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Abstract

This thesis is mainly devoted to the description of modelling techniques for integrated optical

devices. In recent years we assisted to a renewed interest in this field (also known as pho-

tonics), since also electronic industry have started to work on these topics in order to, e.g.,

improve chip to chip communications by means of optical interconnects. This solution needs

to develop integrated sources, waveguides, and processing devices. Moreover, since silicon is

primarily used in CMOS technology, it would be convenient to implement photonic systems

on silicon: this is generally easily used for passive devices (waveguides, taper. . . ), but several

fundamental breakthroughs have been obtained in recent years, that prove active features

can be brought to this material.

Several design principles and applications are available in integrated optics: in the last

years periodic structures and resonators have been thoroughly investigated. Moreover in

integrated devices many interesting physical effects can be studied.

Our work is focused on two topics:

• nonlinear optics, specifically spatial soliton propagation;

• microresonators.

Spatial solitons arise from perfect compensation of diffraction and nonlinear focusing.

We described how it is possible to achieve trapping in arrays of evanescently-coupled waveg-

uides. As in any periodic systems we have angles corresponding to Bragg reflection, i.e. a

band-diagram is used to describe diffraction characteristics, where evanescent wavenumbers

correspond to total reflection. By dynamically inducing arrays in photorefractive media, it

is possible to implement dynamic routing functionalities. It is possible to have solutions

that compensate diffraction at a specific angle, but also nonlinearity could enable to find

propagating waves at forbidden longitudinal wavenumbers, i.e. lying inside the band-gap.

We prove that the usual CMT modelling of Kerr solitons, that looks for two envelopes

propagating in the proximity of Bragg angle, can be compared with a numerical solution of

paraxial wave-equation. We obtain that for index contrasts used in experiments these two

approaches give comparable results, except a slight discrepancy at the lower edge of gap. An

own implementation of nonlinear BPM is used to further verify this properties.

Also solutions arising in quadratic media are studied and the effect on phase-mismatch

at different positions inside gap are shown. In fact at phase-matching, FF and SH can be

excited at the same angles, that correspond to first order and second order Bragg reflection,

respectively.
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x ABSTRACT

The second topic is represented by microcavities: this devices are among the most promis-

ing structures in integrated optics. They permit to achieve extreme selectivity, and are applied

to passive devices, but also basic physics experiments can be performed, e.g. cavity-quantum-

electrodynamics.

We focused on implementing a 3D method based on the rigorous coupled-wave analy-

sis, also known as Fourier modal method (FMM). When applied to waveguide modelling

it is named aperiodic-FMM (A-FMM) and approximates modes by Bloch modes of a peri-

odic structure. By applying PMLs we can improve the accuracy, and decoupling successive

artificial repetitions. An admittance-impedance formalism is used to account for multiple

reflections along the radial direction.

We implement it in cylindrical coordinates, and are thus able to study structures of

rotational symmetry, such as microrings and microdisks. We verify that this approach is

more accurate than 2D methods, while being faster than ab-initio methods, such as FDTD.

We report also an example of a device that relies upon antiguiding confinement along the

axis. It is indeed possible to confine light, via interaction of two TM evanescent tails, in a

low-index region. Mode volume can be remarkably reduced.

Finally we characterised several integrated structures, specifically microdisk-based filters

and add&drops. We detect resonances of a set of devices based on a large-diameter (8µm)

disk. Their high-Q could permit to detect splitting of degeneracies and nonlinear effects.

Nevertheless the sensitivity to technological defects hampered the opportunity of providing

an extensive and reliable description.

Future work will be devoted to improving our numerical methods, to understand how to

properly design microdisk-based devices. Another interesting theme is to detect narrow and

short rejection peaks, sometimes masked by Fabry-Pérot oscillations due to reflections inside

the straight waveguide.



Résumé Étendu

Ces dernières années, nous avons assisté à de nouvelles exploitations de l’optique intégrée

dont les applications ne sont pas dans le domaine classique des communications longues

distances. En effet, de nombreuses découvertes ont été faites dans le traitement de la lumière

inter et intra-puce. L’émission continue basée sur l’effet Raman permet au Silicium d’être un

candidat possible pour réaliser des composants actifs tout en assurant une bonne efficacité de

guidage. Comme la microélectronique CMOS utilise comme matériau de base le Silicium, la

fusion de la photonique et de la microélectronique est devenue un axe important de recherche

pour les chercheurs des universités mais aussi ceux des industries telles que Intel, STM ou

IBM.

Dans ce cadre, deux types de composants sont largement utilisés : les structures pé-

riodiques (cristaux photoniques) ou les microcavités à structures réfractives. Ils permettent

d’accéder à de nombreuses fonctions à la fois passives et actives ainsi qu’à exploiter des

phénomènes physiques innovants. La première configuration sera utilisée pour mettre en avant

des phénomènes non-linéaires tels que l’auto-confinement spatial de la lumière sous forme

de solitons. La deuxième configuration sera discutée en proposant l’analyse de microcavités

optiques et en particulier des microdisques.

La plus grande partie de cette thèse est consacrée à la modélisation de ces structures.

Grâce au banc de mesures de l’IMEP, quelques résultats de caractérisation seront présentés

en fin thèse.

Chapitre 1

La modélisation des dispositifs d’optique intégrée est une activité importante pour fournir

une base solide au processus de conception. Elle permet aussi de mettre en avant de nouveaux

phénomènes et de concevoir de nouveaux composants.

Les équations de Maxwell sont toujours utilisés pour étudier les problèmes d’électroma-

gnétisme et d’optique. Nous les écrivons pour une région sans charges comme

∇× ~E(x, y, z, t) = −∂
~B(x, y, z, t)

∂t
(1)

∇× ~H(x, y, z, t) =
∂ ~D(x, y, z, t)

∂t
(2)

∇ · ~D(x, y, z, t) = 0 (3)

xi



xii RÉSUMÉ ÉTENDU

∇ · ~B(x, y, z, t) = 0 (4)

avec la notation symbolique suivante,

– ~E champ électrique ;

– ~H champ magnétique ;

– ~D champ induction électrique ;

– ~B champ induction magnétique ;

Les relations constitutives, par exemple le champ induction électrique en fonction du champ

électrique, permettent de résoudre ce problème. Il est important de classer les méthodes de

modélisation selon leur degré d’approximation. En effet, si on calcule une équation d’onde

vectorielle, nous avons (pour des matériaux non magnétiques),

∇2~E(x, y, z, t)−∇
(

∇ · ~E(x, y, z, t)
)

+ µ0
∂2 ~D(x, y, z, t)

∂t2
= 0 (5)

Nous pouvons observer plusieurs dégrées d’approximation :

– approximation semi-vectorielle : on néglige le couplage entre les différentes composantes

ce qui est vérifié si le contraste d’indice de réfraction est faible.

– Cet hypothèse avec la séparation des variables conduit à la méthode de l’indice ef-

fectif ;

– approximation scalaire : elle est rigoureusement vraie dans les milieux homogènes infinis

ou si la structure à analyser est discontinûment homogène.

La nécessité d’utiliser des méthodes simplifiées dépend des structures à simuler. L’as-

sociation d’une mise en œuvre facile avec une bonne précision nous a poussé à utiliser la

méthode des faisceaux propagés (BPM : Beam Propagation Method). Pour la décrire il faut

rappeler l’approximation paraxiale utilisée dans un grand nombre de techniques analytiques

ou numériques, comme la théorie des modes couplés (CMT), dans l’optique linéaire et non-

linéaire, les faisceaux gaussiens, et finalement la BPM. Elle suppose une propagation quasi

directionnelle. Dans ce mémoire ce sera la direction z. Les composantes spectrales associées

à ce faisceau sont réparties autour de la constante de propagation associée à cette direction,

~E(x, y, z) = ~u(x, y, z)e−jk0n0z (6)

où les composantes du champ en chaque point peut s’écrire aussi sous la forme suivante :

Ei(x, y, z) = ui(x, y, z)e
−jk0n0z (7)

où ~u(x, y, z) est une enveloppe lentement variable du signal approximé.

L’analyse des phénomènes non-linéaires a été un des thèmes principal de notre travail.

Une liste non exhaustive des phénomènes non-linéaires les plus connus est présentée ici pour

préciser les domaines liés à ce travail de thèse :

– effets paramétriques

– Génération du second harmonique ;

– Effet Kerr ;

– Génération de fréquence somme ;



xiii

– Effet Pockels ;

– phénomènes de diffusion

– Diffusion Rayleigh (élastique) ;

– Diffusion Brillouin (inélastique) ;

– Diffusion Raman (inélastique) ;

Nous nous sommes concentrés sur les phénomènes paramétriques, qui ont les propriétés

fondamentales suivantes :

– le milieu joue un rôle de “catalyseur” pour transférer l’énergie d’une fréquence (d’une

polarisation, ou d’un vecteur d’onde) à une autre ;

– la population des niveaux d’énergie au niveau atomique et moléculaire n’est pas affectée ;

les distributions à l’état initial et à l’état final sont identiques ;

– en Physique classique, la polarisabilité électronique, représentant l’interaction d’un

champ électrique d’une onde optique avec la matière, est constituée d’une série de

termes caractérisant la distorsion du mouvement oscillant des électrons qui devient non

négligeable avec de fortes intensités optiques ;

– la réponse est quasi-instantanée (10−15 s) ;

– les susceptibilités non-linéaires χ(NL)(ω) sont réelles et faiblement dispersives (exci-

tation hors-résonance).

Nous introduisons alors la relation constitutive non-linéaire suivante

~D(x, y, z, t) = ε0~E(x, y, z, t) + ~P
(

x, y, z, t, ~E
)

(8)

où ~P est une fonction non-linéaire de ~E .
La série de Taylor associée à cette fonction nous permet d’identifier plusieurs termes

d’ordre différent,

~P
(

x, y, z, t, ~E
)

=

= ε0

(

χ(1)~E
)

+ ~P(2)

(

x, y, z, t,
∣
∣
∣~E
∣
∣
∣

2
)

+ ~P(3)

(

x, y, z, t,
∣
∣
∣~E
∣
∣
∣

3
)

+ . . .

= ~PLIN
(

x, y, z, t, ~E
)

+ ~PNL
(

x, y, z, t, ~E
)

(9)

où les termes ~P(n) représentent le n-ième élément du polynôme caractérisant la série de

Taylor. Avec l’hypothèse d’une dispersion négligeable, ils sont exprimés sous la forme d’un

tenseur de susceptibilité d’ordre n, χ(n).

Beaucoup de facteurs influencent l’efficacité de ces phénomènes. Des propriétés de symétrie

des matériaux permettent déjà de classifier deux groupes.

– centrosymétrique (invariant aux transformations ~r ↔ −~r) ;

– non-centrosymétrique.

Dans les cristaux centrosymétriques et les matériaux amorphes χ(2n) = 0, donc, par

exemple, dans les fibres optiques standards la non-linéarité du troisième ordre est la première

disponible.

Enfin, à une fréquence d’excitation donnée, les effets NL créés dépendent aussi beau-

coup de la forme structurelle de la zone où se propage le signal. Le transfert d’énergie est
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intrinsèquement périodique dû à la nature dispersive des matériaux. Ceci est explicable en

terme de désaccord de phase entre les différents harmoniques. Pour transférer l’énergie d’une

fréquence à une autre, on utilise les propriétés de dispersion des cristaux anisotropes avec une

orientation spécifique ou on crée une dispersion contrôlée en utilisant une structure périodique

induisant l’accord de phase (phase-matching) entre les différents harmoniques générés : nous

pouvons atteindre et améliorer considérablement l’efficacité NL pour une polarisation donnée.

Un fort confinement du champ est aussi un effet supplémentaire pour augmenter l’efficacité

NL. Il s’agit d’une approche très prometteuse pour atteindre des effets NLs à basse intensité.

Les auteurs rapportent deux exemples typiques, la génération du second harmonique

(SHG) et l’effet Kerr optique ou Optical Kerr Effect (OKE). Une formulation non-linéaire de

la CMT est habituellement utilisée pour décrire l’échange d’énergie entre chaque harmonique

durant la propagation. Ceci est normalement obtenu après une dérivation des relations de

la CMT en appliquant des simplifications induites par l’optique paraxiale. La SHG est un

effet d’ordre 2 (intervention du carré du champ). Les équations données par la CMT (pour

des modes guidés avec un profil modal ft, une enveloppe lentement variable ut, étant l’indice

t = 1, 2 pour identifier chaque harmonique) peuvent s’écrire :







jf1
du1

dz
=
ω2

c20

1

2k1
χ(2)f2f1u2u

∗
1e

−j∆kz

jf2
du2

dz
=

(2ω)2

2c20

1

2k2
χ(2)f2

1u
2
1e

j∆kz

(10)

où on pose

∆k = k2 − 2k1 (11)

qui représente l’ accord de phase.

Il est facile de normaliser l’équation et de démontrer que la susceptibilité SHG efficace

s’écrit

χ =
2π

λ

√
η0

2n2
1n2

χ(2)

√
Aeff

(12)

Aeff caractérise le confinement dans la section transverse des guides,

Aeff =

∫

f2
2 dx dy

( ∫
f2
1 dx dy∫

f2
1 f2 dx dy

)2

(13)

et est mesurée en m2.

L’effet Kerr optique est un auto-effet du troisième ordre, qui est étroitement lié à la

focalisation ou à la défocalisation du faisceau optique. Il est représenté comme une modulation

de l’indice de réfraction en fonction de l’intensité.

Un ansatz composé par un seul harmonique peut être utilisé pour obtenir

jf2 du

dz
=
ω2

c20

χ(3)

4

1

2k
f4|u|2u = k0n2f

4|u|2u = χf4|u|2u (14)

où n2 réprésent un indice non-linéaire équivalent et u est encore l’enveloppe du champ (len-

tement variable) Si on n’a pas de pertes, l’indice effectif caractérisant la propagation peut
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aussi s’écrire :

nI
2 = n2

2

c0ε0n(ω)

1

Aeff
= n2

2

c0ε0n(ω)

∫
f4 dx dy

(∫
f2 dx dy

)2 . (15)

Les effets non-linéaires jouent également un rôle fondamental dans la propagation de

régimes particuliers, comme les solitons spatiaux ou temporels. Dans ces régimes, la diffraction

ou la dispersion peuvent être parfaitement compensées par les effets non-linéaires. On peut

alors obtenir avec de fortes intensités des faisceaux avec des propriétés non dispersives et/ou

sans diffraction.

Un autre élément fondamental des techniques de modélisation est fourni par la décomposi-

tion modale. Dans les structures linéaires, nous pouvons décomposer tous les champs en

termes d’oscillations naturelles (modes), qui se caractérisent par un profil de propagation

invariant
(

~Ei, ~Hi

)

et son nombre d’onde associé βi,







~E (~r) =
∑

i

Ai
~Ei (~rt) exp (−jβiz)

~H (~r) =
∑

i

Ai
~Hi (~rt) exp (−jβiz)

(16)

Si ces modes sont représentés par un continuum, les sommes sont remplacés par des intégrales.

Les structures fermées (guide d’onde métallique) n’ont qu’un ensemble discret de modes.

Les structures ouvertes (c’est le cas des guides d’ondes diélectriques) ont une base modale

composée par un ensemble discret de modes guidés et d’un continuum de modes radiatifs et

évanescents.

Dans quelques cas particuliers, on peut connâıtre facilement la base complète des modes

et vérifier leur orthogonalité, point crucial pour projeter une carte de champ sur cette même

base. Les méthodes dites modales utilisent cette propriété. Une portion de guide homogène est

généralement décrite par une pondération des modes de la base associée à ce guide. Ensuite,

un raccordement des champs est fait à chaque interface permettant de remonter à la forme

des champs transmis et réfléchis. Une description matricielle peut alors être utilisée.

Le point crucial du raccordement des champs entre deux guides différents (ou deux bases

de modes différentes) est le calcul des matrices de projection (projection d’un mode d’un guide

sur la base des modes d’un autre guide). Dans ce travail, nous avons cherché à exploiter une

méthode facilitant le calcul de ces matrices de projection (A-FMM) pour la modélisation de

résonateurs.

Il est opportun de rappeler quelques idées fondamentales de la modélisation en électroma-

gnétisme. Un pas de discrétisation est nécessaire pour obtenir un ensemble discret de données

à élaborer sur l’ordinateur. Le premier choix est la construction d’une grille en temps et éspace

par differences finies ou éléments finis. Les approches modales sont plutôt représentées par

un echantillonage du continuum des nombres d’onde.

La méthode numérique plus populaire en électromagnétisme (FDTD) est basées sur une

discrétisation du milieu par des différences finies. La partie temporelle du régime électroma-

gnétique peut être pris en compte en utilisant aussi des différences finies dans le domaine
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temporel à partir des équations suivantes

[
∂Hy

∂x
− ∂Hx

∂y

]

=
∂Dz

∂t
(17)

ce qui donne avec les différences finies pour le temps et l’espace suivant le schéma de Yee

(saute-mouton).

ǫ

[
Et+∆t

z (x, y, z)− Et
z(x, y, z)

∆t

]

=

=

[

H
t+∆t/2
y (x+ ∆x/2, y, z)−Ht+∆t/2

y (x−∆x/2, y, z)

∆x

]

−

=

[

H
t+∆t/2
x (x, y + ∆y/2, z)−Ht+∆t/2

x (x, y −∆y/2, z)

∆y

]

.

(18)

Les autres equations sont écrites de la même manière.

Ce type de discrétisations ab-initio exige habituellement de grands temps de calcul et

une forte consommation de la mémoire. De nombreuses autres approches ont été proposées

comme la BPM, l’une des plus populaires. Elle s’appuie sur l’approximation paraxiale,

∂u

∂z
=

1

j2k0n0

[
∂2u

∂x2
+
∂2u

∂y2
+ k2

0

(
n2 − n2

0

)
u

]

(19)

où u(x, y, z) est une enveloppe lentement variable qui donne le champ électrique suivant

E(x, y, z) = u(x, y, z) exp (−jk0n0z) .

En supprimant la dépendance exponentielle, on peut utiliser une étape de discrétisation

selon z, ∆z largement plus grand que la longueur d’onde au contraire de la FDTD et simplifie

la formulation à celle d’un problème aux valeurs initiales.

Nous remarquons que la BPM est beaucoup plus polyvalente que sa version classique. En

fait d’autres versions existent maintenant : à grand-angle (par opposition à optique paraxiale),

vectorielle, ainsi que d’une version 2D bidirectionnel peut être obtenue en utilisant une matrice

S (Scattering Matrix).

Une question fondamentale dans la résolution des équations aux dérivées partielles ellip-

tiques est d’appliquer des conditions aux limites appropriées pour éviter des imprécisions au

cours de la propagation (réflexions de la boite de modélisation). Le développement historique

de différentes techniques ont permis d’accéder à une technique très fiable, les couches parfai-

tement adaptée (PMLs). Elles reposent sur l’inclusion de médias à perte qui correspondent

exactement et avec continuité à la constante diélectrique de la partie physique adjacente (pas

de réflexion à l’interface).Une PML idéale représente un milieu semi-infini.

Il est intéressant de mentionner aussi une autre méthode mélangeant à la fois les différences

finies et la technique de mode-matching : la méthode des lignes (MoL). Elle est basée une

discrétisation selon l’axe transversal des profils d’indices de réfraction et du champ puis par

diagonalisation elle permet de calculer une impédance reliée à la constante de propagation

et une base de fonctions modales. Elle utilise aussi ensuite un formalisme d’impédance (ou
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d’admittance) similaire à celui utilisé dans les lignes de transmission. Nous la définissons

comme une méthode mixte, puisqu’elle utilise les différences finies pour le calcul des modes.

C’est un puissant outil largement utilisé, qui permet d’y inclure également des effets non-

linéaires.

En effet de nombreuses méthode modales alternatives sont disponibles : par exemple ils

s’appuient sur la superposition des solutions homogènes dans une cavité métallique ou par

approximations avec des modes de Bloch. Une fois que la valeur propre du mode électromagné-

tique a été résolue, les matrices S (forme général des formules de Fresnel pour les ondes planes)

ou de l’impédance-admittance (pour les lignes de transmission) sont utilisés. Rappelons que

la multiplication directe des propagateurs pour tenir compte du chemin optique à travers

une couche homogène, c’est-à-dire la méthode de la matrice de transmission, est instable. On

évite donc son utilisation.

Chapitre 2

Dans ce chapitre la mise en œuvre d’une méthode de propagation des faisceaux non-

linéaires est décrite. On va montrer la version TE ( ~E = Eyŷ0), celle TM n’étant que légerement

plus compliquée. On part de l’équation d’Helmholtz

∂2E

∂z2
+

(
∂2

∂x2
+ k2

0n
2(x, z)

)

E = 0 (20)

où k0 = 2π
λ est le nombre d’onde de l’espace libre, λ la longueur d’onde en espace libre et

n(x, z) le profil d’indice de réfraction.

Bien que la version classique de la méthode est basée sur l’approximation paraxiale, la

propagation à grand angle (wide-angle) peut être obtenue si le problème de propagation

unidiréctionel est formulé dans une forme plus générale pour obtenir une meilleure approxi-

mation. Enfin la discrétisation permet de résoudre numériquement le problème.

La BPM wide-angle est donc basée sur deux opérateurs, la racine carrée L et le propaga-

teur P .

L =

√

∂2

∂x2
+ k2

0n
2(x) = k0n0

√

I +
∂2

∂x2 + k2
0

(
n2(x)− n2

0

)

k2
0n

2
0

= k0n0

√
I +X. (21)

L répresente la diffraction et le retard de phase, I la matrice identité, n0 est l’indice de

réfraction de référence, en analogie avec l’équation paraxiale. Le deuxième s’écrit comme

P = exp (−j∆zL) (22)

On réécrit (20) comme
∂2E

∂z2
+ L2E = 0 (23)

et on peut voir dans l’équation suivante que l’opérateur P réprésente la propagation entre

deux pas successifs en z,

E(x, z + ∆z) = PE(x, z). (24)
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La difficulté principale est de trouver la formulation correcte de L et de P .

Pour modéliser le problème non-linéaire, il est difficile de choisir une discrétisation directe

de la propagation et de l’influence de la non-linéarité. Nous calculons d’abord la propagation

linéaire puis nous calculons la contribution non-linéaire avant la nouvelle propagation. De

plus, un procédé itératif est utilisé qui consistant à re-calculer les contributions non-linéaires et

à les re-propager jusqu’à ne pas avoir de changements rémarquables. Ceci permet d’améliorer

la précision finale et par conséquent d’utiliser des pas de propagation plus grands.

La déscription de la génération de seconde harmonique

∂2uω(x, z)

∂z2
− 2jk0n0ω

∂uω(x, z)

∂z
+
∂2uω(x, z)

∂x2
+ k2

0

[
n2

ω(x)− n2
0ω

]
uω(x, z) =

= −k2
0χ

(2)
j (x) [uω(x, z)]∗ u2ω(x, z)e−j∆kz

(25)

∂2u2ω(x, z)

∂z2
− 4jk0n02ω

∂u2ω(x, z)

∂z
+
∂2u2ω(x, z)

∂x2
+ 4k2

0

[
n2

2ω(x)− n2
02ω

]
u2ω(x, z) =

= −2k2
0χ

(2)
j (x) [uω(x, z)]2 ej∆kz

(26)

où k0 = ω
c est le nombre d’onde de la fréquence fondamentale, ukω, avec k = 1, 2, réprésentent

les deux enveloppes des harmoniques (FF et SH), n0kω
représente l’indice de réfraction de

référence de la BPM et enfin ∆k = 2k0(n0ω − n02ω).

Une mise en œuvre de ce problème est décrite de la manière suivante :

2jk0n0ω

∆z

(

um,s+1
ω

(t) − um,s+1
ω

(I)
)

=

=
1

2
k2

0

(

χ(2)m,s
um,s+1

2ω

(I)
[

um,s+1
ω

(I)
]∗

+ χ(2)m,s+1
um,s+1

2ω

(t−1)
[

um,s+1
ω

(t−1)
]∗)

4jk0n02ω

∆z

(

um,s+1
2ω

(t) − um,s+1
2ω

(I)
)

=

=
1

2
4k2

0

(

χ(2)m,s
um,s+1

ω
(I)
um,s+1

ω
(I)

+ χ(2)m,s+1
um,s+1

ω
(t−1)

um,s+1
ω

(t−1)
)

(27)

où (m, s)→ (m∆x,
(
s+ 1

2

)
∆z) identifie un point de la grille. Les exposants I et t sont utilisés

pour dénoter le pas intermédiaire du split-step (entre propagation linéaire et non-linéaire) et

la valeur de l’itération, respectivement.

Le calcul de l’effet Kerr est plus direct : l’estimation de l’intensité locale permet d’ajuster

l’indice de réfraction selon

n(x, z) = nlin(x, z) + nI
2(x, z)I(x, z). (28)

Cette procédure itérative est stoppée lorsque les variations du profil d’intensité deviennent

négligeables.

Une discrétisation avec des différences finies est la base de notre implémentation. On

obtient de grandes matrices et le calcul de L et P est trop lourd avec les approches classiques :

l’utilisation des approximations rationnelles ou de Padé est utilisée généralement.

Pj ≈ e−jk0n0∆zSp(Xj) (29)

où Sp(Xj) est un développement de Padé de
√
I +Xj , non-ordinaire, en général.
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Effectivement
√

1 + x ≃ 1 +

p
∑

n=1

a
(p)
n x

1 + b
(p)
n x

=

p
∏

n=1

1 + c
(p)
n x

1 + b
(p)
n x

(30)

où

b(p)
n = cos2

(
nπ

2p+ 1

)

, c(p)
n = sin2

(
nπ

2p+ 1

)

, a(p)
n =

2c
(p)
n

2n+ 1
. (31)

Les coefficients sont tous réels, ce qui implique une mauvaise description des modes éva-

nescents (qui normalement résultent en nombres d’onde purement imaginaires). Si on applique

la méthode nommée rotated branch-cut, on obtient :

√
1 + x = e−jα/2

√

1 + [(1 + x)ejα − 1] ≃ e−jα/2

[

1 +

p
∑

n=1

a
(p)
n x̃

1 + b
(p)
n x̃

]

, (32)

Les nombres d’onde évanescents sont par conséquent décrits par des nombres complexes et

le problème est évité. Cette idée consiste à tourner le démi-axe (−∞,−1] du plan complexe

(qui est la cause de nos difficultés), d’un angle α.

Les PML dans notre BPM sont basés sur des transformées de coordonnées complexes,

x̂ = x− j
∫ x

0
σ(ξ)dξ, (33)

où σ est une fonction appropriée qui représente le profil d’absorption. Cette application est

équivalente aux milieux anisotropes, mais est simplement une modification de l’opérateur de

la dérivée. L’opérateur fondamental

X =
∂2

∂x2 + k2
0(n

2 − n2
0)

k2
0n

2
0

(34)

devient

X =

1
1−jσ(x)

∂
∂x

(
1

1−jσ(x)
∂
∂x

)

+ k2
0(n

2 − n2
0)

k2
0n

2
0

. (35)

Chapitre 3

Comme nous l’avons mentionné auparavant, les solitons sont un exemple important du

régime de propagation non-linéaire. Durant la propagation, il est possible de maintenir leur

profil d’intensité sans être gêné par la diffraction de la lumière.

Nous avons étudié tout particulièrement des solutions dans des systèmes périodiques 1D,

i.e. une série de guides parallèles ayant la possibilité de se coupler le long de la propagation

par des ondes évanescentes. La structure périodique étudiée est réalisée soit dans l’AlGaAs ou

dans des matériaux photoréfractifs (modification de l’indice de réfraction induite optiquement

ce qui est aussi le cas des couches minces à base de cristaux liquides).

Ces mêmes phénomènes sont observables dans les domaines des condensats de Bose-

Einstein sous l’influence de potentiels périodiques.

Il est bien connu dans ce type de réseau qu’il existe des angles d’incidences ou ordres de

Bragg pour lesquels la lumière est fortement réfléchie. Ces angles identifient une bande photo-

nique interdite dans laquelle les nombre d’ondes longitudinaux (ou constantes de propagation)
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sont associés à des solutions linéaires constituées de composantes transverses évanescentes.

Ces zones sont observées aussi sur les courbes de dispersions des cristaux photoniques (en

régime harmonique) (ω suivante k, constante de propagation transverse) qui font apparâıtre

les bandes permises ou interdites pour la propagation. Dans notre cas, la diffraction de la

lumière dans le réseau de guides dépend de la courbure de ces bandes.

La propagation dans ce type de structure est très différente de celle qui peut exister dans

un matériau homogène obéissant à la loi classique de la diffraction. Dans un régime non-

linéaire, avec un matériau présentant un effet Kerr, avec de fortes intensités optiques, une

auto-focalisation peut apparâıtre où la non-linéarité permet la compensation des effets de la

diffraction. Ce type de propagation est alors couramment appelé un soliton spatial. Le profil

du champ transverse est alors inchangé au cours de la propagation le long des guide parallèles.

Les exemples les plus simples sont les solitons discrets (DS) qui peuvent être obtenus si on

injecte de la lumière à un bout de la structure dans un ou plusieurs guides de la structure

précédente.

Dans ce travail nous nous sommes concentrés sur la propagation de profiles de champ avec

des nombres d’ondes dans les bandes photoniques interdites, qui deviennent accessibles avec

la non-linéarité (en effet, ces bandes sont inaccessibles dans le régime linéaire), les solitons

spatiaux en bande interdite.

Des modes analogues en 1D (régime pulsé) sont obtenus pour des fréquences se trouvant

dans une bande photonique interdite couramment appelé des gap solitons (GS).

L’excitation en bout est utilisée pour démontrer ce type de régime. Deux enveloppes de

champs couplés dans la structure, associées à deux angles de Bragg opposés, peuvent interférer

pour former ou piéger un gap soliton qui se propage dans la structure selon un nombre d’onde

longitudinal correspondant aux bandes interdites linéaires, comme observé récemment dans

différents matériaux et structures.

On obtient donc une carte de champs rapidement modulée, dû à l’interférence de ces deux

sources, qui peut se propager sans diffraction.

Cette idée est aussi basée sur le principe de la théorie des modes couplés : si le champ

est écrit en terme de deux faisceaux à deux angle de Bragg opposés, les franges qui varient

rapidement se seuperposent et çela nous permet alors de calculer la solution analytique en

terme de deux enveloppes se propageant dans la structure. Cet approche est sujet à des

approximations et donc il faut apprécier ses limites : on propose à cette fin la résolution de

l’équation d’ondes paraxiale de façon numérique par une méthode de relaxation.

Nous avons comparés les deux approches. Malgré ses approximations, la CMT permet

d’avoir une description analytique des GS dans un grand nombre de cas où une vérification

expérimentale serait possible. Cette analyse avec la CMT peut être considérée comme une

première étape avant une caractérisation réelle de GS. De plus, cette étude permet de

déterminer les domaines où la CMT n’est plus viable. Ces résultats sont validés avec notre

code BPM.

Nous avons pris des couches périodiques constituées de diélectrique transparent (sans

pertes) avec des indices de réfraction n1,2 = n0 ±∆n/2 [∆n = n2 − n1 > 0] et une épaisseur

Λ1,2, caractérisé par une période Λ = Λ1 + Λ2 ≡ 2π/kg suivant l’axe transverse X. Dans
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l’approximation 1+1D (∂Y = 0), et dans le domaine de faible inhomogénéité et de la condition

paraxiale, l’enveloppe du champ suit l’équation d’onde suivante :

i
∂E

∂Z
+

1

2k

∂2E

∂X2
+ k0∆np(X)E + χ|E|2E = 0 (36)

où χ = k0n2I est le coefficient non-linéaire globale.

Dans le cas linéaire (χ = 0) la réflection de Bragg est présente pour des angles de propa-

gation φBm, par rapport à l’axe Z,

φBm = sin−1

(
mkg

2k

)

= sin−1

(
mλ

2n0Λ

)

. (37)

Si on prend en compte que les valeurs positives de m, la condition de Bragg correspond à

des ondes propagées avec un nombre d’onde kx = k sinφ qui est un multiple de la moitié du

nombre d’onde lié à la période du réseau, i.e.

kx = ±kxB = ±mkg

2
= ±mπ

Λ
(38)

Pour deux faisceaux couplés dans la structure à deux angles opposés autour d’un des ordres

de Bragg, la CMT peut être développée pour écrire le champ comme la superposition de deux

enveloppes proches de leur résonance, E±(X,Z), comme

E =
[

E+(X,Z)eikxBX + E−(X,Z)e−ikxBX
]

e−i
k2
xB
2k

Z , (39)

Ce système d’équations couplées des deux faisceaux a une solution analytique si on néglige

les termes liés à la diffraction.

La CMT dans le cas linéaire décrit les caractéristiques de la diffraction dans la structure

périodique qui peut être exprimée de la manière suivante

kx = ±
√

β2 − Γ2
2k

mkg
(40)

Il est alors intéressant de les comparer avec une approche rigoureuse basée sur une ma-

trice de transmission ; celle-ci est basée sur le théorème de Bloch (le champ décrit sur une

période spatiale et dans la première zone de Brillouin est périodique) combiné avec les lois

de propagation des onde planes.

Dans la fig. 3.3 nous comparons des résultats obtenus avec la CMT (ligne en pointillée) et

ceux calculés avec la méthode rigoureuse (ligne pleine) avec m = 1 et les paramètres suivants

(λ0 = 1.55µm, Λ = 4µm, 50% le rapport cyclique, ∆n = 0.008 conduisant à Γ ∼= 104m−1 ;

d’autres expériences dans la littérature utilisent des paramètres similaires)

On peut donc voir que les deux résultats sont remarquablement proches (cöıncidence entre

les deux courbes) autour de la zone supérieure à la région grise qui est le premier gap (m = 1)

des nombres d’ondes interdits β (ou valeurs évanescentes pour les composantes du nombre

d’onde transverse kx). La figure montre aussi un gap étroit m = 2 (qui disparâıt pour un

réseau carré de rapport cyclique 50% avec la CMT) et le troisième gap m = 3 (qui est encore

bien décrit par la CMT si m = 3).
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Les deux approches commencent à s’écarter pour une différence d’indices de réfraction

largement plus grande que celle utilisée dans la réalité. Ces différences sont plus fortes pour

les gaps aux ordres m plus élevés.

Nous nous attendons à quelques différences pour les solutions non-linéaires qui peuvent

être calculé sous la forme suivante

U±(z, x) = A±

√

η(ζ) exp [iβΓz + iψ±(ζ)] (41)

où ζ ≡ γ(x − vz) est la coordonnée transverse du référéntiel du GS, γ = (1 − v2)−1/2.

βΓ ≡ β/Γm et v = dx/dz sont deux paramètres normalisés qui caractérisent la solution,

constituée de l’interférence de deux enveloppes η avec un déphasage non-linéaire ψ±.

En résumé, on peut prouver que les SGS localisés sont situés sur le cercle unitaire du

plan défini par les deux paramètres précédents, i.e. β2
Γ + v2 ≤ 1, et qu’ils possèdent les

caractéristiques suivantes :

1. l’amplitude et l’inverse de la largeur des enveloppes du GS sont fixées par l’angle des

deux faisceaux à l’entrée du réseau de guides périodiques. Ceci correspond en fait à leur

position dans le diagramme de bandes, en s’approchant soit vers le haut ou le bas du

bord du gap supérieur ou inférieur ;

2. la frange d’interférence formée par les deux enveloppes présente un décalage par rapport

au réseau de guide à cause du terme de phase ψ±(ζ) ;

3. la vitesse transverse du soliton (qui est indépendante de l’angle d’entrée) peut être

contrôlée en jouant sur la pondération de l’amplitude des deux faisceaux d’entrée (A±)

et la direction transverse est déterminée par celui-là qui est plus intense.

Nous sommes focalisés sur le cas où la vitesse transverse du soliton est nulle puis nous

avons comparé les solutions de la CMT avec ceux donnés par l’équation suivante :

− βsU +
1

2k

∂2U

∂X2
+ k0∆np(X)U + χU3 = 0. (42)

cette relation est résolue avec une approche de relaxation, i.e. nous avons discrétisé en

différences finies et pour une valeur fixée de βs (nombre d’onde longitudinal du soliton),

nous avons trouvé une solution U du système non-linéaire résultant.

Dans la fig. 3.4 nous montrons la forme de base d’un GS stable, qui a un minimum principal

au niveau de la couche de plus haut indice de réfraction parce que les deux enveloppes E±

sont en opposition de phase. Les autres minima sont progressivement décalés par rapport

aux couches du réseau à cause du terme de phase non-linéaire [voir la propriété 2]. On donne

aussi la comparaison entre différentes solutions pour une variété de nombres d’onde dans la

bande interdite et en augmentant le saut d’indice du réseau, voir figures 3.5 et 3.6.

Un bon accord entre la CMT et la relaxation a été trouvé sauf pour le bord inférieur

de la bande (voir le cas (c), qui correspond à βΓ = −0.9), où le soliton est obtenu avec des

puissances plus basses. Il est aussi très élargi (la diffraction joue un rôle fondamental dans ce

cas).

Les simulations BPM permettent de vérifier que les solutions CMT sont une bonne ap-

proximation, dans les conditions expérimentales plus habituelles.
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Nous avons ensuite considéré un cas plus général : le confinement de la lumière contrôlé

l’influence du deuxième ordre, entre deux harmoniques.

Si on considère l’excitation de deux fréquences ω et 2ω au même angle, ce correspond au

premier gap du premier harmonique et au deuxième gap de l’autre. En effet, comme l’angle

de Bragg d’ordre m est

φBm = sin−1

(
mkg

2k

)

= sin−1

(
mλ

2nmΛ

)

. (43)

m = 1 pour ω et m = 2 pour 2ω correspondent au même angle, à condition que n1 = n2,

i.e. SHG est en accord de phase. Celui permet d’imaginer une propagation confinée de deux

fréquence grâce à l’interaction non-linéaire, pour des nombres d’onde longitudinales qui sont

interdits en régime linéaire pour les deux harmoniques.

Nous rappelons que la CMT linéaire ne prévoit pas un gap du deuxième ordre (si le

rapport cyclique est 50%), alors qu’il est décrit par l’approche plus rigoureuse. Si on prend

le cas general d’un désaccord de phase fini, le choix des positions des nombres d’onde de

chaque harmonique dans sa bande interdite est fondamental pour obtenir des solutions qui

diminuent au loin du centre du faisceau. L’application de grandes intensités induit donc un

soudain changement de régime.

Le système d’équations couplées, dans l’approximation paraxiale s’écrit

i
∂E1

∂Z
+

1

2k1

∂2E1

∂X2
+
ω

c
∆np(X)E1 + χE2E

∗
1e

i∆kZ = 0,

i
∂E2

∂Z
+

1

2k2

∂2E2

∂X2
+

2ω

c
∆np(X)E2 + χE2

1e
−i∆kZ = 0.

(44)

où χ = k0

(
2/
(
ε0cn2n

2
1

))1/2
χ(2) et ∆k = k2 − 2k1.

Comme auparavant, nous étudions des solitons qui se propagent à des vélocité transverse

nulles, i.e.

E1(X,Z) = e1(X) exp(iβsZ)

E2(X,Z) = e2(X) exp[i(2βs −∆k)Z]

et le calcul se déroule selon l’approche numérique de relaxation qui discrétise directement ce

système :

−βse1 +
1

2k1

∂2e1
∂X2

+ k0∆np(X)e1 + χe2e
∗
1 = 0

−(2βs −∆k)e2 +
1

2k2

∂2e2
∂X2

+ 2k0∆np(X)e2 + χe21 = 0

(45)

Les nombres d’onde des deux harmoniques (k1 + βs pour FF et 2(k1 + βs) pour le SH) sont

calculés par la méthode de la matrice de transfert pour être sur qu’ils se trouvent dans leurs

bandes interdites.

