


 



Abstract

Efficent astronomical imaging at energy greater than 20 keV is
mainly achieved through modulation, either time (i.e. HXMT) or spa-
tial (i.e. IBIS/INTEGRAL), techniques. Currently, the coded mask
technique is widely used with the true spatial intensity distribution
reconstructed from the data by the cross-correlation (CC) method.
As the sensitivity of instruments increases, so must the angular reso-
lution in order to avoid problems with source confusion. The IBIS 12’
angular resolution is clearly not sufficient to distinguish all the sources
in the crowded field of the Galactic Centre. One possibility to over-
come this problem is to change the deconvolution method.

The objective of this thesis is to evaluate the real imaging capability of
the Direct Demodulation (DD) method. It deconvolves incomplete and
noisy data by iteratively solving the image formation equation under
physical constraints. With the goal of exploiting the DD technique,
in the early of the 1990s the HXMT mission was designed, where the
imaging capability is obtained through the temporal modulation of the
detected counts by a set of mechanical collimators.

To achieve this goal, we developed the Lucy-Richardson (LR) code
to reconstruct directly hard-X/soft-γ ray images. It assumes that the
data and the noise follow a Poisson distribution and it guarantees the
non-negativity of the restored images. For the moment, any kind of
regularization or constraint was implemented in the underlying opti-
mization problem, so this will be ill-posed yet.
Due to the general nature of the DD and the fact that HXMT has still
to fly, the IBIS/INTEGRAL data and its PSF were used to check our
own code. The pure geometrical PSF considering only the effects due
to the photon propagation from the mask to the detector was created.
Our CC code implements the same balanced cross-correlation as the
standard software for IBIS/INTEGRAL analysis. The CC deconvolved
images are the reference for the image quality obtained with the LR.

The great improvement in the theoretical angular resolution and lo-
cation precision is evident. It is independent on the source position in
the total FOV, the iteration number and the source flux. Within the
parameters of the simulations used, the LR statistical uncertainty was
found to be a factor of 10 smaller than that obtained with the CC.
Furthermore, the LR deconvolved images have less fluctuating recon-
structed background.
The main LR drawback is the flux evaluation of the reconstructed
source. It is mainly due to the choice of the correct iteration number.
The use of a-priori information about the unknown object allows a
complete regularization of the problem, so probably solving the prob-
lem with the flux estimation.
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Abstract

Le immagini astronomiche ad energie maggiori di 20 keV sono ot-
tenute attraverso tecniche di modulazione di tipo temporale (HXMT) o
spaziale (IBIS/INTEGRAL). Attualmente la tecnica a maschera codifi-
cata è la più usata. In essa la distribuzione spaziale dell’intensità viene
ricostruita dai dati attraverso il metodo di cross-correlazione (CC).
Ad un aumento di sensibilità dello strumento dovrebbe corrispondere
un aumento della risoluzione angolare al fine di evitare la confusione
delle sorgenti. Una risoluzione angolare di 12’ come quella di IBIS è
chiaramente insufficiente per distinguere le sorgenti in un campo af-
follato come il Centro Galattico. Una possibilità per ovviare a questo
problema è cambiare il metodo di deconvoluzione.

L’obiettivo di questa tesi è valutare le reali potenzialità di fare im-
magini con il metodo di Demodulazione Diretta (DD). Esso deconvolve
dati incompleti e rumorosi risolvendo in maniera iterativa l’equazione
di formazione dell’immagine imponendo vincoli fisici. Per utilizzare la
DD, all’inizio degli anni Novanta si progettò la missione HXMT, dove
le immagini si ottengono attraverso la modulazione temporale dei con-
teggi misurati da un set di collimatori meccanici.

Per raggiungere questo obiettivo, si è sviluppato il codice Lucy-Richardson
(LR) che ricostruisce direttamente le immagini nella banda X-duri/γ-
leggeri. Esso assume che i dati e il rumore seguano una distribuzione di
Poisson e garantisce la non-negatività delle immagini ricostruite. Per
ora, non si è implementato alcun tipo di regolarizzazione o vincolo nel
problema di ottimizzazione, cos̀ı esso sarà ancora mal-posto.
Grazie alla genericità della DD e al fatto che HXMT deve ancora esser
messo in orbita, per testare il nostro codice si sono usati i dati di
IBIS/INTEGRAL e la sua PSF. Si è creata una PSF puramente geo-
metrica considerando solo gli effetti della propagazione dei fotoni dalla
maschera al rivelatore. Il nostro codice CC implementa lo stesso tipo
di cross-correlazione pesata usata nel software standard per l’analisi
dei dati di IBIS/INTEGRAL. Le immagini deconvolute con il CC sono
il riferimento per la qualità dell’immagine ricostruita con il LR.

Il grande miglioramento nella risoluzione angolare teorica e nella pre-
cisione di posizionamento è evidente. Esso non dipende né dalla po-
sizione della sorgente nel campo di vista, né dal numero di iterazioni,
né dal flusso della sorgente. All’interno dei parametri nelle simulazioni
usate, l’incertezza statistica nel LR è un fattore 10 più piccola di quella
ottenuta con il CC. Inoltre, le immagini deconvolute con il LR hanno
un background ricostruito meno fluttuante.
Il principale inconveniente del LR è la stima del flusso della sorgente ri-
costruita. Esso è principalmente dovuto alla scelta del corretto numero
di iterazioni. L’utilizzo di informazioni a-priori sull’oggetto incognito
consente una completa regolarizzazione del problema, cos̀ı probabil-
mente risolvendo il problema della stima del flusso.
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Foreward

Efficient astronomical imaging in hard X and γ rays (> 20 keV) is still

an observational problem when high energy photons in this range are not

focused (e.g. for sky surveys). Indeed, their arrival direction cannot be ac-

curately determined from Compton scattering or pair production. In this

case, imaging is mainly achieved through modulation, either time or spatial,

techniques. Currently, the coded mask technique is widely used with the

true spatial intensity distribution reconstructed from the observational data

by the cross-correlation method.

This imaging method requires a Position Sensitive Detector (PSD). In addi-

tion, the geometric area of the detector through the mask holes is reduced to

half or more and a wide field of view (FOV) will lead to a higher background

through the mask aperture. Image distortions (e.g. side lobes, pseudo im-

ages, . . .) appear in the image obtained by coded aperture telescopes, which

strongly reduce the imaging capability for weak sources.

However, as the sensitivity of instruments increases, so must the angular

resolution in order to avoid problems with source confusion. For example,

in the 4th IBIS/INTEGRAL catalogue [78], the resolution of the telescope

is clearly not sufficient to distinguish all the sources in the crowded field of

the Galactic Centre. One possibility is to use instruments with less intrinsic

angular resolution but which employ the extra dimension of time modula-

tion. Another possibility is to change the deconvolution method. This thesis

investigates this way.

A Direct Demodulation (DD) method for inversion was developed in the

1990s by T.P.Li and M.Wu [55] and [56]. With this method, high resolu-

tion reconstructions of celestial objects from incomplete and noisy data are

achieved by solving modulation equations iteratively under physical con-

straints. The DD uses an iterative algorithm (Jacobi, Gauss-Seidel, Lucy-

Richardson, etc) to reconstruct directly the sky image. These kinds of al-

gorithms are already used in many scientific fields, like medicine, medical
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physics or engineering, and also in astronomy, as in the case of the Hubble

Space Telescope data analysis [85] and [42].

The novelty of this method is indeed its application to high energy astro-

physics. While in the medical physics we know the background contamina-

tion, in X and γ ray astronomy we must deal with a lot of unknown sources

of spurious signal, like cosmic rays, diffuse cosmic X-ray background (CXB)

and instrumental background.

With the goal of exploiting the DD technique, in the early 1990s the high

energy astrophysical mission Hard-X ray Modulation Telescope (HXMT)

was designed. In this case, a PSD is not required as the imaging capability

is obtained through the temporal modulation of the detected counts by a

set of suitable mechanical collimators.

Actually the expected capability of obtaining high resolution sky reconstruc-

tions by means of the DD was greeted with scepticism probably due to the

complex mathematical algorithm involved and, consequently, the difficulty

of interpretation.

The goal of this thesis is to investigate the real capability of the DD. With

several difficulties tied to the lack of details about DD, I first derived the

mathematics behind this method and thus I created my own algorithm, try-

ing to cling as much as possible to the original Chinese idea.

While HXMT employes passive collimators, the IBIS/INTEGRAL is a coded

mask instrument. Due to the general nature of DD and the fact that HXMT

has still to fly, the IBIS/INTEGRAL data and its PSF were used to check

my own code. Indeed, the strong advantage of the algorithm used is its ver-

satility: regardless of instrumentation type used for imaging, it is sufficient

to know the PSF as accurately as possible.

In order to compare the DD capability with that of the cross-correlation

deconvolution method, only the geometrical effects of the coded mask were

considered, disregarding everything which is connected to the instrument

implementation limits and payload influences. Indeed, this work is only the

first step of what may be obtained with this new method.

After a short overview of the high energy sky (Chapter 1), Chapter 2 will

deal with the main type of detectors for high energy astrophysics and the

observational limits of the X-ray telescopes. Before applying the DD to real

IBIS/INTEGRAL data, the basic concepts of coded mask imaging should

be dealt with, including the classical cross-correlation (CC) deconvolution

technique and the definition of the Modified Uniformly Redundant Array
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(MURA) (Chapter 3). Chapter 4 will describe the IBIS instrument aboard

the INTEGRAL satellite and the fundamental CC steps for the analysis of

its data.

Chapter 5 will focus on the DD and Lucy-Richardson (LR) algorithm, de-

scribing the details of the new code. Chapters 6 and 7 will show the results

of the analysis for both simulated and real IBIS/INTEGRAL data, respec-

tively. They confirm the power of the proposed reconstruction algorithm

as made the preliminary results discussed at ”The Extreme Sky: Sampling

the Universe above 10 keV” Congress [66]. Finally, Chapter 8 will draw

conclusions and outline prospects for the future.
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Chapter 1

The hard-X/softγ ray band

As said before, this thesis studies the real capability of the DD deconvolution

method. This chapter will make a general overview of the X ray sky, dealing with

the main problems and the main emission mechanisms. Furthermore, since the LR

code is tested employing data from the IBIS/ISGRI imager aboard the INTEGRAL

satellite, the main kinds of sources that are detected by this telescope will be shortly

described .

1.1 Introduction

The term light refers to the entire frequency range of electromagnetic

radiation. Each photon has its own frequency and, depending on it, the

nature of the radiation dramatically changes.

X rays and γ rays are highly energetic form of light, ranging from a few tens

of keV until about several MeV. An X ray is a quantum of e.m. radiation

with energy in the range 12 eV to 120 keV. Traditionally, the soft-X ray

band is defined as the energy range 0.12-12 keV (corresponding to wave-

length of 100-0.1 nm), the hard-X ray extends to about 120 keV (0.01 nm

wavelength). The higher the photon energy, the higher is the penetrating

power and the harder are the X rays. The energy range beyond hard-X rays

to a few MeV is regarded as soft γ rays (wavelength less than 10 pm).

X and γ rays are produced in the cosmos when gas is heated to millions

and billions of degrees or electrons have been accelerated to near the speed

of light by violent and extreme conditions. Exploding stars, neutron stars

(NSs), black holes (BHs) and galaxy clusters are among the objects which

give birth to this radiation.

The lauch of the INTErnational Gamma-Ray Astrophysics Laboratory (IN-
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TEGRAL) satellite (15 keV-10 MeV, i.e. from hard-X to soft-γ rays) in

October 2002 marked the beginning of a new chapter in high energy as-

trophysics, since it observes γ rays across a broad energy spectrum with

unequalled precision and resolution.

1.2 Brief historical overview

X rays were first observed in 1985 by W.C.Röntgen, a German scientist

who found them quite by accident when experimenting with vacuum tubes.

He called them ”X” to indicate their unknown nature. In 1900 P.Villard,

a French chemist and physicist, discovered γ rays while studying radiation

emitted from radium. In 1910 Bragg demonstrated that γ rays ionize gas

just like X rays. This signaled the first step towards the identification of X

and γ rays as e.m. radiation.

The direct observation of the X ray sky began after the Second World War,

when a large number of captured V2 rockets were made available to scien-

tists for small experiments in sub-orbital flights. These led H. Friedman to

detect X rays from the Sun corona in the 1950s.

The most important event was the X ray detection of Scorpio X-1. In

1962, during an attempted observation of X ray fluorescence from the Moon,

R.Giacconi detected the first extra-solar X ray source in the constellation of

Scorpius, Sco X-1 [34]. Assuming that it was a nearby star, it would emit

X rays at a rate of 107-108 times greater than the Sun. In 1966 the optical

counterpart of Sco X-1, V818 Scorpi, was discovered [67] and [49]. This

object emitted 1000 times more power at X ray wavelengths than at optical

ones. It is now known that Sco X-1 is a Low-Mass X ray Binary (LMXB),

i.e. a compact 1.4 M⊙ NS accreting matter from a 0.42 M⊙ companion star

and transforming gravitational energy to e.m. (M⊙ =1.99 1033 g is the mass

of the Sun).

The first earth-orbiting mission entirely dedicated to X-ray astronomy was

X-ray Small Astronomy Satellite SAS-1 (2-20 keV), also called Uhuru. It was

lauched in December 1970. After this, NASA launched two other companion

satellites in 1972 and 1975. SAS-3 (0.1-60 keV), the first fully imaging X

ray telescope, could determine bright X ray source locations to an accuracy

of 15 arcsec. It was the first to survey the soft X ray background (0.1-0.28

keV).

The orbital motion in Cen X-3 [69] confirmed that many X ray sources orig-

inate in galactic close binary star systems in which mass is transferred from
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a normal star to a collapsed one. The in-fall mass into the collapsed object

powers the X ray radiation. In other sources the X rays were found to orig-

inate from synchrotron emission in the nebulae of supernovae remnants.

The High Energy Astrophysical Observatory HEAO-1 A2 full-sky cosmic

X ray experiment (1977-1979) scanned the X ray sky over 0.2 keV-60 keV.

It provided the most comprehensive data on the cosmic X ray background

(CXB) broadband spectrum. The solid state spectrometer at the focus of

the HEAO-2 Einstein Observatory (0.2-20 keV) grazing incidence telescope

was the first high resolution spectrometer to be used for X ray astronomy.

In the next decades, more sensitive instrumentation was lauched into space

which permitted a deeper understanding of the environment of X ray sources.

NASA’s Compton Gamma-Ray Observatory (CGRO) inaugurated a new era

in γ ray astronomy with its unprecedented sensitivity and coverage of a large

range of γ ray energies (30 keV-30 GeV). The Compton Observatory was

succeeded by ESA’s INTEGRAL, lauched in October 2002. In Chapter 4,

the INTEGRAL satellite will described, with a particular accent on the IBIS

imager.

NASA’s Rossi X ray Timing Explorer (RXTE; 2-250 keV), lauched in De-

cember 1995, has the ability to study changes in the intensity of X rays

produced in the violent environment around NSs and BHs on time scales

ranging from microseconds to months. Two other NASA missions, the High-

Energy Transient Explorer (HETE-2; 0.5-400 keV), lauched in 2001, and the

Swift satellite, lauched in 2004, are dedicated to the exploration of GRBs.

Swift carries three instruments: the Burst Alert Telescope (BAT; 15-150

keV), the X ray Telescope (XRT; 0.2-10 keV) and the Ultraviolet/Optical

Telescope (UVOT; 170-650 nm).

1.2.1 X ray detection issues

There are some important issues that must be considered in the hard-

X/soft-γ ray energy band. First, the hard-X/soft-γ photons are absorbed by

the atmosphere, so to detect them telescope must be placed above most or

all the atmosphere (higher than 40 km a.s.l.) using balloons and satellites.

However, the region between the UV and low energy X rays (0.1 keV) is

inacessible even from space, given that the interstellar medium is opaque to

them.

Balloon-borne high energy imaging telescopes has provided important dis-

coveries, such as the first images of the sky between 20 and 1000 keV and

the BH candidate source in the Galactic Centre region. Their main draw-
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back is their short mission life (at most a few days), although nowadays with

circumpolar flights, durations of up to 30 days are becoming possible.

The best way to perform hard-X/γ-ray observations is to place telescopes

aboard satellites. In this way, instruments are able to observe the full range

of the X ray spectrum and they can collect data for several years.

Another problem of hard-X/soft-γ ray astronomy lies in the very nature of

the rays themselves. The higher the frequency of a photon, the higher its

energy is, the lower is the number of photons emitted with an equal amount

of energy. A X ray source would emit a million times less high energy pho-

tons than visible ones. Furthermore, the high energy instruments detect

also cosmic rays, massive particles having nothing to do with the e.m. radi-

ation. They are difficult to be distinguished: high energy observations are,

therefore, contaminated by them.

As in the other regions of the e.m. spectrum, also in hard-X/soft-γ rays

we can made imaging and spectroscopy. Hard-X and γ rays have energies

such that traditional techniques (i.e. lenses or mirrors) cannot be employed

to focus them. X rays can make reflect off mirrors only if photons strike

at grazing angles (see Sect.2.4). For this reason, X ray mirrors have to be

carefully shaped and aligned nearly parallel to the incoming X rays.

The Chandra X-ray Observatory (0.1-10 keV), lauched by NASA in July

1999, is one of the premier focusing X ray telescopes. It has an assembly of

four pairs of the smoothest mirrors ever constructed.

The ESA’s XMM-Newton (0.1-15 keV), a powerful telescope launched in

December 1999, had 58 mirrors. They were not as smooth as Chandra’s,

so XMM could not make images with the same crispness, but it could de-

tect fainter sources and measure the energy of the X rays very accurately.

Thanks to its very large collecting area, it was specialised in spectroscopy.

The imaging problem of hard-X rays (E > 20 keV) can be solved by apply-

ing temporal or spatial multiplexing techniques. A straightforward example

of spatial multiplexing is a coded mask system, a mask with a special pat-

tern of holes, which is placed at a given distance from a PSD. The photons

incident on the mask will project a shadow onto the detector allowing the

location of the sources in the FOV of the telescope. Passive modulation

collimators are instead an example of temporal multiplexing. They will be

used in the Chinese HXMT mission still under development. Multiplexing

techniques will be discussed in Chapter 3, with particular attention on coded

masks principles.
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1.3 The high energy sky

X and γ astronomy has unveiled a Universe very different from that

known from optical observations. It presents unique opportunities to explore

exotic objects, to search for new physics, testing theories and performing ex-

periments which are not possible in earth-bound laboratories. Observing the

Universe at these energies allows us to understand how matter and radiation

interact with each other under extreme conditions, such as at temperatures

of hundreds of millions of degrees, where matter is very dense and the mag-

netic fields are very strong.

High energy observations have also revealed many types of objects with vari-

ability timescales from years, months, days or hours down to milliseconds.

The energy source is mainly the conversion of gravitational energy in to e.m.

radiation.

This section overviews the main types of high energy sources that the IBIS

imager aboard the INTEGRAL satellite can observe. Some fields containing

this kind of sources will be analyzed with the LR code in Chapter 7.

1.3.1 Supernovae

When a massive star (≥ 10 M⊙) has used up the nuclear fuel that makes

it shine, the pressure drops in its central core. Gravity crushes the matter

in the core to higher and higher densities. The temperature increases to

billions of degrees and the intense heat generated in the collapse produces

a cataclysmic rebound that sends debries flying outward. A thermonuclear

shock wave accelerates the expanding stellar debries, producing a brilliant

visual outburst with the brightness of several hundred million suns. This

phenomena is called a supernova explosion. The shell of matter thrown

off by the supernova creates a magnetized object of gas of several million

degrees mixed with high energy particles, called a supernova remnant. The

hot gas expands and produces X rays for thousands of years. An example

of this phenomenon is Cassiopeia A (Cas A), the 320-year-old remnant of a

supernova explosion.

1.3.2 Neutron stars: the Crab

In 1731 John Bevis discovered the Crab Nebula. Located in the costel-

lation of Taurus, it is a pulsar immersed in a nebula. At energies above 30

keV, the Crab is generally the strongest persistent source in the sky, with a

measured flux extending to above 1012 eV. Today the Crab has a luminosity
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of 8× 104L⊙, where L⊙ = 3.828×1033 erg s−1 is the luminosity of the Sun.

In 1968, at the centre of the Crab supernova remnant, Lovelace discovered

the pulsar PSR 0531-21, with the very short pulse period of only 0.0333 s

[20]. The collapse of the supernova and the rapid rotation of the NS caused

it to become highly magnetized. The NS gravity is overwhelmed by the

electric field and particles are pulled off the NS and accelerated to speeds

close to the speed of light. An intense shower of electrons and positrons is

produced by these particles. As particles spiral around magnetic field lines,

they produce synchrotron radiation, visible in the pulsed emission from the

Crab Nebula.

The rotation-powered activity of an isolated NS can last only a few thousand

years. However, if it is in binary system, its X ray intensity may increase

again. Indeed, when the companion star enters the red giant stage of its

life, it will increase greatly in size and gas will flow from the giant onto the

NS. The gas will be heated to tens of millions of degrees as it falls onto the

surface of the NS and the compact object will shine in X rays.

1.3.3 Black holes and quasars

When some very massive stars collapse, they form a BH. A BH does

not have a surface in the usual sense of the word. There is simply a region,

the event horizon, around a BH beyond which nothing can escape from the

inside. For this reason, a BH cannot be seen directly.

One of the best methods for finding a BH is to study X ray binary systems.

Some binary systems have compact objects with a so great mass (more than

3 M⊙) that it cannot be a NS.

As gas and dust particles stripped from the companion swirl toward a BH,

they speed up and form a flattened disk around it. The matter inside the

disc cycles faster the closer it gets to the BH due to the conservation of

momentum. The gas particles are heated to temperatures around 108 K, so

creating an ionized plasma. Just before the fall into the BH, the fast rotated

charged particles create an e.m. field and there is X and γ rays emission

into two jets perpendicular to the disc.

Massive BHs live in the centres of galaxies and can be very bright (AGN)

or very quiet as the massive SgrA in the centre of the Milky Way.

Cygnus X-1 is the strongest X ray emitter in the Cygnus constellation as

seen from Earth. After its discovery in the 1965 [12], it was the first source

accepted to be a BH candidate. It is a very close bound binary system with

a 33 M⊙ giant blue star, orbiting around a 15 M⊙ BH.
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A BH grows when matter falls into it, so a BH in the centre of a galaxy

where stars are densely packed may grow to the mass of 109 M⊙, which is

about the upper limit for BH masses. A great quantity of energy can be

released from large clouds of gas as they fall into these supermassive BH.

Supermassive BHs are usually located outside the Milky Way and give rise

to different types of objects.

Quasars are distant galaxies hosting a strongly interacting supermassive

BH in their centre. Their power output at the centre of a galaxy can be a

thousand times greater than an entire galaxy of 1011 stars. For this reason,

the sources are also called Active Galactic Nuclei (AGN).

1.3.4 Gamma Ray Burst

GRBs are the most energetic events observed in the Universe and, for

few seconds, they can become brighter than 1015 L⊙. They have a cosmo-

logical origin and sometimes come from the far reaches of the Universe.

According to their duration, there appear to be at least two types of GRBs.

Short ones (0.3 s on average) are likely produced by the merger of two NSs

or a NS and a BH. Long bursts (about 30 s on average) represent the explo-

sions of extremely massive stars (> 50 M⊙) at the end of their life.

GRBs are observed to occur about twice per day. They are totally unpre-

dictable and appear randomly in the sky. Even if the INTEGRAL payload

was not specially designed to support primarily a GRB mission, its wide

energy band coverage and fine imaging capabilities make this satellite well

suited to provide important observational data on GRB.

1.3.5 Cosmic X ray background

The combination of many unresolved X ray sources gives rise to the X

ray background (CXB). Discovered by Giacconi [34] in 1962, the CXB was

initially suggested to be due to the emission from a hot diffuse intergalactic

medium, well described by a thermal bremsstrahlung with kTe ≈ 40 keV

[59]. It was, however, immediately clear that it would be very difficult to

understand how a gas of this temperature could be heated and distributed

throughout space.

It was first suggested by Setti and Woltjer [70] that the CXB is comprised

mainly of AGNs powered by accreting supermassive BHs at the centers of

large galaxies [19] and [35]. Optically bright quasars and Seyfert galaxies

dominate at low energy (up to a few keV), while obscured AGNs are respon-
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sible for the bulk of the CXB at energies greater than 10 keV.

The major effort to get a reliable estimate of the spectrum in a broad energy

band (2-400 keV) was performed in the late 1970s using the A2 (3-60 keV),

A4 (13-180 keV) and Medium Energy Detector (MED, 100-400 keV) instru-

ments aboard HEAO-1. The HEAO-1 results ([59], [8], [9], [10], [11] for A2;

[40] and [41] for A4; [50] for MED) on the CXB spectrum are consistent

with the best fit E×J(E) spectrum given by a bell shape with a maximum

intensity of 42.6 keV cm−2 s−1 sr−1 at 29.3 keV, and an energy spectrum

below 60 keV given by a power law with a high energy exponential cutoff:

F (E) = 7.877E−0.29
e
−

E
41.13 erg keV

−1
cm

−2
s
−1

sr
−1

. (1.1)

After HEAO-1, no other CXB measurement was performed in the hard

X ray range (> 15 keV). At lower energies several CXB detections were

performed with imaging telescopes aboard the satellite missions ROSAT

(0.1-2 keV), ASCA (1-8 keV), Beppo-SAX (1-8 keV; [83]), XMM-Newton

(2-8 keV), Chandra (0.5-8 keV), and with the non imaging PCA (3-15 keV)

aboard the Rossi-RXTE. All these low energy measurements show sistemat-

ically higher CXB intensities than those obtained with HEAO-1. Probably

there are systematic errors in the HEAO-1 measurements.

Frontera [33] reported the first accurate hard X ray measurement of the

CXB in the 15-50 keV range after that of HEAO-1, performed with the

PDS instrument aboard the Beppo-SAX satellite. The most likely CXB in-

tensity level at its emission peak (26-28 keV) was found to be about 40 keV

cm−2 s−1 sr−1, consistent with those obtained with HEAO-1 at the same

energies.

At energies greater than 100 keV, where the bulk of the background energy

resides, the only available measure is that of HEAO-1.

1.4 X ray emission mechanisms

In this section the main issues on X ray emission mechanisms are dealt

with. For further details see [65]. Any charged particle in accelerated motion

loses energy and emits e.m. radiation. The intensity of the radiation is ruled

by Larmor’s formula:

dW

dtdΩ
=

1

4πc3
q
2

(
dv

dt

)2

sin2Θ, (1.2)
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where q is the electric charge, v is the particle velocity, Θ the angle

between the acceleration vector and the emission direction. In the non

relativistic case (Eq.1.3), the power P , averaged over the emission angles, is

in general inversely proportional to the square of the mass of the emitting

particle. So, electrons emit much more than protons.

P =
dW

dt
=

2

3c2
q
2

(
dv

dt

)2

sin2 ∝
(
F

m

)2

. (1.3)

If the velocity v of the emitting particle is relativistic, then the power is:

P =
2

3c2
q
2
γ
4

[(
dv

dt

)2

perp

+ γ
2

(
dv

dt

)2

parallel

]
, (1.4)

where γ is the Lorentz factor (γ = (1− v
2
/c

2)−1/2) of the emitting particle

and the acceleration vector is decomposed in the components parallel and

perpendicular to the velocity. The equation of the radiative transfer is:

dIv

dτv
= −Iv + Sv, (1.5)

where τv = αvds is the optical depth, Sv ≡ jv/αv the source function and Iv

the intensity. jv and αv are the emissivity and the absorption coefficients,

defined as:

jv ≡ dE

dV dt dv dΩ
αv = − 1

Iv

dIv

ds
. (1.6)

Different processes emit their own characteristic radiation. Here the main

emission mechanisms are briefly described. For X and γ rays, it is customary

to divide them into thermal and non-thermal, according to whether the

velocity distribution of the emitting electrons is Maxwellian or not.

1.4.1 Thomson scattering

Thomson scattering results from the interaction of a photon with a free

electron at rest, with hν << mc
2 = 511 keV. Scattering is one of the most

important processes in high energy astrophysics between 100 keV and 10

MeV, as it allows to transfer an important fraction of the electron energy to

the photons and thus to cool the electron plasma. Furthermore, the resulting

radiation appears predominantly in the X rays up to TeV energies.

Thomson scattering is an elastic process, whose cross section has the same

value for all energies:



10 1 The hard-X/softγ ray band

σT =
8π

3

(
e
2

mec
2

)2

= 6.65 10−25
cm

2
, (1.7)

where

r0 =
e
2

mec
2
= 2.8210−13

cm (1.8)

is the classic radius of the electron. The small size of σT means that the elec-

tron scattering is most effective as a source of opacity at high temperature,

as in planetary and stellar atmosphere.

1.4.2 Pair production and annihilation

An electron-positron pair e+ − e
− may annihilate producing two γ rays

for the conservation of momentum. If the electrons are not relativistic, the

two photons have energy of E = 511 keV. It is a threshold process: the

photon energy must be greater than the equivalent rest mass of the pair

(2E0 = 2m2
c
4 = 1.02 MeV).

At extreme environments of compact objects as pulsars and accreting BH,

conversely, two γ rays or a γ ray with a nucleus, may produce a e
+ − e

−

pair. This mechanism is called pair production. The cross sections are:

σγγ ≈ σT (1.9)

σγp ≈ ασT (1.10)

where α ≈ 1/137, for pair production obtained by two γ rays and a γ ray

and the nucleus p, respectively.

