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Abstract: The ease of interpretation of a classification model is essential for the task of validating
it. Sometimes it is required to clearly explain the classification process of a model’s predictions.
Models which are inherently easier to interpret can be effortlessly related to the context of the
problem, and their predictions can be, if necessary, ethically and legally evaluated. In this paper,
we propose a novel method to generate rule-based classifiers from categorical data that can be
readily interpreted. Classifiers are generated using a multi-objective optimization approach focusing
on two main objectives: maximizing the performance of the learned classifier and minimizing its
number of rules. The multi-objective evolutionary algorithms ENORA and NSGA-II have been
adapted to optimize the performance of the classifier based on three different machine learning
metrics: accuracy, area under the ROC curve, and root mean square error. We have extensively
compared the generated classifiers using our proposed method with classifiers generated using
classical methods such as PART, JRip, OneR and ZeroR. The experiments have been conducted in full
training mode, in 10-fold cross-validation mode, and in train/test splitting mode. To make results
reproducible, we have used the well-known and publicly available datasets Breast Cancer, Monk’s
Problem 2, Tic-Tac-Toe-Endgame, Car, kr-vs-kp and Nursery. After performing an exhaustive statistical
test on our results, we conclude that the proposed method is able to generate highly accurate and
easy to interpret classification models.

Keywords: multi-objective evolutionary algorithms; rule-based classifiers; interpretable machine
learning; categorical data

1. Introduction

Supervised Learning is the branch of Machine Learning (ML) [1] focused on modeling the behavior
of systems that can be found in the environment. Supervised models are created from a set of past
records, each one of which, usually, consists of an input vector labeled with an output. A supervised
model is an algorithm that simulates the function that maps inputs with outputs [2]. The best models
are those that predict the output of new inputs in the most accurate way. Thanks to modern computing
capabilities, and to the digitization of ever-increasing quantities of data, nowadays, supervised learning
techniques play a leading role in many applications. The first classification systems date back to the
1990s; in those days, researchers were focused on both precision and interpretability, and the systems
to be modeled were relatively simple. Years later, when it became necessary to model more difficult
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behaviors, the researchers focused on developing more and more precise models, leaving aside the
interpretability. Artificial Neural Networks (ANN) [3], and, more recently, Deep Learning Neural Networks
(DLNN) [4], as well as Support Vector Machines (SVM) [5], and Instance-based Learning (IBL) [6] are
archetypical examples of this approach. A DLNN, for example, is a large mesh of ordered nodes
arranged in a hierarchical manner and composed of a huge number of variables. DLNNs are capable
of modeling very complex behaviors, but it is extremely difficult to understand the logic behind their
predictions, and similar considerations can be drawn for SVNs and IBLs, although the underlying
principles are different. These models are known as black-box methods. While there are applications in
which knowing the ratio behind a prediction is not necessarily relevant, (e.g., predicting a currency’s
future value, whether or not a user clicks on an advert or the amount of rain in a certain area), there
are other situations where the interpretability of a model plays a key role.

The interpretability of classification systems refers to the ability they have to explain their behavior
in a way that is easily understandable by a user [7]. In other words, a model is considered interpretable
when a human is able to understand the logic behind its prediction. In this way, Interpretable
classification models allow external validation by an expert. Additionally, there are certain disciplines
such as medicine, where it is essential to provide information about decision making for ethical and
human reasons. Likewise, when a public institution asks an authority for permission to investigate an
alleged offender, or when the CEO of a certain company wants to take a difficult decision which can
seriously change the direction of the company, some kind of explanations to justify these decisions
may be required. In these situations, using transparent (also called grey-box) models is recommended.
While there is a general consensus on how the performance of a classification system is measured
(popular metrics include accuracy, area under the ROC curve, and root mean square error), there is no
universally accepted metric to measure the interpretability of the models. Nor is there an ideal balance
between the interpretability and performance of classification systems but this depends on the specific
application domain. However, the rule of thumb says that the simpler a classification system is, the
easier it is to interpret. Rule-based Classifiers (RBC) [8,9] are among the most popular interpretable
models, and some authors define the degree of interpretability of an RBC as the number of its rules or
as the number of axioms that the rules have. These metrics tend to reward models with fewer rules as
simple as possible [10,11]. In general, RBCs are classification learning systems that achieve a high level
of interpretability because they are based on a human-like logic. Rules follow a very simple schema:

IF (Condition 1) and (Condition 2) and . . . (Condition N) THEN (Statement)

and the fewer rules the models have and the fewer conditions and attributes the rules have, the easier
it will be for a human to understand the logic behind each classification. In fact, RBCs are so natural
in some applications that they are used to interpret other classification models such as Decision Trees
(DT) [12]. RBCs constitute the basis of more complex classification systems based on fuzzy logic [13]
such as LogitBoost or AdaBoost [14].

Our approach investigates the conflict between accuracy and interpretability as a multi-objective
optimization problem. We define a solution as a set of rules (that is, a classifier), and establish two
objectives to be maximized: interpretability and accuracy. We decided to solve this problem by
applying multi-objective evolutionary algorithms (MOEA) [15,16] as meta-heuristics, and, in particular,
two known algorithms: NSGA-II [15] and ENORA [17]. They are both state-of-the-art evolutionary
algorithms which have been applied, and compared, on several occasions [18–20]. NSGA-II is very
well-known and has the advantage of being available in many implementations, while ENORA
generally has a higher performance. In the current literature, MOEAs are mainly used for learning
RBCs based on fuzzy logic [18,21–26]. However, Fuzzy RBCs are designed for numerical data, from
which fuzzy sets are constructed and represented by linguistic labels. In this paper, on the contrary,
we are interested in RBCs for categorical data, for which a novel approach is necessary.

This paper is organized as follows. In Section 2, we introduce multi-objective constrained
optimization, the evolutionary algorithms ENORA and NSGA-II, and the well-known rule-based
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classifier learning systems PART, JRip, OneR and ZeroR. In Section 3, we describe the structure of
an RBC for categorical data, and we propose the use of multi-objective optimization for the task of
learning a classifier. In Section 4, we show the result of our experiments, performed on the well-known
publicly accessible datasets Breast Cancer, Monk’s Problem 2, Tic-Tac-Toe-Endgame, Car, kr-vs-kp and
Nursery. The experiments allow a comparison among the performance of the classifiers learned by our
technique against those of classifiers learned by PART, JRip, OneR and ZeroR, as well as a comparison
between ENORA and NSGA-II for the purposes of this task. In Section 5, the results are analyzed and
discussed, before concluding in Section 6. Appendices A and B show the tables of the statistical tests
results. Appendix C shows the symbols and the nomenclature used in the paper.

2. Background

2.1. Multi-Objective Constrained Optimization

The term optimization [27] refers to the selection of the best element, with regard to some
criteria, from a set of alternative elements. Mathematical programming [28] deals with the theory,
algorithms, methods and techniques to represent and solve optimization problems. In this paper,
we are interested in a class of mathematical programming problems called multi-objective constrained
optimization problems [29], which can be formally defined, for l objectives and m constraints, as follows:

Min./Max. fi (x) , i = 1, . . . , l
subject to gj (x) ≤ 0, j = 1, . . . , m

(1)

where fi (x) (usually called objectives) and gj (x) are arbitrary functions. Optimization problems can
be naturally separated into two categories: those with discrete variables, which we call combinatorial,
and those with continuous variables. In combinatorial problems, we are looking for objects from a
finite, or countably infinite, set X , where objects are typically integers, sets, permutations, or graphs.
In problems with continuous variables, instead, we look for real parameters belonging to some
continuous domain. In Equation (1), x = {x1, x2, . . . , xw} ∈ X w represents the set of decision
variables, where X is the domain for each variable xk, k = 1, . . . , w.

Now, let F = {x ∈ X w | gj (x) ≤ 0, j = 1, . . . , m} be the set of all feasible solutions to
Equation (1). We want to find a subset of solutions S ⊆ F called non-dominated set (or Pareto optimal
set). A solution x ∈ F is non-dominated if there is no other solution x′ ∈ F that dominates x, and a
solution x′ dominates x if and only if there exists i (1 ≤ i ≤ l) such that fi (x′) improves fi (x), and for
every i (1 ≤ i ≤ l), fi (x) does not improve fi (x′). In other words, x′ dominates x if and only if x′ is
better than x for at least one objective, and not worse than x for any other objective. The set S of non
dominated solutions of Equation (1) can be formally defined as:

S =
{

x ∈ F |6 ∃ x′(x′ ∈ F ∧D
(
x′, x

)
)
}

where:
D
(
x′, x

)
= ∃i(1 ≤ i ≤ l, fi

(
x′
)
< fi (x)) ∧ ∀i(1 ≤ i ≤ l, fi

(
x′
)
≤ fi (x)).

Once the set of optimal solutions is available, the most satisfactory one can be chosen by
applying a preference criterion. When all the functions fi are linear, then the problem is a linear
programming problem [30], which is the classical mathematical programming problem and for which
extremely efficient algorithms to obtain the optimal solution exist (e.g., the simplex method [31]).
When any of the functions fi is non-linear then we have a non-linear programming problem [32].
A non-linear programming problem in which the objectives are arbitrary functions is, in general,
intractable. In principle, any search algorithm can be used to solve combinatorial optimization
problems, although it is not guaranteed that they will find an optimal solution. Metaheuristics methods
such as evolutionary algorithms [33] are typically used to find approximate solutions for complex
multi-objective optimization problems, including feature selection and fuzzy classification.
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2.2. The Multi-Objective Evolutionary Algorithms ENORA and NSGA-II

The MOEA ENORA [17] and NSGA-II [15] use a (µ + λ) strategy (Algorithm 1) with µ = λ =

popsize, where µ corresponds to the number of parents and λ refers to the number of children
(popsize is the population size), with binary tournament selection (Algorithm 2) and a rank function
based on Pareto fronts and crowding (Algorithms 3 and 4). The difference between NSGA-II and
ENORA is how the calculation of the ranking of the individuals in the population is performed.
In ENORA, each individual belongs to a slot (as established in [34]) of the objective search space,
and the rank of an individual in a population is the non-domination level of the individual in its
slot. On the other hand, in NSGA-II, the rank of an individual in a population is the non-domination
level of the individual in the whole population. Both ENORA and NSGA-II MOEAs use the same
non-dominated sorting algorithm, the fast non-dominated sorting [35]. It compares each solution with
the rest of the solutions and stores the results so as to avoid duplicate comparisons between every
pair of solutions. For a problem with l objectives and a population with N solutions, this method
needs to conduct l · N · (N − 1) objective comparisons, which means that it has a time complexity of
O(l · N2) [36]. However, ENORA distributes the population in N slots (in the best case), therefore, the
time complexity of ENORA is O(l · N2) in the worst case and O(l · N) in the best case.

