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Chapter 1

Overview

The main goal of this thesis is to investigate the critical properties of glassy sys-
tems and in particular of the Potts Glass.
It is in general very hard to study this model for a finite size systems, as it usu-
ally is for spin glass models, since we have just a few methods to move the exact
results we can obtain from Mean Field Theory to finite dimensionality systems
(and test their validity): the primary tool available in this case is the simulation,
using Monte Carlo techniques, and its corresponding analysis, which is largely
based on the Finite Size Scaling ansazt. In Mean Field Theory the Potts Glass
exhibits a transition from a paramagnetic to a spin glass phase: the nature and
the temperature of this transition depends on the number of states available for
spin degree of freedom, p. For p > 4 this transition is expected to be discontinu-
ous but without latent heat. There are basically no results known, except for a
few ones which are not analytical, for finite dimensional systems, on whether this
change in the nature in the transition holds or not, and if the transition happens
at all, for different values of p. The aim of this thesis is to fill, at least in part,
this gap, by studying the Potts Glass in three dimensions with p = 4, 5, 6.
As may appear evident in reading the thesis results are not incredibly precise
and are not many: the simulation of these kind of systems is exceptionally hard
not only from the physics’ point of view, but also computationally. We were
extremely lucky to be able to use the Janus computer to support us in the com-
putation, otherwise we would not have been able to complete it. Nonetheless, the
total timespan of the simulation campaign was a little more a year and a half.
What we were able to obtain is a clear indication of the nature of the phase tran-
sitions under study and the critical temperatures at which they happen, together
with the confirmation of an empirical equation on the temperature at which ex-
pect the spin glass transition given the number of available states, p. Moreover
we were able to exclude the existence of a ferromagnetic phase, at least for the
range of temperatures (which are L and p specific) we probed in our simulations:
this confirms that we are looking at spin glass transition and that there are not
“interferences” effects between ferromagnetic and spin glass ordering in the phase
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2 1. Overview

and at the transition we are characterizing.
The results we obtain by all means are to be intended more like a roadmap for
successive works on the Potts Glass: they seem to suggest that there could be a
change in the nature of the transition for some value of p higher than the ones
taken in consideration in this thesis. From the behaviour of Parallel Tempering,
and considering also the evolution of the critical exponents as a function of p,
there is also the possibility that the change in the nature of the transition happens
for the values we are considering: it may be that the small sizes of the system we
are able to simulate are rounding the first order transition and make it look like
a continuous one. However, this is just a hint: the simulation of systems with
larger sizes could resolve doubts on the matter. In this sense this work is more a
start of future research than its end.
This is a theoretical thesis, based on theoretical models which describe complex
systems. The model is parametric in p, which is more or less like having more
models in one: for instance the p = 4 pure Potts Model has been used in the
modeling of, in two dimensions, adsorption of N2 on Kr in graphite layers. In
three dimensions it describes the behaviour of FCC antiferromagnetic materials,
such as NdSb, NdAs and CeAs, in a magnetic field oriented toward the (1, 1, 1)
direction. Its disordered counterpart, the Potts Glass, is used in the study of ori-
entational glasses (examples are fullurene, N2 −Ar and CuCN). The Potts Glass
shares many connections with other spin glass models, also due to the richness
of behaviours given by p, such as the REM model and the p-spin model.
Our preliminary finding that the critical exponents of the phase transition change
as p grows, even if the transition still is continuous, can be seen as an enrichment
of the phenomenology associated with the model. From this point of view under-
standing the behaviour and critical properties for a large interval of p values is
both important from the theoretical side and for the possible future applications
of the model. This thesis works in this direction: producing results associated to
the range of p form 4 to 6. Plans to go to even larger values of p have been stopped
by unmanageable complexity of the simulation associated to an ever increasing
thermalization time. We see this work as an important step into extracting the
complete wealth of information available from Potts models.

The thesis is organized as follows: in the first chapter we will quickly review
many concept related to spin glasses, starting from the Ising model and ending
with Parisi theory and the Mean Field description of the Potts Glass. The purpose
of this chapter is familiarize the reader with the main concepts of Spin Glass
theory, in particular (non-trivial) broken ergodicity, frustration, the Parisi order
parameter and, in general, the Mean Field Theory of spin glasses. We start from
the Ising Model so that even the reader not familiar with the subject can get his
bearings.
Chapter two is a (very) quick review of Monte Carlo methods: it cointains the
main concepts of Monte Carlo methods, such as importance sampling and the
Metropolis and Heat Bath algorithms. It presents also Parallel Tempering, that
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we have been using extensively in simulations.
Chapter three describes the simulations that we ran on the Potts Glass: all the
parameters are described in detail and all the methods, such as the Quotient
Method, are explained.
Chapter four contains a description the analysis and of the results we obtained
in regard to the critical temperatures and the critical exponents. It also contains
a section in which we put together all the information we have been gaining from
the simulations to form a coherent picture.
A conclusion, that wraps up the preceding chapters, ends the thesis.
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Chapter 2

Introduction

Ferromagnetism is an interesting and fascinating subject in Condensed Matter
Physics: a finite fraction of the magnetic moments of materials such as Fe or Ni
spontaneously acquire a polarization (at a low enough temperature) and give rise
to a macroscopic magnetization.
A simple model to describe the behaviour of this magnetic moments is the Ising
model. In this chapter we will start from the Ising model to understand spin
glasses.

2.1 A few initial pointers

Before analyzing some of the models that describe ferromagnetism, we shall de-
vote a few moments to introduce a few of the most important tools to be used
in the description of these models. While this is not by any means a complete
approach to the subject, it’s probably best to point them out here. A more
complete discussion about models and observables can be found in [1] and [2].

2.1.1 The order parameter

When dealing with phase transitions, as we will, it is of paramount importance
to understand and use currently a quantity called order parameter. This is a
quantity which is defined to be 0 in one of the phases and to have some other
value (non zero) in the other phase. There is no clear indication on which order
parameter is better for a certain system, even thought quite often there is a
close connection between the chosen order parameter and the symmetries of the
Hamiltonian. For example: if we deal with magnetic dipoles, as in the case of the
models discussed in this chapter, a clear example of a quantity that goes from
zero to some value while the phase changes is the magnetization, which we will
define formally in a moment. This quantity is linked to the symmetry of the
Hamiltonian: if for example we describe the magnetic moment as a vector (of
a dipole moment), the Hamiltonian has spherical symmetry and so is invariant
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6 2. Introduction

under a global rotation. In the non-magnetized phase each dipole is free to point
anywhere, and so there is no preferred direction, the average of the spins is null.
Once we reach the low temperature magnetized phase, then this is suddenly not
true, and the spins prefer to point to one of the directions available: suddenly
the magnetization reaches a non null value. In this case we have lost some of
the initial “symmetry”, this is often called a natural symmetry breaking. While
continuing the example it is worth noting that initially, in the high temperature
phase, the Hamiltonian had a O(3) symmetry, while in the low temperature
phase the symmetry is restricted to an O(2) symmetry (rotations around the
vector which is the one “preferred”).
The notion that a system can find itself in states which break the symmetry of the
Hamiltonian is very profound: it means that the ergodic hypothesis (that once
it has reached equilibrium the system should be found in some configuration
proportionally to the Gibbs probability ∝ e−βE) is violated. If, for example,
we think of a ferromagnet with all its spins aligned in the “up” direction, it
will never be found in the configuration in which all the spins point “down”,
in the limit N → ∞ of course, and its motion is restricted to the part of the
phase space in which the magnetization is positive. This situation we call broken
ergodicity. It is important to stress that, strictly speaking, broken ergodicity and
broken symmetry can only occur in infinite systems. In a finite system the entire
configurations space is accessible: a finite ferromagnet in a configuration with
“up” spins will eventually fluctuate over to a configuration with “down” spins
(and then back again, many times) for any non zero temperature.

2.1.2 The correlations

A lot of information about phase transitions comes from diffusion experiments in
which one send particles (photons, electrons or neutrons, for example) and then
studies the diffusion to which they are subject. For the theory, and the simulation
too, the correlation length and the correlation function play a pivotal role. In
the phase transition of liquid mixtures one observes an opalescence, Einstein and
Smoluchowski explained that are linked to the fluctuations of density and hence
of the refraction index, due to an anomalous diffusion of light: we are basically
probing the system with photons. In magnetic system one prefers to use neutrons
since they tend to be more penetrating and to be able to avoid, at least on first
approximation, multiple scatterings.
This scattering involves in this case the two-point correlation function of spins,
which is defined as:

G(2)(⃗i, j⃗) = ⟨σ⃗i · σ⃗j⟩, (2.1)

where ⟨ ⟩ is a thermal average.
Since in most of the cases our systems are invariant for translation, this quantity
really depends only on the difference i⃗ − j⃗, and, if we can also assume isotropy,
only on the distance r = |⃗i − j⃗|, which is like saying that G(2)(⃗i, j⃗) = G(2)(r).
Obviously no real lattice is completely isotropic and invariant for translations,
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but one can assume it is on scales which are big enough compared to the reticular
distance, a.
From the definition of G(2)(r) we can see that it measures the relative alignment
between two spins at a distance r: since in the ordered phase spins point for the
biggest part in the same direction, if we want to study it fluctuations it’s better
to subtract, from G(2), its average, defining in this way the connected correlation
function

G(2)
c (r) = ⟨(σ⃗i − σ⃗0) · (σ⃗j − σ⃗0)⟩ = ⟨σ⃗i · σ⃗j⟩ − |σ⃗0|2 (2.2)

where σ⃗0 is defined as σ⃗0 = ⟨σ⃗i⟩. For T > Tc the average value σ⃗0 is null, so that

from G
(2)
c we recover the original G(2).

Nearby spins tend to be correlated: this correlation is, far from the critical point,
extended only for some distance ξ, which is called correlation length, this is basi-
cally the extension of “blob” of spins who retain the same state. More formally
we can define the correlation length as:

G(2)
c (r) ≈ e−r/ξ, r ≫, a T ̸= Tc. (2.3)

Around Tc there’s a change of dynamics and the correlation assumes another
behaviour, the one of a power law:

G(2)
c (r) ≈ 1

r2−d+η
, r ≫ a, T = Tc, (2.4)

where we have introduced our first critical exponent, η, also called the anomalous
dimension. This power law behaviour indicates that at criticality fluctuations of
the order parameter are correlated on all length, and that the correlation length
around criticality becomes infinite (at least in second order phase transitions,
while in first order ones it remains finite). If we indicate t = (T −Tc)/Tc, around
the transition we can say that

ξ(T ) =


ξ+t

−ν , T > Tc,

ξ−(−t−ν), T < Tc,
(2.5)

where ν is the critical exponent of the correlation length. We shall see some more
critical exponents later in this chapter.
This two different behaviours can be actually merged in to one by writing

G(2)
c (r) =

1

rd−2+η
f


r

ξ


(2.6)

where f is a scale function which depends only on the adimensional ratio r/ξ
which behaves as f(x) ∼ e−x when x if big, while f(0) can be chosen to be 1,
to fix the normalization. The dependency of this function from temperature is
mediated only by ξ(T ).
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2.1.3 Critical dimensions

Even if the real world is three dimensional it is sometimes useful to forget about
it, and just consider the dimensions d of the model as one of the many variables
of the system. In fact, there are some cases in which the systems which we try
to model present, even in the three dimensional world, a two or even one dimen-
sional behaviour: for example graphite’s layers just barely interact, so to render
the system, effectively, bidimensional. In another way, there could be a variation
of the nature of the dimensional behaviour of the system depending on some
parameter: an example of this could be a three dimensional system of magnetic
dipoles in which different planes interact with couplings Jz ≪ J , where J are the
couplings between spins on the same plane. At high temperature, where the cor-
relation length ξ(T ) is small, interaction between different planes is small, due to
the definition of the coupling. But when the temperature is lowered ξ increases,
with the effect that big areas of the plane is constituted of spins in the same
state, which behave as a unique big magnetic dipole: in this case, even if Jz is
small, the interaction between planes becomes relevant, changing the behaviour
of the system from two to three dimensional.
Albeit these examples, there is at least another reason to consider the dimension-
ality of the system, d, as a parameter. The existence of a phase transition for
a given Hamiltonian depends on the dimensionality of the system: in fact if we
lower the number of dimensions in which the system lives, fluctuations become
increasingly pronounced, destroying order and thus lowering the critical temper-
ature, until eventually there is no longer a transition. Any given model, then,
selects a lower critical dimension, dl, such that for d < dl there is no phase tran-
sition for any T . In general one finds that for discrete symmetry models dl = 1,
while for models with continuous symmetry one has dl = 2. Together with the
lower an higher critical dimension ds exists: critical exponents depend on the
dimensionality of the system, too. When d > ds, then the critical exponents are
the same as the ones one can extract from the mean field theory treatment, which
we will discuss briefly, of the system itself. The interval of values dl < d < ds
is the most interesting, and also the one where statistical fluctuations play a
fundamental role.

