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Abstract

Evaluating in a correct, fair, systematic and reliable way the quality
of the work is a central problem in modern business. Both from the psy-
chological and the social point of view, this problem is very far away from
being solved, let alone from being susceptible of (semi-)automatic decision
support system. In this paper we consider the case study of evaluating
the operators’ work quality in a medium-sized contact center, and, in par-
ticular, the problem of selecting the correct variables to be used in such
an evaluation. Starting from a data set, representative of the company’s
range and size of activities, that allowed no usable predictive model for
evaluating the skills of the agents, we were able to devise a reproducible
methodology, along with an a posteriori optimization process, to select the
essential variables that should be used to objectively evaluate the quality
of the agents’ work. This results may be used in a support system that
helps supervisors in evaluating the agents’ performances. Moreover, we
believe that our methodology may be extrapolated and reused in other
comparable contexts characterized by the measurability of the human op-
erators’ performance.

Keywords— Feature Selection, Quality Evaluation

1 Introduction

Evaluating the quality of the work that is being done by the employees is a
central problem in modern business; such an evaluation should be correct, fair,
systematic and reliable, and, to this end, it should be measurable. In this paper,
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we considered the problem of evaluating the quality of the work of operators
(also called agents) in a contact center of average dimensions.

A call center is a set of resources, personnel, computers, and telecommu-
nication equipment, which enable the delivery of services via the telephone.
Thanks to the advancements in information technology, call centers are gradu-
ally evolving into contact centers, in which the phone-operator role of the agents
is complemented, and sometimes substituted, by services offered through other
technologies, such as faxing, instant messaging, web portals. Contact centers
handle both inbound and outbound communications, with different purposes,
including customer care and follow-up, as well as marketing and quality con-
trol. The distinguishing feature of a multi-service contact center is that offered
services vary over a wide range of possibly very different types (e.g., specific
product client follow-up and travel reservation systems) [4]. The cornerstone
of a contact center is the agent. An agent (or CSR, that is, Customer Service
Representative) is the endpoint of a service, and his/her performances deter-
mine in large part the success rate of a transaction. The services’ providers are
usually able to identify a set of rules to evaluate an agent’s performance; such
rules are typically employed in both the training and the evaluation of an agent.
This methodology, however, is specific for a service, and typically rules cannot
be easily generalized. Therefore, the problem stands to identify a methodology
that allows some sort of evaluation in a general way.

A large contact center generates vast amounts of data, which can be broadly
classified as operational or service data. Operational data include all the tech-
nical information needed to reconstruct a detailed history of the events that
take place during each communication, and include, for example, the dialled or
dialling phone number, the agent(s) that has (have) been involved, possible call
transfers, and time-stamps. On the other hand, service data are specific to the
particular service for which the contact has taken place, and may include, for ex-
ample, all answers given by the interviewed subject during an outbound survey.
Descriptive statistics of such a collection of data would be useless for the identifi-
cation of the subset of variables that may or may not influence the performances
of an agent. Instead, we applied a very large collection of feature selection mech-
anisms [20], along with a novel a posteriori “decision” making process in order
to identify, if they exist, a subset of variables that may be thought of as objec-
tive indicators of the performances of an agent; in this context, decision making
refers to effectively decide which results (subsets of features) are most indicated
among those produced by the different mechanisms (and it should not be con-
fused with “decision” in the context of management). To this end, we collected
the cumulative data, represented by agent, of a significant period of time and a
significant range of different services, and we asked to three, independent, super-
visors to evaluate each involved agent. Such an evaluation plays the role of the
expert’s view of this problem. We therefore transformed this problem into a fea-
ture selection for supervised classification problem[10]. It turned out that this is
an hard problem, as the classical classification model learning algorithms return
very poor models when run on the entire range of attributes. This indicates an
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elevate noise rate that makes it very difficult to decide the best methodology a
priori. Since our aim is to identify a set of meaningful attributes that may influ-
ence the judgment of an agent, and not to build a classifier, we formulated the
problem as a decision making problem among a very high number of selections.
Intuitively, we proceeded as follows: we built a mechanism that allowed us to
run a very wide range of combinations of search methods, evaluators, and model
learners (categorized into univariate/multivariate, filter/wrapper, and determin-
istic/probabilistic), and we obtained as many as 79 different optimal selections.
Each selection has been used in three different classifier learners (two tree-based
learners and one support vector machine), with four different performance indi-
cators. Again, the problem at hand does not allow us to decide a priori which
is the most correct indicator, as our results must be interpreted; therefore, we
devised a complex automatic decision method, which may be generalized for a
problem that results in n selections, for m classifiers along p measures. After
a statistical pairwise analysis of the selections that allows us to exclude those
that are not significant enough, our process (which, in essence, solves a multi-
objective combinatorial problem), returns the k best selections. Each selection
is a collection of attributes that appear to have some correlation with the ex-
pert’s judgement of an agent; those variables that have been selected every or
almost every time constitute the answer that we were looking for.