Algorithm 1 (µ + λ) strategy for multi-objective optimization.

Require: T > 1 {Number of generations}
Require: N > 1 {Number of individuals in the population}

1: Initialize P with N individuals
2: Evaluate all individuals of P
3: t← 0
4: while t < T do

5: Q← ∅
6: i← 0
7: while i < N do

8: Parent1← Binary tournament selection from P
9: Parent2← Binary tournament selection from P

10: Child1, Child2← Crossover(Parent1, Parent2)
11: Offspring1←Mutation(Child1)
12: Offspring2←Mutation(Child2)
13: Evaluate Offspring1
14: Evaluate Offspring2
15: Q← Q

⋃
{Offspring1, Offspring2}

16: i← i + 2
17: end while
18: R← P

⋃
Q

19: P← N best individuals from R according to the rank-crowding function in population R
20: t← t + 1
21: end while
22: return Non-dominated individuals from P
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Algorithm 2 Binary tournament selection.

Require: P {Population}
1: I ← Random selection from P
2: J ← Random selection from P
3: if I is better than J according to the rank-crowding function in population P then

4: return I
5: else

6: return J
7: end if

Algorithm 3 Rank-crowding function.

Require: P {Population}
Require: I, J {Individuals to compare}

1: if rank (P, I) < rank (P, J) then

2: return True
3: end if
4: if rank(P, J) < rank(P, I) then

5: return False
6: end if
7: return Crowding_distance (P, I) > Crowding_distance (P, J)

The main reason ENORA and NSGA-II behave differently is as follows. NSGA-II never selects
the individual dominated by the other in the binary tournament, while, in ENORA, the individual
dominated by the other may be the winner of the tournament. Figure 1 shows this behavior graphically.
For example, if individuals B and C are selected for a binary tournament with NSGA-II, individual B
beats C because B dominates C. Conversely, individual C beats B with ENORA because individual C
has a better rank in his slot than individual B. In this way, ENORA allows the individuals in each slot
to evolve towards the Pareto front encouraging diversity. Even though in ENORA the individuals of
each slot may not be the best of the total individuals, this approach generates a better hypervolume
than that of NSGA-II throughout the evolution process.

ENORA is our MOEA, on which we are intensively working over the last decade. We have
applied ENORA to constrained real-parameter optimization [17], fuzzy optimization [37], fuzzy
classification [18], feature selection for classification [19] and feature selection for regression [34].
In this paper, we apply it to rule-based classification. NSGA-II algorithm was designed by Deb et al.
and has been proved to be a very powerful and fast algorithm in multi-objective optimization contexts
of all kinds. Most researchers in multi-objective evolutionary computation use NSGA-II as a baseline
to compare the performance of their own algorithms. Although NSGA-II was developed in 2002 and
remains a state-of-the-art algorithm, it is still a challenge to improve on it. There is a recently updated
improved version for many-objective optimization problems called NSGA-III [38].
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Algorithm 4 Crowding_distance function.

Require: P {Population}
Require: I {Individual}
Require: l {Number of objectives}

1: for j = 1 to l do

2: f max
j ← max

I∈P
{ f I

j }
3: f min

j ← min
I∈P
{ f I

j }

4: f
supI

j
j ← value of the jth objective for the individual higher adjacent in the jth objective to the

individual I
5: f

in f I
j

j ← value of the jth objective for the individual lower adjacent in the jth objective to the

individual I
6: end for
7: for j = 1 to l do

8: if f I
j = f max

j or f I
j = f min

j then

9: return ∞
10: end if
11: end for
12: CD ← 0.0
13: for j = 1 to l do

14: CD ← CD +
f

supI
j

j − f
in f I

j
j

f max
j − f min

j15: end for
16: return CD

Figure 1. Rank assignment of individuals with ENORA vs. NSGA-II.

2.3. PART

PART (Partial DT Method [39]) is a widely used rule learning algorithm that was developed at the
University of Waikato in New Zealand [40]. Experiments show that it is a very efficient algorithm
in terms of both computational performance and results. PART combines the divide-and-conquer
strategy typical of decision tree learning with the separate-and-conquer strategy [41] typical of rule
learning, as follows. A decision tree is first constructed (using C4.5 algorithm [42]), and the leaf with
the highest coverage is converted into a rule. Then, the set of instances that are covered by that rule
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are discarded, and the process starts over. The result is an ordered set of rules, completed by a default
rule that applies to instances that do not meet any previous rule.

2.4. JRip

JRip is a fast and optimized implementation in Weka of the famous RIPPER (Repeated Incremental
Pruning to Produce Error Reduction) algorithm [43]. RIPPER was proposed in [44] as a more efficient
version of the incrementally reduced error pruning (IREP) rule learner developed in [45]. IREP and
RIPPER work in a similar manner. They begin with a default rule and, using a training dataset, attempt
to learn rules that predict exceptions to the default. Each rule learned is a conjunction of propositional
literals. Each literal corresponds to a split of the data based on the value of a single feature. This family
of algorithms, similar to decision trees, has the advantage of being easy to interpret, and experiments
show that JRip is particularly efficient in large datasets. RIPPER and IREP use a strategy based
on the separate-and-conquer method to generate an ordered set of rules that are extracted directly
from the dataset. The classes are examined one by one, prioritizing those that have more elements.
These algorithms are based on four basic steps (growing, pruning, optimizing and selecting) applied
repetitively to each class until a stopping condition is met [44]. These steps can be summarized as
follows. In the growing phase, rules are created taking into account an increasing number of predictors
until the stopping criterion is satisfied (in the Weka implementation, the procedure selects the condition
with the highest information gain). In the pruning phase redundancy is eliminated and long rules are
reduced. In the optimization phase, the rules generated in the previous steps are improved (if possible)
by adding new attributes or by adding new rules. Finally, in the selection phase, the best rules are
selected and the others discarded.

2.5. OneR

OneR (One Rule) is a very simple, while reasonably accurate, classifier based on a frequency table.
First, OneR generates a set of rules for each attribute of the dataset, and, then, it selects only one rule
from that set—the one with the lowest error rate [46]. The set of rules is created using a frequency table
constructed for each predictor of the class, and numerical classes are converted into categorical values.

2.6. ZeroR

Finally, ZeroR (Zero Rules [40]) is a classifier learner that does not create any rules and uses no
attributes. ZeroR simply creates the class classification table by selecting the most frequent value. Such
a classifier is obviously the simplest possible one, and its capabilities are limited to the prediction of
the majority class. In the literature, it is not used for practical classifications tasks, but as a generic
reference to measure the performance of other classifiers.

3. Multi-Objective Optimization for Categorical Rule-Based Classification

In this section, we propose a general schema for an RBC specifically designed for categorical
data. Then, we propose and describe a multi-objective optimization solution to obtain optimal
categorical RBCs.

3.1. Rule-Based Classification for Categorical Data

Let Γ be a classifier composed by M rules, where each rule RΓ
i , i = 1, . . . , M, has the

following structure:

RΓ
i : IF x1 = bΓ

i1 AND , . . . , AND xp = bΓ
ip THEN y = cΓ

i (2)

where for j = 1, . . . , p the attribute bΓ
ij (called antecedent) takes values in a set {1, . . . , vj} (vj > 1), and

cΓ
i (called consequent) takes values in {1, . . . , w} (w > 1). Now, let x = {x1, . . . , xp} be an observed

example, with xj ∈ {1, . . . , vj}, for each j = 1, . . . , p. We propose maximum matching as reasoning
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method, where the compatibility degree of the rule RΓ
i for the example x (denoted by ϕΓ

i (x)) is calculated
as the number of attributes whose value coincides with that of the corresponding antecedent in RΓ

i ,
that is

ϕΓ
i (x) =

p

∑
j=1

µΓ
ij(x)

where:

µΓ
ij(x) =

{
1 i f xj = bΓ

ij
0 i f xj 6= bΓ

ij

The association degree for the example x with a class c ∈ {1, . . . , w} is computed by adding the
compatibility degrees for the example x of each rule RΓ

i whose consequent cΓ
i is equal to class c, that is:

λΓ
c (x) =

M

∑
i=1

ηΓ
ic(x)

where:

ηΓ
ic(x) =

{
ϕΓ

i (x) i f c = cΓ
i

0 i f c 6= cΓ
i

Therefore, the classification (or output) of the classifier Γ for the example x corresponds to the class
whose association degree is maximum, that is:

f Γ (x) = argc
w

max
c=1

λΓ
c (x)

3.2. A Multi-Objective Optimization Solution

Let D be a dataset of K instances with p categorical input attributes, p > 0, and a categorical
output attribute. Each input attribute j can take a category xj ∈

{
1, . . . , vj

}
, vj > 1, j = 1, . . . , p,

and the output attribute can take a class c ∈ {1, . . . , w}, w > 1. The problem of finding an optimal
classifier Γ, as described in the previous section, can be formulated as an instance of the multi-objective
constrained problem in Equation (1) with two objectives and two constraints:

Max./Min. FD(Γ)
Min. NR(Γ)
subject to : NR(Γ) ≥ w

NR(Γ) ≤ Mmax

(3)

In the problem (Equation (3)), the function FD(Γ) is a performance measure of the classifier Γ
over the dataset D, the function NR(Γ) is the number of rules of the classifier Γ, and the constraints
NR(Γ) ≥ w and NR(Γ) ≤ Mmax limit the number of rules of the classifier Γ to the interval [w, Mmax],
where w is the number of classes of the output attribute and Mmax is given by a user. Objectives FD(Γ)
and NR(Γ) are in conflict. The fewer rules the classifier has, the fewer instances it can cover, that is,
if the classifier is simpler it will have less capacity for prediction. There is, therefore, an intrinsic conflict
between problem objectives (e.g., maximize accuracy and minimize model complexity) which cannot
be easily aggregated to a single objective. Both objectives are typically optimized simultaneously in
many other classification systems, such as neural networks or decision trees [47,48]. Figure 2 shows
the Pareto front of a dummy binary classification problem described as in Equation (3), with Mmax = 6
rules, where FD(Γ) is maximized. This front is composed of three non-dominated solutions (three
possible classifiers) with two, three and four rules, respectively. The solutions with five and six rules
are dominated (both by the solution with four rules).
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Figure 2. A Pareto front of a binary classification problem as formulated in Equation (3) where FD(Γ)
is minimized and NR(Γ) is minimized.