1.4.3 Bremsstrahlung

Bremsstrahlung (”braking radiation”) is produced by the deflection of

a charged particle (usually an electron) in the Coulombian field of another

charged particle (usually an atomic nucleus). It is also called free-free emis-

sion, because the electron is free both before and after the deflection that

causes the emission.

Bremsstrahlung is likely to be operating in virtually all X ray sources. It’s

important in HII regions, planetary nebulae, stars and clusters of galaxies.

However, at intermediate temperatures the ions are not completely ionized

and some electrons are bound to the nuclei. Transitions between states of
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Figure 1.1 Schematic representation of the bremsstrahlung emission process.

the ion are therefore possible. These lead to lines and edges in the emission

spectrum of the plasma.

The interaction (Fig. 1.1) occurs on a timescal ∆t ≈ 2b/v, where b is the

impact parameter and v is the particle velocity. The emitted energy per unit

of frequency in a single collision is inversely proportional to the square root

of: the mass, the velocity of the deflected particle and the impact parameter.

Indeed, the emission is:

dW

dv
≈ 16Z2

e
6

3c3m2v2b2
b <<

ν

ω
, (1.11)

while it is equal to zero for b >> v/ω.

Integrating over the impact parameter, we obtain:

dW

dv dt dV
=

32π2
Z

2
e
6

3
√
3c3m2v

nenigff , (1.12)

where gff is the Gaunt factor,

gff =

√
3

π
ln

(
bmax

bmin

)
. (1.13)

bmax and bmin must be evaluated taking into account quantum mechanics.

gff is of the order of unity for large intervals of the parameters.

To get the final emissivity, the integration over the velocity distribution of

the electrons in the macroscopic plasmas must be made. Since the emissivity

is proportional to the square root of the density, thermal bremsstrahlung

will therefore play a role whenever the densities are high. The velocity of
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the electrons in thermal equilibrium follows a Maxwellian distribution. The

thermal bremsstrahlung emission, in the optically thin case (τ << 1), thus

becomes:

dW

dt
= f(T )

∫
nenidV, (1.14)

with

f(T ) =
64π2

Z
2
e
6

3hc3m2

√
2πk

3km
T
−

1
2 gff , (1.15)

where
∫
nenidV is the emission measure and gff is a velocity averaged Gaunt

factor. For further datials see [65]. The emission spectra will be flat at

lower frequencies (hv << kT ) with an exponential cutoff at higher ones

(hv >> kT ). In the optically thick case, we have the blackbody emission.

Furthermore, the auto-absorption decreases with the increasing of v. If the

plasma is optically thin, the bremsstrahlung radiation leaves the plasma,

carrying part of the internal plasma energy emitting as a blackbody. This

effect is known as the bremsstrahlung cooling.

For any emission mechanism, the cooling time is defined as:

tcool ≡
E

|dE/dt| , (1.16)

where E is the energy of the emitting particle and dE/dt the energy lost by

radiation. For thermal bremsstrahlung,

tcool ≈
6 103

neZ
2gff

T
−

1
2 yr. (1.17)

The cooling time is of order one thousand years for HII regions and of a few

1010 years for a cluster of galaxies.

Free-free absorption

It is the absorption of a photon by a free electron in the Coulombian field

of an atom. Free-free absorption is the absorption mechanism corresponding

to bremsstrahlung. For thermal electrons,

j
ff
ν =

dW

4π dν dt dV
= α

ff
ν Bν(T ) (1.18)

α
ff
ν =

8πZ2
e
6

3hc3m2

√
2π

3km
T
−

1
2neniν

−3(1− exp−
hν
kT )gff , (1.19)
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where Bν(T ) is the blackbody radiation at the temperature T . At low

frequencies, matter in thermal equilibrium is optically thick to free-free ab-

sorption (self-absorption), becoming thin at high frequencies.

1.4.4 Cyclotron and synchrotron emission

One of the most common non-thermal emission is synchrotron. It is

produced by the acceleration of a moving charged particle in a magnetic

field B due to the Lorentz force:

F =
q

c
(v ×B) , (1.20)

where v and q are the velocity and the charge of the particle.

The force F is always perpendicular to the particle velocity, so it does not

do work. Therefore, the particle moves in a helical path with its axis parallel

to the direction of the magnetic field. The radius of the gyration and the

frequency of the orbit are:

rB =
γmcv sinα

qB
ωB =

v sinα

rB
=

qB

γmc
, (1.21)

where α is the angle between v and B.

Non-relativistic electron velocity (γ ≈ 1) results in cyclotron radiation, while

the relativistic particles (γ >> 1) produce synchrotron radiation. Syn-

chrotron emission is often observed in the radio domain, but, in some ex-

treme cases (such as in jets of blazars and in GRBs) it is seen up to the X

and γ rays. Eq.1.20 shows that the acceleration is inversely proportional to

the mass of the particle. Electrons therefore dominate the radiation in most

situations: they move helicoidally at relativistic velocities inside a magnetic

field emitting synchrotron radiation through a cone of half opening angle

1/γ in the direction of the motion.

For relativistic electrons, averaging over α, the power emitted by an electron

is:

P =
4

3
σT cβ

2
γ
2
UB (1.22)

UB ≡ B
2

8π
β ≡ v

c
. (1.23)

The synchrotron spectrum from a single electron is peaked at:

v0 =
3γ2eB sinα

4πmc
. (1.24)
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To get the total spectrum from a population of electrons, we must know

their energy distribution.

1.4.5 Inverse Compton scattering

In a frame where the electron initially moves with relativistic speed and

has an γmec
2 energy much higher than the photon one, the photon energy

is increased by a factor γ2, so gaining a very large energy in the scattering.

Inverse Compton scattering explains why X ray photons are often created

by scattering of soft photons on hot relativistic electron plasma.

Inverse Compton scattering is a dominating radiative process shaping the

spectra of accreting BH, NS and AGN. In the electron rest frame, the photon

energy changes as:

E =
E0

1 + E0
mc2

(1− cos θ)
. (1.25)

The cross section is the Klein-Nishina [65]:

σKN = σT
3

4

[
1 + x

x3

2x(x+ 1)

1 + 2x
− ln(1 + 2x) +

ln(1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

]
(1.26)

where x ≡ E/mc
2. At low energy, it behaves as σT .

Assuming an electron thermal distribution, the mean percentage energy gain

of the photon is:

∆E

E0
=

4kT − E0

mc2
. (1.27)

For 4kT > E0, the energy is transferred from the electrons to the photons,

while for 4kT < E0 from the photons to the electrons.

Inverse Compton losses dominate when the energy density of the radiation

field is larger than that of the magnetic field (Compton catastrophe).

The cooling time is:

tcool ≈
(γ − 1)mc

2

4
3σT cUradγ

2β2
, (1.28)

where Urad is the energy density of the radiation field. The cooling time

may be very short for relativistic electrons in a strong radiation field.



Chapter 2

Detectors for High Energy

Astrophysics

When an astrophysical instrument is planned, the right detector must be chosen.

Two main features must be taken into account: the problematics connected with the

X and γ ray sky (seen in Chapter 1) and the different physical processes underlying

the matter-radiation interaction.

This chapter briefly deal with the principal ways in which X rays interact with

matter and with the main detectors able to detect them. Hard-X/soft-γ photons

are detected by observing their effect on the detector material. The choice of the

right detector depends on the X ray photon energy and on what we want to measure.

This chapter will focus to semiconductor detectors, such as those employed in the

IBIS/INTEGRAL telescope.

Until now, the best solution for image hard-X/soft-γ ray sources is by coded mask

systems. To improve the sensitivity of a coded mask telescope, mainly limited by the

high background radiation, another imaging possibility, but still in a development

phase, is focusing optics. The last part of this chapter will shortly deal with the

main focusing optics for X ray telescopes, while the following one will describe

coded mask systems now used in hard-X/soft-γ ray energy band.

2.1 The matter-radiation mechanisms

The interaction of the γ ray radiation with matter causes three main

phenomena: the photoelectic effect, the Compton scattering of free electrons

and the pair production. Each of these processes is very complex, since there

are secondary effects as the emission of Auger electrons and fluorescence

radiation in the photoelectric effect or the emission of recoil electrons in the
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scattering or, finally, the anihilation of positrons in pair production.

The influence of these emission mechanisms depends on the spectral region of

the radiation and on the atomic number Z of the detector absorber material

(see Fig. 2.1). The choice of the detector material must be made to best

guarantee the detection of its energy for one of these emission mechanisms.

Figure 2.1 Importance of the three main mechanisms of radiation-matter it-
eration as a function of photon energy and atomic number Z of the absorbing
material.

2.1.1 Photoelectric effect

In the photoelectric absorption the γ ray photon energy hν is spent to

remove one of the bound electrons from the absorber atom. This process

can happen only if the γ ray has energy bigger than the electron binding

energy EB. This causes jumps in correspondence of the binding energy of

the different shells in the absorption coefficient curve.

The kinetic energy of the resulting photoelectron, Ee, will be given by Ee =

hν − EB. The resulting atom is in an excited state and could expell the

excess energy in two ways: with photon emission of energy close to the

excess one, in which case we have X ray fluorescence. In alternative, the

atom could emit another electron of energy equal to the excess one due to

the electron redistribution in the atomic levels (Auger effect).

The probability of the photoelectric absorption is

τ = kZ
n
E

−3.5
hν , (2.1)
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where Z is the atomic number of the detector material and n assumes values

between 4 and 5. For the same photon energy, materials with higher Z have

higher photoelectric absorption.

2.1.2 Compton scattering

The Compton scattering (see Fig. 2.2) is the interaction of a photon of

energy hν with a bound electron of the absorbing material. The electron re-

coils in the direction φ, while the photon is scattered by an angle θ. Because

the photon has lost energy to the electron, the photon energy has decreased.

In this collision, both the momentum and the total energy are conserved.

The change in energy of the scattered photon is very small, so Compton

scattering is usually lumped together with Thomson scattering.

Figure 2.2 Schematic view of the Compton scattering.

The energy of the scattered electron depends on θ as

hν
′ =

mec
2

1− cos θ + ( 1α)
=

hν

1 + hν
mec2

(1− cos θ)
(2.2)

where mec
2 is the rest energy of the electron (equal to E0 = 0.511 MeV).

The term h/(mec
2)=0.0243 A◦ , called the Compton wavelength λc, is the

characteristic change in the wavelength of the scattered photon. For α =

hν/mec
2
>> 1, the energy of the scattered photon verges to mec

2
/2 for

θ = 180
o
and to 511 keV for θ = 90

o
.

For small θ, the kinetic energy of the scattered photon is about equal to the

initial one, so the energy of the recoil electron EK = hν − hν
′ is zero. At

180
o
, the energy of the scattered photon is minimum and that of the recoil
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electron is maximum, equal to

EK =
hν

1 + 2hν
mec2

. (2.3)

The probability of a Compton scattering depends on the number of target

electrons, so it grows up linearly with Z. The angular distribution of the

scattered photons is given by the Klein-Nishina formula (Eq.1.26).

For polarized photons, the cross section is given by [25]:

dσ

dΩ
=

r
2
0

2

(
ν
′

ν

)3(
ν

ν ′
+

ν
′

ν
− 2 sin2 θ cos2 η

)
, (2.4)

where r0 is the classic radius of the electron and η is the angle between

the electric field of the incident photon and the azimuthal direction of the

scattered photon at θ angle.

For not-polarized photons, instead, the cross section will be:

dσ

dΩ
= Zr

2
0

(
1

1 + α(1− cos θ)

)2(1 + cos2 θ

2

)(
1 +

α
2(1− cos θ)2

(1 + cos2 θ)[1 + α(1− cos θ)]

)
,

where α = hν/mec
2.

2.1.3 Pair production

The threshold energy for the pair production is the equivalent rest mass

of the electron-positron pair (2E0 = 2m2
c
4 = 1.02 MeV). This absorption

mechanism becomes important at energies above 5 MeV.

In the Coulombian field of a detector nucleus, the γ ray photon disappears

substituted by a e
+ − e

− pair. All the photon energy in excess with respect

to the pair rest energy becomes kinetic energy of the pair itself.

A simple expression of the pair production cross section does not exist. For

photons of some MeV energy, we can say that

σpp ≈ r
2
0

Z
2

137
. (2.5)

2.2 Detectors for high energy astrophysics

The principal issue when selecting a detector is to establish what you

exactly want to measure. High energy detectors usually measure the energy

and the arrival time of individual photons. In addition to this information,
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the position of the detected photons is essential for imaging.

All detectors have to deal with background. The total X ray background has

the same intensity level or it is higher than the source you want to measure.

Thus, it is needed to separate source counts and background contribution

and to minimize the last one. The employment of not focusing collimators

in hard-X/γ ray telescopes restricts the telescope FOV but also blocks the

background radiation coming from directions different from that of interest.

The different types of detectors have different capabilities. If one wants to

get accurate energy measurements for individual regions of a source with

exact timing and a good ability to reject background counts, a large area

detector with intrinsic energy resolution is needed. Instead, if one wants

only excellent timing resolution (i.e. to tag each photon with a highly accu-

rate arrival time), one wants to be able to perfectly distinguish the source

from the overall sky. Lastly, if you want that electronics or read-out devices

do not add any noise, it is better to transmit all the signals.

Most of the X ray detectors is based on the absorption (scattering) of in-

cident photons in the detector material. The energy lost by the photon

becomes energy of the electron. Depending on the energy of the photons to

be detected, energy resolution and efficiency, the energy lost can be used to

produce a cascade of electrons, so creating a signal proportional to the orig-

inal photon one (as in proportional counters), to excite fluorescence states

of the detector material, so producing a luminous signal proportional to

the incident photon energy (as in scintillator detectors) or, finally, to create

pairs in the solid state detectors.

Recently, for soft γ rays, calorimeters, i.e. detectors that measure the tem-

perature variations associated to the photon absorption, are being devel-

oped. To get a very accurate measure of the X ray energy, they have to be

cooled down to nearly zero Kelvin. These calorimeters are suitable to be

used as focal plane detectors.

Gas detector: proportional counter

A proportional counter is a metallic box (that works as cathod) filled

with gas and with one o more wires (anodes). A photon that crosses the

gas, ionizes it creating electrons and free ions. Electrons are captured by the

anode, producing an electric pulse. If the potential difference between anode

and cathod is low, electrons could recombine themselves with ions. Instead,

for a sufficiently high voltage, all the electrons are accelerated towards the

anod, with energies able to ionize other atoms producing other electrons
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Crystal Z Density Decay time Light yield Wavelength of

(g cm−3) (ns) (ph/100 keV) max emission (nm)
CsI(Na) 50-53 4.51 460 3900 420
NaI(Tl) 23-53 3.67 230 3800 415

Table 2.1 Properties of crystals used in hard-X ray detectors, data taken
from [51].

(electrical current). Proportional counter is one of the most common X ray

detectors used in recent X ray missions. With these detectors it is possible

to measure energy, arrival time and position information.

Scintillation detector

Scintillation remains one of the most used methods for detection and

spectroscopy of hard-X rays (> 15 keV) in a broad energy band. When a γ

ray interact with the atoms and is absorbed, violet fluorescence is produced.

The energy lost produces a transfer of electrons from the valence to the con-

duction band. To enhance the fluorecence during the de-excitation process

(i.e. electron comes back to the valence band), small amounts of impurity,

called activators, are commonly added to inorganic scintillators. Thallium

and sodium are often used for this purpose. Well known and used scin-

tillators are NaI(Tl) with a thallium activator and CsI(Na) with a sodium

activator. Tab. 2.1 describes the properties of these crystals.

The scintillator is physically coupled to a photomultiplier tube. Its photo-

cathode transforms the incident light signal into electrons. Electrons are

multiplied by the dynodes. Since there is an electric field between dynodes,

low-energy electrons are also accelerated. This current is then collected at

the anode. Charge amplification is performed in a very linear manner, pro-

ducing an output signal that remains proportional to the original number

of photoelectrons.

2.2.1 Semiconductor Detectors

A newer technology has become more widespread since the late 1990’s.

Semiconductor detectors, as their name implies, are based on crystalline

semiconductor materials. They are also referred as solid state detectors.

Their basic operating principle is similar to gas ionization devices in which

the medium is a solid semiconductor material. The interaction of the radi-

ation creates e+ − e
− pairs which are then collected by an electric field.

The advantage of the semiconductor is that the energy required to create a
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pair is about 10 times smaller than that required for gas ionization. Thus

the produced charge for a given energy is one order of magnitude greater

resulting in the increasing of the energy resolution. Moreover, thanks to

their greater density and atomic number, they have a bigger stopping power

than gas detectors.

In a pure semiconductor crystal, the number of holes and that of electrons in

the conduction band is equal. This balance can be changed by introducing a

small amount of impurity atoms having one more or one less valence electron

in their outer atomic shell. The quantity of dopant used is generally very

small with typical concentrations being on the order of a few times 10−13

atoms/cm3.

An example of solid state compound used to detect γ ray photons is Cad-

mium Telluride (CdTe). It combines relatively high atomic numbers (48

for Cd and 52 for Te) with a large enough bandgap energy (1.52 eV) to

permit room temperature operation without cryogenic cooling, as instead

germanium requires. The probability of photoelectric absorption per unit

pathlength is rougly 4-5 times higher in CdTe than in Ge and 100 times

larger than in Si for typical γ ray energies (E > 20 keV).

CdTe is used for the ISGRI/IBIS detector aboard the INTEGRAL satel-

lite. Its energy resolution is 8 % at 122 keV. In Tab. 2.2 some features of

CdTe and, for comparison, of silicon (Si) and germanium (Ge) are reported.

Materials such as CdTe offer better energy resolution, less noise and better

spatial resolution.

Using these materials as imager requires the employment of coded aperture

masks or Compton scatter type configurations. This is another feature that

these detectors have in common with scintillators.

Collecting area is important for the telescope sensitivity: the more radia-

tion it can collect (that is, the larger its collecting area), the more likely it

detects dim objects. Most of the advanced materials being considered for

future missions have the problem that the crystals are small. It requires

large arrays of these crystals to achieve collecting areas acceptable for high

energy astronomy. Nevertheless, collection areas on the order of thousands

cm2 are achievable.

2.3 Observational limits of X ray telescopes

Most celestial sources have small angular dimensions, such as a point like

source. In the case of extended sources as clusters of galaxies, it is useful to
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Material Z Density Bandgap Ionization E Best Gamma Ray

(g cm−3) (eV) (eV/e-h pair) Energy Resolution
(FWHM)

CdTe 48/52 6.06 1.52 4.43 1.7 keV at 60 keV
(300 K) 3.5 keV at 122 keV

Si 14 2.33 1.12 3.61 400 eV at 60 keV
(300 K) 1.16 3.76 550 eV at 122 keV
(77 K)

Ge 32 5.33 0.72 2.98 400 eV at 122 keV
(77 K) 900 eV at 662 keV

1300 eV at 1332 keV

Table 2.2 Properties of CdTe semiconductor, data taken from [51].

know the spatial distribution of the emissions. One of the most important

requirements for X ray telescopes is angular resolution.

One limit to the maximum angular resolution achievable is given by the tele-

scope response to coherent radiation. Indeed, the aperture of the telescope

acts as a slit. If the X ray photon beam is coherent, we have the diffraction

phenomena, for which the Rayleigh criterion is valid. This dictates that an

extended source of wavelength λ could be partially coherent if its angular di-

mensions θs are shorter than the first angular minimum θT of the diffraction

pattern of a telescope of aperture d, i.e.

θs < θT = 1.22
λ

d
rad = 251643

λ

d
arcsec. (2.6)

For X rays of about 1 keV (λ = 10 A
o
) and a telescope of diameter d = 50

cm, Eq.2.6 gives:

θ
X
T =

251643

0.5
10 10−10 ≈ 5 10−4

arcsec, (2.7)

i.e. only sources with θT < 5 10−4 arcsec could be sources of coherent radi-

ation. Theoretically, these telescopes would have a big angular resolution,

but the instrument quality required is difficult to obtain.

Sensitivity of a direct-view telescope

The performance of an imaging telescope depends on its ability to re-

construct faithfully the fluxes from the FOV both in term of intensity and

angular distribution. The Signal-to-Noise Ratio (SNR) determines the min-

imum source strength that may be detected in the observation time t, for

which it’s also called flux sensitivity.

Here the SNR equation in the case of non-focusing direct view detector is

reported. This kind of detector can give sky images by means of coded

masks or modulation collimators.
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Given a flux intensity of photons, I(E) (in units of photons cm−2 s−1 keV−1)

at energy E, coming from an X ray source, the number of events, Ntot,

counted by the detector in the time interval ∆t in the energy band ∆E

around E can be expressed as the sum of the counts due to the photons from

the X ray source and those due to the telescope background, Ntot = NS+NB.

For a direct-view telescope, NS and NB are given by:

NS = ǫdSd∆tI(E)∆E, (2.8)

NB = Sd∆tB(E)∆E, (2.9)

where ǫd is the detector efficiency, Sd the detector area and B(E) the inten-

sity of the measured background spectrum (in units of cts cm−2 s−1 keV−1)

at energy E.

The information on the source is contained in NS and can be derived sub-

tracting from the total counts the background counts, i.e. NS = Ntot −NB.

Therefore, the standard deviation of the counts due to the source is:

σNS
=
√
σ
2
Ntot

+ σ
2
NB

, (2.10)

where σ
2
Ntot

and σ
2
NB

are the standard deviations of Ntot and NB, respec-

tively. This expression is valid if the fluxes from the source and from the

background are uncorrelated.

In the γ ray energy band, the source signal is much smaller than the instru-

mental noise and so, in the evaluation of the sensitivity, it is usually assumed

that the number of counts is dominated by the background (NS << NB).

Using Poissonian statistics, we have σNtot =
√
Ntot and σNB

=
√
NB, so:

σNS
=
√
(NS +NB) +NB ≈

√
2σ2

NB
=
√
2B(E)Sd∆t∆E. (2.11)

The confidence level chosen for the sensitivity is generally 99.7%, corre-

sponding to a number of standard deviations (nσ) of 3. Thus, the minimum

detectable source flux is:

N
min
S = ǫdSd∆tI

min
dv (E)∆E = 3

√
2B(E)Sd∆t∆E (2.12)

from which the sensitivity results to be

I
min
dv (E) =

3

ǫd

√
2B(E)

Sd∆t∆E
. (2.13)
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More in general, the ratio between the source signal and its error is:

nσ =
NS

∆NS
=

ǫdI
min
dv (E)Sd∆t∆E√
2B(E)Sd∆t∆E

. (2.14)

Thus, at any nσ level the sensitivity of a direct-view telescope is given by:

I
min
dv (E) =

nσ

ǫd

√
2B(E)

Sd∆t∆E
. (2.15)

The easiest way to improve the instrument sensitivity is to decrease the

background and to increase the value of the detector area Sd. However the

sensitivity dependence on Sd implies that the minimum detectable intensity

decreases by a factor of 10 when the detector surface increases of a factor of

100.

Great progress from this class of instruments is hard to foresee. The devel-

opment of new deconvolution techniques could improve source location and

flux estimation accuracy.

Chapter 4 will deal with the IBIS/INTEGRAL sensitivity estimation. In real

cases, the background cannot be measured independently from the source

signal, so other ways to estimate the SNR in coded mask systems will be

used.

2.4 Focusing optics for X rays

The main problem with instrumentation employing inelastic interactions

(like coded mask ones) is the high background level. Since the collection

area has the same size as the detector and the instrument sensitivity is

proportional to it, building any coded mask instrument with high sensitivity

is difficult. A compact instrumentation is preferred. This section will deal

shortly with the alternative approach represented by focusing techniques.

The currently employed focusing optics for X rays are based on the total

reflection technique. However this technique becomes inefficient for photon

energy greater than 10-20 keV. Other techniques, such those based on the

diffracting optics in Laue configuration which take advantage of the progress

made in crystal production, are under development.

X rays will reflect off mirrors only if they strike at grazing angles. For this

reason, X ray mirrors have to be carefully shaped and aligned nearly parallel

to the incoming X rays. To increase the collection area and the sensitivity

of the telescope, they are nested one inside the other.
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The use of X ray optics based on total reflection has already been exploited

since the late seventies for photon energies below 2 keV (Einstein satellite).

All materials with high atomic number are efficient X ray reflectors when

the grazing incidence angle is lower than a critical angle θC ,

θC =
√
2δ =

√
4πr0λ2Ne, (2.16)

where δ is equal to 1 minus the real part of the reflective index nr, λ is the

wavelength of the incident radiation, r0 = e
2
/mc

2 is the classical electron

radius and Ne is the electron density of the material [3]. The reflection ef-

ficiency is nearly the 100% for angles lower than θC , but steeply drops to

zero for larger grazing angles.

The critical angle is inversely proportional to the photon energy: to reflect

high energy photons, a smaller grazing angle is needed. Furthermore, θc

depends on the electron density, that is approximately the atomic number

of the surface material: a better reflection needs high Z material. The most

commonly used reflecting materials for X ray mirrors are gold (used for

Suzaku, XMM, Beppo-SAX and Swift satellites) and iridium (for Chandra

X ray Observatory).

Usually, to limit coma aberrations and to have a greater compactness, spe-

cial mirror geometries are adopted. To be free from coma aberration, high

energy optics must obey to the Abbe condition, i.e. the intersection of the

direction of the incident rays and that of the reflected ones must be on a

spherical surface around the image. The most used configuration correcting

off-axis aberration is the Wolter I [87] [88], i.e. two coaxial and confocal

mirrors, one with the shape of a parabola and the other with that of a

hyperboloid (Fig. 2.3). It has been used for example in the Beppo-SAX

satellite.

However, the efficiency of this type of optics is acceptable only until about

10 keV. It is hard to think that the use of new materials can extend the

energy band of the total reflection technique above the 10 keV limit. The

only solution with this technique could be increasing the focal length of the

mirrors, as was proposed for SIMBOL-X, whose focal length is 30 m [31].

Hovewer its sensitivity above 70 keV decreases to values achievable with the

direct-view telescopes.

With this necessity of a significant sensitivity improvement at energies above

10 keV, the employment of Bragg diffraction appears the most promis-

ing technique to focus high energy photons. Multilayers mirrors (NuStar,
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Figure 2.3 Wolter I configuration.

NeXT) for focusing X rays up to 80 keV [48] and mosaic crystals in reflection

configuration [32] could be used. However, for photon energies greater than

100 keV, very large mirror surfaces and very long focal length are required

in order to achieve significant effective areas to be competitive with direct-

view detectors.

Laue lenses appear to be the best solution to efficiently focus high energy X

rays (> 80 keV) and to overcome the weight and size problems of direct-view

telescopes. The concept that stands behind a Laue lens is that a properly

distribution of mosaic crystals in transmission configuration allows the in-

coming photons to be concentrated.

The X ray diffraction theory shows as with a mosaic of small crystals it

is possible to deviate X ray photons. Using a set of mosaic crystals it is

possible to create a Laue lens which is able to deviate, through diffraction,

photons towards a focal point. A detailed description of Laue lenses goes

beyond the scope of this thesis. More details can be found in [89], [90] and

[63].



Chapter 3

Coded Mask Telescopes

The previous chapter briefly describes focusing telescopes. The main alterna-

tive imaging technique is the multiplexing technique. It offers the opportunity to

image at higher energies and over a large FOV. It is based on the encoded signal

of the incoming photons before their detection and the reconstruction of the sky

image by decoding the encoded data.

Multiplexing techniques can be of temporal or spatial type. One subclass of spatial

multiplexing techniques is the coded-mask system. At the beginning of the 1990s,

the Chinese scientist T.P.Li and his collaborators proposed the DD deconvolution

technique to deconvolve HXMT data. It is a general inversion method which uses

non linear iterative algorithms to solve the underlying optimization problem. The

DD can be used to deal with the observational data by various types of space tele-

scopes, amongst which the coded mask ones. Since our LR code was tested on the

coded mask data of the IBIS imager, this chapter will discuss the imaging technique

of coded mask systems.

A short view on HXMT temporal modulation collimators and the detailed descrip-

tion of the IBIS/INTEGRAL satellite will be given in Chapter 4.

3.1 Principles of Coded Mask Imaging

Coded aperture imaging in high energy astrophysics represents an im-

portant advancement in X and γ ray instrumentation, where other imaging

techniques become ineffective or not suitable to achieve the observational

goals (e.g. imaging over wide FOV).

Coded mask systems can image the sky from a few keV until few MeV. They

basically consist of a coded mask, i.e. a plate with transparent and opaque

elements, and a PSD. Mask elements have equal size and shape and are dis-
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tributed in a pre-determinated pattern. Two very sucessful basic patterns,

the Uniformly Redundant Array (URA) and Modified URA (MURA), will

be discussed in Sects.3.2.1 and 3.2.2.

Coded masks are an extension of the pinhole camera concept. Photons from

a certain direction in the sky project the mask pattern on the detector. This

projection, called the shadowgram, has the same coding as the mask pattern,

but it is shifted depending on the photon direction. The PSD pulse distri-

bution gives the sum of the patterns corresponding to each of the sources

in the FOV. Every source is encoded in a unique way. Fig. 3.1 shows an

outline of the coded-mask system working principle. The basic requirement

is that the autocorrelation function would consist of a single peak and flat

sidelobes.

Figure 3.1 A schematic diagram illustrating the working principle of a coded
mask telescope. The recorded count rate in each pixel of the detection plane
is the sum of contributions from each source flux modulated by the mask.
In particular, the shadow generated by two sources at infinite distance from
the mask-detector system - one on axis and the other at the edge of the
FOV- are shown. Taken from [15]

Coded mask systems allow simultaneous measurement of the source plus

background flux (detector area throught the mask holes) and of background

flux (detector area blocked by the mask opaque elements) alone.