This paper is organized as follows. In Section 2 we give the necessary prelimi-
naries concerning the entire range of methods that we have used, and concerning
multi-objective combinatorial problems. In Section 3 we describe our data set
along with the single attributes and their domain-related meaning. In Section 4
we describe our methodology, and in Section 5 we give an overview of the results
of our experiment, as well as a domain expert’s interpretation of them, before
concluding.

2 Background

In this section, we briefly review the main methods and algorithms used in our
experiments. The fact that these algorithms are all included in the WEKA
data mining suite [11] is very convenient: being an open-source product, we
had access to the Java classes of the state-of-the-art of each algorithm. In this
way, we were able to design a simple script that allows us executing a very wide
range of experiments on the same data in a systematic way.

Feature selection. Feature selection is the process of removing features from
the data set that are irrelevant to task to be performed [20]. Its main aim is
to facilitate data understanding, and to reduce storage and computation time
requirements for model learning, while retaining a suitably high accuracy in
representing the original features; nevertheless, we defined our problem as a
feature selection problem per se, since we are searching for a specific subset of
variables with a certain set of characteristics. Feature selection algorithms may
be classified into several categories, depending on the specific criterion under
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consideration. According to whether the training set is composed of labelled
instances or not, the selection may be, respectively, supervised or unsupervised.
Methods in the former category seek for correlations between attribute and class
label values, whereas those in the latter employ (usually, descriptive) statistical
tests over attributes, such as, for example, a near-zero-variance test. Feature
selection methods consist of four steps, namely subset generation, subset evalu-
ation, stopping criterion, and result validation. The design of such steps entails
the selection of: (i) a target to which to apply the procedure; (ii) a search
strategy, to guide the incremental generation of the feature set; (iii) an evalua-
tion strategy, which depends on the target type and, in the case of supervised
methodologies, may imply choosing an actual classifier; (iv) an evaluation metric
used to score the candidates.