Both ENORA and NSGA-II have been adapted to solve the problem described in Equation (3)
with variable-length representation based on a Pittsburgh approach, uniform random initialization, binary
tournament selection, handling constraints, ranking based on non-domination level with crowding distance,
and self-adaptive variation operators. Self-adaptive variation operators work on different levels of the
classifier: rule crossover, rule incremental crossover, rule incremental mutation, and integer mutation.

3.2.1. Representation

We use a variable-length representation based on a Pittsburgh approach [49], where each
individual I of a population contains a variable number of rules MI , and each rule RI

i , i = 1, . . . , is
codified in the following components:

• Integer values associated to the antecedents bI
ij ∈ {1, . . . , vj}, for i = 1, . . . , MI and j = 1, . . . , p.

• Integer values associated to the consequent cI
i ∈ {1, . . . , w}, for i = 1, . . . , MI .

Additionally, to carry out self-adaptive crossing and mutation, each individual has two discrete
parameters dI ∈ {0, . . . , δ} and eI ∈ {0, . . . , ε} associated with crossing and mutation, where
δ ≥ 0 is the number of crossing operators and ε ≥ 0 is the number of mutation operators. Values
dI and eI for self-adaptive variation are randomly generated from {0, δ} and {0, ε}, respectively.
Table 1 summarizes the representation of an individual.

Table 1. Chromosome coding for an individual I.

Codification for Rule Set Codification for Adaptive Crossing and Mutation

Antecedents Consequent Associated Crossing Associated Mutation

bI
11 bI

21 . . . bI
q1 cI

1
...

...
...

...
... dI eI

bI
1MI

bI
2MI

. . . bI
qMI

cI
MI

3.2.2. Constraint Handling

The constraints NR(Γ) ≥ w and NR(Γ) ≤ Mmax are satisfied by means of specialized
initialization and variation operators, which always generate individuals with a number of rules
between w and Mmax.

3.2.3. Initial Population

The initial population (Algorithm 5) is randomly generated with the following conditions:
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• Individuals are uniformly distributed with respect to the number of rules with values between
w and Mmax, and with an additional constraint that specifies that there must be at least one
individual for each number of rules (Steps 4–8). This ensures an adequate initial diversity in the
search space in terms of the second objective of the optimization model.

• All individuals contain at least one rule for any output class between 1 and w (Steps 16–20).

Algorithm 5 Initialize population.

Require: p > 0 {Number of categorical input attributes}
Require: v1, . . . , vp, vj > 1, j = 1, . . . , p {Number of categories for the input attributes}
Require: w > 1, {Number of classes for the output attribute}
Require: δ > 0 {Number of crossing operators}
Require: ε > 0 {Number of mutation operators}
Require: Mmax ≥ w {Maximum number of rules}
Require: N > 1 {Number of individuals in the population}

1: P← ∅
2: for k = 1 to N do

3: I ← new Individual
4: if k ≤ Mmax − w + 1 then

5: MI ← k + w− 1
6: else

7: MI ← Int Random(w,Mmax)
8: end if
9: {Random rule RI

i }
10: for i = 1 to MI do

11: {Random integer values associated with the antecedents}
12: for j = 1 to p do

13: bI
ij ←Random(1,vj)

14: end for
15: {Random integer value associated with the consequent}
16: if i < w then

17: cI
i = j

18: else

19: cI
i ← Random(1,w)

20: end if
21: end for
22: {Random integer values for adaptive variation}
23: dI ← Random(0,δ)
24: eI ← Random(0,ε)
25: P← P ∪ I
26: end for
27: return P
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3.2.4. Fitness Functions

Since the optimization model encompasses two objectives, each individual must be evaluated
with two fitness functions , which correspond to the objective functions FD(Γ) and NR(Γ) of the
problem (Equation (3)). The selection of the best individuals is done using the Pareto concept in a
binary tournament.

3.2.5. Variation Operators

We use self-adaptive crossover and mutation, which means that the selection of the operators is
made by means of an adaptive technique. As we have explained (cf. Section 3.2.1), each individual
I has two integer parameters dI ∈ {0, . . . , δ} and eI ∈ {0, . . . , ε} to indicate which crossover
or mutation is carried out. In our case, δ = 2 and ε = 2 are two crossover operators and two
mutation operators, so that dI , eI ∈ {0, 1, 2}. Note that value 0 indicates that no crossover or no
mutation is performed. Self-adaptive variation (Algorithm 6) generates two children from two parents
by self-adaptive crossover (Algorithm 7) and self-adaptive mutation (Algorithm 8). Self-adaptive
crossover of individuals I, J and self-adaptive mutation of individual I are similar to each other. First,
with a probability pv, the values dI and eI are replaced by a random value. Additionally, in the case of
crossover, the value dJ is replaced by dI . Then, the crossover indicated by dI or the mutation indicated
by eI is performed. In summary, if an individual comes from a given crossover or a given mutation,
that specific crossover and mutation are preserved to their offspring with probability pv, so the value of
pv must be small enough to ensure a controlled evolution (in our case, we use pv = 0.1). Although the
probability of the crossover and mutation is not explicitly represented, it can be computed as the ratio
of the individuals for which crossover and mutation values are set to 1. As the population evolves,
individuals with more successful types of crossover and mutation will be more common, so that
the probability of selecting the more successful crossover and mutation types will increase. Using
self-adaptive crossover and mutation operators helps to realize the goals of maintaining diversity in
the population and sustaining the convergence capacity of the evolutionary algorithm, also eliminating
the need of setting an a priori operator probability to each operator. In other approaches (e.g., [50]),
the probabilities of crossover and mutation vary depending on the fitness value of the solutions.

Both ENORA and NSGA-II have been implemented with two crossover operators, rule crossover
(Algorithm 9) and rule incremental crossover (Algorithm 10), and two mutation operators: rule incremental
mutation (Algorithm 11) and integer mutation (Algorithm 12). Rule crossover randomly exchanges two
rules selected from the parents, and rule incremental crossover adds to each parent a rule randomly
selected from the other parent if its number of rules is less than the maximum number of rules. On the
other hand, rule incremental mutation adds a new rule to the individual if the number of rules of the
individual is less than the maximum number of rules, while integer mutation carries out a uniform
mutation of a random antecedent belonging to a randomly selected rule.

Algorithm 6 Variation.

Require: Parent1, Parent2 {Individuals for variation}
1: Child1← Parent1
2: Child1← Parent2
3: Self-adaptive crossover Child1, Child2
4: Self-adaptive mutation Child1
5: Self-adaptive mutation Child2
6: return Child1, Child2
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Algorithm 7 Self-adaptive crossover.

Require: I, J {Individuals for crossing}
Require: pv (0 < pv < 1) {Probability of variation}
Require: δ > 0 {Number of different crossover operators}

1: if a random Bernoulli variable with probability pv takes the value 1 then

2: dI ← Random(0,δ)
3: end if
4: dJ ← dI

5: Carry out the type of crossover specified by dI :

{0: No cross}

{1: Rule crossover}

{2: Rule incremental crossover}

Algorithm 8 Self-adaptive mutation.

Require: I {Individual for mutation}
Require: pv (0 < pv < 1) {Probability of variation}
Require: ε > 0 {Number of different mutation operators}

1: if a random Bernoulli variable with probability pv takes the value 1 then

2: eI ← Random(0,ε)
3: end if
4: Carry out the type of mutation specified by eI :

{0: No mutation}

{1: Rule incremental mutation}

{2: Integer mutation}

Algorithm 9 Rule crossover.

Require: I, J {Individuals for crossing}
1: i← Random(1,MI)
2: j← Random(1,MJ)
3: Exchange rules RI

i and RJ
j

Algorithm 10 Rule incremental crossover.

Require: I, J {Individuals for crossing}
Require: Mmax {Maximum number of rules}

1: if MI < Mmax then

2: j← Random(1,MJ)
3: Add RJ

j to individual I
4: end if
5: if MJ < Mmax then

6: i← Random(1,MI)
7: Add RI

i to individual J
8: end if
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Algorithm 11 Rule incremental mutation.

Require: I {Individual for mutation}
Require: Mmax {Maximum number of rules}

1: if MI < Mmax then

2: Add a new random rule to I
3: end if

Algorithm 12 Integer mutation.

Require: I {Individual for mutation}
Require: p > 0 {Number of categorical input attributes}
Require: v1, . . . , vp, vj > 1, j = 1, . . . , p {Number of categories for the input attributes}

1: i← Random(1,MI)
2: j← Random(1,p)
3: bI

ij ← Random(1,vj)

4. Experiment and Results

To ensure the reproducibility of the experiments, we have used publicly available datasets.
In particular, we have designed two sets of experiments, one using the Breast Cancer [51] dataset, and
the other using the Monk’s Problem 2 [52] dataset.

4.1. The Breast Cancer Dataset

Breast Cancer encompasses 286 instances. Each instance corresponds to a patient who suffered
from breast cancer and uses nine attributes to describe each patient. The class to be predicted is binary
and represents whether the patient has suffered a recurring cancer event. In this dataset, 85 instances
are positive and 201 are negative. Table 2 summarizes the attributes of the dataset. Among all instances,
nine present some missing values; in the pre-processing phase, these have been replaced by the mode
of the corresponding attribute.

Table 2. Attribute description of the Breast Cancer dataset.

