

Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN "FARMACOLOGIA ED ONCOLOGIA MOLECOLARE"

CICLO XXI

COORDINATORE Prof. Pier Andrea Borea

NEW INSIGHTS OF MIR-145 FUNCTION AND REGULATION IN HUMAN BREAST CANCER.

Settore Scientifico Disciplinare MED/06

Dottorando Dott. Spizzo Riccardo **Tutore** Prof. Croce Carlo Maria

(firma)

(firma)

Anni 2006/2008

TABLE OF CONTENTS

ABSTRACT	Pag. 5 - 6
INTRODUCTION	Pag 7 - 8
RESULTS	Pag 9 - 15
DISCUSSION	Pag 17 - 18
MATERIALS AND METHODS	Pag 19 - 23
FIGURES AND TABLES	Pag 25 - 55
ACKNOWLEDGMENTS	Pag 57
REFERENCES	Pag 59 - 62

ABSTRACT

miR-145 is down-regulated in the majority of human cancers, including breast cancer (BC). However, its role remains largely unknown. Here, I provide evidence for *miR-145* induced anti-proliferative and pro-apoptotic effect in several BC cell lines, which was not detected in BC cells lacking a functional TP53 gene and exhibiting an estrogen receptor alfa (ESR1) negative status. I found that *miR-145* anti-proliferative effects were dependent upon TP53 activation and that activation of TP53 could in turn stimulates *miR-145* expression. I also found that *miR-145* could repress the expression of ESR1 protein by direct interaction with two sites within its gene coding sequence. My findings support the existence of a positive regulatory loop where *miR-145* directly targets ESR1 and indirectly activates TP53, which in turn sustains *miR-145* expression and reinforces *miR-145* overall effects on proliferation and apoptosis.

L'espressione del miR-145 e' ridotta nella maggior parte dei tumori umani, tra cui il tumore della mammella. Nonostante cio', la sua funzione rimane per lo piu' sconosciuta a tutt'oggi. Nel corso di questa tesi, dimostrero' un effetto anti proliferativo e pro apoptotico del miR-145 in diverse linee umane di carcinoma della mammella, inoltre tale effetto risulta essere assente in linee cellulari di carcinoma della mammella senza recettore alfa dell'estrogeno (ESR1) o in cellule mancanti di TP53 funzionante. Questa evidenze preliminari hanno poi

condotto alla scoperta che l'effetto del miR-145 dipende dall'attivazione di TP53 e come a sua volta TP53 induca la trascrizione del miR-145. D'altro canto, ho dimostrato come miR-145 bersagli l'ESR1 e ne riduca l'espressione proteica e l'effetto in una cellula estrogeno dipendente mediante il legame con due siti di interazione nella regione codificante dell'ESR1. I miei risultati indicano l'esistenza nel tessuto mammario di un sistema di regolazione che controlla l'espressione di ESR1, TP53 e dello stesso miR-145.

INTRODUCTION

MicroRNAs (MiRNAs) are short (19-24 nucleotides long) non coding RNAs (ncRNAs) that are generated from longer transcripts (pre and pri-miRNA) through sequential maturation steps (1). The main known function of miRNAs is to regulate gene expression at the post-transcriptional level either by inhibiting protein translation or enhancing mRNA degradation through the binding to imperfect sequence homology sites inside the 3' untranslated region (3'-UTR) of target messenger RNAs (mRNAs) and through the recruiting of the RNA inhibitory silencing complex (RISC) to these sites (2). Other miRNA mechanisms of action, such as promoter regulation (3) and activation instead of repression of target mRNAs (4), have also been revealed. MiRNAs are involved in fundamental processes, such as embryonic development, and cell differentiation (5), where a fine regulation in time and space for the correct execution of these programs is required. Consequently, it is not surprising that alterations of miRNA expression patterns have been found in many human diseases, including cancer (6).

Numerous evidences of miRNA regulation at the transcriptional level have been already reported. For example, mirR-17-92 family is regulated by c-Myc (7), and miR-34 family is regulated by TP53 (8). Interestingly, several regulatory loops have been discovered: miR-34a itself has been shown to regulate TP53 activity (9, 10), and miR-17 family to regulate E2F1-3 (7), proving the existence of complex regulatory loops between miRNAs and transcription factors (TFs) (11).

All human tumors so far analyzed present abnormalities in miRNA expression, and signatures of miRNAs that are de-regulated in different tumors have been identified (12, 13). Among these, *miR-145* represents one of the miRNAs most commonly down regulated in various human cancers, including breast (14), colon (15), and lung (16). In particular, *miR-145* role in breast cancer (BC) merits special attention, as several lines of evidence showed that its expression is inversely correlated with BC tumor grade (17, 18), tumor size (17), and proliferation index Ki-67 (14).

BC among women is one of the most commonly diagnosed malignancies, and is the second cause of cancer death (19). Although the mortality rate from BC is decreasing, still an effective therapy has to be found. To meet this need a better understanding of BC biology is necessary. *MiR-145* functions were previously studied in colon cancer and cervical cancer cells (20, 21); however, to our knowledge, the effects of *miR-145* re-expression were not reported for BC cells. Furthermore, except for IRS-1 in colon cancer cells (22) and HOXA9 in haematopoietic lineages (23), no other *miR-145* putative target has been reported so far. Therefore, the purpose of our study was to investigate *miR-145* functions and possible mechanisms of *miR-145* down regulation in BC. Our strategy consisted of screening *miR-145* effects in six breast cancer cell lines using proliferation and apoptosis assays; through this approach we were able to identify common characteristics (i.e. ESR1 and TP53 status) that could predict the biological effect of *miR-145* restoration, novel *miR-145* targets and a mechanism of *miR-145* regulation.

RESULTS

MiR-145 impairs cell proliferation in BC cell lines by apoptotic induction.

Previous study showed that *miR-145* expression was consistently reduced in human BC samples and BC cell lines in comparison with normal breast tissue (14). I further extended these findings by analyzing via quantitative real time (qRT) PCR *miR-145* expression levels in 10 BC cell lines and in 14 BC patients. Indeed, I found a lower expression of *miR-145* in BC samples (13 time lower) and cell lines (from 150 to 700 times lower) compared to normal breast tissue (**Fig.1a-b**).

To study the effects of *miR-145* re-expression in BC cell lines, I performed an *in vitro* proliferation assay (tetrazolium colorimetric MTT assay) after transfection of precursor *miR-145* molecule (Ambion, Austin, TX). Four (MCF7, CAMA-1, MCF10A and T47D) out of six BC cell lines showed an effect after *miR-145* transfection, while MDA-MB-231 and MDA-MB-436 did not show any effect (**Fig.2**). Homogeneous transfection efficiency of *miR-145* among all cell lines was assayed and confirmed by qRT PCR (**Fig.3**), excluding the possibility that the absence of *miR-145* effect on MDA-MB-231 and MDA-MB-436 cells was due to inefficient *miR-145* transfection. Interestingly, the *miR-145* anti-proliferative effects were only detectable in cells expressing wild type (wt) TP53 or estrogen receptor alfa (ESR1).

To evaluate if *miR-145* effect on cell proliferation was due to induction of apoptosis, I next assayed the percentage of apoptotic cells after miR-145 transfection by AnnexinV staining at different time points. I examined CAMA-1, MCF7 and MDA-MB-231 cells, which showed decreasing anti-proliferative responses after *miR-145* transfection (Fig.2), being CAMA-1 the most sensible and MDA-MB-231 the most resistant. The varying percentages of early apoptotic cells (AnnexinV positive/Propidium Iodide negative cells) observed in these three cell lines were consistent with their different proliferation responses following miR-145 restoration: CAMA-1 showed the highest induction of apoptosis (4 and 6 times at 48 and 72 hours, respectively, p<0.05, in duplicate experiments, n=2), MCF7 showed an intermediate induction of apoptosis (3 and 2 times at 48 and 72 hours, respectively, p<0.05, n=2), while MDA-MB-231 did not show any apoptotic response at any time after *miR-145* transfection (Fig.4a). To further confirm *miR-145* apoptosis induction in MCF7 cells, I also tested the activation of caspase 3 / 7 by a reporter assay (Promega), which proved a 2 times increase of caspase 3 / 7 activity after miR-145 overexpression (Fig.4b). Taken together, these results indicate that *miR-145* restoration inhibits BC cells proliferation by increasing their apoptotic rate and that this response is common only to cells with either TP53 wt or ESR1 positive status.

MiR-145 enhances p53 transcriptional activity and *miR-145* function depends on TP53 pathway activation.

Considering that *miR-145* exerted its anti-proliferative/apoptotic effect only in cells TP53 wt or ESR1 positive; first, I hypothesized that *miR-145* function was dependent, at least in part, upon TP53 activation. To verify this hypothesis, I measured the expression levels of PUMA and CDKN1A/p21, two transcriptional targets of TP53 (24), after *miR-145* transfection into MCF7 cells (TP53 wt and *miR-145* responsive cells). Three independent experiments showed a two-fold increase in both PUMA and CDKN1A/p21 mRNA levels

compared to cells transfected with scrambled miRNA (p=0.05, p<0.05 respectively, n=3) (**Fig.5a**). *MiR-145* dependent induction of PUMA was further confirmed by Western Blot (**Fig.5b**). To directly verify the dependence of cell death upon TP53 pathway activation, I cotransfected MCF7 cells with *miR-145* and short interfering RNAs (siRNAs) targeting TP53 or PUMA, a downstream effector of TP53-dependent apoptotic program (25). Twenty-four hours after transfection, a 20% increase in viability (from 43% to 64%, p<0.05, n=3) was observed in MCF7 cells treated with *miR-145* in association with siRNA-PUMA or siRNAp53, compared to cells treated with *miR-145* alone (**Fig.5c**). Our findings support the hypothesis that *miR-145* effect on cell viability relies at least in part on TP53 and the activation of its downstream targets (PUMA and p21).

TP53 induces *miR-145* expression and binds upstream of *miR-145* locus.

While studying TP53 effects on miRNA expression, He et al also reported that *miR*-145, similarly to miR-34 family members, was increased several times in an ovarian cancer cell line after adriamycin treatment (26). With these evidences in mind, I hypothesized that while *miR-145* activity was dependent on p53 activation, on the other hand TP53 could in turn regulate *miR-145* expression, similarly to other regulatory loops already described for TP53 and miR-34 family (9) as well as other miRNA/TFs (7). To test the hypothesis that TP53 regulates *miR-145*, I treated MCF7 cells with Nutlin-3, a selective activator of TP53 (27), and then measured by qRT-PCR *miR-145* expression levels. As a result, I found that *miR-145* expression was indeed increased approximately 4 times after 24 hours of Nutlin-3 treatment (p<0.05, n=2) (**Fig.6a**). To validate whether TP53 induction of *miR-145* expression was at the transcriptional level through direct promoter regulation, possible TP53 binding sites (TP53bs) upstream of *miR-145* locus were investigated. By using a published database of predicted TP53bs available at UCSC Genome Browser (28), I found one predicted TP53bs 31k bps upstream of *miR-145* genomic position. Additionally, an *in silico* prediction of TP53bs was performed, using a position weight matrix (PWM) approach (29), and scanned about 30kb upstream of *miR-145* localization and identified 55 not canonical TP53 binding sites. I next tested, by Chromatin Immuno Precipitation assay (CHIP) the TP53bs present in UCSC genome browser and 6 out of 55 TP53bs that we predicted. Specifically, 3 out of the 6 selected TP53bs had both a high quality of prediction and high conservation between human and mouse, while the remaining 3 had medium quality but were located in proximity of the *miR-145* promoter predicted by CoVote algorithm (30) (**Table 1**). One of the selected sets of primers showed a specific band by PCR amplification after ChIP in cells treated with adriamycin, that was absent in the control IgG precipitated DNA (**Fig. 6b**). These results suggest that TP53 induces *miR-145* expression and binds to a genomic region located about 11kb upstream of *miR-145*.

MiR-145 directly targets the coding sequence of ESR1.

Since the response to *miR-145* restoration was also correlated to ESR1 in addition of TP53 status (**Fig.1**), I also hypothesized that *miR-145* could exert its effect via modulation of ESR1 expression levels. To test whether *miR-145* could repress ESR1, I transfected MCF7 cells (ESR1 dependent) with *miR-145*, and I measured ESR1 protein levels by Western Blotting. A consistent reduction of ESR1 protein 48 hours after *miR-145* transfection was detected in three independent experiments (**Fig.7a**). I also evaluated the expression of Cyclin D1, a downstream target of ESR-1, and a parallel reduction of protein levels was detected (**Fig.7a**). Since, ESR1 has a known role in cell cycle progression (31), I anticipated that *miR-145* over-expression could affect cell cycle progression, as well. To this end, I stimulated G1 synchronized MCF7 cells with estrogen in concomitance or not with *miR-145* overexpression. I observed that *miR-145* transfected cells exhibited an increase of cells in G1 phase (from 43.6% to 54.4% compared to scrambled, p<0.05 n=2) and a

reduction of cells in G2 phase (from 23.1% to 12.8% compared to scrambled, p<0.05 n=2). These results support the hypothesis that *miR-145* inhibition of cell proliferation could be partly due to repression of ESR1 and its ability to promote cell cycle.