Subset generation. Subset generation methods (also called search strate-
gies) are used to guide the iterative generation of the feature set, in the space
of all the possible combinations of features. They can be categorized into de-
terministic and probabilistic methodologies, the former giving back the same
set of attributes if repeatedly executed, and the latter taking non-deterministic
choices during execution. Moreover, in the former category it is possible to dis-
tinguish strategies according to their search direction: forward search strategies
start with an empty attribute set, and then grow it; backward search strategies
begin with an initial set consisting of all attributes, and proceed by discarding
elements; bi-directional search strategies consider an initial point in the subset
space, and then proceed in both directions; on the contrary, probabilistic (or
random) strategies do not follow a predefined search direction, for example in op-
timization through genetic algorithms. In this experiment, among deterministic
algorithms we considered: BestFirst [26], GreedyStepwise [29], LinearForwardS-
election [13], and InfoGain [7], while the employed probabilistic algorithms are:
MultiObjectiveEvolutionarySearch [16], PSOSearch [24], and GeneticSearch [12].
BestFirst implements beam search, and searches the space of attribute subsets
by greedy hill climbing augmented with a backtracking capability; the amount of
backtracking may be customized by specifying the beam width. It supports for-
ward, backward, and bi-directional search directions. GreedyStepwise performs
a greedy forward or backward search through the space of attribute subsets,
stopping when the addition (forward direction) or deletion (backward direc-
tion) of any of the remaining attributes results in a decrease in evaluation,
thus, it has no backtracking capability. LinearForwardSelection is an extension
of BestFirst, supporting simple forward or floating forward search directions.
The latter considers a number of consecutive single-attribute elimination steps
after each forward step, as long as this results in an improvement. The al-
gorithm takes only a restricted number of k attributes into account, with the
goal of reducing the number of evaluations performed during the search and
producing a compact final subset, by two possible modes of operation: fixed-
set or fixed-width. According to the former, all single attributes are initially
ranked, and then the top-k are passed as input to forward selection. The latter
employs a similar initial ranking criterion, starting the search with the top-k
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attributes; however, it maintains a fixed number of k candidates also in each
of the subsequent forward selection steps, by adding further attributes from
the initial ranked list (as long as any remain). Finally, the InfoGain strategy
works by listing all features, ordered by their individual scores, as determined
by measuring the information gain score with respect to the class. As far as
probabilistic algorithms are concerned, genetic (or evolutionary) algorithms are
the most common choice. Genetic algorithms were first proposed for attribute
selection in [34], and are now considered an important tool for the selection
of features [35]. They are inspired by the process of natural selection and,
through the application of elitist selection, iteratively generate better and bet-
ter solutions to optimization and search problems, by employing operators such
as mutation and crossover. The goodness of a solution is determined through
the use of one (single-objective) or more (multi-objective) fitness functions. In
the present work, for the purpose of attribute selection (in those cases in which
we choose multi-objective optimization), two objectives are optimized: the first
one is chosen by the evaluator, and it is to be maximized, while the second one
is the attribute subset cardinality, and it is to be minimized. The final out-
put is given by the non-dominated solution in the last population having the
best fitness score for the first objective. MultiObjectiveEvolutionarySearch is a
multi-objective evolutionary algorithm that explores the attribute space using
the elitist Pareto-based multi-objective evolutionary algorithm ENORA, while
GeneticSearch implements the simple, classical Golberg’s (single-objective) ge-
netic algorithm for searching. Finally, PSOSearch explores the attribute space
employing the Particle Swarm Optimization (PSO) algorithm. PSO optimizes
a problem iteratively, trying to improve a candidate solution with regard to a
given measure of quality. Similarly to evolutionary computation techniques, it
considers a population of candidate solutions, called particles. Elements are
moved around the search space according to mathematical formulae, consider-
ing each particle’s characteristics and the overall “swarm knowledge”, following
an agent-oriented paradigm.

Subset evaluation. According to the target of the selection procedure, it
is possible to classify evaluation strategies into univariate and multivariate.
Strategies that belong to the former category evaluate attributes independently;
as a result, they are computational less demanding than those that belong to
the latter, which consider subsets of attributes as a whole. Moreover, multi-
variate approaches can also take into account complex relationships between
features, such as redundancy. Here we have taken into consideration super-
vised methods, and, in particular, filter and wrapper models. Filter models are
independent from the successive classifier learning phase, and are based only
on general measures such as the correlation or consistency with the variable
to predict. Filter techniques scale well with the size of data sets; however,
since they ignore the classification performance, they might not always pro-
vide the best results [8, 27]. Wrapper models, on the other hand, evaluate
the predictive accuracy of the attribute set with a selected classifier. These
techniques typically offer better results than filters, at the cost of being compu-
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tationally more demanding, and more prone to overfitting [22]. We considered
the following univariate filters: (i) GainRatioAttributeEval [18], (ii) Signifi-
canceAttributeEval [1], (iii) SymmetricalUncertAttributeEval [2], the univariate
wrapper ClassifierAttributeEval [32], the following multivariate filters: (i) Cfs-
SubsetEval [14], (ii) ConsistencySubsetEval [21], and the multivariate wrapper
WrapperSubsetEval [19]. As far as univariate filters are concerned, GainRa-
tioAttributeEval evaluates the worthiness of a single attribute by measuring its
gain ratio value with respect to the class labels. Gain ratio is a well-known,
commonly used assessment measure, calculated as the difference between the
entropy of class distribution minus the conditional entropy of the classes given
the values of the attribute, divided by the entropy of the attribute itself; Sig-
nificanceAttributeEval scores a single attribute by computing its probabilistic
significance as a two-way function of its association to the class decision, and
the intuition behind this algorithm is that if an attribute is significant with re-
spect to the class labels, then it is expected that different sets of elements with
complementary sets of values for the attribute will also belong to complementary
sets of classes; finally, SymmetricalUncertAttributeEval evaluates the worthiness
of a given attribute by measuring its symmetrical uncertainty with respect to
the class. The univariate wrapper ClassifierAttributeEval scores an attribute by
employing a user-selected classifier, evaluating its performance with respect to a
specified evaluation metric (e.g., classification accuracy). For the purpose of this
paper, we use it in conjunction with the classifiers J48 (C4.5 [28]), LibSVM [5]
and RandomForest [3]. J48 is a Java implementation of the widely-used decision
tree learner C4.5, which is known to be computationally efficient. The learning
algorithm builds a decision tree from a set of labelled training instances in a
recursive fashion, starting from the root node, by using the information gain
ratio criterion. LibSVM is a library for support vector machines learning. A
support vector machine is a supervised machine learning algorithm, which can
be used for both regression and (typically binary) classification problems. Each
instance is mapped to a point in n-dimensional space, where n is the number
of features characterizing the instance. Then, in a binary classification setting,
a hyperplane is constructed, that optimally divides the instances in homoge-
neous groups with respect to the class labels. RandomForest is an ensemble
learning method which constructs a forest of random trees, for classification
or regression purposes. A typical problem of decision trees is their propen-
sity to overfit, if not properly pruned: in the literature, they are regarded as
models having low bias, but high variance. In RandomForest each tree is built
from a separate part of the same training set, reducing the variance, thus con-
trasting the tendency of a large, single tree to overfit. Given a new instance
to classify, the final output is obtained by combining the results given by the
different trained models. The multivariate filter CfsSubsetEval evaluates the
worthiness of an entire subset of features by considering the individual predic-
tive power of each attribute, together with the degree of redundancy between
them; subsets containing attributes that are highly correlated with the class,
and not strongly correlated with one another, are preferred. On the contrary,
ConsistencySubsetEval scores a subset of features as a whole, by projecting the
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training instances according to the attribute subset, and considering the con-
sistency of class values in the obtained instance sets. Finally, the multivariate
WrapperSubsetEval scores a set of attributes by employing a user-selected clas-
sifier, evaluating its performance with respect to a specified evaluation metric
(e.g., classification accuracy). Again, for the purpose of this paper, we use it in
conjunction with J48, LibSVM, and RandomForest.