# Attribute Name Type Possible Values

1 age categorical 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, 90–99.
2 menopause categorical lt40, ge40, premeno
3 tumour-size categorical 0–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59
4 inv-nodes categorical 0–2, 3–5, 6–8, 9–11, 12–14, 15–17, 18–20, 21–23, 24–26, 27–29, 30–32, 33–35, 36–39
5 node-caps categorical yes, no
6 deg-malign categorical 1, 2, 3
7 breast categorical left, right
8 breast-quad categorical left-up, left-low, right-up, right-low, central
9 irradiat categorical yes, no
10 class categorical no-recurrence-events, recurrence-events

4.2. The Monk’s Problem 2 Dataset

In July 1991, the monks of Corsendonk Priory attended a summer course that was being held
in their priory, namely the 2nd European Summer School on Machine Learning. After a week,
the monks could not yet clearly identify the best ML algorithms, or which algorithms to avoid in which
cases. For this reason, they decided to create the three so-called Monk’s problems, and used them to
determine which ML algorithms were the best. These problems, rather simple and completely artificial,
became later famous (because of their peculiar origin), and have been used as a comparison for many
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algorithms on several occasions. In particular, in [53], they have been used to test the performance of
state-of-the-art (at that time) learning algorithms such as AQ17-DCI, AQ17-HCI, AQ17-FCLS, AQ14-NT,
AQ15-GA, Assistant Professional, mFOIL, ID5R, IDL, ID5R-hat, TDIDT, ID3, AQR, CN2, WEB CLASS,
ECOBWEB, PRISM, Backpropagation, and Cascade Correlation. For our research, we have used the Monk’s
Problem 2, which contains six categorical input attributes and a binary output attribute, summarized
in Table 3. The target concept associated with the Monk’s Problem 2 is the binary outcome of the
logical formula:

Exactly two of:
{heap_shape= round, body_shape=round, is_smiling=yes, holding=sword, jacket_color=red,

has_tie=yes}

In this dataset, the original training and testing sets were merged to allow other sampling procedures.
The set contains a total of 601 instances, and no missing values.

Table 3. Attribute description of the MONK’s Problem 2 dataset.

# Atttribute Name Type Possible Values

1 head_shape categorical round, square, octagon
2 body_shape categorical round, square, octagon
3 is_smiling categorical yes, no
4 holding categorical sword, balloon, flag
5 jacket_color categorical red, yellow, green, blue
6 has_tie categorical yes, no
7 class categorical yes, no

4.3. Optimization Models

We have conducted different experiments with different optimization models to calculate the
overall performance of our proposed technique and to see the effect of optimizing different objectives
for the same problem. First, we have designed a multi-objective constrained optimization model based
on the accuracy:

Max. ACCD(Γ)
Min. NR(Γ)
subject to : NR(Γ) ≥ w

NR(Γ) ≤ Mmax

(4)

where ACCD(Γ) is the proportion of correctly classified instances (both true positives and true
negatives) among the total number of instances [54] obtained with the classifier Γ for the dataset
D. ACCD(Γ) is defined as:

ACCD(Γ) =
1
K

K

∑
i=1

TD(Γ, i)

where K is the number of instances of the dataset D, and TD(Γ, i) is the result of the classification of
the instance i in D with the classifier Γ, that is:

TD(Γ, i) =

{
1 i f ĉΓ

i = ci
D

0 i f ĉΓ
i 6= ci

D

where ĉΓ
i is the predicted value of the ith instance in Γ, and ci

D is the corresponding true value in D.
Our second optimization model is based on the area under the ROC curve:
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Max. AUCD(Γ)
Min. NR(Γ)
subject to : NR(Γ) ≥ w

NR(Γ) ≤ Mmax

(5)

where AUCD(Γ) is the area under the ROC curve obtained with the classifier Γ with the dataset D.
The ROC (Receiver Operating Characteristic) curve [55] is a graphical representation of the sensitivity
versus the specificity index for a classifier varying the discrimination threshold value. Such a curve can
be used to generate statistics that summarize the performance of a classifier, and it has been shown
in [54] to be a simple, yet complete, empirical description of the decision threshold effect, indicating all
possible combinations of the relative frequencies of the various kinds of correct and incorrect decisions.
The area under the ROC curve can be computed as follows [56]:

AUCD(Γ) =
∫ 1

0
SD(Γ, E−1

D (Γ, v))dv

where SD(Γ, t) (sensitivity) is the proportion of positive instances classified as positive by the classifier
Γ in D, 1− ED(Γ, t) (specificity) is the proportion of negative instances classified as negative by Γ in D,
and t is the discrimination threshold. Finally, our third constrained optimization model is based on the
root mean square error (RMSE):

Max./Min. RMSED(Γ)
Min. NR(Γ)
subject to : NR(Γ) ≥ w

NR(Γ) ≤ Mmax

(6)

whereRMSED(Γ) is defined as the square root of the mean square error obtained with a classifier Γ in
the dataset D:

RMSED(Γ) =
1
K

√√√√ K

∑
i=1

(ĉΓ
i − ci

D)
2

where ĉΓ
i is the predicted value of the ith instance for the classifier Γ, and ci

D is the corresponding
output value in the database D. Accuracy, area under the ROC curve, and root mean square error are
all well-accepted measures used to evaluate the performance of a classifier. Therefore, it is natural to
use such measures as fitting functions. In this way, we can establish which one behaves better in the
optimization phase, and we can compare the results with those in the literature.

4.4. Choosing the Best Pareto Front

To compare the performance of ENORA and NSGA-II as metaheuristics in this particular
optimization task, we use the hypervolume metric [57,58]. The hypervolume measures, simultaneously,
the diversity and the optimality of the non-dominated solutions. The main advantage of using
hypervolume against other standard measures, such as the error ratio, the generational distance,
the maximum Pareto-optimal front error, the spread, the maximum spread, or the chi-square-like deviation,
is that it can be computed without an optimal population, which is not always known [15].
The hypervolume is defined as the volume of the search space dominated by a population P, and is
formulated as:

HV (P) =
|Q|⋃
i=1

vi (7)
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where Q ⊆ P is the set of non-dominated individuals of P, and vi is the volume of the individual i.
Subsequently, the hypervolume ratio (HVR) is defined as the ratio of the volume of the non-dominated
search space over the volume of the entire search space, and is formulated as follows:

HVR (P) = 1− H (P)
VS

(8)

where VS is the volume of the search space. Computing HVR requires reference points that identify
the maximum and minimum values for each objective. For RBC optimization, as proposed in this
work, the following minimum (FD lower, NRlower) and maximum (FDupper, NRupper) points, for each
objective, are set in the multi-objective optimization models in Equations (4)–(6):

FD lower = 0, FDupper = 1, NRlower = w, NRupper = Mmax

A first single execution of all six models (three driven by ENORA, and three driven by NSGA-II),
over both datasets, has been designed for the purpose of showing the aspect of the final Pareto front,
and compare the hypervolume ratio of the models. The results of this single execution, with population
size equal to 50 and 20,000 generations (1,000,000 evaluations in total), are shown in Figures 3 and 4
(by default, Mmax is set to 10, to which we add 2, because both datasets have a binary class). Regarding
the configuration of the number of generations and the size of the population, our criterion has been
established as follows: once the number of evaluations is set to 1,000,000, we can decide to use a
population size of 100 individuals and 10,000 generations, or to use a population size of 50 individuals
and 20,000 generations. The first configuration (100 × 10,000) allows a greater diversity with respect to
the number of rules of the classifiers, while the second one (50 × 20,000) allows a better adjustment
of the classifier parameters and therefore, a greater precision. Given the fact that the maximum
number of rules of the classifiers is not greater than 12, we think that 50 individuals are sufficient to
represent four classifiers on average for each number of rules (4 × 12 = 48∼50). Thus, we prefer the
second configuration (50 × 20,000) because having more generations increases the chances of building
classifiers with a higher precision.

ENORA-ACC ENORA-AUC ENORA-RMSE
HVR = 0.1844 HVR = 0.2365 HVR = 0.7398

NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE
HVR = 0.2238 HVR = 0.2721 HVR = 0.7645

Figure 3. Pareto fronts of one execution of ENORA and NSGA-II, with Mmax = 12, on the Breast
Cancer dataset, and their respective HVR. Note that in the case of multi-objective classification where
FD is maximized (ACCD and AUCD), function FD has been converted to minimization for a better
understanding of the Pareto front.
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ENORA-ACC ENORA-AUC ENORA-RMSE
HVR = 0.2393 HVR = 0.2304 HVR = 0.7104

NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE
HVR = 0.3269 HVR = 0.2352 HVR = 0.8246

Figure 4. Pareto fronts of one execution of ENORA and NSGA-II, with Mmax = 12, on the Monk’s
Problem 2 dataset, and their respective HVR. Note that in the case of multi-objective classification where
FD is maximized (ACCD and AUCD), function FD has been converted to minimization for a better
understanding of the Pareto front.

Experiments were executed in a computer x64-based PC with one processor Intel64 Family 6
Model 60 Stepping 3 GenuineIntel 3201 Mhz, RAM 8131 MB. Table 4 shows the run time for each
method over both datasets. Note that, although ENORA has less algorithmic complexity than NSGA-II,
it has taken longer in experiments than NSGA-II. This is because the evaluation time of individuals in
ENORA is higher than that of NSGA-II since ENORA has more diversity than NSGA-II, and therefore
ENORA evaluates classifiers with more rules than NSGA-II.

Table 4. Run times of ENORA and NSGA-II for Breast Cancer and Monk’s Problem 2 datasets.

Method Breast Cancer Monk’s Problem 2

ENORA-ACC 244.92 s. 428.14 s.
ENORA-AUC 294.75 s. 553.11 s.

ENORA-RMSE 243.30 s. 414.42 s.
NSGA-II-ACC 127.13 s. 260.83 s.
NSGA-II-AUC 197.07 s. 424.83 s.

NSGA-II-RMSE 134.87 s. 278.19 s.

From these results, we can deduce that, first, ENORA maintains a higher diversity of the
population, and achieves a better hypervolume ratio with respect to NSGA-II, and, second, using
accuracy as the first objective generates better fronts than using the area under the ROC curve, which,
in turn, performs better than using the root mean square error.