2.2 The Ising and Potts models

2.2.1 The Ising model

The Ising model describes variables (which are the modelization of the magnetic
dipoles we are dealing with in a ferromagnet), called spins, which sit on a regular
d-dimensional lattice. Spins interact only with nearest neighbours, via coupling
constants J , which can be positive (for a ferromagnet) or negative (antiferromag-
net). Spins can have one of the two values ±1, describing the magnetic moment
pointing up or down respect to some axis, on which we take the projection. We
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can then write the Hamiltonian as:

H = −J

⟨i,j⟩

σiσj + h

i

.σi (2.7)

The system can interact also with a constant external magnetic field, h. The
notation ⟨i, j⟩ express the sum only over nearest neighbour: in another way we
could have written the sum over i < j and used the couplings as Jij in which Jij
was non null only if the spins were nearest neighbours and null otherwise.
The magnetization of the system is calculated as:

m =
1

N


i

σi


. (2.8)

If we consider the model in d ≥ 2 and null field, while the temperature is high
enough, spins are randomly oriented either up or down, and the net magnetization
of the system, in the thermodynamic limit, is null. Lowering the temperature,
all of the spins tend to orient themselves in one of the two available directions,
thus creating a spontaneous net magnetization for the whole system.

|ms(T < Tc, h = 0)| > 0. (2.9)

We are then in the presence of a phase transition (which is absent if d = 1)
from a paramagnetic to a ferromagnetic phase. This transition happens at a
temperature Tc.
For h = 0 we are in the presence of a twofold degeneracy, since both states in
which all the spins are aligned in one of the two available directions are possible.
To remove this degeneracy we can apply a small field to the system and then let
the field go to zero, finding, for T < Tc:

ms = lim
h→0

m(T, h), (2.10)

which will be positive if we used a field pointing in the “up” direction, or negative
otherwise. This comes from the fact that the Hamiltonian is invariant for global
inversion of the sign: σi → −σi.
The Ising model can be exactly solved for d = 1 and d = 2. In the latter the
solution is quite lengthy and can be found on textbooks of Statistical Mechanics
such as the already cited [1] and [2], so we won’t cover it here. For d = 3 there
is no known exact solution.

2.2.2 Mean Field Theory for the Ising model

Each spin in the Ising model interacts with both the external field and the field
generated by neighbouring spins. The latter is obviously a dynamical variable of
the system, which cannot be controlled externally, which fluctuates depending on
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Figure 2.1: Magnetization (in red) for the three dimensional Ising model, from a Monte
Carlo simulation of L = 64, using Parallel Tempering for 40 temperatures around the
critical value, Tc ≈ 4.51. In green a sketch of the magnetic susceptibility, rescaled to fit
the graph, and hence completely out of scale.

the configurations that the system takes. The idea of the mean field approxima-
tion is to replace this interaction between neighbouring spins with the average
of the field of all the spins of the system, except the one we are “looking at”.
In doing so we will let the spin interact, in some sense, with all the spins of the
system, or, if we want to look at the thermodynamical limit, we are dealing with
a d = ∞ system.
Even if this limit may appear very distant from the reality of the system we are
trying to write a model for, we will see that some of the most essential features of
magnets will be described in a quite accurate manner. This approximation was
first tried by Braggs and Williams, so it’s known by their names.
Let’s now consider an Ising model defined on a d-dimensional lattice, with the
same Hamiltonian as before:

H = −J

2


⟨i,j⟩

σiσj − h

i

σi, (2.11)

where we consider each distinct pair i, j once. We define, again, the magnetization
as:

m =
1

N


N
i

σi


, (2.12)
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where by ⟨⟩ we express the thermal average. We can write the product σiσj as:

σiσj = (σi −m+m)(σj −m+m)

= m2 +m(σi −m) +m(σj −m) + (σi −m)(σj −m), (2.13)

where taking the thermal average of the last term basically measures the fluc-
tuations of the spins. The mean field approximation basically consists in the
“forgetting” of this last term, writing the Hamiltonian as:

H = −J

2


⟨i,j⟩

σiσj − h

i

σi ≈ −J

2


⟨i,j⟩


−m2 +m(σi + σj)


− h


i

σi. (2.14)

If now we call z the coordination number of the lattice (the number of the nearest
neighbour spins, z = 2d) we can now rewrite the first term in the sum over ⟨i, j⟩
as:

−J

2


⟨i,j⟩

−m2 =
1

2


i

Jzm2 =
1

2
JzNm2, (2.15)

while the second term in the same sum can be rewritten as:

−J

2
=

⟨i,j⟩

(σi + σj) = −Jzm

i

σi. (2.16)

So now we can rewrite the whole Hamiltonian as:

HMF =
1

2
NJzm2 − (Jzm+ h)


i

σi. (2.17)

In this view all spins are decoupled, and hence we can calculate the partition
function as:

ZMF
N =


{σ}

e−βHMF = e−
1
2
βJzm2 

σ=±1 e
(βJzm+βh)σ

N
= e−

1
2
βJzm2

[2 cosh (2βJm+ βh)]N . (2.18)

The free energy per spin will be then:

fMF (T, h) = − 1

βN
lnZMF

N =
1

2
Jzm2 − 1

β
ln [2 cosh (βJm+ βh)] . (2.19)

Now, given that the magnetization is the derivative of f in respect to the field h,
this satisfies the self-consistent relation:

m = −∂f

∂h
= tanh (βJzm+ βh) (2.20)

If now we want to study the appearance of magnetized phases, we have to study
the transcendent equation:

m = tanh (βJm) (2.21)
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which can be easily done in a graphic way: in fact we can plot the hyperbolic
tangent and the line y = m and look for intersection points. The point m = 0 is
always a solution. If the derivative of tanh (βJm) in the origin is bigger than 1
(or, equivalently, if βJ > 1), then there are two more solutions, of opposite signs
but with the same modulus, ±m0. So for βJz = 1, and hence the temperature
is Tc = Jz/k, we have a phase transition from a disordered to an ordered phase.
Spins are aligned to the field, if we had a field which we will let it go to 0: if
we have h → 0+, then the magnetization will be m = m0, otherwise if h → 0−,
m = −m0.
In the case of a non null expected value of the magnetization the symmetry Z2

is spontaneously broken. In the ordered phase, the remnant of this symmetry is
that we can change one solution in the other, m0 → −m0 and viceversa.

2.2.3 The critical exponents of the Ising model

Using Mean Field Theory we can calculate the critical exponents for the Ising
model. Let’s write

t =
T − Tc

Tc
(2.22)

and rewrite the autoconsistent relation as:

m = − h

kTc
+ (1 + t) arctanh m. (2.23)

Let’s start with the case of h = 0: in this case, for T ≈ Tc, t ≈ 0, the value of
the magnetization is small, so that we can expand in series the right hand side
of the last equation, obtaining:

m0 = (1 + t) arctanh m = (1 + t)


m0 +

1

3
m3

0 +
1

5
m5

0 + . . .


. (2.24)

If we now invert this to obtain m0, we get:

m0 = (−3t)
1
2 [1 +O(t)] . (2.25)

So, the critical exponent β has a value of 1
2 , since this critical exponent is the one

that “regulates” the behaviour of m near the critical temperature in absence of
an external field:

m = m0(−t)β, (2.26)

while in presence of an external field the system behaves as:

M(h, Tc) = M0h
1
δ . (2.27)

The critical exponent γ is related to the magnetic susceptibility χ as:

χ(h = 0, T ) =


χ+t

−γ , T > Tc,

χ−(−t)−γ , T < Tc.
(2.28)
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Since χ = ∂m0/∂h, we differentiate the equation 2.24 to obtain:

χ = − 1

kTc
+ (1 + t)


1

1 +m2


χ. (2.29)

Now, for h = 0 and T > Tc we have m0 = 0, so that χ satisfies se equation

χ = − 1

kTc
+ (1 + t)χ, (2.30)

which results in

χ =
1

kTc
t−1. (2.31)

On the other hand, if we have h = 0 and T < Tc, we have:

χ =
1

2kTc
(−t)−1, (2.32)

so that we can conclude that the critical exponent γ = 1.
To calculate the critical exponent δ, we consider equation 2.24 again, expanding
the hyperbolic function and simplifying we obtain:

h

kTc
≈ 1

3
m3 +O(m5) (2.33)

or

m ≈ h
1
3 (2.34)

yielding δ = 3.
Mean field treatment of the Ising model in d-dimensions has let us understand the
behaviour of the model around the phase transition, and have a rough value of the
critical exponents, which we resume in the table 2.1: the values are approximate,
and will not yield true for systems at a specific dimensionality.

Exponent Value in MFT

Specific Heat, C α 0
Order parameter, m(T ) β 1/2

Susceptibility, χ γ 1
m(h) δ 3

Correlation Length, ξ ν 1/2
Anomalous Dimension η 0

Table 2.1: Critical exponents of the Ising model in the mean field approximation
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2.2.4 The Potts model

The Potts model is a generalization of the Ising model: aside its theoretical
importance, it is very useful when describing spins which cannot be assimilated
to a 2-states system and more freedom is needed.
To do this, the Potts model prescribes, for each spin, p available states, instead
of just the two of the Ising model. Also, as we can see in the Hamiltonian

H = −J

⟨i,j⟩

δ(σi, σj) (2.35)

the interaction is different: it takes place only when the spins σi and σj are in
the same state, in which case the contribution to the energy of the system is −J .
Whereas the Ising model was invariant under global spin inversion σi → −σi, the
Potts model is invariant under the group Sp of permutations of p variables, which
is a non abelian group if p ≥ 3. In the Potts model we regard the “states” of the
spins as label, which are in this sense inessential, and could be anything: any set
of numbers or colors or whatever else.
In the case p = 2, if we take ±1 as the values of the spins, using the identity
δ(σi, σj) = 1/2(1 + σiσj), we can see that, excluding a multiplicative constant,
the Potts model is equivalent to the Ising model we just discussed.
The partition function of the Potts model for a lattice of N spins is :

ZN =

{σ}

K
⟨i,j⟩

δ(σi, σj)

 , (2.36)

where we have written K = βJ = J/kT .