Next, I wished to clarify how *miR-145* could lead to ESR1 down-modulation. First, I interrogated several online target prediction programs (Pictar, TargetScan, Miranda, DianamicroT), but none of these identified *miR-145* binding sites within the 3'UTR of ESR1 mRNA. Before excluding the possibility of a *miR-145* direct effect on ESR1 mRNA, I evaluated whether *miR-145* was able to bind ESR1 at sites other than at its 3'UTR. In fact, although most of the miRNA binding sites have been reported in 3'UTRs (2), some recent studies described the ability of miRNAs to target mRNAs within their coding sequence (CDS) (32, 33). Hence, I tested the full-length ESR1 mRNA sequence with the RNA22 prediction program that allows the identification of possible *miR-145* binding sites also in 5'UTR and CDS (34). Three putative *miR-145* binding sites were predicted, all inside the CDS of ESR1 (**Fig. 8a**), and I cloned each one of them into pGL3 luciferase reporter vector. Two out of three caused a significant decrease of luciferase activity after *miR-145* re-expression compared to control MCF7 cells (29% and 32% decrease compared to scrambled, respectively, p<0.05 n=6) (**Fig. 8b**), indicating that *miR-145* can repress ESR1 expression via binding to mRNA CDS.

Previous studies have shown that miRNAs can regulate mRNA expression through the inhibition of mRNA translation or degradation of mRNA. Therefore, to understand the mechanism of ESR1 down regulation by *miR-145*, I measured ESR1 mRNA levels after *miR-145* transfection. An increased level of ESR-1 mRNA was detected concomitantly to reduction of protein levels (**Fig.8c**). Moreover, to exclude an indirect effect of *miR-145* on ESR-1 protein stability, I assessed the ratio between phosphorylated Serine-118 ESR1 (known to increase ESR1 protein stability through inhibition of proteosomal degradation (35)) and total ESR1. The ratio ESR1-pS118/ESR1 was also increased after *miR-145* treatment in comparison with control (p<0.05, n=3) (**Fig. 8d**), thus excluding an indirect effect of *miR-145*

in enhancing ESR1 protein degradation. Therefore, since ESR1 mRNA and ESR1 protein stability were not decreased by *miR-145* treatment, these data indicate that *miR-145* inhibits ESR1 protein expression exclusively by repression of protein translation through the interaction with two target sites within the ESR1 mRNA CDS.

Proteomic and Gene Expression Profiling after *miR-145* transfection.

In order to have a wider picture of miR-145 effects on protein expression, I performed a proteomic analysis by reverse phase proteomic array (RPPA) (see methods for detailed procedure) after enforced expression of miR-145 in MCF7 (miR-145 responsive) and in MDA-MB-231 (*miR-145* resistant) cells. 109 different antibodies were used probing proteins involved in cell cycle regulation, apoptosis or tyrosine kinase signaling, and I pinpointed differentially expressed proteins between *miR-145* and scrambled expressing cells by t-test analysis. In agreement with our previous observations, ESR1 and CyclinD1 were identified as being down regulated by miR-145 also with this complementary approach. In addition, I detected 16 differentially expressed proteins (8 down-regulated and 8 up-regulated) in MCF7 cells; conversely, in MDA-MB-231 we observed a lower number of differentially expressed proteins (only 6, and all up-regulated) (Table 2). Except for MEK (MAP3K1), which was up regulated by miR-145 in MDA-MB-231, none of the differentially expressed proteins identified in MCF7 and MDA-MB-231 were present in the list of miR-145 predicted targets, according to the miRGen predictions (http://www.diana.pcbi.upenn.edu/cgibin/miRGen/v3/Targets.cgi). This observation may imply that if miR-145 has any direct effects on the observed differentially expressed proteins, it may be once again through recognitions of sequence motifs outside of the 3'UTR or by indirect mechanisms.

As the main proteomic effects were found in the *miR-145* responsive MCF7 cells, I investigated the *miR-145* effects at the transciptome level in order to further identify targets that are affected at the level of mRNA abundance. By Affymetrix gene expression profiling,

using class prediction method (a method that best accurately differentiate the two classes of samples, for further details see Methods), I found 462 probes (335 genes) differentially expressed at least two two-fold in respect with the scrambled transfected cells. Out of these, 118 probes (84 genes) were down-regulated and 344 probes (251 genes) were upregulated after miR-145 transfection (at a P value <0.0001) (Table 3). ESR1 was not among these genes, further confirming its *miR-145* regulation at the translational level. Considering the downregulated genes, only 9 were among the predicted targets by DIANA miRgen and therefore, the majority of gene expression changes are likely indirect consequences of enforced expression of miR-145. By analyzing the global effects of miR-145 expression on transcriptoma I examined the Gene Ontology classification and found that among the downregulated genes the most highly enriched GO category categories was "protein binding" (p=6.2E-5), while among the up-regulated genes was "immune system" (p=2.8E-28). Interestingly, for the latter group of genes, we also identified the "P53 signaling pathway" (p=2.7E-2), "apoptosis" (p=6.9E-6) or "regulation of apoptosis" (p=1.8E-4) By further checking the list of differentially expressed genes I found that TRIM 25 is involved in estrogen responsive control of cell cycle and breast tumors growth according to BioCarta pathways and that CAV2 is involved in response to estrogen stimulus according to GO biological processes. All these findings support a model depicting *miR-145* at the interface between TP53 pathway and estrogen pathway in breast cancer, expanding the already growing spectrum of examples of non-codingRNAs and protein coding genes interplay in fundamental cellular pathways (Fig. 9, see also discussion).

DISCUSSION

My findings indicate that *miR-145* inhibits proliferation and induces apoptosis of BC cells through the activation of TP53 pathway and the down regulation of ESR1. To my knowledge, these results describe for the first time a tumor suppressor function of *miR-145* in BC cells and directly link *miR-145* to ESR1 and TP53, both important players in breast tumor biology (36, 37).

Several papers already identified miRNAs regulated by TP53 (26, 38). He et al., using real time PCR, reported an increase of *miR-145* after TP53 activation by adriamycin in an ovarian cancer cell line (26). However, they did not see any difference in *miR-145* expression between TP53 wt and TP53 null primary mouse fibroblasts, suggesting that *miR-145* regulation by TP53 may be tissue or cell-type specific. Given this premise, the screening of different types of cell lines for *miR-145* effects may help to identify pathways and biological outcomes associated with *miR-145* expression.

It should be mentioned that *miR-145* is located at chromosome 5q33.1 in cluster with miR-143, suggesting that miR-143 is also likely regulated by TP53 together with *miR-145*. However, in the cell lines that I used, miR-143 exhibited an expression lower than *miR-145* (10 to 100 times) (**Fig.1a**), making difficult to obtain consistent results on mir-143 regulation by TP53 (data not shown).

Our findings indicate that ESR1 could play a pivotal role in a regulatory loop between *miR-145* and TP53. In fact, it has been demonstrated that ESR1 can directly interact with

TP53 protein and inhibit TP53 activity without affecting TP53 protein levels (39); therefore, it is plausible that *miR-145*, by downregulating ESR1, could indirectly induce TP53 activity without affecting TP53 protein levels. Consistent with this model, when I tested if TP53 activation by *miR-145* was dependent on an increase of TP53 protein levels, the results were inconsistent, and only in synchronized cells after estrogen stimulation we were able to see an induction of TP53 protein levels with consequent activation of p21 (**Fig. 10**).

Previous studies have described for *miR-145* a direct correlation with ESR1 tumor status (17, 18, 40) and an inverse correlation with the Ki-67 proliferation index (14). While the latter finding is in agreement with *miR-145* anti-proliferative effect that I described here with our BC cell line screening, unexpected and more difficult to explain is the direct correlation between *miR-145* and ESR1 expression levels. Distinct groups have identified other miRNAs that directly target ESR1 (miR-221, miR-222 and miR-206) (41, 42), and also for mir-221/222 a direct correlation with ESR1 status was found (40). These direct correlations although puzzling and contradictory seems to be true for multiple miRNAs that target ESR1 and not only for *miR-145*.

In conclusion, the effects on proliferation and apoptosis induced by *miR-145* reexpression support a tumor suppressor role of *miR-145* in BC pathogenesis (14, 15, 21). In fact, either in ER positive BC cells, or in BC cells carrying wt TP53, *miR-145* inhibited cell cycle progression and promoted apoptosis. In the present study, I could delineate a positive regulatory feedback loop, where *miR-145*, by targeting ESR1 mRNA and inducing ESR1 protein down-regulation, is at least in part responsible for the activation of TP53. In turn, TP53 activates its downstream effectors (PUMA and p21) as well as *miR-145* itself, thus reinforcing this positive loop, which is responsible for the overall effects on BC cell proliferation and apoptosis (**Fig.9**). The finding that *miR-145* regulates both ESR1 and TP53 in BC cells provide a deeper insight into the involvement of *miR-145* in BC pathogenesis, and could open the avenue of new therapeutic options by the modulation of *miR-145* expression in BCs.

MATERIALS AND METHODS

MicroRNA precursor molecules and siRNAs. Synthetic microRNA precursor molecules and negative control #1 or #2 (scrambled) were purchased form Ambion (Austin, TX). The synthetic oligos were dissolved in nuclease free water to a stock concentration of 50μ M. Small interfering RNA (siRNA) against TP53 and PUMA were purchased from Dharmacon (Thermo Scientific, MA, USA).

Hormones and Drugs. 17 β estradiol was purchased from Sigma Aldrich (St.Louis, MO, USA) and was dissolved in ethanol to a final concentration of 50mg/mL. Nutlin-3 was purchased from Cayman Chemical (Ann Arbor, MI, USA) and dissolved in DMSO to a stock solution of 2mM. Adriamycin was a kind gift from by Dr. Priebe's lab at MD Anderson Cancer center, Houston, TX and was resuspended in water to a final concentration of 0.5uM.

Cell lines and patient samples. MCF-7, CAMA-1, MDA-MB-231, MCF-10A, T47D, MDA-MB-436, HCT116 cell lines were obtained from the American Type Culture Collection (Manassas, VA) and cultured according to protocols. The normal breast tissues and breast cancer samples were collected and processed as described by lorio et al (14).

Real Time PCR and RNA isolation. The RNA purification by Trizol was performed as described by lorio et al. (14). For mature microRNA quantification, I used *miR-145* probe

(Applied Biosystems Foster City, CA) and RNU6B probe (Applied Biosystems). I used 500 ng of total RNA for retrotranscription, multiplexing two different primers (*miR-145* and RNU6B). The delta Ct method was used to calculate the relative abundance of microRNAs compared to RNU6B expression (43). To generate total cDNA for protein coding gene expression, 1ug of total RNA was retrotranscribed by SuperScript II (invitrogen, Carlsband, CA, USA) with random hexamers according to the manufacturer's protocol. The Real Time PCR was performed with iQ Syber green Supermix (Biorad). Primer list is shown in **Table 4**.

Protein isolation, Western Blotting and antibodies. Cells were collected by trypsin-EDTA (Mediatech) and dissolved in NP40 lysis buffer (0.5% NP40, 250mM NaCl, 50mM Hepes, 5mM EDTA and 0.5mM EGTA) freshly supplemented with Complete inhibitor (Roche) and phosphatase inhibitor cocktail 1&2 (Roche). Proteins were purified as previously described (44). The following antibodies were used for western blotting: ESR1 (Neomarker), ESR1 pS118 (Epitimics), GAPDH (Calbiochem), CYCLIND1 (Santa Cruz Biotechnologies), and PUMA antibody (Cell Signaling).

Reverse Phase Proteomics Assay. MCF7 and MDA-MB-231 cells were seeded in 6-well plates and transfected either with *miR-145* precursor (Ambion, Austin, TX) or with scrambled controls (Ambion, Austin, TX). Each experiment was performed in triplicate. Cells were lysed in 6-well plates and denatured by SDS at 36 hours after transfection as previously described (45). Cell lysates were serially diluted to define the linear range of each antigen-antibody reaction. Lysates were printed on nitrocellulose-coated slides and serially probed with antibodies. Signals were captured by tyramide dye deposition (CSA System, DAKO). Data were collected and analyzed using Biometric Research Branch (BRB) array tools 3.6.1 (http://linus.nci.nih.gov/BRB-ArrayTools.html). Class comparison analysis using *t* test identified probe sets that were differentially expressed between controls and treated samples (P < .05).