4.5. Comparing Our Method with Other Classifier Learning Systems (Full Training Mode)

To perform an initial comparison between the performance of the classifiers obtained with the
proposed method and the ones obtained with classical methods (PART, JRip, OneR and ZeroR), we have
executed again the six models in full training mode.

The parameters have been configured as in the previous experiment (population size equal to 50
and 20,000 generations), excepting the Mmax parameter that was set to 2 for the Breast Cancer dataset
(this case), while, for the Monk’s Problem 2, it was set to 9. Observe that, since Mmin = 2 in both cases,
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executing the optimization models using Mmax = 2 leads to a single objective search for the Breast
Cancer dataset. In fact, after the preliminary experiments were run, it turned out that the classical
classifier learning systems tend to return very small, although not very precise, set of rules on Breast
Cancer, and that justifies our choice. On the other hand, executing the classical rule learners on Monk’s
Problem 2 returns more diverse sets of rules, which justifies choosing a higher Mmax in that case. To
decide, a posteriori, which individual is chosen from the final front, we have used the default algorithm:
the individual with the best value on the first objective is returned. In the case of Monk’s Problem 2, that
individual has seven rules. The comparison is shown in Tables 5 and 6, which show, for each classifier,
the following information: number of rules, percent correct, true positive rate, false positive rate, precision,
recall, F-measure, Matthews correlation coefficient, area under the ROC curve, area under precision-recall curve,
and root mean square error. As for the Breast Cancer dataset (observe that the best result emerged from
the proposed method), in the optimization model driven by NSGA-II, with root mean square error
as the first objective (see Table 7), only PART was able to achieve similar results, although slightly
worse, but at the price of having 15 rules, making the system clearly not interpretable. In the case of
the Monk’s Problem 2 dataset, PART returned a model with 47 rules, which is not interpretable by any
standard, although it is very accurate. The best interpretable result is the one with seven rules returned
by ENORA, driven by the root mean square error (see Table 8). The experiments for classical learners
have been conducted using the default parameters.

Table 5. Comparison of the performance of the learning models in full training mode—Breast
Cancer dataset.

Learning Model Number of Rules Percent Correct TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area RMSE

ENORA-ACC 2 79.02 0.790 0.449 0.796 0.790 0.762 0.455 0.671 0.697 0.458
ENORA-AUC 2 75.87 0.759 0.374 0.751 0.759 0.754 0.402 0.693 0.696 0.491

ENORA-RMSE 2 77.62 0.776 0.475 0.778 0.776 0.744 0.410 0.651 0.680 0.473
NSGA-II-ACC 2 77.97 0.780 0.501 0.805 0.780 0.738 0.429 0.640 0.679 0.469
NSGA-II-AUC 2 75.52 0.755 0.368 0.749 0.755 0.752 0.399 0.693 0.696 0.495

NSGA-II-RMSE 2 79.37 0.794 0.447 0.803 0.794 0.765 0.467 0.673 0.700 0.454
PART 15 78.32 0.783 0.397 0.773 0.783 0.769 0.442 0.777 0.793 0.398
JRip 3 76.92 0.769 0.471 0.762 0.769 0.740 0.389 0.650 0.680 0.421

OneR 1 72.72 0.727 0.563 0.703 0.727 0.680 0.241 0.582 0.629 0.522
ZeroR - 70.27 0.703 0.703 0.494 0.703 0.580 0.000 0.500 0.582 0.457

Table 6. Comparison of the performance of the learning models in full training mode—Monk’s Problem
2 dataset.

Learning Model Number of Rules Percent Correct TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area RMSE

ENORA-ACC 7 75.87 0.759 0.370 0.753 0.759 0.745 0.436 0.695 0.680 0.491
ENORA-AUC 7 68.71 0.687 0.163 0.836 0.687 0.687 0.523 0.762 0.729 0.559

ENORA-RMSE 7 77.70 0.777 0.360 0.777 0.777 0.762 0.481 0.708 0.695 0.472
NSGA-II-ACC 7 68.38 0.684 0.588 0.704 0.684 0.597 0.203 0.548 0.580 0.562
NSGA-II-AUC 7 66.38 0.664 0.175 0.830 0.664 0.661 0.497 0.744 0.715 0.580

NSGA-II-RMSE 7 68.71 0.687 0.591 0.737 0.687 0.595 0.226 0.548 0.583 0.559
PART 47 94.01 0.940 0.087 0.940 0.940 0.940 0.866 0.980 0.979 0.218
JRip 1 65.72 0.657 0.657 0.432 0.657 0.521 0.000 0.500 0.549 0.475

OneR 1 65.72 0.657 0.657 0.432 0.657 0.521 0.000 0.500 0.549 0.585
ZeroR - 65.72 0.657 0.657 0.432 0.657 0.521 0.000 0.500 0.549 0.475

Table 7. Rule-based classifier obtained with NSGA-II-RMSE for Breast Cancer dataset.

Rule Antecedents Consequent

R1: IF age = 50–59 AND inv-nodes = 0–2 AND node-caps = no
AND deg-malig = 1 AND breast = right AND breast-quad = left-low THEN class = no-recurrence-events

R2: IF age = 60–69 AND inv-nodes = 18–20 AND node-caps = yes
AND deg-malig = 3 AND breast = left AND breast-quad = right-up THEN class = recurrence-events
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Table 8. Rule-based classifier obtained with ENORA-RMSE for Monk’s Problem 2 dataset.

Rule Antecedents Consequent

R1: IF head_shape = round AND body_shape = round AND is_smiling = no
AND holding = sword AND jacket_color = red AND has_tie = yes THEN class = yes

R2: IF head_shape = octagon AND body_shape = round AND is_smiling = no
AND holding = sword AND jacket_color = red AND has_tie = no THEN class = yes

R3: IF head_shape = round AND body_shape = round AND is_smiling = no
AND holding = sword AND jacket_color = yellow AND has_tie = yes THEN class = yes

R4: IF head_shape = round AND body_shape = round AND is_smiling = no
AND holding = sword AND jacket_color = red AND has_tie = no THEN class = yes

R5: IF head_shape = square AND body_shape = square AND is_smiling = yes
AND holding = flag AND jacket_color = yellow AND has_tie = no THEN class = no

R6: IF head_shape = octagon AND body_shape = round AND is_smiling = yes
AND holding = balloon AND jacket_color = blue AND has_tie = no THEN class = no

R7: IF head_shape = octagon AND body_shape = octagon AND is_smiling = yes
AND holding = sword AND jacket_color = green AND has_tie = no THEN class = no

4.6. Comparing Our Method with Other Classifier Learning Systems (Cross-Validation and Train/Test
Percentage Split Mode)

To test the capabilities of our methodology in a more significant way, we proceeded as follows.
First, we designed a cross-validated experiment for the Breast Cancer dataset, in which we iterated
three times a 10-fold cross-validation learning process [59] and considered the average value of the
performance metrics percent correct, area under the ROC curve, and serialized model size of all results.
Second, we designed a train/test percentage split experiment for the Monk’s Problem 2 dataset, in which
we iterated ten times a 66% (training) versus 33% (testing) split and considered, again, the average
result of the same metrics. Finally, we performed a statistical test over on results, to understand if
they show any statistically significant difference. An execution of our methodology, and of standard
classical learners, has been performed to obtain the models to be tested precisely under the same
conditions of the experiment Section 4.5. It is worth observing that using two different types of
evaluations allows us to make sure that our results are not influenced by the type of experiment.
The results of the experiments are shown in Tables 9 and 10.

Table 9. Comparison of the performance of the learning models in 10-fold cross-validation mode (three
repetitions)—Breast Cancer dataset.

Learning Model Percent Correct ROC Area Serialized Model Size

ENORA-ACC 73.45 0.61 9554.80
ENORA-AUC 70.16 0.62 9554.63

ENORA-RMSE 72.39 0.60 9557.77
NSGA-II-ACC 72.50 0.60 9556.20
NSGA-II-AUC 70.03 0.61 9555.70

NSGA-II-RMSE 73.34 0.60 9558.60
PART 68.92 0.61 55,298.13
JRip 71.82 0.61 7664.07

OneR 67.15 0.55 1524.00
ZeroR 70.30 0.50 915.00

The statistical tests aim to verify if there are significant differences among the means of each
metric: percent correct, area under the ROC curve and serialized model size. We proceeded as follows.
First, we checked normality and sphericity of each sample by means of the Shapiro–Wilk normality test.
Then, if normality and sphericity conditions were met, we applied one way repeated measures ANOVA;
otherwise, we applied the Friedman test. In the latter case, when statistically significant differences were
detected, we applied the Nemenyi post-hoc test to locate where these differences were. Tables A1–A12 in
Appendix A show the results of the performed tests for the Breast Cancer dataset for each of the three
metrics, and Tables A13–A24 in Appendix B show the results for the Monk’s Problem 2 dataset.
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Table 10. Comparison of the performance of the learning models in split mode—Monk’s problem
2 dataset.

Learning Model Percent Correct ROC Area Serialized Model Size

ENORA-ACC 76.69 0.70 9586.50
ENORA-AUC 72.82 0.79 9589.30

ENORA-RMSE 75.66 0.68 9585.30
NSGA-II-ACC 70.07 0.59 9590.60
NSGA-II-AUC 67.08 0.70 9619.70

NSGA-II-RMSE 67.63 0.54 9565.90
PART 73.51 0.79 73,115.90
JRip 64.05 0.50 5956.90

OneR 65.72 0.50 1313.00
ZeroR 65.72 0.50 888.00

4.7. Additional Experiments

Finally, we show the results of the evaluation with 10-fold cross-validation for Monk’s problem 2
dataset and for the following four other datasets:

1. Tic-Tac-Toe-Endgame dataset, with 9 input attributes, 958 instances, and binary class (Table 11).
2. Car dataset, with 6 input attributes, 1728 instances, and 4 output classes (Table 12).
3. Chess (King-Rook vs. King-Pawn) (kr-vs-kp), with 36 input attributes, 3196 instances, and binary

class (Table 13).
4. Nursery dataset, with 8 input attributes, 12,960 instances, and 5 output classes (Table 14).