2.2.5 Mean Field Theory for the Potts model

We analyze the mean field theory for the Potts model, as we did for the Ising
model. We shall see that the behaviour of this model is richer, in a sense, than
in the Ising case: the nature of the phase transition changes depending on p. As
said before in mean field theory each spin in the lattice interacts will all the other
N − 1 spins, so that we can write the Hamiltonian as

HMF =
1

N
Jz

i<j

δ(σi, σj) (2.37)

where we have introduced for convenience a factor 1/N and z, as before, is the
coordination number of the lattice.
To solve the model we will proceed in calculating the free energy, F [{σ}] =
U [{σ}]−TS[{σ}] as a function of configuration {σ} and the look for its minimum.
This approach is simplified by the fact that, even if to specify a configuration we
have to indicate the state of each of the N spins, this function is degenerate,
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since it can assume the same value for different configurations of the system: it is
then useful to introduce variables which will make this propriety obvious. To do
this we introduce, given a configuration {σ} of the spins, xi = Ni/N the number
of spins which are, for that configuration, in the state i, with i = 1, 2, . . . , p.
Obviously we need to impose

p
i=1

xi = 1. (2.38)

Since there are 1
2N1 (Ni−1) coupling of type i in the Hamiltonian, the energy U [{σ}]

of this configuration is given by:

U [{σ}] = − 1

2N
Jz

p
i=1

Ni (Ni − 1). (2.39)

Dividing now by the number of spins and considering the thermodynamic limit,
N → ∞, we obtain:

U [{σ}]
N

≈ −1

2
Jz

p
i=1

x2i . (2.40)

Since there are
N !

N1!N2!N3! . . . Np!
(2.41)

way of dividing the spins without an energy change, we have an entropy

S[{σ}] = k log


N !

N1!N2!N3! . . . Np!


. (2.42)

Using the Stirling approximation (log z! ≈ z log z, if z ≫ 1) for each term, and
using the definition of xi we can write:

S[{σ}]
N

≈ −k

p
i=1

xi log xi. (2.43)

So that we can finally write the expression for the free energy per spin:

F (xi)

N
= f(xi) = −

p
i=1


Jz

2
x2i − kxi log xi


, (2.44)

which we will minimize. We have also to keep in mind the condition expressed
in (2.38): it will be automatically satisfied if we parametrize the xi as [3]

x1 =
1
p [1 + (p− 1)s]

xi =
1
p (1− s) , i = 2, 3, . . . , p (2.45)

with 0 ≤ s ≤ 1. If we assume J > 0 (the ferromagnetic case), this parametrization
is mindful of the possible breaking of the symmetry of the group of permutations
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Sp when we are in the phase of low temperatures. Substituting this expression
for the xi in the energy and in the entropy leads us to

β
N [F (s)− F (0)] =

=
p− 1

2p
Kzs2 − 1 + (p− 1)s

p
log[1 + (p− 1)s]− p− 1

p
(1− s) log(1− s)

≈ −p− 1

2p
(p−Kz)s2 +

1

6
(p− 1)(p− 2)s3 + . . . (2.46)

From this we can see that the cubic term of the free energy changes sign when
p = 2. Let’s consider the two cases in separate ways.
For p < 2, the minimum condition for the free energy is expressed by

Kzs = log


1 + (p− 1)s

1− s


. (2.47)

s = 0 is always a solution for this equation, but for Kz > q where q is the deriva-
tive of the right hand side of 2.47, we have another solution for s ̸= 0. The two
solutions coincide for Jβ = K = Kc = q/z, which is the critical point related
to the transition for p ≤ 2. In this case we have a continuous (or second order)
transition.
For p > 2, the situation is different, since changing K, there is a critical value
for which the free energy exhibits a discontinuous jump from s = 0 to s = sc.
This discontinuity is a characteristic of first order phase transitions (or discon-
tinuous).In this case the critical values for Kc and sc are obtained by solving
simultaneously F ′(s) = 0 and F (s) = F (0):

zKc =
2(p− 1)

p− 2
log(p− 1),

sc =
p− 2

p− 1
. (2.48)

Calculating the internal energy of the system,

U = −Jz
p− 1

2p
s2min (2.49)

we see that for K = Kc there’s a jump in the function, corresponding to a value
of the latent heat L per spin

L = Jz
(p− 2)2

2p(p− 1)
. (2.50)

2.3 Spin Glasses

Spin glasses are magnetic systems in which the interactions between magnetic
moments are “in conflict” due to some quenched, or frozen in, structural dis-
order. This mean, among other things, that no conventional long range order
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(ferromagnetic or antiferromagnetic) can be established. Nevertheless, these sys-
tems exhibit a transition into a phase in which spins are aligned with this random
order. On the other hand these “conflicts” result in the other characteristic of
spin glasses: frustration. Namely, we say a spin is in a frustrated state when,
whichever state it is in, it cannot reach the lowest energy state, and so “agree”
(where the meaning of “agree” depends on the sign of the coupling between the
spin and the neighbours) with all its neighbours.
These two key elements, disorder and frustration, seem to suggest that the spin
glass phase is intrinsically different from the forms of order we have been dealing
until now, such as ferro or antiferromagnetic, and so new tools and concepts are
needed to describe it. Experimentally it is not hard to find systems which behave
as spin glasses, quite the contrary.
As it was the case with ferromagnets, we will employ models which will, hope-
fully, be simple enough to be used both theoretically and in simulation and still
incorporate the necessary disorder and competing interactions that lead to frus-
tration.
While we will consider spin glasses only of magnetic nature, which is to say that
the “spin” degree of freedom is magnetic, it has been a while since people started
to find spin glasses phases in different fields: properties analogous properties
have been seen in ferroelectric-antiferroelectric mixtures (in which case the elec-
tric dipole moment takes the place of the magnetic dipole moment), in amorphous
alloys and magnetic insulators (where the distances between magnetic moments
is entirely different from that of the crystalline magnetic systems) and in disor-
dered molecular crystals (where the electric quadrupole moment plays the role of
the spin) in which a kind of orientational freezing has been observed.
Moreover a behaviour similar to the one of spin glasses has been observed not
only in Physics: developments resulting from the study of spin glasses have found
application in Computer Science, Biology and Mathematics.

A possible example of spin glass, which is well known, are alloys in the form
EuxSr1−xS. In the Eu-rich limit, this is a ferromagnet with ferromagnetic nearest
neighbours and antiferromagnetic next-nearest neighbours interactions. The Sr
is magnetically dead, so a substitution of Sr for Eu just dilutes Eu. We can write
the Hamiltonian as

H = −1

2


i,j

Jij cicj σ⃗i · σ⃗j , (2.51)

where ci is 1 or 0 with probabilities x and 1 − x. This model has competing
interaction, which, hopefully, will lead to frustration.

2.3.1 The Edwards-Anderson (EA) model

Starting form the Hamiltonian 2.51 we can simplify, if it turns out to be theo-
retically more convenient. The following Hamiltonian has been written first by



18 2. Introduction

Edwards and Anderson in 1975 [5], in the paper that marks the start of spin
glass Theory as an active area of Theoretical Physics. The model is defined on a
translationally invariant regular lattice:

H = −1

2


ij

Jij σ⃗i · σ⃗j , (2.52)

where the Jij are taken to be identically distributed independent random variables
with distribution that depends only on the lattice vector separation r⃗i − r⃗j . In
particular it’s convenient to consider

P (Jij) =
1

2π∆ij

exp


−

J2
ij

2∆ij


, (2.53)

a symmetric Gaussian distribution, or

P (Jij) =
1

2
δ(Jij −


∆ij) +

1

2
δ(Jij +


∆ij), (2.54)

a double delta function. In either case, the model is specified by

[J2
ij ]av ≡ ∆ij ≡ ∆(r⃗i − r⃗j), (2.55)

where we have introduced the average [ ]av as the average of the distribution of
the random variables.
This model, in both the double delta and the Gaussian version, clearly has both
the randomness and competing interactions we were looking for, but it turns out
we can proceed to some further simplifications:

• instead of Heisenberg-like spins, σ⃗i we may consider Ising-like spins with a
single component, σiz ≡ σi

• we can consider the interactions between spins to fall off very quickly, re-
sulting in only nearest neighbours or next-nearest neighbours interactions

• we can “forget” to deal with a lattice, and just have spins interacting with
a finite number of spins, which can be anywhere in the system

and still be able to obtain the spin glass phase. It’s desirable that, even with
any simplification, there should not be significant differences in the behaviour
between models, given that all their forces fall off in the distance in the same way
(eg. they are all nearest neighbours) and that the nature of the spins is the same
(eg. we are dealing with Ising spins or Heisenberg spins).
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2.4 How do we deal with disorder?

In the definition of the Hamiltonian of the EA model, we have introduced random-
ness, which in turn introduces special features in Statistical Mechanics. Basically
we don’t know all the parameters of the Hamiltonian we are trying to study, but
only their distribution, for example of the Jij or random fields hi, so that we
don’t have a particular realization. We can, for example in simulation, simulate
different distribution realizations, and then average over them, which corresponds
to the [ ]av average, but this is closer to experiments than to theory.
Also, we could calculate the quantities of interest for a given realization of the
Jij , but this is not what interests us: we want to calculate these quantities for
the given distribution of these parameters.
Fortunately Statistical Mechanics comes in our help with the averaging in the
limit of large systems. Just as it was the case with the ferromagnetic models,
and in general, we know that the fluctuations of the energy of the system around
the thermal average are of order N−1/2, so we expect that the sample-to-sample
fluctuations will go to zero in the limit of a large system. A quantity which ex-
hibits this property is said the be self-averaging. If we know that the quantity
that is of interest to us has this property, then we can expect different experi-
ments to yield the same result, and even more interestingly, that the theoretical
calculation in which we average over disorder agrees with the experiments. But
there are some quantities which are not self averaging, for example the local inter-
nal field of a spin i which depends sensitively from the local environment. Most
of the quantities which we want to measure are sums or integrals over the entire
volume of the sample (so that we call them “extensive” quantities) and statistical
fluctuations will become small for large systems.
We have thus two different kind of average to calculate: the first is the usual ther-
mal average, which in principle is carried out in each sample, and the average
over the disordered random parameters. As is often the case, the average that
we want to calculate can be expressed as, or in terms of derivatives of, the free
energy with respect to auxiliary fields. We then start with the partition function,
which is the trace over the thermodynamic variables and function of the fixed
interaction strengths for that sample:

F [J ] = −T lnZ[J ]. (2.56)

Now, F [J ] is an extensive variable, so we can think of it as self-averaging, and so
the experimentally relevant quantity is

F ≡ [F [J ]]av ≡


dP [J ]F [J ] = −T


dP [J ] lnZ[J ]. (2.57)

It’s important to note that it’s lnZ which should be averaged, and not Z itself:
the reason is that Z is not an extensive quantity, and so self-averaging cannot be
expected to apply to it, and so [Z]av is not a physically relevant quantity.
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As an obvious extension of this argument one can calculate the magnetization in
a macroscopic sample as

[M ]av = T
∂[lnZ[J, h]]av

∂h
(2.58)

and in a similar fashion for other extensive quantities. For correlation functions
we need to extend this definition (albeit just formally) to site-dependency:

[⟨σiσi⟩ − ⟨σi⟩⟨σj⟩]av = T 2 lnZ[J, h]]av
∂hi∂hj

. (2.59)

How do we evaluate these averages? One way is to write down the formal expres-
sion for F [J ] or its derivative (for example obtained with perturbation theory)
and average them, term by term, over the distribution of the Jij . This procedure
works, and it’s practical. But it is also often very useful to be able to carry out
the averaging formally from the beginning: this will leave us with a problem in
which the disorder no longer appears explicitly. If the system is translationally
invariant, we would end up with a nonrandom, translationally invariant Statisti-
cal Mechanics problem, which we would then be able to solve.
Since we want to average lnZ we cannot just write the integral in 2.57 as if we
were dealing with Z: we basically want to “fix” the Jij as quenched variables, and
then let the spins σi just adapt to the couplings. If we were to write something
like

[Z[J ]]av = Tr σ

 
⟨i,j⟩

dJij
2π∆ij

exp


−

J2
ij

2∆ij
+ βJijσiσj


, (2.60)

which can be solved by completing the square, we would be dealing, then, with
the wrong Physics: we are in fact writing a nonrandom system in which both
the spins and the coupling Jij are thermodynamical variables, which are traced
on the same footing. In the systems we will be dealing with, if we look at it
from an experimental point of view, the Jij are frozen in to their configuration
when we prepare the sample to analyze by rapid cooling or, as we just mentioned,
quenching. In this sense we may call the kind of average we want to do “quenched
average”.

