasing attention has been paid towards adenosine-me-
diated modulation of gut functions, as well as its anti-in-
flammatory effects, in the pathogenesis of intestinal disor-
ders spanning inflammatory intestinal ischemia, irritable
bowel diseases (IBDs), postoperative ileus, diarrhea, dys-
motility, and abdominal pain (17). In this context, A2AAR
activation has been shown to decrease inflammation in the
intestinal mucosa due to reduced leukocyte infiltration and
cytokine production (294). A2AARs also reduced colonic
motility in a rat model of experimental colitis, and adeno-
sine deaminase inhibitors exert anti-inflammatory effects in
chronic colitis through the activation of both A2AARs and
A3ARs (14, 15); the effects of A2AAR signaling are due to
both lymphoid and nonlymphoid cell recruitment (208). In
addition, polydeoxyribonucleotide (PDRN), an A2AAR ag-
onist, has been shown to replace the structural integrity of
tissue in two experimental animal models of colitis, suggest-
ing that activation of this receptor subtype may be exploited
to develop new drugs for treating IBD (302).

Adenosine is also involved in several events that occur dur-
ing wound healing via A2AARs activation. These include
vasodilatation, angiogenesis, matrix production, and in-
flammation (150). Specifically, treatment with topical selec-
tive A2A agonists inhibits the inflammatory response, asso-
ciated with a large reduction in inflammatory cell infiltrate
and a decrease in LTB4 and CXCL-1 levels and TNF-�,
while promoting the growth of dermal fibroblasts (18, 130).
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A2AAR-dependent promotion of wound closure appears to
be due to raised tissue plasminogen activator (tPA) leading
to fibrin proteolysis (274). Interestingly, a clinical trial for
PDRN in diabetic foot ulcers showed its dramatic efficacy in
earlier ulcer closure, producing a significant reduction in
ulcer area (369, 370). Conversely, the use of an A2AAR
antagonist has been suggested to prevent irradiation-in-
duced dermal changes, such as fibrosis and atrophy (313).
Indeed, A2AAR stimulation increases the synthesis of colla-
gen type I and type III, essential mediators of fibrosis and
scarring, through pathways involving cAMP/PKA/p38-
MAPK/Akt and in the case of collagen III also involving
�-catenin (357). Importantly, antagonism of A2AAR blocks
the WNT/�-catenin signaling pathway, thus reducing der-
mal fibrosis in diseases such as scleroderma, hypertrophic
scarring, and keloid (447). It has been reported that A2AAR
and A2BAR subtypes are up- and downregulated, respec-
tively, in psoriatic epidermis; this leads to contrasting ef-
fects in keratinocyte proliferation, which is stimulated by
A2AARs and inhibited through A2BARs via modulation of
intracellular calcium increase and p38 phosphorylation, re-
spectively (11). In addition, A2AAR/A2BAR agonists have
also been shown to induce anti-inflammatory effects in this
condition. However, these do not appear to be due to AR-
mediated interaction. Future research will therefore need to
address the relevance of A2AAR agonists as anti-inflamma-
tories and/or A2AAR antagonists as antiproliferative agents
(265). Another possibility to exploit the anti-inflammatory
effect of A2AAR activation is by means of pulsed electro-
magnetic fields (PEMFs) exposure. Indeed, various litera-
ture data suggest that PEMFs are able to upregulate A2AAR
in different cells and tissues (400, 403, 411). In particular,
the augmented A2AAR density and functionality could ex-
plain the PEMFs-mediated reduction of proinflammatory
cytokines, inhibition of osteolysis and cartilage damage,
and chondroprotective effects (105).

3. A2BAR

Acting through A2BARs, adenosine has a complex role in
immune cells, producing either pro- or anti-inflammatory
effects depending on the organ affected and the signaling
involved. Nevertheless, A2BARs are expressed in almost all
immune cells and thereby affect a series of inflammatory
diseases, from MS, wound healing, fibrosis, asthma, and
COPD to colitis and diabetes (38). For instance, a role for
A2BAR antagonists in therapy for MS has been suggested,
following studies reporting that pharmacological A2BAR
blockade improved EAE symptoms and decreased CNS
damage, and that in A2BAR-KO mice this pathology was
less critical due Th17 cell differentiation block. Accord-
ingly, A2BAR worsens experimental autoimmune uveitis
(EAU) by increasing Th17 cell effects (58). Interestingly, an
overexpression of A2BARs has been observed in both the
peripheral leukocytes of MS patients and in mice bearing
EAE lymphoid tissues (343, 418).