Table 11. Attribute description of the Tic-Tac-Toe-Endgame dataset.

# Attribute Name Type Possible Values

1 top-left-square categorical x, o, b
2 top-middle-square categorical x, o, b
3 top-right-square categorical x, o, b
4 middle-left-square categorical x, o, b
5 middle-middle-square categorical x, o, b
6 middle-right-square categorical x, o, b
7 bottom-left-square categorical x, o, b
8 bottom-middle-square categorical x, o, b
9 bottom-right-square categorical x, o, b
10 class categorical positive, negative

Table 12. Attribute description of the Car dataset.

# Attribute Name Type Possible Values

1 buying categorical vhigh, high, med, low
2 maint categorical vhigh, high, med, low
3 doors categorical 2, 3, 4, 5-more
4 persons categorical 2, 4, more
5 lug_boot categorical small, med, big
6 safety categorical low, med, high
7 class categorical unacc, acc, good, vgood
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Table 13. Attribute description of the kr-vs-kp dataset.

# Attribute Name Type Possible Values

1 bkblk categorical t , f
2 bknwy categorical t , f
3 bkon8 categorical t , f
4 bkona categorical t , f
5 bkspr categorical t , f
6 bkxbq categorical t , f
7 bkxcr categorical t , f
8 bkxwp categorical t , f
9 blxwp categorical t , f

10 bxqsq categorical t , f
11 cntxt categorical t , f
12 dsopp categorical t , f
13 dwipd categorical g , l
14 hdchk categorical t , f
15 katri categorical b , n , w
16 mulch categorical t , f
17 qxmsq categorical t , f
18 r2ar8 categorical t , f
19 reskd categorical t , f
20 reskr categorical t , f
21 rimmx categorical t , f
22 rkxwp categorical t , f
23 rxmsq categorical t , f
24 simpl categorical t , f
25 skach categorical t , f
26 skewr categorical t , f
27 skrxp categorical t , f
28 spcop categorical t , f
29 stlmt categorical t , f
30 thrsk categorical t , f
31 wkcti categorical t , f
32 wkna8 categorical t , f
33 wknck categorical t , f
34 wkovl categorical t , f
35 wkpos categorical t , f
36 wtoeg categorical n , t , f
37 class categorical won , nowin

Table 14. Attribute description of the Nursery dataset.

# Attribute Name Type Possible Values

1 parents categorical usual, pretentious, great_pret
2 has_nurs categorical proper, less_proper, improper, critical, very_crit
3 form categorical complete, completed, incomplete, foster
4 children categorical 1, 2, 3, more
5 housing categorical convenient, less_conv, critical
6 finance categorical convenient, inconv
7 social categorical nonprob, slightly_prob, problematic
8 health categorical recommended, priority, not_recom
9 class categorical not_recom, recommend, very_recom, priority, spec_prior

We have used the ENORA algorithm together with the ACCD andRMSED objective functions
in this case because these combinations have produced the best results for the Breast Cancer and Monk’s
problem 2 datasets evaluated in 10-fold cross-validation (population size equal to 50, 20,000 generations
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and Mmax = 10 + number of classes). Table 15 shows the results of the best combination ENORA-ACC
or ENORA-RMSE together with the results of the classical rule-based classifiers.

Table 15. Comparison of the performance of the learning models in 10-fold cross-validation
mode—Monk’s Problem 2, Tic-Tac-Toe-Endgame, Car, kr-vs-kp and Nursery datasets.

Learning Model Number of Rules Percent Correct TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area RMSE

Monk’s problem 2

ENORA-ACC 7 77.70 0.777 0.360 0.777 0.777 0.762 0.481 0.708 0.695 0.472
PART 47 79.53 0.795 0.253 0.795 0.795 0.795 0.544 0.884 0.893 0.380
JRip 1 62.90 0.629 0.646 0.526 0.629 0.535 −0.034 0.478 0.537 0.482

OneR 1 65.72 0.657 0.657 0.432 0.657 0.521 0.000 0.500 0.549 0.586
ZeroR - 65.72 0.657 0.657 0.432 0.657 0.521 0.000 0.491 0.545 0.457

Tic-Tac-Toe-Endgame

ENORA-ACC/RMSE 2 98.33 0.983 0.031 0.984 0.983 0.983 0.963 0.976 0.973 0.129
PART 49 94.26 0.943 0.076 0.942 0.943 0.942 0.873 0.974 0.969 0.220
JRip 9 97.81 0.978 0.031 0.978 0.978 0.978 0.951 0.977 0.977 0.138

OneR 1 69.94 0.699 0.357 0.701 0.699 0.700 0.340 0.671 0.651 0.548
ZeroR - 65.35 0.653 0.653 0.427 0.653 0.516 0.000 0.496 0.545 0.476

Car

ENORA-RMSE 14 86.57 0.866 0.089 0.866 0.866 0.846 0.766 0.889 0.805 0.259
PART 68 95.78 0.958 0.016 0.959 0.958 0.958 0.929 0.990 0.979 0.1276
JRip 49 86.46 0.865 0.064 0.881 0.865 0.870 0.761 0.947 0.899 0.224

OneR 1 70.02 0.700 0.700 0.490 0.700 0.577 0.000 0.500 0.543 0.387
ZeroR - 70.02 0.700 0.700 0.490 0.700 0.577 0.000 0.497 0.542 0.338

kr-vs-kp

ENORA-RMSE 10 94.87 0.949 0.050 0.950 0.949 0.949 0.898 0.950 0.927 0.227
PART 23 99.06 0.991 0.010 0.991 0.991 0.991 0.981 0.997 0.996 0.088
JRip 16 99.19 0.992 0.008 0.992 0.992 0.992 0.984 0.995 0.993 0.088

OneR 1 66.46 0.665 0.350 0.675 0.665 0.655 0.334 0.657 0.607 0.579
ZeroR - 52.22 0.522 0.522 0.273 0.522 0.358 0.000 0.499 0.500 0.500

Nursery

ENORA-ACC 15 88.41 0.884 0.055 0.870 0.884 0.873 0.824 0.915 0.818 0.2153
PART 220 99.21 0.992 0.003 0.992 0.992 0.992 0.989 0.999 0.997 0.053
JRip 131 96.84 0.968 0.012 0.968 0.968 0.968 0.957 0.993 0.974 0.103

OneR 1 70.97 0.710 0.137 0.695 0.710 0.702 0.570 0.786 0.632 0.341
ZeroR - 33.33 0.333 0.333 0.111 0.333 0.167 0.000 0.500 0.317 0.370

5. Analysis of Results and Discussion

The results of our tests allow for several considerations. The first interesting observation is that
NSGA-II identifies fewer solutions than ENORA on the Pareto front, which implies less diversity
and therefore a worse hypervolume ratio, as shown in Figures 3 and 4. This is not surprising: in
several other occasions [19,34,60], it has been shown that ENORA maintains a higher diversity in the
population than other well-known evolutionary algorithms, with generally positive influence on the
final results. Comparing the results in full training mode against the results in cross-validation or in
splitting mode makes it evident that our solution produces classification models that are more resilient
to over-fitting. For example, the classifier learned by PART with Monk’s Problem 2 presents a 94.01%
accuracy in full training mode that drops to 73.51% in splitting mode. A similar, although with a more
contained drop in accuracy, is shown by the classifier learned with Breast Cancer dataset; at the same
time, the classifier learned by ENORA driven by accuracy shows only a 5.57% drop in one case, and
even an improvement in the other case (see Tables 5, 6, 9, and 10). This phenomenon is easily explained
by looking at the number of rules: the more rules in a classifier, the higher the risk of over-fitting; PART
produces very accurate classifiers, but at the price of adding many rules, which not only affects the
interpretability of the model but also its resilience to over-fitting. Full training results seem to indicate
that when the optimization model is driven by RMSE the classifiers are more accurate; nevertheless,
they are also more prone to over-fitting, indicating that, on average, the optimization models driven
by the accuracy are preferable.

From the statistical tests (whose results are shown in the Appendixes A and B) we conclude
that among the six variants of the proposed optimization model there are no statistical significative
differences, which suggests that the advantages of our method do not depend directly on a specific
evolutionary algorithm or on the specific performance measure that is used to drive the evolutions.
Significant statistical differences between our method and very simple classical methods such as OneR
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were expectable. Significant statistical differences between our method and a well-consolidated one
such as PART have not been found, but the price to be paid for using PART in order to have similar
results to ours is a very high number of rules (15 vs. 2 in one case and 47 vs. 7 in the other case).

We would like to highlight that both the Breast Cancer dataset and the Monk’s problem 2 dataset are
difficult to approximate with interpretable classifiers and that none of the analyzed classifiers obtains
high accuracy rates using the cross-validation technique. Even powerful black-box classifiers, such
as Random Forest and Logistic, obtain success rates below 70% in 10-fold cross-validation for these
datasets. However, ENORA obtains a better balance (trade-off) between precision and interpretability
than the rest of the classifiers. For the rest of the analyzed datasets, the accuracy obtained using
ENORA is substantially higher. For example, for the Tic-Tac-Toe-Endgame dataset, ENORA obtains a
98.3299% success percentage with only two rules in cross-validation, while PART obtains 94.2589%
with 49 rules, and JRip obtains 97.8079% with nine rules. With respect to the results obtained in the
datasets Car, kr-vs-kp and Nursery, we want to comment that better success percentage can be obtained
if the maximum number of evaluations is increased. However, better success percentages imply a
greater number of rules, which is to the detriment of the interpretability of the models.

6. Conclusions and Future Works

In this paper, we have proposed a novel technique for categorical classifier learning. Our proposal
is based on defining the problem of learning a classifier as a multi-objective optimization problem,
and solving it by suitably adapting an evolutionary algorithm to this task; our two objectives are
minimizing the number of rules (for a better interpretability of the classifier) and maximizing a metric
of performance. Depending on the particular metric that is chosen, (slightly) different optimization
models arise. We have tested our proposal, in a first instance, on two different publicly available
datasets, Breast Cancer (in which each instance represents a patient that has suffered from breast cancer
and is described by nine attributes, and the class to be predicted represents the fact that the patient has
suffered a recurring event) and Monk’s Problem 2 (which is an artificial, well-known dataset in which
the class to be predicted represents a logical function), using two different evolutionary algorithms,
namely ENORA and NSGA-II, and three different choices as a performance metric, i.e., accuracy,
the area under the ROC curve, and the root mean square error. Additionally, we have shown the
results of the evaluation in 10-fold cross-validation of the publicly available Tic-Tac-Toe-Endgame, Car,
kr-vs-kp and Nursery datasets.