On pourrait encore faire confiance à une approximation du type CMT (cette fois on

aura un système de quatre équations) : la principal limitation est qu’il n’est pas résoluble

analytiquement. Donc on résout l’Eq. (45) directement, à partir d’un vecteur initial de points

donnés par le soliton Kerr (cubique, traité précédemment) qui est une bonne approximation si
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|∆k| est grand. Puis le désaccord de phase est modifié jusqu’aux valeurs de conversion efficaces

entre les deux harmoniques. En détails, les solutions pour chaque valeur du désaccord de phase

sont utilisées pour initialiser la relaxation a l’étape suivante, qui correspond à un ∆k plus

proche de zéro : la continuité selon les paramètres est la base de cette argumentation.

Un ensemble de SGS quadratique est obtenu pour des rapports cycliques de 50% et

superieurs, et l’intensité et la largeur du soliton (pour le premier et le second harmonique)

sont decrits en fonction de ∆k, après avoir fixé sa position dans la bande fixé. Cette dernière

valeur est critique : l’effet du désaccord sur les solutions est modifié sensiblement par lui, voir

les figures 3.15 et 3.16.

Chapitre 4

Les micro-résonateurs sont une nouvelle classe de composants prometteurs pour la nou-

velle génération de circuits intégrés photoniques. De nouvelles découvertes technologiques

ont permises de développer des micro-cavités telles que les microspères, les microdisques, les

microanneaux, les microgears, les microtores, les micropiliers et les cavités à cristaux photo-

niques qui ont montré leur efficacité autant dans des applications passives (filtres, add and

drop, lignes à retard) que dans des applications actives (modulateurs, lasers, coupleurs, ligne à

retard variable). Elles peuvent aussi jouer un rôle clé dans les applications électrodynamiques

quantiques de cavité et non-linéaires telles que les lasers Raman ou les structures à résonateurs

couplés.

Les résonateurs à symétrie cylindrique comme les microdisques, les microanneaux ou les

microtores permettent d’atteindre des coefficients de qualité importants Q (jusqu’à Q ≈ 106

pour un microtore en silice). Les modes de ces structures sont appelés des modes de galerie

(WGM), car ils ont été découverts pour la première fois dans le domaine de l’accoustique.

Par exemple, dans la figure 4.1 nous avons tracé la solution en TM pour un ordre azimutal

m = 10 et un ordre radial l = 1 d’un microdisque obtenu avec une méthode 2D (étude d’un

cylindre).

Ce chapitre est consacré à la description d’une nouvelle méthode numérique basée sur

une décomposition de Fourier (A-FMM) en coordonnées cylindriques. Notre objectif était de

développer cette méthode pour décrire le champ en 3D dans un microdisque et un microan-

neau, structures ayant un axe de symétrie qui sont souvent utilisés en optique intégré no-

tamment ces derniers années sur les technologies SOI (Photonique Silicium). Nous montrons

que nous sommes capables de calculer les longueurs d’ondes de résonance et les coefficients

de qualité. L’utilisation de cette méthode est alors possible pour toute structure respectant

ce type de symétrie.

De nombreuses méthodes numériques sont disponibles pour le calcul 3D telles que les

éléments finis (FEM), les méthodes intégrales, les différences finies dans le domaine tem-

porel (FDTD) mais elles sont soit onéreuses en temps de calcul et en consommation de

mémoire vive soit plus compliquées à mettre en œuvre. Alors que les méthodes basées sur

une décomposition modale ou une décomposition en série de Fourier sont généralement plus

rapides et permettent d’avoir une vision plus claire du champ électromagnétique dans la
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cavité. Une méthode 3D basé sur une décomposition modale est déjà disponible mais elle

utilise une expansion des fonctions de Bessel qui limite son application pour des structures

cylindriques à faible contraste d’indice de réfraction et pour de grandes rayons de courbure.

Notre approche est basée quant à elle sur une application rigoureuse nommée RCWA

(Rigourous Coupled Wave Analysis) dont une version spécifique est utilisée pour modéliser

des structures guidantes et est nommée A-FMM (Apériodic Fourier Modal Method) : les

modes sont décomposés sur une série de Fourier, qui réduit le recouvrement des modes entre

cellules utilisées dans les méthodes modales classiques par une manipulation matricielle.

Notre travail a été d’appliquer cette approche dans un système à symétrie cylindrique

(r, θ, z) et d’utiliser la RCWA pour obtenir des modes selon l’axe de symétrie de la structure,

l’axe z [voir la fig. 4.2(a)].

En utilisant le principe de la séparation de variables, et en imposant une fonction azimu-

tale périodique du type exp(jmθ), nous avons cherché à calculer la dépendance radiale des

modes c’est-à-dire suivant l’axe r. Bien que l’étude se réduise à deux variables, la nature vec-

torielle du problème qui nous intéresse est toujours présente : les six composantes du champ

électromagnétique sont significatives pour la description du problème. Comme dans les fibres

optiques, nous pouvons décrire le problème avec seulement les composantes Ez et Hz. En

effet, seules ces composantes sont nécessaires pour reconstruire ensuite l’ensembles des autres

composantes du champ. Finalement, comme les autres méthodes modales, la structure à ana-

lyser est décomposée en une série de couches uniformes suivant l’axe radial dans notre cas,

voir la fig. 4.2(b). Toutes ces couches ou sections sont caractérisées par leur profil d’indice de

réfraction suivant l’axe z. Le comportement modal est obtenu en appliquant les conditions

de bords à chaque interface perpendiculaire à l’axe r.

Suivant l’axe de symétrie nous avons un profil de permittivité périodique

ǫr =
∑

n

ǫne
jnKz, (46)

et nous travaillons dans des milieux non-magnétiques. Le champ est décrit alors de la manière

suivante

~E =
M∑

n=−M

(Sn
r r0 + Sn

θ θ0 + Sn
z z0) e

jnKzejmθ,

~H = −j
√
ǫ0
µ0

M∑

n=−M

(Un
r r0 + Un

θ θ0 + Un
z z0) e

jnKzejmθ,

(47)

où Sr,θ et Ur,θ sont reliés à travers les équations de Maxwell à Uz et Sz. Ces derniers paramètres

sont respectivement reliés aux composantes vectorielles des champs ~E et ~H. À cause du saut

d’indice de réfraction, Ez est discontinu selon l’axe z. Nous devons alors appliquer une règle

particulière pour calculer le produit de ǫ avec E. En effet, ǫ doit être décrit par l’inverse de la

série de Fourier de l’inverse de ǫ et dans ce cas on obtient alors les deux systèmes d’équation
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suivants :

d2Sn
z

dr2
+

1

r

dSn
z

dr
− m2

r2
Sn

z − nK
∑

p

[ǫ]−1
n,p pK

∑

l

[
1

ǫ

]−1

p,l

Sl
z + k2

0

∑

p

[
1

ǫ

]−1

n,p

Sp
z = 0

d2Un
z

dr2
+

1

r

dUn
z

dr
− m2

r2
Un

z − (nK)2 Un
z + k2

0

∑

p

ǫn−pU
p
z = 0

(48)

et, en posant

Sz =
[
S−M

z . . . SM
z

]T

et

Uz =
[
U−M

z . . . UM
z

]T
,

on obtient alors

d2Sz

dr2
+

1

r

dSz

dr
− m2

r2
Sz + k2

0

A
︷ ︸︸ ︷(

E
−1 −KzE

−1KzE
−1
)

Sz = 0

d2Uz

dr2
+

1

r

dUz

dr
− m2

r2
Uz + k2

0

(
E −K2

z

)

︸ ︷︷ ︸

B

Uz = 0

(49)

La solution générale s’exprime de la manière suivante

Sn
z =

∑

i

wni

[

aiJm

(
k0λ

A
i r
)

+ diH
(2)
m

(
k0λ

A
i r
)]

(50)

Un
z =

∑

i

vni

[

αiJm

(
k0λ

B
i r
)

+ δiH
(2)
m

(
k0λ

B
i r
)]

(51)

Pour améliorer la précision de ce type de calcul, des PML sont ajoutées basées sur une

transformée de coordonnée non-linéaire dans le plan complexe.

Les résonateurs que nous avons étudiés ici sont composés d’une série de couche uniforme

suivant l’axe radial. Chacune de ces couches a son propre profil d’indice de réfraction suivant

l’axe z. Tout ces effets sont pris en compte par le biais d’une matrice. Comme les fonc-

tions de Hankel divergent à l’origine, nous avons appliqué une approche matricielle du type

admittance-impédance (notée brièvement immittance).

Nous définissons cette matrice immittance U avec la relation suivante,

1

k0

dp

dr
= U(r)p (52)

où p est le vecteur des poids modales en fonction de l’axe radiale, i.e. nous pouvons écrire

Eq. (50) et Eq. (51) sous une forme matricielle

[

Sz

Uz

]

=

[

W 0

0 V

]

p(r) (53)

En effet les matrices des vecteurs propres V et W représentent les profils modaux (sous forme

de coefficient de Fourier), donc ce qui reste est simplement l’évolution de chaque mode suivant

la direction radiale.
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Pour résoudre ce problème, nous avons besoin d’une étape de propagation pour relier la

matrice immittance aux deux interfaces définissant une couche homogène et ensuite de définir

la nouvelle matrice caractérisant ensuite le passage à travers une interface,

UR
s = Gs −Hs ·

[
UL

s − Fs

]−1 ·Es, (54)

et

UL
s = Hs ·

[
Gs −UR

s

]−1 ·Es + Fs, (55)

où une fois encore R et L désignent les positions radiales r−s+1 et r+s des interfaces successives

respectivement. De plus, nous avons posé

Es = Ns

[
H (rs) J (rs)−H (rs)J (rs)

]
·X−1

s ,

Fs = Ns

[
H (rs)J (rs+1)−H (rs+1)J (rs)

]
·X−1

s ,

Gs = Ns

[
H (rs)J (rs+1)−H (rs+1) J (rs)

]
·X−1

s ,

Hs = Ns

[
H (rs+1)J (rs+1)−H (rs+1)J (rs+1)

]
·X−1

s ,

(56)

où

Xs = H (rs) J (rs+1)−H (rs+1) J (rs) . (57)

Le passage à travers une interface est donné par

U+
s+1 =

[

U+
ee U+

eh

U+
he U+

hh

]

=

=

[

W−1
s+1Es+1Cs+1C

−1
s E

−1
s Ws 0

0 V −1
s+1Bs+1B

−1
s Vs

]

U
−

s+1
︷ ︸︸ ︷[

U−
ee U−

eh

U−
he U−

hh

][

W−1
s Ws+1 0

0 V −1
s Vs+1

]

+

[

0 W−1
s+1Es+1Cs+1C

−1
s EsK

s+1
r EsVs+1

V −1
s+1Bs+1B

−1
s Ks+1

r Ws+1 0

]

+

−
[

0 W−1
s+1K

s+1
r Es+1Vs+1

V −1
s+1K

s+1
r Ws+1 0

]

,

(58)

où + 7→ r+s+1 et − 7→ r−s+1 désignent respectivement les côtés droit et gauche de l’interface.

En échangeant les indices s et s+1 ainsi que les exposants + et −, on obtient l’expression

du passage inverse.

Pour établir le problème modal homogène, nous fixons les conditions de bord suivantes :

pas de fonction de Hankel au centre, pas d’ondes entrantes venant de l’extérieur. La pro-

pagation selon les équations (4.30) (ou (4.29)) et (4.44) permet d’imposer la condition de

raccordement à une interface fixé, i.e.
(

UL−
s′ −UL+

s′

)

p
(
r−s+1

)
= 0. (59)

Dans ce cas la solution est la longueur d’onde complexe qui permet ensuite de calculer le

facteur de qualité Q en utilisant la relation suivante

Q = − Re{λc}
2 Im{λc}

. (60)
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Nous avons consacré beaucoup de temps pour choisir la méthode numérique pour résoudre

ce système homogène. Nous avons finalement implémenté une méthode cherchant à faire la

décomposition en valeurs singulières de la matrice puis à minimiser la valeur singulière la

plus basse.

Différents résultats sont présentés sur un microanneau puis un microdisque, dans les

tableaux 4.1, 4.2, 4.3, 4.4.

De plus nous avons aussi appliqué cette méthode sur des structures récentes permettant de

confiner le champ dans les zones à faible indice de réfraction. Un disque utilisant ce principe

sur l’axe de symétrie est proposé. Dans ce cas, seuls les modes TM permettent d’obtenir le

résultat escompté. Cet effet est basé sur l’interférence de deux queues évanescents d’un mode

TM, qui montre un saut du champ électrique a chaque interface.

Pour cela, nous décrivons brièvement le paramètre de confinement comme le suivant :

ΓTM
i =

∫

layer i |Ex|2 dx
∫∞
−∞ |Ex|2 dx

(61)

et l’effet Purcell (accroissement de l’émission spontanée)

Fp =
Γ

Γ0
=

6Q
(

λ
2n

)3

π2

ǫ (~rmax)max
∣
∣
∣ ~E (~r)

∣
∣
∣

2

∫∞
−∞ ǫ (~r)

∣
∣
∣ ~E (~r)

∣
∣
∣ d~r

=
6Q
(

λ
2n

)3

π2Veff
=

6Q

π2Ṽeff

. (62)

Cette structure a comme avantage de réduire le volume modal Ṽeff . Dans la figure 4.16

nous montrons une forte amélioration de ce facteur.

Chapitre 5

Le dernier chapitre est consacré à la description de plusieurs configurations optiques

utilisant des microdisques et réalisées en SOI. Ils ont comme point commun d’être tout le

temps associé à au moins un guide droit.

Il introduit des pertes supplémentaires représentées sous la forme suivante :

Ψ ∝ exp [(jωres − α− αc) t] (63)

où ωres est la pulsation résonante, α les pertes intrinsèques du résonateur, et αc les pertes

de couplage : comme Qtot = ωres/(2αtot), le coefficient de qualité est dépendant de toutes

sources de fuites et il est exprimé par la formule suivante :

1

Qtot
=

1

Qint
+

1

Qcoupling
(64)

où Qint est le coefficient de qualité intrinsèque (i.e. causée par la géométrie du résonateur

et par conséquent donnée par la cavité isolée), Qcoupling représente les fuites supplémentaires

induites par des perturbations extérieures et Qtot le coefficient général que l’on peut mesurer.

Il est évident que la valeur de la limite du facteur de qualité total est liée au coefficient de

qualité le plus faible.
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Un guide monomode couplé à un résonateur à fort coefficient de qualitéQ permet d’obtenir

la fonction de filtrage réjecteur de bande. Si deux guides sont utilisés, on peut obtenir un

démultiplexeur ou un mutliplexeur (add&drop), voir les figures. 5.2 et 5.4.

Beaucoup de structures intégrées en SOI sont accessibles à l’IMEP : nous avons étudié

quelques composants tels que des disques de 8µm de diamètre associés à un guide. Sa forte

sélectivité en longueur d’onde (Q > 50000) permet d’observer beaucoup de résonances. Un

phénomène de levée de dégénérescence est observée du à une rupture de symétrie créée par

l’approche du guide à côté du disque.

Il est possible aussi de détecter des effets non-linéaires causés par des effets thermiques.

Nous avons fait des caractérisations avec une source continue et accordable en longueur

d’onde. Malheureusement, très peu de résultats intéressants ont été obtenus. Des problèmes

dues à la rugosité, à des imprécisions sur la séparation guide disque ou des problèmes de la

qualité de la gravure peuvent être à l’origine de ces résultats.

En effet, une petite variation du gap guide-disque est suffisant pour modifier l’efficacité

du couplage. De plus si le couplage est trop faible, le pic de résonance est masqué par les

oscillations de la cavité Fabry-Pérot induites par la cavité définie par le guide droit seul. La

précision des mécanismes du micropositionneur influence aussi les résultats.

Les composants à base de microgears ont aussi été étudiés. Le microgear est un disque

constitué d’un réseau de trous périodique à sa périphérie. Ceci permet d’obtenir des effets de

Bragg et d’avoir une sélectivité des modes d’ordre azimutal différent. Le couplage dans ce cas

avec le guide est moins efficace due à une levée de dégénérescence importante du mode dans

le microgear. Ceci est intrinsèquement lié à l’effet Bragg (onde stationnaire) et représente

une différence importante par rapport au simple microdisque, qui est un composant à ondes

progressives.

Conclusion

L’objectif de ce travail a été d’étudier de nouveaux composants d’optique intégrée pour

des applications passives ou actives dans le domaine de la photoniques. Des propriétés non-

linéaires intéressantes peuvent être analysées dans des structures périodiques : SGS permet

de contrôler optiquement le routage de la lumière. Le confinement de la lumière dans des

cavités à fort coefficient de qualité Q permettent de filtrer les signaux lumineux. De nouvelles

expériences non-linéaires ou d’électrodynamique quantique sont maintenant envisageables.

Une grande partie du travail a été consacrée à l’implémentation de deux méthodes numériques

dans le but d’avoir une mise en œuvre simple et d’accéder à une grande rapidité de calcul.

L’étude d’une BPM et d’une méthode modale efficace tel que l’A-FMM nous ont permis d’ap-

prendre et mâıtriser des techniques dominantes très avantageuses. La partie expérimentale a

montré la difficulté de fabriquer et caractériser des composants intégrés à grande sélectivité,

bien que beaucoup d’applications importantes soient possibles.





Introduction

In recent years we have assisted to contradictory trends in the evolution of integrated optics.

This field, also referred to as Photonics, in analogy with electronics to indicate processing

of data by means of photons, has had a striking impact on communication industry. The

invention of optical fibres (as signal transmitters) and of the laser, that date back to the

fifties of the twentieth century, have provided the technical background to the development

of the global communication network, Internet.

Nonetheless laser has allowed to set up fundamental physical experiments, e.g. laser trap-

ping, to improve the accuracy of experimental optics owing to laser light coherence, and to

reveal previously disregarded light-matter interactions, such as nonlinear effects.

Laser technology is widespread, from industrial applications to communications, and op-

tical fibres are used as reliable link in a large variety of environments.

Moreover optical fibres represent a mature and reliable product, with even small margins

of improvement; this is a remarkable peculiarity among other high-technology industries and

consequently an economic issue for the field.

As a comparison we can consider Electronics: Moore’s law 1 have been a fair representa-

tion of its development trend for more than thirty years. Indeed MOSFET scaling was for

ages a straightforward process, that allowed to gain efficiency (voltage, power consumption,

switching speed), without facing severe physical limits.

In recent years, however, many structural limitations have been tackled and new tech-

nological nodes accomplished: each step requires a careful study of materials, fabrication

techniques, parasitic side-effects etc. . . Moreover power consumption in integrated circuits is

a serious problem, along with time delay and signal integrity that limit chip to chip bandwidth

on boards.

In a rough economic model, electronic industry, as a general purpose technology, with a

seemingly everlasting expansion and innovation, owes its pace to frequent introduction of new

systems, solutions, and products, whose advanced capabilities induce to replace old products.

The resulting revenues have funded innovative research projects, among which also photonics

plays an important role, in order to implement next-generation systems.

Integrated optics provides fast (at the speed of light) electric interference-free signalling

and processing of wide-band signals; optical storage and several computing functionalities

can also be considered.

In optics many different materials are employed, III-V compound semiconductors, like

1. Transistor density and integrated circuit performance nearly doubling every eighteen-months.

1
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GaAs, InP, AlGaAs, more peculiar compounds as LiNO3, a variety of glasses, organic films

and so on. Each corresponds to a specific fabrication technique (growth, lithography, etching),

as well as guiding properties and optical activity.

Electronics has instead developed Silicon as first choice, because it guarantees high yields

at low cost, its oxidation produces one the best available insulators, and it guarantees fast

CMOS operations.

Silicon and silica are exceptionally good to build a micro-integrated waveguide, but one

of the main issues to bring optoelectronics to Silicon is to develop active devices, considering

that both lasing and modulation are hard to obtain, owing respectively to indirect electronic

band-gap and the absence of strong nonlinear effects. In fact thermal induced shifts of

refractive index is dominant, but extremely slow.

In spite of those difficulties, many breakthroughs have been made, e.g. the first demon-

stration of a continuous-wave laser based on Raman effect [1], and fast modulation based on

electronic-plasma dispersion, [2].

Nonetheless, a lot of active research is being performed in silicon photonics; lasing and

amplification capabilities could be reached perhaps by modifying microscopic structure de-

parting from bulk crystal, e.g. nanoclusters and nanocrystals embedded in silica; micro- and

nano-technology have allowed to implement e.g. hybrid InP laser on a silicon chip, see [3].

We mention also the astonishing properties of metamaterials, that exhibit negative index

of refraction, that depends more on the structure of the material rather than on intrinsic

material properties, see [4].

Moreover architecture plays a crucial role: there exist devices in which modulation, pro-

grammable filters and multiplexers, and switches could benefit from low-threshold nonlinear

optics.

Considering that nano-technology will probably permit to attain new capabilities, incon-

ceivable in bulk materials, and that electronics will take the risk to adopt new materials, we

can reckon that photonics will benefit from silicon processing techniques, as well as electron-

ics will avoid to slow down its extraordinary pace, exploiting new features provided by the

photonic domain, tolerating or even proposing hybrid structures and processes, employing

new materials and concepts.

A more detailed analysis of the state of the art of photonics and its relations to the

electronic industry can be found in [5].

Basically, this work is focused on micro-structured integrated optical devices, which can

be used to process lightwave signals.

By means of micro-fabrication techniques, deposition, lithography, doping (suitable to

modulators or active devices), magnetic periodic poling (to achieve phase-matching in non-

linear optics), propagation can be moulded to better exploit light-matter interactions.

Two device families have attracted a lot of attention in recent-years:

• periodic structures and photonic crystals;

• integrated micro-cavities.
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The first group is based on the existence of modes that are not scattered in propagation along

with modes that are not allowed to propagate, due to Bragg reflection, the second relies on

confining light by internal reflection mechanisms for extremely long times.

Each guiding and confining mechanism enables to achieve specific properties in light-

matter interactions.

Photonic crystals provide a complete framework to implement optical integrated systems:

waveguides with peculiar properties (e.g. slow light applications) have been obtained as line

defects, cavities as point defects, i.e. missing or excess hole/rod that lead to an additional

localised state to the periodic structure. A high Q-factor cavity is achieved in this case due

to symmetry breaking induced by the defect as opposed to the extreme regularity of the

surrounding periodic repetition.

Integrated microcavities, such as microdisks, microrings, microtori, and microspheres,

obtain even better performance due to their regular shape (microtori have quality factor

Q ≈ 106, microspheres up to Q ≈ 108). For this reason they seem particularly suitable to

cavity QED (C-QED) applications, from Purcell factor enhancement to strong coupling, since

their resonances can be made extremely narrow, see [6–8], but can be also exploited to store

or modulate light. Nevertheless those effects are being investigated also in photonic crystal

cavities.

Applications of microcavities also encompass active devices, indeed via a nonlinear effect,

e.g. thermo-optical, Pockels, or carrier injection, we can shift a resonant peak and allow or

forbid the light coupling inside, a sort of switching functionality; layers of active materials

permit to achieve quantum interactions and light generation.

Finally it is worth recalling an innovative guiding mechanism provided by arrays of

coupled-resonators that are used to tailor pulse propagation, e.g. obtaining dispersionless

propagation, we refer to coupled-resonator optical waveguides (CROWs), see [9, 10]. Many

authors propose the terms photonic atom and photonic molecule, see [11, 12] to express the

opportunity of studying not only simple building blocks (atoms, such as cavities) but also

compounds obtained by their use (molecules, among which CROWs are the simplest exam-

ple). In this way we have a conceptual framework that includes both of the above-mentioned

families and many new ideas, based on them.

In order to clarify our activity, we remark that many other applications of photonic

crystals have been investigated in recent years: several interesting phenomena are admitted,

see [13]. Soliton propagation, i.e. a dispersion- or diffraction-less regime, can be attained,

and the effect of periodicity and improved confinement of selected field patterns results in

unique dynamical properties (e.g. bifurcations and stability) as well as a lower threshold to

achieve effective nonlinear interactions.

Many features of solitonic regimes in periodic devices are being studied, both analytical

and modelling (e.g. identification of stability regions, role of approximations), as well as

experimental (e.g. how to excite a stable pulse or profile, possible applications to routing or

switching, materials and set-ups). We concentrated on modelling strategies applied to spatial

gap solitons in 1D periodic media, with both Kerr and quadratic nonlinearities.

As we have just mentioned, resonators provide an alternative processing building block
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and can be widely exploited. Cylindrical microresonators, such as microrings or microdisks

are suitable to planar integration, specifically in silicon on insulator (SOI), and theoretical,

design and fabrication limits have to be thoroughly investigated in order to obtain reliable

devices for industrial production.

Having joined a European project, a year of doctoral work was spent at the IMEP lab-

oratory in Grenoble, where this research topic have been active for several years. As far as

small cylindrical cavities are considered, the hybrid character of their linear modal structures

requires a full 3D analysis. Then we implemented a novel numerical method based on the

simple aperiodic Fourier modal method (A-FMM), that overcomes several limits of previously

proposed approaches.

Moreover those structures are quite sensitive, as other optical devices, to fabrication mis-

fits, e.g. roughness, shape defects, impurities, distances between elements. Let us consider

their high-Q: a disturbance may affect remarkably the final behaviour. Thus a thorough ex-

perimental characterization have to be performed, in order to compare different fabrication

techniques and to assess design procedures: we focused on disk-based filters and add&drops

implemented in SOI. The study of those integrated chips, actually quite simple structures,

has been aimed to optimise waveguide coupling, to qualify fabrication limits (e.g. surface

scattering and the splitting of counter-propagating modes), sensitivity to environment per-

turbation, and to investigate nonlinear effects (e.g. thermal effect arises also at low power.)

The structure of this thesis is as follows. After an overview of modelling in Optics, specifi-

cally of parametric nonlinear phenomena, such as Kerr effect and second harmonic generation

(SHG), and modal methods, chapter 1, in chapter 2 the nonlinear beam-propagation method

is recalled; then we specifically analyse the self-trapping regime called spatial gap-soliton. In

chapter 4 we describe our modal method approach to cylindrical microresonators.

The experimental work on SOI waveguide-coupled microdisk resonators is discussed in

chapter 5, where, after a brief outline of design principles, some results of characterization

are presented.

Conclusion and perspectives for future work are then presented; a few appendices follow

to report more detail about related topics.



Chapter 1

A Survey on the Modelling of

Integrated Optical Devices

Since a large part of the research work has been focused on numerical techniques in integrated

optics, we believe it is worth providing a brief survey on modelling approaches, in the classical

framework of Maxwell equations.

We are thus going to report a sort of classification of methods, that could be distinguished

by their level of approximation (e.g. 1D, 2D, or 3D), their conceptual framework (i.e. are we

starting from wave equation, or from an approximation, does we discretize the space or

compute modes?), and by their capability to deal with a variety of phenomena (dispersion,

nonlinearities, electronic distribution).

Let us start from Maxwell equations.

1.1 Maxwell Equation in a Charge-free Region

In optics we usually study dielectric materials and the effect of a free electromagnetic field

on it, thus we can consider source- and charge-free Maxwell equations, that read as

∇× ~E(x, y, z, t) = −∂
~B(x, y, z, t)

∂t
(1.1)

∇× ~H(x, y, z, t) =
∂ ~D(x, y, z, t)

∂t
(1.2)

∇ · ~D(x, y, z, t) = 0 (1.3)

∇ · ~B(x, y, z, t) = 0 (1.4)

where we used the common compact vectorial notation and symbols,

• ~E electric field;

• ~H magnetic field;

• ~D electric induction;

5
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• ~B magnetic induction.

Constitutive equations of a general class of materials can be expressed as

~D(x, y, z, t) =
[

ǫ(x, y, z, ω, |~E|)⊗ ~E(x, y, z, t)
]

(1.5)

~B(x, y, z, t) =
[

µ(x, y, z, ω, | ~H|)⊗ ~H(x, y, z, t)
]

(1.6)

The two relations (1.5) and (1.6) account for the opportunity of including anisotropic,

inhomogeneous, nonlinear effects. The ⊗ is intended as a functional operation, such as

convolution, necessary to describe dispersive contributions.

To provide a solution of an electromagnetic problem, boundary conditions are required; in

dielectrics they reduce to continuity of normal components of ~D and ~B, as well as of tangential

components of ~E and ~H.

Moreover, we do usually deal with non-magnetic materials, i.e. µ = µ0 = 4π× 10−7H/m,

then we realize that continuity conditions imply different behavior of electric and magnetic

field across an interface between two different media.

1.2 Wave Equation as Inspiration for Modelling

Electromagnetic problems, as those described by eqs. (1.1)–(1.4) are generally quite hard,

thus we have basically to introduce several hypotheses to reduce to more practical forms.

We have mainly to deal with:

• the material properties and models;

• the device structure.

It is well known that the choice of an approximation instead of another is based on a

trade-off between accuracy and computation time. Moreover in most situations, a concep-

tually simple algorithm (e.g. finite-difference time-domain method (FDTD)) provides good

results and fits a large variety of problems, but is also very time and resource demanding.

Passing to a more sophisticated approach (e.g. FEM) requires much more effort in imple-

mentation, but could guarantee better performance. As an alternative, models derived by

simple approximations or exploiting mathematical properties, that are suitable to specific

structures, are generally beneficial in terms of implementation ease and time-consumption.

We firstly consider anisotropic, linear, non-dispersive dielectric materials, in order to

obtain a simple form of vectorial wave equation. Further on we will provide some details

about nonlinear propagation.

Let us apply the curl to eq. (1.1) and insert in it eq. (1.2), then, using the well-known

identity

∇×∇× ~A = ∇
(

∇ · ~A
)

−∇2 ~A

we can derive a full-vectorial equation for the electric field.

∇2~E(x, y, z, t)−∇
(

∇ · ~E(x, y, z, t)
)

+ µ0
∂2 ~D(x, y, z, t)

∂t2
= 0 (1.7)



1.2. Wave Equation as Inspiration for Modelling 7

We remark that, since the electric induction ~D is not expressed in a specific form, we can

still use the latter equation to study nonlinear phenomena.

We can now impose the linearity hypothesis

~D(x, y, z, t) = ε(x, y, z)~E(x, y, z, t) (1.8)

Since we will study in detail time-harmonic methods, a time-dependence exp(jωt) is

assumed; to account for finite bandwidth pulses, we span over a frequency range.

From eq. (1.7), inserting (1.8), we can obtain

∇2 ~E(x, y, z) + k2
0n

2(x, y, z) ~E(x, y, z) = ∇
(

∇ · ~E(x, y, z)
)

(1.9)

In eq. (1.9) ~E is the complex vector representing the electric field, k0 = 2π
λ is the free-space

wavenumber, with λ the free-space wavelegth, and n(x, y, z) =
√

µε(x,y,z)
µ0ε0

is the refractive

index profile of the medium.

Substituting the suitable constitutive relation, we recast eq. (1.3) as

0 = ∇ · ~D(x, y, z, t) = ∇ ·
(

ε(x, y, z) ~E(x, y, z)
)

and

∇ · ~E(x, y, z) = −∇ε(x, y, z)
ε(x, y, z)

· ~E(x, y, z) = −∇n
2(x, y, z)

n2(x, y, z)
· ~E(x, y, z)

Applying the latter expression to (1.9), we obtain

∇2 ~E(x, y, z) + k2
0n

2(x, y, z) ~E(x, y, z) = −∇
(

∇ lnn2(x, y, z) · ~E(x, y, z)
)

(1.10)

that component-wise reads as

∂2Ei(x, y, z)

∂x2
+
∂2Ei(x, y, z)

∂y2
+
∂2Ei(x, y, z)

∂z2
+

+ k2
0n

2(x, y, z)Ei(x, y, z) = − ∂
∂i

[

Ex(x, y, z)
∂ lnn2(x, y, z)

∂x
+

+Ey(x, y, z)
∂ lnn2(x, y, z)

∂y
+ Ez(x, y, z)

∂ lnn2(x, y, z)

∂z

]

(1.11)

. Eq. (1.11), for i = x, y, z, constitutes the so-called vectorial Helmholtz equations.

Let us present two further simplifications of eq. (1.10) or (1.11), that are usually applied

to reduce the formal complexity as well as the computational load of a numerical solver.

Their accuracy depends on the structure under analysis, but they are less and less generic:

• refractive index variations are negligible compared to a mean index, used as reference:

∆n

n
≪ 1 (1.12)

right-hand side terms
∂

∂j

[
∂ lnn2(x, y, z)

∂i

]

, with j 6= i
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can be neglected, leading to reduced vectorial equations or semi-vectorial Helmholtz

equations:
∂2Ei

∂x2
+
∂2Ei

∂y2
+
∂2Ei

∂z2
+ ω2µ0εEi = − ∂

∂i

(

Ei
1

ε

∂ǫ

∂i

)

(1.13)

with i = x, y, z.

• moreover, if dielectric permittivity inhomogeneity is nearly zero on a wavelength scale,

i.e.
∇ε(x, y, z)
ε(x, y, z)

≪ 1

λ
(1.14)

we can cancel all the right-hand side and reduce to scalar Helmholtz equations:

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
+ ω2µ0εE = 0 (1.15)

E designates a generic component of the electric field.

A special care should be taken while using semivectorial approximation, (1.13): they

assume the absence of coupling between different field components: this is a good assumption

in guided-optics, provided that we deal with a weak-guiding regime. Scalar approximation

is suitable to homogeneous areas. Despite the seeming uselessness of this assumption, it

plays a key role if a device can be decomposed in nearly homogeneous regions. Imposing

interface/boundary conditions between adjacent volumes permits to solve the electromagnetic

problem neglecting transitions from one to another.

The latter formulation can be expressed also as:

∇2 ~E + ω2µ0ε ~E = 0 (1.16)

From (1.10), by application of the duality principle of electrodynamics, i.e.

~E ↔ ~H

~H ↔ − ~E
ǫ↔ µ

µ↔ ǫ

we obtain a wave equation for the magnetic field, that results merely scalar on the assumption

of non-magnetic materials, i.e.

∇2 ~H + k2
0n

2(x, y, z) ~H = 0 (1.17)

1.2.1 Paraxial approximation

In this work we are treating chiefly propagative problems, i.e. computing the evolution of

an electromagnetic field in a structure starting from a known excitation profile at one of its

ends. Instead of solving a boundary-value problem, as results in general from eqs. (1.15) and

(1.17), the solution of an initial-value approximated formulation is often made.
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Hence it is worthwhile to report a widely used approximation technique, the paraxial

approximation or slowly-varying envelope approximation (SVEA), that originates in the field

of geometric optics, but is employed in beam propagation method (BPM) and constitutes a

fundamental basis in coupled-mode theory (CMT) calculations; as another example, gaussian

beams are solutions of such an approximated formulation. It simplifies the problem and

reduces computational time, providing a reliable solution of a large number of problems.

Let us assume that a light wave propagates mainly in a specified direction, say z, i.e. in the

plane-wave spectrum the contributions of wavevector ~k corresponding to other orientations

are less important,

k2
z ≈ k2

0n
2
0 ≫

(
k2

x + k2
y

)

where n0 is a suitable reference index.

In this spirit, we can express a field as

~E(x, y, z) = ~u(x, y, z)e−jk0n0z (1.18)

or equivalently component-wise

Ei(x, y, z) = ui(x, y, z)e
−jk0n0z (1.19)

where ~u(x, y, z) is a slowly-varying envelope.

It is easy to understand that this approximation is equivalent to considering only a limited

set of propagation angles about the main propagation direction.

We now substitute ansatz (1.19) in (1.11) and specify it for the x component to obtain

∂2(uxe
−jk0n0z)

∂x2
+
∂2(uxe

−jk0n0z)

∂y2
+
∂2(uxe

−jk0n0z)

∂z2
+ k2

0n
2uxe

−jk0n0z =

= − ∂

∂x

(

uxe
−jk0n0z ∂ lnn2

∂x
+ uye

−jk0n0z ∂ lnn2

∂y
+ uze

−jk0n0z ∂ lnn2

∂z

)

.

(1.20)

After expanding derivatives, we can apply the SVEA, i.e.

∣
∣
∣
∣

∂2ui

∂z2

∣
∣
∣
∣
≪ 2k0n0

∣
∣
∣
∣

∂ui

∂z

∣
∣
∣
∣
, (1.21)

and obtain an approximated propagative equation in the form

j
∂ux

∂z
=

1

2k0n0

[
∂2ux

∂x2
+
∂2ux

∂y2
+
(
k2

0(n
2 − n2

0)
)
ux+

+
∂

∂x

(

ux
∂ lnn2

∂x
+ uy

∂ lnn2

∂y
+ uz

∂ lnn2

∂z

)] (1.22)

Repeating the same calculations for the other transverse component uy
1 and rearranging

in matrix form we obtain, see [14, 15]:

∂

∂z

[

ux

uy

]

=
1

2jk0n0

[

M11 M12

M21 M22

][

ux

uy

]

+

[

Rx(uz)

Ry(uz)

]

(1.23)

1. As usual in other approaches, the whole fields can be obtained from two components



10 1. A SURVEY ON THE MODELLING OF INTEGRATED OPTICAL DEVICES

where matries M11, M12, M21, M22, Rx(uz), Ry(uz) represent formal operators defined as

M11 =
∂2

∂x2
+

∂2

∂y2
+ k2

0(n
2 − n2

0) +
∂ lnn2

∂x

∂

∂x
+
∂2 lnn2

∂x2

M12 =
∂ lnn2

∂y

∂

∂x
+
∂2 lnn2

∂x∂y

M21 =
∂ lnn2

∂x

∂

∂y
+
∂2 lnn2

∂x∂y

M22 =
∂2

∂x2
+

∂2

∂y2
+ k2

0(n
2 − n2

0) +
∂ lnn2

∂y

∂

∂y
+
∂2 lnn2

∂y2

Rx =
1

2jk0n0

∂

∂x

(

uz
∂ lnn2

∂z

)

Ry =
1

2jk0n0

∂

∂y

(

uz
∂ lnn2

∂z

)

a formal solution of (1.23), that represents propagation from z to z + ∆z reads as

[

ux(z + ∆z)

uy(z + ∆z)

]

= e−j
∫ z+∆z

z
P dξ

[

ux(z)

uy(z)

]

+

+ e−j
∫ z+∆z

z
P dξ ·

∫ z+∆z

z
e−j

∫ ξ

z
P dη

[

Rx

Ry

]

dξ

(1.24)

where P = 1
2k0n0

M .

The latter operator P can be expanded as P = P prop +P ph +P inhom +P cc +P pol, where

the following positions have to be made:

P prop =
1

2k0n0

[
∂2

∂x2 + ∂2

∂y2 0

0 ∂2

∂x2 + ∂2

∂y2

]

(1.25)

P ph =
1

2k0n0

[

k2
0

(
n2 − n2

0

)
0

0 k2
0

(
n2 − n2

0

)

]

(1.26)

P inhom =
1

2k0n0

[
∂2 ln n2

∂x2 + ∂ ln n2

∂x
∂
∂x 0

0 ∂2 ln n2

∂y2 + ∂ ln n2

∂y
∂
∂y

]

(1.27)

P cc =
1

2k0n0

[

0 ∂ ln n2

∂y
∂
∂x

∂ ln n2

∂x
∂
∂y 0

]

(1.28)

P pol =
1

2k0n0

[

0 ∂2 ln n2

∂x∂y
∂2 ln n2

∂x∂y 0

]

(1.29)

By means of definitions (1.25)–(1.29), we identify the characteristics of 3D propagation:

we can now discern which model is most suitable to the structure in question.

P prop is the propagation in a homogeneous medium of refractive index n0.