The mask and the PSD of a coded mask telescope can have several configu-

rations, depending on their relative dimensions (i.e. the mask and the PSD



3.1 Principles of Coded Mask Imaging 29

of the same dimensions or the PSD is larger than the mask or the mask

is larger than the PSD). What changes between these configurations is the

FOV. The configuration in which the mask is larger than the PSD allows

for larger FOV: this is that used in IBIS/INTEGRAL. It allows for the use

of smaller detectors, thus limiting the γ ray background detection.

The FOV consists of two distinct regions: a Fully Coded Field of View (FC-

FOV), where the detected flux is completely modulated by the mask, and a

Partially Coded Field of View (PCFOV) or vignetted FOV, in which only a

fraction of the detected photons is coded by the aperture pattern (see Fig.

3.2).

Figure 3.2 The FOV of the IBIS/INTEGRAL. Opaque and transparent el-
ements have constant size H and pixel size is less than mask element one.
Here DM and DD are mask and detector dimensions, and DD < DM . L is
the fixed mask-ISGRI distance. Taken from [36].

An important aspect of direct-view imaging systems such as coded mask

telescopes is the fact that the Poisson noise from any source in the sky is

induced at any other position in the reconstructed sky. The quality of the

reconstructed image is mainly determined by the choice of mask pattern and
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decoding method, in addition to the optical design of the camera and the

spatial response of the detector.

In the following, the image formation and reconstruction using a coded mask

system will be discussed.

3.1.1 The IBIS/INTEGRAL optical design

Fig. 3.2 shows the optical design chosen for the IBIS/INTEGRAL tele-

scope. The optical design of a coded mask system concerns the choice of

the mask size (DM = 1064 mm), the size of the mask and detector elements

(H = 11.2 mm and sd = 4.6 mm, respectively), the number of basic pat-

terns used in the mask, the mask-detector distance (L = 3200 mm) and the

size and shape of an optional collimator. The design establishes the angu-

lar resolution and the FOV of the imaging telescope. The nominal angular

resolution (FCFOV) of the IBIS imager is 12’ [36], deduced by the mask

element size, while ISGRI pixel size corresponds to 5’.

To make use of all detector area and to allow more than one source to be

fully coded, the mask basic pattern of the IBIS imager is taken as the same

size and shape as the PSD. The aperture is a 2×2 cyclic repetition of the

basic mask pattern, with 11 rows and 11 columns excluded, in order to elim-

inate the cyclic nature of the PSF. This configuration and the choice of a

MURA of order 53 as basic pattern allow to have a sidelobe-free response,

given that a source casts an entire basic pattern on the detector. These

physical characteristics define a FCFOV and a PCFOV of [36]

ΘFC = arctan
DM −DD

L
= 9

o × 9
o

(3.1)

ΘPC = arctan
DM +DD

L
= 29

o × 29
o

. (3.2)

The IBIS/INTEGRAL arrangement provides a wider FOV without loss of

angular resolution and a uniform sensitivity over the FCFOV because the

overall transparency of the working zone (i.e. the part of the mask that con-

stributes to the coding on the PSD) for each direction is constant. However,

in the PCFOV the sensitivity decreases. For poor SNR sources this im-

plies a very significant advantage, even if the major constraints on the final

telescope’s sensitivity and resolving power are determined by the detector

background and position sensitivity.
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3.2 Mask Pattern

As discussed above, the choice of mask pattern has a basic role in the

quality of the image deconvolution. Here two of the very successfully basic

patterns applied in X and γ ray astronomy will be discussed: the URA and

a their modification, the MURA.

In 1968 Dicke proposed an extension of the pinhole camera, based on an

aperture composed by multiple holes into an opaque plate, with 50% to-

tal transmission. To have the best imaging quality possible, two conditions

must be satisfied: the autocorrelation of the mask pattern should be a sin-

gle peak with no sidelobes and the SNR of the coded sky source should be

maximized. To have a good sensitivity, the open area of the plate could

be increased, while preserving the angular resolution by placing many pin-

holes in the plate. Nevertheless, the autocorrelation of a random matrix

as that suggested by Dicke, does not have flat sidelobes. The URAs and

the MURAs, derived on quadratic residue sets, guarantee perfectly flat side-

lobes. For further details see [29].

3.2.1 Uniformly Rendundant Array

The URAs are able to optimize the sensitivity in the restored images

independently of the decoding method used. They belong to the family of

cyclic difference sets array [4] (see Appendix A for their definition).

The cyclic autocorrelation function of the binary sequence produced by

cyclic difference sets is always a single peak on a perfectly flat background.

The uniform redundancy of the pattern is a translational property and guar-

antees that the shadow pattern cast by a source is unique to that source.

Among the cyclic difference sets the Hadamard sets class is particularly

suitable for creating coded masks. A quadratic residue set is a class of

Hadamard sets characterized by optimum SNR and about half open mask

pattern. Once the binary sequence has been generated, if its length N can

be factorised into a product of two integers (N = p × q), it is possible to

construct a two-dimensional array from the URA. The mask pattern thus

arranged is called basic pattern, from which the aperture of a coded mask

telescope could be created. To preserve the features of the autocorrelation

function, basic patterns must be orthogonal each other. Since applying a

cyclic shift to the elements of any array built from a URA we find again a

URA, the URA autocorrelation characteristic is fulfilled if every p×q section

is a cyclic shift of the basic pattern.
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These mask designs are suited for use in the 2 × 2 mosaic form: a complete

cycle of the basic pattern must be recorded for each sky direction to pre-

serve optimum property of image reconstruction. For instance, this could

be achieved with a mosaic mask of 2 × 2 cycles of the (2p − 1) × (2q − 1)

basic pattern and a p× q PSD and, as a consequence, FCFOV.

In the high energy band it is impossible to have the transparent elements

completely open. However, to minimize the absorption of photons, an iso-

lated opaque element is mounted on a support grid. This does not affect

the ideal autocorrelation characteristic, even if the open area is decreased

somewhat, resulting in less sensitive area.

3.2.2 Modified Uniformly Redundant Array

The MURA (Modified URA) derives from the quadratic residue arrays,

developed by Calabro and Wolf in 1968 [13]. Although the MURA arrays

are derived from quadratic residues, they do not belong to the cyclic differ-

ence sets and, consequently, are constructible in configurations forbidden to

that design. At the end of the 90’s, Gottesman and Fenimore [38] proposed

their imaging application: nowadays MURAs are implemented, for instance,

on the IBIS/INTEGRAL.

A MURA basic pattern is a square array of side p, with a total number of

elements equal to p
2. For details on their construction technique, see [38]

and the references therein. Using this approach, the MURA is equals the

URA in imaging performances.

An interesting feature of these patterns is their symmetry: square MURAs

are invariant to 180o rotations around their central element. This property

may offer advantages in the physical construction of the apertures.

All MURAs have complementary patterns (which are MURAs) that are built

from the original pattern by complementing every element in the array ex-

cept the initial one.

The MURA’s superior imaging capability originates from the fact that G,

the correlational inverse of M , is in fact the aperture pattern itself (see [26]).

The unimodularity of G ensures that all pixels intensities Sij will contribute

in the same manner to the noise: the optimum SNR (Eq. A.9) will be inde-

pendent from the source structure.

The sensitivity formula for MURAs agrees with the expression derived for

the URA in [26]. Since in this derivation it was only required that G was

unimodular, this SNR formulation is valid for any aperture with a unimod-

ular decoding function.
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MURAs perform as well as URAs, since both apertures have the same

amount of open area ((p2 − 1)/2p2 = 50%). In the typical conditions of

high energy astronomy (few point sources and high background), MURA

guarantees the optimum transparency. MURA therefore offers the minimum

statistical error in condition of high background and avoids the systematic

term due to the cross-talk between sources in the FOV.

Finally, they are suited for use in the mosaic form. Indeed, as will be seen

in the next chapter, the IBIS mask is a mosaic of 2×2 MURAs of order 53.

3.3 Imaging using a mask

Let’s assume a sky source with photon intensity distribution f(~x) in

the object space ~x incident to an instrument. Due to the properties of the

detection system, photons are modulated giving rise to a distribution d(~ω)

in the image space ~ω. The detector PSF is the function that transforms

f(~x) into d(~ω).

The detected image is then degraded with respect to the object. Two sources

of degradation can be roughly distinguished: the process of image formation

and that of image detection. The degradation due to the first process is

usually denoted by blurring, while that introduced by the second one is

denoted by noise. While blurring is deterministic and, in most cases, one

has a sufficiently accurate mathematical model for its description, noise is

a statistical process so that one can, at most, assume a knowledge of its

statistical properties.

To reconstruct the observed sky in the object space, several deconvolution

algorithms are used. Their choice depends on the specific aim and on the

type of instrument configuration. This section gives a description of the

classical way to deconvolve coded mask images. It is the cross-correlation

technique between the shadowgram D and a decoding array G derived from

the mask pattern.

A correlation (f ⋆ g) is identical to a convolution (f ∗ g) plus a reflection:

f ⋆ g = f(t) ∗ g(−t) = f(−t) ∗ g(t), (3.3)

where f and g are real-valued functions and g(−t) and f(−t) are the time-

reversed of g(t) and f(t) respectively. While the convolution involves the

reversing of a signal, its shifting and multiplication times another signal, the

correlation only involves its shifting and multiplication (no reversion).
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The discrete convolution is defined as:

dmn = (f ∗ P )mn =
M−1∑

k=0

N−1∑

l=0

Pklfm−k,n−l, (3.4)

where f, P ∈ ℜM×N .

In coded mask systems (see Fig. 3.3), the discrete spatial cross-correlation

is defined as:

dmn = (f ⋆ P )mn =
M−1∑

k=0

N−1∑

l=0

Pklfm+k,n+l. (3.5)

Figure 3.3 Schematic illustration of the basic procedure for coded aperture
imaging. Taken from [28].

The cross-correlation is not commutative as is the convolution operation.

If either f or P is an even function, cross-correlation and convolution are

identical operations since flipping an even function before the convolution

has no effect.

Let introduce the following important property of the cross-correlation and

deconvolution operations. The cross-correlation of the convolution of f and

h with a function g is the convolution of the correlation of f and g with the

kernel h:

(f ∗ h) ⋆ g = h(−) ∗ (f ⋆ g). (3.6)

It is clear as the imaging formation and reconstruction processes can be

equivalently described either by convolution or by cross-correlation. For

further details see [30], [47] and [23].

The standard method to reconstruct the true distribution of the source
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intensity in coded mask systems is the cross-correlation.

In the following, the correlation operator will be employed to describe the

image formation process. This guarantees that the reconstructed image is

the actual distribution of the intensity in the source rather than a reflected

version [30].

3.3.1 Image creation process

Imaging with coded masks is a linear process. The image formation

equation relating the data to the object can be written as

∫
p(~ω, ~x)f(~x)d~x+ b = d(~ω), (3.7)

where p(~ω, ~x) is the modulation function, i.e. the response coefficient of the

instrument to a point ~x of the object space during an observation ~ω. In

general, it depends on the location of the source. The background term b

is, in first approximation, constant.

For detection system made of a PSD, the data space ~ω = ~x′ corresponds to

the object space ~x. Thus the data d(~x′) is the image of the object f(~x). If

the modulation function is space-invariant, it is a function of the difference of

~x− ~x′, i.e. p(~x′, ~x) = p(~x′−~x). Then Eq.3.7 can be written as a convolution

∫
p(~x′ − ~x)f(~x)d~x+ b ≡ p ∗ f + b = d(~x′). (3.8)

The effect of the detection process is the addition of a noise contribution to

data and background mean values, i.e. d = d+ n and b = b+ n.

The detector information is recorded as the number of photons interacting

in each detector pixel during the measurement. The discrete nature of the

data lends itself to a convenient representation as a bidimensional matrix D

with elementsDij representing the number of counts registered in the (i, j)th

detector pixel. The aperture M is described by a matrix of 1 (transparent)

and 0 (opaque to the incoming radiation) elements so it may be considered

as a series of step functions.

The coded image D will be the convolution of the sky image S with M plus

an unmodulated signal-independent background term B:

D = S ∗M +B, (3.9)

or, in the discrete form,
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Dkl =
∑

i

∑

j

SijMi−k,j−l +Bkl, (3.10)

where sums are extended up to the limit of the FOV.

The object distribution inside the FOV is represented by the matrix S. Each

element of S has angular sizes given by the theoretical angular resolution of

the instrument, i.e.

∆α ≈ arctan
H

L
, (3.11)

where ∆α in the angle subtended by one mask element at the detector.

Dividing the object space in q bins, for p observed values di, i = 1, . . . , p,

the coded process of Eq.3.10 may be expressed in terms of a linear system

of algebraic equations [15]:

d = Pf + b, (3.12)

where d, f and b are respectively p, q and p arrays obtained by a lexico-

graphic reordering of D, S and B, while the p × q matrix P has the block

Toepliz form (i.e. each descending diagonal from left to right is constant,

Pij = Pi−1,j−1). The matrix P contains the characteristic pattern of the

mask cyclically shifted.

In general, since it is quite common to process images of the order of several

mega-pixels, this is a large scale problem. The following chapter will deal

with this formulation of the image formation equation. It will be seen how

non linear numerical analysis can help to deconvolve sky images overcoming

some of the problem with which the CC deconvolution deals.

3.4 Image reconstruction process

The image reconstruction process consists in the removal of all corrup-

tions induced by the image formation and detection processes. An inversion

technique solves the Eq.3.9, i.e. demodulates the detected image to recon-

struct the object S. In the cross-correlation method, an estimate of the

object S can be obtained by demodulating the shadowgram D with a suit-

able decoding function G:

Ŝ = D ⋆ G = (S ∗M) ⋆ G+B ⋆ G, (3.13)
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and using the property in Eq. 3.6,

Ŝ = R(S) ∗ (M ⋆G) +B ⋆ G = S ∗R(M ⋆G) +B ⋆ G, (3.14)

where R is the reflection operator. In the last equality the following property

of the convolution operation is used:

(f ∗ g) = f ∗ g. (3.15)

The image quality depends on the choice of the aperture M and this affects

the properties of G. To guarantee that the reconstructed sky Ŝ is perfect,

the mask M and, as consequence, the decoding array G, must be chosen in

such a way that the correlational inverse G is M ⋆ G = δ, where δ is the

delta function. In this case, Eq.3.14 will be

Ŝ = S ∗ δ +B ⋆ G = S +B ⋆ G. (3.16)

Ŝ differs from S only by the B ⋆G term, which, for a flat and uniform array

B is a constant level that can be measured and removed. Moreover, the

background depends on the energy and the position on the detector.

Coded masks based on MURA arrays exhibits this ideal behaviour. Futher-

more, square MURAs are invariant to 180
o
rotations around the central ele-

ment, the R operator disappears, so reconstructing by convolution is equiv-

alent to reconstruct by correlation.

The cross-correlation distribution Ŝ of the data is only an image of the ob-

ject intensity distribution, ignoring the information included in Eqs.3.13 and

3.9. Indeed, there may exist regions with negative Ŝ, called sidelobes, even

if the object is defined only in a positive space.

Decoding with a weighting array G is termed balanced cross-correlation due

the different weight given to opaque elements of M . Various weighting tech-

niques exist. An example is the decoding array G with same dimension as

the mask built in such a way that:

Gjk = 1 if Mjk = 1,

Gjk =
τ

(τ − 1)
if Mjk = 0 (3.17)

where the weight τ = α/N is the overall transparency of the mask basic

pattern, α is the number of pixels corresponding to a transparent element

andN the total number of elements in the basic pattern. In this way, the sum
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of the G elements is equal to zero, so any d.c. background is automatically

removed by the reconstructed image [26].

MURAs have the remarkable property that their cyclic autocorrelation gives

a delta function. For them, and then for the IBIS/INTEGRAL, G is a

square matrix with odd dimensions defined by ρ = 0.5, so Eq. 3.17 becomes

G = 2M − 1 (i.e., G = +1 for M = 1, G = −1 for M = 0) apart from the

central element which is set to 0. This choice allows to reproduce the suorce

distribution superimposed on a positive d.c. background level.

Applying to G the same reordering method used to construct P from the

mask pattern, the bidimensional estimate Ŝ of Eq.3.16 is derived by:

f̂ = Pd = PPf + PPb, (3.18)

where P is a p × q block-Toepliz-like matrix built from G. In the case of

balanced cross-correlation P takes the form

P = (1 + ρ)P T − ρU, (3.19)

where U is the unit matrix and ρ is the ratio between the number of trans-

parent and opaque elements (i.e. ρ = α/(N − α)). The absolute value of

the elements of P is always 1 or ρ.

3.4.1 Ghosts and coding noise

The deconvolved image of a point source in the FCFOV has a main peak

at the source position, flat sidelobes in the FCFOV and coding noise with

up to 8 main false peaks, called ”ghosts”, in the PCFOV. For a PCFOV

point source, other than the main peak at the source position and up to 5

ghosts, coding noise can extend all over the total FOV. The distribution of

the coding noise depends on the mask pattern used. For instance, for MURA

masks, due to the high degree of simmetry along the axes of the mask, the

coding noise is concentrated along the image axis passing through the source

peak, producing positive and negative sidelobes [39].

Ghosts are due to mosaic nature of the aperture. For example, the IBIS

mask is a 2×2 cyclic repetition of a MURA basic pattern, with 11 rows

and 11 columns excluded. A peak in the decoded IBIS image is, in general,

consistent with at most nine different locations of the object responsible for

this excess. Only one of these corresponds to the source position while the

others are located at distances from the source which are multiple of the
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basic pattern. In IBIS total FOV images, ghosts are located at distance of

53 pxl × 11.2 mm

4.6 mm
≈ 129 pxl. (3.20)

Four of them are at the corner of the square of 258 pixels-side with the source

at the centre, while the other four along the vertical and the horizontal

axes passing through the source. In the cross-correlation ghost intensity

is the same intensity of the source and their location follows always this

distribution.

Balanced cross-correlation

Cross-correlation is able to reconstruct sources in both the FCFOV and

the PCFOV. The balanced cross-correlation [29] is an extension to the PC-

FOV of the standard technique. The sampling of the decoding array G is

performed in such a way to weight the detector pixels with the fraction of

transparent and opaque area projected by the mask elements. The correla-

tion is balanced in the sense that, in absence of sources and with a constant

background term, the decoded images are flat.

The sky image S is derived from D by applying the following operation for

each (i, j) sky pixel [39]:

Sij =
∑

kl

G
+
i+k,j+lWklDkl − bij

∑

kl

G
−

i+k,j+lWklDkl, (3.21)

where the sums run over all k, l detector pixels. The balance array is

bij =

∑
kl G

+
i+k,j+lWkl∑

kl G
−

i+k,j+lWkl

. (3.22)

The two decoding arrays G+ and G
− are obtained projecting the mask (M)

and the antimask (1−M) arrays over a detector pixel grid and padding the

zones outside the them with zeros. In this way, the statistical error at the

source position and the significance of the ghost peaks are minimized. In

the FCFOV we obtain the same result as the standard cross-correlation.

The weighting array W is used to weight properly the detector array before

correlating it with G
+ and G

− arrays, in order to consider effects such as

satellite drift corrections, dead areas or other specific conditions. It is set to

0 for dead and noisy pixels and to 1 for the active good ones.

In the FCFOV the variance is approximately constant and equal to the total

number of counts on the detector. In PCFOV this is no longer true, so it is
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computed accordingly to [36]

Vij =
∑

kl

(
G

+
i+k,j+lWkl

)2
Dkl + b

2
ij

∑

kl

(
G

−

i+k,j+lWkl

)2
Dkl. (3.23)

Obviously, the variance behaviour affects also the sensitivity in the PCFOV.

The values computed in Eqs.3.21 and 3.23 are then renormalized such that

the intensity images are in units of cts s−1.

Hint to other decoding procedure

When mask elements are larger than the detector pixels as in the IBIS

case, G must be resampled to the detector pixel size by projection and

redistribution of its values before deconvolving. For non integer sampling

of pixel elements, G will assume continuous values from −1 to 1. In this

way, the finite spatial resolution and the not correct binning of the mask

elements are taken into account.

Unless the source is just in the middle of the sky pixels, the reconstructed

peak will be spreaded over different detector elements and there is a loss of

efficiency, called imaging loss. To reduce it, the detector must have spatial

resolution better than the mask element size. PSD pixels, that give the

resolution, over-sample the mask elements, so in this case the decoding can

take the form of:

• Fine cross-correlation. While in balanced cross-correlation each trans-

parent element is represented by one resolution element in the decoding

array, in the fine cross-correlation more samples per resolution element

are required to form G, M and S matrices. All sub-pixels of a resolu-

tion element have the same value as the corresponding original array.

• Delta-decoding. It is similar to fine cross-correlation, with each sub-

pixel of a resolution element in G set to 0 expect for one set to 1 or

-1. For further details see [27].

For further details about these decoding techniques, see [29] and references

therein.



Chapter 4

Non-focusing Imaging

Satellites

Sect.2.4 shortly dealt with focusing optics for X ray telescopes. The main al-

ternative for hard-X/γ rays imaging is the multiplexing technique.

Multiplexing technique can be of temporal (as in the High Energy instrument

aboard of HXMT) or spatial type (as in the IBIS/INTEGRAL). At the begin-

ning of the 1990s, the Chinese scientist T.P.Li and his collaborators proposed the

DD deconvolution technique to deconvolve HXMT data. Thank to its versatility,

it has been used to analyze data from various type of space telescopes.

After a short description of the HXMT temporal modulation passive collimators,

this chapter will deal with the IBIS/INTEGRAL coded mask telescope. Chapter 7

will show the results of the application of the LR method to the data provided by

the ISGRI detector of the IBIS/INTEGRAL imager.

4.1 Modulation collimators

Passive collimators are principally employed in X ray (> 10 keV) energy

band, where photon focusing techniques are still under development. They

are composed by rectangular or square cells of height h. The cell walls are

made of a material that absorbs X ray radiation crossing the walls.

The High Energy (Fig. 4.1) instrument aboard HXMT uses non-position-

sensitive collimated detectors to realize high sensitivity and high resolution

hard-X ray imaging surveys. The HXMT detector consists of 18 identical

cylindrical NaI(Tl)/CsI(Na) phoswich scintillator devices.

The FOV of HXMT is 5.71
o× 5.71

o
(FWHM), and since the image recon-

struction is based on the DD, it is composed by 18 non-symmetric FOVs
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Figure 4.1 The FOVs of the 18 mechanical collimators aboard HXMT.

of 5.71
o× 1.12

o
related to each of the 18 collimators. The directions of the

long axes of the 18 FOVs vary with a step size of 10
o
.

When a sky region is observed, the number of counts per second is detected

as a function of time and usually has a triangular shape. The maximum

of the triangle corresponds to the sky position of the source along the col-

limator direction and its level to the source flux. To compute the HXMT

angular response, those of all 18 collimators must be combined together.

Fig.4.2 shows a sketch of a collimator cell, with the shadows of its walls cast

on its interior.

Figure 4.2 Schematic view of the collimator cell, together with the viewing
angles θ, φ and α. In red the area left illuminated by the shadows cast by
the collimator walls.
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If the collimator walls are assumed to be perfectly opaque to the X ray

radiation, the collimator angular response will be [62]

R(θ, φ) =

[
1− h

a
tan θ sinφ

] [
1− h

b
tan θ cosφ

]
, (4.1)

where a and b are the sizes and h the collimator cell height, θ and φ are the

viewing angles for a given direction of the source flux.

By means of Eq.4.1, it is possible to build the HXMT total angular response

function (a sort of PSF) by summing up all the 18 collimator angular re-

sponses. The result is shown in Fig.4.3, where in red are marked the FWZI

and the FWHM (the latter being equal to 1.604
o
). The angular response

integrated in φ, that is a slice along a φ = constant direction, is shown in

Fig.4.4. The shape is similar to a Lorentzian curve.

Figure 4.3 The HXMT angular response integrated for all the 18 HXMT
collimators. Left: contour plot (in red the FWZI and FWHM; the latter
being 1.604

o
). Right: 3-dimensional plot.

Shen and Zhou [71] described an Accelerated DD (ADD) version and ap-

plied it to image restoration of data of the whole 18 High-Energy collimators

simultaneously.

4.2 The INTEGRAL telescope

The INTEGRAL satellite [86] is a γ ray observatory mission that per-

forms simultaneous observations in the γ rays (15 keV - 10 MeV), X rays

(3-35 keV) and optical (V band, 550 nm) band, allowing to observe for the
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Figure 4.4 The HXMT angular response integrated in φ. It has been ob-
tained by slicing Fig.4.3 along a φ = constant direction. The measured
FWHM is 1.604

o
.

first time a single astronomical source simultaneously in all these energy

bands.

The mission, managed by ESA with contributions from 16 European coun-

tries, as well as from Russia (with the PROTON launcher) and from NASA

(with the Deep Space Network ground stations), was launched on October

17, 2002 from Baikonur in Kazakstan. INTEGRAL was designed for a nom-

inal lifetime of 5 years, but in October 2009 it was decided to extend the

mission at least up to the end of 2012.

The satellite was placed in a highly eccentric orbit, inclined at 51.6 o at

launch, so allowing long uninterrupted observations with a practically con-

stant background, far from the radiation belts around the Earth. The rev-

olution period of the orbit is 3 sideral days (slightly less than 72 hours), so

that the perigee occurs always at the same geographical point on Earth.

The scientific goals of INTEGRAL are achieved thanks to the high resolution

spectroscopy (2.5 keV FWHM at 1 MeV) with fine imaging and accurate

positioning of celestial γ ray sources. The fine imaging capability of INTE-

GRAL within a large FOV (total FOV of 29
o×29

o
at zero sensitivity and of

19
o×19

o
at half sensitivity [36]) allows the identification of the position and

the direction of the incident signal. Once the correct position of an object

is known, it is possible to study it at other wavelengths. The FOV of IN-

TEGRAL is ideal for survey studies over large areas of the sky, that can be

mosaiced together providing an almost complete all-sky coverage. At weekly

intervals, a sawtooth path Galactic Plan scan inclined at 21o with respect
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SPI IBIS
Energy Range 20 keV - 8 MeV 15 keV - 10 Mev

Detector 19 Ge detectors 16384 CdTe detectors (ISGRI)
cooled to 85 K 4096 CsI detectors (PICsIT)

Detector Sensitive Area 500 2600(CdTe), 2890(CsI)

(cm2)
Spectral Resolution 2.3 keV @ 1.3 MeV 9 keV @ 100 keV

(FWHM)
Field of Viev 16o (corner to corner) 9o × 9o

(Fully Coded)

Angular Resolution 2.5o (point source) 12′

(FWHM)

Source Location < 1.3o (depending on < 1′ (for 10σ source)
(radius) the source strenght)

Absolute Timing Accuracy 129 µs 92 µs
(3σ)

Table 4.1 Key performance parameters of the SPI and IBIS instruments.
Taken from [17].

to the Galactic equator is made. Each scan consists of a series of exposures

of 965 s each, separated by 6o along the scan path. Finally, Galactic Centre

Radiant Deep Exposure, devoted to the observation of the Galactic Centre

region (galactic longitudes between -30o and +30o and galactic latitudes be-

tween -10o and +10o), is performed for an accumulated time of about 46

days/year.

INTEGRAL main scientific objectives are [86]:

• studies of compact objects (BHs, NSs, WDs);

• analysis and monitoring of high energy transient sources;

• studies of the stellar nucleosynthesis (novae and supernovae);

• studies of the Galactic Plane and Centre;

• studies of Galactic structures (clusters, maps of the continuum and of

emission lines, interstellar medium, cosmic ray distribution);

• studies of extragalactic sources (AGN, nearby galaxies, cluster of galax-

ies, CXB);

• detection and identification of high energy sources;

• GRBs.

4.3 Scientific payload

The INTEGRAL payload consists of two main γ ray instruments: the

imager IBIS (Imager on Board INTEGRAL Satellite [80]), which operates
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from 15 keV to 10 MeV and the spectrometer SPI (Spectrometer on INTE-

GRAL [84]), which operates from 0.2 to 10 MeV. IBIS and SPI are differently

optimized in order to complement each other and to achieve overall excellent

performances. Thanks to its good angular resolution, IBIS provides the best

localization of the γ ray sources, while SPI can perform studies of spectral

features. Both instruments have a sensitivity of a few mCrab, thus allowing

broad-band spectroscopy.

Figure 4.5 Picture of Integral Satellite. Taken from [86].

SPI and IBIS are complemented by two monitor instruments which cover

the X ray and optical energy bands: the X-Ray Monitor JEM-X [58] and

the Optical Monitoring Camera (OMC) [60].

SPI, IBIS and JEM-X share a common principle of operation: they are all

coded-mask telescopes. A picture of the satellite is shown in Figs.4.5 and

4.6, where all the instruments are clearly visible. This chapter is devoted to

describe IBIS. For further details about the other instruments see [18].
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Figure 4.6 A detailed view of INTEGRAL. Take from [46].

4.3.1 IBIS

IBIS is a γ ray telescope devoted to perform observations of celestial

objects, in particular compact galactic and extragalactic objects. Table 4.2

gives an overview of its main features and capabilities.

It shows imaging capabilities (12’ FWHM angular resolution) for source

identification and spectral capabilities for the study of both continuum and

broad lines in the 15 keV - 10 MeV energy range. The imager utilizes two

PSD planes with a large number of spatially resolved pixels, implemented as

physically distinct elements: ISGRI (INTEGRAL Soft Gamma Ray Imager

[53]), that covers the 15 keV - 1 MeV energy band, and PICsIT (Pixellated

Imaging CsI Telescope [52]), that covers the 200 keV - 20 MeV energy band.

In Fig. 3.2, a picture of IBIS instrument optical design was shown. A 9
o×9

o

FCFOV and a 29
o×29

o
PCFOV are clearly distinguished. ISGRI pixel size

corresponds to 5’×5’, while PICsIT pixel size to 10’×10’.