Our initial motivation was to design a classifier learning system that produces interpretable, yet
accurate, classifiers: since interpretability is a direct function of the number of rules, we conclude that
such an objective has been achieved. As an aside, observe that our approach allows the user to decide,
beforehand, a maximum number of rules; this can also be done in PART and JRip, but only indirectly.
Finally, the idea underlying our approach is that multiple classifiers are explored at the same time in
the same execution, and this allows us to choose the best compromise between the performance and
the interpretability of a classifier a posteriori.

As a future work, we envisage that our methodology can benefit from an embedded future selection
mechanism. In fact, all attributes are (ideally) used in every rule of a classifier learned by our
optimization model. By simply relaxing such a constraint, and by suitably re-defining the first objective
in the optimization model (e.g., by minimizing the sum of the lengths of all rules, or similar measures),
the resulting classifiers will naturally present rules that use more features as well as rules that use less
(clearly, the implementation must be adapted to obtain an initial population in which the classifiers
have rules of different lengths as well as mutation operators that allow a rule to grow or to shrink).
Although this approach does not follow the classical definition of feature selection mechanisms
(in which a subset of features is selected that reduces the dataset over which a classifier is learned), it is
natural to imagine that it may produce even more accurate classifiers, and more interpretable at the
same time.
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Currently, we are implementing our own version of multi-objective differential evolution (MODE)
for rule-based classification for inclusion in the Weka Open Source Software issued under the GNU
General Public License. The implementation of other algorithms, such as MOEA/D, their adaptation in
the Weka development platform and subsequent analysis and comparison are planned for future work.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine learning
ANN Artificial neural networks
DLNN Deep learning neural networks
CEO Chief executive officer
SVM Support vector machines
IBL Instance-based learning
DT Decision trees
RBC Rule-based classifiers
ROC Receiver operating characteristic
RMSE Root mean square error performance metric
FL Fuzzy logic
MOEA Multi-objective evolutionary algorithms
NSGA-II Non-dominated sorting genetic algorithm, 2nd version
ENORA Evolutionary non-dominated radial slots based algorithm
PART Partial decision tree classifier
JRip RIPPER classifier of Weka
RIPPER Repeated incremental pruning to produce error reduction
OneR One rule classifier
ZeroR Zero rule classifier
ENORA-ACC ENORA with objective function defined as accuracy
ENORA-AUC ENORA with objective function defined as area under the ROC curve
ENORA-RMSE ENORA with RMSE objective function
NSGA-II-ACC NSGA-II with objective function defined as accuracy
NSGA-II-AUC NSGA-II with objective function defined as area under the ROC curve
NSGA-II-RMSE NSGA-II with RMSE objective function
HVR Hypervolume ratio
TP True positive
FP False positive
MCC Matthews correlation coefficient
PRC Precision-recall curve
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Appendix A. Statistical Tests for Breast Cancer Dataset

Table A1. Shapiro–Wilk normality test p-values for percent correct metric—Breast Cancer dataset.

Algorithm p-Value Null Hypothesis

ENORA-ACC 0.5316 Not Rejected
ENORA-AUC 0.3035 Not Rejected
ENORA-RMSE 0.7609 Not Rejected
NSGA-II-ACC 0.1734 Not Rejected
NSGA-II-AUC 0.3802 Not Rejected

NSGA-II-RMSE 0.6013 Not Rejected
PART 0.0711 Not Rejected
JRip 0.5477 Not Rejected
OneR 0.316 Not Rejected
ZeroR 3.818 × 10−06 Rejected

Table A2. Friedman p-value for percent correct metric—Breast Cancer dataset.

p-Value Null Hypothesis

Friedman 5.111 × 10−04 Rejected

Table A3. Nemenyi post-hoc procedure for percent correct metric—Breast Cancer dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip OneR

ENORA-AUC 0.2597 - - - - - - - -
ENORA-RMSE 0.9627 0.9627 - - - - - - -
NSGA-II-ACC 0.9981 0.8047 1.0000 - - - - - -
NSGA-II-AUC 0.2951 1.0000 0.9735 0.8386 - - - - -
NSGA-II-RMSE 1.0000 0.2169 0.9436 0.9960 0.2486 - - - -
PART 0.1790 1.0000 0.9186 0.6997 1.0000 0.1461 - - -
JRip 0.9909 0.8956 1.0000 1.0000 0.9186 0.9840 0.8164 - -
OneR 0.0004 0.6414 0.0451 0.0108 0.5961 0.0002 0.7546 0.0212 -
ZeroR 0.2377 1.0000 0.9538 0.7803 1.0000 0.1973 1.0000 0.8783 0.6709

Table A4. Summary of statistically significant differences for percent correct metric—Breast Cancer dataset.

ENORA-ACC ENORA-RMSE NSGA-II-ACC NSGA-II-RMSE JRip

OneR ENORA-ACC ENORA-RMSE NSGA-II-ACC NSGA-II-RMSE JRip

Table A5. Shapiro–Wilk normality test p-values for area under the ROC curve metric—Breast Cancer dataset.

Algorithm p-Value Null Hypothesis

ENORA-ACC 0.6807 Not Rejected
ENORA-AUC 0.3171 Not Rejected
ENORA-RMSE 0.6125 Not Rejected
NSGA-II-ACC 0.0871 Not Rejected
NSGA-II-AUC 0.5478 Not Rejected
NSGA-II-RMSE 0.6008 Not Rejected
PART 0.6066 Not Rejected
JRip 0.2978 Not Rejected
OneR 0.4531 Not Rejected
ZeroR 0.0000 Rejected
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Table A6. Friedman p-value for area under the ROC curve metric—Breast Cancer dataset.

p-Value Null Hypothesis

Friedman 8.232 × 10−10 Rejected

Table A7. Nemenyi post-hoc procedure for area under the ROC curve metric—Breast Cancer dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip OneR

ENORA-AUC 1.0000 - - - - - - - -
ENORA-RMSE 0.9972 0.9990 - - - - - - -
NSGA-II-ACC 0.9999 1.0000 1.0000 - - - - - -
NSGA-II-AUC 1.0000 1.0000 1.0000 1.0000 - - - - -
NSGA-II-RMSE 0.9990 0.9997 1.0000 1.0000 1.0000 - - - -
PART 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 - - -
JRip 1.0000 1.0000 0.9992 1.0000 1.0000 0.9998 1.0000 - -
OneR 0.0041 0.0062 0.0790 0.0323 0.0281 0.0582 0.0345 0.0067 -
ZeroR 3.8 × 10−07 7.2 × 10−07 4.6 × 10−05 9.8 × 10−06 7.8 × 10−06 2.7 × 10−05 1.1 × 10−05 8.1 × 10−07 0.6854

Table A8. Summary of statistically significant differences for area under the ROC curve metric—Breast
Cancer dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip

OneR ENORA-ACC ENORA-AUC - NSGA-II-ACC NSGA-II-AUC - PART JRip
ZeroR ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip

Table A9. Shapiro–Wilk normality test p-values for serialized model size metric—Breast Cancer dataset.

Algorithm p-Value Null Hypothesis

ENORA-ACC 5.042 × 10−05 Rejected
ENORA-AUC 2.997 × 10−07 Rejected
ENORA-RMSE 4.762 × 10−04 Rejected
NSGA-II-ACC 4.88 × 10−06 Rejected
NSGA-II-AUC 2.339 × 10−07 Rejected
NSGA-II-RMSE 2.708 × 10−06 Rejected
PART 0.3585 Not Rejected
JRip 9.086 × 10−03 Rejected
OneR 1.007 × 10−07 Rejected
ZeroR 0.0000 Rejected

Table A10. Friedman p-value for serialized model size metric—Breast Cancer dataset.

p-Value Null Hypothesis

Friedman 2.2 × 10−16 Rejected

Table A11. Nemenyi post-hoc procedure for serialized model size metric—Breast Cancer dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip OneR

ENORA-AUC 0.9998 - - - - - - - -
ENORA-RMSE 0.0053 0.0004 - - - - - - -
NSGA-II-ACC 0.3871 0.0942 0.8872 - - - - - -
NSGA-II-AUC 0.8872 0.4894 0.3871 0.9988 - - - - -
NSGA-II-RMSE 4.1 × 10−05 1.3 × 10−06 0.9860 0.2169 0.0244 - - - -
PART 4.7 × 10−09 5.6 × 10−11 0.1973 0.0013 3.3 × 10−05 0.8689 - - -
JRip 0.2712 0.6997 1.2 × 10−08 7.0 × 10−05 0.0025 6.3 × 10−12 6.9 × 10−14 - -
OneR 0.0062 0.0546 1.5 × 10−12 5.5 × 10−08 5.5 × 10−06 8.3 × 10−14 8.3 × 10−14 0.9584 -
ZeroR 1.9 × 10−05 0.0004 7.3 × 10−14 8.6 × 10−12 2.3 × 10−09 8.5 × 10−14 <2 × 10−16 0.2377 0.9584



Entropy 2018, 20, 684 27 of 33

Table A12. Summary of statistically significant differences for serialized model size metric—Breast
Cancer dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART

ENORA-RMSE ENORA-ACC NSGA-II-AUC - - - - -
NSGA-II-RMSE ENORA-ACC ENORA-AUC - - NSGA-II-AUC - -
PART ENORA-ACC ENORA-AUC - NSGA-II-ACC NSGA-II-AUC - -
JRip - - JRip JRip JRip JRip JRip
OneR OneR - OneR OneR OneR OneR OneR
ZeroR ZeroR ZeroR ZeroR ZeroR ZeroR ZeroR ZeroR

Appendix B. Statistical Tests for Monk’s Problem 2 Dataset

Table A13. Shapiro–Wilk normality test p-values for percent correct metric—Monk’s Problem 2 dataset.