Evaluation metrics. Evaluation metrics are used to assign a numerical score
to each candidate during the feature selection process. The metrics employed
in the present work include: accuracy (for classification), weighted area under
ROC (for classification), the root mean squared error (for regression and binary
classification), and the model size. The accuracy (ACC) measures the amount
of correctly labelled instances, as classified by a model. It is given by the
ratio between the number of correctly classified instances and the number of
total instances. The weighted area under ROC (WAUC) metric is calculated
on a ROC curve [23, 9], which is a graphical representation of the sensitivity
versus specificity for a classifier system, obtained by varying the model class
discrimination threshold. The AUC value belongs to the interval [0, 1]; a score
of 1 represents the perfect classifier, while 0.5 is typical of a random classification
behaviour; in the weighted version (WAUC), this number is computed taking
into account also the cardinality of each class. The root mean squared error
(RMSE) measures the difference between values predicted by a model and the
values actually observed. Finally, the model size (MS) simply measures how
big a classification/regression model is. Typically, ACC and WAUC are to be
maximized, while RMSE and MS are to be minimized.

Multi-objective combinatorial optimization. Optimization [17] indicates
the process of selecting a best element with respect to some criteria; mathemat-
ical programming is the discipline that studies the theory, the algorithms, and
the techniques to represent and solve optimization problems. While some of the
subset generation methods described above (precisely, the probabilistic subset
generation algorithms) are defined as multi-objective optimization (MOO) prob-
lems [6], our interest here is in defining a decision making process as such. A
minimizing MOO problem can be formally defined as:

Min fi(x̄)

for i = 1, . . . , l, where each fi may be linear or non-linear. Variables may
be continuous or discrete; in the latter case, the problem is an optimization
combinatorial problem. In combinatorial problems, we are looking for objects
in a countable set C, typically the set of integers, sets, permutations, or graphs;
the variables x̄ ∈ Ck is the set of decision variables. Optimization problems
may be minimizing, maximizing, or both. A solution x̄ ∈ Ck is said to be a
non dominated (or Pareto optimal) if and only if there exists no ȳ ∈ Ck for
which: (i) there exists 1 ≤ i ≤ l such that fi(ȳ) improves fi(x̄), and (ii) for
each j 6= i, fj(x̄) does not improve fj(ȳ). The set of non dominated solutions
from Ck is called Pareto front. Solving a MOO entails finding the Pareto front,
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or an approximation to it; depending on the particular problem, one may later
choose a specific solution from the front. A MOO with only linear functions
is called linear programming problem, for which efficient algorithms exist to
obtain the optimal solution (i.e., the simplex method [33]). If at least one of the
functions is nonlinear, the MOO is a nonlinear programming problem [33]. A
nonlinear programming problem in which the objectives are arbitrary functions
is, in general, intractable, and, typically, sub-optimal search algorithms are used
to approach them; these are precisely those recalled above in this section, and
include branch and bound, heuristics and metaheuristics such as evolutionary
algorithms and PSO.