2.4.1 The Replica Trick

We cannot write the integral as in 2.60, because we want to average over lnZ and
not Z, since the free energy F = −kT lnZ: we have a “trick”, quite common in
Statistical Mechanics of random systems, to deal with the complexity from that
arising. It is called the replica method and it’s based on the identity

lnZ = lim
n→0

Zn − 1

n
(2.61)
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and the fact that the average of [Zn]av can be carried out almost as simply as
[Z]av if n is an integer. We write Zn as

Zn[J ] = Tr {σ1},{σ2},...,{σN} exp


−β

n
α=1

H[σα, J ]


. (2.62)

We say then that we have replicated the system n times, and hence the termino-
logy “replica method”. The index α which appear in 2.62 identifies the replica
and is called replica index. For the EA model, with Ising spins, the average of
2.62 over the Gaussian couplings is then

[Zn]av = Tr {σ1},{σ2},...,{σn} exp

1

4
β2

ij

∆ij


αβ

σα
i σ

β
i σ

α
j σ

β
j


≡ Tr {σ} exp (−βHeff) (2.63)

which is basically like converting the disordered problem into a non-random one,
involving four-spins interactions. For a general distribution of the Jij we can
write:

βHeff = −1

2


ij

∞
p=1

1

p!
[Jp]c(β

n
α=1

σα
i σ

α
j )

p, (2.64)

where [Jp]c is the p-th cumulant of the distribution of the Jij . After solving these
effective problems in any way we can, we have to take the limit n → 0 of the
result.
The cumulants (here we report just the first two):

[J ]c = [Jij ]av = J,

[J ]c = [J2
ij ]av − [Jij ]

2
av ≡ (∆Jij)

2 (2.65)

in terms with p > 1 introduce interactions, as to say: couplings, between different
replicas of the disordered system.

2.5 Broken Ergodicity, the Spin Glass phase and or-
der parameters

Since we don’t know qualitatively how the spin glass phase is, we can’t be sure
that the order parameter we have defined for the ferromagnetic phase is still a
good choice. In this section we will try to understand better what changes in the
new phase, and it will turn out that we need a new order parameter.
In an Ising ferromagnet we do have broken ergodicity when we are dealing with
an infinite system and a temperature that is below the transition temperature:
as we said already, in this case the configuration space is basically divided in two
(for two are the directions possible for the magnetization) and there is no way for
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a system magnetized in one direction to go spontaneously into the region of the
configuration space where the magnetization is in other direction. This has an-
other very important consequence: when we write some quantity that is defined
by a thermal average we have to be careful about what we mean. If we were to
mean it as a conventional Gibbs average over all the spins configurations with the
symmetric weight exp(−βH[{σ}]) then it would vanish by symmetry. Instead we
restrict our averages over part of the configuration space: for example if in the
ferromagnetic phase we restrict ourselves to one of the two halves just mentioned
then the magnetizations would differ by sign, resulting in the two well known
values of it. In this sense the broken ergodicity has to be put in “by hand” by
restricting the trace we use to define the thermal averages to configurations near
the chosen phase. In a ferromagnet we could restrict ourselves simply by applying
a small field to the system (in the Hamiltonian) and then letting it go to zero
once we have taken the thermodynamic limit. In this case it is crucial the order
in which we take the limits: were we to take them in the opposite order (first
h → 0 and then N → ∞) this would not, obviously, work. In another way, we
could introduce the restriction over the trace by means of boundary conditions:
if we want to end in the “up-spin” phase, we can set the spins on the boundary
of the system to be fixed “up”.
Another useful way to describe broken ergodicity is to interpret expectation val-
ues for quantities like ⟨σi⟩ as averages over time intervals [0, t] taking the limit
t → ∞, noting that if there’s broken ergodicity these long-time averages will not
vanish.
In a spin glass we could suppose, as we did for the ferromagnet, to find two
stable states related by an overall spin flip symmetry, but it turns out not to
be the case: we have to take in account the possibility, given randomness and
competing interactions, to find a non trivial broken ergodicity: in another way,
we have to take into account the possibility to find many stable states. We could
visualize the situation as a landscape where for each configuration we calculate
the free energy F : in a ferromagnet there are just two states minimizing F below
the transition. Under a temperature Tf , there will be many states that do the
same for the spin glass: these minima will be the bottom of valleys of the energy
separated by barriers which, in the limit N → ∞ will become infinitely high,
rendering impossible to move from valley to valley, thus breaking ergodicity. If
we increase the temperature above Tf the valleys will become less deep and then
just disappear, and there will be just one valley with the minimum at m = 0.
The configurations {σ} which contribute to the partition function inside a single
valley (or phase, let’s call a) all lie in the region of spin configurations space near
the minimum (possibly comprising many sub-valleys).
When a system finds itself in one of these valleys it will exhibit the behaviour
and the properties which is typical of that valley. In general, they will differ from
true equilibrium properties, since these would include averaging over all valleys
with appropriate relative thermal weights. If we wish to calculate the properties
of the system inside a single valley (which as we said might differ, for example,
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in the magnetization) we have to restrict our trace of the partition function only
to the appropriate valley.
Since there many possible stable states, the trick to impose an external field, as
we did in the ferromagnetic case, uncorrelated to the single spins magnetizations
will not help in tentatively select out only a single phase: in this sense broken
ergodicity makes the definition of “thermal averaging”, and the notion of an order
parameter for spin glasses, a non trivial task. In fact, different ways to project
onto particular phases would lead to different values of the observables: this is
also one of the main reasons why it is so difficult to write down a mean field
treatment for Spin Glasses.
So far we have been dealing with what happens to a sample, but of course we
want our results to be averaged over many samples, or, in another way, to be
averaged over the disorder probability. The order parameter of a ferromagnet,
the magnetization, even if averaged over the disorder will not do, for the reason
outlined above, so we have to look for something else, even if it would clearly van-
ish in the limit of null external field: we have to look to some higher moments. If
we were to consider the breaking of ergodicity as essentially a dynamical process,
we could consider, as Edwards and Anderson did in their paper in 1975, [5], the
order parameter as

qEA = lim
t→∞

lim
N→∞

[⟨σi(t0)σi(t0 + t)⟩]av , (2.66)

where the average is over a long (infinitely long) set of reference times t0. This
would be null (in the limit of a vanishing external field) if the system is ergodic,
and nonzero if the system is trapped inside a single phase. One must take the
N → ∞ limit before the t → ∞ since the correlation will eventually die out, as a
function of time, as true equilibrium is reached, for a finite system. Since, instead,
an infinite system will never escape the valley it is in, the parameter qEA measures
the mean square single-valley local spontaneous magnetization, averaged over all
possible valleys. In terms of thermal averages we would write it as

qEA =


a

Pa(m
a
i )

2


(2.67)

where

Pa =
e−βFa
a e

−βFa
, and ma

i = ⟨σa
i ⟩ (2.68)

inside the valley (or phase) a. Assuming (it can be proved in mean field theory,
and for single models) that this quantity is self-averaging we can write:

qEA =
1

N


a

Pa


i

(ma
i )

2. (2.69)
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This qEA is not, of course, the mean square local equilibrium magnetization, for
the reasons outlined above. If we consider

q = [⟨σi⟩2]av = [m2
i ]av =


a

Pam
a
i

2

av

=


ab

PaPbm
a
im

b
i


av

(2.70)

this is the equilibrium (or Statistical Mechanics) order parameter, denoted simply
by q. Equivalently we can write

q =
1

N


i


ab

PaPbm
a
im

b
i


av

. (2.71)

We can also define q for a single sample

qJ =
1

N


i

m2
i =

1

N
PaPb m

a
im

b
i . (2.72)

We can see, from the definitions, that q differs from qEA by having an inter-valley
term. It is often useful to consider also

∆ = qEA − q (2.73)

(which is semidefinite positive, and zero only if there is just a single phase)
which basically measures the degree of broken ergodicity. We can imagine the
differences between qEA and q by considering a non infinite system: on a long
enough timescale (that could be very long) the system will, statistically, visit
many valleys with their relative thermal weights, so that true equilibrium is
reached and inter-valley terms in q contribute. On a shorter time scale there is
no time for the system to change valley, so that only qEA is the physically relevant
quantity. Obviously we could imagine a somewhat intermediate picture, in which
only a few valleys are “visitable” for the system (and so no true equilibrium is
reached): in this case we should consider a quantity between these two limiting
cases, q and qEA.
In ferromagnets the susceptibility can be written as

χloc =
1

N


i

χii = β


1− 1

N


i

m2
i


(2.74)

where χii is defined as χii = β ⟨(σi − ⟨σi⟩)2⟩. We can then write, for a system in
a single phase,

χloc = β(1− qEA). (2.75)

The average local equilibrium susceptibility, obtained with the equilibrium ex-
pression mi =


a Pam

a
i , can be written as

χloc = [χJ ]av = [β(1− qJ)]av = β(1− q), (2.76)
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where is worth noting that χJ is not a self-averaging quantity if there is ergodicity
breaking. While it’s clear that in a macroscopic experiment χ, due to the fact
that barriers are infinite, comes only from a single valley, since there is strict
ergodicity breaking, if the barriers are not infinite one can hope to observe a
crossover from single-valley to equilibrium in χ, from short to long observation
times.
Another interesting quantity to look at, once we know we have many valleys, is
the “overlap”

qab =
1

N


i

ma
im

b
i , obviously for a single sample, (2.77)

when a and b run over the many different phases one can expect to observe values
of qab in the range [−1, 1]. Following Parisi ([6], [7], [8] and [9]) is natural then
to define the distribution

PJ(q) ≡ ⟨δ(q − qab)⟩ ≡

ab

PaPbδ(q − qab) (2.78)

and its average over the couplings

P (q) ≡ [PJ(q)]av . (2.79)

For a system with just 2 phases, P (q) is the sum of two deltas, and by introducing
an external field, we can just simple it down to a single delta function. If there
is strong ergodicity breaking P (q) may have a continuous part, indicating there
is, maybe, a continuum of possible overlaps between phases. Hence, by studying
P (q) we can tell systems in which we have a “conventional” broken symmetry
from those where we have a non-trivial ergodicity breaking. Given the probability
distribution we can then rewrite q and qJ as:

q =

 1

−1
P (q)q dq, and qJ =

 1

−1
PJ(q)q dq. (2.80)