P ph is a phase correction to account for the proper index.
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P inhom considers the effect of cross section inhomogeneity.

P cc represents how transverse index variations, if any, couple field components ux e uy.

P pol accounts for the polarization rotation induced by the index profile.

By inspection of eqs. (1.25)–(1.29), following [15] and [16], we can state that vectorial

model (solution provided in [14, 15]) corresponds to the retention of every term. If P cc and

P pol are neglected semi-vectorial equation is obtained; elimination of P inhom leads to scalar

algorithms.

Earlier BPM implementations, based on paraxial approximation, show many accuracy

issues that, see for example [17], can be partly mitigated by wide-angle versions that, by

improving the paraxial approximation, seek to consider propagation of narrow field profiles

(i.e. larger spatial spectra). Finally, notice that the SVEA implies a unique direction and

orientation of propagation: bi-directional propagation is feasible only on account of other

techniques, in a limited set of configurations.

1.3 Nonlinear Propagation

As it is stated in the introduction, laser technology have allowed to analyse many physical

phenomena nearly unimaginable before: nonlinear Optics (NLO) is among them.

Light-matter interaction encompasses a variety of different effects: electronic transitions

(as in LEDs or lasers), interplay with other excitons (as with phonon in Raman effect),

or as dipole-polarization effects on a microscopic scale (e.g. frequency mixing nonolinear

phenomena).

The latter example is generally rather sensitive to illumination intensity, giving rise to

frequency conversion, modulation and/or self-modulation effect.

Let us briefly outline the framework of NLO (an extensive treatment can be found, e.g.,

in [18]):

• parametric effects

– Second Harmonic Generation;

– Kerr Effect;

– Sum Frequency Generation;

– Pockels Effect;

• scattering phenomena

– Rayleigh Scattering (elastic);

– Brillouin Scattering (inelastic);

– Raman Scattering (inelastic);
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We will deal chiefly with parametric processes, that will be studied according to the

classical model of high-order electric susceptibility. They play an important role in signal

processing at optical frequencies.

It is worth recalling some fundamental properties of these phenomena:

• the medium plays a role as a “catalyst” of the energy transfer from one frequency (or

polarization, or wave-vector) to another;

• the population of energy levels at atomic or molecular level is not affected, initial and

final populations are the same;

• the classical model provides a representation in terms of distortion of electronic oscil-

lating motions

– nearly-instantaneous response (10−15s);

– nonlinear (NL) susceptibilities χNL(ω) are real and weakly dispersive (off-resonance

stimulus). 2

Let us rewrite eq. (1.5) as

~D(x, y, z, t) = ε0~E(x, y, z, t) + ~P
(

x, y, z, t, ~E
)

(1.30)

where ~P is a nonlinear function of ~E .
Polarization can be developed in Taylor series, i.e.

~P
(

x, y, z, t, ~E
)

=

= ε0

(

χ(1)~E
)

+

+ ~P(2)

(

x, y, z, t,
∣
∣
∣~E
∣
∣
∣

2
)

+ ~P(3)

(

x, y, z, t,
∣
∣
∣~E
∣
∣
∣

3
)

+ . . .

= ~PLIN
(

x, y, z, t, ~E
)

+ ~PNL
(

x, y, z, t, ~E
)

(1.31)

where the terms in the form ~P(n) represent the n-th order element of the polynomial expansion

and, under the hypothesis of negligible dispersion, they are expressed in terms of a dielectric

susceptibility tensor of order n, χ(n).

The latter equations would not contain convolution-like integrals, usually referred to as

Volterra series expansion. Nevertheless, to obtain a general formulation of nonlinear polar-

ization the tensor character of susceptibilities has to be taken into account, as we make to

compute linear polarization of anisotropic media, along with the complexity of higher order

tensors. In fact the n-th order susceptibility is written as

χ(n) (ω1 + ω2 + · · ·+ ωn = ωf )

2. In the quantum mechanical picture, these effects are explained as interactions of external photons with

electrons populating energy levels reached via virtual transitions (i.e. involving nonstationary states), justifying

in this way the need of a strong radiation intensity, since photons are required to interact with electronic states

that have an extremely small life-time.
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to account for the interaction of n electric field vectors.

Taylor expansion contains multiplication terms that result in energy transfer towards

frequency contributions not included in the input.

It is worth specifying some more assumptions that allow to reduce the complexity of the

final equations:

• field are Continuous Wave (CW), i.e. linear combinations of harmonic terms.

• no absorption (transparent media);

• real-valued χNL, i.e. neither losses nor scattering phenomena are considered.

• perturbative nature of nonlinear effects.

This latter hypothesis permits to consider electric field as solenoidal, despite it is not

rigorously so.

∇ · ~D = 0⇒ ε0εr ∇ · ~E = −∇ · ~PNL

∇ · ~E ≃ 0 (1.32)

From 1.32, inserting 1.30 and 1.31 in 1.7, we have:

∇2~E(x, y, z, t)− µ0ε
∂2~E(x, y, z, t)

∂t2
= µ0

∂2 ~PNL(x, y, z, t)

∂t2
(1.33)

1.3.1 Selection rules for a nonlinear optical process

Many different processes can occur at the same time, but each with different efficiency. It is

worth investigating which mechanisms affect them, usually referred to as selection rules.

First of all, convergence of Taylor series in eq. (1.31) implies that coefficients vanish as

long as we add terms.

As far as the material characteristics are concerned, crystal/molecular conformation in-

fluences nonlinear response.

Indeed crystal structures can be divided in two classes:

• centrosymmetric (invariant to ~r ↔ −~r transformation);

• non-centrosymmetric.

In centrosymmetric crystals and amorphous materials χ(2n) = 0, thus, e.g., in optical

fibres third order nonlinearity is the first available.

Finally, given a specific device (structures and media involved), the choice of the excitation

frequency as well as the field distribution affect the impact of NL effects. Since materials are

generally dispersive, energy is transferred from one frequency to another in periodic fashion,

that depends upon the relative phase at which harmonics combine. This is usually called

the phase-mismatch effect, and by employing anisotropic crystals at proper orientation we

can achieve phase-matching and dramatically improve interaction efficiency for a specific

polarization. Moreover NL effects can be enhanced by confining fields in a tiny region. It is

a quite promising approach to benefit from NL processing at low intensities.

We will provide two examples of NL propagation
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• SHG;

• (optical) Kerr (self-)effect (OKE).

1.3.2 Second harmonic generation

Let

P(NL)(x, y, z, t) = P(2)(x, y, z, t) = ε0χ
(2)E2 (1.34)

and consider a propagative solution composed by two plane-wave or guided-modes, propagat-

ing at frequency ω e 2ω. Nonlinear perturbation impresses a modulation along z direction,

in the form of two slowly varying envelopes u1 and u2

E(x, y, z, t) =
1

2
f1(x, y)u1(z)e

−jk1z+jωt +
1

2
f2(x, y)u2(z)e

−jk2z+j2ωt+

+
1

2
f1(x, y)

∗u∗1(z)e
jk1z−jωt +

1

2
f2(x, y)

∗u∗2(z)e
jk2z−j2ωt

(1.35)

where k1 = k0n1 and k2 = 2k0n2, with k0 the free-space wavenumber, are the propagation

constants at ω and 2ω respectively, f1(x, y) and f2(x, y) are the corresponding modal profiles,

i.e. solutions of (
∂2

∂x2
+

∂2

∂y2

)

fi + k2
0

(
n2(x, y)− n2

i

)
fi = 0 (1.36)

We then insert ansatz (1.35) in (1.33), considering that to substitute (1.35) in (1.34), we

have to neglect harmonic terms at multiples of ω higher that those imposed by input field.

E2 =
1

4




f

2
1u

2
1e

−j2k1z+j2ωt + 2f2f1u2u
∗
1e

−j(k2−k1)z+jωt + c.c.+ (0, 3ω, 4ω)
︸ ︷︷ ︸

neglected




 (1.37)

Applying (1.21), considering that time derivatives correspond to multiplication by jω or

j2ω, and cancelling terms according to (1.36), we separate the envelope evolutions at the two

wavelengths and write







jf1
du1

dz
=
ω2

c20

1

2k1
χ(2)f2f1u2u

∗
1e

−j∆kz

jf2
du2

dz
=

(2ω)2

2c20

1

2k2
χ(2)f2

1u
2
1e

j∆kz

(1.38)

where we have posed

∆k = k2 − 2k1 (1.39)

that represents the phase-mismatch mentioned earlier.

To obtain a standard form, many normalization can be made, but we introduce only a

simple scaling, i.e.

Ui =

(√

1

2η0
ni

∫

f2
i dx dy

)

ui (1.40)

The squared of fields thus gives local optical intensity.
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Substituting eq. (1.40) in (1.38), integrating over the transverse profile, we can write







j
dU1

dz
= χU2U

∗
1 e

−j∆kz

j
dU2

dz
= χU2

1 e
j∆kz

(1.41)

where

χ =
2π

λ

√
η0

2n2
1n2

χ(2)

√
Aeff

(1.42)

Aeff is a measure of the field confinement in the guiding section,

Aeff =

∫

f2
2 dx dy

( ∫
f2
1 dx dy∫

f2
1 f2 dx dy

)2

(1.43)

whose unit is m2. We notice that from eq. (1.42) second order NLO interactions can be

enhanced by decreasing the square-root of field confinement.

1.3.3 Kerr effect

If we consider a cubic nonlinearity, we could deal with a self-action or a frequency mixing

effect analogous to SHG. The self-action is particularly interesting: it is called optical Kerr

effect (OKE) and acts as an illumination-induced modulation of refractive index. 3

Polarization in a third-order nonlinear medium reads as

P(3)(x, y, z, t) = ε0χ
(3)E3 (1.44)

In this case the ansatz is a single propagating wave at (angular) frequency ω:

E(x, y, z, t) =
1

2
f(x, y)u(z)e−jkz+jωt +

1

2
f(x, y)u∗(z)ejkz−jωt (1.45)

Let us use the same criterion in expanding the polarization field:

E3 =
1

8




f

3u2u∗e−jkz+jωt + c.c.+ (3ω)
︸︷︷︸

neglected




 (1.46)

After applying differential operators and simplifying, we obtain

jf2 du

dz
=
ω2

c20

χ(3)

4

1

2k
f4|u|2u = k0n2f

4|u|2u = χf4|u|2u (1.47)

n2 represents an equivalent nonlinear refractive index.

If square-root of intensity is used instead of electric field, we can write

j
dU

dz
= k0n

I
2|U |2U (1.48)

where

U =

(√

1

2η0
n0

∫

f2 dx dy

)

u (1.49)

3. OKE has not to be confused with the static Kerr effect that is controlled by a d.c. bias.
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Figure 1.1: An example of z-Invariant Structure

and

nI
2 = n2

2

c0ε0n(ω)

1

Aeff
= n2

2

c0ε0n(ω)

∫
f4 dx dy

(∫
f2 dx dy

)2 (1.50)

A closed-form solution of (1.48) is available, since if we suppose no losses occur |U |2 is

conserved (it is proportional to the energy in the medium and no other components can

subtract it energy): it is apparent that Kerr effect can be regarded as a self-induced phase

modulation, that can be represented as an intensity-dependent perturbation to the refractive

index, i.e.

ntot = n(ω) + n2

∫
f4 dx dy

∫
f2 dx dy

|E|2 = n(ω) + nI
2Iω (1.51)

Again nonlinear efficiency increases as the transverse confinement increases.

Note that in eqs. (1.47) no phase-mismatch term appears: Kerr effect is always active

in a cubic medium and cannot be suppressed, even if we are studying other third-order

phenomena.

In separating the modal profile from electric field, TE polarization or a weak-guiding effect

(approximately valid) is supposed. If plane waves are considered, we cancel the transverse

dependence out in all normalization.

1.4 Propagation of Guided Waves

Many numerical methods rely upon spatial and/or temporal discretization of fields and can

be derived from the equations we have presented above. Nevertheless it is well-known that, in

the linear regime, a translational invariance implies the existence of guided waves, provided

a proper choice of materials and frequency of operation. It is thus worth recalling the main

properties of that kind of solutions, see the textbook [19],

Consider a generic structure as in figure 1.1, where material parameters do not change

in z-direction and where no sources are present. An external enclosing surface is represented

as well, to account for closed structures (and considering that simulation domain is always

finite), but in case of open structures it can extend up to infinity.
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It can be proven that the fields can be factorised in a transverse profile and a propagation

term,
{
~E (~r) = ~Et (~rt) exp (−jβz)
~H (~r) = ~Ht (~rt) exp (−jβz)

(1.52)

where ~r = ~rt + zẑ, and the transverse profiles ~Et and ~Ht are the so-called eigenmodes of the

structure: they are solutions that do not require sources and maintain their shape during

propagation. β is the propagation constant of the eigenmode. It can be real or complex: in

the first case we have rigorously propagating modes, otherwise they undergo a damping or

amplification, though its profile is not affected. It is useful to define a related quantity, the

effective index of the mode neff such that

β =
2π

λ
neff

where λ is as usual the free-space wavelength of light.

The invariant field configurations are called eigenmodes, since they are solution of a

(functional) eigenvalue problem, that can be deduced from Maxwell equations, inserting in

them the ansatz (1.52),
(
∇2

t + k2
0n

2 (~rt)
)
~E = β2 ~E (1.53)

and β2 is the corresponding eigenvalue.

The solution of (1.53) subject to suitable boundary conditions provides a set of eigenmodes
(

~Ei, ~Hi

)

that, under appropriate hypotheses, constitute an orthogonal complete basis for

electromagnetic propagation along the structure: thus a generic field can be expressed as a

linear combination of them, i.e.







~E (~r) =
∑

i

Ai
~Ei (~rt) exp (−jβiz)

~H (~r) =
∑

i

Ai
~Hi (~rt) exp (−jβiz)

(1.54)

We remark that this is rigorously true if several conditions are satisfied, and as far as open

structures are concerned it does not exist a general proof of the completeness of commonly

used modal sets.

Regardless the opportunity of computing analytic expressions of modes, they results from

the guide cross-section, its composition, and boundary conditions on the surrounding surface

or at an infinite distance (for dielectric waveguides, that are usually open structures).

1.4.1 Eigenmodes in open structures

Suppose to consider a lossless reciprocal structure with a central region (core) of refractive

index nco and a outer region (cladding) of refractive index ncl < nco. An example of how

effective indices of modes can distribute in the complex plane is provided in fig. 1.2.

Notice the symmetry of eigenvalues around the origin, i.e. if β is a solution, also −β is.

This follows from the formulation of the problem, (1.53), the two solutions are waves propa-

gating in opposite directions, according to the sign of the real part of β, forward (backward)
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Figure 1.2: Distribution of the effective indexes of the eigenmodes of an open structure.

waves for positive (negative) values. Such a symmetry does not concern non-reciprocal media,

such as active or nonlinear materials.

Modes can be classified in four groups:

• Guided Modes are located on the real axis. They form a discrete set and have effective

indices between ncl and nco. The field lies mainly in the core region, on account of

its high index, while decreases exponentially in cladding. Real propagation constant

implies that energy can be carried along the structure indefinitely, hence their name.

• Radiative Modes form a continuum along the real and the imaginary axes. Their field

profiles oscillate in the cladding and extend up to infinity: the transverse energy flow

justifies the term radiative. They can be either propagative (β ∈ R) and keep their

amplitude along z or evanescent (jβ ∈ R), that damp exponentially.

• Leaky Modes are a discrete set located in the complex plane. They can be seen as a

continuation of guided modes, in the sense that increasing frequency they can rejoin

the set of confined propagative solutions. Their field profiles undergo a diverging trend

in the cladding, hence they are not physical, but can be employed in calculations under

certain circumstances.

• Complex Modes occur always in quartets β = ±βre ± jβim and are very rare. It is

impossible to excite a single mode of this set, hence due to their standing nature, they

do not carry any energy.
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Let us discuss two fundamental aspects of modal decomposition: are the modes physically

meaningful? is the set of eigensolutions complete? The first question concerns the possibility

of measuring a mode individually. Guided modes are undoubtedly physical, whereas radiative

and leaky modes are not, because they extend toward infinity. Complex mode should appear

at least in pair to be physical. Nevertheless we deal with finite analysis domains, thus it often

results practical to use leaky and radiative modes to study propagation. Specifically, leaky

modes are used in place of radiative modes (of both species) to restrict the choice among

their continuum, despite a special care should be taken about it. We will further analyze a

modal method that provides a set of radiative and leaky modes directly.

As far as completeness is concerned, this requirement corresponds to the opportunity of

expanding every field profile in terms of modes and modal weights. Lossless structures that

do not support complex modes (e.g. slab waveguides) can be rigorously analysed in such

terms: guided and radiation modes constitute a complete set. All other situations (lossy

media, or complex-mode-supporting structures) currently lack of rigorous proofs of modal-

set completeness.

Lossy media can be studied by using radiative and guided modes, as well, but complex

modes have to be included if present.

Beware that the sums of eq. (1.54) have to be replaced by integrals to express the contri-

bution of radiative modes, that constitute a continuum. This means there is no way to avoid

approximation in numerical analysis.

1.4.2 Eigenmodes in closed and periodic structures

A guiding structure is commonly referred to as closed if it is limited by a perfectly conducting

lateral surface, that imposes a null tangential electric field on it and thus no propagation

outside the system.

In this case only guided or evanescent modes are allowed, except for rare occurrence of

complex modes. Indeed a mode is guided if we operate at a frequency above the cut-off, while

it vanishes below. It is possible to prove completeness of modal set made of propagating and

evanescent modes in lossless media, based upon the spectral properties of hermitian operators.

In figure 1.3 we show an example of eigenvalue distribution of such a structure.

We remark that in closed structures modes do not loose individuality if a too long wave-

length does not allow them to be guided, while in open structures we pass from a discrete

to a continuous set of modes. In fact, guided waves in dielectric structures are based on

total internal reflection or more rigorously on a transverse resonance that limits to a discrete

set the propagation wavenumber of guided modes. Increasing wavelength implies a smaller

set of wavenumbers satisfy this condition and energy leaks out of the core. Radiation out-

side the core is allowed to assume a continuity of transverse propagation, since no boundary

conditions are imposed (in proximity of the core).

Periodic structures are neither closed nor open structures, if we consider the latter as

those described by an infinitely-distant boundary only. In this case, periodic repetition of

material properties implies fields evolve in a periodic fashion as well. Equivalently each period
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Figure 1.3: Distribution of the effective indexes of the eigenmodes of a closed structure.

or elementary cell is terminated by recurrence conditions. At a fixed frequency we have a

discrete set of Bloch wave, propagative or evanescent, that are characterized by a periodic

envelope and a plane wave term. Dispersion characteristic is periodic in the wave-vector space

and formed by a discrete set of branches separated by gaps, which correspond to frequency

intervals that do not correspond to any propagative mode. Analogously a diffraction diagram

representing the longitudinal propagation constant as a function of the transverse one permits

to identify the above-mentioned propagating and evanescent modes. Recall that there exist

a separation condition for wave equation that imposes a relation between the components

of wavevector. In chapter 3 we will discuss the properties of diffraction band diagram of

1D periodic arrays, while in 4 a modal method based on periodisation and approximation of

modes of open structures by means of Bloch’s modes will be reported.

1.4.3 Orthogonality conditions and overlap integrals

Orthogonality conditions of modal fields, solutions of the electromagnetic eigenvalue problem,

can be derived by Lorentz Reciprocity theorem, that we briefly recall here.

If we consider two different solutions ~E1, ~H1 and ~E2, ~H2 imposed by two different sources,
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respectively ~J1 and ~J2, the following fundamental theorem of electrodynamics can be obtained
∫∫

S

(

~E1 × ~H2 − ~E2 × ~H1

)

dS =

∫∫∫

V

(

~J1 · ~E2 − ~J2 · ~E1

)

dV, (1.55)

where V is an integration volume, S its boundary surface.

Usually, if we apply to a translationally invariant structure, see fig. 1.2, the lateral surface

does not give any contribute: both open (infinity boundary) and closed ones are characterized

by a zero field condition. Then, and only for z-invariant structures, we can consider a

infinitesimal section, and after some manipulation, write
∫∫

St

∂

∂z

(

~E1 × ~H2 − ~E2 × ~H1

)

· ûz dS =

∫∫

St

(

~J1 · ~E2 − ~J2 · ~E1

)

dS (1.56)

where St indicates the transverse waveguide section.

Now we consider two eigensolutions of the guiding structure, say
(

~Em, ~Hm

)

and
(

~En, ~Hn

)

,

and their eigenvalues βm and βn. It is easy to prove that couterpropagating modes have the

opposite electric field and opposite wavenumber, while the sign of magnetic field is the same.

Hence we apply (1.56) to the mentioned modes, in a couterpropagative configuration, to

obtain

(βm − βn)

∫∫

S

(

~Em × ~Hn + ~En × ~Hm

)

· ûz dS = 0 (1.57)

i.e. if modes are not degenerate (βm 6= βn) then each vector product have to be zero, i.e.
∫∫

S

~Em × ~Hn · ûz dS = 0. (1.58)

This represents a general form of orthogonality condition.

A useful formalism can be established in terms of reflection and transmission at an inter-

face between two different sections, each having a specific modal expansion.

Let us consider a field impinging on an interface (from medium I to II, located at z = 0),

composed by a single mode

~EI
p +

∑

j

Rj,p
~EI

j =
∑

j

Tj,p
~EII

j

~HI
p −

∑

j

Rj,p
~HI

j =
∑

j

Tj,p
~HII

j

(1.59)

This expansion represents the effect of a discontinuity, that excites the full set of modes both

before and beyond it.

Defining the scalar product as

〈

~Em, ~Hn

〉

=

∫∫

S

~Em × ~Hn · ûz dS (1.60)

we can project the equation (1.60) on a generic mode
(

~EI
i ,
~HI

i

)

and write

〈

~EI
p , ~H

I
i

〉

+
∑

j

Rj,p

〈

~EI
j , ~H

I
i

〉

=
∑

j

Tj,p

〈

~EII
j , ~HI

i

〉

〈

~EI
i , ~H

I
p

〉

−
∑

j

Rj,p

〈

~EI
i , ~H

I
j

〉

=
∑

j

Tj,p

〈

~EI
i , ~H

II
j

〉 (1.61)
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Expressing reflection and transmission coefficients in terms of mixed products and iterat-

ing for every mode, we can write

TI,II = 2
(
OI,II + OT

II,I

)−1

RI,II =
1

2

(
OT

II,I −OI,II

)
·TI,II

(1.62)

where, assuming a normalization to one of each mode set, we expressed the overlap matrices

OI,II and OII,I as

OI,II =
〈

~EI
i , ~H

II
j

〉

OII,I =
〈

~EII
i , ~HI

j

〉 (1.63)

Then from a generic field expressed in terms of a column vector of modal weight, reflected

and transmitted fields can be readily obtained.

The next step is represented by the analysis of an integrated device in terms of a sequence

of layers, each of a well-defined modal structure. Several approaches have been proposed:

a detailed discussion will be provided further, where an application to specific numerical

methods will be described, see section 4.3 and appendix A.

1.5 An Overview of Numerical Methods

In the study of integrated optical devices a key role is played by numerical techniques, that

allow to account for many physical phenomena and hence provide tools for the analysis

and design of novel structures. Nowadays digital electronic computers are so widespread

and provide such extreme capabilities that even the full 3D electromagnetic problem can

be solved and many aspects can be investigated. Time savings in design process permit

to concentrate on technological issues and reducing the number of unsuccessful prototypes.

Moreover a thorough analysis of as many effects as possible permits to assess pros&cons of

new conceptions.

We will now outline the most important numerical approaches, particularly those related

to our usual activity. Obviously we will provide further details concerning those we have

directly implemented during the doctoral work, see chapters 2, 3, 4, and app. A.

Since we have focused on space or modal discretization, we will describe the principles of

finite differences and modal approaches.

1.5.1 Finite Difference Discretization and solution of discrete equations

The simplest idea in solving partial differential equations (PDEs) by a numerical algorithm

is to approximate derivatives by means of finite differences. The forward difference formula

for first order derivative reads as

dψ

dx

∣
∣
∣
∣
x0

=
ψ(x0 + ∆x)− ψ(x0)

∆x
+O(h) (1.64)



1.5. An Overview of Numerical Methods 23

while a suitable finite difference analogous of second order derivative is the central difference

formula
d2ψ

dx2

∣
∣
∣
∣
x0

=
ψ(x0 + ∆x)− 2ψ(x0) + ψ(x0 −∆x)

∆x2
+O(h2). (1.65)

Several implementations of a finite difference algorithm are possible, depending upon

which points are considered in approximating derivatives:

• Explicit method

• Implicit method

• Crank-Nicolson method

For example, we consider a normalized partial differential equation in the form

Ut = Uxx (1.66)

Explicit method Explicit formulation consists in using forward difference at time tn(time

step k) and second-order central difference for space derivatives at position xj (discretization

step h), un
j is the generic field value at those time and space grid point

un+1
j − un

j

k
=
un

j+1 − 2un
j + un

j−1

h2
(1.67)

we can thus obtain directly the field at time n+ 1 given the values at time n.

un+1
j = (1− 2r)un

j + run
j−1 + run

j+1 (1.68)

where r = k/h2. Notice that boundary conditions will be imposed by setting the required

values at the extremal grid points un
0 and un

J at every time step. Many different formulations of

boundary conditions for a finite computational domain are available (and specifically suitable

to EM computations) and we will discuss them in detail in a further chapter. The main

problem is that stability and convergence of this method is guaranteed if r ≤ 1/2, i.e. the

choice of time step is constrained by discretization in space.

Implicit method Implicit formalism is based on backward difference at time tn+1 and the

second-order central difference for space derivatives at xj , computed at that time instant,

un+1
j − un

j

k
=
un+1

j+1 − 2un+1
j + un+1

j−1

h2
(1.69)

It is easy to derive the field un+1
j as a solution of the following linear system,

(1 + 2r)un+1
j − run+1

j−1 − run+1
j+1 = un

j j = 1, . . . , J − 1. (1.70)

Implicit algorithm is unconditionally stable and convergent.
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Crank-Nicolson method Crank-Nicolson approach can be considered as a an improve-

ment of the implicit formulation or a compromise between explicit and implicit ones. It is

based upon central differences at time tn+1/2 and a second-order central difference for the

space derivative at position xj , approximated as in trapezium rule.

un+1
j − un

j

k
=

1

2

(

un+1
j+1 − 2un+1

j + un+1
j−1

h2
+
un

j+1 − 2un
j + un

j−1

h2

)

(1.71)

Again the solution un+1
j can be obtained by solving the linear system

(2 + 2r)un+1
j − run+1

j−1 − run+1
j+1 = (2− 2r)un

j + run
j−1 + run

j+1 j = 1, . . . , J − 1. (1.72)

Comparison of the three algorithms permits to state that implicit and Crank-Nicolson

schemes are more numerically intensive, but work better for larger time steps, while explicit

scheme is absolutely the simplest to implement, but the least accurate and suffers from

instabilities.

1.5.2 Finite Difference Time Domain Method

The previous section was devoted to understand the general framework of PDE discretization.

We are now sketching the principles of the most important and widely used numerical method

in electromagnetic computations, the finite-difference time-domain method (FDTD), see the

fundamental textbook [20]. It relies upon direct discretization of Maxwell’s equations. Since

they mutually relate electric and magnetic fields, Yee proposed in a seminal paper to use a

staggered grid both in time and space. For example the cartesian x-component of ∇ × ~H

equation [
∂Hy

∂x
− ∂Hx

∂y

]

=
∂Dz

∂t
(1.73)

can be discretized via central differences in time and space as

ǫ

[
Et+∆t

z (x, y, z)− Et
z(x, y, z)

∆t

]

=

=

[

H
t+∆t/2
y (x+ ∆x/2, y, z)−Ht+∆t/2

y (x−∆x/2, y, z)

∆x

]

−

=

[

H
t+∆t/2
x (x, y + ∆y/2, z)−Ht+∆t/2

x (x, y −∆y/2, z)

∆y

]

(1.74)

the other equations are written in the same form.

We have reported the usual explicit scheme of cartesian equations, that suffers the stability

condition limiting the time step, staircase approximation errors, and the subtle issue of

numerical dispersion, an artificial perturbation of material properties.

Nevertheless FDTD has been applied to many problems, involving dispersive, nonlinear

materials, and to a large variety of geometries and device where other methods are inadequate.

Since it treats time domain problems, it is suitable to describe pulsed propagation, i.e. de-

tect dispersion related effects and dynamical effects, such as self-pulsing [21].
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Finally, it can solve even full 3D problems, despite they require a large storage and a very

long computation time. Nevertheless explicit formulation is particularly suitable to be split

to different machines thus parallel computing can cope with it.

Obviously extensive research have been devoted to boundary conditions that are needed

to gain accuracy in finite domains, to exploit symmetries and to the processing of output

data.

Analogous approaches mitigate numerical dispersion issues by implementing higher accu-

racy difference schemes, e.g. pseudo-spectral space discretization that employs fast Fourier-

transform to approximate space-derivatives [22].

1.5.3 Beam Propagation Method

The beam propagation method (BPM) is one of most popular numerical methods for the

modelling of optical devices. It is conceptually simple and easy to implement, very efficient

(the most efficient versions can have optimal complexity, i.e. numerical effort proportional to

the number of grid points), and it can be extended to describe many different propagation

regime (scalar to full vectorial equations, polarization and nonlinear effects). It is a time-

harmonic method and unless explicitly specified, we assume a exp(jωt) time dependence.

The first historical approach is based on the scalar paraxial equation, that can be derived

from eq. (1.23), under the above-mentioned assumptions,

∂u

∂z
=

1

j2k0n0

[
∂2u

∂x2
+
∂2u

∂y2
+ k2

0

(
n2 − n2

0

)
u

]

(1.75)

where u(x, y, z) is a slowly varying envelope and the electric field is reconstructed as

E(x, y, z) = u(x, y, z) exp (−jk0n0z) .

In this way once the initial (spatial) condition u(x, y, z = 0) is known, we can determine

the evolution of the field for every z > 0.

Factoring out an exponential dependence allows us to use a discretization step along

z, ∆z far larger than radiation wavelength (provided a scheme that preserves stability),

see e.g. [23], and simplifies the formulation to an initial value problem, as we have already

reported in section 1.2.1. Obviously, paraxial approximation can be a serious limitation, both

for modelling large spatial spectra and devices where phase variations have to be accurately

determined. Moreover, that simple model does not include bidirectional propagation and

does not account for vectorial propagation and thus polarization effects.

As it will be discussed in the next chapter the most of this limitations can be relaxed

to obtain better approximations: the robustness and reliability of the BPM principle relies

upon those opportunities. In fact wide-angle (as opposed to paraxial), full vectorial versions

are available, as well as a 2D bidirectional version can be obtained by means of scattering

matrix formalism.
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Numerical implementation and boundary conditions

We are now applying the formulations of sec. 1.5.1 to eq. 1.75. We describe here some

important features that are also involved in FDTD or in modal solvers, since our work has

been focused most on time-harmonic propagative algorithms, that are often inspired by BPM

concepts.

Let us consider a 2D Oxz domain and apply the Crank-Nicolson scheme. Eq. (1.75) can

be transformed to the following difference equation

un+1
i − un

i

∆z
=

1

j2k0n0

[
δ2

∆x2
+ k2

0

(
n(xi, zn+1/2)

2 − n2
0

)
]
un+1

i + un
i

2
(1.76)

where un
i is the field at the grid point (xi, zn), δ2 is a second order central difference operator,

δ2ui = ui+1 − 2ui + ui−1 (applied to each z step), and zn+1/2 ≡ zn + ∆z/2, i.e. a central

difference in z and accordingly the halfway value of refractive index are considered. Eq. (1.76)

can be rearranged in the form of a standard tridiagonal matrix equation for the unknown

un+1
i , in terms of known quantities, resulting:

aiu
n+1
i−1 + biu

n+1
i + ciu

n+1
i+1 = di (1.77)

If N is the number of points along x a solution can be obtained in O(N) operations, thanks

to the tridiagonal nature of the system obtained from eq. (1.77).

Let us now consider the transverse boundaries of computational region; eq. (1.77) involves,

at points i = 1, i = N , field values laying outside our domain. It is thus necessary to impose

suitable boundary conditions. This is a crucial problem, because a poor choice can lead to

artificial reflection of light impinging on the boundary back into the computational domain.

Indeed many electromagnetic problems are defined in an unbounded region and then the

analysis of a finite region can lead to inaccurate solutions.

In sections 2.5 and 4.2.3 we will describe accurately an example of commonly used bound-

ary condition. Here we summarize the possible choices.

• the simplest case is represented by Dirichlet conditions, i.e. field are zero at each edge:

this is equivalent to imposing metallic walls and thus reflections are maximized.

• including absorbing layers in the domain: they were quite popular in the past, but are

hard to design and require a trial-error procedure to detect the best absorption.

• transparent boundary condition (TBC), [24], which assumes the field to be a plane wave

impinging at a given angle and mimics an infinite propagation extension for it.

• perfectly-matched layer (PML), [25], [26], [27], the most modern and efficient, widely

studied and applied, relies upon the inclusion of lossy media that match exactly and

continuously the dielectric constant of the physical part (as opposed to the whole com-

putational domain comprising these layers), defined as that between absorbing layers.

perfectly-matched layer (PML) should represent a portion of an infinite domain.
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A 3D implementation can be readily obtained. Anyway Crank-Nicolson approach does not

lead to a tridiagonal system and thus requires O(N2
x ·N2

y ) operations; the alternating-direction

implicit formulation (ADI) that is an enhanced version of Crank-Nicolson method suited to

multidimensional discretization, permits to obtain the optimal complexity O(Nx ·Ny).

A 2D wide-angle, nonlinear implementation, that has been employed in our investigations,

will be described in detail in the following chapter.

1.5.4 Method of Lines

The method of lines (MoL) [28] is a semianalytical tool to solve PDEs, that combines a finite

difference discretization with a mode-matching technique (that is based on propagation of

modes, the construction of overlap matrices between different modal bases at longitudinal dis-

continuities, along with a stable approach to account for multiple reflections, see section 1.4).

It is inherently suitable to monochromatic propagation and in the field of integrated optics it

is used to investigate the properties of many advanced structures, such as propagation effects

or modes in dielectric structures (waveguides, Y-branches, resonators. . . ). Many different

extension have been proposed, to study 2D and 3D domains, linear, nonlinear, anisotropic

materials.

The finite difference discretization is performed along the transverse direction as in BPM,

but the propagation is accounted analytically, by means of a diagonalization to obtain a

system of decoupled equations (of the same dimension of the discretized domain). The

classical transmission-line equations and impedance-admittance formalism are used to analyse

the effect of discontinuities along the propagation direction.

To outline the principles of the method we suppose to work in 2D, where TE and TM

modes are completely decoupled. Let us assume to obtain from transverse discretization a

second order ODE of the form
d2ψ

dz2
+ Qψ = 0 (1.78)

where Q is a square matrix obtained by discretization of a second order transverse differential

operator, function of polarization; ψ is thus a column vector of field components at the grid

points.

To separate a set of different ‘lines’ and obtain a sort of modes, we decouple the system

equations, i.e. we perform a diagonalization of Q,

Q = TΓ2T−1 (1.79)

and

ψ = Tψ̄ (1.80)

consequently
d2ψ̄

dz2
+ Γ2ψ̄ = 0 (1.81)

The new, decoupled system is in the form of the wave equation obtained in transmission

line theory. Thus starting from the final layer in z direction, we perform a impedance-

admittance recurrence, in the style of transmission lines, using Γ to calculate a diagonal

matrix of impedances.
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1.5.5 Modal methods

A large class of computational approaches for integrated optics is based upon the property

of linear translational invariant structures to guide light, that we described in section 1.4.

To describe a complex device, we divide it into guide section, each with a rigorously defined

modal basis. Then continuity conditions are used to match adjacent sections.

In general we have two problem to solve,

• how to compute a modal basis of a generic section?

• how to match different sections?

the former problem can be solved in a large variety of ways, that identify the considered

method. For the latter, few approaches have been proposed, but the choice is limited among

those that guarantee numerical stability of the propagation algorithm.

We can cite in the first class, the classical modal method, [29], the coupled-wave, also

known as Fourier-modal method [30], the wave-matching method [31], the film-mode match-

ing [32], or even the use of simpler sinusoidal basis in 2D geometries, [33]. The second group

includes the elementary transmission-matrix method, that is unstable and then induced much

work on its improvement: enhanced transmission matrix, scattering matrix or admittance-

impedance, also referred to as R- or immittance matrix formulations are the commonly used

techniques, see [34].

The main advantage of this algorithms is that the use of at most few hundreds of modes

constitute a reliable representation and that their evolution in propagation is known analyt-

ically: no discretization is performed, but only mode matching at interfaces is required.

They are suitable to compute eigenmodes of complex optical devices, but in general

not to describe nonlinear devices, despite SHG can be studied under the undepleted pump

approximation (the energy flow to the second harmonic does not affect the fundamental

frequency), in short devices, see [35], and an iterative procedure to study OKE has been

proposed, see [36].

1.6 Conclusion: the Need for Modelling

Despite nowadays computational systems permit to perform full detailed analysis, the im-

plementation of efficient numerical techniques is fundamental in the analysis and design of

advanced devices. We can save time and obtain insights on physical mechanisms.

Our work is aimed to assess the limit of simple models, such as CMT in nonlinear op-

tics and 2D (effective index method (EIM)) for microresonator analysis. Many alternative

approaches are being studied: this contribution is devoted to realize which ones conjugate

implementation simplicity, reliability, and a moderate demand of computational resources.



Chapter 2

Nonlinear Beam Propagation

Method

As we mentioned in section 1.5.3, BPM is widely used to analyse integrated optical devices,

is usually included in commercial software packages, can be easily implemented, and many

alternative versions have been proposed.

The main limitation of paraxial approximation can be overcome by improving the ac-

curacy of diffraction terms, e.g. by means of Padé approximants, see [17, 37–50]. Bidirec-

tional (2D) algorithms are obtained constructing operators that account for propagation and

transmission-reflection at interfaces and combining them in a suitable way to obtain the

global effect of propagation in a multilayer structure, see [51–53], that discuss transmission

matrix formulations and [54–56] that employ scattering operators. To model 3D problems

semivectorial approaches, see [57, 58] can provide a good approximation, but full-vectorial,

[16, 59, 60], and [14, 15] are possible too, and physical description is greatly improved.

In this thesis, we will focus on 2D nonlinear versions we implemented, that are able to

model SHG and OKE in monodirectional regime. Nevertheless, an implementation of linear

and nonlinear biderectional algorithms have been developed as well.

2.1 Wide-Angle Linear BPM

We will restrict to TE modes ( ~E = Eyŷ0), the TM being only slightly more complicated. Let

us start from the scalar Helmholtz equation,

∂2E

∂z2
+

(
∂2

∂x2
+ k2

0n
2(x, z)

)

E = 0 (2.1)

where k0 = 2π
λ denotes free-space wavenumber, λ the free-space wavelength, and n(x, z) is

the refractive index. We kept the dependence on z, to account for inhomogeneous media

along longitudinal direction. 1

1. Generally bidirectional algorithms assume the generic structure to be composed by a sequence of homo-

geneous layers separated by abrupt discontinuities, i.e.

n(x, z) = nj(x) per zj−1 < z < zj , j = 0, 1, . . . , m + 1

29
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In order to study a rigorously monodirectional approach, we assume refractive index does

not depend on z, n(x, z) = n(x), and describe in detail the classical monodirectional BPM.

Sometimes, for low index contrasts, also this simple algorithm gives good results, e.g. glass-

integrated segmented waveguides. Indeed if index variations are weak enough to neglect

reflections, we can update the index profile at each propagation step keeping a single field

term.