3 Data Sets and Problem Definition

The data we have used have been provided by Northern Italy company Gap
S.R.L., and consists of the cumulative performances data of 77 agents over a
period of 6 months. Contacts in GAP are managed and organized as follows.
The flux of information is categorized into inbound (that is, contacts that GAP
receives, such as phone calls) and outbound (i.e., surveys made by GAP). Each of
these is classified by commissions: a commission is the unit of contract between
GAP and a client (i.e., the ACME airline commissions to GAP the phone ticket
selling service for their customers), and each commission may be declined into
several services. A service is a specific type of interaction that the client wants
GAP to operate with (i.e., ACME wants GAP to deal with ticket selling but not
lost-and-found), and each service includes several sub-types (i.e., ACME ticket
selling includes a channel for information, a channel for reservation managing,
and so on). For the purpose of this experiment, we considered phone-based com-
munications only. Of all agents, 56 were employed for outbound, inbound, and
backoffice services, while the remaining 21 had no inbound communications.
The work of all agents has been described via 69 attributes, while for those
agents with at least some inbound communications over the analyzed period,
we were able to add 6 more features (that make sense for inbound communica-
tions only). Compared to previous data mining experiments on contact center
databases, the quality of the information at our disposal is considerably higher.
Not only did previous experiments such as [25] made no use of feature selection;
they did also operate on a very restricted set of attributes, consequently limiting
the significance of their results. Moreover, all previous experiments, including
[30, 15], were not designed to evaluate the performances of the agents.

The set of variables common to both data sets (the one containing the cumu-
lative performance indicators of all agents and the one containing the cumulative
performance indicators of only those agents that had inbound communications)
can be classified into several categories, depending on the particular aspect they
describe, for a better understanding. The first category is agent related variables
(see Table 1 - top1), and includes their seniority (from 6 months to 5 and an

1Unless otherwise specified, every numeric variable is in fact a pair of variables that takes
into account average and variance of each aspect.
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half year), their gender (31 males versus 46 females), their age (from 19 to 65
years old), their level of education (from 1 - minimum compulsory education,
to 5 - university degree or more), and their skill average and variance: GAP
has internally engineered a skill-function that takes into account several aspects,
recomputed weekly for each agent, and of which we consider the average and
the variance over the entire period. A second category of variables is work’s
diversity, by means of which we want to measure how heterogeneous has been
the agent’s work in the analyzed period. This category includes the number of
distinct sessions2 and distinct commissions the agent has worked on, the daily
frequency of context switches (that takes into account switching between flows,
or services, or service sub-types, weighted: farthest jumps weight the most), the
daily frequency of flow switches (inbound vs. outbound), the daily frequency
of service switches, and the the daily frequency of sub-type switches, and it
is given in Table 1 (bottom). Moreover, we have taken into account how the
agents’ work has been distributed (Table 2 - top), by including the average and
the variance over days of the number of minutes during which he/she has been
effectively working (management), on inbound (management inbound), on out-
bound (management outbound) communications, or on backoffice (management
backoffice), along with their fraction on the entire workload, that takes into
account how many times the agent has declared him/herself available (in idle
state), for how many minutes in total, on break, and for how many minutes, and
inactive (that is, on break or available). The distribution takes also into account
the icc index, which is an internal evaluation of the importance, complexity and
criticality of the service being worked on. Finally, Table 2 (bottom) shows the
variables relative to agents’ turns distribution, that take into account in which
part of the day and of the week each agent’s shifts are mainly scheduled, as well
as the fraction, over the entire observed period, of break, available, and inactive
time of the agent.

Six more attributes have been considered for those agents whose job during
the observed period included inbound communications. Such variables take into
account the structure, the understandability, and the type of call-related notes
written by the agent. These may be articulated, non-articulated, domain-related,
hybrid, or unrecognizable.