Expression profiles after *miR-145* **transfection.** MCF7 cells were starved and transfected either with *miR-145* precursor or with scrambled controls (Ambion, Austin, TX) as described in "ESR1 function, cell cycle" paragraph. After 24 hours, the cells were released using DMEM medium with 10% of fetal bovine serum. The total RNA was extracted by Trizol method (Invitrogen, Carlsband, CA, USA) and the hybridization was performed on Affymetrix array HG-U133 plus 2.0. GeneChips (Santa Clara, CA) in duplicate. The data were normalized by GCRMA and imported into Biometric Research Branch (BRB) array tools 3.6.1 (http://linus.nci.nih.gov/BRB-ArrayTools.html) for subsequent analyses. Class prediction algorithms in BRB array tools were used to determine whether genes expression patterns could accurately differentiate between control and treated samples.

In vitro proliferation assay. Cells were plated in 96-well plates at a density of 10,000cells/well. The transfection was performed by Lipofectamine2000 protocol (Invitrogen, CA, USA) with a final concentration of 100nM for both *miR-145* precursor and negative control molecule (scrambled). We also treated cells with lipofectamine only (null cells). Both treatment and controls were performed in 4 replicate each time. After four hours from the transfection (time 0), the adsorbance of cells was estimated by colorimetric assay (MTT, CellTiter96Aqueous One solution, Promega, WI, USA) and the reading was repeated every 24 for four consecutive days.

Apoptotic assays. The number of early apoptotic cells was obtained by Annexin V staining kit (BD Pharmingen, 556547, San Jose, CA, USA). Every 24h, the cells were collected and Annexin V staining performed according to the protocol. The cells were counterstained with Propidium Iodide (PI) and immediately read with a FACSCalibur system (BD). Only cells Annexin V + and PI – were counted for each time points. For further confirmation, we performed for MCF7 cells the Caspase3/7 assay according to the manufacturer protocol (Promega, WI, USA).

MiR-145 - TP53 loop identification. MCF7 were seeded in 24-well plates at concentration of 75x10³ cells/well into antibiotic-free medium. Transfection was performed using Lipofectamine 2000 Reagent (Invitrogen). *MiR-145* precursor (Ambion), Negative Control#2 (Ambion), siRNA-PUMA (Dharmacon) and siRNA-p53 (Dharmacon) were transfected at final concentration of 100nM. After 48h I counted the number of cells using hemocytometer chamber. To test the effect of Nutlin-3 on *miR-145* expression in MCF7, I treated MCF7 for 24h at increasing concentration of the drug (2, 4 and 8 microM).

In silico identification of TP53 binding sites. P53 binding sites were predicted by position weight matrix (PWM) approach (29) by scanning a 30 kb region upstream of *miR-145* genomic location.

Chromatin Immunoprecipitation (CHIP). HCT116 cells were plated in 175 cm² dish and were treated for 24 hours with Adriamycin to induce TP53 activation. CHIP was performed using CHIP kit (Millipore, cat number 17-295, USA), and 5 µg of antibody against TP53 (Santa Cruz Biotechnology). As negative control we immunoprecipitated one sample with 5 µg of pre-immune serum (Santa Cruz). After final elution and purification of DNA, the samples were PCR amplified using the primers listed in Supplementary Table S2. The input sample was diluted to 0.1ng/µL and used as positive control of PCR reaction. PCR was performed using AmpliTaq Gold (Applied Biosystems).

ESR1 Function, cell cycle analysis. 0.5×10^6 MCF7 cells were plated in 6 well plates and starved for 44h in phenol red free DMEM and supplemented with charcoal treated FBS. Cells were then transfected with *miR-145* precursor or scrambled molecules as previously described; after 4 hours (time 0), the media was changed and replaced with fresh phenol red free DMEM, supplemented with charcoal treated FBS and 17 β estradiol (10⁻⁶ M). At time 0

hour and after 24 hours, the cells were collected, washed with PBS, fixed with ethanol, and stained with PI supplemented with RNse A. Both samples were analyzed together, and the same arbitrary gates for sub-G1, G1, S and G2 were used at both times 0 and 24 hours, respectively. Each transfection was performed in duplicates.

Luciferase assay. I designed three primer pairs (Table 4) to amplify a region of about 200-300 bps around every predicted *miR-145* target site within ESR1 coding sequence (CDS). The cloning of the three amplicons was done as previously described (44). 0.2x10⁶ MCF7 were plated on 24 well plates, and the day after, the cells were transfected with *miR-145* or scrambled (100 nM), with each single pGL3 ESR1 construct (0.4µg per well) and with pRLTK (0.05µg per well). After 24h the cells were rinsed with PBS and dissolved in Passive Lysis Buffer 1X (Promega). Subsequently, 20µL of samples were measured for luciferase activity using dual luciferase kit (Promega) and were read with Veritas luminometer (Turner Biosystems, Sunnyvale, CA, USA). Each combination was tested in four replicates in two independent experiments.

Statistical analysis. The t-test was used to compare average values between groups of samples (such as miRNA expression data, number of proliferating cells, etc). All reported P-values were calculated for groups with unequal variance using Excel software.

FIGURES AND TABLES

Figure 1. (a). **MiR-145 expression in breast cancer cell lines**. The expression of miR-145 was tested by real time PCR for mature miRNAs. The average expression of miR-145 in breast cancer cell lines is hundreds times less compared to Normal Breast (Ambion, Austin, TX, USA) and HeLa. Y-axis represents logarithmic fold increase compared to house keeping gene RNU6B. (b) miR-145 expression in BC tumors. MiR-145 was tested by real time PCR, as well. BC tumors (n=14) presented lower miR-145 expression than normals (n=7). P-value is obtained by t-test allowing unequal variance between groups.

Figure 2. *MiR-145* inhibits breast cancer cell proliferation. *MiR-145* effects on proliferation and cell viability of 6 breast cancer cell lines were measured by MTT assay. Time zero corresponds to transfection day. Each time point was expressed as a relative value (Fold Increase, Y axis) to time zero. Values represent the average of 3 (MCF7 and MDA-MB-231) or 2 (all other cell lines) independent experiments, performed in quadruplicates; bars indicate standard deviations. For each cell line TP53 and ESR1 protein status are shown according to Neve et al ⁶¹. For TP53: – indicates no expression, ++ high expression, M=mutated or WT=wild type. For ESR1, protein levels are indicated as + positive or – negative. *MiR-145* had an anti-proliferative effect only on breast cancer cell lines either expressing WT TP53 or ESR1.

Figure 3. Testing the efficiency of miR-145 transfection. To test if miR-145 did not show any effect in MDA MB 231 because of a poor efficiency of transfection, I measured the miR-145 levels in MDA MB 231. The levels of miR-145 were consistently increased after transfection compared to scrambled transfected cells. I used the same samples as for the apoptotic assay reported in Fig. 4a.

Figure 5. *MiR-145* induces TP53 activity, and *miR-145* effects depend on TP53 pathway. (a) Levels of PUMA and p21 mRNA, both downstream targets of TP53, are upregulated by *miR-145* overexpression as indicated by qRT analysis of *miR-145* transfected cells (n=3, mean ±st.dev.). (b) Western Blotting of PUMA in MCF7 after miR-145 transfection. MiR-145 induced an increase (0.8 versus 0.4 relative units) of PUMA protein compared to control (NC2) after 24 hours from the transfection. Top figure, PUMA antibody western blotting is shown; bottom figure, beta-actin is shown. Ratio P/A indicates PUMA values after quantification of western blotting bands and normalization with beta-actin expression. (c) Assessment of MCF-7 cell viability by MTT assay 48 h after *miR-145* transfection in the presence or absence (by siRNA) of TP53 or of the TP53 transcriptional target PUMA. Mean viability (n=3, ±st.dev.) of scrambled transfected cells was set to 100%. *MiR-145* induced a decrease in MCF7 cell proliferation (as shown in figure 1a, middle left panel), but this effect was reduced in the absence of PUMA or TP53.

Figure 6. TP53 regulates *miR-145.* **(a)** *MiR-145* was induced after treatment with increasing concentration of Nutlin-3 (2, 4, 8 μ M). *MiR-145* expression levels were quantified by qRT. Mean expression value (n=2, mean±st.dev.) of *miR-145* in DMSO treated cells was set to one. **(b)** The TP53 binding site (145 P3) upstream *miR-145* gene was confirmed by chromatin immuno precipitation (CHIP) analysis. A band was detected by PCR when the 145 P3 set of primers was used after IP with TP53 antibody (lane labeled as TP53), while no band was detected if pre immune serum was used for IP (lane labeled as IgG). The band was purified from the gel and the sequence was confirmed (data not shown). MiR-34a P5 ⁴⁹ and p21 ⁵⁰ set of primers were used as positive controls for CHIP of TP53. Rabbit pre serum IgG (IgG) was used as negative control for CHIP analysis, while genomic DNA before CHIP was used as PCR positive control (input).

Figure 7. *MiR*-145 represses ESR1 protein and inhibits estrogen function in MCF7. (a) WB analysis of ESR-1 and Cyclin D1 levels in MCF7 after *miR*-145 transfection. GAPDH was used as loading control. On the top of the figure, treatments are shown (*miR*-145, scrambled and null). Under each lane, the numbers identify the band quantification after GAPDH normalization. Three independent experiments are shown. Null samples were treated only with Lipofectamine. (b). *MiR*-145 effects on cell cycle distribution after 17-β-estradiol stimulation of synchronized MCF7 were measured by PI staining and FACS analysis of cells DNA content. 24 hours after 17-β-estradiol stimulation, *miR*-145 expressing cells presented an higher percentage of cells in G1 (54.4% versus 43.6%) and lower percentage in G2 (12.8% versus 23.1%) compared to scrambled transfected cells; instead, before 17-β-estradiol stimulation (time 0 hours) no significant differences were observed. On the y-axis, the percentage of cells in each phase of the cell cycle over the total number is shown. Numbers labeling each bar identify exact percentages from 2 duplicates (mean±st.dev.). P-values were obtained by comparison of cell cycle phases between *miR-145* and scrambled transfected cells using t-test with unequal variance between groups.

Figure 8. *MiR-145* directly targets ESR1 and regulates its expression at the translational level. (a) RNA22 predictions of three *miR-145* interactions sites inside ESR1 CDS (coding sequence). In each square ESR1 target site is above and *miR-145* sequence below. Vertical lines identify nucleotides of interaction. (b) Two of the *miR-145* binding sites inside ESR1 CDS mediate *miR-145* control of ESR1 expression. *MiR-145* inhibited luciferase activity of pGL3 constructs containing two of the three predicted *miR-145* binding sites. Luciferase activity was expressed as arbitrary units (Y axis) (ratio of Luciferase/Renilla, using pRLTK Renilla expressing vector as an internal standard). (c) and (d) ESR1 mRNA and ESR pS118/ total ESR1 were measured after *miR-145* overexpression in the same set of transfected cells used in figure 3a for ESR1 protein expression. (c) *MiR-145* enhances ESR1 phosphorilation at Serine 118. The ESR pS118/ total ESR1 ratio was obtained from WB band quantification followed by dividing ESR1 pS118 levels by total ESR1 levels after normalization with GAPDH. P-values are obtained by t-test with unequal variance between groups.

Figure 9. *MiR-145* at the center of TP53 and ESR1 effects on cell proliferation and apoptosis. A model depicting the *miR-145* regulation of TP53 pathway by inducing several members of the pathway and the estrogen pathway by targeting ESR1 and other related proteins.

Figure 10. *MiR-145* affects TP53 protein level. (a). MCF7 cell lines were starved for 44 hours with hormone deprived bovine serum; thereafter, the cells were transfected with miR-145 or scrambled control, and after 4 more hours the cells were released with 17 beta estradiol. At different time points the cells were collected (as indicated in the top part of the figure) and protein extract was prepared. Different antibodies were tested (as listed on the right side of the picture). Vinculin was used as loading control. (b). After normalization, TP53 and P21 protein expression were plotted (X-axis time points, Y-axis relative values compared to vinculin). MiR-145 determined an increased of TP53 protein expression about 15 hours after release compared to scrambled control, P21 protein (a downstream target of TP53) showed a similar pattern. (c). In a independent experiment the same result was obtained, but only after 17 beta estradiol release, in fact neither release with complete medium (fetal bovine serum) nor starvation (charcoal treated serum) were able to induce TP53 induction after miR-145 treatment.

 Table 1. TP53 binding sites used for CHIP assay.