Above the detector planes, IBIS has coded mask at a distance of about

3200 mm for ISGRI detector. The mask is optimized for imaging with both

low and high energy photons.

The instrument is also equipped with anticoincidence system in order to
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Energy resolution (FWHM) 9% @ 100 keV
10% @ 1 MeV

Effective area ISGRI: 960 cm2 at 50 keV

PICsIT: 870 cm2 at 300 keV (single events)

PICsIT: 275 cm2 at 1 MeV (multiple events)
Field of view 9o × 9o (fully coded)

19o × 19o (partially coded, 50%)
Point source location accuracy 30” @ 100 keV

(90% error radius) < 5′ @ 1MeV

Continuum sensitivity 3.8 × 10−7 @ 100 keV

photons cm−2 s−1 keV−1 5.7 × 10−7 @ 1 MeV

(3σ, ∆ E= E/2, 106 s integration)

Narrow line sensitivity 1.3 × 10−5 @ 100 keV

photons cm−2 s−1 3.8 × 10−4 @ 1 MeV

(3σ, 106 s integration)
Absolute timing accuracy (3σ) ISGRI: 61 µs (for E<1MeV and Compton)

1 ms (Spectral timing, no imaging)
2000s (E≥175 keV with imaging)

PICsIT: 0.976-500 µs (selected from ground)

Table 4.2 Scientific parameters of the IBIS imager. Taken from [17] and [80].

reject unwanted events due to cosmic rays and background photons produced

inside the satellite itself. A collimation system limits the IBIS low energy

angular response (≤ a few hundreds of keV).

4.3.2 Further details on ISGRI

As said, IBIS is made of two position sensitive independent detectors:

ISGRI on the top and PICsIT at the bottom with respect to the coded

mask. Since ISGRI is the detector providing the highest resolution images

and the most detailed studies of complex fields, we deconvolved IBIS data

assuming that only ISGRI detector was on. Here further useful details only

about ISGRI are added.

A detector is characterized by three main parameters: spectral range, energy

resolution and number of pixels in the detector associated with the imaging

capability. Spatial resolution and detection efficiency are the criteria for the

quality of image detectors.

ISGRI is made of a solid state CdTe (Cadmium Telluride) detector array.

CdTe is a semiconductor with high atomic number (Z = 48-52), operating at

room temperature (0o ± 20 oC). When photons hit the detector electron-hole

pairs are generated. The electrons are then collected by anodes under the

action of an external electric field. The amount of generated electric charge

is essentially proportional to the energy of the incident photons, after that

a correction for the collection time of the electrons is performed.

ISGRI comprises 8 identical Modular Detection Units (MDU), each having

32×64 pixels for a total of 16384 pixels (left panel of Fig. 4.7). The pixel

size is 4.6×4.6×2 mm, so the total sensitive area of the detector is 2621 cm2.

They are smaller than the mask elements. With their small area, the CdTe
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Figure 4.7 ISGRI detector representation (left) and location of the killed
pixels (right).

detectors are ideally suited to build an image with good spatial resolution

of 4.6 mm (separation between pixel centers).

ISGRI MDUs are mounted on a support grid. The pixels of this grid are not

sensitive to the hard-X/γ ray radiation. So, each data file is composed by a

128×128 pxl array of counts, but, before deconvolving, it must be extended

to 130×134 pxl geometrical grid.

It is possible that some of the ISGRI pixels become noisy. If the particular

pixel countrate is much higher than that of their module pixels, the onboard

electronics switch it off. The onboard software that detects and switches

OFF noisy pixels periodically recovers them. The overall killed pixels are

less than 1% (right panel of Fig. 4.7).

4.3.3 The Mask

The IBIS Mask Assembly is composed by three main subsystems: the

coded pattern, the support panel and the peripheral frame. The support

panel transparency should be taken into account in the data analysis, as it

absorbs part of the flux. On the other hand, the peripheral frame supports

whole system.

Ideally, a coded mask should have a null thickness and be totally opaque and

transparent to radiation elements. In IBIS the closest configuration to the

ideal situation has been achieved in the following way. In order to have the
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maximum opacity, tungsten has been used. This metal has a high atomic

number (Z=92), is very dense (ρ=19.3 g cm−3) and is very opaque to high

energy photons. As far as the mask is concerned, its thickness has been set

to 16 mm in order to maximise the weight while avoiding auto-collimation

effects that attenuate the incoming radiation.

In the previous chapter it was stated that, from a mathematical point of

view, the mask can be considered as a matrix of 1 and 0, representing trans-

parent and opaque elements, respectively. In reality, however, the mask

elements are neither totally transparent nor completely opaque to γ ray

photons. Each coded mask system has, in fact, a characteristic opacity (or

transparency) curve, which describes the capability of the instrument to

modulate the radiation as a function of energy, position and interaction of

the photon with the mask.

The IBIS basic coded pattern (left panel of Fig. 4.8) is a square array of size

1064×1064 mm2, made up of 95×95 individual square cells of size 11.2×11.2

mm2. The mask coded pattern chosen is a mosaic of a 2×2 cyclic replica-

tion of MURA of order 53, minus 11 lines and 11 columns in order to avoid

ambiguity in the signal decoding procedure. The properties of the MURA

patterns are described by e.g. [38] and [76].

Figure 4.8 The IBIS mask pattern of 95×95 elements (left) is formed by a
replicated 53×53 MURA basic pattern, whose cyclic autocorrelation (right)
is a δ function. Remember that autocorrelation is the PSF in the FCFOV.
Taken from [36].

The mask is about 1.8 times larger than the detector. This configuration
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allows for the use of smaller detectors, thus limiting the γ ray background.

Approximately half of the mask cells are opaque to photons in the opera-

tional energy range of the IBIS instrument, offering a 70% opacity at 1.5

MeV. The other half of cells are open, with an off-axis transparency of 60%

at 20 keV.

4.3.4 The Instrumental Background in IBIS

Since the intensity for most sources is very faint, γ ray observations

are highly affected by background radiation. The main background com-

ponents in IBIS are the cosmic diffuse γ ray background, relevant at low

energies (E < 100 keV) and the internal background due to cosmic rays

interacting with the satellite materials. While the first component impacts

the ISGRI observations, the second mainly affects the PICsIT results.

Other effects can influence the detector background, such as the solar activ-

ity and the anticoincidence system performance.

The reduction of the background counts by the anticoincidence system has

been evaluated about 50%, with respect to the case when anticoincidence

system is switched off.

IBIS is positioned close to SPI and JEM-X. Since γ ray photons are highly

penetrating, it is possible for them to pass through the satellite, instruments

and coded masks, thus being detected by all the instruments. Off-axis γ rays

(generally above 300 keV) passing through the SPI coded mask can produce

a shadowgram of the SPI mask on the IBIS detectors. Although in this case

the IBIS FOV is enhanced, a bright γ ray source adds additional counts and

modulation to the IBIS measurements, complicating the image reconstruc-

tion.

In order to suppress systematic effects due to spatial and temporal back-

ground variations and to take into account the not always perfectly coded

signal, an opportune dithering observation strategy is employed [21]. It

consists in a series of pointings 2o off-axis with respect to the target of the

observation. Dithering increases the number of measurements helping to

reduce the systematic errors in the deconvolution process. There are two

different types of dithering, schematized in Fig. 4.9.

• The rectangular dithering employs a square pattern centered on the

target position (one on-axis pointing and 24 off-axis pointings, each

separated by 2o in a 5o × 5o rectangular pattern). This mode is used

when there are several point sources in the FOV, sources with unknown
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positions and diffuse extended emission.

• The hexagonal dithering employs a hexagonal pattern centered on the

target position (one on-axis pointing and 6 off-axis pointings, each

separated by 2o on the six verteces of an hexagon). This mode is

used only for observations of point or isolated sources, with known

positions, where no contribution from off-axis sources is expected.

Figure 4.9 Dithering strategy for IBIS/INTEGRAL. The central circle is the
position of the observation target, squares indicates the hexagonal pattern
and circles the rectangular one.

4.4 Detector properties

When a mask-detector configuration is chosen, the detector should sat-

isfy some requirements on its spatial response to make a proper recording

of the shadowgram. The accuracy in the location of a source in the FOV is

determined by the detector ability to distinguish as well as possible all parts

of the shadowgram. Fixed the mask/PSD separation, the finite spatial res-

olution of the PSD is the basic limiting factor for both point source location
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accuracy (PSLA) and angular resolution of the instrument. In a coded mask

system, the detector spatial resolution is defined by the detectors pixel size.

PSLA parameter expresses the capability of the detector to localize sources.

It depends on both the angular resolution of the coded mask system and

the finite spatial resolution of the detector. Caroli [15] showed how the

theoretical PSLA depends on the detector performances as:

PSLA =
arctan(H/L)

SNR
, (4.2)

where L is the mask-detector distance.

Gros [39] showed how the the absolute localization in ISGRI is less than

1’ for sources detected at a significance level higher than 20σ and 3’ for

sources at a significance level of about 7σ. Using data od the 4th soft-γ ray

survey catalog [6], S. Scaringi et al. [68] found that the PSLA has improved

significantly since the study of Gros et al. [39] and this can be attributed to

improvements in the OSA software.

The angular resolution firstly depends on the angle subtended by a mask

element at the PSD and, hence, on the mask element size. However, the

maximum resolution achievable is dictated by the positional resolution of the

PSD. Indeed, for a given positional resolution, the smaller the mask elements

are, the higher will be the effect of the random errors in the positioning of

the detected photons [61].

At hard-X/γ ray energy where diffraction is negligible, assuming the same

size for detector pixels and mask elements, the theoretical angular resolution

(i.e. the minimum angle at which two nearby sources are distinguishable)

depends both on the linear dimension of the mask elements H and on their

distance from the detector L. For a on-axis object one will have

dα = arctan
H

L
, (4.3)

for the PSF. Each pixel in the deconvolved image has angular size (FWHM)

of approximately H/L.

If the source is off-axis of a certain angle φ, the angular resolution is:

dα = arctan

(
H

L
cos2 φ

)
. (4.4)

The angular resolution is consequently determined by the H/L ratio; since

in IBIS H=11.2 mm and L=3200 mm, it turns out to be 12’ for on-axis

sources and higher for off-axis ones.
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However, in the IBIS case, mask elements are bigger than detector pixels.

The ratio R between their dimensions is R = H/sd = 2.43 for ISGRI. To

better sample the shadowgram, the decoding array G must be resampled at

the ISGRI’s pixel size. Data counts must be redistributed according to the

fraction of pixel area covered by a given projected mask element. The re-

sulting coded image has pixels of the ISGRI pixel angular size, i.e. ≈ 4.94’.

The theoretical PSF peak in the FCFOV is space-invariant and given by

the convolution of two square-pyramidal functions with FWHM equal to

mask element size and linear pixel size, respectively. Using the central limit

theorem, the convolution of these functions can be approximated by a bi-

dimensional Gaussian with a width of sPSF ≈
√
H2 + s

2
d. So, the corre-

sponding angular resolution [39] is:

dα = arctan




√
H2 + s

2
d

L


 = 13.26′, (4.5)

which is a bit worse than arctan(H/L) = 12′.

4.5 The System Point Spread Function (SPSF)

In this thesis, the definition of the PSF contains only the geometrical

component of the image system response to a point source in the middle of

the FOV. The PSF is the decoding array employed for both CC and LR.

The SPSF is the spatial response of the imaging system to a point source

also considering the decoding process. In this section the SPSF resulting

from the balanced cross-correlation seen in Sect.3.4.1 used in the IBIS data

analysis will be discussed.

The SPSF of an optimum coded mask system is independent on position

in FCFOV and given by the convolution of a block function (describing the

peak of the delta function) with one describing the kind of decoding applied

and then with a function which describes the detector spatial resolution.

The result of the object reconstruction depends on both the mask pattern

M and decoding array G. The quality of any choice can be evaluated by

studying the SPSF = G ∗M = PP [30], where P and P were described in

Sect.3.3. The correlation method does not suffer for the problem of ampli-

fication of the noise term, because the matrix has finite elements.

On the other hand, using the correlation method, the SPSF is no longer

in general a delta function. The SPSF of the balanced correlation in total
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FOV for the IBIS MURA and for an on-axis source is a δ function over a

flat level in the FCFOV plus at most eight ghosts and secondary lobes in the

PCFOV (see Fig. 4.11). This degradation depends on the structure of the

SPSF and not on the statistical quality of the data. It cannot be reduced

by increasing the exposure time.

The variance (Fig. 4.10) associated to the reconstructed sky image is con-

stant over the FCFOV, but decreasing (increasing in relative value) in the

PCFOV.

Since in our analysis a different decoding process was employed, the LR

deconvolution will show a different SPSF.

Figure 4.10 Variance associated to the reconstructed sky image is constant
over the FCFOV while decreases (increases in relative value) in the PCFOV.
Taken from [36]

4.6 Signal-to-Noise Ratio

The evaluation of image goodness is an age-old problem: for a given

mask design, the quality of the restored image is closely related to the de-

coding technique employed. The ability of each deconvolution method to

reconstruct faithfully the source flux that is a good estimate of the real one

must be checked.

One parameter which may be employed to define the quality of the recon-



56 4 Non-focusing Imaging Satellites

Figure 4.11 The SPSF of the balanced cross-correlation over the total FOV
for the IBIS/ISGRI telescope for a 53×53 MURA Optimum System and an
on-axis source. A delta function in FCFOV and coding noise plus 8 ghosts
can be recognize in the picture. Taken from [36]

struction is the Signal-to-Noise Ratio (SNR) which determines the minimum

detectable source intensity.

Caroli et al. [14] have shown how the balanced cross-correlation deconvolu-

tion performed by G = 2M − 1 ensures a direct subtraction of the constant

background from each pixel of the image, so directly giving the estimate

of the source photons coming from each element of FOV. Unfortunately,

since the variance associated to each pixel has a constant value only in the

FCFOV, the direct background subtraction is guaranteed only in the FC-

FOV. Futhermore, the background contribution to the errors is uniformly

distributed over the FCFOV.

Since the IBIS INTEGRAL MURA has a large number N of basic pattern

elements, the average root mean square error, σ, for all pixels in the restored

image [14] is approximately the square root of the total counts detected dur-

ing the observation period,
√
S +B, i.e.

σ ≈
√

N + 1

N − 1

√
S

S +B
. (4.6)

The IBIS/INTEGRAL mask basic pattern is a MURA of odd order 53, so

the fraction of transparent elements is (N + 1)/2. Due to the excess of one

transparent element, the flux estimated from a generic direction k in the
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FCFOV using this correlation operator, is Sk + Bk. i.e. the background is

not automatically subtracted.

Furthermore, the condition of uniform background over detector plane is

usually not totally verified. The decoding process magnifies these back-

ground fluctuations, so it is needed to correct the non-uniform background

spatial distribution.

Another source of systematic noise is the non perfect coding (sidelobes) due

to non ideal system (dead zones, geometrical effects, etc). Coding noise is

proportional to the source flux.

Figure 4.12 A monodimensional slice through a reconstructed point source.
The SNR is defined to be the peak height divided by the expected size of
the fluctuations of the peak and the background. Taken from [26].

In the perfect case, the standard error in the count rate in any one pixel is

determined uniquely by the total number of detected counts [26], and, for a

background dominated situation as the γ ray sky, is virtually independent

of source counts. The expected theoretical source significance tss will be

given by

tss =
S√

S +B
. (4.7)

Since the expected sensitivity must take into account the non-uniform back-

ground against which any source must be detected, the expected tss will be

only a theoretical upper limit for the sensitivity of a point source S over the

background B. For a complete derivation of this equation see Appendix A.

The sensitivity depends also on the detector spatial resolution. An imaging

efficiency factor must be applied to this maximum SNR, as can be seen in
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[15] and [75].

In the practical case, source signal cannot be measured independently from

the background. Only S
′ = S +B is available for a deconvolved source. So

only in simulation an estimate of S can be derived by the difference between

total data and background distribution, i.e. S
′ − B. Since all data counts

are employed to reconstruct the FCFOV and, on the other hand, all data

errors must be added in quadrature because of the propagation of errors

rule, the maximum measured SNR will be given by:

SNRmax =
S
′ −B√
S′

. (4.8)

Detected SNR is computed by dividing the peak height by the standard

deviation, assuming all the background variation due to statistical effects

only [77]. Necessarily, this value will be less than the expected SNR in

Eq.4.7.

The SNR definition employed in our analysis is slightly less rigorous, i.e. in

terms of the theoretical source significance (in σ number) at which source

flux would be reconstructed in a perfect imaging system. So, the actual

measured SNR was defined as:

SNRdet =
max− µ

σ
, (4.9)

where max is the value of peak flux, µ and σ are mean and standard de-

viation of the background values in the deconvolved images (Fig. 4.12).

Significances are distributed as a Gaussian: a measure of its width provides

an estimate of residual systematic noise.

4.7 INTEGRAL data and OSA scientific analysis

The INTEGRAL Science Data Centre (ISDC) released the Off-line Sci-

entific Analysis (OSA) software [79] based on an evolution of the cross-

correlation technique described in Sect.3.4.1 and in [37], [36] and [39]. This

section briefly decribes the structure of the INTEGRAL data and the main

steps of the analysis made by OSA.

Our iterative code based on the Lucy-Richardson algorithm is only a first

approach to image deconvolution analysis. Indeed, it only takes into con-

sideration the geometrical features of coded mask image formation. OSA

software represents the state-of-art image quality, because it considers a

larger class of phenomena that could affect IBIS data deconvolution. For
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this reason, OSA outputs will be used as a validation mean for our results.

4.7.1 Science Window and Observation Groups

Because of the dithering, an observation is made of many pointings (i.e.

periods during which the spacecraft axis pointing direction remains stable)

of about 30 minutes separated by slews (i.e. periods during which the space-

craft is moved from one pointing to another). Each pointing and slew, or a

part of them if they are too long, is called a Science Window (SCW).

Usually, the observation consists of several SCWs. All data produced during

a pointing or a slew are stored into a set of FITS files. They are grouped

together into a Science Window Group (SWG) containing all the data be-

longing to this SCW.

The data structure contains also:

• observational catalogs of high energy and optical sources useful for the

data analysis. Currently, version 30 of the catalog contains about 1703

objects brighter than approximately 1 mCrab in the 1 keV - 10MeV

band and all new IGR sources up to March 12, 2009 [79].

• data relating to the calibration and operation of the instruments.

4.8 The Scientific Analysis

The OSA scientific analysis transforms the prepared data into the fi-

nal high-level products: sky images, source positions, fluxes, spectra and

lightcurves [36]. Its pipelines are made of one independent component for

each of the INTEGRAL instruments. Here the main steps in the case of the

IBIS/ISGRI will be briefly described.

The first step consists in the identification and the collection of the relevant

pointings. Once the list of SCWs is available, an Observation Group (OG)

can be created.

For each SCW, intensity (in units of cts s−1 renormalized to FCFOV), sig-

nificance, variance and residuals maps are obtained and then iteratively

searched for sources and cleaned from the source side lobes. In this itera-

tive process the source peaks are fitted with a bi-dimensional Gaussian and

finely located. The images are rotated, projected and summed after being

weighted for the variance.

The OSA scientific script for IBIS analysis consists of three smaller ones:

the first two work on a SCW basis, while the third on the whole OG.
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For our analysis pourpose, only the ISGRI data were employed and only

the sky maps were reconstructed. The first sub-script is devoted to the

correction of SCWs. It is composed by the following tasks.

• COR (Data Correction) locates noisy pixels, corrects the photons for

rise time and temporal variation of the gain and, finally, transforms

channels to energy.

• GTI (Good Time Handling) excludes times of stream gaps, high back-

ground, instrument anomalous behavior, etc . . ., so creating a good

time interval (GTI) which must be used to select good events.

• DEAD (Dead and Live Times) computes dead time (i.e. the time

during which the instrument is not able to collect photons), within

the GTI.

• BIN I (Event Binning for Imaging) defines the energy bins to be used

for imaging, selects good events within the GTI and creates event

arrays. For each energy range, the intensity shadowgram and a corre-

sponding efficiency map are created.

• BKG I (Background Model Generation for Imaging) derives estimated

background from models. Background models are built from a large

sample of empty fields or from high latitude pointing observations.

Then, IBIS shadowgrams are corrected for efficiency and the back-

ground is subtracted.

After these steps the high-level analysis is performed. The second script

takes the whole OG just created as input and performs the following tasks:

• CAT (Catalog Source Selection) selects a list of known sources from

the reference catalog and creates a source data structure, containing

source locations and expected flux values.

• IMA (Image Reconstruction Analysis) generates sky images and looks

for sources. The detected source list with reconstructed right ascen-

sion, declination, flux, error and significance was created.

In the ISGRI case, shadowgrams are deconvolved, source search is per-

formed in the single images as well as in the mosaic (i.e. combination

of different images) and a list of detected sources is created. In this

step, PICsIT detector is not taken into account.
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The third script again works SCW by SCW. It prepares data for spectra

creation, extracts spectra, products light curves for individual sources. This

goes beyond the scope of this thesis.
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Chapter 5

Direct Demodulation and

Richardson-Lucy algorithm

Chapters 3 dealt with the usual method to deconvolve coded mask data in high

energy astrophysics: the cross-correlation. Eq.3.16 is almost optimal for the image

reconstruction of coded mask system with decoding array G such that M ∗G = δ.

Another possibility is represented by nonlinear iterative techniques, an useful tool

when data are noisy (low SNR).

This chapter will describe the theoretical basis of the DD method. Furthermore, it

will deal with the LR algorithm, chosen to solve the imaging problem in Eq.3.12.

5.1 Introduction

The DD [55] and [56] for reliable inversion has been developed since 90’s

by Chinese scientists. High resolution reconstructions of complicated ob-

jects are achieved by directly solving modulation equations in iterative way

under physical constraints. These algorithms operate on the result of the

previous iteration and are normally slow to converge toward the final result.

The iteration method used to solve the linear system could be the Gauss-

Seidel method or its variant SOR (Successive Over-Relaxation), the Jacobi

method or the Lucy-Richardson (LR) one [64] and [57]. The iterative algo-

rithm most often used in image deconvolution with Poisson data is the LR.

It attempts to maximize the likelihood of the restored image by using the

Expectation-Maximization (EM) algorithm [82]. It requires only to know

the PSF as good as possible and treating object, PSF and image as proba-

bility functions. Its recursive formula in the image space, corresponding to
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di =
∑q

j=1 pijfj + bi, is

f
(r+1)
j = f

(r)
j

p∑

i=1

(
pik

di∑q
j=1 pijf

(r)
j + b

)
(5.1)

or, in matrix form,

f
(r+1)
j = f

(r)
j

(
P

T d

Pf (r) + b

)
(5.2)

where i = 1, . . . , p is the observation point of the detector, j = 1, . . . , q is

the position of the element in the image space and r is the iteration index.

The complete mathematical derivation of Eq.5.2 in absence of background

radiation is given in Appendix C.2.1, so showing there is no mistery behind

this method. Indeed, in astrophysics, it has been most widely used for in-

stance for restoring Hubble Space Telescope optical data [85] and [42]. Some

studies also exist in high energy range, as the work of Allain [1] and [2] on

INTEGRAL/SPI, where a Bayesian approach is employed.

The DD extracts the information from the data more efficiently than conven-

tional inversion methods. The results obtained by Chinese scientists show

a significant improvement of the spatial resolution (also better than the in-

trinsic one) and sensitivity, decreasing the impact of background and noise.

It can greatly improve the source location precision and the angular resolu-

tion. The DD has been tested on many mission data and different kinds of

instruments. In this thesis we decided to apply it to the IBIS/INTEGRAL

data.

In this chapter a Maximum Likelihood (ML) approach for image reconstruc-

tion is adopted. It leads to the minimization of functionals derived from the

properties of the noise and from the additional information on the solution.

5.2 Classical inversion techniques

As described in Sect.3.3, the image process must deal also with the pres-

ence of the noise. It is the realization of a random process, the properties

of which (mean value, variance, its probability distribution, etc) are known.

These properties must be used in the formulation of the problem. In a prob-

abilistic approach it is assumed that both the object f and the detected

image d are realizations of random variables, denoted respectively by φ and

δ. A modelling of the system requires to model the noise with its probability

density, pδ(d|f), which depends only on the object. This will be clearer in
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the following sections.

The image reconstruction process described in Eq.3.12 turns out to be ill-

posed in the Hadamard sense. Its solution may not exist or, when it exists,

is completely deprived of its physical meaning as a conseguence of error

propagation and amplification. Moreover, even if an unique solution can be

found, this is strongly perturbed by noise propagation with oscillations in-

cluding non-physical negative values. This is also the case of the IBIS PSF.

In Chapter 3 the cross-correlation technique applied to coded mask systems

was discussed in details.

The discrete correlation transform of d = Pf + b is:

c = Pcf, (5.3)

where Pc = P
T
P and c = P

T
d. The matrix Pc is always symmetric and

positive definite. This guarantees the convergence of the iterative algorithm

to the exact solution. Nevertheless, the cross-correlation coefficients c are

only an image of the object reconstruction, because they ignore the infor-

mation included in Eqs.5.3 and 3.12.

Before describing iterative methods, a hint to the employment of Fourier

transform (FT) is right and proper. The FT reduces a convolution in the

image space to a simple multiplication in the Fourier space. The implemen-

tation of this technique by means of Discrete Fourier transforms (DFT) can

produce noise amplification due to small values in the DFT of P , also in

high SNR situations (≤ 100). The presence of small or null terms in the

DFT of P appears to be a quite general property of the binary matrices as

those representing coded masks.

5.3 Constrained optimization and DD

Generally, when dealing with a linear inverse problem Pf = d, it hap-

pens that the inverse of the linear operator P either does not exists (i.e.,

the problem is ill-posed), or is nearly singular, giving highly noise-sensitive

solutions (i.e., the problem is ill-conditioned). In order to deal with this

nature of the problem, a large number of linear and nonlinear methods has

been developed. Most linear methods are based on regularization, while

nonlinear ones, as the LR code, are developed under Bayesian framework

and are solved iteratively.

Constrained optimization deals with minimization or maximization of some

real-valued objective function F with equality and/or inequality constraints
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on the solutions, e.g.:

minF (x) (5.4)

s.t. Qx+ b = d,

x ≥ 0

Both the source flux and the noise are unknowns. In Eq.5.4, x = (f, n)T and

Q = [P |Im], where Im is the identity matrix of the same dimension of the

noise. To solve the system in Eq.5.4, a minimum nonlinear problem with

linear constraints in x (i.e. in n and f) must be written. The DD solves this

minimum problem imposing linear constraints on the intensity, i.e.

lowj ≤ fj ≤ upj , (5.5)

where lowj and upj are the lower and the upper bounds for the source flux.

The definition of the objective function F must be established in accordance

with the noise statistics and the upper and the lower bounds must be in-

cluded into it. Y.Chen, T.P.Li and M.Wu [16], proposed the following form

for F :

F (f, n) =

(

N∑

i=1

n
2
i

di
−N

)2

+ ρ

(
N∑

i=1

ni

)2

− β

M∑

i=1

(ln(fi − lowi) + ln(upi − fi))(5.6)

whereN is the number of bins of the observational data andM is the number

of sky bins. The constraint condition is:

M∑

i=1

pjifi + nj = dj j = 1, . . . , N (5.7)

where pij is the (i, j) element of the PSF P and nj is the jth element

of the noise array. The term between square brackets is connected with

the Poisson noise statistics, i.e. with its mean and its variance. The term

ρ

(∑N
i=1 ni

)2
is the expectation value of the noise, assumed to be zero, where

ρ is a regularization parameter. The term
(∑N

i=1
n2
i

di
−N

)2
is the variance

of the data and it should be equal to the number of data N . For a complete

description of these terms, see Appendix B.

Finally, the logaritmic term is a barrier function. Its values increase to

infinity as approaching the boundary of the feasible region (i.e. the space of
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all candidate solutions), so becoming more and more negligible except close

to the boundary. It is used as a penalty term for the violation of constraints.

β is the barrier parameter.

The LR algorithm could be used to solve minimization problem in Eq.5.4. It

was applied to the modulation equation, being known both data and PSF.

The PSF used in our analysis is of geometrical type. It is the shadowgram

obtained by the geometrical projection of the coded mask aperture assuming

a point source in the middle of the FOV.

In a second step, we would like to implement Eq.5.6, but the big sizes of

the arrays involved in the computation prevent us to do it for the moment.

This is an important key-point to check in the near future.

5.3.1 Background lower bound

The LR does not explicitly compute the inverse of the coefficient matrix

P , so this algorithm can be used to solve the image formation equation with

rectangular coefficient matrix. The use of the background as lower bound

for the source intensity is a key component of the DD. It is needed to esti-

mate it from the observed data.

If the object consists of strong discrete sources and the background is weak

the lower bound can simply be equal to the average background. If the back-

ground is structured or there are extended sources in the FOV, a continuum

background map must be produced, including structured background and

diffused sources. This map must be employed for the background subtrac-

tion before the deconvolution.

First a recursive procedure similar to the CLEAN routine [43] can be used.

It subtracts the contribution of point sources with intensities greater than

the minimum intensity of point sources to be reconstructed and derives the

background. Iteratively solving the correlation equations for the background

the continuum background is finally obtained.

Because of its nonlinear nature, the direct error estimation for the DD is

difficult to perform. The error depends on the PSF shape, the iteration

number, the total counts of the observation, the distribution of the source,

the background level and so on. It is better applying the bootstrap method

[24] and [22] for uncertainties estimation.
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5.4 Statistical image deconvolution

Due to the random nature of noise, the recorded image is the realization

of a random process, so a statistical approach to the reformulation of the

image deconvolution problem is desirable.