Our choice of attributes naturally led to two distinct data sets, hereafter
called ALL AGENTS and INBOUND AGENTS; the former contains 69 at-
tributes and 77 instances, and the latter contains 75 attributes and 56 agents.
Both data sets have been enriched with a variable that describes the agent
performance value. This has been obtained by asking to three independent
supervisors a fair judgement of each agent to the best of their expertise. Their
judgement, on a scale from 1 (lowest) to 5 (highest), takes into account the over-
all impression of the agents and their performances; then, the three votes have
been combined into a single one by averaging them. The purpose of this work
is to answer the following question: which are, if they exist, the performance-

2A session is the most basic unit of work done by the agent, to which it is possible to
assign a result, for example a phone call.
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related variables that influence the expert judgment on an agent?

4 Methodology

For each of the two data sets we applied a simple preprocessing methodology.
First, we have replaced all the missing values with their respective mean; to
this end, the procedure ReplaceMissingValues from the weka.filters.unsu- per-
vised.attribute package has been used. Second, we have searched for those fea-
tures with too small variation: no features have been eliminated via this process,
indicating that, potentially, all of them might influence the agent judgment.

After the preprocessing, we have systematically applied 79 different fea-
ture selection mechanisms, as in Figure 1. Each mechanism is the result of a
specific choice among the subset generation algorithms, the subset evaluation
algorithms, and the evaluation metric (all explained in Section 2). Among all
choices, consider in particular the multivariate wrapper and filter obtained by
using the multi-objective evolutionary algorithm as search strategy: indepen-
dently from the measure that has been chosen (either accuracy, area under ROC
curve, model size, or RMSE), an (internal) decision making process is necessary;
indeed, by optimizing two parameters, namely the number of chosen attributes
and the performance indicator, the result is a population of solutions. In order
to choose one of them (out of 30 executions with population size 100 for 100
evaluations, see, e.g. [16]), we applied a particular case of cross validation. In
particular, with less than one hundred instances, the best choice is the so-called
leave-one-out cross validation [31]; the best individual in term of the chosen
measure over 10 runs has been selected.

The result of this process is 79 different selections of attributes, each one
of them optimized following a different criterium. The test phase consisted of
training with each of the 79 corresponding data sets a model via: (i) a decision
tree learner (J48 ); (ii) a support vector machine (LibSVM); (iii) a random forest
learner (RandomForest). For each of the resulting model, we have measured,
after a leave-one-out cross-validation test: (i) accuracy (ACC); (ii) (weighted)
area under the ROC curve (WAUC); (iii) root mean squared error (RMSE);
(iv) serialized model size (MS). Finally, we have applied the following decision
making strategy. In order to highlight possible significant statistical differences
among the resulting selections we performed a non-parametric Friedman test [36]
with significance level α = 0.05 for each of the measures. Second, we applied
multi-objective combinatorial optimization, as seen in Section 2. A generic
method for multi-objective optimization that can be used to identify the “best”
data bases among n data bases evaluated with m classifiers consists of simply
optimizing:

fi (x) =
1

m

m∑
j=1

Mi(x, j), i = 1, . . . , l

whereMi(x, j) is the value of the performance metricMi for the classifier j ∈ CL
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evaluated in the data base x ∈ DB, and l is the number of performance metrics.
In our particular case, we have that the problem becomes as in the following set
of formulas: 

Max f1(x) =
1

m

m∑
j=1

ACC(x, j)

Max f2(x) =
1

m

m∑
j=1

WAUC(x, j)

Min f3(x) =
1

m

m∑
j=1

RMSE(x, j)

Min f4(x) =
1

m

m∑
j=1

MS(x, j)

As the last step, we considered the best selections obtained in this way, and
we analyzed those features that have been selected in each of them: the most
common ones are those that, in fact, influence the experts’ judgments. The
entire methodology, applied to both ALL AGENTS and ALL INBOUND, is
displayed in Fig 1.

5 Analysis of the Results

The Friedman test showed no statistical differences among the selections, for
both (original) data sets. This means that we solved the MOO (optimizing the
four chosen objectives) among the 79 selections, once for each problem. Recall
that our problem presented a very low susceptibility of being classified, and that
we are not interested in building a classifier, but in identifying a meaningful
subset of variables. The MOO objectives are designed precisely to this aim (see
Section 4), as they optimize the average performance degree without committing
to a specific classifying model learner. As a consequence, we are not interested
in their absolute values. It turns out that 12 solutions from the ALL AGENTS
problem are not dominated, and 5 from the INBOUND AGENTS one; these are
shown in Table 4. Multi-objective evolutionary search with ENORA resulted
the most successful search strategy, and RandomForest to be the most precise
classifier to be used in wrappers. We also found, as expected, that multivariate
feature selection methods behaved better than univariate ones.