Let us recall the standard form of wide-angle BPM formulation, based on two operators:

square-root operator, L, and the propagator, P .

L =

√

∂2

∂x2
+ k2

0n
2(x) = k0n0

√

I +
∂2

∂x2 + k2
0

(
n2(x)− n2

0

)

k2
0n

2
0

= k0n0

√
I +X (2.2)

where L represents the diffraction and phase delay terms, I the identity matrix and n0 is

the reference refractive index, in analogy with the paraxial wave-equation formulation. The

propagator is expressed as

P = exp (−j∆zL) (2.3)

It is now easy to recast (2.1) as
∂2E

∂z2
+ L2E = 0 (2.4)

and realize that the P operator represents the propagation between two adjacent grid steps

along z. In fact we can make some manipulations and obtain a monodirectional equation,

that constitutes a generalization of the paraxial one,

∂E+

∂z
= −jLE+

∂E−

∂z
= jLE−

(2.5)

where E+ and E− represent the froward and backward propagating solutions, respectively.

The formal solution (2.5) is

E(x, z) = E(x, 0) exp(±jLz) (2.6)

then e.g. a forward propagation step can be casted as

E(x, z + ∆z) = PE(x, z) (2.7)

alternatively, we can employ slowly-varying envelopes u and write

u(x, z) = u(x, 0) exp(±j(L− k0n0I)z) (2.8)

it is easy to see that using a first order approximation of the square-root, we can derive

the usual paraxial approximation of eq. (1.75): by this argument it should be clear that

depending on the method used to compute L and P , given a discretization scheme, a better

accuracy in the treatment of wide-angle propagation can be obtained.

We will describe in detail in section 2.4 how to calculate a reliable approximation for the

BPM operators.

We now focus on the solution of nonlinear problems.

where z−1 = −∞ e zm+1 = +∞.
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2.2 Analysis of Second Harmonic Generation

As we reported in section 1.3.2, the effect of a second order nonlinearity is to couple field

components at different frequencies. Their propagation is jointly described by a nonlinear

system of coupled equations. Our goal is to describe interactions in 2D geometries, taking

into account both diffraction and χ(2) effects. A BPM approach can be derived in many ways,

see e.g. [61, 62] and [63].

Basically, we could discretize directly the nonlinear system, use a split-step (split-operator)

solution, and/or apply an iterative scheme, in which the nonlinear terms are calculated ex-

ploiting field estimates provided by a previous propagative run until no remarkable changes

are achieved. Required are as usual the stability, convergence, and robustness to large prop-

agation steps.

As stated before, the envelope is calculated on the basis of a reference index and a poor

choice leads to cumulation of phase errors, see [49] for a general investigation. For this

reason, since dispersion suggests to set different reference indexes for the two harmonics, the

sensitivity to phase-mismatch may result critical.

We report here three approaches, that encompass the principles we have recalled above.

We start by recalling the coupled system obtained from SVEA, see 1.3.2,

∂2uω(x, z)

∂z2
− 2jk0n0ω

∂uω(x, z)

∂z
+
∂2uω(x, z)

∂x2
+ k2

0

[
n2

ω(x)− n2
0ω

]
uω(x, z) =

= −k2
0χ

(2)
j (x) [uω(x, z)]∗ u2ω(x, z)e−j∆kz

(2.9)

∂2u2ω(x, z)

∂z2
− 4jk0n02ω

∂u2ω(x, z)

∂z
+
∂2u2ω(x, z)

∂x2
+ 4k2

0

[
n2

2ω(x)− n2
02ω

]
u2ω(x, z) =

= −2k2
0χ

(2)
j (x) [uω(x, z)]2 ej∆kz

(2.10)

where k0 = ω
c is the free space wavenumber of the fundamental frequency, ukω, with k = 1, 2

represent the two envelopes at fundamental and second harmonic (fundamental frequency

(FF) and second harmonic (SH)), n0kω
represent the reference index of BPM propagation,

and ∆k = 2k0(n0ω − n02ω).

The main problem is that an implicit approach does not lead to a linear system, easy

to invert, thus not to lose the stability of linear propagator, we can write a rectangular

approximation for NL terms, applying the SVEA

2jk0n0ω

∆z

(
um,s+1

ω − um,s
ω

)
=

1

2

(

L
m,s+ 1

2
ω − k0n0ω

)

(um,s
ω + um,s

ω )+

k2
0χ

(2)m,s
um,s

ω
∗um,s

2ω e−j∆kzs

4jk0n02ω

∆z

(

um,s+1
2ω − um,s

2ω

)

=
1

2

(

L
m,s+ 1

2

2ω − k0n02ω

)

(um,s
2ω + um,s

2ω ) +

4k2
0χ

(2)m,s
[um,s

ω ]2 ej∆kzs

(2.11)

where (m, s)→ (m∆x,
(
s+ 1

2

)
∆z) identifies a grid point, and only the previous propagation

step is considered in nonlinear contribution.

Such an approximation can be used as an initial guess for iterative procedures of higher

accuracy.
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If we would like to preserve the wide-angle features of BPM, it is convenient to apply a

split-step algorithm, that at each step computes a linear solution and then uses this one to

obtain nonlinear contributions. Iterating the procedure to improve the accuracy of nonlinear

contributions leads to better solutions.

Let us outline these methods.

Compute the linear solution The propagator can be applied directly to the array of

field values in transverse direction

u·,s+1
ω

(I)
=exp (−j (Lω − k0n0ωI) ∆z)u·,sω

u·,s+1
2ω

(I)
=exp (−j (L2ω − k0n02ωI)∆z)u·,s2ω

(2.12)

where the superscript I denotes the intermediate calculation of the split-step approach. The

propagation step has been written in compact form, employing propagators and the whole

arrays of field values.

Compute NL contributions

2jk0n0ω

∆z

(

um,s+1
ω

(t) − um,s+1
ω

(I)
)

=

=
1

2
k2

0

(

χ(2)m,s
um,s+1

2ω

(I)
[

um,s+1
ω

(I)
]∗

+ χ(2)m,s+1
um,s+1

2ω

(t−1)
[

um,s+1
ω

(t−1)
]∗)

4jk0n02ω

∆z

(

um,s+1
2ω

(t) − um,s+1
2ω

(I)
)

=

=
1

2
4k2

0

(

χ(2)m,s
um,s+1

ω
(I)
um,s+1

ω
(I)

+ χ(2)m,s+1
um,s+1

ω
(t−1)

um,s+1
ω

(t−1)
)

(2.13)

where the superscript t identify the current iteration which is calculated from the solution

of previous one, denoted by t− 1. The nonlinear components are calculated from the result

of the linear propagation (that acts as starting point, (m, s)) and the fields computed in

the previous iteration (corresponding to the next propagation step) allowing us to write an

implicit formalism.

Another strategy could consist on neglecting the phase-mismatch or including the corre-

sponding phase-rotation in a rescaled envelope, see [63]. Starting from eqs. (2.9) and (2.10),

we split the linear and nonlinear terms we can write the latter, assuming the same choice of

reference indices (n0ω = n02ω) as,

2jk0n0
∂uω(x, z)

∂z
= k2

0χ
(2)
j (x) [uω(x, z)]∗ u2ω(x, z) (2.14)

for FF and

4jk0n0
∂u2ω(x, z)

∂z
= 2k2

0χ
(2)
j (x) [uω(x, z)]2 (2.15)

for SH. Now to compute the NL contribution, we pose

uω = a+ jb u2ω = c+ jd

NL step of fundamental frequency corresponds to:

∂a

∂z
= α(ad− bc) ∂b

∂z
= −α(ac+ bd)
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where α can be easily obtained. Let us outline the Crank-Nicolson formulation of the latter

equation:

a(z + ∆z)− a(z)
∆z

=
α

2
[a(z)d(z) + a(z + ∆z)d(z + ∆z)− b(z)c(z)− b(z + ∆z)c(z + ∆z)]

b(z + ∆z)− b(z)
∆z

= −α
2

[a(z)c(z) + a(z + ∆z)c(z + ∆z) + b(z)d(z) + b(z + ∆z)d(z + ∆z)]

substituting y(z+∆z) = y(z)+∆y, where y is a generic term, neglecting second order terms

(e.g. ∆a∆d) and recombining the two envelopes, we obtain for FF:

uω(x, z + ∆z) = ulin,ω(x, z + ∆z)+

− j∆z
k2

0χ
(2)
j (x)

4k0n0
{[uω(x, z + ∆z)]∗ u2ω(x, z) + [uω(x, z)]∗ u2ω(x, z + ∆z)}

(2.16)

and for SH,

u2ω(x, z + ∆z) = ulin,2ω(x, z + ∆z)− j∆z
k2

0χ
(2)
j (x)

2k0n0
uω(x, z)uω(x, z + ∆z) (2.17)

These equations can be used in an iterative split-step approach or alternatively, we can

construct an analytically-invertible matrix, to obtain an implicit approach. This matrix is

function of field components at the starting propagation step and acting on each field value,

vs+1A = vs (2.18)

where v = [a, b, c, d] is the row vector of real variables we defined above, considered at a single

grid point, and

A =









1 + 1
2d

s∆z −1
2c

s∆z 1
2b

s∆z −1
2a

s∆z

−1
2c

s∆z 1− 1
2d

s∆z 1
2a

s∆z 1
2b

s∆z

−1
2b

s∆z −1
2a

s∆z 1 0
1
2

s
∆z −1

2b
s∆z 0 1









(2.19)

2.3 Analysis of Propagation in Kerr Media

As we noted in section 1.3.3, the optical Kerr effect can be treated as an intensity-dependent

perturbation of refractive index,

n(x, z) = nlin(x, z) + nI
2(x, z)I(x, z) (2.20)

thus we need only to adapt the refractive index to the local intensity. It is usually obtained in

an iterative fashion, computing an initial guess, that could be the linear solution or preferably

a rectangular integration (as for SHG), then refractive indices are adapted to the computed

field intensity, until no remarkable change can be obtained in field values or refractive indices.

In formulae, we start from the nonlinear wave-equation,

2jk0n0
∂u(x, z)

∂z
+
∂2u(x, z)

∂z2
+
∂2u(x, z)

∂x2
+ k2

0

[
n2(x)− n2

0

]
u(x, z)+

+
3

4

ω2

c20
χ(3)(x) |u(x, z)|2 u(x, z) = 0

(2.21)
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where u is as usual the field envelope. Then we split linear and nonlinear equations, that is

equivalent to construct a new propagation operator. This depends on field contribution at

the intermidiate step.

The nonlinear step reads as

∂u(x, z)

∂z
= −jγ(x) |u(x, z)|2 u(x, z) (2.22)

where

γ(x) = 2πn2(x)n(x)/ (λ0n0)

n2(x) = 3χ(3)(x)/ [8n(x)]

where the same notation of section 1.3.3 have been used. The nonlinear propagation step

then becomes

u(x, z + ∆z) = exp
{

−jγ(x) |u(x, z)|2 ∆z
}

u(x, z) (2.23)

multiplication of a phase factor exp
{

−jγ(x) |u(x, z)|2 + ∆z
}

at each step permits to update

the linear propagator.

2.4 Numerical Implementation: Padé Approximants

A main point to obtain an efficient and reliable implementation of wide-angle BPM is to treat

appropriately the operators of eqs. (2.2) and (2.3).

In a finite difference scheme, we first deal with discretization of field, refractive index, and

second order derivative: they are is represented by a column vector, a diagonal matrix, and

a tridiagonal matrix, respectively. Denoting N as the number of transverse grid points, the

resulting operators are N ×N matrices.

The computation of a L and P could be performed, as usual matrix functions, by means

of eigenvalue-eigenvector decomposition of I + X. Such an approach is generally too time-

consuming, so an approximation is commonly used.

Rational expansions, also referred to as Padé approximants, are usually employed to this

extent: indeed Taylor polynomials are not as accurate and the computational effort of matrix

inversions is not such a serious penalty, O
(
N2
)

implementations are available.

Let us recall the basics of this technique, very important also in bidirecitonal algorithms,

to deal with excitation of radiative modes at interfaces. Nevertheless it is thoroughly treated

in literature, see [17, 38–41, 47, 48, 50–56, 59, 64–66]. We will follow [67].

Let F (x) be an analytic function:

F (x) =
∞∑

k=0

akx
k (2.24)

Padé approximant of order [m/n] of F (x) is defined as the rational function R[m/n](x):

R[m/n](x) =
Pm(x)

Qn(x)
(2.25)
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where Pm(x) e Qn(x) are polynomials (notice that no constraint is specified on their orders

m and n):

Pm(x) = p0 + p1x+ . . .+ pmx
m (2.26)

Qn(x) = q0 + q1x+ . . .+ qnx
n (2.27)

Coefficients p0, . . . , pm and q0, . . . , qn can be obtained by truncating the McLaurin expansion

at the (m+n+1)-th term, setting q0 = 1 (any other value can obtained by a proper rescaling)

and imposing:

F (x)− Pm(x)

Qn(x)
= 0 or F (x)Qn(x)− Pm(x) = 0 (2.28)

Equating the coefficients of corresponding powers of x, we obtain a linear system of m+n+1

equations, in m+ n+ 1 variables. For example:

a0 = p0

a1 + a0q1 = p1

a2 + a1q1 + a0q2 = p2

...

The system can be written in matrix form as



















1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 −a0 0 . . . 0
...

...

0 0 . . . 1 −am −am−1 . . . −am−n+1

0 0 . . . 0 −am+1 −am . . . −am−n+2

0 0 . . . 1 −am+2 −am+1 . . . −am−n+3

...
...

0 0 . . . 0 −am+n−1 −am+n−2 . . . −am





































p0

p1

...

pm

q1

q2
...

qn



















=



















a0

a1

...

am

am+1

am+2

...

am+n



















(2.29)

Let us apply this principle to exponential function

ex =
∞∑

k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

Pm(x) and Qn(x) can be proved to read as

Pm(x) =
m∑

k=0

(m+ n− k)!m!

(m+ n)!k!(m− k)!x
k (2.30)

Qn(x) =
n∑

k=0

(m+ n− k)!n!

(m+ n)!k!(n− k)! (−x)
k (2.31)

In table 2.1 we reporeted the Padé expansions of ex up to order [3/3].

In the following section standard techniques to compute L and P will be reported, since

they are crucial to properly model propagation problems.
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Order Approximant

[0/0] 1

[0/1] 1
1−x

[0/2] 2
2−2x+x2

[0/3] 6
6−6x+3x2−x3

[1/0] 1 + x

[1/1] 2+x
2−x

[1/2] 6+2x
6−4x+x2

[1/3] 24+6x
24−18x+6x2−x3

[2/0] 2+2x+x2

2

[2/1] 6+4x+x2

6−2x

[2/2] 12+6x+x2

12−6x+x2

[2/3] 60+24x+3x2

60−36x+9x2−x3

[3/0] 6+6x+3x2+x3

6

[3/1] 24+18x+16x2+x3

24−6x

[3/2] 60+36x+9x2+x3

60−24x+3x2

[3/3] 120+60x+12x2+x3

120−60x+12x2−x3

Table 2.1: Padé Approximants of ex

2.4.1 Real Padé expansions of square-root

Let us consider f(x) =
√

1 + x. Padé expansion of f of order [p/p] can expressed as

f(x) ≃ 1 +

p
∑

n=1

a
(p)
n x

1 + b
(p)
n x

=

p
∏

n=1

1 + c
(p)
n x

1 + b
(p)
n x

(2.32)

where

b(p)
n = cos2

(
nπ

2p+ 1

)

, c(p)
n = sin2

(
nπ

2p+ 1

)

, a(p)
n =

2c
(p)
n

2n+ 1
(2.33)

Notice that those coefficients (Padé primes) are reals, thus for x ∈ R, Padé expansion assumes

only real values. eq. (2.32) is known as standard Padé. This approximation could be used to

compute L.

The propagator P is derived from one-way Helmholtz equation (2.5). Obviously, given

an approximation of L, we can apply the Crank-Nicolson scheme, that can be proved to be

equivalent to [1, 1] expansion of the exponential function.

P is then substituted by its Padé approximant in terms of L; unfortunately the direct

expansion as a function of X may lead to instabilities. Thus we use the [q/q] rational

approximation, as illustrated in the previous section, of

P ≈ e−jk0n0∆zSp(X) (2.34)

where Sp(X) is a Padé expansion of
√
I +X, to which next section is devoted. It is indeed

convenient to use a non-standard expansion of the square root operator.
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2.4.2 Complex Padé approximants

The sequence of eq. (2.32) converges, as p→∞, to
√

1 + x in the whole complex plane except

for the branch cut along the negative real axis [−∞,−1]. Indeed coefficients of eq. (2.32) are

real-valued, then a negative real number results in a real-valued approximation. It is crucial

to avoid this issue, since negative eigenvalue of transverse operator correspond to evanescent

modes, that could be incorrectly modelled as propagating, see [44].

Consider a field propagating in z > 0 direction,

∂E

∂z
= −jk0n0

√
I +XE (2.35)

Let {φj(x), λj}∞j=1 be eigenvalue-eigenvector pair of k2
0n

2
0(I + X). We express a general

solution of eq. (2.35) as

u(x, z) =
∞∑

j=1

ûjφj(x)e
−j
√

λjz

If λj > 0, φj(z)e
−j
√

λjz is a propagating mode, whereas if λj < 0 is evanescent.

Let us insert the Padé approximation of L in eq. (2.35):

∂E

∂z
= −jk0n0

(

I +

p
∑

n=1

a
(p)
n X

1 + b
(p)
n X

)

E (2.36)

Let us pick an eigenvalue λj < 0 of k2
0n

2
0(I + X), corresponding to the eigenvalue xj =

(
λj − k2

0n
2
0

)
/
(
k2

0n
2
0

)
< −1 of X: the mode propagates according to

uj(x, z) = φj(x) exp

{

−jk0n0

(

I +

p
∑

n=1

a
(p)
n xj

1 + b
(p)
n xj

)

z

}

(2.37)

Since coefficients in eq. (2.33) are real-valued, eq. (2.37) represents a propagating mode, not

a vanishing one.

Let us report the typical approach to overcome this issue.

Rotated branch-cut appraoch

We outline the solution proposed in [50], widely employed in literature, that consists in

rewriting
√

1 + x as

√
1 + x = e−jα/2

√

1 + [(1 + x)ejα − 1] ≃ e−jα/2

[

1 +

p
∑

n=1

a
(p)
n x̃

1 + b
(p)
n x̃

]

(2.38)

where x̃ = (1 + x)ejα − 1, and a
(p)
n , b

(p)
n are the real coefficients of section 2.4.1, eq. (2.33).

In figure 2.1 we depict the idea behind this calculation: a clockwise rotation of angle α is

applied to the real axis around (−1, 0), such that Padé series converges for real arguments,

x ∈ R. In this way the branch cut is moved away from our negative eigenvalues. From

[66], we can realize that our eigenvalues have negative imaginary part for x ∈ [−∞,−1] 2,

2. In the reference imaginary parts are positive and an opposite rotation is applied, since −j ↔ i.
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Figure 2.1: Representation of rotated branch cut principle.

then evanescent modes cannot diverge and for adequately large p and α, we have a fair

representation of those wavenumbers.

Two problems arise, see [47]. First, rotating the real axis, accuracy for x > −1 is worse

(for the same order) than the classic real case. Second, while standard Padé maps real axis

on itself, the complex expansion of eq. (2.38), does not preserve the real approximation for

x > −1; then it is possible a propagating mode undergoes a spurious attenuation. Increasing

p accuracy is improved and sensitivity to the values of α (in [0o, 90o]) is reduced.

2.5 Boundary Conditions

As stated in section 1.5.3, the most efficient technique to avoid spurious reflection inside

the computational domain is represented by PMLs. It is not too hard to implement and

guarantees a good efficiency (few additional grid point). It consists in placing absorbing layers

at the edges of the computational window (corresponding to physical domain), designed to

minimize backreflections from boundaries, see figure 2.2.

They can be proposed in two equivalent formulations, as anisotropic absorbing media or

as complex coordinate stretching. An anisotropic conducting layer allows to avoid reflection

passing form physical domain to absorbing layer, while attenuating the field amplitude.

We call physical domain the region that excludes PMLs and corresponds to the valid

simulation domain, and extended or computational domain the one that includes PML, since

the calculation is made in it.

Nevertheless we have to terminate the extended domain, and in this case the use of perfect

conductors (Dirichelet conditions) is no more an issue, since the field impinges on them after

a strong attenuation.

PML parameters have anyway to be chosen carefully, because too strong absorption in

too tight layers leads generally to artifacts (propagation inside PMLs, spurious reflections...).
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Figure 2.2: Representation of PML in a planar structure.

2.5.1 Implementation of Perfectly-Matched Layers in the BPM

The simplest implementation of PMLs is complex coordinate-stretching, i.e. we apply the

following transformation

x̂ = x− j
∫ x

0
σ(ξ)dξ (2.39)

where σ is a function representing the profile of absorption coefficient.

This can be thought as integration of Maxwell equations along a path in the complex

plane, then defining a map that relates the complex path to infinite real axis (in this way we

transform propagation in complex coordinates to absorbing media), and finally truncating

the real domain. This results in attenuation of propagation waves.

In the BPM implementation, we use the profile of [68]:

σ(x) =







3σmaxl
2, l > 0

0, l ≤ 0
(2.40)

with

l = (|x| −D)/(H −D)

where D and H are the half-size of physical and extended domain respectively, see figure 2.2.

In other words, in internal layers, Maxwell equations (thus the electromagnetic field) are

the same as in the absence of PMLs but now with zero boundary conditions moved artificially

far away by an artificial absorber. From [25] it is possible to calculate the theoretical reference

reflection coefficient for the plane wave,

E(x) = exp (jkxx)

Imposing Dirichelet boundaries at x = −D, considering two trips forth and back after perfect

reflection,

ρth = − exp

{

−2jkx

∫ −H

−D
1− jσ(x) dx

}

=

= − exp
{
−2jkxσmaxL

3
PML − j2kxLPML

}
(2.41)
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Then the maximum absolute value of theoretical reflection is

|ρth| = exp
{
−2jkxσmaxL

3
PML

}
(2.42)

that can be used as a reference to determine the thickness L and the amplitude σmax of the

PML.

In finite difference schemes, we have obviously a finite number of points for PML lay-

ers, NPML, then the total grid dimension is N + 2NPML. Since they absorb, we can move

boundaries near the region of interest, that will not be affected. Anyway the discrete char-

acter of PMLs in this case suggests to be careful about their design: a too steep absorption

profile could lead to reflection, originated by its staircase approximation. Thus at least 10

discretization steps are necessary.

In order to adapt PML to our finite difference scheme, let us consider X, that allows to

construct the other operators,

X =
∂2

∂x2 + k2
0(n

2 − n2
0)

k2
0n

2
0

(2.43)

in the new coordinates it becomes

X =
∂2

∂x̂2 + k2
0(n

2 − n2
0)

k2
0n

2
0

(2.44)

and substituting the definition in eq. (2.39) we can write:

X =

1
1−jσ(x)

∂
∂x

(
1

1−jσ(x)
∂
∂x

)

+ k2
0(n

2 − n2
0)

k2
0n

2
0

(2.45)

We have to write the finite difference version of (2.45). we follow [25], where second order

derivative is approximated in the general case of non-uniform steps (in our case they extend

in the complex plane):

1

1− jσ(x)

∂

∂x

(
1

1− jσ(x)

∂E

∂x

)

←→ 2

S(h, h+ 1)∆x2

[
E(h+ 1)− E(h)

Σ(h+ 1)
− E(h)− E(h− 1)

Σ(h)

]

(2.46)

where

S(h, h+ 1) = 2− jσ(h)− jσ(h+ 1)

Σ(h) = 1− jσ(h)

It is apparent that inside the physical domain, these expressions are back to the usual central

difference, second-order formulas.

We usually apply Dirichelet boundary conditions, that correspond to no other position

on field values at domain edges. Anyway also association of TBC and PML is possible.
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2.6 Sample results

In this latter section, we report some results to prove the validity of the BPM in nonlinear

optics.

Two classical examples are shown, soliton propagation and second harmonic generation

in quasi phase-matching (QPM) nonlinear gratings, see [18].

It is well known that a positive Kerr effective index corresponds to self-focusing behaviour,

that can exactly balance beam diffraction, giving rise to spatial soliton propagation.

We consider a spatial profile obtained as a propagative solution of nonlinear paraxial

wave equation in a bulk medium and simulate its propagation by means of BPM (including

wide-angle features in linear propagator). In figure 2.3 we show that the beam propagates

diffraction-less.

Figure 2.3: BPM simulation of a Kerr spatial soliton. λ = 1.3µm, nlin = 1.55, n2 =

2.57× 10−21
(
m2/V 2

)
, see eq. (1.50).

The second example consist in SHG in a QPM periodic structure. Phase-mismatch leads

to low conversion efficiency. Obviously we could use birefringent crystal and choose the ori-

entation that guarantees FF and SH indices to match at a given polarization. An alternative

approach is to insert a periodicity of nonlinear coefficient. This can be achieved in periodically

poled material. A proper design and fabrication of such structure can effectively compensate

mismatch.

We report an example in which two guided modes at FF and SH couples via quadratic

nonlinear effect, and a periodic inversion of nonlinearity sign permits to achieve total con-

version. Not any sort of reflection is considered, but merely the nonlinear step is computed

according to the sign of χ(2), see fig. 2.4.
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Figure 2.4: Second harmonic generation in a quasi phase-matching grating. Coupling between

two guided modes. Original mismatch ∆k = −1.25×106m−1, NL periodicity Λ ≈ 5µm. Top:

FF, bottom: SH.



Chapter 3

Nonlinear Trapping in Waveguide

Arrays

3.1 Some Remarks on 1D Periodic Structures

Periodic structures have been proved to be among the most interesting systems to achieve

light generation and processing in integrated systems. Both linear and nonlinear regimes are

affected and it is possible to demonstrate some peculiar phenomena, generally unachievable

in bulk, see [13].

In this chapter we are studying a specific propagation regime in arrays of evanescently-

coupled waveguides, that are indeed the simplest, 1D, of this class.

The analysed periodic structures have been built in AlGaAs, see figure 3.1 and 3.2(a), as

well as in photorefractive materials (where they can be induced optically [70]), or in liquid

crystal thin films [71]. Similar dynamics can be observed in Bose-Einstein condensates in

optical lattices.

It is well known that there are input angles corresponding to different Bragg orders for

which the dominant mechanism is reflection. These angles correspond to opening of forbidden

gaps in the value of the longitudinal wave-number (propagation constant), in turn associated

with linear solutions which are evanescent in the transverse direction. This represents in two

spatial dimensions (in harmonic regime) the analogous of the well-known dispersion relation

(ω vs. k, the transverse light momentum) of photonic crystals that exhibit propagation band

and band gaps.

In our case diffraction depends on the curvature of our (longitudinal vs. transverse

wavenumber) band structure, see fig. 3.2(b).

First of all light injected along the axis of one (or few) of the array guides disperses

because of evanescent coupling to the adjacent waveguides. That can be described by a

discrete system, see [69, 73, 74], (in this chapter we prefer to use the notation exp(−iωt) for

time dependence)

i
dEn

dz
+ ΛEn + Γ (En−1 + En+1) = 0 (3.1)

where En denotes the field amplitude in the n-th waveguide, Λ and Γ represent the self

43



44 3. NONLINEAR TRAPPING IN WAVEGUIDE ARRAYS

Figure 3.1: Periodic array of single-mode waveguides: SEM image (top) and an axample of

realization (bottom), courtesy of Sukhorukov et al., [69].

and mutual coupling respectively. To solve eq. (3.1), in a N waveguide domain we impose

boundary values E−N/2 = EN/2 = 0. This model is based on a weak-coupling between non-

adjacent waveguides and is analogous to the tight-binding approach of solid-state Physics.

Then the output of linear propagation is completely different from diffraction in homoge-

neous materials; if excitation of a single waveguide E0 6= 0

En(z) = E0 (i)n exp(iΛz)Jn(2Γz) (3.2)

where Jn is the Bessel function of the first kind of order n. Two main lobes appear instead

of the single-lobed pattern of bulk diffraction.

Then we observe that in our band diagram, there exists a set of angles of diffraction-less

propagation (and an exactly determined transverse group velocity).

In the nonlinear regime, e.g. Kerr media, at high intensity self-focusing can exactly com-

pensate diffraction and soliton propagation, field profiles unaffected by longitudinal propa-

gation, can be achieved. The simplest example is represented by discrete solitons (DS) that

are obtained in the previously-mentioned front excitation of one or few waveguides.

More generally, we should discuss Floquet-Bloch solitons, that arise when compensation

of diffraction is achieved at a specific angle, described by its own propagation characteristics

(we obtain a superposition of Bloch waves that do not diffract). These effects are simply the

extension of spatial solitons in bulk media.
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Figure 3.2: (a) Planar periodic structure, its typical front excitation and (b) the associated

band, courtesy of Gorza et al., see [72].

Our work has instead been focused on the propagation at wavenumbers inside the photonic

band-gap, induced by nonlinearity (in fact they are inaccessible in the linear regime), the

spatial gap-solitons, [75, 76].

Their analogous in 1D (pulsed) regime is the propagation at frequencies lying inside a

forbidden photonic band-gap in the form of so-called gap soliton (GS) [77], (see also [78] and

references therein). This concept is well established in fibre Bragg gratings where forward-

and backward-propagating components at Bragg frequency (or around it, i.e., within the

frequency gap given by the reflection bandwidth) are intrinsically coupled. In this case GS

allows, at sufficiently high intensity, for locking the two components in such a way that

a pulse can travel slowly (with any velocity between zero and the velocity of light of the

host medium) along the structure without being reflected [13, 79]. This kind of propagation

exhibits particle-like properties: unstable solutions as well as stable solutions that persist

even in interactions are admitted.
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Whereas GSs in fibre gratings are hard to obtain due to high reflectivity at each fibre

end, and particularly zero-transverse velocity ones, that require a very accurate balance of

the pulses interacting inside the grating and are an ideal limit, in the spatial case, we are

describing, front excitation is used to demonstrate this sort of regime, see 3.2(a). Two beam

envelopes impinging on the structure at opposite Bragg angles can interfere to form a self-

trapped GS that tunnels (having longitudinal wave-number in the gap) through the array,

as observed recently in different materials and structures [72, 80–82]. It is possible to choose

two gaussian profiles, since their superposition generates a modulation of the overall beam

that resembles Bloch waves. Moreover transverse velocity can be set by unbalancing the two

beams. We refer to this regime as spatial gap soliton (SGS).

In the example of Kerr media this can be explained by the nonlinear index shift that

moves upward the propagation band, allowing stable propagation. Recall that zero group

velocity is achieved by impressing no transverse momentum to Bloch wave (central point of

first band).

The description of such trapping phenomenon has been initially developed on the basis

of a simplified version (that neglects diffraction) of CMT [75]. It was then argued that CMT

was accurate only for small index changes (narrow bandgap), and the reference model has

become a paraxial wave equation with periodic coefficients [74, 76, 83]. Here we compare

quantitatively and contrast the two approaches showing that the CMT, in spite of its intrinsic

approximations, provides a good analytical description of SGS in a wide range of parameters

in cases of experimental interest. Our analysis supports the use of CMT as the ground for

experimental characterization of SGS [72], and, on the other hand, indicates where CMT

should be used with care. The results of the CMT are verified by means of our BPM code.

Finally we report the analysis of trapped solutions in quadratic media, due to mutual

interactions of two-colour beams.

3.2 Spatial Gap Solitons in Kerr Media

3.2.1 Derivation of Coupled Mode equations

We consider a periodic layered medium made of lossless dielectrics with refractive index

n1,2 = n0 ± ∆n/2 [∆n = n2 − n1 > 0] and thickness Λ1,2, characterized by the pitch Λ =

Λ1 + Λ2 ≡ 2π/kg along the transverse coordinate X.

In the 1+1D approximation (∂Y = 0), and in the limit of weak inhomogeneity and paraxial

conditions, the complex envelope of the electric field E = E(X,Z) propagating along the Z-

axis (the total electric field is E(X,Z, T ) = Re {E(X,Z) exp(ikZ − iωT )]} and is assumed

to be normalized in such a way that |E(X,Z)|2 gives directly the intensity) obeys the wave

equation

i2k
∂E

∂Z
+
∂2E

∂X2
+ 2k2

0n0∆npE = 0, (3.3)

where

∆np = ∆np(X,E) (3.4)
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stands for a generic perturbation of the linear background refractive index n0: we have

assumed the weak perturbation so that

n2 = (n0 + ∆np)
2 ≃ n2

0 + 2n0∆np (3.5)

and k = k0n0 = (ω/c) = 2π/λn0 is the average wave-number. The explicit model for SGS

that we are interested in can be obtained from eq. (3.3) assuming a perturbation

∆np ≡ ∆nlin + ∆nnl (3.6)

made by the superposition of a linear periodic contribution whose Fourier expansion is

∆nlin(X) =
+∞∑

m=−∞

∆nm exp(imkgX) (3.7)

and a nonlinear Kerr contribution

∆nnl = n2I |E(X,Z)|2 (3.8)

which yield

i
∂E

∂Z
+

1

2k

∂2E

∂X2
+ k0∆np(X)E + χ|E|2E = 0 (3.9)

where χ = k0n2I is the overall nonlinear coefficient.

In the linear case (χ = 0) Bragg reflection occurs at propagation angles φBm with the

Z-axis [84]

φBm = sin−1

(
mkg

2k

)

= sin−1

(
mλ

2n0Λ

)

. (3.10)

Considering only positive values of m, the Bragg condition corresponds to waves travelling

with transverse wave-number kx = k sinφ equal to a multiple of the halved lattice wave-

number, i.e.

kx = ±kxB = ±mkg

2
= ±mπ

Λ
(3.11)

For beam pairs impinging on the structure with opposite angles close to a given Bragg order,

the CMT can be developed by writing the field as a superposition of nearly-resonant envelopes

E±(X,Z) as

E =
[

E+(X,Z)eikxBX + E−(X,Z)e−ikxBX
]

e−i
k2
xB
2k

Z , (3.12)

where a common longitudinal phase shift has been introduced to account for the well known

expression of the overall longitudinal wave-number k
(
1− k2

xB/2k
2
)

in the paraxial approxi-

mation. By inserting the ansatz (3.12) in eq. (3.3), applying the rotating wave approximation,

and grouping resonant terms, we end up with the following CMT model which is valid around

the m-th resonance

i

(
∂E+

∂Z
+
mkg

2k

∂E+

∂X

)

+
1

2k

∂2E+

∂X2
+ ΓmE− + (3.13)

+χ
(
|E+|2 + 2|E−|2

)
E+ = 0,

i

(
∂E−

∂Z
− mkg

2k

∂E−

∂X

)

+
1

2k

∂2E−

∂X2
+ ΓmE+ + (3.14)

+χ
(
|E−|2 + 2|E+|2

)
E− = 0,

where Γm = k0∆nm is the effective Bragg coupling constant.
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3.2.2 Linear diffraction properties: band diagram

The low-intensity diffraction relation β = β(kx) associated with the linear part (i.e., χ = 0)

of Eqs. (3.13-3.14) can be easily derived from the solvability condition of the algebraic system

obtained by seeking for plane-wave solutions E±(X,Z) = A± exp(±ikxX + iβZ) (note that

henceforth kx represents the deviation of the transverse wave-number from resonant value

kxB). Substituting the plane wave ansatz, we can obtain




−
(

β +
kxmkg

2k + k2
x

2k

)

Γ

Γ −
(

β − kxmkg

2k + k2
x

2k

)





(

A+

A−

)

= 0 (3.15)

that has non trivial solutions that leads to the dispersion (or more precisely saying diffraction)

relation of the periodic structure,

kx = ±

√
√
√
√−4kβ +m2k2

g ±
√(

m4k4
g − 8kβm2k2

g + 16k2Γ2
)

2
(3.16)

that accounts for diffraction terms k2
x

2k or, neglecting them

kx = ±
√

β2 − Γ2
2k

mkg
(3.17)

Beware that β is not the physical propagation constant, but a relative one. Indeed the real

phase constant can be expressed as follows:

βph = β −m2k2
g/(8k) + k

First of all it is worth comparing those band diagrams (CMT applied with different m’s)

with the rigorous ones, derived by a transfer matrix approach, see [84]. The CMT model

describes the diffraction in the vicinity of a single band-gap of order m, whereas the latter

provides the full description of the whole set of bands. Using the same convention as above,

in the generic period n we express the field as a superposition of couterpropagating transverse

waves of fixed longitudinal wavenumber,

E(x, z) =
[

aα
ne

ikαx(X−nΛ) + bαne
−ikαx(X−nΛ)

]

eiβZ (3.18)

α = 1, 2 indicates which of the two layers we are considering, kαx =
√

n2
αk

2
0 − β2 is the

corresponding transverse wavenumber.

Imposing continuity conditions of electric field and its derivatives, for TE modes we can

derive a link between field values in adjacent periods,

[

an−1

bn−1

]

=

[

A B

C D

][

an

bn

]

(3.19)
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where field weights are those in layer 1 and

A = e−ik1xΛ1

[

cos (k2xΛ2)−
1

2
i

(
k2x

k1x
+
k1x

k2x

)

sin (k2xΛ2)

]

B = eik1xΛ1

[

−1

2
i

(
k2x

k1x
− k1x

k2x

)

sin (k2xΛ2)

]

C = e−ik1xΛ1

[
1

2
i

(
k2x

k1x
− k1x

k2x

)

sin (k2xΛ2)

]

D = eik1xΛ1

[

cos (k2xΛ2) +
1

2
i

(
k2x

k1x
+
k1x

k2x

)

sin (k2xΛ2)

]

(3.20)

To obtain an eigenvalue problem, we consider that, by Bloch theorem, field envelop is

required to be periodic, i.e.

E(X,Z, T ) = Re{EK(X) exp (iKX) exp (−iωT + iβZ} (3.21)

with K the Bloch wavenumber and

EK(z + Λ) = EK(z)

Applying the latter condition to eq. (3.19), we can write

e−iKΛ

[

an

bn

]

=

[

A B

C D

][

an

bn

]

then diffraction diagram results

K(β, ω) =
1

Λ
cos−1

[
1

2
(A+D)

]

(3.22)

and consequently Bloch wave in the layer 1 of the n-th period is

EK(x)eiKX =
[(

a0e
ik1x(X−nΛ) + b0e

−ik1x(X−nΛ)e−iKx+inΛX
)]

eiKX (3.23)

where eigenvectors are expressed as

[

a0

b0

]

=

[

B

exp (−iKx)−A

]

(3.24)

times any arbitrary constant.

Propagation bands correspond to
∣
∣1
2 (A+D)

∣
∣ < 1, while forbidden bands to

∣
∣1
2 (A+D)

∣
∣ >

1. Band edges are individuated by transition points.

In fig. 3.3 we compare results obtained from (3.16) (dashed line) and (3.22) (solid line)

calculated for m = 1 and typical parameters (λ0 = 1.55µm, Λ = 4µm, 50% duty cycle,

∆n = 0.008 yielding Γ1
∼= 104m−1, as in [72]; other experiments use similar parameters)

As shown, the two results are in remarkable good agreement (dashed and solid lines are

practically coincident) around the upper grey region which represents the first (m = 1) gap

corresponding to forbidden values of β and imaginary values of the transverse wave-number

deviation kx. The figure shows also the narrow m = 2 gap (which, in the framework of the
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Figure 3.3: Band structure in the first Brillouin zone kx = [−π/Λ, π/Λ] for an array with

Λ = 4µm, ∆n = 0.008 (a). The grey areas correspond to m = 1, 2, 3 gaps (from top to

bottom) where no linear freely propagating modes exist. The CMT diffraction relationships

for gaps m = 1 (b) and m = 3 (c) (dashed line) are compared with the exact result obtained

by means of the transfer matrix method (solid line)

CMT, vanishes for a square wave grating with 50% duty cycle) and the m = 3 gap (which

is again well described by the CMT dispersion relationship with m = 3) obtained from the

exact results. The two approaches start to show significant discrepancies for refractive index

changes usually larger than those involved in experiments, with such discrepancies becoming

more severe for higher order gaps.