An ill-posed problem creates a set of approximate solutions that contains

not only physically acceptable objects, but also randomly oscillating objects.

To limit the possibility of finding bad solutions, some kind of regularization

is necessary. For the deconvolution, constraints on the feasible region of

the solution and statistical information (the so-called ”prior”) about the

unknown object are used.

Nonlinear methods use Bayes theorem to regularize the ill-posed imaging

problem and solve it iteratively. Following a statistical approach, the object

statistical properties are a set of parameters that give some kind of a priori

information about the object itself. The following application of the ML

method for the parameters estimation reduces the image deconvolution to

the minimization of a suitable objective function.

Some simple considerations on convexity lead to the existence and unique-

ness of the ML problem solution in the Poisson noise case with zero back-

ground. However, the obtained estimate usually is not stable with respect

to noise fluctuations. The total flux conservation constraint (i.e. the total

number of counts of the rth reconstruction is equal to the total number of

the image counts) is automatically satisfied only in the case of zero back-

ground. However, this constraint partially reduces but not suppresses noise

fluctuations in presence of background radiation. If there is background, the

total flux conservation must be introduced as an additional constraint in the

minimization problem. If P is normalized in such a way that the sum of all

entries of each column is equal to 1, the total flux constraint is written as:

N∑

j=1

fj =
M∑

i=1

(di − bi) ≡ c, (5.8)

where c is the flux constant.

ML methods, in general, lead to a reformulation of the problem which is

still ill-posed because only information about the noise and non-negativity

constraint are used. Some further regularization is necessary.

The instabilities in the solution appear when the iteration number increases

too much. The first possible regularization approach is the employment

of a suitable early stopping of the iterations. The iteration number must
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be chosen in such a way to guarantee the right trade-off between image

resolution and stability of the solutions.

However, due to the statistical setting of the ML, the most general approach

to the regularization is provided by a complete employment of the Bayesian

statistics.

5.4.1 Expectation-Maximization solution

In statistics, given a set of data d, an EM algorithm is a method for

finding ML or MAP (Maximum A Posteriori) estimates of the unknown

parameters. The EM is an iterative method that alternates between per-

forming

• Expectation step: computation of the expectation of the log-likelihood

evaluated using the current estimate for the hidden variables.

• Maximization step: computation of parameters maximizing the ex-

pected log-likelihood found on the E step.

The estimates of these parameters are then used to determine the distribu-

tion of the hidden variables in the next E step.

The EM was first applied to image reconstruction by Shepp and Vardi [73]

in the field of medical imaging. Their algorithm was identical to those

independently obtained by Richardson [64] and Lucy [57]. While the LR

method makes no assumption about the noise, the EM stipulates Poisson

noise in data and seeks the optimal solution under noise degradation. For

the Richardson’s derivation look at Appendix C.

Shepp and Vardi [73] proved that the algorithm iteration converges to the

ML solution for Poisson statistics in the data, while it keeps the recon-

structed image non-negative. The convergence of this algorithm to the ML

estimate is guaranted if all components of the initial guess are positive. A

proof could be found for instance in [82].

The next section, following the Shepp’s and Vardi’s approach, derives the

LR recursive formula:

f
(r+1) = f

(r)

(
P

T d

Pf (r) + b

)
r = 0, 1, . . . . (5.9)
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5.4.2 The ML in the case of Poisson noise

In the following, greek letters will be used to indicate random variables.

Let di the number of photons detected at the detector pixel i. If its mean in-

tensity (Pf+b)i is time-independent, the fluctuations in the photon counting

process obey to Poisson statistics. The noise n and the data d are considered

as a realization of r.v. ν and δ. The image formation equation (Eq.3.12)

relates them by

δ = (Pf + b) + ν. (5.10)

If source and background photons are statistically independent, their con-

tribution to δ is a Poisson r.v. with expected value given by:

E {δ} = (Pf + b)i. (5.11)

All the δi associated to the different detector pixels, are statistically inde-

pendent, so that:

pδ(d; f) =
M∏

i=1

pδi(di; f) =
M∏

i=1

e
−(Pf+b)i(Pf + b)dii

di!
. (5.12)

Let pδ(d; f) the known probability density of the data. Since the unknown

object appears as a set of parameters, the image reconstruction problem ap-

pears as the classic parameter estimation problem. The standard approach

is the ML estimation. The data density function is defined as the likelihood

function

L(f) = pδ(d; f). (5.13)

For a given detected image d, the only unknown in L(f) is f . The ML

estimate fML is the object which maximizes the probability of obtaining

the observed image, i.e.

fML = argmaxL(f). (5.14)

Usually the likelihood function is the product of a very large number of

factors, so that it is convenient to take the logarithm of L(f). Moreover, if

we consider the negative logarithm (the so-called neg-log), the maximization

problem becomes a minimization one, i.e.
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fML = argmin− lnL(f), (5.15)

Given the image d, using the Stirling’s formula, we can approximate the

neg-log of L(f) with the Kullback-Leibler (KL) divergence J0(f ; d) of the

expected value Pf + b from the data d:

− lnL(f) =
M∑

i=1

[−di ln(Pf + b)i + (Pf + b)i + ln(di)!] (5.16)

≈
M∑

i=1

[
−di + (Pf + b)i + di ln

di

(Pf + b)i

]
≡ J0(f ; d).

It is a convex nonnegative functional, so that minimizers exist and are global.

Furthermore, the minima of J0(f ; d) coincide with those of L(f).

Normalizing the PSF P in such a way that the sum of all the entries of each

columns is equal to 1, the gradient and the Hessian matrices of J0(f ; d) are

given by:

∇J0(f ; d) = 1− P
T d

Pf + b
, ∇2

J0(f ; d) = P
T

diag
d

(Pf + b)2
P (5.17)

where for a cyclic matrix P , the arrays with the sum of the entries of each

column of P are equal, because obtained by means of permutations of the

elements of array P .

Thanks to the convexity of J0(f ; d), the Karush-Kuhn-Tucker (KKT) condi-

tions are necessary and sufficient for fML to be a global minimum of J0(f ; d).

From the stationarity condition ∇J0(f ; d) = 0, one gets

fML∇J0(fML; d) = 0 ⇔ fML = fMLP
T d

PfML + b
(5.18)

fML ≥ 0 ∇J0(fML; d) ≥ 0. (5.19)

Now, Eq.5.18 can be written as a fixed point equation. The minima of

J0(f ; d) must be solutions of the following nonlinear equation:

(fML)j = (fML)j

(
P

T d

PfML + b

)

j

, j = 1, . . . , N. (5.20)
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Eq.5.20 is the recursive formulation of the LR algorithm in presence of back-

ground radiation. In this case, the nonnegativity constraint is active only

when this form of the iteration is used. Otherwise, ringing effects may ap-

pear in the reconstructed image.

By applying the method of successive approximations to Eq.5.20, the LR

(or EM) iterative method is obtained:

f
(r+1) = f

(r)
P

T d

Pf (r) + b
, r = 0, 1, . . . (5.21)

5.4.3 Issues on LR algorithm

The iteration is, in general, initialized with a non-negative constant ar-

ray. At each iteration, the reconstructed f will be non-negative. This prop-

erty is linked to the superresolution, the capability to restore information

beyond the diffraction limit. Furthermore, if a component of the solution is

set to zero or becomes zero, it remains zero for all successive iterations.

An important property concerns the manner in which information is ex-

tracted from the data d as the iterative algorithm proceeds. The method is

observed to converge rapidly on long wavelength features in the restored im-

age f , while several thousand iterations are sometimes necessary to resolve

high frequency detail [44] and [45].

Complete recovery of the object requires a large iteration number. In ab-

sence of noise, the procedure tends toward a perfect restoration. Due to

noisy observation, the noise amplifies as iterations increase, so damaging the

restored image from one iteration to another. Hence, restored image may

become unacceptably noisy and unreliable for a large number of iterations.

An analytical analysis of the noise amplification for nonlinear methods is

difficult.
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5.5 Bayesian methods

The classical formulation of ML problem seen in the previous section

employs only information about the noise. No additional information about

the object is considered, then the problem results to be still ill-posed.

Additional information may consist in bounds on the solution. They can be

introduced in the problem as constraints in the objective function formula-

tion. For example, this can be seen in the logaritmic term of Eq.5.6.

However, the completely probabilistic Bayesian approach includes the ad-

ditional information (”prior”) in the form of statistical properties of the

unknown object. Priors allow the regularization of the classical ML solution

fML.

In the Bayesian approach, other than the noise n and the data d, also the

object f is a realization of a r.v. φ. Looking at the image formation equation

(Eq.3.12), they are related by

δ = (Pφ+ b) + ν. (5.22)

The a-priori information is encoded into the prior probability density of φ,

pφ(f). It is the marginal density function of φ, i.e.

pφ(f) =

∫
pφδ(f, d)dd. (5.23)

The most frequently used functions are Gibbs priors, i.e.:

pφ(f) =
1

Z
e
−µΩ(f)

, (5.24)

where Z is a normalization constant, µ is the regularization parameter and

Ω(f) is a functional describing prior information about the object. Examples

of Gibbs priors are:

• Ω(f) = ||f ||22 white noise prior;

• Ω(f) = ||∆f ||22 smoothing prior;

• Ω(f) = ||f ||1 impulse noise prior;

• Ω(f) = ||∇f || total variation prior.

The conditional probability density of δ when the r.v. φ assumes the value

f (i.e. pδ(d|f)), can be deduced from the known statistical properties of the

Poisson noise. If also the prior pφ(f) is given, a complete knowledge of the
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total probability pφδ(f, d) is found.

Following the derivation in Appendix D, the conditional probability density

of φ, called ”a-posteriori” probability density, is given by:

P
φ
d (f) ≡ pφ(f |d) = L(f)

pφ(f)

pδ(d)
, (5.25)

where L(f) is the likelihood function of the previous section. The a-posteriori

probability density provides all information we can get about the unknown

object when we know its a-priori probability density pφ(f) and the data.

From the set of all possible estimates of the unknown object with their rel-

ative probabilities, an estimate of the object is provided by Eq.5.25.

In Bayesian statistics, a MAP estimate can be used to obtain an estimate of

an unknown object on the basis of empirical data. The objective function

J(f ; d) used in MAP optimization problem (Eq.5.26) incorporates a prior

distribution over the quantity one wants to estimate. The choice of the reg-

ularization parameter µ influences the optimum image reconstruction.

The optimization problem to be solved for obtaining the fMAP estimate of

the unknown object is:

min J(f ; d) = J0(f ; d) + µJR(f) (5.26)

s.t. f ≥ 0
N∑

j=1

fj = c,

where J0(f ; d) comes from the neg-log likelihood function and JR(f) from

the neg-log prior function. In Eq.5.26, the total flux consevation is intro-

duced as a constraint. If µ = 0, Eq.5.26 is just the ML problem, so we find

the classical LR iterative formula (Eq.5.21).

From this point forward, thanks to the convexity of J(f ; d), the KKT con-

ditions for a point fMAP to be a global minimum can be employed to solve

the MAP optimization problem (Eq.5.26) in the same way employed in ML.
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Results

At this point of this thesis, we have the theoretical basis to understand the

results. The IBIS/ISGRI data using a pure geometrical PSF were simulated and

decoded. The PSF takes into consideration only the effects of photon propagation

through the aperture. Chapter 3 described the geometrical features of coded mask

systems in detail. Chapter 4 was devoted to the system comprising the IBIS/ISGRI

detector and the IBIS coded mask.

The choice of the decoding method used to restore the sky images affects the quality

of the reconstruction. The achievable sensitivity and the maximum angular resolu-

tion must be checked to define the goodness of the restored image.

After a short description of the LR code, the deconvolved images obtained with

both these methods will be shown and analysed. While in this chapter only the

simulated IBIS/ISGRI data are dealt with, in the next one the real IBIS/ISGRI

data will be deconvolved.

6.1 Deconvolution codes

The main drawback of the coded mask system telescopes for γ ray as-

tronomy is their limited resolution. The usual technique used to deconvolve

coded masks data is the cross-correlation. In the 90’s T.P.Li and his collab-

orators proposed a new way to reconstruct γ ray sky images, the DD, based

on a nonlinear optimization problem with linear-equality constraints.

To solve this optimization problem, Y. Chen et al. [16] proposed an inte-

rior point method. After the implementation of different techniques for the

solution of the inverse problem, great attention was devoted to the Lucy-

Richardson approach.

The CC IDL-based code was previously developed by J.B. Stephen of the
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INAF-IASF of Bologna. Thanks to the precious collaboration with S. Bonet-

tini and G. Zanghirati of the Mathematics Department of the University of

Ferrara, the LR code was developed. Since Matlab offers a huge amount of

optimization routines and in order to collaborate with the numerical opti-

mization researchers in our University, Matlab was chosen to implement the

CC and it was used as the working environment.

6.1.1 Data and decoding array

The CC deconvolves the data with a decoding array obtained by the

95×95 elements aperture. In input, data are given in units of cts cm−2 s−1

for both the simulated and real cases.

A typical simulated data distribution is shown at the left hand side of Fig.

6.1. It consists of a 128×128 array of photon counts over a 130×134 physi-

cal support (due to the gaps between element modules). The data take into

account also dead pixels, i.e. the bad working pixels which are switched off.

The flux at the module gaps and dead pixels is posed equal to 0.
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Figure 6.1 A typical data distribution (left) and the PSF (right) of the IBIS
instrument. Data are also called shadowgram and PSF decoding array.

The CC code can simulate more than one source in the FOV, for each of

which the position in the sky and the flux can be chosen. Data are resam-

pled to the mask element FCFOV resolution.

The Poisson background distribution is created giving as input the mean

value around which it is built in units of cts s−1. Before adding the back-

ground to the simulated data, both these radiations must have the same

units of cts in each detector pixel, so the data initial value must be multi-

plied by the ISGRI pixel area (i.e. 0.462=0.2116 cm2) and the observation

time (i.e. 2150 s). For instance, a value of 0.03 cts s−1 cm−2 becomes 13.97
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cts for each pixel.

The initial background value must be multiplied by the observation time

and divided by the number of ISGRI pixels (i.e. 128×128=16384 without

gap between modules but including dead pixels). For instance, the input

value of 5000 cts s−1 is normalized to:

BKG =
5000× 2150

16384
= 656.13 cts (6.1)

for each pixel. Around this normalized background value the Poisson distri-

bution is created. It will be the ”usual background” used in all simulated

data of this chapter.

After the addition of the background radiation to the source, the resulting

data must be renormalized to the units of cts s−1 before proceeding with

the balanced cross-correlation deconvolution.

The PSF (right hand side of Fig. 6.1) is obtained by the mask pattern

resampled at the same level as the data, zero-padded to the correct size.

6.1.2 The LR code

Since the deconvolved images must be in the same units in both CC and

LR, before using the LR, data must be normalized to cts s−1 cm−2, so the

input data to the LR were divided for the area of one ISGRI pixel.

As said, the value of the source peak deconvolved with CC is a good estimate

of the source real flux. Given that the LR code belongs to the class of non-

linear techniques, the source flux estimation with this decoding algorithm

represents a huge problem, mainly due to the choice of the correct itera-

tion number. Too many iterations could amplify noise fluctuations to the

detriment of the goodness of source flux estimate and, as a consequence, of

the quality of the reconstruction. In advanced numerical analysis, stopping

criteria, mainly based on the residuals analysis, are developed even if the

choice of a general stopping rule remains today an open issue in Non-Linear

optimization Problems (NLPs).

Furthermore, an iteration number which could be optimum for a source of

given flux, may not be for a fainter one. This situation could be met in

crowded sky regions as, for example, the Galactic Centre.

Extreme care must be used when we deal with the PCFOV. The shadow-

gram of a PC source contains less data counts (i.e. less statistics), so the

reconstruction of a PC source could be less precise. Furthermore, coding

noise from both FC and PC sources is diffused also over the PCFOV.
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As said in Chapter 5, there are two main inputs to be provided to the LR

code: an initial sky image and the iteration number.

As an initial point, the LR takes an image of the decoded sky size with all

positive entries. To simplify the computation, it is normalized in such a way

that the sum of the entries of each column is equal to 1.

Also the background b must be initialized. For real data, the initial b is cho-

sen to be 90% the mean value of all data counts. In the simulation, instead,

the input b value is normalized to the ISGRI pixel area, in units of cts s−1

cm−2 as the data.

The initial estimate of the correct iteration number was found by trial and

error. Two hundred LR iterations were found to provide a good trade-off

between image reconstruction and noise propagation with both simulated

and real data. In the following, 200 LR iterations were performed for all

analysis. The LR restores the (r + 1)− th image, f (r+1), as

f
(r+1) = f

(r)
P

T d

Pf (r) + b
, (6.2)

where f (r) is the deconvolved image of the previous iteration or, for the first

iteration, the initial image.

The LR code exploits the properties of the Fourier transform to compute

the convolution Pf
(r) by Fast Fourier Transform (FFT), so allowing to save

computation time.

6.2 Flux reconstruction

The nonlinear nature of the LR affects the quality of the deconvolved

images. The number of iterations performed is the limiting factor to the

goodness of the reconstructed source flux. The 200 LR iterations used in all

this thesis were chosen by trial and error, so it is necessary to know when

this iteration number is able to well reconstruct the source real flux.

To do it, the behaviour of the deconvolved source flux as the source becomes

brighter was studied. The system of a point source of increasing flux (i.e.

from 0 to 0.1 cts s−1 cm−2) superimposed on a 1.45 cts s−1 cm−2 Poisson

background is decoded using two hundred LR iterations. For each source

flux value, a sample of 100 runs was created and the mean deconvolved flux

was computed.

Fig. 6.2 shows the behaviour of the reconstructed source flux as the source

becomes brighter for both CC and LR.
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Figure 6.2 Reconstructed flux distribution in the case of a source of increas-
ing flux for both CC (up) and LR (bottom).

The CC reconstructed flux gives a good estimate of that of the real source

independently on its strength. It linearly increases as the source becomes

brighter. The uncertainty of the reconstruction is independent on the real

flux value.

For sources stronger than 1.4% the initial background (i.e. 0.02 cts s−1

cm−2), the LR reconstructed flux linearly increases as the source becomes

brighter. For sources fainter than 0.02 cts s−1 cm−2, the LR evaluation is

more variable. An exponential model better describes the recovered flux in

the whole real source flux interval, even if, for sources stronger than 0.02

cts s−1 cm−2, the fit residuals of the linear model are of the same order of

magnitude as those of the exponential one. The followed linear fit model is

expressed as

p1x+ p2. (6.3)

Tab. 6.1 reports the fit coefficients with their 95% confidence bounds for

both deconvolution algorithms.

For sources fainter than 7% the background (i.e. 0.1 cts s−1 cm−2) and

200 LR iterations performed, the reconstructed source flux always underes-
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Algorithm p1 p2

CC 1 (0.998, 1.001) 3.49 10−5 (-3.25 10−5, 1.02 10−4)

LR 0.62 (0.57, 0.68) -5.87 10−3 (-8.44 −3, -3.3 −3)

Table 6.1 The fit coefficients of the distributions in Fig. 6.2. Between round
brackets there are their 95 % confidence bounds.

timates its real value. For example, the reconstructed source flux of the 0.1

cts s−1 cm−2 source (i.e. 7% the initial background) is 60% its real value.

Preliminary results show as two thousand LR iterations give a reconstructed

flux 93% its real value.

To better compare the deconvolved fluxes obtained with both techniques,

the normalized residual flux is computed as:

Fnorm =
FM − FR

FR
, (6.4)

where FM and FR are reconstructed and real flux, respectively.

Fig. 6.3 shows normalized flux distributions for both CC (red) and LR

(blue). They fit the exponential model defined as

a exp(bx), (6.5)

whose coefficients with their 95% confidence bounds are reported in Tab.6.2.

Algorithm a b
CC 0.13 (-0.07, 0.34) -375.1 (-694.7, -55.56)
LR -1.00 (-1.01, -0.99) -10.35 (-10.87, -9.82)

Table 6.2 The fit coefficients of the normalized fluxes of Fig. 6.3. Between
round brackets there are their 95 % confidence bounds.

Again, it is clear as the CC reconstructed source flux is a good estimate

of its real value. The CC normalized residual flux always does not gain or

lose flux. For sources fainter than 1.4% the initial background radiation,

its value is more uncertain than that obtained for stronger sources. On the

other hand, the LR normalized residual flux always underestimates its real

value for two hundred LR iterations.

Preliminary results show as for a 21% the initial background radiation source

(i.e. 0.3 cts s−1 cm−2), the normalized residual flux is about zero and its

reconstructed flux is 93% its real value. As the source real flux approaches

69% the background radiation (i.e. 1 cts s−1 cm−2), the normalized residual

flux exponentially approaches the zero value.
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Figure 6.3 Normalized source residual flux Fnorm as a function of the source
real flux for both CC (red) and LR (blu).

The sources analysed in this section (i.e. fainter than 7% the input back-

ground) are in the ascending part of the exponential model describing the

0-1 cts s−1 cm−2 flux interval. For them, two hundred LR iterations are not

enough to give a good evaluation of their real flux.

6.2.1 Impact of the iteration number

The correct choice of the iteration number affects the reconstructed flux

values. This is true in both source and ghost peaks case. In this section the

source flux behaviour is analised, while Sect. 6.5 will go into details of that

of the ghost total flux.

The reconstructed flux as the number of iterations increases from 1 to 2000 is

analysed simulating the system of a source of constant 0.1 cts s−1 cm−2 flux

(7% the initial background) superimposed on the usual Poisson background.

The deconvolved source flux normalized to its real value (see Fig. 6.4) follows

the sum of two exponentials model, defined as

a exp(bx) + c exp(dx). (6.6)

The fit coefficients with their 95% confidence bounds are reported in Tab.6.3.
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Figure 6.4 Reconstructed source flux normalized to its real value.

a b c d

0.90 (0.75, 1.05) 8.21 10−6 (-1.23 10−4, 1.4 10−4) -1.03 (-1.18, -0.87) -0.006 (-0.007, -0.004)

Table 6.3 The fit coefficients of the source reconstructed flux in Fig. 6.4.
Between round brackets there are their 95 % confidence bounds.

For a source of flux equal to 7% the initial background, two hundred LR

iterations reconstruct only 60% its real flux. As the iteration number in-

creases, the reconstructed flux approaches its real value. One thousand LR

iterations recover about 90% the source real flux. The flux reconstruction

in the LR is slow, so a big number of iterations is necessary to be able to

give a good estimate of the real flux.

It is reasonable thinking that, to accurately reconstruct the flux of faint

sources, more iterations are necessary, while a good flux estimate of strong

sources needs less computation time. For instance, 2000 LR iterations re-

quire about 6 minutes time, while 200 about 30 seconds.

6.2.2 Minimum detectable flux

In hard-X/soft-γ rays, background radiation is of the same order of mag-

nitude as the source signal. By the analysis shown in previous sections, the

capability of two hundred LR iterations to reconstruct faint objects could

be faced up.
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Figure 6.5 Upper panel: deconvolved FCFOV images in the case of minimum
detectable source. Bottom panel: source profiles. At the left hand side there
are CC results, while at the right hand the LR one.

Independently on the reconstructed source flux, two hundred LR iter-

ations are able to restore a 0.005 cts s−1 cm−2 source (i.e. of 0.3% the

initial background) superimposed on the usual Poisson background, whose

sensitivity is around 5.6σ. As can be seen in Sect. 6.4, while the CC found

SNR (see Eq.4.9) is consistent with the sensitivity, the LR underestimates

it. This is mainly due to the fact that two hundred LR iterations are able

to recover only 8% real source flux, while CC gives a confident estimate.

Fig. 6.5 shows the deconvolved FCFOV images for both CC (left) and 200

LR iterations (right). The source profiles in Fig. 6.5 fit the Gaussian model

defined as

a exp

(
−(x− b)2

2σ2

)
, (6.7)

where the fit coefficients a, b and σ give the flux, the position and the 1σ

error from the position of the reconstructed source, respectively. The fit

coefficients with their 95% confidence bounds are reported in Tab. 6.4. A
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narrow interval around the LR peak must be selected to guarantee the fit

convergence, with a consequent increase in the location accuracy uncertainty

(i.e. σ parameter in Tab. 6.4).

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)

CC 5.83 10−3 (3.75 10−3, 7.89 −3) 21.85 (21.44, 22.26) 0.99 (0.59, 1.40)

LR 2.87 10−4 (2.03 10−4, 3.72 10−4) 22 (21.64, 22.36) 1.05 (0.69, 1.40)

Table 6.4 The fit coefficients of the profiles in Fig. 6.5. Between round
brackets there are their 95 % confidence bounds.

The probability to reconstruct fluctuations as if they are real sources in-

creases as the source flux becomes fainter. A source flux equal to 0.3% the

initial background radiation is the limiting flux for which the LR algorithm

is able to unequivocaly reconstruct and locate the source peak (see the b

parameter in Tab. 6.4), independently on the reconstructed flux. Indeed,

false peaks are not reconstructed neither in CC nor in LR FCOFV images

(Fig. 6.5). Both deconvolution codes locate the source at the correct posi-

tion with the same location accuracy.

A look at the total FOV reveals the existence of ghost peaks superimposed

on the fluctuating reconstructed background. Fig. 6.6 shows the total FOV

profiles taken along the horizontal axis crossing the source for both CC (left)

and LR (right). Ghosts are visible at pixels 22 and 280, while the source is

at pixel 151 in both cases. The CC left hand side ghost is confused between

the noisy boundary of the total FOV. It is not strange that this region shows

spikes due to an increase in uncertainty. At the total FOV boundary, statis-

tics are poorer, so error increases. The ghost behaviour will be studied in

Sect. 6.5.

6.3 The background in reconstructed images

To estimate the SNR, an evaluation of the mean and the standard de-

viation of the background used in all simulated analysis must be computed.

Furthermore, the statistical nature of the reconstructed background radia-

tion in the LR decoded images must be verified.

In images of sparse objects the majority of the pixels contains only back-

ground. The distribution of the counts of the deconvolved FCFOV images

(see Fig. 6.7) follows the expected Gaussian shape. The standard deviation

from the position of the Gaussian peak (i.e. the σ and b parameters in Tab.

6.5) give us an estimate of the background dispersion in the restored images
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Figure 6.6 Total FOV profiles in the case of minimum detectable source for
both CC (left) and LR (right). The source is located at pixel 151, while the
ghosts at pixels 22 and 280.

[81]. If sources are present, they are located at the right hand side of the

background Gaussian peak.

The input background radiation in the simulated fields of this thesis was

kept to the constant value of 656 cts for each of the 16384 ISGRI pixels (see

Eq. 6.1). By definition, the balanced cross-correlation applies weights to

the decoding array in such a way that the mean value of the background

flux is reduced around zero value. For ideal detector and perfect mask sam-

pling (i.e. without gaps, dead pixels, ecc), the purely statistical expected

standard deviation from the mean background should be equal to

√
16384× 656 = 3279 cts (6.8)

or, equivalently,

3279

2150× 16384× 0.21
≈ 4.4 10−4

cts s
−1

cm
−2

. (6.9)

However, the PSF used in our codes is far from a pure δ function. The de-

coding array (i.e. the PSF) includes dead pixels and gaps between modules.

Furthermore, in the theoretical case, the decoding array should have integer

values equal to +1 or -1. The multiplication by the weighting factor W in

Sect. 3.4.1 changes the integer value of the decoding array elements into a

not-integer one between -1 and +1. Both these issues cause an increase in

the expected standard deviation of Eq. 6.9.

The background distribution was fitted with the Gaussian model defined in

Eq. 6.7, where the fit coefficients a, b and σ now give the amplitude, the
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position and the 1σ error from the position of the background distribution,

respectively.

−4 −3 −2 −1 0 1 2 3 4

x 10
−3

0

50

100

150

200

250

300

F (cts s−1 cm−2)

F
re

qu
en

cy

 

 
CC

0 1 2 3

x 10
−4

0

50

100

150

200

250

300

350

400

F (cts s−1 cm−2)

F
re

qu
en

cy

 

 
LR

Figure 6.7 Distribution of FCFOV counts for a pure background field de-
convolved with both CC (left) and 200 LR iterations (right).

Algorithm a b (cts s−1 cm−2) σ (cts s−1 cm−2)

CC 289.5 (285, 294) 1.07 10−5 (-7.86 10−5, 2.93 10−6) 1.04 10−3 (1.02 10−3, 1.06 10−3)

LR 330.3 (317.2, 343.3) 3.96 10−5 (3.82 10−5, 4.09 10−5) 2.73 10−5 (2.58 10−5, 2.87 10−5)

Table 6.5 The fit coefficients of the distributions in Fig. 6.7. Between round
brackets there are their 95 % confidence bounds.

While the CC background distribution is well fitted by a symmetric Gaus-

sian model, in the LR it is asymmetric. However, with a smaller number of

iterations (see Fig. 6.8), the LR background distribution has a more sym-

metric shape. By decreasing of the number of iterations, the mean increases

while the standard deviation decreases (see Tab. 6.6).

Iter. Numb. a b (cts s−1 cm−2) σ (cts s−1 cm−2)

100 317 (309.8, 324.1) 5.05 10−5 (5.00 10−5, 5.10 10−5) 1.84 10−5 (1.79 10−5, 1.87 10−5)

50 302.3 (297.8, 306.8) 5.24 10−5 (5.33 10−5, 5.35 10−5) 6.27 10−6 (6.16 10−6, 6.38 10−6)

Table 6.6 The fit coefficients of the distributions in Fig. 6.8. Between round
brackets there are their 95 % confidence bounds.