If we let the system be without an external field P (q) is symmetric: it is in
fact possible to find, for the overlap qab, the corresponding value −qab by simply
reversing all spins in a and b. If instead we apply a small field, then only the
states with the magnetization aligned with the field will be selected, and therefore
only positive overlaps will enter P (q): the lower limit of the integral is then 0,
and q is finite.
Until now we have devoted a lot of attention to different order parameters, even
if we have not yet tried to represent them in the replica formalism we have
introduced. We begin considering the ferromagnetic order parameter:

M = [mi]av ≡ [⟨σi⟩]av =


Tr {σ}σie

−βH[{σ},J ]

Z[J ]


av

, (2.81)
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and write n−1 factors of Z[J ] (applying the replica trick) on both numerator and
denominator. In the limit n → 0 the denominator goes to 1 so that we need to
take the average over disorder only over the numerator. Introducing the replica
indexes we find, then

M =

Tr {σ1},{σ2},...,{σn} σα
i exp

−β
n

β=1

H[{σβ}, J ]


av

, (2.82)

where we can carry out the averaging over the disorder as we did for the calcu-
lation on [Zn]av, obtaining

M = Tr {σ}σ
α
i exp(−βHeff), (2.83)

which, taking the limit n → 0, can be written as

M = ⟨σα
i ⟩, (2.84)

where the “thermal” average is taken with the effective Hamiltonian Heff, since
we can use the fact that

Tr {σ} exp(−βHeff) ≡ [Zn]av → 1. (2.85)

There is one big point that needs to be addressed here: our result should be
independent from which replica α is the one chosen for σα

i , since all replicas are
(supposedly) “created equal”. What if they are not? What if some replicas are
“more equal” than the others? If in the solution of our Hamiltonian all the ⟨σα

i ⟩
turn out to be equal then we have no problems, but what happens if it turns out
they are not?
We turn our attention back to the equilibrium spin glass order parameter, finding

q = qαβ ≡ ⟨σα
i σ

β
i ⟩ (2.86)

for any replicas α ̸= β, since otherwise we would obtain, for Ising spins, (σα
i )

2 ≡ 1.
Considering the possibility to have a broken replica symmetry, we have to average
over all the possible ways to break it

q = lim
n→0

1

n(n− 1)


α ̸=β

qαβ. (2.87)

In the same way we can express P (q) as

P (q) = lim
n→0

1

n− 1


α ̸=β

δ(q − qαβ). (2.88)

If P (q) is not a delta function but has a more complex structure, the matrix
qαβ must depend on α and β in a non trivial way and the replica symmetry is
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broken [18], which in turn signals the existence of many equilibrium states [11].
In another way, we can say that whenever averages depend on the indexes of the
replicas they are calculated with, we have broken replica symmetry.

Comparing this to the expression of PJ(q) in equation 2.78 we see that the
distribution of values of the matrix elements qαβ in the replica symmetry breaking
case and the distribution of the overlap between different states when there are
many states must be the same.
Finally we can identify with qEA the largest value of qαβ in a broken replica
symmetry solution

qEA = max
αβ

qαβ. (2.89)

2.5.1 Susceptibilities

A quite important quantity in the study of spin glasses is the Spin Glass Sus-
ceptibility, which has the role corresponding to the one of the susceptibility for
ferromagnets. This quantity is defined as

χSG(R⃗ij) = [χ2
ij ]av = β2[(⟨σiσj⟩ − ⟨σi⟩⟨σj⟩)2]av (2.90)

and its Fourier transform χSG(k⃗), evaluated for k⃗ = 0.

Above the freezing temperature Tf this reduces to χSG = β2

N


ij⟨σiσj⟩2.

In a ferromagnet the susceptibility is the magnetization induced by an external
field on the system per unit of external field, h. In a spin glass we can induce
a non-zero q, even above Tf , by introducing random external fields hi. We can
then write

⟨σi⟩ =

j

χijhj (2.91)

and we can, by squaring and averaging over the disorder obtain

q =

ij

[χ2
ij ]avσ

2 = χSGσ
2 (2.92)

where σ2 is the variance if the random field and where we have assumed that the
random fields hi are uncorrelated. We can see that σ2 acts as a conjugate field
for the order parameter q pretty much as the external constant field h did for
the magnetization m in the ferromagnet. While above Tf we need hi if we want
have a non zero q, below Tf q is finite even if σ2 → 0, thus, by analogy with
the ferromagnetic case, we expect the susceptibility, χSG to diverge when one
approaches Tf from above: the correlation length of χSG(r⃗) diverges in the same
way as the same quantity of the spin correlation function did in the ferromagnetic
case.
One last important point: susceptibility is measurable, through what is called
the non-linear susceptibility, which is defined as the coefficient of −h3 in the
expansion of the magnetization in powers of the external field:

m = χh− χnlh
3 + · · · . (2.93)
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Figure 2.2: Plaquettes without and with frustrated spins: the spin at the site with the
question mark cannot satisfy both its couplings at the same time.

As χ is proportional to the thermal variance ⟨(σ − ⟨σ⟩)2⟩, one finds

χnl = −β3

3
N


i

σi

4
c

(2.94)

where we indicate with the subscript c a cumulant average. Above Tf the cumu-
lant is expressed as

i

σi

4
c

=

ijkl

( ⟨σiσjσkσl⟩ − 3 ⟨σiσj⟩ ⟨σkσl⟩ )

= 4N − 6

ij

⟨σiσj⟩2 (2.95)

which leads to

χnl = β(χSG − 2

3
β2) (2.96)

and thus measurements of χnl give us important information about the spin glass
transition.

2.6 Frustration

It is safe to indulge in the thought that broken ergodicity is caused by the ran-
domness and the frustration, at least the non trivial one, so it’s a good idea to
spend some time describing kinds of frustration, and it effects, since we already
journeyed, even if only briefly, in the realms of randomness.
To clarify what we mean by frustration we turn our attention to an Edwards-
Anderson model with Ising spins, σ ∈ {±1}, on a square lattice, with couplings
coming from a double delta function, so that, fixed J they can only take values
from the set {±J}, and with only nearest-neighbours interactions. Instead of
considering the whole lattice we focus for a moment only on four spins and their
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four couplings: this elementary portion of lattice is commonly called a “plaquet-
te”. Since the couplings are taken randomly from the distribution there is an
equal probability to end up with an odd or an even number of negative bonds.
Now, if the number of negative bonds is even, then it is always possible to find an
arrangement of the spins (and it’s spin-flipped counterpart) which satisfy all the
bonds. All one needs to do is to start at some point fixing a spin and then follow
the couplings setting the spins so that the latter are satisfied, which basically
means multiplying the spin by the value of the coupling and setting the result
as the next spin. If, otherwise, the number of negative couplings is odd, then
applying the same simple algorithm for setting the spins (or any other algorithm,
for all that matters) will result in a conflict between the value of the spins, at
some point. Trying to proceed by going back and flipping a spin previously set so
to avoid this conflict will result in the spins at the ends of the other coupling in
creating a new conflict. The term “frustration” refers to the inability to satisfy
all the bonds simultaneously. The second plaquette in figure 2.2 exhibits frus-
tration, and has an extra ground state degeneracy beyond the one that follows
from global spin inversion. It is sometimes useful to think about it in terms of
bonds variables instead of spins: we can define it as Aij = (σiσj sgn Jij) and, if
a bond is not satisfied, we see that Aij = −1. Changing a spins, in a frustrated
plaquette, moves the unsatisfied bond to the neighbouring bond.

2.6.1 Trivial and nontrivial disorder

A simple example, following Mattis [13], is helpful in describing what is meant by
trivial and nontrivial disorder: not all kinds of disorder gives rise to frustration,
and hence to spin glass behaviour. Let the bonds be

Jij = Hξiξj , (2.97)

where the ξi are independent and take on the values ±1 with equal probabilities.
Half of the bond are indeed positive and half negative: this is what happens in
competing ferromagnetic and antiferromagnetic interactions. But the Jij are not
independent: in fact, if we take the product of the Jij around a plaquette (ie.
1 → 2 → 3 → 4):

J12 J23 J34 J41 = J4ξ1ξ2ξ2ξ3ξ3ξ4ξ4ξ1 = J4 (2.98)

the result is always positive: plaquettes in the Mattis model are unfrustrated,
even if we expected the contrary, since we had competing interactions. If we
think that the spin glass behaviour has something to do with frustration then,
by all means, the Mattis model is not a spin glass. If we make a change in how
we define the “up” and “down” locally, for example by defining the new spins

σ′
i = ξiσi (2.99)

the Hamiltonian of the Mattis model reduces to that of a ferromagnet.
From this example we can divide disorder in two kinds: the one that gives rise
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to frustration and the one that does not, the latter being irrelevant to spin glass
behaviour. It is possible to describe this separation mathematically by going over
the bond variables in the partition function: for the ±J model the energy is a
sum over bonds of −|J | times the Aij for that bond. What makes the problem
nontrivial (and interesting) is that one must have a odd number of broken bonds
around each frustrated plaquette (or an even number of broken bonds around an
unfrustrated plaquette). We can then write:

Z[Φ] = TrA exp

β

⟨i,j⟩

 
⟨ijkl⟩

δ(AijAjkAklAli,Φijkl) (2.100)

where we have set |J | = 1, ⟨ijkl⟩ labels the plaquette and Φijkl is +1 or −1
depending if the plaquette is unfrustrated or frustrated, respectively. We can
write the partition function as (see [14])

Z[Φ] = lim
β′→∞

TrA exp

−βHeff [A;β, β′]


(2.101)

where
Heff = β


⟨i,j⟩

Aij − β′

⟨ijkl⟩

(ΦijklAijAjkAklAli − 1). (2.102)

We are writing Z[Φ] to emphasize that the partition function depends only on the
frustration variables Φijkl: in this formulation the J only determine the Φ’s, and
hence different sets of bonds which have the same Φ’s have the same partition
function. Hamiltonians similar to 2.102 appear in lattice formulation of gauge
theories: there one has both an overall global symmetry and a local symmetry.
In this way one can make different symmetry transformation in different points,
and the Hamiltonian is still invariant. The simplest way to build such a theory
is to define variables Vij (in a particular group, in our case Z2) on the links of a
lattice (just like the Aij) and define them to transform as

Vij = U−1
i VijUj (2.103)

under an arbitrary, in general position dependent, operation Ui in the group. In
our case Ui, as well as Vij , can simply be +1 or −1. A gauge-invariant Hamilto-
nian must therefore be made up of a combination of the V ’s which are invariant
under this transformation. The simplest such combination is a product of 4 ele-
ments around an elementary plaquette of the lattice, such as the one that appears
in equation 2.102 in the β′ term. The gauge transformation in 2.103 on the Aij

corresponds to the transformation σ′
i = ξiσi of the spins in the original formula-

tion of the problem, replacing ξi with Ui. It is worth noting that the first term in
the Hamiltonian 2.102 is not gauge invariant. In this formulation we were able
to achieve an interesting point: we were able to tell frustrating disorder, which
is gauge invariant, from other disorder which we can consider less important and
which is not gauge invariant. For example, if we were to change the magnitude
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of the couplings, that would appear is the first term of the Hamiltonian, the one
which is not gauge invariant.

We have argued that frustration is necessary to obtain spin glass behaviour.
Now we could ask ourselves: is it also sufficient? Apparently, the answer is no:
there has been a lot of work in this sense, on fully frustrated systems, for example,
there is no result on a phase transition for any temperature different from zero.
Some results point out that the energy landscape is too smooth to give rise to
broken ergodicity. In other cases models exhibits periodic order below a non-zero
temperature, but so far no one has found such a model with a phase resembling
a spin glass state.