3.2.3 Gap soliton solution

The CMT model (3.13-3.14) entails that freely propagating modes with wavenumber in the

gap, which are forbidden in the linear regime, can exist in the nonlinear regime. In order to

assess the impact of standard diffraction of the envelopes, taken into account by the second

derivatives in Eqs. (3.13-3.14), we introduce the dimensionless variables x = (2kΓm/mkg)X,

z = ΓmZ, U± =
√

χ/ΓmE±, and the right/left propagators L± ≡ i∂z ± i∂x, which allow us

to cast Eqs. (3.13-3.14) in the following form

L±U± + U∓ +
(
|U±|2 + 2|U∓|2

)
U± = −ε∂

2U±

∂x2
, (3.25)

where ε = 2kΓm

(mkg)2
weights the diffraction terms. Since ε is usually a small quantity (e.g., from

[72] we obtain ε ∼= 0.1), the right-hand side in fig. (3.25) can be neglected. In this case, the

CMT model (identical to that governing counterpropagating pulses in a Bragg grating with

x replacing time t) possesses a family of GS solutions which has been thoroughly investigated

in [78]. These nonlinear localized modes depend on two free parameters that fix the position

in the gap and the transverse velocity of the field, respectively. Following the approach of

[78], we introduce the normalized parameters βΓ ≡ β/Γm and v = dx/dz (−1 ≤ v, βΓ ≤ 1),
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and write the GS solutions in the form

U±(z, x) = A±

√

η(ζ) exp [iβΓz + iψ±(ζ)] (3.26)

where ζ ≡ γ(x− vz) is the transverse coordinate in the GS frame, γ = (1− v2)−1/2, and η(ζ)

and ψ±(ζ) are the GS intensity and phase profiles, respectively, see [78]. We report their

explicit expressions. First let

A+ =
1

γ
√

|ρ|
4

√

1 + v

1− v A− = −s 1

γ
√

|ρ|
4

√

1− v
1 + v

ρ = 2
(
1− v2

)
+
(
1 + v2

)
s ≡ sign (ρ)

(3.27)

The intensity and phase profiles depend on the single parameter (|δ| < 1 to have bright

solitons)

δ = γβΓ ; δ2 ≤ 1⇒ β2
Γ + v2 ≤ 1 (3.28)

The intensity can be explicitly found to be

η(ζ) =
2
(
1− δ2

)

cosh
(

2
√

1− δ2ζ
)

+ sδ
, (3.29)

while the phases are

φ±(ζ) = γvβΓζ ∓ s 4F± tan−1

[
1− sδ
1− δ2 tanh

(√

1− δ2ζ
)]

; (3.30)

with

F+ =
1

4
− R

1 +R
; F− =

1

4
− 1

1 +R
; R ≡ 2(1− v2) + (1 + v)2

2(1− v2) + (1− v)2 (3.31)

Overall form for the soliton is (pose δω = vγβΓ)

U+(z, t) =
1

γ
√

|ρ|
4

√

1 + v

1− v

√
√
√
√

2 (1− δ2)
cosh

(

2
√

1− δ2ζ
)

+ sδ

× exp

{

i(βΓz − δωζ)− is 4F+ tan−1

[
1− sδ
1− δ2 tanh

(√

1− δ2ζ
)]}

U−(z, t) =
−s

γ
√

|ρ|
4

√

1− v
1 + v

√
√
√
√

2 (1− δ2)
cosh

(

2
√

1− δ2ζ
)

+ sδ

× exp

{

i(βΓz − δωζ) + is 4F− tan−1

[
1− sδ
1− δ2 tanh

(√

1− δ2ζ
)]}

(3.32)

Peak power is

|U±|2max =

√

1± v
1∓ v

1− v2

2(1− v2) + (1 + v2)

2
(
1− δ2

)

1 + sδ
(3.33)

and FWHM is

ζFWHM =
1√

1− δ2
cosh−1(2 + δ) (3.34)

To summarize the main features, we remark that SGS localized modes have been proved

to exist in the unit circle of the parameter plane, i.e. β2
Γ+v2 ≤ 1, and to possess the following

features:
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1. the amplitude and inverse width of SGS envelopes is fixed by the input (around Bragg)

angle of the two beams, or equivalently by the position in the gap, decreasing (increas-

ing) as the lower (upper) edge of the gap is approached;

2. the interference pattern formed by the two envelopes has a progressive phase shift with

respect to the grating due to the nonlinear phase terms ψ±(ζ);

3. the transverse velocity of the soliton (that does not depend on the input angle) can be

tuned by playing on input beam imbalance (amplitudes A±), since the beam acquires

a transverse velocity in the direction of the stronger beam.

In the following we restrict to the case of zero transverse velocity v = 0, which requires

perfectly balanced input intensities. In order to verify that diffraction does not hamper the

localization phenomenon we could integrate numerically Eqs. (3.25) and verify that they

possess localized solutions that can be obtained numerically by continuation of the analytical

ones when with ε 6= 0. However, the validity of all the approximations implicit in the CMT can

be assessed even better by seeking for localized nonlinear modes E(X,Z) = U(X) exp(iβsZ)

of eq. (3.9), which yields

− βsU +
1

2k

∂2U

∂X2
+ k0∆np(X)U + χU3 = 0. (3.35)

We integrate eq. (3.35) numerically by means of a relaxation approach, i.e. we discretise it

in order to obtain a system of nonlinear equations. Then for each βs (propagation constant

of the soliton, that reads as βs = βΓΓm−m2k2
g/(8k)), we solve it using the Newton iteration

for systems, a simple extension of the usual tangent formula,

F (ξ) = 0, ξ = ξ0

⇓ iteration of

JF (ξn)(ξn+1 − ξn) = −F (ξn)⇒ ξn+1

until F (ξn) < tolf ∨ |ξn − ξn+1| < tolξ

where JF denotes the Jacobian matrix of function F : R
k → R

k and ξn and ξn+1 are two

subsequent steps of iteration. Since it requires an initial guess, that has to be close enough to

final solution, we assume eqs. (3.12) and (3.26) to provide a good approximation and refine

it.

Results are reported in figs. 3.4-3.6 for the m = 1 gap of an AlGaAs grating (n2 = 3.4,

n2I = 1.5× 10−17m2/W ) with period Λ = 4µm and ∆n = 0.008 (Bragg angle 3.27o) [72].

To provide a reliable solution a large number of points is used in relaxation: this is a limit

if we study solitons of finite transverse velocity, that would require the full 2D integration,

since the soliton profile is not aligned to waveguide axes.

In fig. 3.4 we show the basic structure of a stationary SGS, which has the main dip

corresponding to the high index central layer, caused by E± being out of phase. Other

minima exhibit a progressive displacement with respect to the grating layers due to the

nonlinear phase term [feature (2)]. As shown, such features are perfectly replicated by the
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Figure 3.4: Zero-velocity SGS profile belonging to lower half of the first Bragg gap m = 1,

βΓ = −0.5), for an array with square-wave distribution ∆nlin(X) of the linear index with

period Λ = 4µm and ∆n = 0.008 (a vertically magnified replica of ∆nlin(X) is shown on the

bottom of the figure). We compare the profile obtained analytically [Eqs. (3.12,3.26)] from

the CMT (dashed line) with that obtained numerically from the wave equation (3.35).
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Figure 3.5: SGS profiles obtained for different locations in them = 1 gap fixed by the reported

value of the parameter βΓ (same array as in fig. 3.4). The profiles obtained analytically

[Eqs. (3.12,3.26)] from the CMT (red dashed line) are compared with the solutions obtained

numerically from eq. (3.35) (blue solid line). The field is in GW1/2/cm.
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Figure 3.6: As in fig. 3.5 for an array with Λ = 3µm and increasing values of the periodic

perturbation ∆n.

outcome of the relaxation method [eq. (3.35)] which exhibits a remarkable agreement with

the analytical expression [eqs. (3.12) and (3.26)]. In fig. 3.5 we compare the SGS profiles for

different locations in the gap fixed by the value of the normalized parameters βΓ. As shown,

the solutions decreases their amplitude and increase their width [feature (1)] by moving from

the upper to the lower band edge. We find that the agreement is quite good across the whole

gap except for locations close to the bottom edge of the gap [see case (c) corresponding to

βΓ = −0.9], where solitons tend to zero by becoming progressively broader and less intense.

In fig. 3.6 we show how the SGS modes are modified when the index change increases (here

we consider a fixed grating pitch Λ = 3µm). Importantly, as the index perturbation grows,

the gap widens, and the CMT is expected to be less accurate. However, as fig. 3.6 shows,

CMT gives an accurate description of localized modes even when the index change is as high

as ∆n = 0.1 and the localized mode is almost entirely confined in two guides only.

We have also explored the possibility of SGS solution lying in higher order gaps. As

stated above, second order gap is not modelled by CMT, thus we have looked for third-gap

SGS, but relaxation procedure suffers from many convergence issues. We can instead obtain

a finite CMT second order gap varying the array duty cycle (δc = Λhigh/Λ). Particularly

convergence is readily obtained for δc < 50%.

Let us seek for solutions in an array of the same parameters as above, but with δc = 25%.

In figure 3.7, we report the comparison between CMT and relaxation results.

Then we study an array of larger index step ∆n = 0.02 and a small duty cycle δc = 20%:
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in figure 3.8 we plot a detail of CMT approximation of band diagram around the second-order

gap of this array. Particularly the upper edge is poorly approximated. Then in figure 3.9 we

compare SGS at different positions of second order gap, obtained in this system.

Again we obtain larger discrepancy at the lower edge of the gap, and notice the fast

modulation to conform to the corresponding lower edge Bloch wave.
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Figure 3.7: SGS profiles obtained for different locations in the m = 2 gap fixed by the

reported value of the parameter βΓ. The array is characterized by index step ∆n = 0.008 and

duty cycle δc = 25%. The profiles obtained analytically [Eqs. (3.12-3.26)] from the CMT

(red dashed line) are compared with the solutions obtained numerically from eq. (3.35) (blue

solid line). The field is in GW1/2/cm.
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Figure 3.8: Band diagram of a ∆n = 0.02 array of period 4µm, δc = 20%: comparison of

rigorous (3.22) and CMT (3.16) (m = 2) models, focused on second order gap. As in 3.3,

solid and dashed line identify rigorous and CMT solutions, respectively.

The width-peak relationship is the same of the first example, as it can be easily realized.
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Figure 3.9: Same as fig. 3.7, but different array propertiesare used: index step ∆n = 0.02 and

duty cycle δc = 20%.

3.2.4 BPM simulation

In order to verify the goodness of CMT and the stability of SGS solutions during propagation,

we use our implemented wide-angle nonlinear beam-propagation method. Figure 3.10 displays

the result of a BPM simulation with an input beam given by eq. (3.26) [reported in fig. 3.5(b)].

As shown, in the linear case [χ = 0, fig. 3.10(a)] the beam spreads due to Bragg coupling

and different opposite transverse velocities of the two components. However, under nonlinear

conditions the beam is self-trapped [fig. 3.10(b)]. In spite of the fact that some radiation

is shed during propagation, at the output a major fraction of the input SGS power is still

confined in few central waveguides, and a comparison between the input and output profiles

[Figs. 3.10(c-d)] allows us to conclude that stable trapping is achieved. We can repeat the

same simulation for soliton of non zero transverse velocity. Using as excitation the CMT

solution, we obtain again a good trapping, proving that CMT solutions are accurate enough,

see fig. 3.11.

We have compared two approaches to the description of nonlinear beam trapping in

waveguide arrays exhibiting a Bragg forbidden gap in longitudinal wave-number. The CMT

is found to give a reasonably accurate description of still SGS solutions across the whole

fundamental band-gap, where the approach based on the paraxial equation gives a more

reliable estimate of the peak intensity and width that turns out to be appropriate to yield

beam trapping. An important exception is that broad solutions that lie close to the lower band

edge, that can be explained qualitatively recalling that intensity dependent refractive index

causes the Bragg resonance to shift upward in β as the intensity grows larger. Therefore, in

order to induce transparency, lower intensity is required near the bottom gap edge. However,

under these conditions, in Eqs. (3.13, 3.14) the nonlinear terms are so small that diffraction

is likely to become comparable and plays a non-negligible role. Conversely, along the rest of

the gap, SGSs arise basically from the balance of nonlinear terms and the main diffractive

terms, i.e. first-order derivatives and coupling, while diffraction remains negligible.

Several features could moreover be validated by means of a non-paraxial beam propagation

method.
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Figure 3.10: BPM simulation of the propagation of an input resonant still GS βΓ = v = 0)

in the m = 1 gap. Level plots of the intensity comparing (a) the low intensity (linear, χ = 0)

evolution with (b) the nonlinear evolution; (c-d) comparison of the input and output (Z = 3

mm). Grating parameters are as in fig. 3.5.

Although the analysis of moving solutions (v 6= 0) to compare CMT and its numeri-

cal refinement is an interesting topic, we are now passing to quadratic gap solitons. The

last remark about moving solutions is that gap solitons are achieved also for detuning that

are outside the gap itself in the laboratory framework, see [78]. That can be explained if

we consider the soliton frame in which, as normalized transverse velocity approaches unity,

i.e. beam approaches Bragg angle, the array undergoes length contraction and then effective

gap widens.

3.3 Gap Solitons in Quadratic Nonlinear Media

We can generalize the previous discussion, if we look for trapped solutions originating from

other nonlinear interactions.

Particularly, let us consider a χ(2) interaction, that couples two different harmonic fields.

It is well known that via a cascading process, we can obtain an effective cubic self-action, in

case of large phase-mismatch. Nevertheless, the form of the nonlinear coupled mode system

could lead to trapped solutions, also in case of perfect matching.

Since microfabrication techniques permit to achieve quasi-phase-matching, e.g. via pe-

riodic poling of magnetic domains in lithium niobate (PPLN), we could obtain two-colour

strong simultaneous soliton propagation at the improved efficiency of second order nonlin-

earity.

We are reporting some results that describe the situation in which both FF and SH lie

in a forbidden gap. In case of simultaneous excitation at the same angle, this corresponds to

first order and second order gap respectively. In fact since Bragg angle of order m is

φBm = sin−1

(
mkg

2k

)

= sin−1

(
mλ

2nmΛ

)

. (3.36)
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Figure 3.11: Same as figure 3.10, with βΓ = −0.1, v = 0.5. The output profile is computed

at z = 1.5µm.

one can have a spatial Bragg resonance m = 1 at ω, m = 2 at 2ω. The two beams are incident

exactly with the same angles provided that n1 = n2, i.e. SHG is phase-matched, and can be

trapped as doubly-resonant spatial gap soliton (SGS).

The nearly superimposition of the two beams permits to envisage the existence of bound

states of this sort, composed by two optical harmonics that turn out to be Bragg-resonant at

successive orders.

It is worth noting that phase-mismatch acts as an additional degree of freedom, that we

do not neglect.

Moreover we recall that CMT approach we have described above does not account for a

second order gap (if duty cycle is 50%), while the rigorous approach does. In case of finite

mismatch we have to carefully choose the position of soliton wavenumber inside the gap: to

obtain solutions decaying away from central zone of excitation spot, SH is not allowed to

leave its associated gap: high intensity hence provides an abrupt change in system behavior.

We start from a coupled system of nonlinear equations (for FF and SH) and substitute

for each harmonic a superposition of envelopes oscillating in the proximity of their required

gap.

3.3.1 CMT Model

If we assume a two-colour propagation in a weakly inhomogeneous and nonlinear (quadratic)

case, i.e.

E(X,Z, T ) =
1

2
E1(X,Z) exp(ik1Z − iωT )+

+
1

2
E2(X,Z) exp(ik2Z − i2ωT ) + c.c.

(3.37)
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where km = (mω/c)nm are average wave-numbers, it is easy to obtain, in the paraxial

approximation, the coupled system

i
∂E1

∂Z
+

1

2k1

∂2E1

∂X2
+
ω

c
∆np(X)E1 + χE2E

∗
1e

i∆kZ = 0,

i
∂E2

∂Z
+

1

2k2

∂2E2

∂X2
+

2ω

c
∆np(X)E2 + χE2

1e
−i∆kZ = 0.

(3.38)

where χ = k0

(
2/
(
ε0cn2n

2
1

))1/2
χ(2) and ∆k = k2 − 2k1.

We will study as above zero transverse velocity solutions, that can be found in the form

E1(X,Z) = e1(X) exp(iβsZ)

E2(X,Z) = e2(X) exp[i(2βs −∆k)Z]

by integrating numerically the following 1D equations with periodic coefficients

−βse1 +
1

2k1

∂2e1
∂X2

+ k0∆np(X)e1 + χe2e
∗
1 = 0

−(2βs −∆k)e2 +
1

2k2

∂2e2
∂X2

+ 2k0∆np(X)e2 + χe21 = 0

(3.39)

The overall wavenumbers of the two beams, (k1 + βs at FF and 2(k1 + βs) at SH) must be

inside the first two gaps, which are calculated by exact transfer matrix method.

In order to show that the bound states of Eqs. (3.39) can be generated by interference

patterns made by pairs of beams at Bragg angle, one can develop a description based on

coupled-mode theory. Recalling that Bragg condition corresponds to waves travelling with

transverse wave-number kx = ±kBm where kBm ≡ m π
Λ , we set

E1 =
[

E+
1 e

ikB1X + E−
1 e

−ikB1X
]

e
−i

k2
B1

2k1
Z

E2 =
[

E+
2 e

ikB2X + E−
2 e

−ikB2X
]

e
−i

k2
B2

2k2
Z

(3.40)

where the longitudinal phase shifts account for the proper expressions of the overall longi-

tudinal wave-numbers km

(
1− k2

Bm/2k
2
m

)
in the paraxial approximation. By inserting the

ansatz (3.40) in eq. (3.38), applying the rotating wave approximation after having Fourier

expanded the index perturbation as ∆np(X) =
∑+∞

m=−∞ ∆nm exp(imkgX), and grouping

resonant terms, we end up with the following CMT model, 3.13

i

(
∂E±

1

∂Z
± kg

2k1

∂E±
1

∂X

)

+
1

2k1

∂2E±
1

∂X2
+ Γ1E

∓
1 + χE±

2 (E±
1 )∗ei∆kzZ = 0, (3.41)

i

(
∂E±

2

∂Z
± kg

k2

∂E±
2

∂X

)

+
1

2k2

∂2E±
2

∂X2
+ Γ2E

∓
2 + χ(E±

1 )2e−i∆kzZ = 0, (3.42)

where Γm = (mω/c)∆nm are the effective Bragg coupling coefficients, and

∆kz =

(

k2 −
k2

B2

2k2

)

− 2

(

k1 −
k2

B1

2k1

)

≃ ∆k

is the longitudinal wave-number mismatch in the paraxial approximation.
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The linear limit corresponds as above to linear diffraction of decoupled harmonics, while

in nonlinear regime, we seek SGS solutions in the form

E±
1 = U±

1 (X) exp(iβZ)

E±
2 = U±

2 (X) exp[i(2β −∆kz)Z]

with the profiles U±
1,2 obeying

−βU±
1 ±

kg

2k1

∂U±
1

∂X
+

1

2k1

∂2U±
1

∂X2
+ Γ1U

∓
1 + χU±

2 (U±
1 )∗ = 0, (3.43)

−(2β −∆kz)U
±
2 ±

kg

k2

∂U±
2

∂X
+

1

2k2

∂2U±
2

∂X2
+ Γ2U

∓
2 + χ(U±

1 )2 = 0, (3.44)

Again the nonlinear phase shift β is not equivalent to the nonlinear phase shift βs of rapidly

varying envelopes E1,2.

βs = β − k2
B1

2k1
= β − (π/Λ)2

2k1
(3.45)

Solitons can be found from the normalized (dimensionless) equations

±i∂u
±
1

∂x
− δ1u±1 + u∓1 + u±2 (u±1 )∗ = −ε∂

2u±1
∂x2

±i2k1

k2

∂u±2
∂x
− δ2u±2 + Γu∓2 +

(u±1 )2

2
= −εk1

k2

∂2u±2
∂x2

(3.46)

where

δ1 = β/Γ1 δ2 = (2β −∆kz)/Γ1

Γ = Γ2/Γ1 x = (2k1Γ1/kg)X

u±1 =
√

2(χ/Γ1)U
±
1 u±2 = (χ/Γ1)U

±
2

Usually

ε =
2k1Γ1

k2
g

is a small coefficient and in the limit ε ≪ 1 this model is perfectly equivalent to the one

governing quadratic temporal GS, see [85].

3.3.2 Gap soliton solution

To compare this solution to a relaxation refinement, as we described above, we could integrate

eq. 3.46, setting the CMT solution of the cubic case as initial guess. In fact starting from

large mismatch (effective cubic action, see below), we can by continuity obtain solutions

corresponding to smaller and smaller mismatch. Then we could refine the CMT solutions in

the square periodic lattice.

We have preferred to apply directly this procedure to obtain a set of quadratic solitons

starting from the cubic solution and a large mismatch, then exploiting the continuous depen-

dence on our new parameter. Let us consider eq. (3.38), posing Ê2 = E2 exp(i∆kz), we can
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write

i
∂E1

∂Z
+

1

2k1

∂2E1

∂X2
+
ω

c
∆np(X)E1 + χÊ2E

∗
1 = 0,

i
∂Ê2

∂Z
+

1

2k2

∂2Ê2

∂X2
+

2ω

c
∆np(X)Ê2 + ∆kÊ2 + χE2

1 = 0.

(3.47)

In case of large mismatch ∆k, assuming SH adiabatically adapting to FF, i.e.

∆k >> ∆np, |∂ZE2|

, we can obtain from the second equation of (3.47),

Ê2 = − χ

∆k
E2

1 (3.48)

and the FF field can be obtained approximately by en effective cubic equation,

i
∂E1

∂Z
+

1

2k1

∂2E1

∂X2
+ k0∆np(X)E1 + χ3|E1|2E1 = 0 (3.49)

where χ3 = − χ
∆k .

Then our procedure consists in discretizing the system (3.39) and applying Newton it-

eration to it using as initial FF guess the cubic soliton and SH is calculated according to

(3.48).

Since this assumption is valid under large mismatch, once we have obtained a doubly

resonant solution, we span the ∆k range up to phase-matching and study how peak power

and beam width are affected. Moreover we need to set carefully the position inside the first

gap of FF, hence the whole cannot be spanned to look for solutions. We neglect instead the

dispersion of linear index step: once a mismatch is fixed, we set accordingly both high and

low indices of diffraction.

We are reporting several preliminary results, to outline the properties of this sort of

solutions. The array is characterized by ∆FF,SH
n = 0.008, Λ = 4µm, n2 = 3.4 (high index),

and χ = 5 10−4, to obtain at high mismatch, ∆k = −4 × 103, a value of k0n2I = χ
|∆k| =

6.25× 10−11, similar to that used for Kerr effect in the previous case.

In figure 3.12, we compare for large phase-mismatch, quadratic solution and the starting

guess (cubic solution obtained obtained by relaxation). Remind that the Kerr effective index

is a function of mismatch itself. Results confirm our first approximation attempt, i.e. the

cubic limit can be used at large mismatch, although as guess. In this case we kept a 50%

duty cycle to prove that despite CMT does not predict them, inside the narrow second order

gap, SH can tunnel in the nonlinear regime.

Then we show how a stronger conversion efficiency affect solutions: in figure 3.13 keeping

the same parameters of the previous one, we set ∆k = −10.

Since we realized that SH lying inside its second order gap permit to achieve solutions

following this procedure, we have to study wider gaps, i.e. structures of duty cycle δc 6= 50%.

A third example is then obtained by modifying gap widths, see figure 3.14, where duty cycle

is increased to 70%.

Finally an important characterization is provided by the effect of phase-mismatch of beam

peak and width values, see fig. 3.15. A predictable result is that as long as we approach phase
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Figure 3.12: χ(2) SGS. Top: fundamental, center: second harmonic, bottom: location of

longitudinal wavevectors. Initial (cubic solution) guess (red dashed) compared with relaxed

solution (blue solid). Once δ1 = −0.5 is set, the SH detuning inside its gap is fixed accordingly.

The array parameters are, as above, ∆n = 0.008, Λ = 4µm. In this case, duty cycle is

δc = 50% and phase-mismatch ∆k = −4000m−1.

matching between FF and SH, a beam of lower total intensity is sufficient to sustain a trapped

solution. The fact that peak SH intensity in physical units overcomes FF could be explained

by the specific input parameters, indeed we have found that changing position inside gaps

or duty cycle lead to a different behaviour: to realize that we report another case, see figure

3.16, that, despite only detuning in gap is modified, exhibits a crossing of FF with SH peak

intensity and a nearly flat trend near zero mismatch. The energy intensity is in the latter

case remarkably more concentrated. This allows us to conceive the opportunity to generate

a trapped SGS injecting FF only, certainly more practical to apply in experiments.

3.4 A Remark on Applications

We mentioned in the beginning of this chapter that many technologies permit to fabricate

worth-mentioning periodic systems. Moreover, many settings are possible: 2D waveguide

arrays can be easily obtained in photorefractive materials, space-time trapping is possible in

arrays of coupled resonators optical waveguides, see [9].

Beyond the interesting physics involved in these phenomena, several applications can

be imagined, see [73]. Among them we mention low loss bends, AND gate, and all-optical

routing. They exploit basically a matrix of waveguiding rods, on xy plane aligned along the

z axis (propagation direction). Impressing a transverse motion it is possible to route soliton

beam on a specific path and soliton-soliton interaction could permit to control the flow of

light.

The application of our numerical tools to those phenomena would be quite interesting,

but we focused more on classifying the possible regimes and their properties. The dynamical

behaviour of a single soliton solution is quite rich, thus interactions also exhibit sophisticated
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Figure 3.13: Same as fig. 3.12, but a smaller mismatch, ∆k = −10m−1. It can be obtained by

continuous assumption, starting from an higher mismatch solution, hence only final solution

is shown.

properties, but we find they are beyond the scope of this work.
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Figure 3.14: Same as fig. 3.12, but ∆k = −1000m−1, δc = 70%, detuning δ1 = −0.4. Indeed

in order that SH wavenumber lies inside its associated gap, we have to set the FF detuning

carefully.
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Figure 3.15: Peak intensity and FWHM of quadratic SGSs as a function of phase-mismatch

∆k. The array parameters are the same of figures 3.12 and 3.13, except a different position

inside FF gap, δ1 = −0.4.
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Chapter 4

Analysis of Cylindrical

Micro-resonators based on the

Aperiodic Fourier Modal Method

4.1 Introduction: Micro-resonators and Modelling

Micro-resonators are emerging as a class of very promising and versatile devices for next-

generation integrated photonic circuits. Breakthroughs in different fabrication technologies

have permitted noteworthy implementations such as microspheres, microdisks, microrings,

microgears, microtori, micropillars, and photonic crystal defects, which have proved to be

effective in several applications encompassing passive (filters, add&drops, static-delay lines),

as well as active (modulators, lasers, switches, programmable delay lines) devices (see [6, 7,

86] for a survey on these technologies). They can play also a key role in cavity-quantum-

electrodynamics [6], and nonlinear optics applications such as Raman lasers [87] and coupled

resonator structures (e.g. CROWs [9]).

Specifically, cylindrical micro-resonators, such as microdisks, microrings, microgears, and

microtori, permit to achieve very large quality factors Q (as high as Q ≈ 106 for silica

microtori, [88]). Their modal structure is composed by the so-called whispering-gallery modes

(WGMs), named after acoustics. They where discovered by Lord Rayleigh in the St. Paul

cathedral in London. Inside its dome focal points can be found: words whispered in one of

them can be heard in the others, despite the large distance. They arise from waves circulating

in the proximity of a curved surface, bouncing, in a ray-propagation model, on round walls;

this explains the losses and determines the intrinsic quality factor of the cavity: modes in

resonant structures are intrinsically leaky. WGMs are usually denoted by two integer indices,

m and l. For example, in figure 4.1 we plot the TM solution of azimuthal order m = 10 and

radial order l = 1 of a microdisk resonator, obtained by a 2D solver.

In our work, we devoted much effort to study this sort of devices, implementing a numer-

ical method and characterizing several integrated optical circuits incorporating them. This

chapter is consecrated to reporting an implementation of the aperiodic Fourier-modal method

67
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Figure 4.1: Example of WGM of a microdisk resonator: radius r = 1µm, composed longitu-

dinally by a slab 0.240µm thick of n1 = 3.2 surrounded by n2 = 1.5. TM mode of azimuthal

order m = 10, radial order l = 1.

in cylindrical coordinates. Our aim has been to develop a 3D description of microdisks and

microrings, structures with axial symmetry which are more appealing for planar integration

technologies used in integrated optics, e.g. silicon-on-insulator [89]. We are able to calculate

resonant wavelengths and quality factors, and in principle we could apply it to every cavity

of this symmetry.

Since they are usually multi-mode structures with several resonances, a proper analysis

of their optical mode structure is fundamental. Usually, the hybrid character of modal fields

results in a poor reliability of 2D-algorithms based upon effective index approximation 1,

see [90] where a general discussion on modelling is provided. Though many 3D numerical

approaches have been proposed such as finite elements (FEM), integral equations, finite differ-

ences (FDTD), and modal-decomposition-based algorithms (see [91] and references therein),

the latter ones, despite being somehow dependent on geometry or symmetry properties, are

generally faster and provide a clear insight on electromagnetic field distribution in the cavity.

A 3D modal method based on film-mode matching is already available, [92], as well as its

application in the design of waveguide-resonator systems, [93], but those works are focused

on structures of large radii and small index-step, and are prone to some limitations due to

their specific modal approach. Indeed, the main issue with modal methods is the estimation

1. The well known approximation that assumes, in our case, the axial and radial dependence to be separable

variables and uses a slab guided modes as longitudinal profile.
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of mode-overlap integrals and a proper computation of the eigenvalues of leaky modes, whose

a careful description should be accomplished in bounded structures (as those commonly

examined by computational methods).

Here, our approach relies on an application of rigorous coupled-wave analysis (RCWA)

to waveguiding structures, also known as A-FMM: it approximates modes by Fourier-series,

which enables one to reduce the computation of overlap integrals to matrix manipulations.

In principle, such method could be applied also to different structures such as micropillar

resonators. Indeed an implementation of a 3D-A-FFM to model micropillars has already been

presented [94], based on 2D Fourier discretization on the transverse plane and propagation

along the axis. In that case the mode confinement properties resemble those of the funda-

mental mode of an optical fibre and are less affected by artificial roughness than WGMs. Our

algorithm is thus particularly suitable to analyse thin structures in which cylindrical sym-

metry has to be preserved, while pillars with many distributed Bragg reflector (DBR) layers

would require a very large computational window, reducing the efficiency of the method.

The outline of the chapter is as follows. In section 4.2 we introduce our RCWA approach.

In section 4.3 we recall the admittance matrix formalism to describe a multilayer device,

while in section 4.4 we obtain the eigenvalue problem and solve it in order to obtain resonance

wavelengths, Q factors, and modal profiles. Finally we will report specific results in section

4.5, and draw conclusions.

4.2 RCWA and its Application in Cylindrical Coordinates

4.2.1 RCWA: a general overview

The RCWA approach is a time-harmonic method that originated in the framework of diffrac-

tion grating analysis [95], and was later extended to study also guided-wave problems [30].

In the spirit of this approach, a basis of Bloch modes of a virtually infinite periodic structure

is used to compute the real modes propagating in an aperiodic one. This is equivalent to

analyse an artificially periodic structure, but if this period is sufficiently large or suitable

boundaries are applied, it provides a good approximation and has the main advantage of

being conceptually and formally simple.

To outline its principles, we consider the solution of a 2D problem under TM polarization,

which lead to many problems in the past. This was solved by Lalanne and Morris, see [96],

and the mathematical justification was provided by Li, see [97].

The Cartesian equations for TM polarization (Hy, Ex, Ez) in a Oxz system, with z the

propagation direction are

−∂Ez

∂x
+
∂Ez

∂x
= −jωµHy

∂Hy

∂z
= −jωǫEx

1

ǫ

∂Hy

∂x
= jωEz

(4.1)

We assume the electric permittivity to be a periodic function of period Λ and we suppose to

operate in a nonmagnetic medium. By Bloch theorem, the fields themselves are periodic of
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the same period. Let us write them in Fourier series and retain a finite number of coefficients,

i.e.

ǫr =
M∑

m=−M

ǫm exp (jmKx)

Hy = −j
√
ǫ0
µ0

M∑

m=−M

Um exp (jmKx)

Ex =

M∑

m=−M

Sm exp (jmKx)

Ez =
M∑

m=−M

fm exp (jmKx)

where K = 2π
Λ .

After few algebra, we can obtain a wave equation ruling the generic Fourier coefficient of

the magnetic field,

1

k2
0

d2Un

dz2
=

M∑

m=−M

ǫn−m

M∑

p=−M

[

mK

k0

(
1

ǫ

)

m−p

pK

k0
− δmp

]

Up (4.2)

that can be expressed in matrix form as

1

k2
0

d2U

dz2
=
(
EKxEKx − I

)
U (4.3)

where E and E are the Toeplitz matrices composed by the Fourier coefficients of ǫ and its

inverse, Kx is the diagonal matrix of terms nK/k0, and I is the identity matrix; U is the

array of Fourier coefficients Un, n = −M, . . . ,M .

While this approach suits fine to the dual, TE, problem (resulting even simpler), for TM it

leads to a incomparable slower convergence. We recall that in TM modes, to ensure continuity

of electric induction across interfaces, Ex and ǫ have concurrent jumps, i.e. although they both

are discontinuous, their product is continuous. The construction of the product coefficients

as convolution of those of each factor implies the resulting Fourier series not to converge

uniformly, then requiring a large number of coefficients. We have rather to introduce an

inverse rule, that consists in using the inverse of the permittivity Toeplitz matrix whenever

it is multiplied by an electric field concurrently jumping, e.g. instead of

dUn

dz
= k0

M∑

m=−M

(ǫ)n−mSm (4.4)

where the direct convolution (Laurent rule) is employed, we have to calculate

dUn

dz
= k0

M∑

m=−M

[
1

ǫ

]−1

n,m

Sm (4.5)
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where
[

1
ǫ

]−1

n,m
denotes the (n,m) element of the inverse of the Toeplitz matrix of Fourier

coefficients of 1/ǫ 2. Then equation (4.2) becomes

1

k0

d2Un

dz2
=

M∑

m=−M

[
1

ǫ

]−1

n,m

M∑

p=−M

[
mK

k0
[ǫ]−1

m,p

pK

k0
− δmp

]

Up (4.6)

or in matrix form
1

k2
0

d2U

dz2
=
(

E
−1
KxE

−1Kx − I
)

U (4.7)

and convergence is improved, despite still worse than in the TE case.

Finally we can write

1

k2
0

d2U

dz2
= AU

that implies

Un =
∑

i

vni [ai exp (−jk0βiz) + bi exp (jk0βiz)] (4.8)

where βi’s are the square root of eigenvalues of matrix A and vni the elements of its eigen-

vector matrix. To decide the eigenvalue sign, we have to guarantee a proper evaluation of

evanescent waves, then Imβi < 0. We notice also that provided that media permittivity is

real, eigenvalues of A are real, hence only propagating (real β) or evanescent (imaginary β)

modes are permitted. This outcome is modified by the use of artificial absorbing boundaries:

they will be discussed in a successive section.

4.2.2 RCWA in cylindrical coordinates

Our work has been devoted to applying this approach in a cylindrical coordinate system

(r, θ, z) and use RCWA to obtain optical modes along the z-axis [see fig. 4.2(a)]. By means

of separation of variables, assuming periodic azimuthal dependence of the type exp(jmθ), we

investigate how modes (describing fields along z) depend on the radial coordinate r. Though

we reduce to two variables, the vectorial nature of the problem requires to deal with the

full six components of the field. Similarly to the full vectorial approach employed for optical

fibres, we can deal with Ez and Hz, while the other components can be reconstructed from

them. Finally, as usual in any modal method, the structure under analysis is decomposed

into a sequence of radially-uniform layers, see fig. 4.2(b). All sections are characterized by

their own z-dependence of material parameters. This is equivalent to analysing radially

homogeneous media with arbitrary distribution of materials along the z-axis in cylindrical

symmetry. The modal behaviour is obtained by matching the fields across interfaces that are

normal to r-axis.

We assume a harmonic time dependence of the fields, exp(jωt), where the frequency ω can

be in general a complex quantity to account for damping (further discussion will be provided

2. The inverse a Toeplitz matrix does not enjoy this property, then (n, m) position does not correspond to

(n − m) Fourier coefficient as before.
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Figure 4.2: (a) Generic micro-resonator with z−axis cylindrical symmetry and its periodiza-

tion on which the Fourier modal method relies; note that PMLs are also included in the

periodic window Λ; (b) Sketch of the radial layer decomposition; rs denotes the radial posi-

tion of the generic interface between homogeneous layers.

in a successive section) and decompose the relative dielectric permittivity ǫr and magnetic

permeability µr according to (harmonic) Fourier series

ǫr =
∑

n

ǫne
jnKz , µr =

∑

n

µne
jnKz, (4.9)

where K = 2π/Λ, Λ being the period of the structure, equivalent to the computation win-

dow. In the following, we apply the method to the far most common case of non-magnetic

media, (constant permeability µr ≃ 1), though its extension to magnetic media can be easily

implemented, and the method can be further generalized to deal with anisotropic materials.

By truncating the summation of the Fourier expansion to order M (n = −M, . . . ,M), and

exploiting the Floquet-Bloch theorem, the fields can be expanded according to truncated
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series of functions with the same period, namely

~E =

M∑

n=−M

(Sn
r r0 + Sn

θ θ0 + Sn
z z0) e

jnKzejmθ,

~H = −j
√
ǫ0
µ0

M∑

n=−M

(Un
r r0 + Un

θ θ0 + Un
z z0) e

jnKzejmθ,

(4.10)

While Sr,θ and Ur,θ can be related through Maxwell equations to Uz and Sz, the latter obey

expressions that can be obtained from Helmholtz equations for full vector fields ~E and ~H 3

∇2 ~E + k2
0ǫr ~E = −∇

(

∇ǫr · ~E
ǫr

)

, (4.11)

and

∇2 ~H + k2
0ǫr ~H = −jωǫ0∇ǫr × ~E. (4.12)

By projecting eq. (4.11) along the z-axis, we obtain

∇2Ez + k2
0ǫrEz = − d

dz

(
1

ǫr

dǫr
dz

Ez

)

= − d

dz

(
1

ǫr

d

dz
(ǫrEz)

)

+
d2Ez

dz2
, (4.13)

while from eq. (4.12), considering that, in each radial layer, ǫr is a function of z only, we

obtain

∇2Hz + k2
0ǫrHz = 0. (4.14)

By inserting the expressions (4.10) in eqs. (4.13) and (4.14), we end up with equations

obeyed by the generic Fourier coefficients Sn
z and Un

z of Ez and Hz, respectively 4

d2Sn
z

dr2
+

1

r

dSn
z

dr
− m2

r2
Sn

z − nK
∑

p

[ǫ]−1
n,p pK

∑

l

[
1

ǫ

]−1

p,l

Sl
z + k2

0

∑

p

[
1

ǫ

]−1

n,p

Sp
z = 0

d2Un
z

dr2
+

1

r

dUn
z

dr
− m2

r2
Un

z − (nK)2 Un
z + k2

0

∑

p

ǫn−pU
p
z = 0

(4.15)

where ǫn−p denotes the n− p Fourier coefficient of ǫr, or equivalently the (n, p) element of a

Toeplitz matrix, composed by those coefficients, from −2M to 2M , while
[

1
ǫ

]−1

n,p
is used to

identify the (n, p) element of the inverse of the Toeplitz matrix formed by Fourier coefficients

of 1
ǫ , according to inverse rule.