Looking at σ in Tab. 6.5, the CC standard deviation is two and a half times

bigger than the expected value in Eq. 6.9. The LR standard deviation is a

factor of 100 smaller than that found with CC. The LR background fluctu-

ations are smaller than the CC one and, as a consequence, the background

is flatter.
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Figure 6.8 LR distributions of FCFOV counts for a pure background field
deconvolved by 100 (left) and 50 (right) LR iterations.

To understand the statistical nature of the background radiation in LR de-

convolved images, i.e. if the standard deviation in Tab. 6.5 is an estimate of

the statistical fluctuations due to the background, the behaviour of the same

pixel in a sample of 100 independent runs is studied. Also in this case, each

pure background field was deconvolved with two hundred LR iterations.

Fig. 6.9 shows the frequency distributions of the same pixel flux obtained

over 100 independent runs for both CC (left) and LR (right).
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Figure 6.9 Frequency distributions of the statistical uncertainty in the case
of pure background field for both CC (left) and LR (right).

The 1σ error of the single run (see Tab. 6.5) gives the interval inside which

the mean in Tab. 6.7 must be found. This is true in both algorithms, as

can be seen comparing the mean b in Tab. 6.7 and the standard deviation

σ of the single run in Tab. 6.5.
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Algorithm a b (cts s−1 cm−2) σ (cts s−1 cm−2)

CC 10.87 (8.83, 12.91) 1.31 10−4 (-1.14 10−4, 3.75 10−4) 1.1 10−3 (9 10−4, 1.4 10−3)

LR 21.49 (16.95, 26.04) 4.21 10−5 (3.64 10−5, 4.79 10−5) 2.33 10−5 (1.72 10−5, 2.93 10−5)

Table 6.7 The fit coefficients of the frequency distributions in Fig. 6.9.
Between round brackets there are their 95 % confidence bounds.

This confirms that the standard deviation in the CC and LR is an estimate

of the statistical uncertainty. The data are statistically independent, as their

deconvolved images.

The LR standard deviation of the single run is too small to describe the

statistical behaviour of the Poisson background in the deconvolved images.

The analysis of the pixel with the maximum reconstructed flux could give

information about this. The maximum flux pixel in the deconvolved image

could be a fluctuation that is reconstructed as if it is a real source. If the

standard deviation of the single run is representative of that obtained from

the distribution of the maximum flux pixel, the deconvolution algorithm

has statistical meaning and the maximum flux pixel does not represent the

reconstruction of a fluctuation.

The maximum flux pixel distribution over 100 independent runs found with

our codes are shown on the right hand side of Figs. 6.10 and 6.11, while

their fit parameters with their 95% confidence bounds are reported on the

second line of Tabs. 6.8 and 6.9.

Assuming that the standard deviation σ of the single run has statistical

meaning, the expected Gaussian distribution over a sample of 100 indepen-

dent runs is created. By the comparison of the expected fit parameters and

those obtained from the real distribution (see Tab. 6.8) it can be seen as the

CC mean and standard deviation have the expected values. This confirms

the statistical nature of this deconvolution method.

a b (cts s−1 cm−2) σ (cts s−1 cm−2)

Expected Dist. 18.28 3.91 10−3 2.05 10−4

Real Dist. 13.66 (11.23, 16.08) 3.91 10−3 (3.85 10−3, 3.97 10−3) 2.77 10−4 (2.19 10−4, 3.34 10−4)

Table 6.8 The fit coefficients of the CC distributions in Fig. 6.10.

However, this is not the LR case. Indeed, the standard deviation of the

expected and the real distributions (left and right hand side of Fig. 6.11,

respectively) differes of a factor of

D =
8.98 10−5

7.86 10−6
≈ 11.42. (6.10)
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Figure 6.10 Left panel: the expected CC frequency distribution of the maxi-
mum flux pixel for 100 runs. Right panel: the real CC frequency distribution
of the maximum flux pixel for 100 runs.

The LR algorithm shows statistical behaviour but the nonlinear nature of

this algorithm makes the background too flat. When the standard deviation

of the background distribution is used to compute the SNR, the LR 1σ value

in Tab. 6.5 will be multiplied by the factor D.
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Figure 6.11 Left panel: the expected LR frequency distribution of the maxi-
mum flux pixel for 100 runs. Right panel: the real LR frequency distribution
of the maximum flux pixel for 100 runs.

For a 1.45 cts s−1 cm−2 initial Poisson background distribution, the statis-

tical uncertainty due to background radiation in the deconvolved images is

of the order of 10−3 cts s−1 cm−2 for CC and, if two hundred LR iterations

are performed, of a few 2.73 10−5 × 11.42 ≈ 3.12 10−4 cts s−1 cm−2 for LR.

However, the analysis of the background standard deviation and of the D

factor requires to be more accurately studied, in particular when a source
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Algorithm a b (cts s−1 cm−2) σ (cts s−1 cm−2)

Expected Dist. 14.45 1.09 10−4 7.86 10−6

Real Dist. 8.42 (6.714, 10.12) 2.33 10−4 (1.88 10−4, 2.77 10−4) 8.98 10−5 (4.81 10−5, 1.31 10−4)

Table 6.9 The fit coefficients of the LR distributions in Fig. 6.11.

of given flux is present in the FOV.

Furthermore, since the estimate of the background distribution parameters

depends on the number of iterations (see Tab. 6.6), this factor must be

computed every time the iteration number is changed.

6.4 Sensitivity

To measure the quality of a deconvolution method, the behaviour of the

SNR (Eq.4.9) as a function of source flux must be studied. The system of a

point source of increasing flux (i.e. from 0 to 0.1 cts s−1 cm−2) superimposed

on the usual Poisson background is analysed. For each source flux value, a

sample of 100 independent runs was created. For each run, two hundred LR

iterations are performed.

Fig. 6.12 show the found SNR (Eq.4.9) as a function of the source flux

for both CC and LR. The red points are the expected theoretical source

significance (Eq.4.7) as a function of the source increasing flux.

On the whole flux interval analysed in this section, the CC found SNR

follows the expected linear increase as the source becomes brighter. For

sources brighter than 1.4% the initial background (i.e. 0.02 cts s−1 cm−2),

also the LR found SNR is well described by a linear model as the source

flux increases. For sources fainter than 1.4% the initial background, the LR

found SNR underestimates the expected tss. The coefficients of the linear

fit (see Eq.6.3) with their 95% confidence bounds are reported in Tab.6.10.

Algorithm p1 p2

CC 930.8 (925.5, 936.3) 0.44 (0.18, 0.69)
LR 1458 (1316, 1601) -11.52 (-18.18, 14.86)

Table 6.10 The fit coefficients of the distributions in Fig. 6.12. Between
round brackets there are their 95 % confidence bounds.

In a perfect imaging system, the CC gives reconstructed flux less significant

than the expected value. The CC error on the evaluation of the found SNR

is independent on the source real flux.
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Figure 6.12 Found SNR distribution for the simulation of a source of de-
creasing flux for both CC (up) and LR (bottom). In red is the expected
tss.

The LR found SNR is corrected for the D factor in Eq. 6.10, i.e. the

expected value of the background standard deviation is used. For sources

fainter than 1.4% the initial background (i.e. 0.02 cts s−1 cm−2), the found

SNR underestimates the expected value. This is probably due to the fatc

that the reconstructed flux is underestimated more for these sources than

for the stronger one.

For sources stronger than 1.4% the initial background, the found SNR is of

the same order of magnitude of the expected sensitivity, even if its uncer-

tainty increases as the source becomes brighter.

For example, for 200 LR iterations, the expected sensitivity and the CC

found SNR for a 0.1 cts s−1 cm−2 source (i.e. 0.7% the intial background)

are around 110σ and 93σ respectively, while the LR found SNR is around

130σ with error bars of 50σ.

For the field of a 1 cts s−1 cm−2 flux source superimposed on the usual

Poisson background, two hundred LR iterations give a good estimate of the

source flux. Preliminary results show that the LR found SNR is around

800±53 σ, while the expected tss is around 996σ.
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6.5 Ghosts

Ghosts appear for both FC and PC sources. While the ghosts of a FC

source are in the PCFOV, sources in the PCFOV could give rise to ghost

peaks also in the FCFOV. The choice of a deconvolution method affects the

ghost strength, while their location is ruled only by the mask geometry, in-

dependently on the decoding algorithm used. They appear in both CC and

LR deconvolved images. The implementation of their removal requires to

study the behaviour of their intensity.

Fixed the iteration number to 200, by the simulation of a source of increas-

ing flux (from 0.01 to 1 cts s−1 cm−2 or from 0.7% to 70% the background

flux) superimposed on the usual Poisson background, it is clear as the source

flux affects the total strength of ghosts. Fig. 6.13 shows the ghost total flux

normalized to the source real flux as a function of the source real flux itself.

For sources fainter than 7% the background (i.e. 0.1 cts s−1 cm−2), the

ghost total flux is more than 50% the real source. It exponentially decreases

as the source becomes brighter. The coefficients of the exponential fit (Eq.

6.5) with their 95% confidence bounds are reported in Tab. 6.11.

Sources brighter than 70% the initial background radiation are not repre-

sentative of the common situation found in the X ray sky. Indeed, using the

same background radiation and increasing the source flux until 10 cts s−1

cm−2, the reconstructed source flux gives a good estimate of its real value

and ghost total flux is negligible.
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Figure 6.13 Normalized ghost total flux distribution for the simulation of a
decreasing flux source. At the bottom, fit residuals are shown.
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a (cts s−1 cm−2) b
0.75 (0.63, 0.87) -2.91 (-4.30, -1.52)

Table 6.11 The fit coefficients of the distribution in Fig. 6.13. Between
round brackets there are their 95 % confidence bounds.

If another source of constant 0.01 cts s−1 cm−2 flux (called B) is added to

the previous field of the increasing flux source A superimposed to the usual

Poisson background, the behaviour of the source A ghost total flux does not

change so much (see Tabs.6.11 and 6.12). It is not affected on the presence

of another resolved source in the FOV.

Fig.6.14 shows the ghost total flux for both sources A and B as a function of

the source A real flux. Both these distributions fit the exponential model of

Eq. 6.5, whose coefficients with their 95% confidence bounds are reported

in Tab. 6.12.

a (cts s−1 cm−2) b
A 0.84 (0.73, 0.95) -3.51 (-4.84, -2.18)
B 0.57 (0.45, 0.69) -0.78 (-1.42, -0.15)

Table 6.12 The fit coefficients of the distributions in Fig.6.14 for both source
A and B. Between round brackets there are their 95 % confidence bounds.

As the source A flux increases, the ghost total flux of both sources becomes

fainter more quickly for source A than for source B. The ghost total flux of

source A becomes negligible respect to its real flux at about 1 cts s−1 cm−2,

while that of source B is about 10% of the real source A flux.

6.5.1 Impact of the iteration number

The LR has not information about the false nature of the ghosts, so

it reconstructs them as if they are real sources. While in Sect. 6.2.1 was

shown the impact of the iteration number onto the goodness of the source

reconstructed flux, this section studies at the same way what happens to

the ghost flux.

The same simulation of Sect. 6.2.1 was performed (i.e. the system of a

source of constant 0.1 cts s−1 cm−2 flux superimposed on the usual Poisson

background as the number of iterations increases from 1 to 2000). For de-

tails about the reconstructed source flux see Fig. 6.4 and Tab. 6.3.

As the iteration number increases, the ghost total flux normalized to the

source real flux (in red in Fig. 6.15) follows the sum of two exponentials
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Figure 6.14 Ghost total flux distribution for sources A (up) and B (bottom).
At the bottom, fit residuals are shown.

model as the source reconstructed flux (in black in Fig. 6.4), but with dif-

ferent fit coefficients (see Tab. 6.13).

As said, the CC ghosts have the same strength as the deconvolved source

and, since the CC always gives consistent estimates of the real source, the

CC false peaks have the same flux as the source. On average, each of the 8

LR ghost is fainter than that of the CC false peaks.

The ghost total flux exponentially increases until the reconstructed flux of

the source is 70% its real value and, then, it slowly decreases going asymp-

totically to zero.

For two hundred LR iterations, the ghost total flux is around 65% the real

source, i.e. each false peak is about 8% the real source. The reconstructed

source flux is about 50% its real value. When the LR reconstructed about
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Figure 6.15 Ghost total flux (red) and reconstructed source flux (black) both
normalized to the source real flux.

a b c d

-1.96 (-4.48, 0.55) -0.01 (-0.03, 0.001) 1.77 (-0.82, 4.37) -0.004 (-0.008, -3.57 10−4)

Table 6.13 The fit coefficients of the ghost total flux in Fig. 6.15. Between
round brackets there are their 95 % confidence bounds.

90% the source real flux (i.e. for 1000 LR iterations), the ghost total flux is

negligible with respect to the real source flux.

For the moment, the ghost flux behaviour after the complete recovery of the

source flux was not studied yet. It will be one of our future work.

6.6 Reconstruction capability in the PCFOV

Both CC and LR are able to reconstruct source and ghost peaks in the

PCFOV. This section studies the LR imaging capability in this part of the

FOV.

Two hundred LR iterations are a good choice if the source flux is at least

20% the initial Poisson background. They are able to recover the 87% source

real flux. To obtain a realiable flux estimate for fainter sources, more itera-

tions have to be performed.

An interesting example is represented by the simulation of the field of one

PC plus one FC source of 1 and 0.3 cts s−1 cm−2 flux, respectively, both

superimposed on a 1.45 cts s−1 cm−2 Poisson background. Their fluxes are
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70% and 21% the initial Poisson background.

Due to the location of the simulated sources, we expect in the FCFOV a

peak in correspondence of the source position plus 8 ghosts and coding noise

in the PCFOV. Instead, we expect that the PC source should give rise to

a peak in correspondence of its position plus 5 ghost peaks, all in the FC-

FOV. The PC source should cause a diffusion of coding noise also over the

FCFOV, distributed along the axes passing the PC source itself.

Fig. 6.16 show the deconvolved FCFOV images obtained by the CC (left)

and 200 LR iterations (right). At the bottom of Fig. 6.16, the FC source

profiles are fitted with the Gaussian model of Eq. 6.7, where the fit co-

efficients a, b and σ give the flux, the position and the 1σ error from the

position of the source peak, respectively. Tab. 6.14 reports the coefficients

of the Gaussian fits with their 95% confidence bounds.
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Figure 6.16 Top panel: deconvolved FCFOV images of the system of one
PC (1 cts s−1 cm−2) and one FC (0.30 cts s−1 cm−2) source. Bottom panel:
horizontal profiles of the FC source for both CC (left) and LR (right).

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
CC 0.30 (0.29, 0.32) 21.98 (21.91, 22.04) 1.17 (1.11, 1.24)

LR 0.28 (2.79 10−1, 2.80 10−1) 22 (21.98, 22.02) 0.30 (0.30, 0.31)

Table 6.14 The fit coefficients of the FC source profile in Fig. 6.16. Between
round brackets there are their 95 % confidence bounds.
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Both algorithms resolve the FC source, with deconvolved flux of 0.30 and

0.28 cts s−1 cm−2 for CC and LR, respectively. The source is correctly

located in both cases. The standard deviation of the LR reconstruction is

about one fourth than that obtained with the CC. The LR shows a great

improvement in source location accuracy. Only ghosts along the vertical

and horizontal axes crossing the FC source appear, with about 1% real FC

source flux each.

The PC source is correctly reconstructed in both deconvolution methods.

Fig. 6.17 shows the PC source profiles for both CC (left) and LR (right).

Tab. 6.15 reports the coefficients of the Gaussian fits with their 95% confi-

dence bounds.
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Figure 6.17 Total FOV profiles of the PC source for both CC (left) and LR
(right). Here, the PC source has 1 cts s−1 cm−2 flux and the FC one 0.3 cts
s−1 cm−2 flux.

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
CCG 0.95 (0.70, 1.20) 71.9 (71.4, 72.41) 1.64 ( 1.14, 2.14)
CCS 1.00 (0.70, 1.31) 201 (200.6, 201.4) 1.13 (0.73, 1.52)
CCG 0.23 (0.14, 0.32) 348.4 (339.3, 357.5) 14.06 (4.38, 23.74)

LRS 94.42 10−2 (94.38 10−2, 94.45 10−2) 201 (200.9, 201.1) 0.23 (0.20, 0.26)

Table 6.15 The fit coefficients of the profiles in Fig. 6.17. CCG, CCS , LRG

and LRS refer to the fit parameters of ghost and source peaks for both
CC and LR, respectively. Between round brackets there are their 95 %
confidence bounds.

In this system, the ghosts of the PC source do not appear in the LR. The

CC right hand side ghost is confused between the noisy boundary of the

total FOV. The CC left hand ghost, instead, has the same strength as the

deconvolved source.

The LR standard deviation of the PC source is almost 5 times bigger than
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the CC one. LR is able to locate with the same accuracy both FC and PC

sources. The source location accuracy is independent on the source real flux

and on the fact that the source is in the FC or in the PC FOV.

The vertical feature in the CC decoded image (left hand side of Fig. 6.16)

is clearly related to the position of the PC source: it is the coding noise due

to it. In the CC this feature is a factor of 100 stronger than that in the LR

deconvolved FCFOV image (see Fig. 6.18).
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Figure 6.18 Profiles of the coding noise feature for both CC (left) and LR
(right). Here the PC source has 1 cts s−1 cm−2 flux.

The deconvolution of the field with only the 1 cts s−1 cm−2 PC source su-

perimposed on the usual Poisson background confirmes that this feature is

the coding noise due to the PC source. The source is clearly and correctly

reconstructed with fit parameters consistent with those in Tab. 6.15 (see

rows CCS and LRS).

As a further check, the source fluxes in the previous simulation are reversed

(i.e. a 1 cts s−1 cm−2 FC source and a 0.3 cts s−1 cm−2 PC one). Tab.

6.16 reports the coefficients of the Gaussian fit with their 95% confidence

bounds.

For this field, the LR reconstructs only the ghost peaks of the PC source.

It is clear as both CC and LR correctly locate both source and ghost peaks.

In the LR, ghosts are fainter than the source (around 1% and 8% of the

LR deconvolved source flux for both left and right hand side ghost, respec-

tively). Two hundred LR iterations allow the reconstruction of 87% the real

PC source flux and 98% the real FC source flux.
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Source Algorithm a b σ

FC CC 1.01 (0.98, 1.03) 21.99 (21.96, 22.02) 1.15 (1.12, 1.18)

FC LR 98.03 10−2 (98.01 10−2, 98.06 10−2) 22 (21.92, 22.08) 0.23 (0.22, 0.25)

PC CCG 0.28 (0.22, 0.35) 71.92 (71.48, 72.35) 1.68 ( 1.24, 2.16)
CCS 0.30 (0.22, 0.38) 201 (200.7, 201.3) 1.11 (0.78, 1.45)
CCG 0.30 (0.21, 0.39) 330.1 (329.8, 330.4) 0.90 (0.60, 1.2)

PC LRG 3.13 10−3 (2.69 10−3, 3.58 10−3) 72 (71.04, 72.96) 0.33 (0.01, 0.66)
LRS 0.262 (0.262, 0.263) 201 (200.8, 201.2) 0.26 (0.21, 0.30)
LRG 0.017 (0.016, 0.017) 330 (329.6, 330.4) 0.31 (0.20, 0.42)

Table 6.16 The fit coefficients of the system of one PC (0.3 cts s−1 cm−2) and
one FC (1 cts s−1 cm−2) source for both CC and LR. CCG, CCS , LRG and
LRS refer to the fit parameters of ghost and source peaks for both CC and
LR, respectively. Between round brackets there are their 95 % confidence
bounds.

6.7 Angular resolution and location accuracy

The theoretical angular resolution achievable was studied by simulating

two strong point sources of the same flux (1 cts s−1 cm−2) superimposed

on the usual Poisson background and varying their relative separation. The

LR theoretical angular resolution limit depends on the ISGRI pixel size.

Fig. 6.19 shows CC (left) and LR (right) deconvolved FCFOV images when

the two sources are separated by only one ISGRI pixel. At the bottom, the

CC source profile is fitted with the Gaussian model of Eq.6.7, while the LR

one with the sum of two Gaussians model defined as

a1 exp

(
−x− b1

2σ1

)2

+ a2 exp

(
−x− b2

2σ2

)2

. (6.11)

In Tab. 6.17 the coefficients of the Gaussian fits with their 95% confidence

bounds for both CC and LR are reported.

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
CC 1.44 (1.42, 1.47) 21 (20.97, 21.04) 1.61 (1.58, 1.65)

LR 1.03 (-1.20 108, 1.20 108) 22.87 (-1.78 106, 1.78 106) 0.28 (-1.70 107, 1.70 107)

0.98 (-2.26 108, 2.26 108) 21.09 (-1.18 107, 1.18 107) 0.26 (-3.98 107, 3.98 107)

Table 6.17 The fit coefficients of the profiles in Fig. 6.19. Between round
brackets there are their 95 % confidence bounds.

While the CC sees the two sources as a unique source of 1.44 cts s−1 cm−2

located in the middle of the two real positions, the LR can resolve them with

an accuracy more than 5 times better (see the σ parameter in Tab. 6.17).

The deconvolved fluxes of 1.03 and 0.98 cts s−1 cm−2 obtained with the LR

are a good estimate of their real values. Each of the four ghosts along the
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Figure 6.19 Deconvolved FCFOVs and sources profiles for both CC (left) and
LR (right) in the situation where the two equal flux sources are separated
by the theoretical LR resolution limit.

sources axes has streght less than 1% the source real flux. As expected, two

hundred LR iterations to deconvolve this system are a good choice.

For two resolved sources at 1 ISGRI pixel distance as those in Fig. 6.19, the

LR angular resolution is:

ΘLR = arctan
1 pxl × 4.6 mm

3200 mm
≈ 0.095o ≈ 5.73′. (6.12)

The LR angular resolution does not depend neither on the number of iter-

ations nor on the position of the source in the total FOV.



Chapter 7

IBIS/ISGRI data analysis

In this chapter the analysis of the IBIS/ISGRI data from Crab, Cygnus X-1

and the GRB IGR J00245+6251 was performed.

As said in Chapter 4, the IBIS 12’ angular resolution is limited by the IBIS mask

element size and the mask-detector distance. It does not allow sources in crowded

fields as Galactic Centre to be resolved. This chapter will show the LR capability

to deconvolve also Galactic Centre data.

For sake of completeness, the results obtained by our codes are compared with

the state-of-art cross-correlation algorithm, decoding each SCW with the official

software for INTEGRAL data analysis, OSA.

7.1 Data selection

In the previous chapter the better angular resolution and location ac-

curacy obtained with the LR have been demonstrated. The limiting factor

is the choice of the correct iteration number able to give confident recon-

structed fluxes.

OSA performs the state-of-art balanced cross-correlation deconvolution. It

considers all kinds of instrumental systematics in addition to the response

function of the ISGRI detector. As said, our analysis was limited to con-

sider only the geometrical features of photon propagation from the mask to

the ISGRI detector, neglecting the ISGRI response function. The PSF used

in our codes is different from that employed in OSA. For this reason, we

compared the images restored with LR with those obtained with CC, con-

sidering the last as a reference. For sake of completeness, the comparison of

the results was performed.

Each data file was singularly analysed in the 3-5000 keV energy band with
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all three deconvolution algorithms. The OSA decoded total FOV images

have size of 400×400 pxl and are in units of cts s−1 renormalized to the FC-

FOV. The CC and LR codes, instead, reconstruct 361×365 pxl total FOV

images in units of cts s−1 cm−2.

Four sets of real data were chosen from the INTEGRAL archive: a set cor-

responding to a GRB, one set around the Crab, another around Cygnus X-1

(Cyg X-1) and, finally, another in the Galactic Centre. The ISDC identifi-

cation numbers are given in Tab. 7.1.

SCW ID Region/Object RA X DEC X Start Date
ID 026600780010 GRB 00 37 07.32 +65 41 32.5 12/2004
ID 010300030010 Crab 05 33 56.96 +21 59 29.1 08/2003
ID 063000360010 Cygnus X-1 20 22 21.77 +35 34 22.8 12/2007
ID 011500150010 Galactic 17 46 17.18 -28 59 58.8 09/2003

Table 7.1 The science windows selected for the real data analysis.

In the following of this chapter, the images of these SCWs deconvolved with

CC and 200 LR iterations will be compared. The real data analysis con-

firms the results shown in the previous chapter. For strong sources as IGR

J00245+6251, the Crab and Cyg X-1, 200 LR iterations are able to guar-

antee both better angular resolution and good flux estimation. However,

for fainter sources, as those in the Galactic Centre SCW, more iterations

must be performed to reconstruct their real flux. In all cases, both source

and ghost peaks will be fitted with the Gaussian model of Eq. 6.7, where

a, b and σ parameters give information about the reconstructed flux, the

location and the accuracy in the location of the peak, respectively.

7.2 Data corresponding to GRB IGR J00245+6251

A GRB is one of the brightest sources in the sky and also occurs in a

short timescale, so it should be one of the easiest sources to detect in a high

X and γ ray background sky. The GRB IGR J00245+6251 was discovered

with the INTEGRAL satellite in 2007 [7].

As can be seen in the deconvolved FCFOV images (Fig. 7.1), the detected

source is spread over more than one pixels (i.e. 4×4 pxl in CC and 2×1

pxl in LR). The profiles along both horizontal and vertical axes crossing the

maximum pixel of IGR J00245+6251 are analysed.

The OSA catalog reports the existence of two sources in this sky region: IGR

J00245+6251 in the FCFOV and IGR J00291+5934 in the PCFOV. How-



7.2 Data corresponding to GRB IGR J00245+6251 103

ever, in the 3-5000 keV energy band only the stronger IGR J00245+6251

was detected with our codes.
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Figure 7.1 Deconvolved FCFOV images of the GRB SCW for both CC (left)
and LR (right).

Fig. 7.2 shows the IGR J00245+6251 total FOV profiles. Source and ghost

peaks are clearly visible. The fit coefficients with their 95% confidence

bounds are reported in Tab. 7.2.

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
Horizontal Profiles

CCG 6.20 (4.056, 8.35) 11.03 (7.53, 14.53) 7.94 (4.02, 11.85)
CCS 19.15 (13.63, 24.67) 146.3 (146, 146.7) 1.12 (0.74, 1.48)
CCG 18.92 (14.07, 23.76) 275.4 (275, 275.9) 1.44 (1.02, 1.87)
LRG 1.48 (1.38, 1.59) 17 (7.35, 26.65) 0.22 (-1.92, 2.35)
LRS 26.2 (-1.99, 54.4) 146.4 (146.3, 146.5) 0.32 (0.18, 0.47)
LRG 2.11 (-20.17, 24.4) 275.6 (274.4, 276.8) 0.31 (-1.10, 1.73)

Vertical Profiles
CCG 18.51 (13.55, 23.46) 70.87 (70.43, 71.31) 1.41 (0.98, 1.85)
CCS 18 (12.45, 23.56) 199.9 (199.5, 200.3) 1.12 (0.72, 1.53)
CCG 18.64 (13.33, 23.94) 329 (328.6, 329.4) 1.24 (0.83, 1.64)
LRG 1.62 (-7.71, 10.94) 70.61 (70.06, 71.15) 0.32 (0.48, 1.12)
LRS 14.18 (-4.08, 32.44) 199.8 (199.4, 200.2) 0.25 (0.11, 0.40)
LRG 2.07 (-0.57, 4.70) 329.3 (329.1, 329.5) 0.32 (0.12, 0.52)

Table 7.2 Fit coefficients of the profiles in Fig. 7.2. CCG, CCS , LRG and
LRS refer to the fit parameters of ghost and source peaks for both CC and
LR, respectively. Between round brackets there are their 95 % confidence
bounds.

As can be seen from the b and σ parameters in Tab. 7.2, both CC and LR

locate at the same position both source and ghosts, with more accuracy in

LR than in CC (a factor of almost 5 in the horizontal profile and of almost

3 in the vertical one). The position of the left hand side ghost in the CC

horizontal profile shows a greater uncertainty. This is due to its position at

the noisy boundary of the total FOV.

The flux estimate (the a parameter in Tab. 7.2) is around 18 and 15 cts
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Figure 7.2 Total FOV profiles of IGR J00245+6251 for both CC (left) and
LR (right). At the upper level there are horizontal profiles, while at the
bottom level vertical profiles.

s−1 cm−2 for CC and LR, respectively. The overestimated source flux in the

LR horizontal profile is due to IGR J00245+6251 spread over the two next

pixels. The LR horizontal and vertical profile respectively overestimates and

underestimates the CC reconstructed flux a = 18 cts s−1 cm−2 by about 7

cts s−1 cm−2.

While in the CC ghosts have strength of the same order of magnitude as the

CC deconvolved source (see the a parameter in Tab. 7.2), in the LR they

are fainter (i.e. on average 7% and 13% the LR deconvolved source flux for

both horizontal and vertical profiles, respectively).

Source aOSA (cts s−1) bOSA (pxl) σOSA (pxl)
IGR J00245+6251 239.6 (228.3, 250.9) 198.3 (198.2, 198.4) 1.20 (1.13, 1.27)
IGR J00291+5934 10.76 (6.96, 14.56) 189.47 (189.00, 189.94) 1.15 (0.68, 1.63)

Table 7.3 Fit coefficients of the profiles in Fig. 7.4. Between round brackets
there are their 95 % confidence bounds.

Figs. 7.3 and 7.4 show the deconvolved total FOV image and the horizontal

profiles obtained with OSA. The fit of IGR J00291+5934 (right hand side of

Fig. 7.4) converges only if a narrow abscissa interval around the source peak

is selected. The fit coefficients of IGR J00245+6251 and IGR J00291+5934
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with their 95% confidence bounds are reported in Tab. 7.3. Ghosts do not

appear in all OSA total FOV images, since they are automatically removed.