2.7 A replica-symmetric approach

In this section we will try to apply the replica method (based on the Replica
Trick) to the SK model: the result we will obtain will be wrong, since we won’t
include in this treatment the replica symmetry breaking which we identified as an
important ingredient of our treatment. We will, anyway, proceed to investigate
the application of the replica method, ready to extend it to replica symmetry
breaking problems. Also, we will find that often happens that the systems under
study undergo a transition from a replica symmetric to a replica symmetry broken
phase, so it’s interesting to be able to describe both.
We basically want to calculate the free energy, as in 2.57, by means of the Replica
Trick, as in 2.61 and 2.62. We will now generalize the treatment to the case where
the couplings have nonzero mean, J0:

P (Jij) =


N

2πJ2

 1
2

exp


−N(Jij − J0/N)2

2J2


. (2.104)

This distribution is assumed to be same for all pairs of spins, with [Jij ]av = J0/N
and [J2

ij ]av − [Jij ]
2
av = J2/N . The parameter J0 basically describes the tendency

to find in the system ferromagnetic bonds: for J0 ≫ J the model describes a
ferromagnet. Starting from the SK model one can write, by means of the Replica
Trick

[Zn]av = Tr{σ} exp

 1

N


ij

βJ2

4


αβ

σα
i σ

β
i σ

α
j σ

β
j + βJ0


α

σα
i σ

α
j

+ β h

iα

σα
i


(2.105)
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which, by successive manipulation, can be written as

[Zn]av = exp


nN(

1

2
βJ)2

  ∞

−∞


(αβ)

βJ
√
N√

2π
dyαβ


α


βJ0N

2π

 1
2

dxα ·

· exp

−1

2
N(βJ)2


(αβ)

(yαβ)2 − 1

2
NβJ0


α

(xα)2

 ·

· Tr{σ} exp

(βJ)2
iαβ

yαβσα
i σ

β
i + β


iα

(J0x
α + h)σα

i

 . (2.106)

As we have seen earlier we can decouple spins interactions, paying the price of
the inter-replica couplings in the single-spins problems. Now by means of

Tr{σ}e
[


i g(σ
α
i )] = e[N lnTr{σ}e

g(σα)], (2.107)

where g is an arbitrary function, we can write

[Zn]av = exp


nN(

1

2
βJ)2

  ∞

−∞


(αβ)

βJ
√
N√

2π
dyαβ


α


βJ0N

2π

2

dxα exp(−NG)

(2.108)
where G contains the inter replica terms, being

G =
1

2
(βJ)2


(αβ)

(yαβ)2 +
1

2
βJ0


α

(xα)2

− lnTr{σ} exp

1
2
(βJ)2


(αβ)

yαβσασβ + β

α

(J0x
α + h)σα

 , (2.109)

where the trace Tr{σ} extends over all states of a single replicated spin σα. The
integral in 2.108 can be calculated, in the limit N → ∞ using the steepest
descents:

dy exp [−NG(y)] =


dy exp


−NG(y0)−

1

2
NG′′(y0)(y − y0)

2 + . . .


(2.110)

where we can ignore the second term, provided that G′′(y0) > 0, otherwise the
resulting Gaussian integral diverges in the saddle point y0, where G′(y0) = 0.
The conditions

∂G

∂ yαβ
= 0

∂G

∂xα
= 0 (2.111)
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lead to

yαβ0 = ⟨σασβ⟩ ≡ Z̃−1 Tr{σ}


σασβ expHeff


xα0 = ⟨σα⟩ ≡ Z̃−1 Tr{σ} [σ

α expHeff]

Z̃ ≡ Tr{σ} expHeff (2.112)

with the effective, single spin Hamiltonian

Heff =
1

2
(βJ)2


(αβ)

yαβ0 σασβ + β

α

(J0x
α
0 + h)σα (2.113)

where, in deriving the latest two results, we have basically interchanged the limits
n → 0 and N → ∞: this could be very wrong, but we will see a posteriori that
is the right thing to do. Now we can express the free energy (where we write
f = F/N , and is hence a density) as

βf = lim
n→0

(1
2
βJ)2

1− 1

n


αβ

(yαβ0 )2

− βJ0
2n


α

(xα0 )
2 +

1

n
lnTr{σ} expHeff


(2.114)

with
∂f

∂ yαβ0
=

∂f

∂xα0
= 0 (all α ̸= β). (2.115)

Now, we can take the second derivative of the free energy with respect to h for
J0 = 0 and in the limit h → 0, which is the local susceptibility

χloc = β lim
n→0

1− 1

n


(αβ)

yαβ0

 (2.116)

which agrees with the previous definition of the χloc given in 2.75 for n → 0 if we
identify yαβ0 with qαβ, which we previously defined and

q = − lim
n→0

1

n


(αβ)

yαβ0 (2.117)

with the spin glass order parameter of 2.70. In the same fashion the quantity

M = lim
n→0

1

n


α

xα0 (2.118)

can be identified with the local magnetization.
Now, to solve the equations in the newly defined parameters, we use the so
called “replica symmetric ansatz”, which basically consists in considering the
parameters yαβ0 and xα0 as independent of the replica indices. So we write:

yαβ0 = qαβ = q (α ̸= β); xα0 = M. (2.119)
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Figure 2.3: Phase diagram of the Ising SK model with infinite range interactions, as a
function of T ,h and J0/J in units of J = Tf . Lines 1 and 5 are determined by the AT
instability, 2 by q → 0 and 3 by Ms → 0, q = 0 and 4 by q ̸= 0, Ms → 0. Line 4, is the
incorrect SK solution, line 4’ the correct one, given by Parisi theory.

We note that


(αβ) 1 = n(n− 1) and that

Tr{σ} exp


A

α

σα


≈ 1 + n ln (2cosh A) (n → 0) (2.120)

and we can express the free energy density as

−βf = (
1

2
βJ)2(1− q)2 − 1

2
βJ0M

2 +
1√
2π

 ∞

−∞
dze−

1
2
z2 ln cosh η(z) (2.121)

where
η(z) = β (J

√
qz + J0M + h) (2.122)

which can be interpreted as a random local field with mean J0+M and variance
J2q. Variation of the free energy 2.121 with respect to q and M leads to the SK
equation for the equilibrium values of these quantities:

M(T, h) =
1√
2π

 ∞

−∞
dz e−

1
2
z2tanh η(z)

q(T, h) =
1√
2π

 ∞

−∞
dz e−

1
2
z2tanh2 η(z). (2.123)

For these solutions we can identify various critical lines, which we will describe
in some detail, the more important one being the AT line (from [17]). Below the
AT instability lines (1 and 5 in figure 2.3) we find that the susceptibility χSG is
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negative: this is somewhat disturbing, being a quantity defined as the average
of the sum of the squares of integers. We will try to think about it, and try
to cure this obviously wrong result, in a moment. Below line 2 we have a Spin
Glass Phase, with the spontaneous magnetization, M ̸= 0, and the enhanced
susceptibility (see [15])

χ(T ) =
1− q

T − J0(1− q)
(2.124)

In the region above line 2, in zero external field, we have null q, so this suscepti-
bility reduces to the ordinary Curie-Weiss law, which diverges as T → J0 = Tc,
indicating the emergence of ferromagnetic behaviour. Thus one has, for J > J0
below the Curie temperature Tc (line 3) a ferromagnetic state with a finite M as
well as a finite q. The boundary between phases in which M = 0 and the one
in which M has a finite value is given by the vanishing denominator in 2.124 in
the Spin Glass Phase, using the SK equation above mentioned for q with M = 0.
Anywhere below lines 1, 2 and 5, SK equations are not valid (because of the
AT instability). An important point is the line 4: we follow in this Toulouse,
[16]. In MFT the only change that happens in the thermodynamic potential in
the presence of a non null J0 is an addition to the ferromagnetic condensation
energy:

A(T,M, J0) = A(T,M) +
1

2
J0M

2, (2.125)

where the first term in the sum refers to the case where J0 = 0. Now, we assume
that this is true below lines 2 and 5, for the whole J − T plane. For small M the
dependence of A(T,M) is, generally

A(T,M) = A(T,M = 0) +
1

2
χ−1M2 (2.126)

where χ is the zero field susceptibility, with J0 = 0. Combining the last two
equations we see that the coefficient for M goes to zero when J0 = χ−1, which
indicates a ferromagnetic instability. Application of this criterion using the value
of χ obtained from the SK equations gives line 4. We know that this is incorrect.
Application of the Parisi theory, which we will tackle in the next section, gives
instead the vertical continuous line indicated with number 4’.
In non zero field, lines 3 and 4 disappear. Apparently phases below lines 1 and 5
(respectively with q ̸= 0, M = 0 and q ̸= 0,M ̸= 0) are different.
If from the free energy we calculate the specific heat we see that there is a a cusp
at Tf and a behaviour proportional to T−2 above Tf : this is not observed. This
discrepancy can be noted and resolved by noting that the MFT fails to take in
account short range spin correlations, see [4] for more details on this.

All of the results we have obtained in this section (some wrong, as we noted)
were obtained from the replica-symmetric SK saddle point in 2.119. But we are
not sure of the validity of this treatment: this depends on whether the first correc-
tions to the results in an expansion in 1/N , which are obtained by expanding the
exponent G in the integral for [Zn]av to quadratic order in the deviations from the
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saddle point value and then carrying out the remaining Gaussian integrals, can
be ignored. Whether this theory based on the saddle point is sensible depends
on whether the integral converges, and this will be true only if the eigenvalues of
the Hessian matrix evaluated at the saddle point are all positive. The Hessian
matrix is

Aαβ , γδ ≡ ∂2G

∂ yαβ yγδ

= β2J2

δαβ , γδ − β2J2( ⟨σασβσγσδ⟩ − ⟨σασβ⟩⟨σγσβ⟩ )


,(2.127)

we ignore here the case where J0 ̸= 0. In the more general case, we should consider
also ∂G/∂xα∂xβ and ∂G/∂xα∂yβγ . Almeida and Thouless (in [17]) where able
to calculate the eigenvalues of the matrix, which fall into three distinct classes:
the first is related to the fully symmetric eigenvectors, which has value, in the
limit n → 0,

(βJ)−2λ1 = 1− (βJ)2(1− 4q − 3r) (2.128)

where

r =
1√
2π

 ∞

−∞
dz e−

1
2
z2tanh4 η(z). (2.129)

This mode consist in changes to the magnitude of the SK q without changing the
structure of the matrix in replica space. This is called the “longitudinal” mode:
eg. in an Heisenberg ferromagnet where the magnitude, but not the direction
of the magnetization, is changed. The second class of eigenvectors corresponds
to those which are symmetric under interchange of all but one index; these are
called “anomalous” and in the limit n → 0 the eigenvalue λ2 = λ1. The last
eigenvector are called “replicons” which are symmetric under interchange of all
but two indices, with eigenvalue

(βJ)−2λ3 = 1−(βJ)2(1−2q−r) = 1−(βJ)2
1√
2π

 ∞

−∞
dz e−

1
2
z2sech4 η(z) (2.130)

which is equivalent the condition of χSG not be negative. So this is like saying
that, while λ1 and λ2 are always positive, λ3 is negative (as we said above) below
the AT line: the SK saddle point is not a stable one in the T −h plane below the
AT instability.
Now we can imagine to have a stable solution (λ1,2,3 > 0, so we are in the case
of the SK solution above the AT line). This means that if we move a little in the
space of the qαβ, the functional G increases a little, as we expected, since we are
in the minimum of the free energy functional. The dimensionality of 1

2n(n− 1) is
negative in the limit n → 0: due to this, if we calculate the correction to the free
energy obtained by summing the fluctuations contributions from the Gaussian
integrals in all the principal directions in space is negative. In this sense, we
are sitting on a stable saddle point solution which is a maximum, rather than a
minimum. This makes easier to understand why the free energy obtained in the
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SK solution is higher than the extrapolation of the free energy of the paramag-
netic phase to T < Tf . It could be said that in replica formalism one wants to
maximize the free energy instead of minimizing it, but the relevant point of view
is that outlined above: we want all the eigenvalues of the free energy fluctuation
matrix to be positive. Another serious objection to the SK solution comes from
the low temperature properties: the free energy in 2.121 leads to an entropy which
is negative for T → 0, a result that is clearly unphysical. In detail it is found
that the entropy (which in a discrete system is proportional to the logarithm
of the number of configuration, hence non negative by definition) is at T = 0,
S(0) = −1/(2π) ≈ −0.17.