Thus, we have obtained two systems of Bessel equations that can be casted in the following

compact vector form by introducing the vectors

Sz =
[
S−M

z . . . SM
z

]T

and

Uz =
[
U−M

z . . . UM
z

]T

3. We could obtain the same formulas, starting directly from Maxwell equation, but it is slightly cumber-

some, specifically to decouple magnetic and electric field components.

4. Recall that ∇2 = ∂2

∂r2 + 1

r2

∂2

∂θ2 + ∂2

∂z2 + 1

r
∂
∂r
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d2Sz

dr2
+

1

r

dSz

dr
− m2

r2
Sz + k2

0

A
︷ ︸︸ ︷(

E
−1 −KzE

−1KzE
−1
)

Sz = 0

d2Uz

dr2
+

1

r

dUz

dr
− m2

r2
Uz + k2

0

(
E −K2

z

)

︸ ︷︷ ︸

B

Uz = 0

(4.16)

where Kz is a diagonal matrix with elements (kz)nn = (n−M − 1)K/k0, while E and E are

the Toeplitz matrices obtained from the Fourier coefficients of ǫr and 1/ǫr.

The general solution of Eqs. (4.16) can be expressed as a superposition of Bessel functions

Jm, and Hankel functions of the second kind H
(2)
m as

Sn
z =

∑

i

wni

[

aiJm

(
k0λ

A
i r
)

+ diH
(2)
m

(
k0λ

A
i r
)]

(4.17)

Un
z =

∑

i

vni

[

αiJm

(
k0λ

B
i r
)

+ δiH
(2)
m

(
k0λ

B
i r
)]

(4.18)

where λA,B
i denote the square root of the i-th eigenvalue of matrix A and B respectively, and

wni, vni denote the elements of the corresponding eigenvector matrices W and V , i.e. we can

write

A = W−1 diag
[(
λA

i

)2
, i = −M, . . . ,M

]

W

B = V −1 diag
[(
λB

i

)2
, i = −M, . . . ,M

]

V

A remark We remark that H(2) function is actually an outgoing wave in radial direction.

In fact an asymptotic expression for large argument is, see [98],

H(2)
m (z) ≈

√

2/(πz) exp

[

−j
(

z − m

2
π − 1

4
π

)]

,

then in analogy with plane waves, we have forward/outgoing waves provided that (λi is a

radial propagation constant of i-th axial mode, taking into account that k0 is complex),

Re {λi} > 0

Re {k0ni} > 0

ωRnR
i − ωInI

i > 0

nR
i >

nI
i

Q

(4.19)

i.e. a mode cannot grow at a faster rate than that imposed by the quality factor. This

condition is intended to guarantee that H(2) function is actually an outgoing wave in ra-

dial direction. We recall that Hankel functions do not enjoy the same nice properties as

exponential function.

Importantly, in order to ensure that the supermodes of the periodic structure give a

good description of the modes of the physical aperiodic structure, we need to introduce

proper boundary conditions that allow to substantially decouple successive periodic repeti-

tions (along z). Perfectly matched layers (PMLs) are best suited to this purpose.
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4.2.3 Perfectly matched layers

We introduce PML in our scheme [see fig. 4.2] following the approach of [99], where a complex

coordinate stretching of z-axis is implemented. We remark that PMLs applies in general

as boundary conditions in the solution of elliptic partial differential equations, see [100]. In

section 2.5 we described their implementation in finite difference BPM. Here, we are recalling

how they are used in modal methods. Specifically RCWA, where a finite number of harmonic

functions is used, no discontinuity is met passing from physical domain to PML. Nevertheless

we have to carefully design PML, since other issues could appear.

Let us summarize the main features of PML and their implementation in cylindrical

coordinates and modal methods:

1. PMLs can be implemented as anisotropic magnetic media or complex coordinate stretch-

ing;

2. it is proved in [101] that both implementations can be used in cylindrical coordinate

systems, with some care in the anisotropic media design;

3. the opportunity to obtain an improved accuracy implementing a nonlinear complex

coordinate stretching is shown in [99], with examples of applications in RCWA context.

4. using a coordinate stretching approach is equivalent to a slight change in the derivative

operator, specifically a multiplication by a known function.

5. dealing with anisotropic layers needs to write more complicated equations, thus we

exploit the results of [99].

We remark that, by applying separation of variables, the dependences on r and z are

decoupled; hence the application of inverse rule and PMLs is not affected by the use of

cylindrical coodinates, since they operate on the longitudinal axis only.

The complex coordinate stretching implementation consists in defining an analytic con-

tinuation of the field in the complex plane (to have only outgoing or evanescent waves at

the boundary of the physical domain), then mapping the infinite complex plane into the real

finite segment of computation. More specifically we integrate the wave equation on an infinite

path in the complex plane mapped through a suitable transform into the real segment: no

incoming interfering wave is thus allowed.

We solve the electromagnetic problem in the complex space Z, mapped on the real axis

z as follows

Z = F (z) such that







z → Λ/2⇒ Z →∞+ j∞
|z| ≤ Π/2⇒ Z = z

z → −Λ/2⇒ Z → −∞− j∞
(4.20)

where Λ is the width of the computational domain (i.e. the period of RCWA) and Π is the

width of the physical domain (i.e. Λ without PML layers). It is worth noting that following

[99] we do not use nor look for an optimal F and that in practice we need only
(

dF
dz

)−1
, since

d

dZ
=

dz

dZ

d

dz
=

(
dF

dz

)−1 d

dz
= f(z)fPML(z)

d

dz
(4.21)
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where f(z) is a continuous function (the mapping itself) and fPML(z) is a piecewise constant

complex-valued function, that is equivalent to an anisotropic material contribution. In the

RCWA framework the transform of eq. 4.20 requires to substitute Kz with FzKz, being Fz

the Toeplitz matrix of the Fourier coefficients of f(z) and following [99] we can drop the

other function, since a nonlinear complex coordinate stretching is shown to be working well

enough.

F is chosen to have easy computable Fourier coefficients, particularly

f(z)↔ fn with

fn = δn −
q

2Λ
(−1)n

[(

1 +
γ

4

)

sinc
(nq

Λ

)

+

+
1

2
sinc

(nq

Λ
− 1
)

+
1

2
sinc

(nq

Λ
+ 1
)

+

−γ
8

sinc
(nq

Λ
− 2
)

− γ

8
sinc

(nq

Λ
+ 2
)]

(4.22)

where q = Λ − Π and γ is a complex parameter characterizing the PML, that is almost

equivalent to the imaginary part of the absorbing anisotropic media parameters.

That means a profile f(z) like that of fig. 4.3.
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Figure 4.3: Function f(z), that constitutes the PML as nonlinear complex coordinate stretch-

ing, Π = 2
3Λ, γ = 1

1+j .

We should notice that with respect to [99], we chose a γ value with opposite imaginary

part. This is due to the opposite sign rule for harmonic dependence. Since in our work we

suppose that forward propagating waves are represented by e−jkz, an outgoing wave toward

z →∞ must decay as e−jβz−αz and for z → −∞ as ejβz+αz. In transformed coordinates we

deal with e−jβZ outgoing waves, thus in order to obtain an evanescent field in the physical
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domain,

−jβ =
d

dZ
= f(z)

d

dz
= f(z)(−jβ − α)

from which

β = f(z)(β − jα)

and finally we can state that both real and imaginary part of the transformation must be

positive, in order to obtain the correct sign of eigenvalues. Figure 4.3 shows this fact [compare

with [99]].

This approach is analogous to digital filters design techniques that, via a bilinear trans-

form, map the infinite frequency domain to the primary frequency period of the discrete-time

response, avoiding aliasing and uncontrollable results of trivial substitution.

Compared to other modal methods that, if PML or complex frequency are used, face

difficulties due to the computation of complex propagation constants, see [29], Fourier modal

method is completely free from those issues, reducing them to a matrix eigenvalue problem.

4.3 Admittance Matrix Approach

The resonators that we are analysing here are composed by a sequence of radially-uniform

layers, each completely described by its index profile and modal structure along z. The overall

effect of such a combination could be accounted for by means of a single matrix, and different

choices are possible [34]. The scattering matrix formulation provides better physical insights,

but faces severe numerical problems due to the divergence of Hankel functions at the origin,

which can cause imperfect summation of counter-propagating radial waves. Vice-versa the

immittance (or admittance, and the equivalent impedance) matrix formalism has been proved

to be a powerful numerical tool [92], and here we follow this approach, adapting it to the

modal basis discussed in the previous section. The key point, in this case, is to characterize

the radial dependence of the field going through the succession of radially uniform layers,

imposing continuity at the interfaces, similarly to propagation problems in layered media

(e.g., transfer matrix approach).

First, we define implicitly the immittance matrix U from the relation, see [92],

1

k0

dp

dr
= U(r)p (4.23)

where p is the vector of modal weights as a function of radial direction, i.e. we can rewrite

eq. (4.17) and eq. (4.18) in matrix form as

[

Sz

Uz

]

=

[

W 0

0 V

]

p(r) (4.24)

Then denoting by the integer s = 0, 1, · · · , f the interfaces between radially homogeneous

layers, moving in the radial outward direction (r0 = 0 and [rs, rs+1] stands for the generic
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layer), we can express the general solution of the field expansions, in the form

p(r) =

[

pe(r)

ph(r)

]

=







[

Je
0(r)a0

Jh
0 (r)α0

]

= J0(r)A0, r ∈ [0, r1]

[

Je
s (r)as +He

s (r)ds

Jh
s (r)αs +Hh

s (r)δs

]

= Js(r)As +Hs(r)Ds, r ∈ [rs, rs+1]

[

He
f (r)df

Hh
f (r)δf

]

= Hf (r)Df , r ∈ [rf ,∞ [

(4.25)

where superscript e and h refer to the electric and magnetic part, respectively.

To explain the specific form of solutions in the innermost and outermost regions, we

consider that, owing to physical consistency, along the symmetry axis of the cylindrical

resonator, the field must be finite requiring the absence of Hankel function (only Jm is

permitted). Similarly, only outgoing waves are allowed in the outermost layers (no energy

comes from infinity), and hence only Hankel (H
(2)
m ) function is permitted.

Moreover, in order to contract the notation as much as possible, we have defined

Ce
s(r) = Cm (k0N

e
s r) Ce

s(r) =
dCm
dξ

∣
∣
∣
∣
ξ=k0Ne

s r

Ch
s (r) = Cm

(

k0N
h
s r
)

Ch
s (r) =

dCm
dξ

∣
∣
∣
∣
ξ=k0Nh

s r

Cs(r) = Cm (k0Nsr) Cs(r) =
dCm
dξ

∣
∣
∣
∣
ξ=k0Nsr

(4.26)

where C and C indicate a generic Bessel function (either Jm or H
(2)
m ) and its derivative,

respectively, of argument k0r multiplied by a diagonal matrix N e
s , Nh

s , or Ns constructed

with the set of modal eigenvalues of the electric part (superscript e), the magnetic part

(superscript h), or both (i.e. Ns = diag
{
λA
−M , . . . , λ

A
M , λ

B
−M , . . . , λ

B
M

}
).

We point out that eq. (4.25) together with eq. (4.24), constitute an alternative form of

eqs. (4.17) and (4.18).

We are now reporting how immittance matrix transforms while propagating along r and

going through interfaces.

4.3.1 The propagation step

We start by dealing with the propagation step, i.e. how to compute immittance matrix at the

right edge (superscript R) of a generic layer, given the one at the left edge (superscript L) of

the same layer (or vice-versa, right to left). Let us express the derivatives of p as functions

of modal weights at both edges, i.e.

1

k0

dp (rs+1)

dr
= Js (rs+1)As +Hs (rs+1)Ds =

= Ns
Js (rs+1)As +Hs (rs+1)Ds

Hs (rs) Js (rs+1)− Js (rs)Hs (rs+1)
[Hs (rs) Js (rs+1)− Js (rs)Hs (rs+1)] =

= Gsp (rs+1)−Hsp (rs)

(4.27)
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where we skipped some algebra (basically we sum and subtract a product of Bessel functions

that permit to separate the contributions at the two layer ends.) The reciprocal relationship

reads as
1

k0

dp (rs)

dr
= Esp (rs+1) + Fsp (rs) . (4.28)

We substitute definition of immittance matrices (4.23) in equations (4.27) and (4.28) and

arrive at the following relations (see also [92])

UR
s = Gs −Hs ·

[
UL

s − Fs

]−1 ·Es, (4.29)

and

UL
s = Hs ·

[
Gs −UR

s

]−1 ·Es + Fs, (4.30)

where, once again, R and L denote the radial positions r−s+1 and r+s of successive interfaces,

respectively. Furthermore we have posed

Es = Ns

[
H (rs) J (rs)−H (rs)J (rs)

]
·X−1

s ,

Fs = Ns

[
H (rs)J (rs+1)−H (rs+1)J (rs)

]
·X−1

s ,

Gs = Ns

[
H (rs)J (rs+1)−H (rs+1) J (rs)

]
·X−1

s ,

Hs = Ns

[
H (rs+1)J (rs+1)−H (rs+1)J (rs+1)

]
·X−1

s ,

(4.31)

where

Xs = H (rs) J (rs+1)−H (rs+1) J (rs) . (4.32)

4.3.2 Continuity at interfaces

Next step is to write how the immitance matrix transforms when it goes through an interface.

In this case, continuity of tangential fields requires the field components Ez, Hz, Eθ, and Hθ

to be continuous across dielectric discontinuities (interfaces).

From Maxwell equations, we can derive the unknown components and obtain for Eθ and

Hθ,

ǫr
∂

∂z

(
1

ǫr

∂Hθ

∂z

)

+ k2
0ǫrHθ =

1

r

(

ǫr
∂

∂z

(
1

ǫr

∂Hz

∂θ

))

− jωǫ0ǫr
∂Ez

∂r
(4.33)

By duality and considering that the medium is nonmagnetic, we have

∂2Eθ

∂2z
+ k2

0ǫrEθ =
1

r

∂2Ez

∂z∂θ
+ jωµ0

∂Hz

∂r
(4.34)

In an analogous way we can derive Er and Hr,

ǫr
∂

∂z

(
1

ǫr

∂Hr

∂z

)

+ k2
0ǫrHr = ǫr

∂

∂z

(
1

ǫr

∂Hz

∂r

)

+
jωǫ0ǫr
r

∂Ez

∂θ
(4.35)

∂2Er

∂2z
+ k2

0ǫrEr =
∂2Ez

∂r∂z
− jωµ0

r

∂Hz

∂θ
(4.36)

We write vectors of Fourier coefficients of azimuthal components (Eθ, Hθ) according to

the same rules we stated above as

CUθ = − m

rk0
EKzEUz +

1

k0
E

−1 dSz

dr
= EKrEUz +

1

k0
E

−1 dSz

dr
(4.37)
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BSθ = − m

rk0
KzSz +

1

k0

dUz

dr
= KrSz +

1

k0

dUz

dr
(4.38)

where C =
(
−EKzEKz + E

)
and B =

(
−K2

z + E
)

(as before), and Kr = − m
rk0
Kz.

Continuity relations for Fourier coefficients read as

Wsp
−
e (rs+1) = Ws+1p

+
e (rs+1), (4.39)

Vsp
−
h (rs+1) = Vs+1p

+
h (rs+1), (4.40)

B−1
s

[

Ks+1
r Wsp

−
e (rs+1) + Vsp

−
h (rs+1)

]

=

B−1
s+1

[

Ks+1
r Ws+1p

+
e (rs+1) + Vs+1p

+
h (rs+1)

]

,
(4.41)

C−1
s

[

EsK
s+1
r EsVsp

−
h (rs+1) + Es

−1
Wsp

−
e (rs+1)

]

=

= C−1
s+1

[

Es+1K
s+1
r Es+1Vs+1p

+
h (rs+1) + E

−1
s+1Ws+1p

+
e (rs+1)

]

,
(4.42)

where for the sake of brevity we have indicated 1
k0

dp
dr = p. After inverting (4.39)–(4.42), and

substituting the definition (4.23),

[

p+
e

p+
h

]

=

[

W−1
s+1Es+1Cs+1C

−1
s EsK

s+1
r EsVsp

−
h

V −1
s+1Bs+1B

−1
s Ks+1

r Wsp
−
e

]

+

+

[

W−1
s+1Es+1Cs+1C

−1
s E

−1
s Ws

[
U−

eep
−
e + U−

ehp
−
h

]

V −1
s+1Bs+1B

−1
s Vs

[
U−

hep
−
e + U−

hhp
−
h

]

]

−
[

W−1
s+1K

s+1
r Es+1Vs+1p

+
h

V −1
s+1K

s+1
r Ws+1p

+
e

]

=

=

[

W−1
s+1Es+1Cs+1C

−1
s E

−1
s WsU

−
ee W−1

s+1Es+1Cs+1C
−1
s E

−1
s WsU

−
eh

V −1
s+1Bs+1B

−1
s VsU

−
he V −1

s+1Bs+1B
−1
s VsU

−
hh

]

×

×
[

W−1
s Ws+1 0

0 V −1
s Vs+1

][

p+
e

p+
h

]

+

+

[[
W−1

s+1Es+1Cs+1C
−1
s EsK

s+1
r EsVs+1 −W−1

s+1K
s+1
r Es+1Vs+1

]
p+

h[
V −1

s+1Bs+1B
−1
s Ks+1

r Ws+1 − V −1
s+1K

s+1
r Ws+1

]
p+

e

]

(4.43)

Now, exploiting definition again, we can write the final expression as

U+
s+1 =

[

U+
ee U+

eh

U+
he U+

hh

]

=

=

[

W−1
s+1Es+1Cs+1C

−1
s E

−1
s Ws 0

0 V −1
s+1Bs+1B

−1
s Vs

]

U
−

s+1
︷ ︸︸ ︷[

U−
ee U−

eh

U−
he U−

hh

][

W−1
s Ws+1 0

0 V −1
s Vs+1

]

+

[

0 W−1
s+1Es+1Cs+1C

−1
s EsK

s+1
r EsVs+1

V −1
s+1Bs+1B

−1
s Ks+1

r Ws+1 0

]

+

−
[

0 W−1
s+1K

s+1
r Es+1Vs+1

V −1
s+1K

s+1
r Ws+1 0

]

,

(4.44)

where + 7→ r+s+1 and − 7→ r−s+1 denote the right and left edge of an interface, respectively.
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Interchanging subscripts s and s+ 1 as well as superscripts + and − allows us to express

the reverse transformations going inwardly (from + to − edge of a generic interface). We have

expressed immittance matrices as two-by-two block-matrices, that relate electric, magnetic

and electro-magnetic weights at each interface, because the use of inverse rule of the FMM

results in different expressions of coupling coefficients.

A chain rule that allows us to transform the immitance matrix going through the succes-

sion of radially homogeneous layers and discontinuities is provided by Equation (4.44) and

eq. (4.29) [or equivalent eq. (4.30)]. This constitutes the basis of the method that allows us

to compute resonances and relative field profiles, as explained in the next section.

4.4 The Homogeneous Problem and its Solution

As usual in guided wave theory, the resonance frequencies (free oscillations) of a resonator can

be obtained from the solution of a proper eigenvalue problem, usually expressed as a homoge-

neous system of linear equations, that depends on eigenvalue in a nonlinear fashion. Knowing

the location of resonances could simplify their identification during experimental character-

ization. Here we discuss how to obtain the homogeneous problem for micro-resonators. In

principle, being WGMs intrinsically lossy, two different choices can be made: (i) to compute

the complex resonant frequency of modes for a fixed azimuthal order m; (ii) to compute a

complex azimuthal propagation constant at any fixed physical (real) wavelength.

The first gives rise to issues on normalization (in fact a complex oscillation implies un-

bounded fields at r → ∞), that one has to face if the model is applied to the analysis of

interaction between different systems using, for example, coupled-mode theory: a possible

solution is discussed in [102]. Vice-versa, when employing a complex azimuthal wave-number

[case (ii)], a special attention should be paid when dealing with Bessel functions of complex

order, since they can face several numerical issues, as discussed in detail in [92].

Nevertheless we opt for the approach (i) which lends itself to a more physically trans-

parent picture, since resonant wavelengths are readily obtained. In this spirit, for damped

oscillations, we can calculate the quality factor (see e.g. [103, p. 311]) from the complex

resonant frequencies ωc ∈ C, as follows

Q =
Re{ωc}

2 Im{ωc}
, (4.45)

or equivalently from the complex resonant wavelengths, as

Q = − Re{λc}
2 Im{λc}

. (4.46)

The starting point to obtain the homogeneous problem is to consider that physical consis-

tence, introduced by eq. (4.25), implies a simple form for immittance matrices at both radial

extrema, that read as

U1 = U(r1) =
N0Jm(k0N0r1)

Jm(k0N0r1)
, (4.47)
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at the innermost interface and

Uf = U(rf ) =
NfH

(2)
m (k0Nfrf )

H
(2)
m (k0Nfrf )

, (4.48)

at the outermost one.

Then we choose an interface where the eigenmode field is expected to be strong, say s′,

and starting from U1 we iterate through the sequence of interfaces, by applying iteratively

eq. (4.44) (interfaces), and eq. (4.29) (homogeneous layer propagation), in order to obtain

UL−
s′ . In the same way (using (4.30) for propagation), we compute UL+

s′ , propagating inward

from Uf .

Finally, by imposing that these two matrices match, we end up with the homogeneous

problem, whose solutions correspond to WGMs
(

UL−
s′ −UL+

s′

)

p
(
r−s+1

)
= 0. (4.49)

Non-trivial solutions of eq. (4.49) give resonant wavelengths (as complex zeros of ma-

trix determinant), as well as modal weights p. However, solving this sort of problem is not

straightforward, since we deal with full matrices and complex zeros of a nonlinear function.

In spite of the fact that the matrix dimension is not very large, the computation of the deter-

minant can lead to numerical divergence and/or loss of accuracy. Many alternative methods

were proposed and discussed, see [32, 104–107], that exploit basically matrix manipulations

or some complex calculus. Among linear algebra tools, singular value decomposition (SVD)

is known to be generally implemented as a very robust routine. Therefore, we have chosen to

implement singular value (SV) minimization (as described in detail in [104] and outlined be-

low), which, though being a bit computational demanding, turns out to be the most reliable

method among those described in the literature.

By denoting the n-by-n matrix of the homogeneous system (4.49) as A ≡
(

UL−
s′ −UL+

s′

)

,

we can find non-trivial solutions by searching for values of λ that makes the minimum singular

value of A to be zero. Let us denote the map

λ→ f(λ) = min
k
σk(A); k = 1, ..., n (4.50)

where {σk}k is the set of singular values of A = A(λ) (which can be proven to be non-negative

real numbers), and f is a function that maps the complex plane C into its semi-axis R
+. Then

the solution λ = λc of the homogeneous problem can be written as

λc = arg min
λ∈C,Re{λ}>0,Im{λ}<0

f. (4.51)

Thus, we have reduced the calculations of resonances and modes to solve a minimization

problem. Compared with [104], we do not look for a minimum point in a line segment, but

in a plane, using a Nelder-Mead minimization routine [108].

Modal weights result as the right singular vector corresponding to the last computed f .

Then from eqs. (4.27) and (4.28), and continuity conditions of field z components, we can

calculate modal weight in every point, e.g.

p (rs) =
[
UL

s − Fs

]−1
Esp (rs+1) (4.52)
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and

p
(
r−s
)

=

[

W−1
s+1Ws 0

0 V −1
s+1Vs

]

p
(
r+s
)

(4.53)

Finally, after having computed p vectors in two separate points, specifically at two layer

edges the coefficients of Bessel-Hankel functions can be readily computed, using the same

notation of eq. (4.25) we write

As = [Hs (rs)p (rs+1)−Hs (rs+1)p (rs)] ·Xs
−1

Ds = [Js (rs)p (rs+1)− Js (rs+1)p (rs)] ·Xs
−1

(4.54)

4.5 Results and Discussion

4.5.1 Two basic examples: microring and microdisk

We can now discuss reliability and performance of our method, by focusing specifically on

rings or disks with small radii which guarantee high planar integrability in photonic chips. We

test our results by comparing them with those obtained by means of ab-initio time domain

simulations of discretized Maxwell equations, using our own implemented 3D-FDTD [20].

To clarify the crucial role of the vectorial nature of modes, we compare the results also with

those obtained by means of a 2D algorithm based on the effective index approximation of axial

modes [102]. In particular we consider two typical examples. The first one is a microring,

with internal and external radii 1µm and 1.2µm respectively, 0.300µm thick, composed by

Silicon (nr = 3.48) immersed in Silica (ns = 1.44). The second one consists of a microdisk,

0.77µm in radius, composed by a material of refractive index nd = 3.2, completely surrounded

by a material of index ns = 1.5, corresponding to insulator-passivated semiconductor. The

disk thickness is t = 0.240µm. In figure 4.4 we show these structures.

For both devices, we compute complex resonant wavelengths of a set of overall modes

with increasing azimuthal index m, for both quasi-TE and -TM polarisations. The results

are summarized in tables (4.1) and (4.2) for the microring, and tables (4.3) and (4.4) for the

microdisk, respectively. The implemented modal method is used with a period (or equiva-

lently a computational window) of 6µm and truncation order M ≃ 100 at which we reach

convergence (see fig. 4.6). Conversely FDTD is employed in the case of the ring with a

discretized cell ∆x = ∆y = ∆z = 25nm, a box of 60 × 60 × 28-cells with a boundary

of 8 cells, and ∆t = 2.4073 × 10−17s with 90000 steps, whereas in the case of the disk

∆x = ∆y = ∆z = 20.6nm, a box of 97× 97× 97-cells with a boundary of 8 cells for the disk,

and ∆t = 1.985× 10−17s with 90000 steps. The quality factor from the FDTD time-series is

computed by means of the Harminv code [109, 110].

By looking at the tables, and comparing values obtained by means of the three approaches,

we notice that the results of our 3D vectorial method show a satisfactory agreement with the

3D-FDTD, whereas the results obtained by means of the 2D approach exhibit larger discrep-

ancies, thus allowing us to conclude that a 2D approach is not reliable in terms of predicting

correct values of the resonances. It is worth pointing out that the computation of quality fac-

tors starting from FDTD time-series is sometimes sensitive to simulation parameters, and a
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m 11 12 13 14 15

3D-FDTD

λ 1.2277 1.1767 1.1312 1.0900 1.0537

Q 142 371 1081 2224 6224

C-RCWA

λ 1.2193 1.1820 1.1037 1.0948 1.0606

Q 170 400 1518 2694 5297

2D

λ 1.2749 1.2124 1.1587 1.1115 1.0692

Q 87 216 586 1717 5355

Table 4.1: Resonant wavelength and quality factor of quasi-TE modes with az-

imuthal order m of a microring resonator. The results from the 3D full vectorial

algorithm (C-RCWA) are compared with a 3D-FDTD model and a simple EIM-

based 2D approach.

m 11 12 13 14 15

3D-FDTD

λ 1.3344 1.2769 1.2248 1.1770 1.1313

Q 657 1916 4303 11369 12109

C-RCWA

λ 1.3899 1.2700 1.2512 1.1697 1.1372

Q 721 1814 5226 7632 9042

2D

λ 1.3928 1.3242 1.2628 1.2073 1.1566

Q 317 859 2470 7429 23064

Table 4.2: As in Table 4.1 for quasi-TM modes of a microring resonator.

m 5 6 7 8 9 10

3D-FDTD

λ 1.5760 1.4036 1.2685 1.1592 1.0690 0.9924

Q 19 40 86 194 438 1036

C-RCWA

λ 1.5735 1.4019 1.2655 1.1583 1.0694 0.9938

Q 16 34 82 175 350 828

2D

λ 1.6290 1.4425 1.2961 1.1788 1.0830 1.0031

Q 8 16 33 69 150 336

Table 4.3: As in Table 4.1 for quasi-TE modes of a microdisk resonator.
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Figure 4.4: Schematic representation of the simulated structures, (a) microdisk and (b)

microring.

fine tuning of the proposed algorithm is needed, particularly concerning PML settings. While

in the FDTD method, the PML can show unattended reflection due to the spatial discretiza-

tion, in modal methods, the PMLs affect the electromagnetic eigenvalue map and the modal

profiles. Thus a special care must be taken to avoid artefacts. In particular, as discussed in

[111], infinite PML absorption corresponds to replacing radiative modes with leaky modes,

that diverge at an open infinite boundary. Moreover they do not describe rigorously every

kind of guided propagation phenomenon. Similarly, in our case, strong PMLs give rise to

high peaks inside the PML layer, and a noticeable bending of modal eigenvalues away from

the imaginary axis. Following the approach of [99], and using the same notation as above,

i.e. denoting as Π the portion of fundamental cell Λ that corresponds to the physical domain,

and γ the absorption figure, we find that it is convenient not to exceed γ = 2
1+j , and to set

0.3 < Π
Λ < 0.7, in order not to have an extremely strong absorbing effect, [111]. Furthermore,

in our implementation, we have not usually performed any piecewise mapping [fPML = 1 in

the notation of [99] and of eq. (4.21)].

To this end, we report several eigenvalue maps, that show the effect of using a complex

frequency or including PMLs; they refer to a slab with longitudinal profile equal to that of

microdisk.

We notice that the use of a complex k0 [figures 4.5(b) and 4.5(d)] implies that eigenvalues

are not any more concentrated along real or imaginary axis. The effect of PMLs, in both cases

[figs. 4.5(c) and 4.5(d)] leads to a stretching, depending on the Fourier series truncation, of

the “eigenvalue line” away from its “normal” position. Whereas, passing from real to complex

wavelength, without PML [figures 4.5(a) and 4.5(b)] we can observe that eigenvalues keep

staying on the same line, while with PMLs, as M grows larger, the distribution of eigenvalues

plunges into the complex plane. If PMLs are used, it is harder to distinguish eigenvalues
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m 6 7 8 9 10 11

3D-FDTD

λ 1.3113 1.2081 1.1179 1.0471 0.9759 0.9183

Q 24 52 111 251 568 1524

C-RCWA

λ 1.3079 1.2045 1.1122 1.0358 0.9706 0.9132

Q 25 52 105 215 536 1254

2D

λ 1.3398 1.2280 1.1340 1.0539 0.9848 0.9246

Q 11 20 40 83 178 401

Table 4.4: As in Table 4.1 for quasi-TM modes of a microdisk resonator.
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Figure 4.5: Eigenvalue maps in the complex plane (k0n
TE,TM
i ), Λ = 8µm. The images in the

first row are obtained without, in the second with PMLs. Similarly, the first column refers

to real frequencies and the second to complex ones. M varies according to legends. Where

PML applies, Π = 0.7Λ, γ = 1/(1 + j).
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corresponding to real and complex frequency, see figs. 4.5(c) and 4.5(d), particularly those

pertaining evanescent modes.
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Figure 4.6: Convergence plots for microdisk quasi-TE and -TM modes of order m = 7:

resonant wavelengths vs. truncation order M for two different values of the window (period)

Λ, and ratio Π/Λ of physical to total window. Here the absorption figure of the PML is set

to be γ = 0.5− j0.5.
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Figure 4.7: Same as fig. 4.6, but quality factors Q vs. truncation order M .

The typical dependence of the results on the truncation order M is shown in fig. 4.6 and

4.7 for quasi-TE and -TM modes of azimuthal number m = 7, and two different values of

computational window Λ and ratio Π/Λ. As shown, the value of the resonant wavelength

converges rapidly as M increases, while the final value is affected slightly (the relative change

∆λ/λ is of the order of 10−3) by the choice of the parameters of the computational window.

The Q values convergence seems worse, but the dependence on a small imaginary part of

complex wavelength should be considered: it is thus prone to accuracy issues and the choice

of parameters, indeed the computation of SV of least magnitude
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Figure 4.8: Microring resonator: cross sectional view of the absolute value of electric and

magnetic (normalized by −j
√

ǫ0/µ0) field components of quasi-TE mode of azimuthal order

m = 12, with resonant wavelength λ = 1.1820µm and Q = 400. The box represents the sec-

tion of the ring, while the reported numbers are the maximum value of the relative quantities.

Top: distribution of axial vertical components Ez and Hz; centre: azimuthal components Eθ

and Hθ; bottom: radial components Er and Hr.

Moreover, in order to show the importance of using a 3D method to compute the true

vectorial nature of the modes, we report few example of modal profiles in figs. 4.8 and 4.9.

Both figures show the hybrid character of the WGM eigensolutions. In order to highlight the

order of magnitude of the field components we have reported in both figures the maximal

absolute value of the relative component (notice that we kept the normalization of magnetic

field as in eq. (4.10), i.e. magnetic fields are normalized by −j
√

ǫ0/µ0 to obtain the same

units). In particular the small disk TM mode is characterized by field components virtually of

the same order, as shown in fig. 4.9. The peak of Ez is twice as much of the peak value of Hz,

while it is the opposite for θ components. Hr is instead far larger than Er: those properties

seem related to the small disk diameter only, while varying m does not affect much this trend.

The hybrid character of the microring quasi-TE mode in fig. 4.8 is weaker, as expected by

its larger size. The magnetic field is mainly directed along z, while the electric field is on the

ring plane.

Finally, we point out that, compared to usual FDTD full vectorial simulations, our ap-

proach turns out to be much faster. To obtain a resonant mode of fixed azimuthal order,

it takes no longer than a quarter-hour on a modern personal computer, in spite of the fact
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Figure 4.9: As in fig. 4.8 for the microdisk, quasi-TM mode of order M = 9, with resonant

wavelength λ = 1.0358µm and Q = 215. Top: distribution of axial vertical components Ez

and Hz; centre: azimuthal components Eθ and Hθ; bottom: radial components Er and Hr.

that it is implemented in Matlab R©, while our parallel FDTD code (in Fortran) takes about

an hour on a 4-machine cluster. This is due also to the fact that a Cartesian FDTD, when

applied to describe cylindrical devices, suffers from a staircase approximation whose impact

could be reduced only at expenses of making the discretization mesh sufficiently fine.

4.5.2 Sandwich microdisk

The slot waveguide proposed by Barrios, see [112], based on anti-guiding confinement, have

attracted a lot of attention in recent years, because it permits to overcome the diffractive

limit of classic TIR waveguides. It consists in light confinement in a thin silica film (called

slot) surrounded by two wider silicon layers (called slices): this is possible in TM polarization

(E normal to interfaces) if low index region extremely thin, 20− 70nm, due to the proximity

of two field jumps induced by high index step. We noticed in section 1.3 that nonlinear effects

can be enhanced by confining light in small volumes. This concept applies also to emitting

devices and the response of modulators: along with the requirement of high quality factor of

a cavity, that microtori and microspheres guarantee at the highest degree, see [113], a small

modal volume is a crucial factor, see [114]. For example, Purcell factor that represent the

enhancement of spontaneous emission rate in a cavity compared to that of bulk material,

depend inversely on modal volume, see [115] and [116]. Fabrication of this sort of devices is
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Figure 4.10: Antiguiding slot waveguide and its application to resonators. In (a) the original

principle, in (b) the stacked version (sandwich). In (c) the use of sandwich confinement in a

microdisk is reported and in (d) we sketch the physical dimensions of simulated structure.

possible also in a stack configuration, we refer to as sandwich waveguide, see [117]. This new

configuration can be even preferable because it guarantees slot uniformity, harder to obtain

by silicon vertical etching and silica filling. The upper silicon film have instead to be of very

pure and manageable properties. Since the guiding region is made of silica, we can dope

it with erbium ions or silicon nanoclusters, see [5], and possibly obtain silicon-based active

devices.

Here we are interested in a microresonator that confines longitudinally on the basis of

this principle, that we will refer to as sandwich microdisk. We then report few considerations

about such structures, starting from the 2D model. Let us assume a modal profile expressed,

as follows, by the transverse electric field component, the discontinuous one; let us denote

tslot = 2a the thickness of silica slot and tslice = b − a the thickness of silicon slice, i.e. ±a
and ±b are used as coordinate of interfaces. We have, compare to [112],

Ex(x) = A







1

n2
S

cosh (γSx) , |x| < a

1

n2
H

cosh (γSa) cos [κH (|x| − a)] +
γS

n2
SκH

sinh (γSa) sin [κH (|x| − a)] , a < |x| < b

1

n2
C

{

cosh (γSa) cos [κH (b− a)] +
γS

n2
SκH

sinh (γSa) sin [κH (b− a)]
}

×

× exp [−γC (|x| − b)] , |x| > b.

(4.55)

where κH is the transverse wavenumber in the high index region, γC is the field decay coef-
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Figure 4.11: Field profile of a guided mode inside a slot waveguide, that confines light in

low-index nanoscaled layer. tslice = 200nm, tslot = 50nm, nSi = 3.48 and nSiO2
= 1.44.

ficient in the cladding, γS is the field decay coefficient in the slot, and

A = A0

√

k2
0n

2
H − κ2

H

k0
,

with A0 an arbitrary constant. The transverse parameters κH , γS , and γC simultaneously

obey the relations

k2
0n

2
H − κ2

H = k2
0n

2
C + γ2

C = k2
0n

2
S + γ2

S = β2

where β is the eigenmode propagation constant, which can be calculated by solving the

transcendental characteristic equation

tan [κH(b− a)− Φ] =
γSn

2
H

κHn2
S

tanh (γSa)

with Φ = arctan

(
γCn

2
H

κHn2
C

)

.

(4.56)

From eq. (4.55), it is apparent that at slot-slice interface, the field immediately inside the

slot is n2
H/n

2
S times higher than the field on the other interface side.

In figure 4.11, we report the field profile of the guided mode confined inside the low-index

slot. It shows that the interaction of two classic guided modes of slices produce a strong peak

inside the slot.

Then we discuss how the confinement can be modified by changing input parameters. Let

us define, as in [116] the confinement factor of a TM mode in layer i of multislab configuration



92 4. CYLINDRICAL MICRO-RESONATORS: 3D ANALYSIS BASED ON A-FMM

1

2

3

4

n ef
f

0

0.5

1

Γ sl
ic

e

0

0.5

1

Γ sl
ot

50 100 150 200 250 300 350 400
0

0.5

1

Silicon Slice Thickness (nm)

Γ 
O

ut
si

de

Slot thickness 20nm
Slot thickness 40nm
Slot thickness 60nm

λ = 1.4µm

Figure 4.12: Representation of effective index, confinement factor in each layer as function

of slice thickness. The computation accounts for 3 different slot thickness values. Weak

dependence on tslot is apparent.

as

ΓTM
i =

∫

layer i |Ex|2 dx
∫∞
−∞ |Ex|2 dx

(4.57)

We then plot effective index and confinement in each region of our structure to realize how

radiation is vertically restrained and how much energy can be stored in the low-index region;

nSi = 3.48 and nSiO2
are assumed. We have three parameter: the free-space wavelength,

slice and slot thicknesses. In figure 4.12 we report the results of neff and Γ as functions of

tslice, setting λ = 1.4µm and including several tslot. It is apparent that the impact of slot

thickness is small, whereas varying the Si dimension a maximum confinement in the slot can

be achieved.

Moreover it is important to understand how effective index and confinement factors de-

pend on wavelength, see figure 4.13 and 4.14.