Having reduced the number of solutions to 17, we can now analyze them,
and, in particular, we can examine which attributes have been selected. In
Table 5 we show the most common ones, which must be interpreted as those
that have the highest influence on the judgment. A first, immediate, observa-
tion is that separating our initial objective into two sub-problems has been the
right choice: there exists a substantial difference in the results of the selections,
which means that the agents that work on both inbound and outbound com-
munications behave substantially different from the those who do not. Focusing
on the group of variables that, apparently, may influence the judgment on all
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agents, we notice that these are taken exclusively from the set of variables that
describe the work and the turn distribution. On top of this observation, we
notice that break and inactivity periods (in particular, the average number of
breaks over a single day of work, and the total inactivity time over the entire
observed period) are the most influential characteristics. Moreover, the average
workload seems to have some relevance in determining the quality of an agent,
and, finally, it also seems that how much, in average, his/her turn distribution
in the mornings and in the nights varied over the observed period had played a
role in determining the judgment.

When we focus on the results for the group of agents that had both inbound
and outbound work, we discover some interesting differences. Unlike the previ-
ous case, agent’s education level, age, and gender do play a role in determining
the quality of his/her work. This makes perfect sense: inbound sessions are
essentially different from outbound ones, and it emerges that education and age
may make the difference. The average number of break sessions during a work-
ing day still has a relevant role (which means that this aspect is transversal to
the type of agent), as well as the variance of his/her turn distribution in the
mornings.

Finally, we notice that the structure of the notes seems not to have any essen-
tial role in determining the overall impression of the agents with inbound work.
Similarly, and maybe more interestingly, the skill level of the agents (determined
internally in GAP), as well as the entire range of indicators that depend on the
heterogeneity, and on the relative importance, of the work assigned to the agent,
in both groups, seem not to influence the judgment in any way.

6 Conclusions

The problem of evaluating in a correct, fair, systematic and reliable way the
quality of the work is central in modern business. As a case study, we consider
a group of customer service representatives, or agents, in a medium-sized con-
tact center, and we associated a very subjective evaluation of their performance
in a six-months period (obtained by combining three, independent, expert eval-
uations) with a synthesis of the operational and service data generated by their
activity in the same period. Our aim was to identify the subset of parameters
that (implicitly) influence their evaluation, and therefore help the experts in de-
signing a (semi)automatic system for evaluating the agents. Since this problem
is not susceptible of a classical learning approach, we applied a very large col-
lection of feature selection mechanisms along with a novel a posteriori decision
making process in order to identify optimal subsets of variables that may be
thought of as objective indicators of the performances of an agent. We found,
first, that those agents that work on both inbound and outbound communica-
tions behave substantially different from the those who do not. Moreover, we
discovered that for a generic agent (regardless if he/she has been assigned in-
bound services or not), work and turn distribution seem to have some influence
in their performance, as well as break and inactivity periods; also, the average
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workload and turn distribution in the mornings and in the nights seems to have
some relevance in determining the quality of their work. Interestingly, educa-
tion level, age, and gender of an agent has some influence only for those agents
assigned to inbound work.

We believe that our methodology may be extrapolated and reused in other
comparable contexts characterized by the measurability of the human operators’
performance.
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Agent related variables

attribute semantics
agent seniority # of days of service of the agent
agent gender whether the agent is a male or female
agent age age of the agent
agent education level of education of the agent
agent skill weekly avg. and var. of agents’ skill

Diversity variables

attribute semantics
num sessions daily avg. and var. of the # of distinct sessions
num commissions daily avg. and var. of the # of distinct commissions
switch index daily avg. and var. of (all) switches
switch index flow type daily avg. and var. of flow switches
switch index ser type daily avg. and var. of service switches
switch index ser same type daily avg. and var. of sub-service type switches
icc inbound av daily avg. and var. of avg. icc index in inbound
icc outbound av daily avg. and var. of avg. icc index in outbound
icc inbound var daily avg. and var. of var. icc index in inbound
icc outbound var daily avg. and var. of var. icc index in outbound