In the end, we have applied the replica formalism to the SK model under the
assumption of replica symmetry, and we found the result to be not satisfying,
since they are wrong or unphysical. To correct these problems, we will now turn
our attention to the possibility of breaking the replica symmetry and ergodicity:
in the next section we will meet the Parisi solution.

2.8 Replica symmetry breaking: the Parisi solution

Until now we have been dealing with theories that do not break Replica Sym-
metry: that is, all replicas are created (and treated) as equal. In doing so we
have obtained results which are, on one side, unphysical like a negative zero
temperature entropy, or wrong, as for the value of the free energy at the same
temperature. Obviously we should ask ourselves if something is wrong in this
“equality” assumption, that is, if we should (or should not) break the assump-
tion of the replica symmetric ansatz.
What we will do now, is exactly that: we will forget about the assumption we
made in 2.119, and not suppose that qαβ = q for all α ̸= β. To do this we will
proceed in steps: first we will see what is called One Step Replica Symmetry
Breaking and then the full theory. We will follow, in this, Parisi. Also, we have
already noted that there is a possible connection between ergodicity breaking and
replica symmetry breaking, so the “non working” of the replica symmetric theory
points us, again, in this direction. Last but not least, now we have enough tool
to describe, in a formal way, by using the replica approach, broken ergodicity.
Contrary to what we did in the preceding section, we will now restrict ourselves
to the case where J0 = 0 and in the proximity of Tf .
We try now to write a formulation of q ≡ qαβ which breaks replica symmetry: the
first “natural” way to do it is to divide n replicas into n/m groups of m replicas
each. As a first step, we will set qαβ equal q1 if replicas α and β belong to the
same group and equal to q0 if they do not. On the diagonal, qαα is taken to be
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identically zero. Hence we can write

qαβ = q1 if I(α/m) = I(β/m)

qαβ = q0 if I(α/m) ̸= I(β/m) (2.131)

where I(x) is an integer valued function: its value is the smallest integer which
is greater or equal to x. We could stop here, and obtain what is called One Step
replica symmetry breaking. But, if we keep going and repeat the same trick again
and again, the final form of the matrix q will be like this: introducing a set of
integers mi with i = 0, . . . , k + 1, such that m0 = 1 and mk+1 = 1 and mi/mi+1

is an integer (for i = 1, . . . , k + 1). Basically in this way we can divide the n
replicas into n/m1 groups of m1 replicas each, then each group of m1 replicas
is divided into m1/m2 groups of m2 replicas each and so on. Each off diagonal
element of the q matrix is then given by

q ≡ qαβ = qi if I(a/mi) ̸= I(b/mi)

and I(a/mi+1) = I(b/mi+1), i = 0, . . . , k (2.132)

the qi are a set of k + 1 real parameters. For k = 0 all replicas are equal: we
recover the replica symmetric theory. For k = 1 we have the “One Step” replica
symmetry breaking we were just discussing above. The matrix q for k = 2 is
sketched as 

0 q2 q1 q1 q0 q0 q0 q0
q2 0 q1 q1 q0 q0 q0 q0
q1 q1 0 q2 q0 q0 q0 q0
q1 q1 q2 0 q0 q0 q0 q0
q0 q0 q0 q0 0 q2 q1 q1
q0 q0 q0 q0 q2 0 q1 q1
q0 q0 q0 q0 q1 q1 0 q2
q0 q0 q0 q0 q1 q1 q2 0


(2.133)

with n = 8, m1 = 4, m2 = 2. Eventually we shall consider the limit for k → ∞,
which will lead to interesting results. If we now examine P (q) in the case of k = 2
we have that, in the limit n → 0 is

P (q) = mδ(q − q0) + (1−m) δ(q − q1), (2.134)

from which we see immediately that is non negative (being a probability) if

0 ≤ m ≤ 1. (2.135)

It is obvious from this that, if we exclude the cases m = 0 and m = 1 which
correspond to the replica-symmetric solution, m cannot be an integer and satisfy
2.135, but since we are taking the limit n → 0, and this is obtained by an analytic
continuation, nothing seems to forbid, in such a process, for m be non integer.
Now, increasing k we can write

P (q) =

k
i=0

(mi −mi+1) δ(q − qi) (2.136)
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and

lim
n→0

 1

n

n
a,b=1

q2

 = −
k

i=0

(mi+1 −mi)q
2
i . (2.137)

This second P (q) is positive definite only if

0 ≤ mi ≤ mi+1 ≤ 1 (2.138)

is satisfied. In the limit of k → ∞, we are basically repeating the procedure
of breaking the replicas in infinitely many blocks, the mi become continuous,
mi → x, 0 < x < 1: we are encoding the information contained originally in mi

and qi in a function q(x) in the unit interval.
It is now time to try to write the energy functional, as we did in the Replica
Symmetric case, and then try to minimize it (if n > 1) or maximize it (in the
case where 0 < n < 1, while n → 0). Following [9], [18], [19] and [20] we write
(in the vicinity of Tf )

F [q] = lim
n→0

1

n

τ Tr q2 + 1

3
Tr q3 + y


α,β

q4 +O(q4)

 (2.139)

where, out of the various possibile terms of fourth order, we have kept, according
to [7], the one responsible of breaking replica symmetry. By τ we have indicated
(T − Tc)/Tc. In the SK model y is negative, and replica symmetry is broken: we
will set y = −1/6. This can be written also as, keeping in mind that [21]

Tr q2 =

αβ

(qαβ)2 = n

k
i=0

(mi −mi+1)q
2
i = −n

 1

0
q2(x)dx

Tr q4 =

αβ

(qαβ)4 = n
k

i=0

(mi −mi+1)q
4
i = −n

 1

0
q4(x)dx

Tr q3 =

αβγ

qαβqβγqγα = n

 1

0
dx


xq3(x) + 3q(x)

 x

0
q2(x′)dx′


,(2.140)

as

F (q) =
1

2

 1

0
dx


τq2(x) +

1

6
q4(x)− 1

3
xq3(x)− q(x)

 x

0
q2(x′)dx′


. (2.141)

In all this we have considered the function q(k)(x) as

q(k)(x) = qi if mi < x < mi+1. (2.142)

We can write the free energy also as

F (qi,mi) =

N
i=0

(mi−mi+1)

τq2i + 1

6
q4i −

1

3
(2mi −mi+ 1)q3i + qi

N
j=i+1

(mj −mj+1)q
2
j


(2.143)
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Figure 2.4: Parisi solution for q(x) close to Tf . Dashed line is for small h ̸= 0, solid
lines for h = 0.

as a function of the parameters qi,mi.

If we now vary 2.141 with respect to q(x) we obtain

2|τ |q(x)− xq2(x)−
 x

0
q2(x′)dx′ − 2q(x)

 1

x
+
2

3
q3(x) = 0. (2.144)

Differentiating this equation gives:

|τ | − xq(x)−
 1

x
q(x′)dx′ + q2(x) = 0 or

dq

dx
= 0 (2.145)

and again:

q(x) =
1

2
x or

dq

dx
= 0. (2.146)

Assuming now that q(x) is a continuous function we find a solution by taking
the first solution for small x and a constant for x > 2q(1). This, with 2.145, lets
us solve for the plateau value q(1) = |τ | + O(|τ |2). From the point of view of
physics, q(1) being the largest overlap must be the single phase order parameter,
qEA.

It is interesting to consider this result, following [21], for a non zero external
field, h: one has

q(0) =
3

4


h2

J2

 2
3

. (2.147)

As the field increases the value of q(0) increases, until in reaches the second
plateau for q(1), and hence the replica symmetry breaking is removed, and one
obtains, again, the SK replica symmetric solution. This effect is recognizable
with the passage over the AT instability line that we mentioned earlier.
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We were firstly moved to formulate a replica symmetry breaking theory from
the fact that our replica symmetric theory did not work: the eigenvalues of the
Hessian matrix were not all positive (one of them, the one related to χSG, would
turn negative below the AT line) and from the fact that the entropy was negative
at T = 0, we will now check if these maladies have been cured by this new
theory. The diagonalization of the Hessian matrix at the Parisi saddle point
has been carried out by De Dominicis and Kondor: they found two families of
eigenvectors (which in some sense resemble the ones we have already met before)
each with now a spectra of eigenvalues. Some of these spectra have support only
in the positive real axis (which can be, even if roughly, associated with he λ1 we
met before) while other spectra extend to zero. There are, also, some isolated
zero eigenvalues. The important thing is: we have now no negative eigenvalues:
the instability below the AT line has been cured. Having some zero eigenvalues
tells us that the system is marginally stable, like a system at a critical point:
both intervalley contributions and locally stable phases contribute to this result.
The problem of negative entropy is also cured by this solution: for T < 1, from
[9] we find that the entropy is −0.01 for k = 1, a significant improvement over
k = 0. It is expected to find S(0) = 0 only for k = ∞.
We now turn our attention to P (q), hoping to gain some insight also about broken
ergodicity. With the Parisi parametrization of qαβ we have

P (q) = lim
n→0

1

n(n− 1)


α ̸=β

δ(q − qαβ) =

 1

0
δ(q − q(x))dx =

dx(q)

dq
(2.148)

where x(q) is the inverse function of q(x). To be able to perform the inversion,
q(x) must be a non decreasing function. Moreover, we can write as the sum of
two deltas, one for q(1) ≡ qM (which is the “second” plateau) and for q(0) ≡ qm
(whose value depends on the external field)

P (q) = xmδ(q − qm) + xMδ(q − qM ) + P̃ (q) (2.149)

where P̃ (q) is a smooth function with support in the interval

q(0) ≡ qm ≤ q ≤ q(1) ≡ q(1). (2.150)

In other words, if we choose two states, α and β at random, there is a probability
xM = x(qM ) that these two states are the same one, in which case qαβ = qM , a
probability xm that they have the minimum allowed overlap qm and a probability,
finally, 1− xm − xM to be in an intermediate situation. In [12] is shown a direct
measure of P (q): what is interesting is to note, together with the presence of
a continuous part is the presence of the spike (the delta function), which tells
us that only an handful of the states dominate the thermodynamic sum. From
[22] and [23] we gain insight on how the barriers between the different phases
scale with the size of the system, N : they find that the logarithm of the longest
relaxation time τ (which is proportional to the largest energy barrier) in the
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system is proportional to N
1
4 : there is also a so called ergodic time, which is the

time in which the magnetization typically changes in sign, which diverges also for
ferromagnets, usually like N , and in SK is found to be diverging like N

1
2 . Hence

we can conclude that barriers between phases are, in the thermodynamic limit,
infinite.