Primer ID	Start (hg18 chr5)	End (hg18 chr5)	Distance from mir-145 (bp)	Sequence of predicted TP53 binding site	Quality
145 P1	148764176	148764197	26226	GGGCTTtCTg(0.48) *2 bp* GAcCAAGCCC(0.60)	High(3)
145 P2	148770727	148770746	19765	cAGCTTGTCT(0.63) *0 bp* AGACAgGCCC(0.60)	High(2)
145 P2	148770727	148770760	19765	cAGCTTGTCT(0.63) *14 bp* GGGCTTcaCC(0.41)	High(3)
145 P3	148779635	148779660	10767	GGGCcTGagC(0.46) *6 bp* AGGCAAGgCT(0.56)	High(4)
145 P4	148786552	148786574	3850	cAcCATGTTg(0.28) *3 bp* GGGCTgGTCT(0.32)	Medium(4)
145 P5	148788027	148788053	2375	AAACTTGagT(0.23) *7 bp* GAGCATaTTT(0.37)	Medium(3)
145 P6	148788310	148788344	2092	GGACTAGggg(0.23) *15 bp* GAGCTTcTTT(0.41)	Medium(4)
145 P7	148758872	148759369	31033	UCSC Genome Browser	

Primer ID	Conservation (mouse)
145 P1	Highly conserved in the Alignment block chr5:148764172-148764256
145 P2	Highly conserved in the Alignment block chr5:148770709-148770884
145 P2	Highly conserved in the Alignment block chr5:148770709-148770884
145 P3	Highly conserved in the Alignment block chr5:148779608-148779660
145 P4	Nearby CoVote promoter
145 P5	Nearby CoVote promoter
145 P6	Within CoVote promoter
145 P7	Highly conserved in the Alignment block chr5:148764172-148764256

MCF-7 (a)				MDA-MB-231 (a)			
Antibody id	p-value (b)	FDR	Fold-change	Antibody id	p-value (b)	FDR	Fold-change
ESR1	0.003	0.05	0.41	AKT.pS473	0.031	0.55	1.12
Rb.pS807	0.016	0.14	0.60	PDK1	0.042	0.57	1.12
IRS1.pS307	0.004	0.05	0.65	PDK1.pS241/PDK1	0.021	0.46	1.16
PTEN	0.005	0.05	0.69	PDK1.pS241	0.011	0.46	1.25
Rb	0.001	0.05	0.83	MEK	0.010	0.46	1.39
cyclinD1	0.007	0.07	0.85	Beta Catenin	0.035	0.55	1.66
ESR1.pS118	0.003	0.05	0.88				
mTOR	0.035	0.21	0.89				
JNK.pT183	0.001	0.05	1.14				
FKHRL1	0.004	0.05	1.19				
cJun.pS73	0.038	0.21	1.20				
Caspase7	0.034	0.21	1.21				
PDK1	0.000	0.05	1.21				
PDK1.pS241	0.028	0.20	1.23				
Bim	0.017	0.14	1.26				
JNK.pT183/JNK2	0.026	0.20	1.63				

Table 2. Reverse Phase Proteomic Array (RPPA) results after *miR-145* transfection.

Note:

a. The cells were collected after 36 hours from the transfection

b. The p-value was calculated using t-test with unequal variance between groups. *MiR-145* transfections (3 independent experiments) were compared to scrambled transfections (3 independent experiments) for each cell line. Only proteins for which the p values were lower than 0.05 are shown. Univariate two-sample *t*-test was used (BRB-ArrayTools Version: 3.6.1, http://linus.nci.nih.gov/BRB-ArrayTools.html)

c. FDR = False Discovery Rate

Table 3. Differentially expressed genes after miR-145 transfection in MCF7 cells by using Class Prediction method. Only genes differentially expressed at

Parametric p- value	Geom mean of intensities in class CONTROL	Geom mean of intensities in class 145	Ratio of geom means CONTROL/145	Description	Gene symbol
7.60E-06	4.42	7433.50	0.00060	2'-5'-oligoadenylate synthetase 2, 69/71kDa	OAS2
0.0006686	23.45	24627.20	0.00095	interferon-induced protein with tetratricopeptide repeats 3	IFIT3
9.10E-06	5.13	5175.63	0.00099	interferon-induced protein 44-like	IFI44L
7.00E-06	6.03	4961.81	0.00122	interferon-induced protein with tetratricopeptide repeats 2	IFIT2
9.60E-06	5.25	3843.26	0.00137	interferon-induced protein 44	IFI44
1.60E-06	4.32	2985.54	0.00145	proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2)	PSMB9
7.67E-05	13.15	8756.29	0.00150	XIAP associated factor 1	<u>XAF1</u>
0.0001675	11.24	7061.37	0.00159	2'-5'-oligoadenylate synthetase-like	<u>OASL</u>
0.0002353	41.47	22870.82	0.00181	interferon-induced protein with tetratricopeptide repeats 2	IFIT2
3.93E-05	5.65	2805.04	0.00201	bone marrow stromal cell antigen 2	BST2
3.04E-05	5.19	2544.36	0.00204	chemokine (C-C motif) ligand 5	CCL5
6.99E-05	5.84	2823.35	0.00207	chemokine (C-C motif) ligand 5	CCL5
2.77E-05	6.88	3115.55	0.00221	chemokine (C-C motif) ligand 5	CCL5
5.72E-05	4.86	2053.13	0.00237	myxovirus (influenza virus) resistance 2 (mouse)	<u>MX2</u>
0.000188	14.16	5048.96	0.00280	hect domain and RLD 5	HERC5
4.68E-05	4.52	1505.27	0.00300	proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional peptidase 7)	PSMB8
4.72E-05	9.62	3001.63	0.00320	2'-5'-oligoadenylate synthetase 2, 69/71kDa	OAS2
0.0004408	5.18	1508.55	0.00343	interleukin 28A (interferon, lambda 2)	<u>IL28A</u>
7.48E-05	8.53	2269.98	0.00376	2'-5'-oligoadenylate synthetase 2, 69/71kDa	OAS2
0.0001856	5.81	1482.39	0.00392	tripartite motif-containing 22	<u>TRIM22</u>
3.43E-05	4.59	1000.00	0.00459	receptor (chemosensory) transporter protein 4	RTP4
				interleukin 28A (interferon, lambda 2) /// interleukin 28B	
0.0001468	5.17	1049.48	0.00493	(interferon, lambda 3)	IL28A /// IL28B
0.0006633	9.83	1956.00	0.00503	tumor necrosis factor (ligand) superfamily, member 10	TNFSF10
0.0002874	4.20	800.14	0.00524	chemokine (C-X-C motif) ligand 10	CXCL10
7.40E-06	5.66	1068.70	0.00530	tumor necrosis factor (ligand) superfamily, member 10	TNFSF10
6.10E-05	5.36	884.71	0.00606	interleukin 29 (interferon, lambda 1)	IL29

least two times in comparison with the scrambled oligo control are presented.

0.0008592	99.15	16343.16	0.00607	cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial	CMPK2
0.0001853	185.11	30479.13	0.00607	interferon, alpha-inducible protein 27	<u>IFI27</u>
0.0001136	5.65	905.75	0.00624	Interferon-induced protein 44	<u>IFI44</u>
1.24E-05	5.57	829.61	0.00672	chemokine (C-X-C motif) ligand 11	CXCL11
0.0003682	23.48	3448.17	0.00681	XIAP associated factor 1	XAF1
3.50E-06	5.07	743.69	0.00682	XIAP associated factor 1	XAF1
0.0001151	5.66	826.80	0.00684	sterile alpha motif domain containing 9-like	SAMD9L
5.35E-05	6.99	1011.12	0.00692	guanylate binding protein 3	GBP3
0.0001681	19.11	2719.94	0.00703	sterile alpha motif domain containing 9	SAMD9
9.29E-05	7.14	955.79	0.00747	hypothetical protein FLJ11286	FLJ11286
0.0002165	16.10	2116.05	0.00761	DEAD (Asp-Glu-Ala-Asp) box polypeptide 60-like	DDX60L
0.000183	71.52	9082.91	0.00787	ubiquitin-conjugating enzyme E2L 6	UBE2L6
0.0003449	6.30	755.15	0.00834	chemokine (C-X-C motif) ligand 11	CXCL11
				butyrophilin, subfamily 3, member A3 /// butyrophilin,	BTN3A2 ///
0.0005568	6.10	708.40	0.00861	subfamily 3, member A2	BTN3A3
0.0005027	8.41	958.16	0.00878	tumor necrosis factor (ligand) superfamily, member 10	TNFSF10
0.0004585	6.39	725.64	0.00881	interferon, beta 1, fibroblast	IFNB1
7.80E-06	6.66	747.56	0.00891	guanylate binding protein 1, interferon-inducible, 67kDa	<u>GBP1</u>
0.0001461	310.36	34354.29	0.00903	interferon-induced protein with tetratricopeptide repeats 1	IFIT1
0.0003612	107.57	10997.95	0.00978	2',5'-oligoadenylate synthetase 1, 40/46kDa	OAS1
0.0001469	101.11	8280.79	0.01221	2',5'-oligoadenylate synthetase 1, 40/46kDa	OAS1
0.0003995	6.10	471.41	0.01295	complement factor B	<u>CFB</u>
2.05E-05	7.10	513.03	0.01385	apolipoprotein L, 3	APOL3
8.71E-05	14.85	956.80	0.01552	Transcribed locus	
8.66E-05	4.73	284.89	0.01659	NLR family, CARD domain containing 5	NLRC5
0.0007083	5.35	315.05	0.01700		
0.0002292	143.69	7775.70	0.01848	interferon stimulated exonuclease gene 20kDa	<u>ISG20</u>
0.0001796	3.70	197.00	0.01878	solute carrier family 15, member 3	<u>SLC15A3</u>
1.40E-05	186.09	9866.56	0.01886	interferon stimulated exonuclease gene 20kDa	<u>ISG20</u>
0.0002373	68.64	3634.04	0.01889	ubiquitin specific peptidase 18	<u>USP18</u>
				CD74 molecule, major histocompatibility complex, class II	
9.09E-05	6.84	358.39	0.01909	invariant chain	<u>CD74</u>
0.0008459	80.86	4217.61	0.01917	interferon-induced protein 35	<u>IFI35</u>
0.0003491	6.91	346.42	0.01994		
0.0005639	3.21	155.71	0.02064	apolipoprotein L, 6	APOL6
0.0002101	5.62	271.35	0.02071	sterile alpha motif domain containing 9-like	SAMD9L
0.0005697	13.65	643.46	0.02121	SP100 nuclear antigen	<u>SP100</u>

0.0008512	3.94	183.74	0.02144	Transcribed locus	
				lipase A, lysosomal acid, cholesterol esterase (Wolman	
3.60E-06	5.03	211.75	0.02373	disease)	LIPA
0.0005412	183.39	7668.03	0.02392	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	DDX58
0.0009418	5.01	202.17	0.02476	butyrophilin, subfamily 3, member A2	BTN3A2
0.0001011	489.75	19467.48	0.02516	interferon induced transmembrane protein 1 (9-27)	IFITM1
0.000334	10.08	393.73	0.02560	basic leucine zipper transcription factor, ATF-like 2	BATF2
0.0006988	6.37	237.15	0.02686	HLA complex P5	HCP5
0.0004541	62.30	2303.11	0.02705	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	DDX58
0.0006463	8.36	302.67	0.02761	butyrophilin, subfamily 3, member A3	BTN3A3
0.0001556	12.12	417.02	0.02906	SP110 nuclear body protein	SP110
0.000884	9.58	328.37	0.02918	apolipoprotein L, 1	APOL1
0.0005789	5.73	184.17	0.03109	PDZ domain containing 2	PDZD2
0.0008969	8.98	286.14	0.03138	butyrophilin, subfamily 3, member A3	BTN3A3
0.0006604	4.79	152.41	0.03142	interleukin 15	IL15
				myxovirus (influenza virus) resistance 1, interferon-inducible	
0.0005914	6.40	199.62	0.03207	protein p78 (mouse)	MX1
0.0004362	7.23	220.71	0.03278	tripartite motif-containing 21	TRIM21
0.0001399	604.78	18272.78	0.03310	interferon induced transmembrane protein 1 (9-27)	IFITM1
				peroxisomal proliferator-activated receptor A interacting	
0.000802	34.74	1033.94	0.03360	complex 285	PRIC285
5.01E-05	13.65	405.85	0.03363	hypothetical protein FLJ11286	FLJ11286
3.07E-05	106.13	3124.57	0.03397	poly (ADP-ribose) polymerase family, member 14	PARP14
0.0003454	16.34	465.04	0.03513	poly (ADP-ribose) polymerase family, member 10	PARP10
0.0004566	194.36	5395.74	0.03602	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	TAP1
0.0001259	46.23	1240.41	0.03727	insulin-like growth factor binding protein 6	IGFBP6
6.38E-05	11.50	307.58	0.03739	2'-5'-oligoadenylate synthetase 3, 100kDa	OAS3
5.39E-05	234.49	6184.77	0.03791	poly (ADP-ribose) polymerase family, member 9	PARP9
0.0003265	8.19	215.39	0.03804	hypothetical gene supported by AK128882	LOC441108
0.0001135	357.40	8958.11	0.03990	major histocompatibility complex, class I, B	HLA-B
0.0001472	7.25	180.92	0.04008	apolipoprotein L, 6	APOL6
1.62E-05	353.86	8793.76	0.04024	interferon induced with helicase C domain 1	IFIH1
0.0005762	31.31	751.93	0.04164	interferon induced with helicase C domain 1	IFIH1
				major histocompatibility complex, class I, B /// major	<u>FAM20B /// HLA-</u>
				nistocompatibility complex, class I, C /// MHC class I	<u>B /// HLA-C ///</u>
0.0000500	100.1-	0755	0.04007	polypeptide-related sequence A /// MHC class I polypeptide-	
0.0003528	422.15	9755.79	0.04327	related sequence B /// family with sequence similarity 20,	XXbac-