Like A2AARs, A2BARs play an important role in wound
healing and remodeling processes. They enable the body to
limit potential infections and replace tissue integrity
through successive inflammation, neovascularization, neo-
epithelialization, scar formation, and remodeling, which of-
ten involve A2BAR activation. Indeed, A2BAR increases an-
giogenesis and remodeling in cardiac mesenchymal stromal
cells after myocardial injury by shifting them into myofibro-
blasts (340). Furthermore, A2BARs raise IL-6, IL-8, and
vascular endothelial growth factor (VEGF) proangiogenic
proteins in cardiac stromal cells, acting as a proangiogenic
factor in the injured heart (338, 342). In general, A2BARs
are well known to promote VEGF synthesis and angiogen-
esis in numerous cell types, including cardiac mesenchymal
stemlike cells (264, 338), retinal and skin endothelial cells,
mast cells, tumor-infiltrating hematopoietic cells, as well as
cancer cells, through the involvement of transcription fac-
tors like HIF-1 and JUN-B (129, 336). Interestingly, HIF-1
signaling associated with A2BARs has been observed in an
in vitro cellular model of foam cells, in which this transcrip-
tion factor was modulated by adenosine through A2BARs,
inducing ERK1/2, p38 MAPK, and Akt phosphorylation
and thereby increasing foam cell formation. Simultaneous
blockade of both A2BAR and A3AR has been shown to
reduce adenosine-stimulated foam cell formation, indicat-
ing that antagonists may be useful in the treatment of ath-
erosclerosis (129). Similarly, A2BAR blockers have been re-
ported to contrast fatty liver formation after alcohol inges-
tion in mice (311). However, subsequent studies report that
atherosclerosis induced by a high-fat diet was higher in the
absence of A2BAR in apolipoprotein E-deficient mice,
which showed increased levels of liver and plasma choles-
terol and triglycerides (204).

Interestingly, a head-to-head comparison of animals with
A2BAR knock-down in either the myeloid lineage, endothe-
lial cells, or alveolar epithelial cells has revealed that alveo-
lar epithelial A2BAR signaling is relevant for lung protec-
tion; that study also demonstrated that an aerosolized
A2BAR agonist attenuated lung inflammation (160). Ac-
cordingly, A2BAR involvement has been linked to the reduc-
tion of cell migration and microvascular permeability ob-
tained through CXCR4 and CXCR7 inhibition in an ani-
mal model of acute pulmonary inflammation (198). A2BAR
activation takes place in pathologies characterized by
chronic inflammation and fibrosis; these include asthma
and COPD, in which a role for antagonists has been hy-
pothesized (53). Specifically, A2BARs increase Th-17 differ-
entiation in chronic lung injury and facilitate differentiation
of alternatively activated macrophages, thereby contribut-
ing to pulmonary fibrosis (425). Interestingly, they are also
upregulated in the lung tissues of patients affected by this
pathology (356, 453). In asthma and COPD, on the other
hand, A2BARs increase cytokine production, stimulate eo-
sinophil degranulation, and regulate human mast cells’ IL-4
secretion, thereby increasing allergic inflammation (337,

BOREA ET AL.

1608 Physiol Rev • VOL 98 • JULY 2018 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (192.167.210.203) on July 25, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



341). Accordingly, a profibrotic role has been also observed
in the kidney, where A2BAR inhibition reduces renal hy-
poxic fibroblast growth, as well as profibrotic cytokine re-
lease, thereby hampering renal fibrosis development (383).
In addition, A2BAR activation leads to an increase in
inflammatory molecules, such as SMA-�, IL-6, TGF-�,
CTGF, and fibronectin, in renal fibroblasts (419).