In a 2D model, based on EIM, the effective refractive index represents a figure of the

axial confinement and is therefore connected to the quality factor of the resonator. It is thus

important to compare the sandwich neff with that of classical confinement. It is apparent

from figure 4.12 that they can be almost equal, because effective index increases as the slice

width is increased; moreover flatness over λ is guaranteed, see fig. 4.13 and 4.14.

The longitudinal confinement permits to better estimate the behaviour of energy distri-

bution inside the structure: a maximum in slot confinement can be achieved.
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Figure 4.13: 1D confinement properties of antiguiding structure as a function of wavelength.

3 values of slice thickness are included. The slot width is in turn very small tslot = 20nm.

Changing slice width impacts tremendously on confinement.

Finally, to understand the reduction of modal volume, we discuss the guiding properties of

the overall structure. Indeed, except for the tunnelling through the slot, the whole structure

can support classical guided waves. If slices are too thin the guided mode is too wide, the

field does not undergo a significant jump, and evanescent tails in the cladding are remarkably

large; if they are too wide, we obtain a mode in each slice, with insufficient coupling to

undergo an enhancement inside the slot.

We applied to the 3D structure of sandwich microdisk our A-FMM; in table 4.5, we report

some comparison between different methods, as we did before. The device parameters are:

tslot = 50nm, tslice = 200nm, diameter d = 1.8µm. In this case EIM seems quite unreliable,

particularly as far as quality factors are concerned.

We then report a 3D plot of WGM in a microdisk exploiting this principle, figure 4.15.

The confinement is apparently enhanced with respect to the previously studied structures,

the main electric field Ez component is concentrated by antiguiding mechanism.

To express more precisely those properties, let us recall the definition of effective mode

volume, see [114].

From Fermi golden rule, we can compute the spontaneous emission rate of an emitting

dipole inside a cavity as

Γrad =
2π

~

∫ ∞

−∞

〈∣
∣
∣~pa · α~E (~re)

∣
∣
∣

2
〉

ρc(ω)ρe(ω) dω (4.58)
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Figure 4.14: As in fig. 4.13, but slot dimension are relaxed to tslot = 50nm. In this case we

have not any significant change of performance, except there is more room to confinement

at the higher edge of the considered band, i.e. for thin slices, the confinement degradation

occurs at higher wavelength.

where ρc(ω) is the density of photon modes inside the cavity, ρe(ω) is the mode density for the

dipole transition (material emission spectrum), ~pa is the atomic dipole moment, and ~E (~re)

is the electric field at the location of the emitter normalized by a factor

α2 ≡ ~ω

2

4π
∫∞
−∞ ǫ (~r) ~E2 (~r) d~r

to fix the correct zero energy.

Thus, for a given emitter ρe(ω), we have two ways to enhance the spontaneous emission

rate: to increase the photon mode density, then Q, or to increase the normalized electric

field at the emitter, α~E (~re). This is inversely proportional to effective volume Veff of the

electromagnetic energy inside the cavity. Thus a common figure of merit of an emitting cavity

is Q/Veff . This is characteristic of the so-called Purcell factor (Fp). Let us then make some

simplifications on eq. (4.58): we assume that the emitter is placed at the peak of the electric

field and the cavity resonant frequency equals the peak emission frequency (ωe), the ratio of

spontaneous emission rate in the cavity compared to bulk can be written as

Fp =
Γ

Γ0
=

6Q
(

λ
2n

)3

π2

ǫ (~rmax)max
∣
∣
∣ ~E (~r)

∣
∣
∣

2

∫∞
−∞ ǫ (~r)

∣
∣
∣ ~E (~r)

∣
∣
∣

2
d~r

=
6Q
(

λ
2n

)3

π2Veff
=

6Q

π2Ṽeff

(4.59)
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m 8 10 12

C-RCWA

lambda 1.3490 1.1596 1.0061

Q 460 651 12564

3D-FDTD

λ 1.3376 1.1497 1.0069

Q 186 855 13251

2D

λ 1.3397 1.1555 1.0241

Q 66 324 2092

Table 4.5: As in Table 4.1 for quasi-TM modes of a sandwich-microdisk resonator.

where n is the index of refraction at the field peak (i.e., ~rmax).

We define the normalized unitless effective mode volume as

Ṽeff = Veff

(
2n (~rmax)

λ

)3

=

∫
ǫ (~r)

∣
∣
∣ ~E (~r)

∣
∣
∣

2
d~r

ǫ (~rmax)max

[∣
∣
∣ ~E (~r)

∣
∣
∣

2
]

(
2n (~rmax)

λ

)3

, (4.60)

where maximal values are computed in the region where interactions take place, ~rmax repre-

senting the coordinates of the maximal squared field.

The main advantage of the anti-guiding structure is shown in [115] to be an enhancement

of Purcell factor of the order of (ǫH/ǫL)5/2 when compared to the classical confinement case,

i.e. without the tunnel slot. A simple result that can be obtained if we realize that comparing

modes with or without slot the integral of equation (4.60) are almost equal, but the maximum

occurs in a layer of index n(~rmax) = nS , and the peak value is n2
H/n

2
S higher.

To verify this possibility, we have performed many calculations of Fp by means of our

cylindrical A-FMM. We compute modal volumes as,
∫

ǫ (~r)
∣
∣
∣ ~E (~r)

∣
∣
∣

2
d~r =

=

∫ ri

r=0

∫ 2π

θ=0

∫ ∞

z=−∞
rǫ(r, θ, z)

(

|Ez|2 + |Eθ|2 + |Er|2
)

dr dθ dz ≈

≈ 2π∆r
∑

k

rk

∫ Λ/2

−Λ/2
ǫ(z)

(

|Ez|2 + |Eθ|2 + |Er|2
)

dz. (4.61)

where we wrote a simple rectangular rule to integrate on r. Since Fourier coefficients are

known, we can apply directly Parseval theorem and calculate

∫

ǫ (~r) |E (~r)|2 d~r ≈ 2π∆rΛ
∑

k

rk

M∑

m=−M

E
−1
(

|Sz|2 + |Sθ|2 + |Sr|2
)

(4.62)

where first we multiply matrix E
−1

(inverse rule) and the arrays of electric field Fourier

coefficient, then we sum the elements of the resulting vector, according to Parseval’s theorem.
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Figure 4.15: As in fig. 4.8 for the microdisk, quasi-TM mode of order M = 10, with resonant

wavelength λ = 1.1596µm and Q = 651. Top: distribution of axial vertical components Ez

and Hz; centre: azimuthal components Eθ and Hθ; bottom: radial components Er and Hr.

In figure 4.16, we show that varying the geometry of this sandwich structure, a strong en-

hancement of Fp can be obtained, corresponding to reduction of modal volume and increased

vertical confinement, as it could be inferred by the slot confinement plot of figure 4.12.

4.6 Conclusion

In summary, we have applied the Aperiodic Fourier-modal method to cylindrical coordinate

system to study rotationally invariant structures. We have proved how it simplifies the

computation of a modal basis (along the vertical direction) and overlap integrals. We remark

that we do not have to put any boundary in radial direction, since we know exactly how each

mode depends on r up to infinity. Moreover the method allows to include PML boundaries to

improve the accuracy of modal analysis along z. An admittance matrix formulation permits

to obtain good quantitative results and to study a variety of structures with cylindrical

symmetry. Though we obtained in general a reliable and fast 3D mode solver to analyse

micro-integrated devices, we point out that the computation can be improved in specific

situations by working on the choice of simulation parameters. A thorough investigation

of solving methods for the electromagnetic eigenvalue problem is crucial to improve the

convergence.

The application of our method to innovative devices, such as sandwich microdisk, permits
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Figure 4.16: Purcell factor, Fp, of silicon sandwich disk resonator, with silica slot. Material

refractive indices and disk diameter d = 1.8µm are kept constant.

to better assess their benefits.





Chapter 5

Design, Fabrication and

Characterization of

Microdisk-based Devices

While the previous chapter was devoted to a 3D numerical method that models isolated

cylindrical cavities, in this chapter we are reporting some details about a few simple systems

based on planar integrated waveguides and cavities. Based on a circuit model, we describe

which operation regimes are available and which design trade-offs have to be considered. Then

several details on fabrication and characterization are provided and sample experimental

results shown.

5.1 Microdisk-Based Devices: Design Principles

Our characterization work has been focused on systems composed by two building blocks:

microresonators and waveguides.

We sketch a simple approach that assumes both cavity parameters and the impact of

coupling with waveguides are known, see [118–121]. This resembles a circuit theory model,

where every element is characterized by an input-output function. The dependence of two-

port model on the geometry and composition of each element is determined by e.g. FDTD or

other methods, such as the modal method we introduced in the previous chapter, combined

with a CMT approach: for example [122] provides a 2D CMT model intended to answer these

questions, a 3D application can be found in [93].

5.1.1 Laser source

The first example of cavity-guide interaction is represented by a microdisk laser, see figure

5.1. A microdisk of sufficiently high quality factor (to allow light circulation) fabricated in

an active material (InP for example) is necessary. Then disk lasing can be achieved by a

suitable population inversion and radiation is made available via waveguide coupling. Obvi-

ously the waveguide perturbs the cavity modal structure, then a trade-off between collectable

99



100 5. MICRODISK-BASED DEVICES

Figure 5.1: Schematic representation of a microdisk laser. Population inversion is provided

by a pump mechanism, light is generated and amplified inside the cavity and collected via a

waveguide.

energy and perturbation has to be considered. This demonstrates that disk-guide spacing is

a crucial parameter, if it is too large leads to insufficient coupling, if too small a stronger

perturbation and a higher threshold may result (the perturbation generally implies quality

factor to degrade). We will further discuss this problem.

In this case we consider to operate in the same regime as in the previous chapter, where

a complex resonant frequency is used. As we outlined there, this regime, usually denoted as

free oscillation is an infinite energy regime. Indeed damping is supposed to start at t→ −∞,

then finite energy at any time implies it is infinite at the beginning and then radiated energy

toward the space boundaries cannot be bounded. Nevertheless, this regime is practical to

represent the output light-flow, but we have to fix a finite initial time at which energy is stored

inside the cavity. Lasing requires that the stored energy is kept up by pumping at a level

that overcomes the cavity leakage. More precisely, we can imagine that threshold condition

corresponds to the compensation of cavity losses so that stable (instead of damped) oscillation

is achieved.

To outline a simple model we can consider, as above, damped oscillations (in [121] this

concept is directly applied to stored energy) or leaky propagation in a circular waveguide,

see e.g. [118]. We follow the first one.

We denote as Ψ the mode amplitude inside the cavity, then

Ψ ∝ exp [(jωres − α− αc) t] (5.1)

where ωres is the resonant (angular) frequency, α the intrinsic loss of resonator, and αc the

coupling losses: being Qtot = ωres/(2αtot), the quality factor is limited by the stronger source

of leakage, i.e. the well-known formula

1

Qtot
=

1

Qint
+

1

Qcoupling
(5.2)

where Qint is the intrinsic quality factor (i.e. due to resonator geometry and consequently

exhibited by isolated cavity), Qcoupling represents the degradation of energy leakage due to
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external perturbation and Qtot the overall effect, as it can be measured.

The radiated and guided power can be distinguished accordingly,

d |Ψ|2
dt

∝ Pr + Pg (5.3)

where r and g subscripts denote the radiated and guided losses (we assume no other coupling

mechanism occurs, e.g. material losses, scattering, etc. . . ) and simply

Pg = 2αc |Ψ|2 . (5.4)

5.1.2 Band-suppressing filter

While the first example was intended to illustrate the principle of this simple analysis, the

second is directly related to our activity. A filter, specifically a band-rejecting one, can be

obtained simply in the previous configuration: if a broad spectral width source is injected

into the waveguide, we collect at its output a transmission spectrum that does not include a

set of frequencies corresponding to cavity resonances, see fig. 5.2.

Figure 5.2: Schematic representation of a microdisk-based band rejecting filter. Frequency

bands corresponding to cavity resonances are extracted from waveguide. Performance in

terms of flatness and bandwidth can be tailored by putting several resonators side by side.
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Figure 5.3: Plot of overall quality factor (logarithmic scale) and energy extiction ratio (dB)

of a waveguide-coupled resonator as a function of disk-guide coupling. This is expressed in

terms of a quality factor Qc. We assume to work on-resonance and Qint = 1000.

Assuming the same time-dependence of (5.1), we write

dΨ

dt
= (jωres − α− αc)Ψ− jµSi

St = Si − jµΨ

(5.5)

where Si and St are the field amplitude at waveguide input and output (such that their

squared modulus gives power), and µ is the disk-waveguide coupling, in general a complex

number. If we exclude any gain mechanism inside the cavity, (α, αc) > 0, the previous ex-

pression accounts for the injection of light from waveguide to cavity (effectiveness depends on

detuning from resonances), that can be radiated or even partly recoupled into the waveguide

and reach the output port.

Notice that if Si = 0, we return to the previous case. Consider

Pg = 2αc |Ψ|2 = |St|2 = |−jµΨ|2 (5.6)

then this equivalence holds: µ2 = 2αc.

Assuming a forcing excitation Si = ejωt we could easily obtain, in the steady state,

St =
j (ω − ωres) + α− αc

j (ω − ωres) + α+ αc
Si (5.7)

that is equivalent to other models such as in [118], but distinguishes explicitly the detuning

with respect to resonance and the coupling contribution.

We obtain perfect filtering if ω = ωres and α = αc. In this case Qtot = Qint/2; nevertheless

the closer is the waveguide, the lower is the overall quality factor, but extinction ratio assumes

a minimum, ideally zero, that corresponds to halved Q, see figure 5.3.
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5.1.3 Multiplexer-Demultiplexer

We now deal with the so-called add&drop (A&D), that is able to select a wavelength channel

from a set of packed signal and direct it separately to another output (drop) or to include a

channel in an incoming broadband modulated signal (add).

A figure can better describe its behaviour and its microdisk-based implementation, 5.4.

Two waveguides and a cavity that acts as coupler between them are necesssary.

Figure 5.4: Schemtatic representation of demultiplexing (a) and multiplexing (b) functionali-

ties and their implementation by means of planar microdisks and waveguides. Exploiting the

selectivity properties of resonators and evanescent coupling, a channel can be moved from a

waveguide to another.

We concentrate on the drop function that consists in extracting a wavelength from a first

waveguide and putting it into the other, relying upon the cavity selective coupling.

Basically, as in the filter case, we have different coupling conditions, depending on guide-

disk distances. If waveguides are too distant from resonator, no radiation is effectively ex-

tracted by that. If they are too close, light circulates in the cavity and is recoupled inside the

input waveguide. This is twice as severe: direct channel is still noisy in the selected band,

drop/output channel brings a low intensity signal. We have a simple coupler between two

waveguides and no more a resonant extraction of a selected band, see fig. 5.5.

Let us employ the very same procedure to determine the optimal coupling; we distinguish

two coupling terms, αc1 and αc2,

dΨ

dt
= (jωres − α− αc1 − αc2)Ψ− jµ1Si

St = Si − jµ1Ψ

Sd = −jµ2Ψ

(5.8)
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Figure 5.5: 2D-FDTD simulations of a lateral coupling add&drop. Different coupling regimes

are shown. In (a) and (c) the opposite conditions of too large and too small disk-guide spacing,

while (b) represents the optimal extraction from through and injection in drop channel.

the coupling to drop channel Sd is expressed in terms of µ2, that can be related to αc2 by

µ2
2 = 2α2

c2, as before.

St =
j (ω − ωres) + α+ αc2 − αc1

j (ω − ωres) + α+ αc2 + αc1
Si (5.9)

Thus to attain optimal coupling, at resonance, αc1 = α+ αc2 is required. This means that:

• it does not correspond to equal spacings: αc1 6= αc2;

• it depends on a single parameter, one of the two disk-waveguide separations, that is

equivalent to setting the quality factor for the whole system,

Q =
ωres

2 (α+ αc1 + αc2)
=
ωres

4αc1
. (5.10)

It is easy to realize that optimal demultiplexer, like that we have sketched, does not behave

symmetrically as multiplexer, because we inject the second input in the farthest waveguide,

then coupling is insufficient, we should use more intensity in the second channel to obtain

balanced levels on the multiplexed output. Thus a trade-off should be made: if balanced

spacings are used, αc1 = αc2 = αc, we can obtain the maximal extinction ratio

∣
∣
∣
∣

Si

St

∣
∣
∣
∣

2

max

=
∣
∣
∣1 + 2

αc

α

∣
∣
∣

2
(5.11)

and we can indefinitely increase it to the detriment of the loaded-cavity quality factor.
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5.1.4 Splitting of degeneracies

Figure 5.6: Schematic representation of even and odd WGM. Dashed lines represent unper-

turbed modes, solid lines the effect of waveguide perturbation.

The whispering-gallery modes are intrinsically degenerate, due to the cylindrical sym-

metry. Hence, once we fix a coordinate system, we can distinguish odd and even modes,

according to the positions of maximum field values: even modes are symmetrical with re-

spect to an axis, odd anti-symmetrical. Nevertheless, whatever the system we define, isolated

cavity modes are always degenerate.

Obviously a guide at its side defines an axes system, then odd and even modes are

properly distinguished. If an FDTD simulation is performed, we notice that waveguide and

cavity influence each other and this leads to the even mode to be attracted by waveguide less

than odd: this is the usual explanation of the splitting of degeneracy that causes a doublet

to appear instead of the single resonance. In fact the optical path results different from one

to another modal profile, requiring a slightly larger (odd) or smaller (even) wavelength to

achieve resonance. If the overall quality factor is large enough, the splitting can be detected.

Another explanation is provided in [120]. A two-by-two matrix that accounts for propa-

gation in a straight and curved (i.e. a WGM resonator) waveguide and the coupling between

them cannot explain this phenomenon, but if we include the back-reflection of light from the

coupling area, we obtain a reliable explanation. The two approaches are equivalent if we

recall that the mode perturbation leads to reflections, such as every discontinuity of modal

bases. Figure 5.6 shows the physical principle of the splitting.

Finally each peak composing the doublet is characterized by its own quality factor, and

extinction ratio. The previously cited circuit model does not account for that. WGM sym-

metry breaking corresponds to attracted or repulsed field configurations, then also distance

and coupling are modified.
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In a successive section we discuss our attempt to mitigate this issue, that can hamper the

application of these microcavities to light processing.

After depicting the design concepts, we are now passing to technology and experiments.

A remark In the following, we will report our experimental results. They have been focused

on devices based on large diameter microdisks. Despite in literature we find 3D numerical

studies of devices which employ very large diameter microdisks, see [93], they deal with small

refractive index step. Moreover the modal approach is different from what we presented in

chapter 4. We have not studied a CMT approach relying on our implementation, nor we

master it to the extent we predict the resonant properties of isolated large diameter disks. In

fact, even if the calculation of resonances is possible, the presence of many transverse modes

with large imaginary part (to properly represent the continuum modes) causes numerical

issues. Finally such large resonators are affected by an extreme sensitivity to fabrication

imperfections, that limits the quality factors to values well below the theoretical predictions.

5.2 Passive Components in SOI

Here, we are studying optical chips fabricated in SOI: the samples we have characterised

were fabricated at the CEA-LETI laboratories in Grenoble according to our specifications.

This is a natural choice, since SOI allows to effectively guide light due to its high refractive

index contrast and is compatible to CMOS processes of microelectronics. As it is shown in

figure 5.7, SOI is fabricated starting from pure crystal Si wafers on which a thermal oxidation

is performed. We then make two of such wafers adhere by molecular bonding, and finally the

resulting wafer is thinned down to about 400nm by means of, e.g., Smart-cutTM process. We

obtain a guiding layer of Si, that plays as core and a buffer layer of silica, that functions as

cladding. Its thickness is usually about 1µm.

Obviously, the SOI wafer is then processed to build integrated devices.

5.2.1 Technological process

To fabricate integrated optical chips, we have to face several issues. Each function is achieved

by using different structures. Hence we consider optical waveguides to carry light, adiabatic

(direct) taper to inject a sufficient amount of radiation inside guides, and in our case mi-

crodisks or microgears to filter and process signals.

Each element needs a special care to optimize its fabrication. First of all single mode,

low loss waveguides are needed and many techniques are available, from among we have to

choose the most suitable to our purposes.

The first step consists in thinning the silicon layer down to 300−380nm. A metal mask is

then deposited: the required patterns are etched on it. On this mask, a photoresist is spread

out and then exposed through a “mother” mask by deep UV lithography at λ = 193nm. The

resist is then developed and the metal mask is etched. Reactive ion etching (RIE) is used to

transfer those patterns on silicon, to obtain 300nm wide waveguides separated from microdisk
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Figure 5.7: SOI wafer fabrication: Smart-cutTM technique, see [123].

by down to 100nm. Metal is then eliminated and devices are finally embedded in a silica layer

500nm high, deposited by means of plasma-enhanced chemical vapour deposition (PECVD).

This latest step is necessary to mitigate the mechanical fragility of the resulting samples.

We recall that also electron beam lithography can be employed, but since it works on

small windows, it faces intolerable alignment issues.

We now briefly describe the properties of the fabricated waveguides.

5.2.2 Waveguide properties and injection

The single mode character of the resulting waveguides can be verified, by injecting light at

one end and detecting output. According to polarization, the shape of output spot impressed

on an infrared camera allows us to understand if any high order mode is possible.

Working in the λ = 1.55µm range the sample we have studied carries single mode prop-

agation for TM polarization only, since TE waves leaks in the substrate.

As it is well known, while optical fibre section is quite large (8µm core and 125µm with
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cladding and other sheaths), due to small index contrast, micro integrated waveguides on

silicon are rather small. Thus to inject light into such a waveguide an integrated taper, that

brings the original section (300nm) to a width of 2µm, is designed to adapt adiabatically

the modal width of the injection fibre to that of the integrated waveguide; the taper length

is about 100µm and is a low loss element (virtually no losses). Moreover, monomode lensed

fibres are used both to inject and to collect light from the circuit. They permit to focus a spot

of about 2.5µm at 6µm of focal distance. Usually input fibres are polarization-maintaining

in order to guarantee proper TM excitation.

We are now reporting some data about the experiments we performed. We devoted to an

extremely selective resonator: a microdisk of 8µm diameter. Two configurations have been

studied: filters and add&drop. They differ only in the fact the latter recollects the coupled

signal in another guide. Particularly, we focused on the trade-off between extinction ratio

and selectivity of the overall device. Moreover we tried to verify if the emerging of doublets

instead of singlets, due to guide-disk coupling, can be mitigated by architectural solutions.

Indeed, at high quality factors, we can often distinguish two paired peaks for each resonance,

due to the splitting of degenerate modes of the combined disk-guide system.

5.3 Experimental Results

(a) (b)

Figure 5.8: (a)Schematic representation of our experimental set-up. Acquisition is driven by

a PC, that controls a tunable laser and reads power from an optical multimeter. A couple of

micro-positioning mechanisms is used to align input/output fibres to the sample. (b) Near

infra-red (NIR) photograph of a waveguide output spot.

First of all we show a schematic picture of our experimental setup, see fig. 5.8. We have

two possible ways to perform a spectral analysis of our structures:
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• use of a broad band source [e.g., amplified spontaneous emission (ASE)] and an optical

spectrometer to study where the input has been modified by cavity selectivity;

• use a tunable laser [Tunics PRI, by Photonetics, is available at IMEP laboratory] as a

source and an optical multimeter to measure the collected power at each wavelength:

a computer drives the source and synchronizes the acquisition of output power.

It is convenient to collect the output radiation in air by means of a tapered-lensed fibre.

We choose the second approach since we need very fine tuning to measure Q ≈ 105 and

the available spectrum analyser has a resolution of 0.07nm. Tunics can instead scan with

1pm resolution and no additional limit is imposed by output detection.

After having orientated the input fibre (polarization-maintaining) to the desired polar-

ization, and adjusting the position of fibres to align them to the selected structure, we could

start the characterization itself.

5.3.1 Band-rejecting filter

Figure 5.9: Schematic representation of the integrated band-rejecting filter, implemented

using a microdisk resonator.

We start by studying a filter configuration, that is schematically represented in figure

5.9. As reported in figure, different spacings are available, 0.3, 0.45, 0.6µm, then we show the

dependence of resonance wavelength and quality factor upon the disk-guide separation.

From figure 5.10, it is apparent that increasing the spacing, i.e. decreasing the perturba-

tion, the resonant wavelength moves downwards and the quality factor increases. Recall that

coupling to a waveguide stretches the mode optical path, then the less the perturbation, the

smaller the resonant wavelength; the Q factor behaviour has been explained above, in terms

of energy leakage due to coupling.

Moving the waveguide away from the disk, the extinction ratio is expected to increase up

to a maximal value and then decrease. In our case passing from 0.3µm to 0.45µm spacings,

we have a decreasing extinction ratio and we extrapolate that the maximum coupling occurs

probably for distances around the first one, but it is hard to determine if above or below it.
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Figure 5.10: Comparison between three different filters based on 8µm diameter microdisk,

and different guide-disk spacings. A single resonance around λ = 1585nm is tracked to

investigate the effect of coupling.

The quality factor of the first structure, fig. 5.10 (top), is not sufficiently high to permit

the identification of a double peak. Moreover, the second device seems to exhibit a better

extinction than the third and splitting appears (quality factor is estimated for the right-

hand peak). It should be observed also in the third filter, but it is not the case. Thus

we should explain it by other factors affecting the shape of resonances. Fabrication issues,

such as shape defects and unwanted roughness that induce light scattering, absorption by

impurities, or other coupling phenomena, perturb modal symmetry, see [124]. Nevertheless

we have not performed a scanning electron microscopy measure yet, thus it is difficult to

precisely characterise this problem. Apart from imperfections of the second structure, we

could suppose that what we observe for the second (centre) is composed by interference

effects along the waveguide or insufficient coupling occurs in the third (bottom diagram in

figure), thus perturbation is not effective.

Indeed we observe relatively fast oscillations around each resonance. They are usually

ascribed to high reflectivity at chip facets passing from silicon guide to air. This permits the

built-in of standing waves and we observe a frequency response, composed by a sequence of

resonances, of a multiple cavity formed by waveguide segments. It can be verified that this

is the effect of three combined cavities: the whole long guide and their first and last parts,

involving guide segments from facet to resonator. They are usually named Fabry-Pérot

oscillations.

This is an annoying issue, particularly when extreme situation are tackled, e.g. a very large

quality factor cavity which is difficult to couple light in and whose resonances are masked

by spurious oscillations. We can obviously try to reduce reflections at facets, e.g. using a

refractive-index-matching liquid. Nevertheless the best strategy seems to be an estimation
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of the parameters of each cavity type (waveguide sections and resonator), see [125]. In that

way we could characterize at once the whole device behaviour, provided the fitting model is

accurate enough.

5.3.2 Demultiplexer based on large diameter disk

Figure 5.11: Schematic representation of an integrated add&drop device. Equal spacing is

used. Through port corresponds to OUT1, drop port to OUT2. The large bent is necessary

to collect output on the same side.

Drop function requires a single input, then is simply manageable with the IMEP facilities

and we focus on it.

To access transmitted (through) and dropped channel, they have to lay on the same chip

side, then one waveguide is straight, while the other is bent half-turn to reach the same side.

To adopt a trade-off, we choose equal spacings at each cavity side, since it is hard to predict

the quality factor of the resonator and design accurately the optimal features, according to

eq. (5.9) and (5.11); these features are summarized in figure 5.11.

Obviously, we can use the device as a filter, without investigating the drop port. Selectiv-

ity properties are in general deteriorated due to the additional load of the second waveguide:

quality factors are lower with respect to a single waveguide at the same distance. As indi-

cated by equation (5.11), extinction ratio can ever be improved drawing waveguides closer

and closer to microresonator.

We should also characterize the second output (dropped), at resonances. Anyway we

have not performed such measures, but only tried to detect doublets in through port and

understand how a design ‘trick’ can help mitigate this issue.

As for the filter, several structures with different guide-disk spacing were fabricated.

First of all we report the through port response corresponding to the resonance reported

in figure 5.10. In figure 5.12, we focus our comparison on the most selective among those

we showed above, 0.6µm spacing, and verify that increasing the load on the cavity implies a

decrease of Q. Resonant wavelength has further decremented. We could conjecture that this
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fact is ascribed to technological tolerances: no information on resonant frequency perturba-

tion is provided by the method of section 5.1.3.
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Figure 5.12: Through port response of an add&drop based on a 8µm diameter microdisk.

Extraction peak correspond to those of figure 5.10

Improving demultiplexer design

As we mentioned above, splitting of degeneracy is an important limiting issue of waveguide-

coupled cavities. It leads to a wider resonant response (if Q is not excessively high) or to the

appearance of two distinct peaks. This limits the applicability of those structures.

Despite there exist several concurrent causes of splitting and despite we were not able to

detect a doublet in our multiplexing device, we are discussing briefly a slight modification of

A&D structure that may help mitigate the splitting phenomenon.

We modify the drop guide by a slight bend (about a degree), in such a way that the guide

path in the proximity of the resonator is protracted, see fig. 5.13.

The idea is based on further perturbing the cavity modal structure and partially recover

path balance between even and odd WGMs. Moreover, we could suppose that the additional

bends lead to propagation losses that reduce the impact of reflection along the waveguide.

The design of such a device concentrated on bend angle and the disk-guide distance was

set a-priori to 0.6µm.

We did not detect splitting in our classical add&drop, even for a medium spacing that may

allow to discern resonances while observing doublets. Anyway we compare two corresponding

resonances of classical and new structure (of smallest bend angle).

From figure 5.14, we observe that the two peaks differ in quality factor (in (b) is larger)

and extinction ratio (in (b) is smaller). This two data may be interpreted as a decreased

coupling, then probably a technological misfit lead to a spacing larger in the second case

than in the first. Not any other significant change is observed, nor in the other structures of

this set.
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Figure 5.13: Same as 5.11, to show the design correction we applied, the drop guide is slightly

bent in the proximity of microdisk. The oblique part is 10µm long. Several bend angles are

used, 0.8◦, 1.0◦, 1.2◦, 1.4◦, 1.6◦.

5.4 Microgear-based Devices

As discussed in the introduction of chapter 4, cylindrical microresonators based on WGMs are

multimode structures: both in azimuthal and radial directions. While radial modes of order

larger than one enjoy in general a smaller quality factor, since their optical path has a small

radius of curvature, varying azimuthal order does not lead to abrupt change in quality factor:

azimuthal order and quality factor are almost directly dependent, increasing azimuthal order

leads to higher Qs (and lower resonant wavelength). Then the typical spectral response of

such a resonator presents a large number of resonances with a variety of Qs, then a reliable

application to, e.g., selecting a specific band can be hampered by that property.

Specifically in laser applications, the competition between different high-Q modes can be

detrimental. Then Fujita and Baba proposed, see [126], to associate the selectivity proper-

ties of a cavity and a Bragg grating, in the so-called, microgear. It is composed by a disk

surrounded by a periodic multiteeth structure. If one has to select the azimuthal mode of

order m, a periodicity of 2m permits to achieve this result, see figure 5.15.

Teeth act as scatterers that induce two counterpropagating waves to establish, that in

turn, as in Bragg gratings, permit to select specific modal structure, by forming specific

interference patterns along the edge. This is the operating principle.

The new structure supports mainly two modes: the one whose maxima lie in the teeth

and the one whose zeroes lie in the teeth. The first undergoes a selectivity improvement, its

WGM is further compressed and confined in teeth; the second moves away from periphery,

then its quality factor decreases, see [102].

The light coupling inside such devices is difficult, since if energy is coupled from a waveg-

uide to a, e.g., clockwise mode, counterclockwise is excited and a reflected pulse can recouple

into the waveguide itself. Hence isolated cavity performance are improved, but the simple

coupling with a straight waveguide is not effective.
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Figure 5.14: Comparison between two add&drop structures, through channel response. In

(a) the standard case that use two straight waveguides, in (b) the corresponding rejection

peak of the modified one: drop waveguide bends to obtain a longer path near disk. 0.6µm

spacings in both cases; oblique part is 10µm long, 0.8◦ bend.

Supporting standing-waves crucially affects microgear performance, its behavior is differ-

ent from simple microdisk resonators, based on travelling wave propagation, see [127].

Several microgear-based structures have been available, planar structures in both filter

and add&drop configuration were fabricated.

Nevertheless we have not obtained any noticeable results, Fabry-Pérot oscillations mask

resonances in almost every case.

For the sake of completeness we mention that, while a 2D modelling approach is available,

see [128], a 3D version of that formalism has not been considered; many numerical issues will

perhaps occur.

5.5 Conclusion and Perspectives

In this chapter we have described a few applications of microresonators and reported the

results of several measures we performed. Many other applications could be achieved, par-

ticularly nonlinear effects can lead to bistability, also at relatively low injected power.

Silicon has a large thermo-optic coefficient, ∂n/∂T = 2 × 10−4K−1, thus if we excite a

cavity resonance much energy is stored in it and via linear absorption is converted into heat;

the temperature increases and in turn refractive index is increased, thus resonant wavelength

is shifted upwards: an equivalent (focusing) Kerr effect is exhibited. Hence the static spectral

response can be remarkably modified, see [129]. Dynamic measures can even detect multi-

stability phenomena, in which many effects plays different roles, see [130]. Thermo-optic

effect dominates in strength but is very slow with respect to nonlinear absorption and Kerr

effect. An attempt to investigate at least the heat-induced bistability has been performed,

by using fibres of smaller spot size, but no result has been obtained, also due to the accuracy

of micropositioners.
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Figure 5.15: Schematic representation of a micro gear resonator, a is the maximum radius, b

the minimum. a− b is the teeth depth.





Chapter 6

Conclusions and Perspectives

In this work we presented several results of simulation and characterization of integrated

optical devices.

We have focused on numerical methods that operate in the harmonic time-regime. They

present analogies and differences: finite-difference schemes are generally more versatile, but

demand more resources than modal methods. Indeed modal decomposition applies only to

linear propagation and to specific geometries.

Our BPM implementation, in chapter 2 and appendix A, includes many advanced features,

despite propagation methods based on finite difference schemes are being still improved, see

[131] and [132]. We implemented this method to perform nonlinear optics analysis, like those

presented in chapter 3, where we describe an interesting nonlinear trapping phenomenon,

that could also serve in dynamic optical routing and processing.

One of the most important modal methods has been applied to cylindrical symmetric

microresonators: the A-FMM described in chapter 4 permits to overcome the issues that

typically affect other modal methods, i.e. the estimation of propagation constants (if com-

plex), mode profiles and their overlap integrals. Our version is focused on describing the

free-oscillation regime of microcavities, and a special attention has been used in solving the

global eigenvalue problem to provide complex wavelengths. The application to simple cylin-

drical cavities (disk and ring) provides an accurate description; its critical comparison with

simpler analyses (e.g., 2D EIM-based) and ab-initio approaches (e.g. FDTD) points out its

benefits. The study of a new concept device (sandwich microdisk) has been sketched. It is

well-known how the research in the field of microcavities has been flourishing all over the

world for many years, and many applications have to be improved. Specifically the influence

of technological tolerances and misfits have to be investigated. In this spirit, we characterized

several structures, filters and add&drop’s were analysed.

Our future projects encompass the improvement of NLBPM performance and accuracy,

in order to obtain reliable results in briefer time, further investigation of the nonlinear optical

regimes studied in chapter 3, to describe WGMs of micropillars and in general speed-up the

cylindrical A-FMM code, to apply post-processing methods to properly detect resonant peaks

masked by Fabry-Pérot oscillations in integrated optical circuits, and improve design criteria

to obtain reliable and compact optical integrated devices.
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Appendix A

Bidirectional BPM

In this appendix, we report an approach to adapt the BPM, as described in chapter 2, to

bidirectional propagation, namely bidirectional BPM (BiBPM).

We employ the so-called scattering-matrix (S matrix) formalism, that consists in con-

structing reflection-transmission matrices at every interface and combine them to account for

the overall transmission and reflection characteristic of a device.

It is the alternative approach to the admittance-impedance calculations of transmission

lines, that we applied to the A-FMM, see chapter 4.

It can be argued that scattering matrices in microwave circuit engineering suppose to

treat a single mode and how it combines at waveguide discontinuities or at the insertion

of another electronic component. In optics we use this to denote simply a generalization

of Fresnel formulas for plane-wave reflection-refraction applied to a superposition of many

terms.

In, e.g., [34] this is applied to RCWA, while in, e.g., [26, 54, 55] the application in the

BPM framework is faced.

It overcomes the stability issues of transmission matrix approach, that multiplies propa-

gation and interface terms, without having care of the diverging behaviour of inverse prop-

agators. Propagator indeed can be composed by evanescent terms, that after inversion can

lead to large magnitude values and thus to accuracy or stability issues.

Consider that, while modal method use eigenmodes or their approximation, BPM can be

considered to use a sum of field values in different points, a sort of Dirac comb as a basis.

The purpose of having a bidirectional BPM is to exploit the extensive versatility of the

beam propagation method (that is able to describe nonlinear propagation, anisotropic me-

dia. . . ), adding a crucial feature that permit to simulate 1D periodic structures, such as

gratings, DBR, where interesting effects can be achieved (e.g., Kerr-effect induced bistability

in Bragg grating), see [65].

The main limit of this approach is that wide-angle features are only approximated, 3D

implementation would be too demanding in terms of resources (as much or even more than

the other 3D finite difference methods) and nonlinearities are included as perturbative terms,

then can sometimes fail in providing reliable results (both for accuracy and convergence

issues).
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A.1 Definition of Scattering Matrix

Figure A.1: Representation of a piecewise homogeneous planar structure. Abrupt disconti-

nuities generate partial reflection-refraction of field components.

We follow the derivation of [55]. Let us consider a planar waveguide with propagation axis

along z (figure A.1), and let us assume that for z < 0 and z > a no longitudinal discontinuities

occur. In [0, a] m differenent sections compose our guiding structure: they are z-invariant for

zj−1 < z < zj with j = 1, 2, . . . ,m, where z0 = 0 and zm = a. TE polarized field is ruled in

each section by Helmholtz equation, that we express as, compare with (2.1)

∂2E

∂z2
+

(
∂2

∂x2
+ k2

0n
2(x, z)

)

E = 0, (A.1)

where as usual k0 = 2π
λ is the free-space wavenumber, the refractive index profile n(x, z) is

piecewise constant in z, i.e.

n(x, z) = nj(x) for zj−1 < z < zj , j = 0, 1, . . . ,m+ 1

where z−1 = −∞ and zm+1 = +∞ are assumed.

We recall the definition of square root, Lj , and linear propagation, Pj , operators for j-th

layer are defined as

Lj =

√

∂2

∂x2
+ k2

0n
2
j (x) = k0n0

√
√
√
√
I +

∂2

∂x2 + k2
0

(

n2
j (x)− n2

0

)

k2
0n

2
0

, (A.2)

Pj = exp{−j(zj − zj−1)Lj}. (A.3)

The implementation is made in the same way used in sections 2.4 and 2.5. Helmholtz equation

can be expressed in the following form,

∂2E

∂z2
+ L2

jE = 0. (A.4)
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Figure A.2: Schematic representation of fields terms and propagators.

In each layer we express the electric field as a superposition of two counterpropagating

waves, (E+ towards z = +∞ and E− towards z = −∞): obviously they separately satisfy

∂E+

∂z
= −jLjE

+ (A.5)

∂E−

∂z
= jLjE

− (A.6)

for zj−1 < z < zj , E = E+ + E−.