				member B	BPG181B23.1
0.0001656	41.00	012 03	0.04401	transporter 2 ATP-binding cassette sub-family B (MDR/TAP)	
0.0001030	92.03	2019 55	0.04491	hect domain and RID 6	HERCE
0.0001001	92.95	2019.33	0.04001	major histocompatibility complex class L B /// major	
				histocompatibility complex, class I, C /// MHC class I	
				polypentide-related sequence A /// MHC class I polypentide-	/// XXhac-
0.000237	618.72	13126.64	0.04713	related sequence B	BPG181B23.1
0.0001375	423.75	8711.87	0.04864	2'-5'-oligoadenvlate synthetase 3, 100kDa	OAS3
0.0002746	5.28	108.57	0.04864	major histocompatibility complex, class II, DR alpha	HLA-DRA
0.0003238	7.19	147.69	0.04869	dual adaptor of phosphotyrosine and 3-phosphoinositides	DAPP1
7.85E-05	96.57	1979.23	0.04879	poly (ADP-ribose) polymerase family, member 12	PARP12
0.00044	24.53	495.48	0.04952	tumor necrosis factor, alpha-induced protein 3	TNFAIP3
7.91E-05	8.82	172.34	0.05115	plasminogen activator, urokinase receptor	PLAUR
4.58E-05	6.24	121.02	0.05156	endoplasmic reticulum aminopeptidase 2	ERAP2
0.0001219	6.97	134.29	0.05186	C-type lectin domain family 7, member A	CLEC7A
2.58E-05	32.76	614.38	0.05333	promyelocytic leukemia	PML
0.0006582	5.15	94.02	0.05477	major histocompatibility complex, class II, DP alpha 1	HLA-DPA1
3.60E-05	4.93	86.80	0.05676	Z-DNA binding protein 1	ZBP1
0.0003094	43.79	769.70	0.05689	zinc finger CCCH-type, antiviral 1	ZC3HAV1
0.0001342	139.24	2279.32	0.06109	SP110 nuclear body protein	<u>SP110</u>
7.10E-05	826.39	13505.02	0.06119	interferon, alpha-inducible protein 6	<u>IFI6</u>
0.0006802	323.61	5228.35	0.06190	Transcribed locus	
0.0001426	40.00	635.92	0.06291	ring finger protein 213	<u>RNF213</u>
7.00E-04	7.36	116.70	0.06310	complement component 1, r subcomponent	<u>C1R</u>
0.0004818	10.41	164.07	0.06344	baculoviral IAP repeat-containing 3	BIRC3
				guanine nucleotide binding protein (G protein), beta	
0.0008824	17.79	279.16	0.06373	polypeptide 4	<u>GNB4</u>
0.0002251	34.31	526.96	0.06511	HRAS-like suppressor 2	HRASLS2
0.0005839	556.54	8515.36	0.06536	Transcribed locus	
6.12E-05	428.85	6553.86	0.06543	lectin, galactoside-binding, soluble, 3 binding protein	LGALS3BP
2.56E-05	241.39	3675.52	0.06567	major histocompatibility complex, class I, F	HLA-F
0.0004231	13.74	205.22	0.06693	Full length insert cDNA clone YR04D03	
0.0001856	17.47	252.12	0.06930	insulin-like growth factor binding protein 3	IGFBP3
2.84E-05	517.69	7464.40	0.06936	phospholipid scramblase 1	PLSCR1

				sema domain, transmembrane domain (TM), and cytoplasmic	
0.0004116	6.61	94.93	0.06966	domain, (semaphorin) 6D	SEMA6D
0.0007967	33.68	483.48	0.06967	optineurin	OPTN
0.00051	4.34	61.89	0.07016	plexin A2	PLXNA2
0.0004653	172.82	2424.53	0.07128	SP100 nuclear antigen	<u>SP100</u>
0.0002396	170.64	2384.93	0.07155	SP110 nuclear body protein	SP110
0.0005122	21.84	300.89	0.07257	betacellulin	BTC
0.0001094	582.79	7955.61	0.07326	signal transducer and activator of transcription 1, 91kDa	STAT1
3.27E-05	1428.04	19315.74	0.07393	phospholipid scramblase 1	PLSCR1
6.82E-05	204.14	2718.23	0.07510	major histocompatibility complex, class I, F	HLA-F
9.91E-05	809.70	10711.22	0.07559	N-myc (and STAT) interactor	NMI
2.20E-06	6.00	79.08	0.07582	Transcribed locus	
0.0009548	1102.86	14543.48	0.07583	major histocompatibility complex, class I, A	HLA-A
0.0002111	251.39	3282.48	0.07658	nuclear receptor coactivator 7	NCOA7
0.0001047	144.45	1830.87	0.07889	SP100 nuclear antigen	<u>SP100</u>
0.0002709	8.74	108.86	0.08030	CDNA FLJ46701 fis, clone TRACH3014063	
6.21E-05	14.78	180.43	0.08194	SP110 nuclear body protein	<u>SP110</u>
3.18E-05	191.27	2325.54	0.08225	major histocompatibility complex, class I, J (pseudogene)	HLA-J
0.0002988	27.97	340.09	0.08225	Viral DNA polymerase-transactivated protein 6	LOC26010
0.0004242	9.81	117.66	0.08334	betacellulin	BTC
4.78E-05	162.89	1923.29	0.08469	interferon-induced protein with tetratricopeptide repeats 5	IFIT5
0.0001145	189.22	2211.25	0.08557	optineurin	OPTN
0.000821	5.98	68.47	0.08730	ring finger protein 213	RNF213
0.0004719	1356.41	15247.07	0.08896	major histocompatibility complex, class I, C	HLA-C
7.34E-05	5.63	59.44	0.09468	tripartite motif-containing 38	TRIM38
				major histocompatibility complex, class I, B /// major	HLA-B /// HLA-C
				histocompatibility complex, class I, C /// MHC class I	/// MICA /// MICB
				polypeptide-related sequence A /// MHC class I polypeptide-	/// XXbac-
0.0002043	1060.95	11167.82	0.09500	related sequence B	BPG181B23.1
0.0003053	125.62	1321.84	0.09503	interferon regulatory factor 7	<u>IRF7</u>
0.000252	471.27	4955.82	0.09509	interferon-induced protein with tetratricopeptide repeats 5	IFIT5
0.0006451	18.41	191.13	0.09634	plasminogen activator, urokinase receptor	PLAUR
5.44E-05	7.45	76.30	0.09765	Transcribed locus	
0.0006884	33.46	338.20	0.09893	suppressor of cytokine signaling 1	SOCS1
0.0001035	1711.98	16781.73	0.10201	major histocompatibility complex, class I, C	HLA-C

tripartite motif-containing 34 /// tripartite motif-containing 6	5/// TRIM34 /// TRIM6
0.0006519 11.65 111.87 0.10418 TRIM6-TRIM34	/// TRIM6-TRIM34
3.80E-06 811.57 7683.90 0.10562 major histocompatibility complex, class I, A	<u>HLA-A</u>
0.0002243 3.55 33.48 0.10617 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C	2 <u>ATP6V1C2</u>
0.0001858 222.36 1989.88 0.11175 ring finger protein 213	<u>RNF213</u>
0.0003134 353.06 3009.90 0.11730 signal transducer and activator of transcription 1, 91kDa	STAT1
0.0003185 169.70 1437.87 0.11802 ring finger protein 213	<u>RNF213</u>
0.0001384 38.16 323.16 0.11810 hematopoietic SH2 domain containing	HSH2D
Mitogen-activated protein kinase kinase kinase 8 /// CDNA	4
0.0005631 11.46 96.78 0.11843 clone IMAGE:4689481	MAP3K8
0.0002861 49.93 406.39 0.12285 TAP binding protein-like	<u>TAPBPL</u>
7.10E-06552.354470.260.12356signal transducer and activator of transcription 1, 91kDa	STAT1
0.0003063 342.04 2758.40 0.12400 major histocompatibility complex, class I, G	<u>HLA-G</u>
0.0002481 646.37 5138.97 0.12578 major histocompatibility complex, class I, G	<u>HLA-G</u>
0.000894 49.13 390.11 0.12594 chromosome 14 open reading frame 83	<u>C14orf83</u>
0.0003366 348.31 2734.13 0.12739 zinc finger, NFX1-type containing 1	ZNFX1
0.000197 395.90 3093.32 0.12799 proteasome (prosome, macropain) subunit, beta type, 10	<u>PSMB10</u>
0.0002017 84.94 662.14 0.12828 tripartite motif-containing 5	TRIM5
0.0001396 678.50 5112.61 0.13271	
0.0007318 34.50 259.00 0.13321 pleckstrin homology-like domain, family B, member 2	PHLDB2
0.0001534 167.16 1229.93 0.13591 major histocompatibility complex, class I, E	HLA-E
0.0003412 6.46 46.94 0.13768 viral DNA polymerase-transactivated protein 6	LOC26010
2.47E-05 842.82 6112.57 0.13788 tryptophanyl-tRNA synthetase	WARS
0.0004005 87.26 632.77 0.13791 major histocompatibility complex, class I, G	HLA-G
1.40E-06 6982.38 50002.10 0.13964 ISG15 ubiquitin-like modifier	ISG15
0.000265 121.11 858.75 0.14103 mixed lineage kinase domain-like	MLKL
	CAPN8 ///
0.0007893 52.21 370.15 0.14104 calpain 8 /// similar to calpain 8	LOC644151
0.0001874 97.01 686.19 0.14138 aquaporin 3 (Gill blood group)	AQP3
8.68E-05 810.54 5610.73 0.14446 tryptophanyl-tRNA synthetase	WARS
0.0003264 437.98 3008.20 0.14560 signal transducer and activator of transcription 2. 113kDa	STAT2
0.0001967 139.71 958.62 0.14574 carcinoembrvonic antigen-related cell adhesion molecule	5 CEACAM5
0.0005108 1225.55 8364.90 0.14651 major histocompatibility complex. class I. E	HLA-E

0.0006049	67.37	455.11	0.14802	TAP binding protein-like	TAPBPL
6.08E-05	521.95	3478.10	0.15007	deltex 3-like (Drosophila)	DTX3L
					LOC161527 ///
0.0003923	4.19	27.84	0.15039	promyelocytic leukemia /// hypothetical protein LOC161527	PML
8.90E-05	2324.59	15425.96	0.15069	interferon induced transmembrane protein 2 (1-8D)	IFITM2
0.0003847	562.51	3709.16	0.15165	signal transducer and activator of transcription 1, 91kDa	STAT1
1.00E-05	95.28	627.01	0.15196	endoplasmic reticulum aminopeptidase 1	ERAP1
0.0009172	396.24	2604.61	0.15213	tripartite motif-containing 14	TRIM14
4.61E-05	65.31	427.44	0.15279	cytochrome P450, family 2, subfamily J, polypeptide 2	<u>CYP2J2</u>
2.20E-05	145.57	929.94	0.15653	proline rich 15	<u>PRR15</u>
4.19E-05	553.95	3498.53	0.15834	interferon regulatory factor 9	<u>IRF9</u>
0.0001161	169.21	1008.59	0.16777	endoplasmic reticulum aminopeptidase 1	ERAP1
0.0002703	304.70	1801.46	0.16914	tudor domain containing 7	TDRD7
0.0002066	3813.81	22313.41	0.17092	interferon induced transmembrane protein 3 (1-8U)	IFITM3
0.0008091	456.62	2646.30	0.17255	major histocompatibility complex, class I, E	<u>HLA-E</u>
8.26E-05	1637.99	9379.41	0.17464	aquaporin 3 (Gill blood group)	AQP3
0.0006051	6.28	35.48	0.17694	PCTAIRE protein kinase 3	PCTK3
0.0007252	553.72	3087.94	0.17932	PHD finger protein 11	<u>PHF11</u>
4.89E-05	173.53	965.82	0.17967	negative regulator of ubiquitin-like proteins 1	<u>NUB1</u>
0.0002536	24.82	137.35	0.18073	ATP-binding cassette, sub-family D (ALD), member 1	ABCD1
3.46E-05	2892.77	15957.72	0.18128	metallothionein 2A	MT2A
0.0008812	58.07	313.66	0.18514	interferon regulatory factor 2	IRF2
0.0002979	146.80	789.37	0.18597	phorbol-12-myristate-13-acetate-induced protein 1	PMAIP1
0.0009901	175.59	941.20	0.18656	solute carrier family 25, member 28	SLC25A28
0.0002465	160.37	843.94	0.19002	chemokine (C-X-C motif) ligand 16	CXCL16
0.0007372	1047.20	5494.27	0.19060	signal transducer and activator of transcription 1, 91kDa	<u>STAT1</u>
0.0001529	16.93	87.93	0.19257	Transcribed locus	
0.0005212	1089.25	5645.14	0.19295	metallothionein 1X	MT1X
0.000294	2052.33	10496.82	0.19552	polyribonucleotide nucleotidyltransferase 1	PNPT1
2.07E-05	10.04	50.74	0.19778		
7.28E-05	1256.99	6331.08	0.19854	S100 calcium binding protein P	<u>S100P</u>
0.0008254	614.47	3044.47	0.20183	metallothionein 1 pseudogene 2	<u>MT1P2</u>
0.0008212	562.21	2765.99	0.20326	family with sequence similarity 46, member A	FAM46A