In the colon, A2BARs is the most abundant adenosine re-
ceptor subtype. They modulate chloride secretion, fibronec-
tin, and IL-6 production in intestinal epithelial cells, and
interestingly, A2BARs are upregulated in colitis, in which
contrasting results concerning their function have been re-
ported (195). For example, A2BARs are known to play an
important role in reducing mucosal inflammation, as dem-
onstrated by animal studies in which knock-down of the
receptor increases the severity of colitis due to intestinal
epithelial barrier function failure. Specifically, A2BAR sig-
naling in epithelial cells is pivotal for reducing colonic in-
flammation by determining phosphorylation of a vasodila-
tor-stimulated phosphoprotein (4). In contrast, however,
clinical aspects, histological outcomes, and myeloperoxi-
dase activity were less pronounced in A2BAR-deficient mice
affected by colitis (196), and subsequent studies have dem-
onstrated that A2BARs on nonimmune cells are crucial for
colitis insurgence (167).

The role of A2BAR in glucose homeostasis is also contro-
versial. Earlier studies showed that A2BAR blockers had
hypoglycemic effects in animal models of adenosine-medi-
ated hepatic glucose production (147). Accordingly, A2BAR
stimulation increased rat liver glucose levels by acting on
glycogenolysis and gluconeogenesis (441). Furthermore,
A2BAR antagonists improved insulin resistance by reducing
IL-6 and other cytokines involved in glucose and fat metab-
olism in diabetic mice, and also reduced caspase-1 activa-
tion in rat retinal cells (104, 392, 413). However, some
papers have suggested A2BAR agonists as therapeutic
agents for diabetes, on the basis of a link between A2BAR,
insulin receptor substrate 2 (IRS-2), and insulin pathways,
as well as Akt phosphorylation (179).

4. A3AR

A3AR is a crucial player in terms of the modulatory effects
mediated by adenosine on inflammation and is widely dis-
tributed in immune cells (16, 131, 150, 172). Unsurpris-
ingly, therefore, a role for A3AR in infections has been
suggested; indeed, a reduction in neutrophil recruitment to
the lung and peritoneum has been reported in A3AR-KO
mice affected by sepsis (169). In this context, it has been
shown that A3AR is localized in a polarized manner on the
leading edge of neutrophil cell membranes, whereby it in-
duces chemotaxis and migration. In more detail, ATP and
adenosine cooperate to trigger and quicken pathogen-in-
duced chemotaxis and migration through P2Y2 and A3AR
activation (45, 59, 66, 215). Interestingly, A3AR also mod-

ulates cytoskeletal remodeling following its aggregation
into plaquelike microdomains and helps neutrophils to cap-
ture pathogens by inducing membrane protrusions termed
cytonemes (67). Nevertheless, it has been reported that
A3AR inhibits neutrophil chemotaxis and oxidative burst
(41, 137, 398a). On a related note, it has very recently been
reported that adenosine induces hypothermia through
A3AR activation; it leads to a drop in total energy expendi-
ture, physical inactivity, and preference for cooler environ-
mental temperatures by stimulating histamine release, act-
ing on central H1 receptors on peripheral mast cells by way
of A3AR. This is particularly noteworthy because hypother-
mia can help to reduce inflammation, and in particular the
cytokine increase provoked by sepsis (49, 50).

In pathologies characterized by autoimmune inflammation,
on the other hand, A3AR may represent a new biological
predictive marker. Specifically, it is upregulated in the pe-
ripheral blood mononuclear cells (PBMCs) of patients with
RA, Crohn’s disease, and psoriasis. This is due to a TNF-�
increase and upregulation in the related A3AR transcription
factors NF-�B and CREB (293). In lymphocytes obtained
from RA patients, A3ARs decreased NF-�B signaling, as
well as the production of inflammatory cytokines and ma-
trix metalloproteinases. Interestingly, their level of expres-
sion was inversely related to the DAS28 and DAS scores
used to evaluate disease activity in RA (401). Accordingly,
A3AR stimulation in arthritis rat models prevents cartilage
injury, osteoclast/osteophyte generation, bone damage, and
lymphocyte pannus production (24, 325).