Figure 7.3 OSA total FOV intensity map of the burst SCW.
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Figure 7.4 OSA profiles of IGR J00245+6251 (left) and IGR J00291+5934
(right). I is in units of cts s−1.

The position and the flux of IGR J00245+6251 obtained with OSA are dif-

ferent from those in Tab. 7.2. The different position is due to both the

different size of the reconstructed total FOV images (i.e. 361×365 for CC

and LR and 400×400 for OSA) and to their different orientation. The last

issue will be clearer in Sect.7.7.

Flux estimates (i.e. the a parameter in Tabs. 7.2 and 7.3) are given in

different units: cts s−1 for OSA and cts s−1 cm−2 for both CC and LR. The

OSA deconvolved total FOV images must be corrected for the active area,

i.e. the ISGRI area covered with only good pixels. Noisy pixels are around

nB = 1% the total number of ISGRI pixels NISGRI and one pixel area is Ap
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= 0.21 cm2. The active area is approximately

Aact = Ap
(1− nB)NISGRI

2
= 0.21

(1− 0.01) 16384

2
≈ 1703.12 cm

2
, (7.1)

where the factor 2 takes into account the transparency of the mask. However,

also employing this correction, the source fluxes are different. For example,

FOSA

Aact

FCC
=

239.6 cts s−1

1703.12 cm2

19.15 cts s−1 cm−2
≈ 7.35 10−3

. (7.2)

The ISGRI response function employed in OSA is the reason of this dif-

ference of a factor of almost 0.01. The CC overestimates the flux of IGR

J00245+6251 by a factor of 100 with respect to OSA.

7.3 Data around Crab nebula.

The Crab Nebula is a supernova remnant with, at its centre, a very fast

(about 30 Hz) rotating pulsar. Fig.7.5 shows reconstructed FCFOV images

for both CC (left) and LR (right). The detected source is spread over 4×4

pxl in CC and 2×2 pxl in LR.
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Figure 7.5 Deconvolved FCFOV images of the Crab SCW with both CC
(left) and LR (right).

Fig. 7.6 shows the Crab horizontal and vertical profiles in the total FOV.

They refer to the maximum pixel. The fit coefficients with their 95% confi-

dence bounds are reported in Tab. 7.4.
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Figure 7.6 Total FOV profiles of the Crab for both CC (left) and LR (right).
At the upper level are horizontal profiles, while at the bottom level the
vertical profiles.

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
Horizontal Profiles

CCG 66.4 (59.06, 73.74) 52.39 (52.22, 52.55) 1.29 (1.12, 1.45)
CCS 66.62 (58.65, 74.6) 181.5 (181.4, 181.7) 1.09 (0.94, 1.24)
CCG 63.43 (56.1, 70.76) 310.6 (310.5, 310.8) 1.29 (1.12, 1.46)
LRG 4.01 (2.68, 5.33) 52 (-2415, 2519) 0.18 (-461.25, 461.60)
LRS 96.12 (-1736, 1929) 181.5 (181.2, 181.8) 0.31 (-2.05, 2.68)

Vertical Profiles
CCG 62.75 (54.92, 70.58) 57.11 (56.94, 57.29) 1.22 (1.04, 1.39)
CCS 61.5 (53.25, 69.74) 186.2 (186.1, 186.4) 1.10 (0.93, 1.27)
CCG 61.24 (53.89, 68.59) 315.4 (315.2, 315.6) 1.38 (1.19, 1.57)
LRG 3.99 (3.45, 4.53) 57 (-208.9, 322.9) 0.19 (-50.25, 50.63)
LRS 59.01 (-58.19, 176.2) 186.4 (186.1, 186.6) 0.30 (0.06, 0.53)
LRG 1.88 (0.27, 3.49) 316 (-535.9, 1168) 0.18 (-158.89, 159.31)

Table 7.4 Fit coefficients of the profiles in Fig. 7.6. CCG, CCS , LRG and
LRS refer to the fit parameters of ghost and source peaks for both CC and
LR, respectively. Between round brackets there are their 95 % confidence
bounds.
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Once again, the LR deconvolution shows better location precision than

the CC one (i.e. a factor of 5 as can be seen by the σ parameter in Tab.

7.4). The CC source flux in the horizontal profile is 30 cts s−1 cm−2 fainter

than the LR one, while source fluxes in the vertical profile are about of the

same order of magnitude (i.e. around 60 cts s−1 cm−2).

The flux difference between the two next pixel in the LR horizontal profile

is more than 20 cts s−1 cm−2. This is the reason for which the fit of the LR

horizontal profile overestimates the source flux. The consistency of the flux

evaluated with both CC and LR (i.e. 60 cts s−1 cm−2) confirms as 200 LR

iterations are a good choice in this case.

Again, the CC ghosts have about the same strength as the source peak (see

the a parameter in Tab. 7.4). In the LR, ghosts are so faint that the de-

tected ghost in the horizontal profile has flux 4% the reconstructed source,

while those in the vertical profile are about 7% the real source flux, assumed

to be 60 cts s−1 cm−2.

Fig. 7.7 shows the Crab OSA deconvolved total FOV image and its hor-

izontal profile. The fit coefficients with their 95% confidence bounds are

reported in Tab. 7.5.
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Figure 7.7 OSA total FOV intensity map (left) and Crab horizontal profile
(right).

aOSA (cts s−1 bOSA (pxl) σOSA (pxl)
310.2 (302.6, 317.8) 178.7 (178.7, 178.7) 1.22 (1.19, 1.26)

Table 7.5 Fit coefficients of the Crab profile in Fig. 7.7. Between round
brackets there are their 95 % confidence bounds.
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About the different location of the source, the same considerations made

in the GRB SCW analysis are valid. Being the Crab flux obtained with CC

and LR equal to 60 cts s−1 cm−2, the ratio of Eq.7.2 is 3.03 10−3.

7.4 Data around Cygnus X-1

Cygnus X-1 is a BH in a HMXB system. Fig.7.8 shows reconstructed

FCFOV images for both CC (left) and LR (right). The deconvolved image

of Cyg X-1 is spread over 4×4 pxl in the CC and 2×2 pxl in the LR. Horizon-

tal and vertical profiles are taken across the maximum flux pixel of the Cyg

X-1 decoded image. The OSA catalog reports the existence of two sources

in this sky region: Cyg X-1 in the FCFOV and Cyg X-3 in the PCFOV. In

the 3-5000 keV energy band only the stronger Cyg X-1 was detected with

our codes. The faint flux of Cyg X-3 prevents its detection.
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Figure 7.8 Deconvolved FCFOV images of Cyg X-1 SCW with both CC
(left) and LR (right).

Fig. 7.9 shows Cyg X-1 horizontal profiles in the total FOV. The fit coeffi-

cients with their 95% confidence bounds are reported in Tab. 7.6.

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
CCG 18.37 (15, 21.74) 94.29 (94.01, 94.57) 1.32 (1.04, 1.60)
CCS 18.47 (14.71, 22.23) 223.3 (223.1, 223.6) 1.07 (0.81, 1.31)
CCG 18.29 (13.88, 22.69) 352.4 (352.2, 352.6) 0.83 (0.59, 1.07)

LRG 2.03 (1.02, 3.03) 93.39 (93.34, 93.44) 0.32 (0.25, 0.40)
LRS 14.86 (13.26, 16.46) 222.4 (222.4, 222.4) 0.32 (0.30, 0.33)

Table 7.6 Fit coefficients of the profiles in Fig. 7.9. CCG, CCS , LRG and
LRS refer to the fit parameters of ghost and source peaks for both CC and
LR, respectively. Between round brackets there are their 95 % confidence
bounds.
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Figure 7.9 Total FOV horizontal profiles of Cyg X-1 for both CC (left) and
LR (right).

Both algorithms correctly locate source and ghost peaks, but the LR with

three times better accuracy (see the σ parameter in Tab. 7.6). The LR Cyg

X-1 flux is about 3 cts s−1 cm−2 fainter than that obtained by CC (see the

a parameter in Tab. 7.6).

While the CC ghosts show the usual behaviour, only the left hand side LR

false peak is detected, with strength 14% the LR deconvolved Cyg X-1 flux.

Again, the 200 LR iterations performed are a good choice. The faint ghost

in the LR total FOV confirms the interconnection between the iteration

number, the reconstructed source flux and the ghost peaks reconstruction.

Fig. 7.10 shows the Cyg X-1 vertical profiles in total FOV, whose coefficients

with their 95% confidence bounds are reported in Tab. 7.7.
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Figure 7.10 Total FOV vertical profiles of Cyg X-1 for both CC (left) and
LR (right).

The LR right hand side ghost is visible, with flux only 3% the deconvolved

source flux, while the left hand one has flux 13% the deconvolved source

one. Cyg X-1 flux obtained with both deconvolution methods are consistent

at about 20 cts s−1 cm−2 (see a values in Tab. 7.7).



7.4 Data around Cygnus X-1 111

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
CCG 19.82 (16.12, 23.52) 100.38 (100.11, 100.65) 1.24 (0.97, 1.51)
CCS 19.91 (15.87, 23.94) 229.5 (229.2, 229.7) 1.05 (0.81, 1.29)
CCG 21.87 (17.57, 26.18) 358.8 (358.6, 359) 0.91 (0.70, 1.12)
LRG 2.73 (0.80, 4.65) 100.19 (99.99, 100.39) 0.27 (0.18, 0.35)
LRS 20.63 (17.27, 23.99) 229.5 (229.5, 229.5) 0.32 (0.30, 0.35)
LRG 0.67 (0.67, 0.68) 359 (357.3, 360.7) 0.22 (-0.14, 0.59)

Table 7.7 Fit coefficients of the profiles in Fig. 7.10. CCG, CCS , LRG and
LRS refer to the fit parameters of ghost and source peaks for both CC and
LR, respectively. Between round brackets there are their 95 % confidence
bounds.

Fig. 7.11 shows the OSA deconvolved total FOV image. OSA detects two

sources, Cyg X-1 and Cyg X-3, the first brighter than the second. Fig. 7.12

shows the Cyg X-1 (left) and Cyg X-3 (right) horizontal profiles. The fit

coefficients with their 95% confidence bounds are reported in Tab. 7.8. For

Cyg X-1, the ratio between the OSA and CC reconstructed flux (see Eq.7.2)

is 7.26 10−3.

Figure 7.11 OSA total FOV intensity map of the Cyg X-1 SCW.

aOSA (cts s−1) bOSA (pxl) σOSA (pxl)
Cyg X-1 247.2 (223.2, 271.1) 311.4 (311.2, 311.5) 1.26 (1.12, 1.40)
Cyg X-3 38.53 (27.48, 49.57) 169.1 (168.8, 169.5) 1.18 (0.78, 1.57)

Table 7.8 Fit coefficients of the profiles in Fig. 7.12. Between round brackets
there are their 95 % confidence bounds.
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Figure 7.12 OSA Cyg X-1 (left) and Cyg X-3 (right) profiles. I is in units
of cts s−1.

7.5 Data in the Galactic Centre.

In regions where the source density is high such as in the Galactic Cen-

tre, the IBIS/INTEGRAL 12’ angular resolution does not always allow the

resolution of nearby sources.

Since in the previous chapter a better resolution than that of IBIS was

found, the analysis of this Galactic Centre SCW would be a first look into

the possible application of LR to INTEGRAL surveys.
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Figure 7.13 Deconvolved FCFOV images of the Galactic Centre SCW for
both CC (left) and LR (right).

Fig. 7.13 shows deconvolved FCFOV images for both CC (left) and LR

(right). More than one peak is detected. It must be checked if these are

real sources or fluctuations before proceeding with the source identification.

From the cross-check with the OSA total FOV and the user catalog, the

identification of the real sources is possible. To do this, it is useful to em-

ploy a labelled version of the LR FCFOV (the upper panel in Fig. 7.14).
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Figure 7.14 Labelled version of the LR deconvolved FCFOV image of Fig.
7.13 (up) and OSA total FOV intensity map (bottom).

Since the deconvolved sources cover only one pixel, only horizontal profiles

are considered in this section.

Sources A, B and D are located at the boundary of the FCFOV. The right

hand side ghosts of sources A and B and the left hand one of source D will

be at the noisy boundaries of the total FOV. As said, this region is affected

by greater uncertainty and, usually, it is prevented form the source search-

ing. The ghost location in this region could be less accurate.

The LR non-linearity does not allow a standardized analysis of ghost peaks

behaviour. The LR deconvolution should be stopped at the iteration num-
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ber where the sources are clearly visible and ghosts are just detected. How

to do this exactly is under examination and may differ from field to field.

As will be seen in Sect.7.7, CC and LR deconvolved images have a different

orientation respect to the OSA one. To simplify the source identification, a

90o clockwise rotation of the OSA image (see Fig. 7.15) is performed. From

the relative location of the sources, the correspondence between the LR and

the OSA deconvolutions can be univocally found. Tab. 7.9 lists the position

and the flux of the sources in the Galactic Centre SCW taken from the OSA

catalog.

Figure 7.15 OSA 90o clockwise rotated intensity map of the Galactic Centre
SCW.

Name R.A. Dec. F3−10keV F10−30keV F20−60keV F60−200kev

(J2000) (J2000)

Ginga 1826-24 18 29 28.2 -23 47 49 1.19 10−9 2.86 10−9 2.05 10−9 9.66 10−10

GRS 1758-258 18 01 12.7 -25 44 26 1.19 10−9 2.86 10−9 2.05 10−9 9.66 10−10

GX 5-1 18 01 08.2 -25 04 45 2.29 10−8 1.44 10−8 4.53 10−9 4.22 10−10

GX 9+1 18 01 32.3 -20 31 44 5.37 10−9 2.84 10−9 8.77 10−10 1.19 10−10

GX 3+1 17 47 56.0 -26 33 49 6.67 10−9 3.65 10−9 1.13 10−9 1.53 10−10

1E 1740.7-2942 17 43 54.83 -29 44 42.6 3.09 10−10 9.56 10−10 7.19 10−10 6.22 10−10

GX 354-0 17 31 57.4 -33 50 05 9.48 10−9 5.42 10−9 1.68 10−9 2.28 10−10

4U 1700-377 17 03 56.77 -37 50 38.9 2.04 10−9 2.37 10−9 8.31 10−10 1.50 10−11

Table 7.9 Properties taken from the OSA catalog for the sources in the
Galactic Centre SCW. F are the energy fluxes in the corresponding energy
bands, in units of cts s−1. For further details, see [78].
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7.5.1 OSA sources profiles

To proceed with source identification, the profiles of the sources detected

with OSA are needed. While the fits in Fig. 7.17 converge, those in Fig.

7.16 do it if only a narrow selection around each peak is chosen. 4U 1700-377

is at the noisy boundary of the total FOV.

From the fit profiles obtained with the limited selection around the source

peaks (Fig. 7.16) it results that:

• 4U 1700-377 location is at pixel 283±1.19 in Fig. 7.16 and its intensity

is 17.11 (11.21, 23) cts s−1.

• GX 3+1 location is at pixel 179±1.30 in Fig. 7.16 and its intensity is

6.24 (2.39, 10.1) cts s−1.

• GX 9+1 location is at pixel 143±1.15 in Fig. 7.16 and its intensity is

9.97 (5.24, 14.71) cts s−1.

• GX 354-0 location is at pixel 218±1.33 in Fig. 7.16 and its intensity

is 9.89 (5.97, 13.82) cts s−1.
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Figure 7.16 OSA profiles of the sources 4U 1700-377 (up-left), GX 3+1 (up-
right), GX 9+1 (bottom-left) and GX 354-0 (bottom-right). I is in units of
cts s−1.

The coefficients of the fits in Fig. 7.17 with their 95% confidence bounds

are reported in Tab. 7.10.
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Name aOSA (cts s−1) bOSA (pxl) σOSA (pxl)
Ginga 1826-24 34.75 (26.31, 43.18) 62.74 (62.29, 63.19) 1.06 (1.15, 2.06)

GX 5-1 24.43 (20.77, 28.09) 178.95 (178.74, 179.16) 1.22 (1.01, 1.43)
GRS 1758-258 24.84 (21.18, 28.50) 187.2 (187, 187.4) 1.22 (1.02, 1.43)
1E 1740.7-2942 18.31 (8.88, 27.74) 189.1 (188.3, 189.8) 1.30 (0.52, 2.07)

Table 7.10 Fit coefficients for the Galactic Centre sources in Fig. 7.17.
Between round brackets there are their 95 % confidence bounds.
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Figure 7.17 OSA profiles of the sources Ginga 1826-24 (first panel), GRS
1758-258 and GX 5-1 (second panel), 1E 1740.7-2942 (third panel). I is in
units of cts s−1.
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7.5.2 CC and LR sources profiles

In this section, the profiles of the sources in Fig. 7.14 obtained by CC

and LR deconvolutions are analysed.

Sources A and B

Fig. 7.18 shows the total FOV profiles of sources A and B for both CC

(left) and LR (right). To guarantee the convergence, the CC fit is performed

over a narrow interval around each peak pair. The fit coefficients with their

95% confidence bounds are reported in Tab. 7.11.
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Figure 7.18 Profiles of the sources A and B in total FOV for both CC (left)
and LR (right).

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
Source A

CCG 4.94 (4.16, 5.72) 101.26 (101.01, 101.50) 1.32 (1.08, 1.56)
CCS 4.85 (3.86, 5.83) 230.0(229.75, 230.25) 1.07 (0.82, 1.32)
LRG 1.05 (1.04, 1.06) 101 (100.9, 101) 0.40 (0.39, 0.40)
LRS 2.43 (-7.53, 12.39) 229.7 (229, 230.5) 0.30 (-0.21, 0.81)

Source B

CCG 5.77 (4.98, 6.55) 92.35 (92.15, 92.56) 1.30 (1.09, 1.50)
CCS 5.20 (4.25, 6.15) 221.7 (221.46, 221.95) 1.56 (0.91, 1.40)
LRG 0.44 (0.43, 0.44) 92.09 (92.07, 92.1) 0.75 (0.73, 0.76)
LRS 1.58 (-9.09, 12.24) 221.7 (220.4, 223.1) 0.28 (-0.54, 1.11)

Table 7.11 Fit coefficients of the LR profiles in Fig. 7.18. CCG, CCS , LRG

and LRS refer to the fit parameters of ghost and source peaks for both
CC and LR, respectively. Between round brackets there are their 95 %
confidence bounds.

The position of sources A and B are consistent in both our deconvolution

codes, with almost three times better accuracy in the LR (see the b and σ

parameters in Tab. 7.11). The LR deconvolved flux underestimates that

obtained with the CC (see the a parameter in Tab. 7.11).

The CC right hand side ghosts are not reconstructed due to their location
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at the noisy boundary of the total FOV, while the CC left hand side ghosts

are correctly located with stregth of the same order of magnitude as the CC

deconvolved source flux.

Instead of the LR right hand side ghosts, two noisy peaks differently located

with respect to the ghosts appear (see Fig. 7.18). These noisy peaks are

reconstructed as if they are real sources instead of the ghosts. The LR left

hand side ghosts are correctly located and have stregth of about one half of

that of the LR respective deconvolved source.

Two hundred LR iterations are not enough for the correct evaluation of

sources A and B flux. These are the strongest sources in the FCFOV of this

SCW, so the number of iterations performed is not good in the case of the

fainter sources.

Sources C and D

Fig.7.19 shows the total FOV profiles for both CC (left) and LR (right).

The fit coefficients with their 95% confidence bounds are reported in Tab.7.12.
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Figure 7.19 Profiles of the sources C (top panel) and D (bottom panel) in
total FOV for both CC (left) and LR (right).

In CC, sources C and D are too faint to be resolved with great accuracy

due to a more fluctuating background. Their positions, given by the b pa-
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Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
Source C

CCG 1.72 (1.13, 2.32) 81.94 (80.36, 83.51) 3.93 (2.35, 5.50)
CCS 1.33 (0.78, 1.88) 211 (208.8, 213.2) 4.71 (2.47, 6.94)
CCG 2.51 (2.05, 2.97) 348.6 (347.2, 350) 6.72 (5.22, 8.24)
LRG 0.03 (0.02, 0.04) 81.18 (79.67, 82.7) 4.74 (3.22, 6.25)
LRS 0.19 (0.15, 0.24) 207.8 (207.6, 208) 0.49 (0.35, 0.63)

Source D

CCG 4.67 (3.43, 5.92) 6.95 (6.61, 7.29) 1.11 (0.77, 1.45)
CCS 0.85 (0.39, 1.31) 143.6 (138.4, 148.7) 8.31 (3.17, 13.46)
CCG 1.09 (0.70, 1.48) 280 (275, 285) 11.86 (6.50, 17.20)
LRS 0.15 (0.14, 0.16) 131.1 (131, 131.2) 0.49 (0.44, 0.55)
LRG 0.26 (0.24, 0.29) 260.4 (260.4, 260.4) 0.58 (0.51, 0.66)

Table 7.12 Fit coefficients of the LR profiles in Fig. 7.19. CCG, CCS , LRG

and LRS refer to the fit parameters of ghost and source peaks for both
CC and LR, respectively. Between round brackets there are their 95 %
confidence bounds.

rameters in Tab. 7.12, are wrongly located and very uncertain (see the σ

parameter in Tab. 7.12). This is also valid for the CC ghost peaks.

The LR correctly locates both sources with the same better 0.49 pxl accu-

racy. Only the left hand side ghost of source C is detected, with a strength

16% the LR deconvolved source C flux. The LR noisy peak on the right

hand side of sourceD is not a ghost. It is a fluctuation that LR reconstructes

as if it is a real source.

Sources E and F

Fig.7.20 shows the total FOV profiles for both CC (left) and LR (right).

The fit coefficients with their 95% confidence bounds are reported in Tab.7.13.

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
Source E

CCG -0.35 (-0.73, 0.03) 22.85 (11.58, 34.12) 9.04 (-2.32, 20.41)
CCS 0.59 (0.15, 1.03) 137.6 (131.7, 143.4) 6.73 (0.89, 12.57)
CCG 0.91 (0.50, 1.32) 348.5 (344.1, 352.9) 8.19 (3.39, 13.00)
LRS 0.15 (0.02, 0.27) 139.2 (138.8, 139.6) 0.37 (0.10, 0.64)
LRG 0.12 (0.11, 0.12) 268.1 (268, 268.2) 0.53 (0.48, 0.58)

Source F

CCG 2.99 (2.13, 3.85) 41.34 (40.4, 42.28) 2.83 (1.89, 3.78)
CCS 2.16 (1.00, 3.31) 172.3 (171.3, 173.2) 1.57 (0.60, 2.54)
CCG -0.68 (-1.10, -0.27) 282.2 (273.7, 290.6) 11.95 (3.51, 20.39)
LRG 0.44 (0.43, 0.45) 43.15 (43.12, 43.18) 0.49 (0.47, 0.52)
LRS 0.19 (0.16, 0.21) 172.6 (172.6, 172.6) 0.59 (0.50, 0.66)
LRG 0.23 (0.21, 0.23) 302.1 (302.1, 302.1) 0.63 (0.60, 0.66)

Table 7.13 Fit coefficients of the profiles in Fig. 7.20. CCG, CCS , LRG and
LRS refer to the fit parameters of ghost and source peaks for both CC and
LR, respectively. Between round brackets there are their 95 % confidence
bounds.

Sources E and F are correctly located in the deconvolved images obtained

by both codes. However, the CC location of source E is very uncertain (see
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Figure 7.20 Profiles of the sources E (top panel) and F (bottom panel) in
total FOV for both CC (left) and LR (right).

σ parameter in Tab. 7.13). The CC reconstructed flux of both sources does

not agree with the estimates obtained from the LR (see a parameter in Tab.

7.13).

The CC ghost peaks are bad located and with bigger uncertainty (see the

σ parameter in Tab. 7.13) with respect to the other sources in the Galactic

Center SCW. Furthermore, the left hand side ghost of source E and that

on the right hand side of source F have unphysical negative flux (see the a

parameter in Tab. 7.13).

LR correctly locates both source and the ghost peaks with the usual greater

accuracy. Both LR ghosts of source F are reconstructed with a strength

bigger than the deconvolved source flux (see the a parameter in Tab. 7.13).

Only the right hand side LR ghost of source E is reconstructed, with strength

80% the deconvolved source flux. The other peaks in the LR profiles are

noisy spikes.

Tab. 7.14 summarizes the source position and the deconvolved flux of all the

Galactic Centre SCW sources detected with both CC and LR. The location

of all sources reconstructed with our codes are consistent, with more than

three times greater accuracy in the LR. The flux estimates obtained with

the CC do not agree with those obtained with two hundred LR iterations.
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Source PCC (pxl) FCC (cts s−1 cm−2) PLR (pxl) FLR (cts s−1 cm−2)
A 230.0 ± 1.07 4.85 229.7 ± 0.30 2.43
B 221.7 ± 1.56 5.20 221.7 ± 0.28 1.58
C 211 ± 4.71 1.33 207.8 ± 0.49 0.19
D 143.6 ± 8.31 0.85 131.1 ± 0.49 0.15
E 137.6 ± 6.73 0.59 139.2 ± 0.37 0.15
F 172.2 ± 1.57 2.16 172.6 ± 0.59 0.19

Table 7.14 Summary of the position and the deconvolved flux of all the
Galactic Centre SCW sources in Fig. 7.14 detected in both CC and LR
restored images. PCC , FCC , PLR and FLR are the positions and the flux for
both CC and LR, respectively.

7.5.3 Ghosts of the Galactic Centre sources

This section analyses the ghost total flux distribution of sources A, B

and C in Fig. 7.14 as the iteration number increases until two hundred

iterations. In real data analysis, the source flux and the ratio between re-

constructed and real flux are not known.

Figs.7.21, 7.22 and 7.23 show the behaviour of the source and total ghost

reconstructed fluxes of sources A, B and C, respectively. Both source and

ghost distributions fit the sum of two Gaussians model of Eq.6.11, whose

coefficients with their 95% confidence bounds are reported in Tabs.7.15 and

7.16.
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Figure 7.21 Total ghost (red) and source (blue) fluxes as a function of the
iteration number in the case of the source A of Galactic Centre SCW. As a
reference, in black, the deconvolved source flux obtained with CC is shown.
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Figure 7.22 Total ghost (red) and source (blue) fluxes as a function of the
iteration number in the case of the source B of Galactic Centre SCW. As a
reference, in black, the deconvolved source flux obtained with CC is shown.

Source a (cts s−1 cm−2) b σ

A 1.72 (1.62, 1.83) 233.5 (222.3, 244.6) 64.87 (56.52, 73.26)
0.24 (0.18, 0.30) 111.9 (109.8, 114.1) 24.49 (20.52, 28.45)

B 1.04 (1.01, 1.07) 203.3 (196.7, 210) 59.32 (49.50, 69.14)
0.18 (0.10, 0.26) 105.8 (101.9, 109.8) 23.49 (15.91, 31.07)

C 0.29 (-1.82, 2.40) 267.6 (-120.9, 656.1) 45.85 (-117.17, 208.88)
0.08 (-0.11, 0.27) 176.5 (10.19, 342.8) 62.45 (13.68, 111.23)

Table 7.15 The fit coefficients of the reconstructed flux of the Galactic Centre
sources A, B and C fluxes. Between round brackets there are their 95 %
confidence bounds.

By the CC deconvolution, sources A and B have almost the same flux,

while the source C is about one fourth of A (see Tabs.7.12 and 7.14). Even

if the sources A and B are well resolved in both algorithms, their in line sky

position could affect the estimate of both source and ghost fluxes.

For about 160 iterations, the reconstructed flux of source A is 1 cts s−1 cm−2

while that of source B is 0.8 cts s−1 cm−2. Source B reconstructed flux is 1

cts s−1 cm−2 only after 180 iterations. Independently of the ordinate axes,

the double Gaussians model has about the same shape for these two sources.

What changes is the convergence velocity. However, the LR reconstructed

fluxes underestimate their real values, as can be seen by the CC estimates

(black curves).

If the CC deconvolved flux is considered as that of the real source, on av-

erage each of the 8 LR ghost has at most 5% the CC source flux. Ghost

flux distribution shows a different behaviour after the maximum. While in
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Figure 7.23 Total ghost (red) and source (blue) fluxes as a function of the
iteration number in the case of the source C of Galactic Centre SCW. As a
reference, in black, the deconvolved source flux obtained with CC is shown.

Ghost a (cts s−1 cm−2) b σ

A 2.72 (-0.96, 6.40) 94.22 (81.43, 107) 33.28 (19.03, 47.53)
2.40 (1.91, 2.90) 179.3 (128, 230.6) 56.72 (-25.83, 139.3)

B 1.80 (0.96, 2.65) 98.04 (93.76, 102.3) 24.10 (16.16, 32.05)
4.67 (4.51, 4.83) 180.7 (172.8, 188.7) 58.00 (45.14, 70.85)

C 0.33 (-1.36, 2.02) 147.2 (-145.4, 439.8) 62.52 (-19.07, 144.11)

6.49 (-6841, 6854) 455.9 (-6.85 104, 6.94 104) 88.88 (-1.28 104, 1,29 104)

Table 7.16 The fit coefficients of the ghost total flux for the Galactic Centre
sources A, B and C. Between round brackets there are their 95 % confidence
bounds.

source A it slowly decreases, in source B it continues to increase.

The source C flux continuously increases until a value of about 0.17 cts s−1

cm−2 for 200 iterations. Again, it underestimates the CC reconstructed flux.

The ghost total flux increases until about 160 iterations when it reaches a

saturation of 0.35 cts s−1 cm−2 until 200 iterations. If the CC deconvolved

flux is considered as the real source one, on average the flux of each of the

8 LR ghosts is at most 1.3% the CC source one.

Increasing the iteration number until two thousand (see Fig. 7.24), the ghost

total flux behaves in different way for the three sources. In this case, the

total ghost distributions do not follow a simple fit model. Indeed, the lines

in Fig. 7.24 are only the line connection between the found flux values.