0.0007169	389.22	1869.48	0.20820	phorbol-12-myristate-13-acetate-induced protein 1	PMAIP1
0.0002661	3503.06	16753.90	0.20909	leucine aminopeptidase 3	LAP3
0.0005557	201.21	955.87	0.21050	family with sequence similarity 46, member A	FAM46A
0.0002162	93.87	442.58	0.21210	endothelin 1	EDN1
0.0001582	63.28	298.09	0.21229	Partial mRNA; ID EE2-8E	
0.0007858	485.09	2266.13	0.21406	metallothionein 1H	<u>MT1H</u>
0.000822	153.37	716.46	0.21407	tripartite motif-containing 56	TRIM56
				tumor necrosis factor receptor superfamily, member 11b	
0.000305	358.34	1655.84	0.21641	(osteoprotegerin)	TNFRSF11B
0.0002641	118.15	533.21	0.22158	leucine rich repeat containing 50	LRRC50
				neural precursor cell expressed, developmentally down-	
0.0002572	163.63	718.41	0.22777	regulated 9	NEDD9
0.0005667	7.53	32.86	0.22906	Transcribed locus	
0.000442	679.03	2911.31	0.23324	eukaryotic translation initiation factor 2-alpha kinase 2	EIF2AK2
				peroxisomal proliferator-activated receptor A interacting	
6.09E-05	8.50	35.98	0.23620	complex 285	PRIC285
				chromosome 11 open reading frame 17 /// NUAK family,	<u>C11orf17 ///</u>
3.60E-06	54.19	226.19	0.23955	SNF1-like kinase, 2	NUAK2
0.0009328	10.17	42.23	0.24075	major histocompatibility complex, class II, DP alpha 1	HLA-DPA1
0.0003283	169.99	704.87	0.24116	endothelin 1	EDN1
3.93E-05	91.32	378.19	0.24146	endothelial PAS domain protein 1	EPAS1
0.000103	148.60	606.49	0.24501	opioid growth factor receptor	<u>OGFR</u>
0.0004809	12.47	50.06	0.24907	negative regulator of ubiquitin-like proteins 1	NUB1
0.0008934	47.58	190.32	0.25001	guanylate binding protein 2, interferon-inducible	GBP2
0.0002273	398.57	1569.84	0.25389	midkine (neurite growth-promoting factor 2)	MDK
4.98E-05	199.49	777.87	0.25646	opioid growth factor receptor	<u>OGFR</u>
				nuclear factor of kappa light polypeptide gene enhancer in B-	
0.0008878	2633.02	10075.45	0.26133	cells inhibitor, alpha	<u>NFKBIA</u>
0.0003297	282.86	1064.97	0.26560	polycomb group ring finger 5	PCGF5
0.0003119	27.11	101.97	0.26587	claudin 23	CLDN23
0.0009833	74.06	276.49	0.26784	claudin 1	CLDN1
0.0001659	95.25	354.15	0.26895	runt-related transcription factor 2	RUNX2
0.0007779	335.46	1231.63	0.27237	NEDD4 binding protein 1	<u>N4BP1</u>
				nuclear factor of kappa light polypeptide gene enhancer in B-	
0.0006319	393.68	1429.03	0.27549	cells inhibitor, zeta	<u>NFKBIZ</u>
0.0003494	205.47	744.62	0.27594	B-cell CLL/lymphoma 6 (zinc finger protein 51)	BCL6
4.45E-05	33.00	118.20	0.27919	G protein-coupled receptor 115	<u>GPR115</u>

0.000194	1056.99	3744.80	0.28226	DNA-damage-inducible transcript 4	DDIT4
0.0003278	11375.30	39816.66	0.28569	beta-2-microglobulin	<u>B2M</u>
				carcinoembryonic antigen-related cell adhesion molecule 6	
0.0004951	375.93	1303.65	0.28837	(non-specific cross reacting antigen)	CEACAM6
0.0004003	115.44	399.29	0.28912	tripartite motif-containing 25	TRIM25
0.0009159	34.06	115.89	0.29386	tripartite motif-containing 47	TRIM47
0.0002739	176.43	599.68	0.29420	polycomb group ring finger 5	PCGF5
0.000117	1489.89	5047.60	0.29517	lymphocyte antigen 6 complex, locus E	LY6E
0.0009564	116.70	393.31	0.29672	male sterility domain containing 1	MLSTD1
				phosphoinositide-3-kinase, regulatory subunit 2 (beta) ///	
0.0001706	1151.44	3874.11	0.29721	interferon, gamma-inducible protein 30	IFI30 /// PIK3R2
7.80E-06	85.80	287.12	0.29881	three prime repair exonuclease 1 /// ATR interacting protein	ATRIP /// TREX1
				SRY (sex determining region Y)-box 9 (campomelic	
0.0003923	14.10	46.98	0.30010	dysplasia, autosomal sex-reversal)	<u>SOX9</u>
0.0009785	218.94	717.11	0.30530	zinc finger, CCHC domain containing 2	ZCCHC2
0.0001527	711.13	2314.21	0.30729	acyl-CoA synthetase long-chain family member 1	ACSL1
				ELOVL family member 7, elongation of long chain fatty acids	
0.0003248	2200.36	7123.16	0.30890	(yeast)	ELOVL7
0.0008196	175.41	564.48	0.31074	OTU domain containing 1	OTUD1
				UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase,	
4.75E-05	280.81	887.07	0.31656	polypeptide 5	B4GALT5
0.0004258	185.31	584.55	0.31702	MAX dimerization protein 1	MXD1
0.0005821	712.08	2240.08	0.31788	eukaryotic translation initiation factor 2-alpha kinase 2	EIF2AK2
0.0006556	644.93	2026.51	0.31825		
0.0001263	138.54	429.82	0.32233	CD47 molecule	<u>CD47</u>
0.0001357	1208.92	3742.20	0.32305	ring finger protein 149	<u>RNF149</u>
0.000441	41.22	127.58	0.32313	ring finger protein 19B	<u>RNF19B</u>
0.0002643	488.84	1509.97	0.32374	zinc finger CCCH-type, antiviral 1	ZC3HAV1
				proteasome (prosome, macropain) activator subunit 1 (PA28	
2.66E-05	2844.87	8726.27	0.32601	alpha)	PSME1
5.79E-05	49.34	151.27	0.32619	Homo sapiens, clone IMAGE:5218412, mRNA	
0.0006686	54.55	166.19	0.32826	growth factor receptor-bound protein 10	<u>GRB10</u>
0.0003247	145.09	439.50	0.33013	GATA binding protein 6 GATA6	
0.0009577	705.25	2106.96	0.33472	zinc finger protein 36, C3H type-like 2 ZFP36L2	
0.0006201	191.60	560.55	0.34181	caspase 8, apoptosis-related cysteine peptidase <u>CASP8</u>	

0.0002877	802.41	2333.71	0.34383	argininosuccinate synthetase 1	ASS1
0.0006269	6.25	17.97	0.34759		
2.57E-05	380.06	1091.29	0.34827	Kruppel-like factor 3 (basic)	KLF3
0.0006916	757.62	2161.38	0.35052	shisa homolog 5 (Xenopus laevis)	SHISA5
1.31E-05	813.47	2311.28	0.35196	TAP binding protein (tapasin)	TAPBP
0.0001558	364.17	1031.76	0.35296	ubiquitin specific peptidase 42	USP42
0.0005033	73.76	207.04	0.35626	solute carrier organic anion transporter family, member 3A1	SLCO3A1
0.0006933	174.04	486.39	0.35783	Transcribed locus	
0.0005093	276.60	772.97	0.35784	dihydropyrimidine dehydrogenase	DPYD
2.70E-06	25.29	70.00	0.36133	protein phosphatase 1, regulatory (inhibitor) subunit 15A	PPP1R15A
0.0001659	435.19	1180.66	0.36860	BCL2-like 11 (apoptosis facilitator)	BCL2L11
0.0002127	866.13	2338.98	0.37030	stomatin	<u>STOM</u>
0.0009506	47.27	126.99	0.37221	Fas (TNF receptor superfamily, member 6)	FAS
0.0005954	80.02	212.77	0.37608	PDZ domain containing 1	PDZK1
0.0002617	785.28	2077.31	0.37803	calpastatin	CAST
4.29E-05	239.43	633.22	0.37812	2',3'-cyclic nucleotide 3' phosphodiesterase	<u>CNP</u>
0.0002215	187.53	493.78	0.37978	WNT1 inducible signaling pathway protein 2	WISP2
0.0004058	69.64	183.23	0.38007	protein phosphatase 1, regulatory (inhibitor) subunit 15A	PPP1R15A
0.0002078	90.87	238.47	0.38105	CD47 molecule	<u>CD47</u>
0.0005111	316.73	824.32	0.38423	phosphatidic acid phosphatase type 2A	PPAP2A
0.0002732	174.18	453.23	0.38432	lipin 1	LPIN1
0.0008676	632.91	1640.52	0.38580	zinc finger CCCH-type, antiviral 1	ZC3HAV1
0.0005783	2436.81	6304.71	0.38651	chemokine (C-X-C motif) receptor 7	CXCR7
0.000695	3258.40	8424.00	0.38680	chromatin modifying protein 5	CHMP5
				inhibitor of DNA binding 3, dominant negative helix-loop-helix	
8.92E-05	1107.69	2861.50	0.38710	protein	ID3
0.0001103	2454.05	6334.14	0.38743	chromatin modifying protein 5	CHMP5
0.0008828	251.19	645.24	0.38930	tripartite motif-containing 26	<u>TRIM26</u>
0.0007107	1295.16	3318.42	0.39029	RanBP-type and C3HC4-type zinc finger containing 1	RBCK1
0.0008177	19.19	48.47	0.39581	chromosome 17 open reading frame 68	<u>C17orf68</u>
0.0003597	195.10	492.63	0.39603	Transcribed locus	
0.0005771	1164.82	2930.35	0.39750	calpastatin	CAST
0.0006862	84.99	210.75	0.40328	ring finger protein 43	<u>RNF43</u>
0.0005353	6454.15	15955.45	0.40451	CD47 molecule CD47	
0.0002547	333.64	816.10	0.40882	BCL2-like 11 (apoptosis facilitator) BCL2L11	
0.0001717	631.30	1532.01	0.41207	EH-domain containing 4	
0.0007668	1478.52	3560.17	0.41529	tripartite motif-containing 25 TRIM25	