The signaling pathway of the anti-inflammatory effect of
A3AR in RA patients involves NF-�B and TNF-� in the
synoviocytes (292). In fact, results from in vitro and in vivo
studies have already prompted the launch of A3AR agonists
in clinical trials for the therapy of different inflammatory
diseases. These compounds have been shown to be safe and
well tolerated in preclinical and human studies, and specif-
ically, the agonist IB-MECA (Piclidenoson, CF101) has
been tested in phase II trials on RA patients (phase II,
NCT00280917; phase II, NCT01034306; phase II,
NCT00556894), in whom it displayed a significant anti-
rheumatic action. Remarkably, basal receptor expression
correlated with the patients’ reaction to the drug, suggesting
that A3AR may be a biological marker for prognosticating
patients’ response to CF101 (112). In addition, CF101 was
efficacious in clinical trials on plaque psoriasis (phase II,
NCT00428974; phase II/III, NCT01265667) (77, 78),
where it showed a better profile than the PDE4 inhibitor
apremilast (Otezla). Moreover, its optimum safety profile
makes it a promising drug for chronic psoriasis therapy. In
contrast, however, CF101 did not showed efficacy in trials
for ocular hypertension (NCT01033422) and dry eye dis-
ease (phase II, NCT00349466; phase III, NCT01235234)
and, in combination with methotrexate (NCT00280917),
for RA. That being said, new trials in RA (phase III,
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NCT02647762) and osteoarthritis of the knee (phase II,
NCT00837291) are in the planning stages.

Several studies in the literature support a role for A3AR in
asthma due to its expression in mast cells. Specifically, ear-
lier works ascribed A3AR a crucial role in rodent mast cell
activation and degranulation, and more recently, this effect
has been demonstrated in both primary human and LAD2
mast cells (142, 219, 323, 328, 346, 368, 449). Interest-
ingly, a disparity in adenosine-dependent degranulation has
been revealed in primary human mast cells from lung and
skin, which may explain the allergic response induced by
adenosine in the lung but not in the skin (142). Due to its
potentiating effect on Fc�RI-induced degranulation, A3AR
is also involved in bronchoconstriction induced by adeno-
sine in asthmatics. Indeed, in asthma, A3AR stimulation in
human mast cells raised the levels of a series of proinflam-
matory mediators, including IL-8, IL-6, VEGF, amphiregu-
lin, and osteopontin (304, 452). In addition, A3AR activa-
tion reduced its own expression, thereby inducing suppres-
sion of its basal inhibition on cytokine production (335).

Adenosine also modulates monocyte-macrophage func-
tions through A3AR, which is responsible for both inflam-
matory mediator production and healing. For example,
A3AR stimulation inhibits the respiratory burst, IL-1�,
TNF-�, chemokine macrophage inflammatory protein
(MIP) 1�, interferon regulatory factor 1, inducible nitric
oxide synthase, and CD36 gene expression (27, 42, 217,
249, 344, 363, 386), but adenosine reduced the expression
of adhesion molecules on monocytes and decreased cyto-
kine production, effects that were potentiated by an A3AR
antagonist (381). In addition, A3AR stimulation increases
TNF-� production in activated macrophages (114).

A functional A3AR is expressed in dendritic cells, antigen-
presenting entities that activate naive T lymphocytes and
trigger primary immune responses (135, 200). In particular,
the A3AR in the immature human dendritic cells has been
found to induce elevated Ca2� levels, actin polymerization,
and chemotaxis, while in mature dendritic cells, the A3AR is
downregulated and decreases TNF-� release (87, 303).

D. Cancer

1. A1AR

Several studies have evaluated the effects of A1AR activa-
tion in cancer, but its role remains difficult to pin down.
Data are mostly derived from old studies, often performed
with nonselective ligands, and both pro- and antitumoral
effects have been reported (132, 187). Specifically, antipro-
liferative effects have been observed in colon cancer, breast
cancer, glioblastoma, and leukemia cells. In addition, pro-
apoptotic effects, through an increase in caspase activity,
have been reported in astrocytoma and colon cancer cells.