Algorithm p-Value Null Hypothesis

ENORA-ACC 0.6543 Not Rejected
ENORA-AUC 0.6842 Not Rejected
ENORA-RMSE 0.0135 Rejected
NSGA-II-ACC 0.979 Not Rejected
NSGA-II-AUC 0.382 Not Rejected
NSGA-II-RMSE 0.0486 Rejected
PART 0.5671 Not Rejected
JRip 0.075 Rejected
OneR 4.672 × 10−06 Rejected
ZeroR 4.672 × 10−06 Rejected

Table A14. Friedman p-value for percent correct metric—Monk’s Problem 2 dataset.

p-Value Null Hypothesis

Frideman 1.292 × 10−07 Rejected

Table A15. Nemenyi post-hoc procedure for percent correct metric—Monk’s Problem 2 dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip OneR

ENORA-AUC 0.8363 - - - - - - - -
ENORA-RMSE 1.0000 0.9471 - - - - - - -
NSGA-II-ACC 0.1907 0.9902 0.3481 - - - - - -
NSGA-II-AUC 0.0126 0.6294 0.0342 0.9958 - - - - -
NSGA-II-RMSE 0.0126 0.6294 0.0342 0.9958 1.0000 - - - -
PART 0.8714 1.0000 0.9631 0.9841 0.5769 0.5769 - - -
JRip 2.1 × 10−06 0.0048 1.0 × 10−05 0.1341 0.6806 0.6806 0.0036 - -
OneR 0.0001 0.0743 0.0006 0.6032 0.9875 0.9875 0.0601 0.9984 -
ZeroR 0.0001 0.0743 0.0006 0.6032 0.9875 0.9875 0.0601 0.9984 1.0000

Table A16. Summary of statistically significant differences for percent correct metric—Monk’s Problem
2 dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE PART

NSGA-II-AUC ENORA-ACC - ENORA-RMSE -
NSGA-II-RMSE ENORA-ACC - ENORA-RMSE -
JRip ENORA-ACC ENORA-AUC ENORA-RMSE PART
OneR ENORA-ACC - ENORA-RMSE -
ZeroR ENORA-ACC - ENORA-RMSE -



Entropy 2018, 20, 684 28 of 33

Table A17. Shapiro–Wilk normality test p-values for area under the ROC curve metric—Monk’s Problem
2 dataset.

Algorithm p-Value Null Hypothesis

ENORA-ACC 0.4318 Not Rejected
ENORA-AUC 0.7044 Not Rejected
ENORA-RMSE 0.0033 Rejected
NSGA-II-ACC 0.3082 Not Rejected
NSGA-II-AUC 0.0243 Rejected
NSGA-II-RMSE 0.7802 Not Rejected
PART 0.1641 Not Rejected
JRip 0.3581 Not Rejected
OneR 0.0000 Rejected
ZeroR 0.0000 Rejected

Table A18. Friedman p-value for area under the ROC curve metric—Monk’s Problem 2 dataset.

p-Value Null Hypothesis

Frideman 1.051 × 10−08 Rejected

Table A19. Nemenyi post-hoc procedure for area under the ROC curve metric—Monk’s Problem 2 dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip OneR

ENORA-AUC 0.8363 - - - - - - - -
ENORA-RMSE 1.0000 0.7054 - - - - - - -
NSGA-II-ACC 0.8870 0.0539 0.9556 - - - - - -
NSGA-II-AUC 1.0000 0.8544 1.0000 0.8713 - - - - -
NSGA-II-RMSE 0.5504 0.0084 0.7054 0.9999 0.5239 - - - -
PART 0.7054 1.0000 0.5504 0.0269 0.7295 0.0036 - - -
JRip 0.0238 2.3 × 10−05 0.0482 0.6806 0.0211 0.9471 7.0 × 10−06 - -
OneR 0.0084 4.7 × 10−06 0.0186 0.4715 0.0073 0.8363 1.4 × 10−06 1.0000 -
ZeroR 0.0084 4.7 × 10−06 0.0186 0.4715 0.0073 0.8363 1.4 × 10−06 1.0000 1.0000

Table A20. Summary of statistically significant differences for area under the ROC curve metric—Monk’s
Problem 2 dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC PART

NSGA-II-RMSE - ENORA-AUC - - - - -
PART - - - PART - PART -
JRip ENORA-ACC ENORA-AUC ENORA-RMSE - NSGA-II-AUC - PART
OneR ENORA-ACC ENORA-AUC ENORA-RMSE - NSGA-II-AUC - PART
ZeroR ENORA-ACC ENORA-AUC ENORA-RMSE - NSGA-II-AUC - PART

Table A21. Shapiro–Wilk normality test p-values for serialized model size metric—Monk’s Problem
2 dataset.

Algorithm p-Value Null Hypothesis

ENORA-ACC 4.08 × 10−05 Rejected
ENORA-AUC 0.0002 Rejected
ENORA-RMSE 0.0094 Rejected
NSGA-II-ACC 0.0192 Rejected
NSGA-II-AUC 0.0846 Rejected
NSGA-II-RMSE 0.0037 Rejected
PART 0.9721 Not Rejected
JRip 0.0068 Rejected
OneR 0.0000 Rejected
ZeroR 0.0000 Rejected
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Table A22. Friedman p-value for serialized model size metric—Monk’s Problem 2 dataset.

p-Value Null Hypothesis

Frideman 2.657 × 10−13 Rejected

Table A23. Nemenyi post-hoc procedure for serialized model size metric—Monk’s Problem 2 dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART JRip OneR

ENORA-AUC 1.0000 - - - - - - - -
ENORA-RMSE 1.0000 1.0000 - - - - - - -
NSGA-II-ACC 1.0000 1.0000 1.0000 - - - - - -
NSGA-II-AUC 0.9925 0.9696 0.9984 0.9841 - - - - -
NSGA-II-RMSE 0.8870 0.9556 0.7966 0.9267 0.2622 - - - -
PART 0.2824 0.1752 0.3957 0.2246 0.9015 0.0027 - - -
JRip 0.1752 0.2824 0.1110 0.2246 0.0084 0.9752 1.0 × 10−05 - -
OneR 0.0211 0.0431 0.0110 0.0304 0.0004 0.6552 1.5 × 10−07 0.9993 -
ZeroR 0.0012 0.0031 0.0006 0.0020 1.0 × 10−05 0.1907 1.3 × 10−09 0.9015 0.9993

Table A24. Summary of statistically significant differences for serialized model size metric—Monk’s
Problem 2 dataset.

ENORA-ACC ENORA-AUC ENORA-RMSE NSGA-II-ACC NSGA-II-AUC NSGA-II-RMSE PART

PART - - - - - NSGA-II-RMSE -
JRip - - - - JRip - JRip
OneR OneR OneR OneR OneR OneR - OneR
ZeroR ZeroR ZeroR ZeroR ZeroR ZeroR - ZeroR

Appendix C. Nomenclature

Table A25. Nomenclature table (Part I).

Symbol Definition

Equation (1): Multi-objective constrained optimization

xk k-th decision variable
x Set of decision variables
fi (x) i-th objective function
gj (x) j-th constraint
l > 0 Number of objectives
m > 0 Number of constraints
w > 0 Number of decision variables
X Domain for each each decision variable xk
X w Domain for the set of decision variables
F Set of all feasible solutions
S Set of non-dominated solutions or Pareto optimal set
D (x′, x) Pareto domination function

Equation (2): Rule-based classification for categorical data

D Dataset
xi ith categorical input attribute in the dataset D
x Categorical input attributes in the dataset D
y Categorical output attribute in the dataset D
{1, . . . , vi} Domain of i-th categorical input attribute in the dataset D
{1, . . . , w} Domain of categorical output attribute in the dataset D
p ≥ 0 Number of categorical input attributes in the dataset D
Γ Rule-based classifier
RΓ

i ith rule of classifier Γ
bΓ

ij Category for jth categorical input attribute and ith rule of classifier Γ
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Table A25. Cont.

Symbol Definition

cΓ
i Category for categorical output attribute and ith rule of classifier Γ

ϕΓ
i (x) Compatibility degree of the ith rule of classifier Γ for the example x

µΓ
ij(x) Result of the ith rule of classifier Γ and jth categorical input attribute xj

λΓ
c (x) Association degree of classifier Γ for the example x with the class c

ηΓ
ic(x) Result of of the ith rule of classifier Γ for the example x with the class c

fΓ (x) Classification or output of the classifier Γ for the example x

Equation (3): Multi-objective constrained optimization problem for rule-based classification

FD(Γ) Performance objective function of the classifier Γ in the dataset D
NR(Γ) Number of rules of the classifier Γ
Mmax Maximum number of rules allowed for classifiers

Equations (4)–(6): Optimization models

ACCD(Γ) Acurracy: proportion of correctly classified instances with the classifier Γ in the dataset D
K Number of instances in the dataset D
TD(Γ, i) Result of the classification of the ith instance in the dataset D with the classifier Γ
ĉΓ

i Predicted value of the ith instance in the dataset D with the classifier Γ
ci
D Corresponding true value for the ith instance in the dataset D.
AUCD(Γ) Area under the ROC curve obtained with the classifier Γ in the dataset D.
SD(Γ, t) Sensitivity: proportion of positive instances classified as positive with the classifier Γ in the dataset D
1− ED(Γ, t) Specificity: proportion of negative instances classified as negative with the classifier Γ in the dataset D
t Discrimination threshold
RMSED(Γ) Square root of the mean square error obtained with the classifier Γ in the dataset D

Table A26. Nomenclature table (Part II).

Equations (7) and (8): Hypervolume metric

P Population
Q ⊆ P Set of non-dominated individuals of P
vi Volume of the search space dominated by the individual i
HV(P) Hypervolume: volume of the search space dominated by population P
H(P) Volume of the search space non-dominated by population P
HVR(P) Hypervolume ratio: ratio of H(P) over the volume of the entire search space
VS Volume of the search space
FD lower Minimum value for objective FD
FDupper Maximum value for objective FD
NRlower Minimum value for objective NR
NRupper Maximum value for objective NR
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