3.50E-06	378.32	910.01	0.41573	interleukin 6 signal transducer (gp130, oncostatin M receptor) IL6ST	
5.41E-05	219.25	520.39	0.42132	cathepsin C	CTSC
0.0001814	104.03	246.89	0.42136	coiled-coil domain containing 64	CCDC64
0.00012	3154.20	7461.72	0.42272	H2B histone family, member S	H2BFS
0.0004065	1723.27	4058.93	0.42456	nicotinamide phosphoribosyltransferase	NAMPT
0.0002244	424.97	994.67	0.42725	tumor necrosis factor receptor superfamily, member 21	TNFRSF21
0.0003057	232.30	541.60	0.42891	WAS protein homology region 2 domain containing 1	WHDC1
0.0003611	2639.95	6153.31	0.42903	Kruppel-like factor 4 (gut)	KLF4
				ubiquitously transcribed tetratricopeptide repeat, X	
0.000799	194.46	452.32	0.42991	chromosome	<u>UTX</u>
9.70E-05	125.14	290.48	0.43081	protein associated with topoisomerase II homolog 1 (yeast)	PATL1
0.0007756	5845.42	13565.60	0.43090	CCAAT/enhancer binding protein (C/EBP), beta	<u>CEBPB</u>
					HIST1H2BC ///
					HIST1H2BE ///
				histone cluster 1, H2bg /// histone cluster 1, H2bf /// histone	<u>HIST1H2BF ///</u>
				cluster 1, H2be /// histone cluster 1, H2bi /// histone cluster 1,	<u>HIST1H2BG ///</u>
0.0003743	822.52	1900.08	0.43289	H2bc	HIST1H2BI
0.0009513	25.84	59.64	0.43334		
0.0004806	81.04	185.70	0.43642	transmembrane protein 51	<u>TMEM51</u>
0.0002683	8358.48	19140.72	0.43669	histone cluster 1, H2bk	HIST1H2BK
8.76E-05	1175.04	2686.08	0.43745	SAR1 gene homolog A (S. cerevisiae)	<u>SAR1A</u>
0.0002385	403.27	920.12	0.43828	DNA cross-link repair 1C (PSO2 homolog, S. cerevisiae)	DCLRE1C
				metastasis associated lung adenocarcinoma transcript 1	
1.36E-05	6518.25	14806.46	0.44023	(non-protein coding)	MALAT1
0.0003468	697.75	1582.15	0.44101	nicotinamide phosphoribosyltransferase	<u>NAMPT</u>
2.05E-05	169.45	383.88	0.44142	acid phosphatase 2, lysosomal	<u>ACP2</u>
0.0004032	54.67	123.79	0.44162	Src homology 2 domain containing adaptor protein B	<u>SHB</u>
0.0009688	65.15	147.09	0.44290	ubiquitin specific peptidase 42	<u>USP42</u>
0.0002163	417.92	941.80	0.44374	ovo-like 1(Drosophila)	OVOL1
0.0009655	714.75	1607.43	0.44466	ribosome binding protein 1 homolog 180kDa (dog)	
0.0001776	457.81	1020.34	0.44868	lectin, galactoside-binding, soluble, 8 (galectin 8)	LGALS8
				HIR histone cell cycle regulation defective homolog A (S.	
0.0004606	730.08	1618.57	0.45107	cerevisiae)	
0.0003848	52.69	116.65	0.45168	ectodermal-neural cortex (with BTB-like domain)	ENC1
0.0006403	739.02	1631.88	0.45286	KIAA1033	KIAA1033
				Transcribed locus, strongly similar to XP_531236.1	
0.0007433	1161.66	2548.94	0.45574	PREDICTED: hypothetical protein [Pan troglodytes]	

0.0005202	272.55	597.04	0.45651	dynein, cytoplasmic 1, heavy chain 1	DYNC1H1
0.0005621	713.49	1552.38	0.45961	KIAA1033	KIAA1033
0.0005771	1176.14	2553.92	0.46052	adhesion molecule with Ig-like domain 2	AMIGO2
0.000586	59.60	129.32	0.46091	chromosome 21 open reading frame 91	<u>C21orf91</u>
0.000882	8.47	18.14	0.46672	similar to WDNM1-like protein	LOC645638
0.000955	179.82	85.41	2.10538	trinucleotide repeat containing 6B	TNRC6B
				pleckstrin homology domain containing, family B (evectins)	
0.0005292	74.05	34.31	2.15839	member 1	PLEKHB1
0.0006822	3527.49	1624.56	2.17136	metastasis suppressor 1	MTSS1
0.0002322	1904.41	871.95	2.18407	kinesin family member 14	<u>KIF14</u>
0.0002874	3999.30	1828.10	2.18768	pituitary tumor-transforming 1	PTTG1
0.0009425	656.60	297.81	2.20473	CDNA FLJ38388 fis, clone FEBRA2004485	
0.0001797	815.69	369.08	2.21009	sortilin 1	SORT1
0.000619	1008.52	456.02	2.21156	mindbomb homolog 1 (Drosophila)	<u>MIB1</u>
				integrin, alpha E (antigen CD103, human mucosal	
0.0007878	2876.55	1300.48	2.21192	lymphocyte antigen 1; alpha polypeptide)	<u>ITGAE</u>
0.0005497	136.98	61.87	2.21419	Ts translation elongation factor, mitochondrial	<u>TSFM</u>
0.0005968	881.34	397.80	2.21555	HBS1-like (S. cerevisiae)	HBS1L
0.0007832	602.69	271.89	2.21665	ataxin 1	ATXN1
				vesicle transport through interaction with t-SNAREs homolog	
0.0009379	621.04	279.20	2.22439	1B (yeast)	<u>VTI1B</u>
0.0008403	2724.51	1222.24	2.22911	protein tyrosine phosphatase type IVA, member 2	<u>PTP4A2</u>
0.0007475	2472.17	1104.81	2.23764	hCG1815491	<u>hCG_1815491</u>
0.0005307	668.54	298.61	2.23884	H2A histone family, member V	<u>H2AFV</u>
0.0007782	655.24	292.58	2.23955	HBV preS1-transactivated protein 4	<u>PS1TP4</u>
0.0007587	234.75	104.62	2.24377	anthrax toxin receptor 1	ANTXR1
8.09E-05	1079.72	481.19	2.24384	doublecortin domain containing 2	DCDC2
0.0003458	3270.39	1456.27	2.24573	ribosomal protein L22	<u>RPL22</u>
				IMP1 inner mitochondrial membrane peptidase-like (S.	
4.10E-05	854.51	379.85	2.24958	cerevisiae)	IMMP1L
0.0004087	3842.99	1707.47	2.25070	hyaluronan-mediated motility receptor (RHAMM)	HMMR
0.0001149	1163.55	515.74	2.25608	prenylcysteine oxidase 1	PCYOX1
0.000251	208.57	92.44	2.25629	pallidin homolog (mouse)	<u>PLDN</u>
0.0007916	114.71	50.81	2.25766		
0.0003073	419.13	185.23	2.26271	transmembrane protein 183A TMEM183A	
0.0003525	401.73	177.14	2.26785	DIP2 disco-interacting protein 2 homolog C (Drosophila) DIP2C	
6.70E-06	28.84	12.69	2.27181	Transcribed locus	

				nuclear casein kinase and cyclin-dependent kinase substrate	
2.47E-05	9687.38	4260.99	2.27350		NUCKS1
				amyotrophic lateral sclerosis 2 (juvenile) chromosome region,	
0.0001803	259.06	113.59	2.28069	candidate 13	ALS2CR13
0.0006929	137.11	60.06	2.28300	CDNA clone IMAGE:5313062	
0.0008814	158.27	69.19	2.28748	leptin receptor	LEPR
0.0005918	112.08	48.76	2.29829	Transcribed locus	
2.63E-05	310.17	133.22	2.32833	M-phase phosphoprotein 9	MPHOSPH9
0.0003843	1123.31	474.73	2.36620	sterile alpha motif and leucine zipper containing kinase AZK	ZAK
4.80E-05	2331.27	981.02	2.37637	kinesin family member 20A	KIF20A
				Homo sapiens, Similar to likely ortholog of yeast ARV1, clone	
0.0007608	2732.66	1148.16	2.38004	IMAGE:3460560, mRNA	
0.0001641	212.77	88.74	2.39782	chitinase 3-like 2	CHI3L2
0.0002328	482.03	200.47	2.40445	ubiquitination factor E4B (UFD2 homolog, yeast)	UBE4B
				coiled-coil domain containing 74A /// coiled-coil domain	<u>CCDC74A ///</u>
0.0008995	313.66	129.99	2.41294	containing 74B	CCDC74B
0.0005756	707.74	293.00	2.41551	SERPINE1 mRNA binding protein 1	SERBP1
0.000391	2370.73	979.93	2.41929	mesoderm specific transcript homolog (mouse)	MEST
0.000299	179.10	73.82	2.42608	septin 11	<u>12-Sep</u>
0.000283	2175.76	893.16	2.43603	Growth arrest-specific 2 like 3	GAS2L3
0.0009384	181.53	74.50	2.43677	hypothetical protein LOC203547	LOC203547
0.0007565	71.37	29.05	2.45692	phosphorylase kinase, beta	<u>PHKB</u>
0.0002413	292.65	118.77	2.46398	Transcribed locus	
0.0008124	748.86	302.40	2.47644	prenylcysteine oxidase 1	PCYOX1
0.0008165	3148.47	1270.37	2.47838	helicase, lymphoid-specific	HELLS
0.0009149	291.13	117.21	2.48382	coactosin-like 1 (Dictyostelium)	COTL1
0.0005144	346.10	139.24	2.48559	sterile alpha motif and leucine zipper containing kinase AZK	ZAK
0.0007054	187.80	75.51	2.48708	CDNA clone IMAGE:4157286	
0.000411	1205.75	484.51	2.48860	transmembrane protein 64	<u>TMEM64</u>
0.000449	785.17	313.10	2.50776	Hypothetical protein LOC143381	
0.000872	1790.36	712.26	2.51363	hyaluronan-mediated motility receptor (RHAMM) HMMR	
0.0005345	383.16	152.38	2.51452	CDNA FLJ31919 fis, clone NT2RP7004964	
0.0009989	69.05	26.89	2.56815	zinc fingers and homeoboxes 3 ZHX3	
0.0004951	130.09	50.47	2.57769	PHD finger protein 17 PHF17	
0.0007402	585.03	226.51	2.58279	Eukaryotic translation initiation factor 2C, 2	
0.0007321	1185.94	457.58	2.59175	CDNA clone IMAGE:3346313	
4.05E-05	16309.64	6275.42	2.59897	Transcribed locus	

0.0005771	741.37	280.51	2.64291	CDNA: FLJ21763 fis, clone COLF6967	
0.0008353	317.46	118.71	2.67428	myelin expression factor 2	MYEF2
0.0009725	1199.84	447.02	2.68409	KIAA0152	KIAA0152
0.0004418	1766.32	657.10	2.68806	Protein kinase, cAMP-dependent, regulatory, type II, alpha	PRKAR2A
0.0007336	2140.96	792.88	2.70023	limb region 1 homolog (mouse)	LMBR1
8.92E-05	404.25	149.19	2.70958	CDNA FLJ32526 fis, clone SMINT2000073	
0.0007144	1571.04	578.75	2.71454	DEP domain containing 1	DEPDC1
0.0005023	718.10	263.83	2.72184	trafficking protein, kinesin binding 2	TRAK2
0.0005593	177.24	65.08	2.72324	KIAA1797	KIAA1797
0.0006755	974.50	356.49	2.73362	prostate transmembrane protein, androgen induced 1	PMEPA1
				MRNA; cDNA DKFZp686K0394 (from clone	
0.0002667	113.65	41.48	2.73962	DKFZp686K0394)	
0.0001005	76.32	27.77	2.74824	CDNA clone IMAGE:5261213	
0.0006308	751.00	271.58	2.76530	solute carrier family 38, member 1	<u>SLC38A1</u>
				CDNA FLJ39067 fis, clone NT2RP7014910 /// CDNA	
0.0003361	403.05	145.33	2.77324	FLJ38048 fis, clone CTONG2014264	
0.000687	1181.83	425.91	2.77486	peptidylprolyl isomerase A (cyclophilin A)	<u>PPIA</u>
0.0006279	346.45	122.83	2.82068	angiomotin like 1	AMOTL1
0.0008412	1640.20	581.18	2.82218	H2A histone family, member V	H2AFV
0.000773	260.75	90.38	2.88514	adducin 3 (gamma)	ADD3
6.39E-05	1745.72	599.66	2.91120	DEP domain containing 1	DEPDC1
0.0002787	989.78	335.80	2.94749	atlastin 3	ATL3
0.0009596	137.84	46.55	2.96078	sortilin 1	SORT1
0.0004955	3718.27	1249.04	2.97692	Transcribed locus	
0.0007639	1308.06	438.88	2.98045	high-mobility group box 3	HMGB3
0.0002931	38.17	12.80	2.98146	cadherin 18, type 2	<u>CDH18</u>
0.0005742	672.72	224.50	2.99649	CKLF-like MARVEL transmembrane domain containing 4	CMTM4
				CDNA: FLJ22515 fis, clone HRC12122, highly similar to	
0.0003936	276.76	88.79	3.11696	AF052101 Homo sapiens clone 23872 mRNA sequence	
0.0006219	370.18	117.99	3.13737	potassium inwardly-rectifying channel, subfamily J, member 8	KCNJ8
4.81E-05	129.81	40.39	3.21409	enabled homolog (Drosophila)	
0.000145	79.46	24.66	3.22186	tumor necrosis factor, alpha-induced protein 8-like 1	TNFAIP8L1
0.0003862	1558.43	483.34	3.22430	BRI3 binding protein	BRI3BP
6.68E-05	53.11	16.20	3.27799	membrane metallo-endopeptidase MME	
0.0002503	552.82	156.83	3.52496	Transcribed locus	
8.51E-05	138.77	38.12	3.64070	CDNA FLJ32526 fis, clone SMINT2000073	