In line with these data, A1AR has displayed a crucial role in
reducing glioblastoma proliferation and increasing chemo-
therapy sensitization by stimulating cell apoptosis (76).
However, it also displays protumoral effects due to an in-
crease in melanoma chemotaxis and breast proliferation, as
well as P27 reduction in cervical carcinoma cells. Further-
more, recent data have demonstrated significantly raised
VEGF R2-dependent angiogenesis through stimulation of
A1AR in an animal model of melanoma (202).

2. A2AAR and A2BAR

Adenosine is an important regulator of several aspects of
tumorigenesis—spanning angiogenesis, tumor cell growth,
and metastasis—affecting immune system cells, like T and
natural killer, myeloid-derived suppressor and dendritic
cells, as well as macrophages, tumor and endothelial cells,
where both A2ARs subtypes are involved (7, 13, 296).
Adenosine concentration is significantly increased in hy-
poxic tumors due to hypoxia-dependent CD73 overexpres-
sion and AK downregulation (296).

Interestingly, CD73 expression is associated with poor
prognosis in leukemia, brain, breast, ovarian, and prostate
tumors (12, 16, 38, 131, 214, 227, 355, 395). Specifically,
silencing or inhibition of CD73 reduced cell growth of mel-
anoma, breast, prostate, and fibrosarcoma tumors (371–
373, 385). The antitumoral effect of CD73 can be explained
by the effects of adenosine in immune cells and represents
one of the first pieces of evidence on the involvement of this
nucleoside in cancer. Indeed, it is well recognized that im-
mune cells are important in the fight against cancer and that
adenosine, which is increased in hypoxic tumors, is able to
impair cytolytic effector immune cell recognition of cancer
cells, suppress �4�7 integrin-dependent adhesion of T lym-
phocytes to colon adenocarcinoma cells, and reduce the
expression of CD2 and CD28 on T cells (34, 45, 238).

Several studies have been performed to identify the receptor
subtypes mediating these effects. At first, adenosine reduc-
tion of anti-CD3-activated killer lymphocyte adhesion to
colon adenocarcinoma cells was attributed to A3AR activa-
tion (237). However, subsequent studies found that, in-
stead, A2AAR activation was implicated in the ability of
adenosine to stimulate cAMP and inhibited lymphokine-
activated killer (LAK) cell destruction of cancer cells (324).
However, a huge number of studies have reported that
adenosine via A2AAR is also involved in stimulation of Treg
responses and induction of T cell anergy, as well as inhibi-
tion of natural killer (NK) activity, thereby promoting tu-
mor escape from the immune system and metastasis (80,
242, 243, 365, 366, 446). Therefore, A2AAR antagonists
may be useful in novel approaches for increasing the im-
mune response against cancer, by interfering with adenos-
ine-mediated immunosuppression in tumors; indeed, phase
I clinical trials to investigate their effects on the immune
system have already begun (29).
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These molecules have the advantage that they have been
already tested in human clinical trials for PD, where they
showed a lack of toxicity. However, novel molecules tar-
geting A2AAR for cancer that are unable to cross the BBB
must be developed to obviate neurological side effects
(152). This aim of this promising line of research will be
able to take advantage of the new knowledge acquired on
A2AAR molecular structure (51, 178, 443), and reports that
a double blockade of both CD73 and A2AAR powerfully
limits cancer growth and metastasis (8, 9, 445).

A2BAR has also been implicated in tumor development.
Initially, this receptor was considered a “bad copy” of
A2AAR, due to its low adenosine affinity. However, it has
more recently been discovered that its expression is signifi-
cantly increased by HIF-1�, indicating its involvement in
cancer promotion (197). Indeed, recent findings on several
aspects of tumorigenesis suggest that it may be not pleonas-
tic towards A2AAR.