As in the simulations, the study of ghost flux represents a huge problem at

the moment. It requires more work to be able to remove these false peaks

from the deconvolved images.



124 7 IBIS/ISGRI data analysis

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration Number

F
 (

ct
s 

s−
1  c

m
−

2 )

 

 

LR source

LR ghosts

CC source

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

Iteration Number

F
 (

ct
s 

s−
1  c

m
−

2 )

 

 

LR source

LR ghosts

CC source

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

Iteration Number

F
 (

ct
s 

s−
1  c

m
−

2 )

 

 

LR source

LR ghosts

CC source

Figure 7.24 Total ghost (red) and source (blue) fluxes until 2000 iterations
for source A (upper panel), source B (central panel) and source C (lower
panel). As a reference, in black, the deconvolved source flux obtained with
CC is shown.
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7.6 Source identification

Given the consistent location of all sources in both CC and LR, their

relative distance in the FOV is guaranteed. So, from the comparison of the

sources in Figs. 7.14 and 7.15, the following identification results:

• sources A and B are GX 5-1 and GRS 1758-258, respectively;

• source F is 1E 1740.7-2942;

• sources C, D and E have not correspondence in the OSA image. More

probably they are false peaks connected with the reconstruction of a

background fluctuation.

Two hundred LR iterations are not enough to be able to reconstruct the

real fluxes of all sources in the LR total FOV image of the Galactic Centre

SCW.

The FC GX 3+1 and the PC GX 9+1 and GX 534-0 sources are too faint

to be unequivocally localised in the LR decoded image. Ginga 1826-24, GX

9+1, GX 534-0 and 4U 1700-377 are in the PCFOV. 4U 1700-377 is at the

boundary of the total FOV, so it is confused between noisy peaks.

However, Ginga 1826-24 is so strong that it is detected. Fig. 7.25 shows the

Ginga 1826-24 total FOV profiles for both CC (left) and LR (right). The fit

coefficients with their 95% confidence bounds are reported in Tab. 7.17.
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Figure 7.25 Total FOV profiles of Ginga 1826-24 for both CC (left) and LR
(right).

As in the simulations, the LR is able to localize the PC sources with the same

accuracy found for FC sources. Unfortunately, the source flux reconstruction

remains a problem for both FC and PC sources.



126 7 IBIS/ISGRI data analysis

Algorithm a (cts s−1 cm−2) b (pxl) σ (pxl)
CC 4.25 (3.00, 5.49) 244.16 (243.6, 244.73) 1.66 (1.1, 2.23)
LR 1.43 (1.22, 1.63) 244 (243.7, 244.4) 0.38 (0.24, 0.52)

Table 7.17 Fit coefficients of the profiles in Fig. 7.25. Between round brack-
ets there are their 95 % confidence bounds.

The ratio between OSA and CC estimated fluxes (Eq.7.2) is about 0.003 for

GX 5-1 and GRS 1748-258 and 0.005 for 1E 1740.7-2942 and Ginga 1826-

24. It is different also for sources in the same FOV. This confirms that the

difference between the CC and the OSA reconstructed flux is mainly due to

the different PSF used and to the fact that OSA considers also the response

function of the ISGRI detector.

7.7 Reference System

To solve the problem of source identification in LR images, we need to

employ catalogues of known sources. The easiest way to do it is to exploit

the OSA reference catalog.

Figure 7.26 Spacecraft and instrument reference frame [79].
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The INTEGRAL satellite has an X, Y , Z reference frame with the origin at

the centre of the separation plane between spacecraft and launch adaptor.

The X-axis is perpendicular to this spacecraft/launcher separation plane,

pointing positively from the separation plane towards the spacecraft (i.e.

the X-axis is the pointing direction). The Z-axis points positively to the

Sun, that is illuminating the payload module on the IBIS side, while leaving

SPI in the shadow. The Y -axis completes the coordinate system. Fig. 7.26

shows the spacecraft and instrument reference frame.

Our CC and LR reconstructions have a different orientation when compared

with the OSA ones. A first problem is the different size of the deconvolved

images. The CC and LR total FOV image size is 361×365 pxl, the OSA one

is 400×400 pxl. So, before using OSA catalog, the CC and LR images have

to zero-padded to the same dimension of the OSA one.

Furthermore, the size of the CC and LR total FOV image is odd, while the

OSA one is even. An half of a pixel shift of the CC and LR images must be

employed before zero-padding to the OSA image size.

We found that:

• CC images are 90o rotated with respect to the OSA ones (i.e. X1 →
Y 0 and Y 1 → X0);

• LR images are 270o rotated with respect to the OSA ones (i.e. X1 →
Y 0 and Y 1 → −X0).

In all previous analysis, for having a direct comparison between LR and CC

deconvolved images, LR ones were 180o clockwise rotated yet. So, both CC

and rotated LR images must be 90o clockwise rotated respect to the OSA.
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Chapter 8

Conclusions and Future

Developments

8.1 Conclusions

Astronomical imaging at energy greater than 20 keV is mainly achieved

through modulation techniques. Currently, the coded mask technique is

widely used with the true spatial intensity distribution reconstructed from

the observational data by the cross-correlation (CC) method.

With this method and the current position sensitive detectors for hard-X

ray astronomy, the hard-X ray sky cannot be imaged in high detail. This

is a strong drawback in crowded fields as the Galactic Centre, where the

cross-correlation is not able to resolve all the X ray sources in this region.

One possibility is to use instruments that employ the extra dimension of

time modulation, as in the HXMT satellite. Another possibility to over-

come this problem is to change the deconvolution method. In this thesis I

have investigated this possibility.

Starting from the work by Y. Chen et al. [16], the objective of this thesis was

the investigation of the real imaging capability of the Direct Demodulation

(DD) method, proposed to deconvolve the HXMT time modulated data.

The DD directly deconvolves incomplete and noisy data solving the inverse

image formation equation. Since the Poisson statistics is a good description

of the photon counts distribution in hard-X rays, the Lucy-Richardson (LR)

code has been developed. It guarantees the non-negativity of the restored

images.

Due to the general nature of the DD and the fact that HXMT has still

not flown, the IBIS/INTEGRAL data and its PSF were used to test the
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imaging capability of the LR code. The PSF used in our codes considers

only the geometrical features of photon propagation from the IBIS mask to

the ISGRI detector. The response function of the ISGRI detector has been

neglected, even if, for sake of completeness, the real data images obtained

by the CC and LR algorithms were compared with those obtained by the of-

ficial software for IBIS/INTEGRAL data analysis. OSA considers all kinds

of instrumental systematics in addition to the ISGRI response function.

To define the quality of the images restored with the two methods, I have

evaluated the achievable angular resolution and the flux estimate. I have

also studied the limit sensitivity of the LR method. The main results of this

investigation are the following.

1. Flux reconstruction. The number of LR iterations performed is the

main limiting factor to the goodness of the reconstructed flux. Two hundred

LR iterations underestimate the real flux for sources fainter than 7% times

the initial background radiation. For example, a number of iterations of 200

can reconstruct 60% of the real flux of a source with 7% times the initial

background radiation, while preliminary results show that 2000 iterations

are necessary to recover 93% of the real flux.

The fact that, to reconstruct the true flux, a large number of iterations is

requested, implies high computer time. Thus acceleration techniques are

desiderable.

The minimum source flux that can be reconstructed with CC, at 3σ signif-

icance level, is 0.3% times the input background level. Two hundred LR

iterations can reconstruct only 8% of the source real flux and the found

Signal-to-Noise Ratio (SNR) underestimates the sensitivity.

In principle, LR should be more sensitive than CC given the reconstructed

background is less fluctuating (by a factor of 10) with respect to that ob-

tained with CC. Unfortunately, the fact that the reconstructed source flux

is biased (i.e. lower than the expected) decreases the method sensitivity.

Also the found SNR is a function of the number of iterations. Indeed, for

example, two hundred LR iterations recover 98% of the real flux of a 70%

times the initial background source, with found SNR around (800 ± 53) σ,

consinstent with the source sensitivity.

2. Ghosts. The choice of a deconvolution method affects the ghost

peaks strength, while their location depends on the mask geometrical prop-

erties. With 200 iterations, a source of increasing flux (i.e. from 0.7% to
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70% times the initial background radiation) exponentially has fainter total

ghost flux.

The number of iterations performed strongly affects the total ghost flux.

As the iteration number increases, the total ghost flux first increases and

then slowly decreases toward the zero value. The maximum total ghost flux

depends on the source intensity in the field and on the number of iterations.

On average, each LR ghost is fainter than the corresponsing CC ghost (that

always has strength equal to the source deconvolved flux) but it does not

follow a standard behaviour neither for sources in the same FOV nor for

sources of similar flux, as can be seen from the analysis of ghost peaks of

the Galactic Centre sources.

3. Angular resolution. The best advantage of the LR method is its

better angular resolution than CC. For example, using two strong sources of

the same flux, we find an angular resolution of about 6 vs. 12 arcmin found

with CC. The accuracy in the peak location is at least 3 times better than

that obtained in the CC.

Both better angular resolution and accuracy in the peak location are inde-

pendent on the fact that the source is in the FC or in the PC FOV. The LR

imaging capability in the PCFOV is equal to that obtained in the FCFOV.

4. Analysis of real data. The analysis of real IBIS/ISGRI data con-

firms the better angular resolution and location accuracy results found in

the simulations. Two hundred LR performed are a good choice for the flux

estimate of IGR J00245+6251, Crab and Cyg X-1. However, 200 iterations

are not enough to well reconstruct the flux of the sources in the Galactic

Centre.

8.2 Future developments

At this time, the simplest formulation of the optimization problem solved

with the LR can be efficiently used to resolve and locate sources. The classi-

cal Maximum-Likelihood (ML) problem is ill-posed since it uses only infor-

mation about the noise. It requires some kind of regularization. A smaller

number of iterations can improve the image reconstruction quality and can

control the noise amplification, but it does not solve the ill-posedness issue.

The introduction of an objective function that gives further information

about the unknown object should be added in the code. For example, Y.
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Chen, T.P. Li and M. Wu [16] require that the expectation value of the

noise is zero and the standard deviation of the data is one. In addition, the

optimization problem should include the flux conservation constraint. This

requires a code to be developed for the evaluation of the background in each

field, both simulated and real.

The number of iterations is a crucial issue, given the connection between

the iteration number and source reconstructed flux. The criterion to estab-

lish the best number of iterations requires more work.

Thanks to its angular resolution improvement and the better location

capability, LR can be used for resolving sources in crowded sky regions as

the Galactic Centre. However, due to the uncertain flux reconstruction, in

the present version of the code, LR could be used in combination with an-

other method that provides the flux estimate of the sources resolved with

LR.

The convergence speed of the conventional LR method is very low. Zong-Jun

Shen and Jian-Feng Zhou [72] developed a new procedure, called Accelerated

DD Method (ADM), able to improve the angular resolution of coded-mask

telescopes by DD and to save computational time. The angular resolution

of the LR applied to the IBIS/INTEGRAL imager is limited by the ISGRI

pixel size sd. The decoding array was resampled at the detector’s pixel size

and the corresponding pixel size of the image is arctan(sd/L) ≈ 5 arcmin,

where L is the mask-detector distance. To achieve better angular resolution,

smaller image pixels should be used preserving the shift-invariant property

of the aperture. These authors show that dividing the data pixel into n sub-

pixels the angular resolution can improve from 12 until to about 2 arcmin.

Other acceleration techniques have also been proposed. For instance, M.K.

Singh [74] proposed the introduction of an exponent in the correction ratio

of the LR (see Eq. 5.2).

This thesis could be a help for a best exploitation of the current and fu-

ture coded-mask systems instrumentation, as the Brazilian MIRAX satellite

now under development, or in telescopes based on temporal modulation as

the Chinese HXMT mission [54].



Appendix A

Coded mask system concepts

A.1 Cyclic difference sets

A cyclic difference set ∆(N,M, λ), characterized by the parametersN,M

and λ, is a sequence of M residuals (integer number), modulus N , such that

for any residual ρ 6= 0(mod N) the congruence δi − δJ ≡ ρ(modN) admits

exactly λ solution pairs (δi, δj) with δi and δj within ∆.

To each difference set it is possible to associate a binary sequence {αi} of

length N , wherein αi takes the value 1 if i belongs to ∆ and 0 otherwise. δi

in turn can stand for the discretized mask pattern, assigning a transparent

element to δi = 1 and an opaque one to δi = 0.

In order to achieve an optimum SNR, a difference between M and λ that is

as large as possible is advantageous, where M determines the signal and λ

the background level and its noise. The maximum difference is reached in

Hadamard sets. The characteristic parameters take the form N = 4t − 1,

M = 2t − 1, λ = t − 1 being t an integer. These may be classified by the

value of N : if N is prime, the set is given by residuals, (modN), of the

squares of the first (N + 1)/2 integers. Characteristic of Hadamard sets is

that M = (N − 1)/2, i.e. for large N the mask pattern is about half open.

Once the binary sequence has been generated, if its length N can be fac-

torised into a product of two integers (N = p × q), it is possible to build a

two-dimensional array. For further details see [5].

A.2 The Signal-to-Noise Ratio

The theoretical SNR of a particular pixel is the ratio between the ex-

pected value of intensity in that pixel and a noise term, SNR = Sik/σjk,
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where the noise in pixel (j, k), σjk, will be derived in the remaining of this

section.

The reconstruction technique correlates the data with a decoding array G,

that is, except for a scaling factor, a replica of the aperture pattern. The

only initial constraints on G, by construction, is that it is the correlational

inverse of M , i.e. M ∗ G ≡ δ. If the peak intensity is normalized to the

amount of open area in the aperture (or equivalently to N =
∑

ij Mij , the

number of transparent elements in the basic pattern), we have M ∗G = Nδ.

The source is perfectly reconstructed with the exception of a background

term. Indeed,

Ŝij = NSij + (B ∗G)ij . (A.1)

The detector background is assumed uniform over the detector plane.

The definition of error in the computation of S is provided by the standard

deviation in Ŝij , given by

σ(Ŝij) =

√
σ2(Sij , Ŝij) +

∑

kl

σ2(Skl, Ŝij) + σ2(B, Ŝij) (A.2)

where σ
2(Sij , Ŝij), σ

2(Skl, Ŝij) and σ
2(B, Ŝij) are the variances associated

to the statistical variations of the flux in the direction (i, j) Sij , that of the

region around Sij due to all the source elements within the FOV and that

due to the unmodulated background respectively. Sij will contribute to the

variance of the flux of both source and background. For further details, see

[26].

Now, assuming that measurements (source fluxes and background) obey

Poisson statistics, the terms in Eq.A.2 are reduced to:

σ
2(Sij , Ŝij) = Sij

∑

kl

MklG
2
kl (A.3)

∑

kl

σ
2(Skl, Ŝij) = [(S ∗M) ∗G2]ij (A.4)

σ
2(B, Ŝij) = (B ∗G2)ij (A.5)

where G2 is a matrix obtained by squaring each G individual terms. This is

exactly what one expects for the noise propagation with a linear operator.

The first contribution of G is proportional to Sij and independent on all

other sources, while sources other than Sij contribute to the variance of the

second term, an inevitable consequence of the multiplexing process.



A.2 The Signal-to-Noise Ratio 135

Furthermore, each term is weighted by the square of a decoding coefficient.

If the reconstruction method leads to G
2
ij with not all the same value, some

Sij will contribute more to the noise than others. Since in general one has

not prior knowledge about Sij , the best strategy to have all (Gij)
2 equal is

imposing the G unimodularity.

URA and MURA Sensitivity

For the URAs and the MURAs, G is the aperture pattern itself (see [26]):

its unimodularity ensures that all Sij will contribute in the same manner to

noise. Following Fenimore [26] and Gottesman [38] derivations, Eq.A.3-A.5

reduce to

σ
2(Sij , Ŝij) = NSij (A.6)

∑

kl

σ
2(Skl, Ŝij) =

(∑

kl

Skl

)(∑

mn

Mmn

)
(Gij)

2 = N

∑

kl

Skl (A.7)

∑

kl

σ
2(B, Ŝij) =

∑

kl

Bkl. (A.8)

Eq.A.7 is a constant term for all (ij) elements resulting in a removable dc

term. The optimum SNR is independent of source structure. It will be:

SNRij =
NSij√

NSij +N
∑

kl Skl +
∑

mnBmn

. (A.9)

(CS)ij = NSij is simply the number of net source counts emanating from

the (ij)th source element recorded by the detector, N
∑

kl Skl is the number

of net counts detected from all sources and CB =
∑

mnBmn is the total

detector background counts. Thus Eq.A.9 can be rewritten as:

SNRij =
(CS)ij√

(CS)ij + CB

(A.10)
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Appendix B

The objective function

In this appendix a complete explanation of the objective function F

proposed by Y.Chen, T.P.Li and M.Wu [16] is given. In chapter 5 it was

defined as

F (f, n) =

(

N∑

i=1

n
2
i

di
−N

)2

+ ρ

(
N∑

i=1

ni

)2

− β

M∑

i=1

(ln(fi − lowi) + ln(upi − fi))

The term between square brackets can also be written as


N2

(
1

N

N∑

i=1

n
2
i

di
− 1

)2

+ ρN
2

(
1

N

N∑

i=1

ni

)2

 . (B.1)

Let assume a Poisson distribution for the noise and the data. From statistics,

the mean of the Poisson distribution is equal to its variance. The data can

be rewritten as di = fi + ni, where ni is the noise associated to the source

intensity fi = Pfi.

The second term of Eq.B.1 is the expectation value of the noise and it is

required to be zero, i.e.

E(ni) =
1

N

N∑

i=1

ni = 0, (B.2)

so the noise variance will be

σ
2
ni

=
1

N

N∑

i=1

(ni − E(ni))
2 =

1

N

N∑

i=1

n
2
i . (B.3)
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The expectation value of the data is:

E(di) = E(fi) + E(ni) =
1

N

N∑

i=1

fi = fi, (B.4)

while, from the Poisson distribution properties, the data variance is

σ
2
di

= di. (B.5)

Let define χ
2 statistic. If Z1, . . . , Zk are independent normal standardized

(i.e. with mean 0 and variance 1) r.v., the sum of their squares

χ
2 =

k∑

i=1

Z
2
i =

k∑

i=1

(xi − µ)2

σ
2
i

(B.6)

is distributed according to the chi-square distribution with k degree of free-

dom (d.o.f.). χ
2 statistic characterizes the dispersion of the observed data

from the real value. The numerator of Eq.B.6 is a measure of the spread of

the observations, while the denominator is a measure of the expected spread.

The χ
2 statistic for the data is

χ
2
d =

N∑

i=1

(di − E(di))
2

σ
2
d

=
N∑

i=1

(
fi + ni − fi

)2

di
=

N∑

i=1

n
2
i

di
, (B.7)

The variance is characterized by the χ
2 statistic, i.e.

σ
2 =

1

N
χ
2
, (B.8)

so, from Eq.B.7, the first term of Eq.B.1 is given by

σ
2 =

1

N

N∑

i=1

n
2
i

di
. (B.9)

Such a value is required to be equal to 1 to guarantee a good agreement

between measurements and theory.
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Statistical notions

C.1 Probability distributions

Poisson distribution

The Poisson distribution describes the results of random experiments

when independent events are counts with a mean value ν. It gives the

probability for a discrete variable ν. It is an approximation of the binomial

distribution in the case where the number of trials is huge (n → ∞) and the

success probability p is very small. The Poisson probability is given by:

Pµ(ν) =
µ
ν

ν!
e
−µ

. (C.1)

Mean and variance are both equal to µ. This is the basis of the well known

statistical uncertainty associated with counting experiments: δn =
√
n.

Normal or Gaussian distribution

The Gaussian distribution describe the probability of a continuous vari-

able x. It is given by:

pµ,σ(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(C.2)

For µ → ∞, the Poisson distribution approaches the Gauss one with the

same mean and standard deviation (Central Limit Theorem).

For Gaussian distributed uncertainties, it is expected that the probability

that a given measurement should fall in the interval within µ± 1σ is 68.3%,

within µ± 2σ 95%, within µ± 3σ 99.7%, ecc (see Fig. C.1).
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Figure C.1 Gaussian errors.

C.2 Random variables and the Bayes formula

The probability theory helps to deal with experimental data to obtain

the most probable value of the measurement result. The random nature

of the measurements can derive from the difficult control of the detection

process or from the fact that what we want to study is intrinsically random

(e.g. radiation emission). Measurements are well represented by random

variables (r.v). The behaviour of a r.v. is described by the probability

density function f(x), where x is the r.v. and f(x)dx gives the probability

that the x value falls in (x, x+ dx) interval.

For our purposes, we limit to the multiplication theorem. Let A and B two

events. Their product is defined as the event C that occurs when both A

and B simultaneously occur. To enunciate this theorem, we need of some

definitions. An event A is said dependent from B if the probability of A

depends on the fact that B occurs or not. The probability of A, given that

also B occurs, is called conditional probability of A, P (A|B). So, their

independency is expressed by P (A|B) = P (A), while the dependency by

P (A|B) 6= P (A).

The product of two events is equal to that of one of the two events times

the conditional probability of the other one, computed in the condition that

the first has occurred:

P (AB) = P (A)P (B|A), (C.3)
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or

P (AB) = P (B)P (A|B). (C.4)

The probability of the product of two independent events is equal to the

product of the probabilities of the events, i.e. P (AB) = P (A)P (B). Fur-

thermore, if the events are exclusive P (AB) = 0.

The total probability formula directly derives from the theorem of probabil-

ity product. Let Hi i = 1, . . . , n a complete set of mutually exclusive events

called hypothesis, whose sum H1 +H2+ . . .+Hn = S. For any given event

A ⊂ S, the probability is given by:

P (A) =

n∑

i=1

P (Hi)P (A|Hi). (C.5)

The hypothesis theorem or Bayes formula is a consequence of the theorem

of the product of probability and the total probability formula. Let Hi i =

1, . . . , n have known probability P (Hi). An experiment is made and the

event A is verified. What is the conditional probability P (Hi|A) for each

hypothesis?

By the theorem C.3 and C.4

P (AHi) = P (A)P (Hi|A) = P (Hi)P (A|Hi) i = 1, . . . , n (C.6)

from which

P (A)P (Hi|A) = P (Hi)P (A|Hi) i = 1, . . . , n (C.7)

and, taking into account Eq.C.5, we get

P (Hi|A) =
P (Hi)P (A|Hi)

P (A)
=

P (Hi)P (A|Hi)∑
k P (Hk)P (A|Hk)

i = 1, . . . , n (C.8)

that is the Bayes formula. It explains the knowledge acquisition process,

where the initial hypothesis are combined with the information derived by

the taking place of specific effects. The initial hypothesis are modified into

a continuous comparison with the experience. For this reason, P (Hi|A)
is also called posterior probability, P (Hi) prior probability and P (A|Hi)

conditional probability or likelihood.

Often, in practice, we works with more than one r.v. at the same time, i.e.

we deal with systems of r.v.. For them, the same rules of only one r.v. can
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be used. Indeed, for two r.v. X and Y , the distribution function F (x, y) ≡
P (X < x, Y < y) and the joint probability density f(x, y) = ∂

∂x
∂
∂yF (x, y)

can be written.

Necessary and sufficient condition for these two r.v. being independent is

that the joint probability density is equal to the product of the marginal

distributions of this two r.v., i.e.

f(x, y) = g(x)h(y), (C.9)

where the marginal distributions of X and Y are defined as

g(x) =

∫
f(x, y)dy h(y) =

∫
f(x, y)dx. (C.10)

The conditioned probability density, applying the theorem of the product

Eq.C.3, is defined as:

f(y|x) = f(x, y)

g(x)
(C.11)

and, if the r.v. are independent, from Eq.C.9 we have

f(y|x) = g(x)h(y)

g(x)
= h(y) (C.12)

C.2.1 LR derived from Bayes theorem

Here the faithful Richardson’s derivation [64] of the LR iterative formula

(Eq.5.2) is reported. In its original formulation, he neglects the background

radiation.

Here, for clarity of notation, the following form of the image formation

equation is assumed:

d = Pf. (C.13)

The Bayes theorem provides the conditional probability of an event fi for a

given value dk of the r.v. δ. Indeed, if in Eq.C.8 A = dk and Hi = fi, we

find:

p(fi|dk) =
p(fi)p(dk|fi)∑
j p(fj)p(dk|fj)

, (C.14)

where p(dk) =
∑

j p(fj)p(dk|fj) is the total probability of dk.

Considering all dk and their dependence on fi in accordance with Eq.C.13,
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employing the marginal probability density in the discrete case, we can get

p(fi) =
∑

k

p(fidk) =
∑

k

p(fi|dk)p(dk), (C.15)

where, in the last equality, the theorem of the probability product (Eq.C.4)

is used with A = fi and B = dk. Substituting Eq.C.14 in Eq.C.15 gives

p(fi) =
∑

k

p(fi)p(dk|fi)p(dk)∑
j p(fj)p(dk|fj)

. (C.16)

Bayes formula relates events at the ith location in the object f and those

at the kth location in the image d, after observing that p(dk|fi) = pki is

the kth element of the matrix P in Eq.3.12. When this is applied, Eq.C.16

becomes

p
(r+1)(fi) = p

(r)(fi)
∑

k

p(dk|fi)p(dk)∑
j p(dk|fj)p(r)(fj)

r = 0, 1, . . .. (C.17)

The initial point p0(fi) is often estimated by means of Bayes’s postulate (or

theorem of the equidistribution of the ignorance), which assumes a uniform

distribution so that p0(fi) = 1/I or f0
i = f/I, where I is the identity matrix.

Eq.C.17 can be reduced to a more easily workable form by expressing the

probality of an event at the ith location in the object as p(fi) = fi/f and

the probality of an event at the kth location in the image as p(dk) = dk/d =

dk/f , since the restoration is a conservative process and f = d, and also

p(dk|fi) = p(Pi,k) = Pi,k/P , P =
∑

j pj . Eq.C.17 becomes

f
(r+1)
i

f
=

f
(r)
i

f

∑

k

Pik

P
dk
f

∑
j
Pjk

P

f
(r)
j

f

(C.18)

or

f
(r+1)
i = f

(r)
i

∑

k

Pi,kdk∑
j Pj,kf

(r)
j

. (C.19)

In computer programming, taking into account also of the background b,

the finite size of the arrays allows Eq.C.19 to be rewritten as Eq.5.2.
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Appendix D

The MAP

D.1 Derivation of Eq.5.25

The probability density pδ(d; f) is the conditional probability density of

δ when the r.v. φ assumes the value f :

pδ(d; f) = pδ(d|φ = f) = pδ(d|f). (D.1)

It can be deduced from the known statistical properties of the Poisson noise.

If both pφ(f) and pδ(d|f) are given, a complete knowledge of the total prob-

ability pφδ(f, d) is found.

The joint probability density of the r.v. φ and δ is

pφδ(f, d) = pδ(d|f)pφ(f). (D.2)

If the marginal probability density of δ is introduced

pδ(d) =

∫
pφδ(d, f)df, (D.3)

from the theorem of the probability product, we have

pφδ(f, d) = pδ(d)pφ(f |d). (D.4)

From the Bayes formula we obtain the conditional probability density of φ

for a given value d of δ:

pφ(f |d) =
pφδ(f, d)

pδ(d)
=

pδ(d|f)pφ(f)
pδ(d)

, (D.5)
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i.e. it is the product of the likelihood function and of the a priori density

function of φ. For further details see Appendix C.

If, in this equation, the detected value d of the r.v. δ is inserted, the condi-

tional probability density of φ, called ”a-posteriori” probability density of φ

is obtained:

P
φ
d (f) = pφ(f |d) = L(f)

pφ(f)

pδ(d)
, (D.6)

that is just Eq.5.25.

D.2 Formulation of the Eq.5.26

A MAP estimate is defined as any object fMAP that maximizes the a

posteriori probability density (Eq.5.25):

fMAP = argmax
f

P
φ
d (f) (D.7)

As in the ML case, it is convenient considering the neg-log of P φ
d (f). If a

Gibbs prior for pφ(f) is assumed, the following functional can be introduced:

J(f ; d) = − lnP φ
d (f)− lnZ − ln pδ(d) =

= − lnL(f) + lnZ + µΩ(f) + ln pδ(d)− lnZ − ln pδ(d) =

= J0(f ; d) + µJR(f). (D.8)

Here J0 = (f ; d) − lnL(f) is the functional derived by ML approach (the

KL divergence) and JR(f) = Ω(f) is that coming from the Gibbs prior,

conceived as a regularization functional.

The MAP problem takes the following form:

fMAP = argmin
f

{J(f ; d)} . (D.9)

The optimization problem to be solved for obtaining the fMAP estimate of

the unknown object is:

min J(f ; d) = J0(f ; d) + µJR(f) (D.10)

s.t. f ≥ 0
N∑

j=1

fj = c,
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In the previous problem, the total flux conservation is introduced as a con-

straint.

Both J0(f ; d) and JR(f) are convex so that we have a convex minimization

problem. The KKT conditions are necessary and sufficient for an object

fMAP to be a global minimum of J(f ; d), i.e.

fMAP∇J(f ; d) = 0 fMAP ≥ 0 ∇Jµ(MAP ) ≥ 0. (D.11)
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reso ancor più chiaro quali sono i Veri Valori della vita.

Un grazie particolare va ad Andrea, Eleonora e Vittoria: il compito che

avete affidato a Davide e a me ci onora e allo stesso tempo ci spaventa, ma

siamo certi che non saremo soli nel portarlo avanti. Lassù Qualcuno, insieme
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