2.31E-05	106.82	28.74	3.71679	acyl-Coenzyme A oxidase 1, palmitoyl	ACOX1
0.0002186	877.62	234.87	3.73653	myosin VA (heavy chain 12, myoxin)	MYO5A
				signal sequence receptor, alpha (translocon-associated	
0.0001549	491.61	131.19	3.74720	protein alpha)	SSR1
0.0009418	92.42	24.22	3.81644	potassium channel, subfamily K, member 2	KCNK2
0.0006952	22.80	5.96	3.82310	CDNA: FLJ22073 fis, clone HEP11868	
0.0007667	461.21	120.19	3.83745	heterogeneous nuclear ribonucleoprotein A0	HNRNPA0
0.000272	1545.94	390.58	3.95806	CDNA clone IMAGE:4842353	
0.0005843	123.40	31.17	3.95842	prostaglandin E receptor 2 (subtype EP2), 53kDa	PTGER2
0.000281	658.78	164.50	4.00465	transmembrane protein 64	<u>TMEM64</u>
8.31E-05	1674.86	413.01	4.05522	caveolin 1, caveolae protein, 22kDa	CAV1
0.0006266	61.76	14.80	4.17301	NEL-like 2 (chicken)	NELL2
7.78E-05	574.25	137.28	4.18311	caveolin 2	<u>CAV2</u>
0.0003611	3974.38	933.07	4.25946	caveolin 1, caveolae protein, 22kDa	<u>CAV1</u>
4.68E-05	153.26	35.70	4.29316	katanin p60 subunit A-like 1	KATNAL1
6.88E-05	30.01	6.90	4.35190	endoplasmic reticulum protein 27 kDa	<u>ERP27</u>
0.0001087	229.94	52.77	4.35706	chromosome 20 open reading frame 142	<u>C20orf142</u>
9.07E-05	4627.17	1050.70	4.40389	CDNA clone IMAGE:4842353	
0.0002625	239.63	54.24	4.41754	GTP binding protein overexpressed in skeletal muscle	<u>GEM</u>
0.0001919	2333.90	508.05	4.59389	hypothetical protein LOC143381	LOC143381
0.0001045	452.33	95.14	4.75416	transmembrane protein 83	<u>TMEM83</u>
0.0006806	419.80	70.46	5.95804	CDNA FLJ33081 fis, clone TRACH2000321	
0.0007229	490.86	79.93	6.14100	achaete-scute complex homolog 1 (Drosophila)	ASCL1
0.0004111	68.54	7.13	9.61311	CDNA FLJ33081 fis, clone TRACH2000321	
0.0003614	181.41	7.61	23.83209	collagen, type XII, alpha 1	<u>COL12A1</u>

Primer ID	Sequence	Used for	Source
pESR1_1F	CCACCAACCAGTGCACCATT	Real Time PCR	http://web.ncifcrf.gov/rtp/gel/primerdb/
pESR1_1R	GGTCTTTTCGTATCCCACCTTTC	Real Time PCR	http://web.ncifcrf.gov/rtp/gel/primerdb/
hGAPDH-5	ACCCAGAAGACTGTGGATGG	Real Time PCR	(9)
hGAPDH-3	TCTAGACGGCAGGTCAGGTC	Real Time PCR	(9)
p21F	GGACCTGGAGACTCTCA	Real Time PCR	(10)
p21R	CCTCTTGGAGAAGATCAG	Real Time PCR	(10)
PUMAF	GACCTCAACGCACAGTA	Real Time PCR	(10)
PUMAR	CTAATTGGGCTCCATCT	Real Time PCR	(10)
145_P1F	TGGCAGAACACCTCTCTCCT	CHIP	Predicted by PWM approach
145_P1R	AATGCCCAAAAACTCTGCAC	CHIP	Predicted by PWM approach
145_P2F	GTTGCAAGAATCTGGGGAAA	CHIP	Predicted by PWM approach
145_P2R	GGCATGTTTCGAATTGGAGT	CHIP	Predicted by PWM approach
145_P3F	GTGCCTATTGCACAGTCAGC	CHIP	Predicted by PWM approach
145_P3R	AGACCTGCCCAGCCTAGAAT	CHIP	Predicted by PWM approach
145_P4F	GGGTTCAAACCATTCTCCTG	CHIP	Predicted by PWM approach
145_P4R	GGGGAGCCCTTGTCTCTAAT	CHIP	Predicted by PWM approach
145_P5F	ATGAGCTGTAGCCCAAGAGG	CHIP	Predicted by PWM approach

Table 4. Primer ID, sequence, usage and source of DNA oligo primers used.

145_P5F	TCGAGCAATCAATTGTCTCC	CHIP	Predicted by PWM approach
145_P6F	ATGGCATCAAAAGGTAGGTC	CHIP	Predicted by PWM approach
145_P6R	GTGAGTACAATTAACAGG	CHIP	Predicted by PWM approach
145 P7F	AGGTGGGCAGAGAGTAGCAA	CHIP	UCSC
145 P7R	CCCAACCATGATCAACTTCC	CHIP	UCSC
p21_CHIP_F	GCACTCTTGTCCCCCAG	CHIP	(11)
p21_CHIP_R	TCTATGCCAGAGCTCAACAT	CHIP	(11)
miR-34a_P5F	ATACCGCTCGAGCGCCCTGCCTGGCCCCCAC	CHIP	(12)
miR-34a_P5r	ATACCGCTCGAGAGCAGGTAGTGCAGGCTTC	CHIP	(12)
145_ESR1Spe_1F	CTACTAGTATGACCATGACCCTCCACAC	Luciferase	
145_ESR1Spe_1R	CTACTAGTCCTCGGGGTAGTTGTACACG	Luciferase	
145_ESR1Spe_2F	CTACTAGTCCAGATGGTCAGTGCCTTGT	Luciferase	
145_ESR1Spe_2R	CTACTAGTAGTAGCTTCCCTGGGTGCTC	Luciferase	
145_ESR1Spe_3F	CTACTAGTCCCAGCTCCTCCTCATCC	Luciferase	
145_ESR1Spe_3R	CTACTAGTCCTCCCCGTGATGTAATACT	Luciferase	

Acknowledgments

I would like to thank doc. Milena S. Nicoloso, Laura Lupini, doc. Yiling Lu, Julie Fogarty, Simona Rossi, doc. Barbara Zagatti, doc. Muller Fabbri, Angelo Veronese, doc. Xiuping Liu, doc. Ramana Davuluri, doc. Gordon Mills, doc. Massimo Negrini, doc. George A. Calin and doc. Carlo M. Croce for the help during the realization on the bench and on the paper of my work and my phD thesis, respectively. I would like also to thank Izabela Fokt (Department of Experimental Therapeutics, M.D.Anderson Cancer Center, Houston, TX) for adryamicin synthesis.

REFERENCES

- 1. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. *The EMBO journal* 2002 Sep 2; 21(17): 4663-4670.
- 2. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, *et al.* Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. *Nature* 2005 Feb 17; 433(7027): 769-773.
- 3. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. *Proceedings of the National Academy of Sciences of the United States of America* 2008 Jan 28.
- 4. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. *Science (New York, NY* 2007 Dec 21; 318(5858): 1931-1934.
- 5. Stefani G, Slack FJ. Small non-coding RNAs in animal development. *Nat Rev Mol Cell Biol* 2008 Mar; 9(3): 219-230.
- 6. Voorhoeve PM, Agami R. Classifying microRNAs in cancer: the good, the bad and the ugly. *Biochimica et biophysica acta* 2007 Jun; 1775(2): 274-282.
- 7. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. *Nature* 2005 Jun 9; 435(7043): 839-843.
- 8. He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. *Nature reviews* 2007 Nov; 7(11): 819-822.
- 9. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. *Proceedings of the National Academy of Sciences of the United States of America* 2008 Sep 9; 105(36): 13421-13426.
- 10. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. *Proceedings of the National Academy of Sciences of the United States of America* 2007 Sep 25; 104(39): 15472-15477.

- 11. Tsang J, Zhu J, van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. *Molecular cell* 2007 Jun 8; 26(5): 753-767.
- 12. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, *et al.* A microRNA expression signature of human solid tumors defines cancer gene targets. *Proceedings of the National Academy of Sciences of the United States of America* 2006 Feb 14; 103(7): 2257-2261.
- 13. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, *et al.* MicroRNA expression profiles classify human cancers. *Nature* 2005 Jun 9; 435(7043): 834-838.
- 14. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, *et al.* MicroRNA gene expression deregulation in human breast cancer. *Cancer research* 2005 Aug 15; 65(16): 7065-7070.
- 15. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. *Mol Cancer Res* 2003; 1(12): 882-891.
- 16. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, *et al.* Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. *Cancer cell* 2006 Mar; 9(3): 189-198.
- 17. Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. *Proceedings of the National Academy of Sciences of the United States of America* 2008 Sep 2; 105(35): 13021-13026.
- 18. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, *et al.* MicroRNA expression profiling of human breast cancer identifies new markers of tumour subtype. *Genome biology* 2007 Oct 8; 8(10): R214.
- 19. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. *CA Cancer J Clin* 2007 Jan-Feb; 57(1): 43-66.
- 20. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, *et al.* Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. *PLoS ONE* 2008; 3(7): e2557.
- 21. Akao Y, Nakagawa Y, Naoe T. MicroRNAs 143 and 145 are possible common oncomicroRNAs in human cancers. *Oncology reports* 2006 Oct; 16(4): 845-850.
- 22. Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. *The Journal of biological chemistry* 2007 Nov 9; 282(45): 32582-32590.
- 23. Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C. MicroRNA-126 Regulates HOXA9 by Binding to the Homeobox. *Molecular and cellular biology* 2008 May 12.
- 24. Li Y, Jenkins CW, Nichols MA, Xiong Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. *Oncogene* 1994 Aug; 9(8): 2261-2268.
- 25. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. *Molecular cell* 2001 Mar; 7(3): 683-694.

- 26. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, *et al.* A microRNA component of the p53 tumour suppressor network. *Nature* 2007 Jun 28; 447(7148): 1130-1134.
- 27. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, *et al.* In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. *Science (New York, NY* 2004 Feb 6; 303(5659): 844-848.
- 28. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, *et al.* A global map of p53 transcription-factor binding sites in the human genome. *Cell* 2006 Jan 13; 124(1): 207-219.
- 29. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia. *Molecular and cellular biology* 2007 Mar; 27(5): 1859-1867.
- 30. Zhou Y, Ferguson J, Chang JT, Kluger Y. Inter- and intra-combinatorial regulation by transcription factors and microRNAs. *BMC Genomics* 2007 Oct 30; 8(1): 396.
- 31. Lykkesfeldt AE, Larsen JK, Christensen IJ. Cell cycle analysis of estrogen stimulation and antiestrogen inhibition of growth of the human breast cancer cell line MCF-7. *Breast cancer research and treatment* 1986; 7 Suppl: S83-90.
- 32. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. *Nature* 2008 Oct 23; 455(7216): 1124-1128.
- 33. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. *Molecular and cellular biology* 2006 Nov; 26(21): 8191-8201.
- 34. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, *et al.* A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. *Cell* 2006 Sep 22; 126(6): 1203-1217.
- 35. Grisouard J, Medunjanin S, Hermani A, Shukla A, Mayer D. Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. *Molecular endocrinology* (*Baltimore, Md* 2007 Oct; 21(10): 2427-2439.
- 36. Jordan VC, O'Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. *J Clin Oncol* 2007 Dec 20; 25(36): 5815-5824.
- 37. Malkin D, Li FP, Strong LC, Fraumeni JF, Jr., Nelson CE, Kim DH, *et al.* Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. *Science (New York, NY* 1990 Nov 30; 250(4985): 1233-1238.
- 38. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, *et al.* Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. *Molecular cell* 2007 Jun 8; 26(5): 745-752.
- 39. Liu W, Konduri SD, Bansal S, Nayak BK, Rajasekaran SA, Karuppayil SM, *et al.* Estrogen receptor-alpha binds p53 tumor suppressor protein directly and represses its function. *The Journal of biological chemistry* 2006 Apr 14; 281(15): 9837-9840.

- 40. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, *et al.* Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. *Molecular cancer* 2006; 5: 24.
- 41. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. *Molecular endocrinology (Baltimore, Md* 2007 May; 21(5): 1132-1147.
- 42. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, *et al.* MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. *The Journal of biological chemistry* 2008 Nov 7; 283(45): 31079-31086.
- 43. Schmittgen TD, Lee EJ, Jiang J. High-throughput real-time PCR. *Methods Mol Biol* 2008; 429: 89-98.
- 44. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, *et al.* miR-15 and miR-16 induce apoptosis by targeting BCL2. *Proceedings of the National Academy of Sciences of the United States of America* 2005 Sep 27; 102(39): 13944-13949.
- 45. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, *et al.* Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. *Molecular cancer therapeutics* 2006 Oct; 5(10): 2512-2521.