In general, by stimulating cAMP, A2BAR, like A2AAR, in-
duces depression of immune responses, promoting immu-
noescape (28). Its protumoral effect has been observed in
the stimulation of myeloid-derived suppressor cells, as well
as in the activation of M2 macrophages—crucial for angio-
genesis, proliferation, and metastasis—but not on NK cell
functions (28, 72, 339). In addition, stimulation of A2BAR
induces development of an anomalous phenotype of proan-
giogenic dendritic cells (290); suppresses RAS-related pro-
tein 1 (RAP1) prenylation, important in cell-cell adhesion;
and increases the Fra-1 component of activator protein 1
(AP-1) transcription factor, relevant for cell proliferation,
motility, and invasiveness, thereby promoting cell scatter-
ing (82, 291). Accordingly, A2BAR activation has been
shown to increase experimental and spontaneous metasta-
sis in cancer mouse models, and to worsen the efficacy of
classical chemotherapy drugs. This mechanism does not
appear to involve NK or the myeloid-dependent pathway,
but instead drives cancer metastasis through a reduction of
cell adhesion and MAPK-dependent signaling activation
(272). Thus far, stimulation of metastasis through A2BAR
has been reported in melanoma, ovarian, blood, and breast
carcinomas (28, 54). It has also been recently reported that
bladder urothelial carcinoma (BUC) expresses high levels of
A2BAR, which is associated with poor prognosis of patients.
Accordingly, inhibition of A2BAR decreased the prolifera-
tion, migration, and invasion of BUC cells and blocked the
cell cycle at the G1 phase (451).

3. A3AR

Adenosine exerts antitumoral effects by acting directly on
neoplastic cells, essentially through A3AR, which is greatly
expressed in several tumors from lymphoma, astrocytoma,
glioblastoma, melanoma, and sarcoma, to thyroid, lung,
breast, colon, liver, pancreas, prostate, and renal carcino-
mas (25, 64, 128, 134, 136, 138, 162, 174, 183, 184, 193,

240, 241, 266, 268, 269, 276, 278, 281, 289, 300, 345,
376, 399, 410). Interestingly, A3AR upregulation in human
colorectal and hepatocellular carcinomas is reflected in the
PBMCs. These, by mirroring receptor status in remote tu-
mor tissue, may make A3ARs useful tumor markers (25,
128, 240).

The role of A3AR has been investigated in different types of
cancer cells, with contrasting results attesting both pro- and
antiproliferative effects, as well as modification of cell mi-
gration and apoptosis (3, 74, 132, 134, 136, 171, 174, 188,
228, 260, 267, 276, 282, 382, 399). Intriguingly, initial
studies reported the lack of occurrence of tumor metastases
in striated muscles, and it has also been found that muscle
cells secrete adenosine and endogenous A3AR agonists,
which would explain the anti-cancer and chemoprotective
activity of muscle-conditioned media. This finding, in addi-
tion to explaining the rarity of tumor metastases in muscle,
may suggest proof of concept for the development of A3AR
agonists as anti-cancer drugs (23, 111). Moreover, A3AR
has been shown to reduce telomerase activity and produce
cytostatic effects in tumor cells (106, 107, 109, 110). In-
deed, the therapeutic efficacy of orally administered A3AR
agonists IB-MECA and Cl�IB-MECA has already been
demonstrated through in vivo experimental animal studies,
including syngeneic, xenograft, orthotopic, and metastatic
models of colon, prostate, melanoma, and hepatocellular
carcinomas. These drugs reduced cell proliferation and en-
hanced the effect of cyclophosphamide in syngeneic and
lung metastatic models of murine melanoma (107). It is also
interesting to note that A3AR agonist administration re-
duced in vivo growth of melanoma cells by increasing IL-12
and the cytotoxic effects of mouse NK cells (149). Further-
more, ex vivo A3AR stimulation in CD8� T cells amelio-
rated immunotherapy of melanoma (275). IB-MECA has
also been shown to reduce cancer growth and potentiate the
chemotherapeutic effect of 5-fluorouracil and taxol in colon
and prostate xenograft models. Furthermore, Cl�IB-MECA
blocks the development of hepatocellular cancer, liver in-
flammation, and pain in breast tumor-derived bone metas-
tases (25, 64, 107, 404).