The formal solution of (A.4) in zj−1 < z < zj reads as

E(x, z) = E+
j−1+e

−jLj(z−zj−1) + E−
j−1+e

jLj(z−zj−1) (A.7)

Then, compare with fig. A.2, we can write

E+
j−

= PjE
+
j−1+ (A.8)

E−
j−

= P−1
j E−

j−1+ (A.9)

where

E+
j−

= lim
z→z−j

E+(x, z)

E+
j−1+ = lim

z→z+
j−1

E+(x, z)

E−
j−

= lim
z→z−j

E−(x, z)

E−
j−1+ = lim

z→z+
j−1

E−(x, z)
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(a) (b)

Figure A.3: Schematic view of reflection (a) and transmission (b) operators as they operate

on field components.

In general the overall reflection matrix R(z) is defined by R(z)E+(x, z) = E−(x, z),

see fig. A.3(a) and the transmission matrix is in turn defined by T (z)E+(x, z) = E(x, z+
m),

see fig. A.3(b): they permit to calculate the global effect of the contribution of direct field

(toward z > 0) to the reflected component in the same point and in the rightmost edge of

the structure. The linear response of a multilayer structure is then readily obtained. Their

value at each interface edge reads as

Rj+E+
j+ = E−

j+ (A.10)

Rj−E
+
j−

= E−
j−

(A.11)

Tj+E+
j+ = E+

m+ (A.12)

Tj−E
+
j−

= E+
m+ (A.13)

Input is supposed to come only from the left side of the structure, i.e. from z < 0, see

fig. A.4, then scattering matrices at the rightmost side are known: the solution is provided

starting from

Rm+ = 0, Tm+ = I (A.14)

A chain rule has to be derived to compute T0− and R0− , finally we solve the problem and

E−
0−

and E+
m+ can be obtained from E+

0−
.

That consists in relating S matrices at the left and right edges of a longitunal homogeneous

layer, and determining how they transform in crossing an interface.
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Figure A.4: Field components inside a multilayer structure.

A.1.1 Propagation step

(a) (b)

Figure A.5: Propagation step for R and T (a) and interface continuity (b).

The relation between Rj−1+ and Rj− allows to propagate backward the R matrix along
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a z-invariant layer.

Rj−1+E+
j−1+ = E−

j−1+ =

= PjE
−
j−

=

= PjRj−E
+
j−

=

=
(
PjRj−Pj

)
E+

j−1+

⇓
Rj−1+ = PjRj−Pj , (A.15)

where (inverted) A.9, A.11, and A.8 were substituted.

The same procedure permits to obtain Tj−1+ as a function of Tj− .

Tj−1+E+
j−1+ = E+

m+ =

= Tj−E
+
j−

=

= Tj−PjE
+
j−1+

⇓
Tj−1+ = Tj−Pj , (A.16)

where A.13 and A.8 are applied.

Figure A.5(a) summarizes these equations.

A.1.2 Interface crossing

Scattering operators have also to be transformed passing from z+
j to z−j , two opposed sides

of a longitudinal discontinuity, figure A.5(b).

TE polarization requires that the field and its derivative are continuous at interfaces.

Field at z−j is expressed as

Ej− = E+
j−

+ E−
j−

=

= E+
j−

+Rj−E
+
j−

=

=
[
I +Rj−

]
E+

j−
(A.17)

and at z+
j

Ej+ = E+
j+ + E−

j+ =

= E+
j+ +Rj+E+

j+ =

=
[
I +Rj+

]
E+

j+ (A.18)

Derivatives can be formally expressed as

d

dz
Ej− = jLj

[
−I +Rj−

]
E+

j−
(A.19)

d

dz
Ej+ = jLj+1

[
−I +Rj+

]
E+

j+ (A.20)
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Continuity conditions are summarized as







[
I +Rj−

]
E+

j−
=
[
I +Rj+

]
E+

j+

Lj

[
−I +Rj−

]
E+

j−
= Lj+1

[
−I +Rj+

]
E+

j+

(A.21)

After a few algebra we obtain

Rj− = (I + C)−1(I − C) (A.22)

where

C = L−1
j Lj+1

[
I −Rj+

] [
I +Rj+

]−1
(A.23)

From A.12 and A.13 we can write, for T ,

Tj−E
+
j−

= E+
m+ = Tj+E+

j+

We multiply by
[
I +Rj−

]
and using eq. (A.21),

Tj− = Tj+

[
I +Rj+

]−1 [
I +Rj−

]
(A.24)

Let us summarize the procedure:

• Rm+ = 0, Tm+ = I

• For j = m,m− 1, . . . , 1, 0

– C = L−1
j Lj+1

[
I −Rj+

] [
I +Rj+

]−1

– Rj− = (I + C)−1(I − C)

– Tj− = Tj+

[
I +Rj+

]−1 [
I +Rj−

]

– If j > 0

∗ Rj−1+ = PjRj−Pj

∗ Tj−1+ = Tj−Pj

• E−
0−

= R0−Ein

• Eout = T0−Ein

TM polarisation can be modeled as well, see [56].

To compute the field values all along the device, scattering matrices at both sides of each

layer are stored. At each interface we can compute reflection and propagate backwards to

obtain the total field. Calculating transmission at the same discontinuity, we then propagate

forwards until the successive interface is reached.
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A.2 Nonlinear BiBPM

This section will be devoted to a brief discussion about the inclusion of nonlinear effects in

the BiBPM. We refer to [65], where a split step solution is combined to scattering matrix

formalism.

As stated in section 1.5, to consider third order self-action is quite simple, we have only to

adapt refractive index according to local intensity. The analysis of second-order effects, such

as SHG, is instead precluded to modal method, except if undepleted-pump approximation is

used (the nonlinear effect generates a SH, but does not subtract energy from FF), see [35].

A.2.1 Third order nonlinearities

As in section 1.3, we assume two counterpropagating waves, at frequency ω, to interact in a

periodic structure and develop a CMT system. Let E+(x, z) = u+(x, z) exp (−jk0n0z) the

forward field expressed in terms of a slowly varying envelope and a phase rotation of reference

index n0, we write

−2jk0n0
∂u+(x, z)

∂z
+
∂2u+(x, z)

∂z2
+
∂2u+(x, z)

∂x2
+ k2

0

[
n2

j (x)− n2
0

]
u+(x, z)+

+
3

4

ω2

c20
χ

(3)
j (x)

[∣
∣u+(x, z)

∣
∣2 + 2

∣
∣u−(x, z)

∣
∣2
]

u+(x, z) = 0

(A.25)

and posing the backward wave, E−(x, z) = u−(x, z) exp (−jk0n0z),

2jk0n0
∂u−(x, z)

∂z
+
∂2u−(x, z)

∂z2
+
∂2u−(x, z)

∂x2
+ k2

0

[
n2

j (x)− n2
0

]
u−(x, z)+

+
3

4

ω2

c20
χ

(3)
j (x)

[∣
∣u−(x, z)

∣
∣2 + 2

∣
∣u+(x, z)

∣
∣2
]

u−(x, z) = 0

(A.26)

nj(x) and χ
(3)
j (x) are linear refractive index and nonlinear susceptibility of layer j. As in

chapter 3, self and cross action appear.

Following the split-step method, we solve linear and nonlinear problems separately. Linear

problem reads as,

∂2u±(x, z)

∂z2
∓ 2jk0n0

∂u±(x, z)

∂z
+
∂2u±(x, z)

∂x2
+ k2

0

[
n2

j (x)− n2
0

]
u±(x, z) = 0 (A.27)

that we can solve also using wide-angle Padé approximation, while for NL step we limit to

paraxial propagation as in CMT, i.e.

∂u+(x, z)

∂z
= −jγj(x)

[∣
∣u+(x, z)

∣
∣2 + 2

∣
∣u−(x, z)

∣
∣2
]

u+(x, z) (A.28)

∂u−(x, z)

∂z
= jγj(x)

[∣
∣u−(x, z)

∣
∣2 + 2

∣
∣u+(x, z)

∣
∣2
]

u−(x, z) (A.29)

for forward and backward envelopes, where

γj(x) = 2πn2,j(x)nj(x)/ (λn0)

n2,j(x) = 3χ
(3)
j (x)/ [8nj(x)]
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n2,j(x) represents nonlinear index profile in section j.

As in chapter 2 an iterative split-step method permits to successively refine solutions.

From eqs. (A.28) and (A.29), we can derive the nonlinear propagation step,

u+(x, z + ∆z) = exp
{

−jγj(x)
[∣
∣u+(x, z)

∣
∣2 + 2

∣
∣u−(x, z)

∣
∣2
]

∆z
}

u+(x, z) (A.30)

u+(x, z −∆z) = exp
{

−jγj(x)
[∣
∣u−(x, z)

∣
∣2 + 2

∣
∣u+(x, z)

∣
∣2
]

∆z
}

u−(x, z) (A.31)

To obtain a scattering matrix formulation for this problem, it is sufficient to construct

propagator and diffraction (square-root) operators including the nonlinear modulation of

refractive indices.

Let us start from propagators,

p+
j,qNL

= exp
{

−jγj(x)
[∣
∣u+(x, z)

∣
∣2 + 2

∣
∣u−(x, z)

∣
∣2
]

∆z
}∣
∣
∣
z=zj−1+(q−1)∆z

I (A.32)

p−j,qNL
= exp

{

−jγj(x)
[∣
∣u−(x, z)

∣
∣2 + 2

∣
∣u+(x, z)

∣
∣2
]

∆z
}∣
∣
∣
z=zj−(q−1)∆z

I (A.33)

where I is the identity matrix. We propagate for a small step, form (q−1) to q, inside the j-th

layer to improve accuracy. Q substeps are assumed to constitute layer j, zj − zj−1 = Q∆zj ,

then the overall propagator in that section becomes

P±
j =

Q
∏

q=1

p±j,qNL
pjLIN

(A.34)

where pjLIN
denotes simply the propagator inside layer j, for the small substeps. We obtain

two different propagators, depending on propagation direction: this is indeed the cause of

bistability phenomena.

To impose continuity conditions, we consider that index profiles are functions of the field

intensity, i.e.,

n±j (x) = nj(x) + n2,j(x)

[∣
∣
∣u±j−

∣
∣
∣

2
+ 2

∣
∣
∣u∓j−

∣
∣
∣

2
]

, (A.35)

n±j+1(x) = nj+1(x) + n2,j+1(x)

[∣
∣
∣u±j+

∣
∣
∣

2
+ 2

∣
∣
∣u∓j+

∣
∣
∣

2
]

, (A.36)

where + and − are index profiles as experienced by forward and backward waves respectively.

Four square-root operators are thus involved at each interface, L+
j , L−

j , L+
j+1, and L−

j+1.

Operators are thus to be updated at each refinement step. The same results of section

A.1 are obtained, except for the fact operator,

Rj−1+ = P−
j Rj−P

+
j (A.37)

and

Tj−1+ = Tj−P
+
j (A.38)

apply to propagation along a section, and

Rj− = (I + C2)
−1(I − C1) (A.39)
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Tj− = Tj+

[
I +Rj+

]−1 [
I +Rj−

]
(A.40)

with

C1 =
(

L+
j

)−1 [

L+
j+1 − L−

j+1Rj+

] [
I +Rj+

]−1
(A.41)

C2 =
(

L−
j

)−1 [

L+
j+1 − L−

j+1Rj+

] [
I +Rj+

]−1
(A.42)

apply to interface crossing.

At each iteration we must calculate field amplitude at each grid step, and update every

operator.

A.2.2 SHG simulation

Let us assume quadratic interactions take place mainly between co-propagating beams. An

ansatz composed by two couterpropagating FF and SH fields is used to obtain a CMT system,

slightly more complicated with respect to section 1.3; n0,2ω = 2n0,ω is supposed, that is a

phase-matching condition. This is not rigorously achieved, and sometimes causes accuracy

issues, since envelopes include excess phase rotation that amplify numerical errors.

FF envelopes obey (superscripts + and − denote propagation direction):

∂2u±ω (x, z)

∂z2
∓ 2jk0n0

∂u±ω (x, z)

∂z
+
∂2u±ω (x, z)

∂x2
+ k2

0

[
n2

j (x)− n2
0

]
u±ω (x, z) =

= −k2
0χ

(2)
j (x)

[
u±ω (x, z)

]∗
u±2ω(x, z)

(A.43)

where χ
(2)
j (x) is the profile of nonlinear susceptibility in section j.

SH envelopes obey

∂2u±2ω(x, z)

∂z2
∓ 4jk0n0

∂u±2ω(x, z)

∂z
+
∂2u±2ω(x, z)

∂x2
+ 4k2

0

[
n2

j (x)− n2
0

]
u±2ω(x, z) =

= −2k2
0χ

(2)
j (x)

[
u±ω (x, z)

]2
(A.44)

The solution of eqs. (A.43) and (A.44) is accomplished by split-step approach, as in

section 2.2. Linear propagators in j layer substeps, pj,ω and pj,2ω, are in the same form of

those reported in section A.2.1.

In each generic layer j we write nonlinear contributions as additive contributions, i.e.

E+
t,j−

= Pt,jE
+
t,j−1+ +X+

t,j (A.45)

E−
t,j−1+ = Pt,jE

−
t,j−

+X−
t,j (A.46)

where t = ω, 2ω.

Kerr effect leads to additional phase rotation, then we have described a construction of

new operators multiplying intensity-dependent contributions; in this case we consider instead

a combination of additive terms,

X±
t,j =

Q
∑

q=1

p
(Q−q)
t,j

(

x±t,j

)

q
(A.47)
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where

x±t,j =







−j∆z
k2

0χ
(2)
j (x)

4k0n0

{[
u±ω (x, z ±∆z)

]∗
u±2ω(x, z)+

+
[
u±ω (x, z)

]∗
u±2ω(x, z ±∆z)

}
e∓jk0n0z

if t = ω

−j∆z
k2

0χ
(2)
j (x)

2k0n0
u±ω (x, z)u±ω (x, z ±∆z)e∓j2k0n0z if t = 2ω

(A.48)

To couple FF and SH, additive terms have to be considered also in scattering matrices,

R(z)E+(x, z) +Wt(x, z) = E−(x, z) (A.49)

T (z)E+(x, z) +Kt(x, z) = E+(x, a+) (A.50)

where Wt(x, z) and Kt(x, z) account for nonlinear interaction. Iterative split-step allows us

to solve independently FF and SH problems, constructing the two additive terms as column

vectors depending on previously calculated field values.

Let us derive the t = ω relations. Initial conditions for matrices Rω and Tω and vectors

Wω and Kω are set to

Rω,m+ = 0, Tω,m+ = I

Wω,m+ = 0, Kω,m+ = 0

A new chain rule to compute Rω,0− , Tω,0− , Wω,0− , and Kω,0− permits to calculate the global

device response.

While (A.15) and (A.16) are still valid, from (A.45)–(A.50) we derive

Wω,j−1+ = Pω,jRω,j−X
+
ω,j + Pω,jWω,j− +X−

ω,j (A.51)

Kω,j−1+ = Kω,j− + Tω,j−X
+
ω,j . (A.52)

In fact, e.g.,

Rω,j−1+E+
ω,j−1+ +Wω,j−1+ = E−

ω,j−1+ =

= Pω,jE
−
ω,j−

+X−
ω,j =

= Pω,j

[

Rω,j−E
+
ω,j−

+Wω,j−

]

+X−
ω,j =

= Pω,jRω,j−Pω,jE
+
ω,j−1++

+ Pω,jRω,j−X
+
ω,j + Pω,jWω,j− +X−

ω,j . (A.53)

It is easy to verify that eqs. (A.15) and (A.51) can be extracted from (A.53).

Continuity conditions should be modified according to rigorous electromagnetic theory,

but nonlinear contributions are proven to be negligible, see [68]. To obtain the interface

crossing formulas, we thus start from







[
I +Rω,j−

]
E+

ω,j−
+Wω,j− =

[
I +Rω,j+

]
E+

ω,j+ +Wω,j+

Lω,j

{[
−I +Rω,j−

]
E+

ω,j−
+Wω,j−

}

= Lω,j+1

{[
−I +Rω,j+

]
E+

ω,j+ +Wω,j+

} (A.54)
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Eqs. (A.22)–(A.23) are still valid and we add

Wω,j− =
{[
I +Rj+

] [
−I +Rj+

]−1
L−1

j+1Lj − I
}−1 {[

I +Rj+

] [
−I +Rj+

]−1 − I
}

Wω,j+

(A.55)

Kω,j− = Tω,j+

[
I +Rj+

]−1 [
Wω,j− −Wω,j+

]
+Kω,j+ (A.56)

As above, the computation of scattering operators and nonlinear perturbations permits to

obtain the input-output response of a periodic system. In order to compute field amplitudes

at each step, their stored value at each interface are required. The additional nonlinear terms

are computed starting from field values obtained in the previous iteration. This iterative

procedure is aimed to refine the results, until only negligible changes are achieved.

It is difficult to choose a proper initial guess, specifically to consider bidirectional prop-

agation at both harmonics. The use of FF linear solution as guess is sometimes useful,

particularly in a weak conversion regime.

Nevertheless the simulation of strong nonlinear regimes requires many iterations and a

fine mesh, otherwise convergence is quite rarely achieved.



Appendix B

Solution of electromagnetic

eigenvalue problems

In chapter 4 we have discussed the computation of resonant wavelength of cylindrical mi-

croresonators.

In a large class of electromagnetic problems, such as solution of mode propagation con-

stants, we have to solve a nonlinear eigenvalue problem, i.e. a problem that can be expressed

as

A(λ)x = 0, (B.1)

where A is a matrix function of the eigenvalue λ and x is the corresponding eigenvector.

If we deal with real eigenvalues, like wavenumbers of slab guided modes, it is easy to recast

(B.1) in a nonlinear equation or system, and solve it by means of standard methods. The

problem is harder if leaky modes are required. Similar problems are tackled in the classical

modal method, if PMLs are used, see [29].

In the A-FMM, this is no more an issue, but our approach operates in the free oscillation

(complex frequency) regime, then a crucial and difficult task is to obtain complex resonant

wavelengths, for high Q quasi-TE and -TM modes.

In section 4.4 we have discussed how to obtain a homogeneous linear system of algebraic

equations and how we solve it.

Here we are summarizing the main approaches we analysed before choosing the SVD

minimization.

The trivial solutions of (B.1) are provided for λ that satisfy

detA = 0. (B.2)

Usually, despite not dealing with very large matrices, (4M+2)× (4M+2) with M ≃ 100,

computing the determinant of A in equation (B.1) leads to overflow errors. This can be faced

by using a logarithmic scale and/or a suitable rescaling of matrix coefficients, to prevent

accuracy losses in treating numerical values.

131
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B.1 Zero Eigenvalue Searching

It is worth noticing that eq. (B.1) can be alternatively tackled as the computation of the

complex frequencies corresponding to matrices with at least one zero eigenvalue, thus the

solving function is computed as the nearest-to-zero eigenvalue. In formulae,

Ax = µx, with µ = 0.

This approach requires that this null eigenvalue is of unitary multiplicity, otherwise two

or more near-to-zero eigenvalues can lead to uncertainty on eigenvector choice, because the

null space of the matrix has, at least numerically, a dimension larger than one.

In both determinant and zero eigenvalue approaches we must look for a numerical zero of

a function such as

f : C→ C (B.3)

with

λ→ f(λ) = detA (B.4)

or

λ→ f(λ) = min
j
{|µj |} with

A(λ)ζj = µjζj

(B.5)

then this approach is still a root-finding in the complex plane. In general is not very reliable,

since we deal with a nearly singular matrix, eigenvalues are generally far away from one

another. This can cause numerical issues, but the idea of matrix decomposition can be better

exploited, thus we consider the singular value decomposition (SVD).

B.2 SVD and Minimization

The solution used in our work is, as already recalled, based upon minimization of least-

magnitude singular value (SV), see [104].

We recall that in general SVD applies to complex rectangular matrices, A ∈ C
m×n, and

can be expressed as

A = UΣV + = U












σ1

σ2

. . .

0

0












V + (B.6)

where Σ is a diagonal p× p matrix, where p = min{n,m} and

σ1 ≥ σ2 ≥ · · ·σk > 0 are all non-negative real numbers, k ≤ p, (B.7)
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and

A+A = V












σ2
1

σ2
2

. . .

0

0












V + (B.8)

AA+ = U












σ2
1

σ2
2

. . .

0

0












U+ (B.9)

(B.10)

with + we denote the conjugate transpose and from the latter equation U and V turn out to

have as columns, respectively, left and right singular vectors of A, or the right eigenvectors

of AA+ and A+A, respectively. The SVD existence is based on the fact that this latter two

matrices are positive semidefinite (n× n and m×m respectively.)

Solving our problem in this form is no more a root-finding formulation, but nonlinear

function minimization. Let A is n× n and rank(A) = n,

A = UΣV + = U












σ1

σ2

. . .

σn−1

σn












V + (B.11)

to satisfy eq. (B.2) one among the SVs σk has to be zero. From eq. (B.7), since SVs are

all real and non-negative and zero-crossing is never attained, we must calculate λ for which

σn → 0: a minimization of σn to meet this condition correspond to solving (B.1). The modal

weights are thus expressed by the last column of V .

Although root-finding is generally easier than minimization, numerical properties of ma-

trices involved in many electromagnetic problems suggest using this strategy, see [104]. In

formulae,

f : C→ R
+ (B.12)

with

λ→ f(λ) = min
1...4M

σ (A) (B.13)

The solution can be written as

λ : min
λ∈C,Re{λ}>0,Im{λ}<0

f = 0 (B.14)

and the algorithm is expressed by eq. (4.51).
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We must then be able to solve two numerical problems, compute the smallest singular

value and minimize the resulting function.

SVD is generally computationally demanding; in addition to direct methods, which cal-

culate all singular value and singular vectors and are among the most robust linear algebra

applications, there exist iterative methods particularly suitable for large sparse matrices (to

exploit compact storage features), that compute a few SVs among the largest and smallest

ones quite quickly; we mention Arnoldi and Lanczos methods, see [133]. It is also possible

to consider preconditioned 1 methods, that avoid singular value clustering (too many small

SVs in the same range) and large matrix norm, that generally could mean slow convergence

in iterative linear algebra algorithms.

Nevertheless, we verified that our matrix dimensions are compatible to the use of classical

direct computation of the full SVD.

As far as minimization is concerned, we have used Nelder-Mead algorithm for non-linear

unconstrained minimization, see [108] for some notes and an example of Mathematica R©
implementation. This approach, also known as simplex method does not require to compute

derivatives (in optimization problems such a method is referred as direct) and is based on

geometrical considerations. It constructs a simplex (the generalization of a 2D triangle in

R
n) and shrinks, moves or rebuild it comparing the function values at vertices. This method

is proved to converge slowly but quite safely in a wide range of applications (also for “ill-

behaved” functions). In order not to fall outside a proper range, a coordinate transform is

applied to Nelder-Mead method to adapt it to bounded region, see [134].

Other direct methods include the minimization of a model (usually an interpolation)

describing (hopefully accurately) the objective function.

The combination of iterative SVD (when applies, to compute the smallest SV only) and

minimization (intrinsically iterative) has to be treated with care. SVs have to be computed

to meet a sufficiently small tolerance with respect to minimization tolerance. 2

Finally we observe that even with direct SVD and simplex minimization, that are generally

very robust, convergence is sometimes not reliable, minimization stops in implausible points.

This depend on the shape of the function to minimize: this issue affecting SVD and the

fact that determinant computation diverges are strictly related: if determinant has poles, the

minima of SVs are very sharp, so it is not easy to “dive” exactly into them.

However this method seems the most promising among those we studied.

B.3 Fictitious System Inversion

An alternative approach based upon linear algebra consideration was proposed by Sudbø, see

[32].

1. Preconditioning is aimed to reduce the condition number of a matrix involved in a linear algebra problem.

This parameter measures how a perturbation in data or operation affects final results.

2. Generally speaking, a method of linear algebra, such as iterative SVD usually stops iterating when

||E|| < tol ||A||, where E is the perturbation, A is the problem matrix, tol a specified tolerance, and || · ||

denotes a matrix norm.
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Let us construct a fictitious linear system starting from eq. (B.1); take any vector y with

a non-negligible component along x, i.e. y · x 6= 0 and solve the linear system

A(λ)x′ = y (B.15)

for x′, by means of a standard solver of linear equations. Obviously as λ approaches an

eigenvalue, λ → λ0, the norm of x′ diverges, ‖x′‖ → ∞. So does the solution provided

by the linear solver, but if normalized it can be proven to approximate the corresponding

eigenvector. Thus a procedure for solving our problem can start constructing a map of the

norm of x′ as a function of λ ∈ Ω ⊂ C where a solution is believed to exist. Then we focus

on a subregion Ω̄ ⊂ Ω where ‖x′‖ >> ‖v‖. In such a region, consider

f(λ) =
1

x′p

where x′p denotes the p component of x′. We assume p is chosen so that the p component of

the true solution x is not negligible. In a region sufficiently close to the eigenvalue λ0, f(λ)

is a continuous complex function of a single complex variable that undergoes zero-crossing at

the eigenvalue, provided that this latter is isolated and nondegenerate.

We have thus recasted our nonlinear eigenvalue problem in a root-finding combined to

the simplest and less computational demanding linear algebra tools (linear system solution).

In the complex plane we cannot bracket solutions 3 as easily as on the real axis, but secant

method or higher order ones work properly.

B.4 Complex Integration

Another idea is to use fundamental results of complex function theory. We recall here some

important results, mainly due to A. Cauchy:

Theorem B.4.1 (Cauchy’s Integral Theorem) Let U be an open subset of C which is

simply connected (i.e. it has no holes), let f : U → C be a holomorphic function, and let γ

be a rectifiable closed path in U . Then,

∮

γ
f(z) dz = 0 (B.16)

Theorem B.4.2 (Cauchy’s Integral Formula) Let U be an open subset of the complex

plane C, f : U → C is a holomorphic function, and the simply connected region D is com-

pletely contained in U . Let γ be the closed path forming the boundary of D. Then we have

for every a in the interior of D:

f(a) =
1

2πi

∮

γ

f(z)

z − a dz (B.17)

3. We mean to use e.g. bisection method for delimiting a real range where Newton or equivalent approaches

are expected to converge.
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Theorem B.4.3 (Cauchy’s Argument Principle) Let us consider a meromorphic func-

tion f(z) (i.e. analytic except in a finite number of isolated points, that are required to be

poles) on D whose contour is the simple closed path γ. If f has no zeros or poles on γ, then

∮

γ

f ′(z)

f(z)
dz = 2πi(N − P ) (B.18)

where N and P denote respectively the number of zeros and poles in D, counted respectively

as many as their multiplicity and order.

In literature we found several examples of applications of these facts to the computation

of complex zeros of electromagnetic problems, [105], [106], [107].

We studied in more details the Abd-ellal, Delves, and Reid (ADR) method as described

in [106], since does not require the function to be analytic inside the inspection region, nor

its derivative computation. We outline a prove of it, since it is not provided in the mentioned

paper.

Consider a function f(z) such as B.3, suppose it can have inside a fixed complex region

N zeros, z0, z1, · · · , zN−1 and no matter how many poles. Suppose the region has contour γ,

a closed simple regular path, that does not cross any zero of f . Thus 1/f(z) has exactly N

poles, that are the unknown solutions of our problem. If we factor out these poles we obtain

an analytic function on the region. Then by Cauchy’s Integral Theorem, its contour integral

must be zero. Posing

h(z) =
(z − z0)(z − z1) · · · (z − zN−1)

f(z)

it results ∮

γ
h(z) dz =

∮

γ

pN (z)

f(z)
dz = 0

where pN (z) = c0 + c1z + c2z
2 + · · · + cN−1z

N−1 + zN denotes the polynomial whose zeros

are our solutions. Since we have N unknown coefficients, we need at least N equations.

Multiplying h(z) by zk, with k = 0, 1, 2, · · · , N − 1, does not change the regularity of the

resulting function, then we can write
∮

γ
zkh(z) dz = 0 (B.19)

Then posing

Gk =

∮

γ

zk

f(z)
dz, for k = 0, 1, 2, · · · , 2N − 1 (B.20)

we can express B.19 as a linear system

N−1∑

j=0

cjGr+j +Gr+N = 0, for r = 0, 1, 2, · · · , N − 1 (B.21)

Solving this system we obtain the coefficients of pN (z) and compute its zeros.

A suitable choice of integration path and a correct estimate of N allows us to be quite

sure of having found accurate solutions, for which a refinement step, by Müller method for

example (three point method that does not require derivatives), is quickly accomplished.
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In fact if we start looking for too many zeros (more than how many they actually are), we

obtain very large Gk values for highest ks. We should arrange a procedure to check if they

are too large and discard them; we then reduce N and compute solutions of a lower order

polynomial (it should be equal to the number of zeros in the region). The risk of not doing

so is to have large inaccuracy on coefficients ci, to find spurious solutions, and also to affect

their accuracy, slowing down or failing in refinement. If a polynomial order less than number

of zeros is chosen, we include poles inside the region and this affect the final value of every

integral, then we could not obtain any good result.

Notice that we have to compute function values only once, then we could compute a lot

of integrals, select the maximum N to avoid round-off errors, i.e. we discard too large Gk,

and solve the linear system. Then a method to divide the initial region in subregions is to

be provided, computation of zeros in each subregion and comparison (in total number and

position) between zeros in the old region and in its parts permit to decide whether we have

reached a suitable partition, compatible with the threshold above which we discard the Gks.

Otherwise we can repeat the partition procedure until we reach a desired accuracy.

Since determinant calculation leads to overflow, this approach is not simple to apply in

our case, but can be useful to locate efficiently leaky modes of guiding structures.

In figure B.1 we show how the ADR approach operates in the complex plane.

Figure B.1: The ADR method is based on complex integration. Zeroes of a complex function

(e.g. dispersion relation) are factored out and the problem is reduced to a polynomial zero

finding procedure. Local refinement of solutions and division in subregions is employed to

improve accuracy. This is required if a large number of zeroes lies inside the region.





Appendix C

Acronyms

A-FMM aperiodic Fourier modal method

ASE amplified spontaneous emission

BPM beam propagation method

BiBPM bidirectional BPM

CMOS complementary metal oxide semiconductor

CMT coupled-mode theory

C-QED cavity QED

C-RCWA cylindrical RCWA (used to denote our implementation of A-FMM)

CROW coupled-resonator optical waveguide

EIM effective index method

FDTD finite-difference time-domain method

FF fundamental frequency

FMM Fourier modal method

FWHM full width at the half maximum

GS gap soliton

MOSFET metal-oxide-semiconductor field-effect transistor

NL nonlinear

NLO nonlinear Optics

ODE ordinary differential equation

OKE optical Kerr effect
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PDE partial differential equation

PECVD plasma-enhanced chemical vapour deposition

PML perfectly-matched layer

QPM quasi phase-matching

RCWA rigorous coupled-wave analysis (original name of A-FMM for grating theorists)

RIE reactive ion etching

SGS spatial gap soliton

SH second harmonic

SHG second harmonic generation

SOI silicon on insulator

SVEA slowly-varying envelope approximation

SV singular value

SVD singular value decomposition

UV ultraviolet

WGM whispering-gallery mode
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2.1 Padé Approximants of ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Resonant wavelength and quality factor of quasi-TE modes with azimuthal or-

derm of a microring resonator. The results from the 3D full vectorial algorithm

(C-RCWA) are compared with a 3D-FDTD model and a simple EIM-based 2D

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 As in Table 4.1 for quasi-TM modes of a microring resonator. . . . . . . . . . 84

4.3 As in Table 4.1 for quasi-TE modes of a microdisk resonator. . . . . . . . . . 84

4.4 As in Table 4.1 for quasi-TM modes of a microdisk resonator. . . . . . . . . . 86

4.5 As in Table 4.1 for quasi-TM modes of a sandwich-microdisk resonator. . . . 95

149





Bibliography

[1] H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-

wave Raman silicon laser,” Nature, vol. 433, pp. 725–728, Feb. 2005.

[2] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu,

and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-

semiconductor capacitor,” Nature, vol. 427, pp. 615–618, Feb. 2004.

[3] A. W. Fang, H. Park, Y.-H. Kuo, R. Jones, O. Cohen, D. Liang, O. Raday, M. N.

Sysak, M. J. Paniccia, and J. E. Bowers, “Hybrid silicon evanescent devices,” Materials

Today, vol. 10, no. 7-8, pp. 28–35, 2007.

[4] N. Engheta and R. W. Ziolkowski, Metamaterials. New York: Wiley-Interscience, 2006.

[5] L. Pavesi and G. Guillot, Optical Interconnects: the Silicon Approach. Berlin: Springer,

2006.

[6] K. J. Vahala, “Optical microcavities,” Nature, vol. 424, pp. 839–846, Aug. 2003.

[7] A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—

part I: basics,” IEEE J. Sel. Topics Quantum Electron., vol. 12, pp. 3–14, Jan.–Feb.

2006.

[8] V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—

part ii: applications,” IEEE J. Sel. Topics Quantum Electron., vol. 12, pp. 15–32,

Jan.–Feb. 2006.

[9] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a

proposal and analysis,” Opt. Lett., vol. 24, no. 11, pp. 711–713, 1999.

[10] S. Mookherjea, S. Mookherjea, and A. Yariv, “Coupled resonator optical waveguides,”

IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 448–456, 2002.

[11] M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp,

A. A. Dremin, and V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys.

Rev. Lett., vol. 81, pp. 2582–2585, Sep 1998.

[12] S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched

and mismatched microcavities: new functionalities of microlasers and optoelectronic

151



152 BIBLIOGRAPHY

components,” in Laser Resonators and Beam Control IX. Edited by Kudryashov, Alexis

V.; Paxton, Alan H.; Ilchenko, Vladimir S.. Proceedings of the SPIE, Volume 6452, pp.

64520X (2007)., vol. 6452 of Presented at the Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference, p. 64520X, Mar. 2007.

[13] R. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals. Berlin: Springer-Verlag,

2003.

[14] E. E. Kriezis, P. Pantelakis, C. S. Antonopoulos, and A. G. Papagiannakis, “Full vector

beam propagation method for axially dependent 3-D structures,” IEEE Trans. Magn.,

vol. 33, pp. 1540–1543, March 1997.

[15] E. Kriezis and A. Papagiannakis, “A three-dimensional full vectorial beam propagation

method for z-dependent structures,” IEEE J. Quantum Electron., vol. 33, pp. 883–890,

May 1997.

[16] W. Huang and C. Xu, “Simulation of three-dimensional optical waveguides by a full-

vector beam propagation method,” IEEE J. Quantum Electron., vol. 29, pp. 2639–2649,

Oct. 1993.

[17] G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt.
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Résumé

Modélisation et caractérisation de dispositifs guidés

micro-structurés en optique intégrée

Dans cette thèse, on présente des outils de modélisation pour étudier des structures à

bandes interdites photoniques non-linéaires et des microcavités. Premièrement, une CMT et

une BPM non linéaires ont été développées pour prouver la propagation de solitons spatiaux

dans une structure périodique composée d’une série de guides droits. Suite à ces résultats

théoriques notables, des fonctions actives sont envisagées grâce à ces régimes. Une autre

méthode a ensuite été développée pour modéliser en trois dimensions des cavités optiques

ayant une symétrie circulaire telles que des microdisques. La méthode est validée en compa-

rant des résultats avec la FDTD. Il est aussi montré la possibilité de confiner le champ dans

une couche de faible indice de réfraction insérée au milieu d’un microdisque de Silicium en

gardant un fort coefficient de qualité et des petites volumes modales. Enfin, la caractérisation

de microdisques en SOI avec des Q supérieures à 50000 est présentée.

Mots-clés : Optique intégrée sur Silicium, mode de galerie, microdisque, RCWA, méthode

de propagation de faisceaux non-linéaire (BPM), optique non-linéaire dans guides à semicon-

ducteur, effet Kerr, solitons spatials.

Modelling and characterization of guiding

micro-structured devices for integrated optics

In this thesis we show several modelling tools which are used to study nonlinear photonic

band-gap structures and microcavities. First of all a nonlinear CMT and BPM were imple-

mented to test the propagation of spatial solitons in a periodic device, composed by an array

of parallel straight waveguides. In addition to noteworthy theoretical considerations, active

functionalities are possible by exploiting these nonlinear regimes. Another algorithm was de-

veloped for the three-dimensional modelling of photonic cavities with cylindrical symmetry,

such as microdisks. This method is validated by comparison with FDTD. We also show the

opportunity to confine a field in a region of low refractive index lying in the centre of a silicon

microdisk. High Q-factor and small mode volumes are achieved. Finally the characterization

of microdisks in SOI with Q-factor larger than 50000 is presented.

Key-words: Silicon-integrated optics, whispering-gallery modes, microdisk resonator,

RCWA, beam propagation method (BPM), nonlinear optics in semiconductor waveguides,

Kerr effect, spatial solitons.
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3, Parvis Louis Néel BP 257 F - 38016 Grenoble Cedex 1

ENDIF—Dipartimento di Ingegneria—UNIFE

1, via Saragat, 44100 Ferrara (Italie)

andrea.armaroli@unife.it


	Abstract
	Résumé Étendu (Extended Abstract in French)
	Introduction
	A Survey on the Modelling of Integrated Optical Devices
	Maxwell Equation in a Charge-free Region
	Wave Equation as Inspiration for Modelling
	Paraxial approximation

	Nonlinear Propagation
	Selection rules for a nonlinear optical process
	Second harmonic generation
	Kerr effect

	Propagation of Guided Waves
	Eigenmodes in open structures
	Eigenmodes in closed and periodic structures
	Orthogonality conditions and overlap integrals

	An Overview of Numerical Methods
	Finite Difference Discretization and solution of discrete equations
	Finite Difference Time Domain Method
	Beam Propagation Method
	Method of Lines
	Modal methods

	Conclusion: the Need for Modelling

	Nonlinear Beam Propagation Method
	Wide-Angle Linear BPM
	Analysis of Second Harmonic Generation
	Analysis of Propagation in Kerr Media
	Numerical Implementation: Padé Approximants
	Real Padé expansions of square-root
	Complex Padé approximants

	Boundary Conditions
	Implementation of Perfectly-Matched Layers in the BPM

	Sample results

	Nonlinear Trapping in Waveguide Arrays
	Some Remarks on 1D Periodic Structures
	Spatial Gap Solitons in Kerr Media
	Derivation of Coupled Mode equations
	Linear diffraction properties: band diagram 
	Gap soliton solution
	BPM simulation

	Gap Solitons in Quadratic Nonlinear Media
	CMT Model
	Gap soliton solution

	A Remark on Applications

	Cylindrical Micro-resonators: 3D analysis based on A-FMM
	Introduction: Micro-resonators and Modelling
	RCWA and its Application in Cylindrical Coordinates
	RCWA: a general overview
	RCWA in cylindrical coordinates
	Perfectly matched layers

	Admittance Matrix Approach
	The propagation step
	Continuity at interfaces

	The Homogeneous Problem and its Solution
	Results and Discussion
	Two basic examples: microring and microdisk
	Sandwich microdisk

	Conclusion

	Microdisk-based Devices
	Microdisk-Based Devices: Design Principles
	Laser source
	Band-suppressing filter
	Multiplexer-Demultiplexer
	Splitting of degeneracies

	Passive Components in SOI
	Technological process
	Waveguide properties and injection

	Experimental Results
	Band-rejecting filter
	Demultiplexer

	Microgear-based Devices
	Conclusion and Perspectives

	Conclusions and Perspectives
	Bidirectional BPM
	Definition of Scattering Matrix
	Propagation step
	Interface crossing

	Nonlinear BiBPM
	Third order nonlinearities
	SHG simulation


	Solution of electromagnetic eigenvalue problems
	Zero Eigenvalue Searching
	SVD and Minimization
	Fictitious System Inversion
	Complex Integration

	Acronyms
	Publications
	International peer-review journals
	International conferences without proceedings
	Italian national conferences with proceedings
	Papers in preparation

	List of Figures
	List of Tables
	Bibliography