Table 1: Variables related to the agent and variables related to the switching
frequency of the agent.
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Work distribution variables

attribute semantics
management daily avg. and var. of # min. working
management inbound daily avg. and var. of # min. working on inbound comm.
management outbound daily avg. and var. of # min. working on outbound comm.
management backoffice daily avg. and var. of # min. working on backoffice
fraction inbound daily avg. and var. of the % of min. on inbound
fraction outbound daily avg. and var. of the % of min. on outbound
fraction backoffice daily avg. and var. of the % of min. on backoffice
available sessions daily avg. and var. of the # of available sessions
available daily avg. and var. of # min. available
break sessions daily avg. and var. of the # of break sessions
break daily avg. and var. of # min. on break
inactive sessions daily avg. and var. of the # of inactive sessions
inactive daily avg. and var. of # min. inactive

Turn distribution variables

attribute semantics
turn duration daily avg. and var. of turn length in # min.
fraction weekend fraction of weekend workdays
fraction night daily avg. and var. of the % of min. working during nights
fraction morning daily avg. and var. of the % of min. working during mornings
fraction early afternoon daily avg. and var. of the % of min. working during early aft.
fraction late afternoon daily avg. and var. of the % of min. working during late aft.
fraction evening daily avg. and var. of the % of min. working during evening
inactivity time fraction of total inactivity time over total turn duration
availabile time fraction of total availability time over total turn duration
break time fraction of total break time over total turn duration

Table 2: Variables related to the agent’s work distribution and heterogeneity,
and turn distribution.
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Notes’ structure variables

attribute semantics
fraction abbreviated fraction of abbreviated notes
fraction articulated fraction of articulated notes
fraction non articulated fraction of non articulated notes
fraction hybrid fraction of hybrid notes
fraction unrecognized fraction of unrecognized notes
fraction domain fraction of domain-related notes

Table 3: Variables related to the agent’s notes.
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All agents
eval. search str. meas. avg. ACC avg. WAUC avg. RMSE avg. MS
LibSVM BestF. ACC 52.88 0.65 0.42 18630.69
LibSVM BestF. WAUC 52.88 0.65 0.42 18630.69
Rand. F. BestF. ACC 52.82 0.65 0.44 16947.65
Rand. F. BestF. RMSE 54.46 0.66 0.43 18205.39
LibSVM Forward WAUC 54.92 0.67 0.41 19133.20
J48 Evol. RMSE 56.29 0.67 0.42 19741.76
LibSVM Evol. RMSE 54.15 0.65 0.42 19098.85
Rand F. Evol. ACC 55.81 0.66 0.43 17201.62
Rand F. Evol. RMSE 56.39 0.68 0.42 18286.98
LibSVM PSO RMSE 55.56 0.67 0.42 19924.34
J48 InfoGain RMSE 32.51 0.50 0.48 4322.00
Rand F. InfoGain RMSE 32.51 0.50 0.48 4322.00

Inbound agents
eval. search str. meas. avg. ACC avg. WAUC avg. RMSE avg. MS
Rand. F. BestF. RMSE 41,60 0,50 0,4555 5410,95
LibSVN Genetic ACC 55,11 0,66 0,39 14920,77
J48 Evol. ACC 61,11 0,70 0,39 13588,77
Rand. F Evol. WAUC 60,65 0,70 0,39 13942,54
Rand F. InfoGain RMSE 31,84 0,5 0,49 4337

Table 4: Non-dominated solutions.
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Most commonly selected attributes: ALL AGENTS problem

attribute relative frequency
avg break sessions 3
inactivity time 3
available time 2
avg management 2
break time 2
var available 2
var fraction morning 2
var fraction night 2
var available sessions 2

Most commonly selected attributes: INBOUND AGENTS problem

attribute relative frequency
agent education 4
avg management 4
avg break sessions 4
var fraction morning 4
agent gender 3
agent age 3
avg num commissions 3
avg fraction inbound 3
var num commissions 3

Table 5: Most commonly selected attributes.
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Figure captions

1 Proposed methodology for feature selection. . . . . . . . . . . . . 22
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Figure 1: Proposed methodology for feature selection.

22


	Introduction
	Background
	Data Sets and Problem Definition
	Methodology
	Analysis of the Results
	Conclusions