That being said, contrasting results on the behavior of
A3AR in tumor development that support the utility of
A3AR antagonists in cancer treatment have also been re-
ported. Specifically, A3AR appears to promote HIF-1� ac-
cumulation in melanoma, glioblastoma, and colon carci-
noma cell lines, leading to an increase in angiogenic factors
(259, 261, 262). This has been confirmed in animal models
of melanoma, in which A3AR activation enhanced mi-
crovessel density, proangiogenic molecules, cytokine pro-
duction, and macrophage tumor infiltration (202). Further-
more, A3AR increases MMP-9 production and activity, re-
sulting in an increase of cell invasion in glioblastoma, as
previously shown in macrophages (136, 406). Moreover,
an increase in MRP1 expression via A3AR activation in
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glioblastoma cells has been blocked by A3AR antagonist
administration, which increased the antitumoral effect of
the chemotherapy drug vincristine (390).

Even though both agonists and antagonists have been stud-
ied at the preclinical level, only A3AR agonists, in particular
Cl�IB-MECA (Namodenoson, CF102), have progressed to
clinical trials for advanced hepatocellular carcinoma treat-
ment. Phase I and phase II (NCT00790218) clinical trials
have thus far shown that the agonist is safe, well tolerated,
and able to increase a median overall survival by 7.8 mo in
patients, a subset of whom were given CF102 as second-line
therapy, due to disease progression under sorafenib (374).
A global phase II trial in this patient population is currently
underway, and other trials are planned for CF102 in hepa-
tocellular carcinoma treatment (phase II, NCT02128958).

VI. DISCUSSION AND PERSPECTIVES

Adenosine is an endogenous modulator with several poten-
tial therapeutic applications, due to its ubiquitous presence
and ability to interact with major physiological processes.
In the CNS, for example, activation of A1ARs could be
beneficial in different pathologies such as epilepsy and
acute, chronic, and neuropathic pain. Furthermore, al-
though data regarding the role of A3ARs in cerebral isch-
emia are controversial, the inhibitory effect of A1ARs on
glutamate release is fundamental for protection from isch-
emic damage. Moreover, A2AAR antagonists are promising
therapeutic agents for PD, due to their interaction with
D2R. Indeed, istradefylline has been approved in combina-
tion with levodopa and is commercially available in Japan.
Other therapeutic targets for A2AAR in the CNS include
AD, HD, epilepsy, acute and chronic stress, and fear mem-
ory. Interestingly, caffeine, the most widely drug used in the
world, seems to be protective in a number of neurological
and psychiatric pathologies that involve ARs.

In the cardiovascular system, on the other hand, adenosine
via A1ARs is already commercially available as Adenocard,
a therapeutic agent for supraventricular tachycardia. Par-
tial agonists of A1ARs are also undergoing clinical trials
designed to assess their cardioprotective action and lack of
side effects. As for A2AARs, these are primarily involved in
vasodilation, through their expression in smooth muscle
and endothelial cells, while A2BARs and A3ARs have ther-
apeutic potential in the heart, for cardiac fibrosis and in-
farct, respectively.

In addition, evidence from several sources indicates that
adenosine and its receptors are promising targets for cancer
therapy. In particular, A2AAR antagonists may represent a
novel approach to increasing the immune response against
tumors by counteracting adenosine-mediated immunosup-
pression, especially in hypoxic conditions, in which the con-
centration of adenosine rises dramatically. Moreover, an

antitumoral effect of adenosine has been attributed to the
activation of A3ARs acting directly on cancer cells. Indeed,
the A3AR agonist CF102 is showing promise in clinical
trials for advanced hepatocellular carcinoma.

In the peripheral system, the majority of the anti-inflamma-
tory and immunosuppressive effects of adenosine are medi-
ated by A2AAR and A3AR subtypes. For this reason, A2AAR
and A3AR agonists could represent interesting novel phar-
macological agents for the treatment of inflammation-based
and autoimmune diseases. In this regard, several clinical
trials have demonstrated the efficacy and tolerability of the
A3AR agonist CF101, and new trials are planned for RA
and psoriasis.

Overall, the extensive studies performed in the adenosiner-
gic field reveal adenosine and its receptors as outstanding
pharmacological targets for the future development of
novel drugs with many potential therapeutic applications in
human pathologies.
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