2.9 The Potts Glass

Until now we have been focusing only on spins glasses that possess total inversion
symmetry. It is interesting, not only for the aim of this thesis, to investigate
whether the proprieties we have seen until now are a special feature of this kind
of models or is something that is shared between different models with different
symmetries (or lack of thereof). Also, there are glasses, like Quadrupolar Glasses,
which cannot be described by models such as EA or SK, exactly because they
do not possess the kind of symmetry these models have: in some sense they are
more general. One class of such models is the Potts Glass, which is basically the
disordered version of the Potts model we already met. We will now see that, as
was the case between Ising and Potts models, we find a richer behaviour in the
Potts Glass than in EA or SK models.
Being Jij random variables as in the EA or SK models, we write, with slight
differences from the Potts model, the Hamiltonian as

H = −1

2


ij

Jij(p δ(σi, σj)− 1). (2.151)

As before, p = 2 is related the Ising case. We can measure the ferromagnetic
order by defining a magnetization, for a particular state r,

mr = ⟨δ(σi, r)⟩ − 1

p
(2.152)

where 1/p is basically the correlation we would have if the configurations were
completely random. In a Potts Glass we have randomly frozen mr characterized
by a spin glass order parameter

qr,r′ =


(⟨δ(σi, r)−

1

p
)(δ(σi, r

′)− 1

p
)


av

. (2.153)

This quantity has the symmetry qr,r′ = q(δ(r, r′) − 1) and it can be completely
characterized by a single number, q. If we move now to Replica Theory this
number becomes a matrix

qαβ = ⟨δ(σα, σβ)⟩ − 1

p
(2.154)

where, just to be precise, we need as before to take the thermal average over an
effective Hamiltonian.
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We can now proceed and write the expansion as we did for the SK model: it’s
worth noting that now we will need to write a term for


αβ(q

αβ)3 that was
missing before, since we do not have anymore the inversion symmetry:

F [q] = lim
n→0

p− 1

2n

τTr q2 − 1

3
Tr q3 − p− 2

6


αβ

(qαβ)3 +
y(p)

6


αβ

(qαβ)4

 .

(2.155)
We know from the SK model that y = −1 for p = 2, in the same case the term

αβ(q
αβ)3 disappears, due to symmetry considerations. Gross, Kanter and Som-

polinski, in [24], found two different regimes, depending on the value of p, since
y(p) changes sign, from negative to positive. This change of sign is responsible
for the lack of a solution which has the Parisi function q(x) continuous. In SK,
the y-term was responsible for replica symmetry breaking, so its presence here
makes us think that we will have replica symmetry breaking too. In fact, if one
looks at the replica symmetric solution for the Potts Glass finds it more unstable
than it was in SK.
In [24] the change of sign of y(p) is found to happen for p∗ ≃ 2.8.
For p < p∗ one finds a solution with features similar to those of the SK solution:
figure 2.5 in the first panel on the left, (a), shows q and P (q) in this case. It
resembles the one of the SK solution in a field, only that the first part is at q = 0,
instead of a minimum qmin. The corresponding P (q) shows two deltas, one at
zero that signal the existence of many uncorrelated replicas. As in the SK solu-
tion we have a continuous part, between zero and the plateau. One step replica
symmetry breaking is sufficient to recover a correct mean field solution.
As y changes sign (for p > p∗) the situation changes: no Parisi-like solution with
a continuous q(x) is possible anymore. What works here is a solution similar to
the one found in the Random Energy Model (REM) [25] [26], also with one step
replica symmetry breaking: q(x) has a discontinuous jump at x̃ ≃ (p− 2)/2 and
a plateau value proportional to (T − Tf )/(4− p) for T near Tf , also sketched in
figure 2.5 (b). All eigenvalues are positive about the saddle point [27] [28].
As p > 4 the jump point x̃(T → T−

f ) → 1. The solution outlined above ceases
to exists (this happens also whenever the second cubic term is larger than the
first). In this case one must consider a discontinuous jump of q as a function
of temperature. Since q is no longer a small parameter, equation 2.155 is no
longer valid, but we still can consider the limit p = 4 + ϵ, ϵ → 0: a stable glass
phase is found [24] [27] with broken replica symmetry, similar to the one found
for p < 4 (eg. one step replica symmetry breaking). This glass phase appears
below Tf − 1 ∝ ϵ, with q(Tf ) ∝ ϵ and x̃(T → Tf ) → 1. Fluctuations around both
this saddle point and the paramagnetic phase are all finite near Tf . The crucial
point of this transition is that x̃(T → Tf ) → 1 and it holds order by order in
expansion of powers of ϵ and in the limit of large p.
Solving for p → ∞ the full mean-field theory of the glass phase we find a discon-
tinuous transition from the paramagnetic phase at the temperature at which its
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entropy vanishes: Tf = 1/2J(p/ ln p)1/2. Below Tc a Potts Glass phase appears
with order parameter q(T ) = 1, x̃(T ) = T/Tf . The free energy is constant and
equal to the ground state energy. This phase transition is identical to the one
found in the already cited Random Energy Model.
In the large-p limit the Potts Glass phase exists down to T = 0, however, as soon
as p > 2, this phase has a negative entropy at T = 0. There is, in fact, a second
phase transition at a temperature T2 < Tf to inducing replica symmetry breaking
in the region x̃ < x < 1. This gives rise to a second glass phase, commonly called
PG2, in which q(x) is continuous for some range of x. This phase is marginal
and has entropy zero at T = 0. This phase transition can be studied with the
expansion at the fifth order [24] in p− p∗ → 0: one sees the instability explicitly
at T2 and the rise of the new phase. This second transition is always continuous,
as a function of T , even for p > 4. According to [31], the fact that the entropy
becomes negative is related to the fact that the one step replica symmetry break-
ing scheme does not suffices anymore and it is necessary to move to continuous
breaking. This situation is sketched in figure 2.5, (c).
To resume, in the Potts Glass (in mean field theory):

• we have a stable glass phase (PG) for all values of p

• for p ≥ 3 the order function q(x) is discontinuous

• for p > 2 the glass phase PG becomes unstable below T2 < Tf and a new
phase is formed, PG2. Here each of the pure states in the aforementioned
phase splits in a hierarchical manifold of infinite partially correlated states.
The order function is then a step plus a continuous part (see figure

• in p = 3 and p = 4 both phase transitions (PM → PG and PG → PG2) are
continuous

• for p > 4 the transition PM → PG is discontinuous

• the discontinuous transition for p > 4 has unusual properties: in particular
there is no latent heat at the transition.

A similar situation is also reported by Gardner in [30] in the case of the p-spin spin
glass that is basically a generalization of the SK spin glass to include interactions
between every set of p spins: there is then a transition with a jump of the order
parameter (but without latent heat), and, at a lower temperature there is another
transition (the PG phase becomes unstable) where the order parameter changes
smoothly.
In the Potts Glass, below Tf the dependence of the singular part of the free

energy on T and external static sources obeys ordinary scaling laws with the
critical exponents [24]

β = 1, γ = 0, α = 0, δ = 1. (2.156)
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Figure 2.5: Schematic plot of q(x) and P (q): a. p < p∗, q roughly looks like in the SK
model in a field, but with q0 = 0 instead of q0 = qmin; b. p > p∗, T2 < T < Tf : q is
discontinuous, x′ ≡ x̃ = (p−2)/2, the plateau’s height is proportional to (T−Tf )/(4−p);
c. p > p∗, T < T2. Lower is P (q): a. p < p∗, the spike at q = 0 signals the presence of
many uncorrelated replicas; b. p > p∗,T2 < T < Tf ; c. p > p∗, T < T2.

If this holds also for short-range systems in some range of dimensionality d,
then the hyperscaling law νd = 2 − α suggests that the thermal exponent that
determines the rounding at the transition due to the finiteness of the system size
obeys 1/ν = d/2, which should be compared with 1/ν = d that holds for ordinary
first-order transitions.
It is worth noting, also, that in [24], [29] and [31] is reported that in the Potts
Glass, for sufficiently low temperatures, ferromagnetic order is preferred to the
spin glass phase. The temperature below which ferromagnetic order appears,
from [31] is

1

TFM


J0 +

p− 2

2TFM


= 1. (2.157)

In the case J0 = 0, the ferromagnetic transition appears below TFM = 1 for p < 4
and above that temperature for p > 4.
In [29], the order parameter q is written as

qαβr s = qαβL IrλIsλ/(p− 1) + qαβT [IrλIsλ/(p− 1)] (2.158)

and the magnetization
mα

r = mαIrλ, (2.159)

where it has been used the invariant tensor

Ir s = pδ(r,s)− 1. (2.160)

The order parameters qαβL and qαβT , which represent respectively longitudinal and
transverse spin glass ordering, are related directly to the structure of the local
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susceptibility

χl
r s = χl

LIrλIsλ/(p− 1) + χl
T (Ir s − IrλIsλ/(p− 1)) . (2.161)

In this reference different phases are identified: paramagnetic (qL, qT ,m = 0),
isotropic spin glass (qL = qT = q ̸= 0,m = 0), collinear ferromagnetic (m, qL ̸=
0, qT = 0) and mixed (m, qL, qT ̸= 0, qL ̸= qT ), this last phase being a combination
of a collinear ferromagnet and a transverse spin glass corresponding to a canted
ferromagnet in simplex space. In the same reference, phase transitions between
the phases just described are analyzed.
See [24], [29], [31] and [32] for a broader discussion on the topic.
Another interesting feature pointed out in [28] is the presence, for p > 4, of the
another transition for a temperature TA > TF signaled by the slowing down of
the dynamical correlations as T → T+

A . Below TA the system gets stuck in a
metastable state. In the mean field theory barriers separating different phases
become infinite and a transition from ergodic to non-ergodic behaviour takes
place.



Chapter 3

Monte Carlo Methods

Once we move our quest for answers from infinite systems to finite sizes and from
mean field to short range interactions, our “toolbox” becomes less furnished, and
we have to accept that we cannot succeed with theory only anymore. For a very
simple Ising ferromagnet, for example, we have results for a two dimensional short
range system, but as we begin investigating the three dimensional one, we are left
without a solution. We have to use a different set of tools, the most prominent
of which is the Monte Carlo Method.
While the purpose of this chapter is just to introduce a few elements which will
be used in the subsequent discussion, it necessarily just skims the surface: for a
thorough discussion of Monte Carlo methods, see [33] or [34].

3.1 A first glance

If we want to simulate a system, as the Ising or the Potts model we can sum
up the situation like this: we have a function, the Hamiltonian, which, given a
configuration of the spins, gives us the energy of the system (in some appropriate
units). We also know, from Statistical Physics, that a given configuration {σ}
will be realized, at a given temperature, with a probability that is proportional
to exp[−βE({σ})]. This is all we basically need to do Monte Carlo, although the
picture, as often happens in Physics, can be complicated some more, as we shall
see. Now, let’s suppose that, at a given time t0, our system is in a configuration
µ. If we define R(µ → ν) the transition rate from state µ to state ν there is a
probability R(µ → ν) dt to find the system in the configuration ν after a time dt.
Now, our system will have many possible configurations, and we can define a rate
of change to any of these configuration: to continue the example, if we start from
µ and wait for a sufficiently long time, the system could be in one of the (possibly
many) configurations available. If we define a weight, wµ, for the probability of
the system to be in configuration µ at a time t, we can write a master equation

47
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of sorts for the evolution of wµ(t):

dwµ(t)

dt
=

ν

[wν(t)R(ν → µ)− wµ(t)R(µ → ν)] , (3.1)

with the constraint 
µ

wµ(t) = 1, for all t (3.2)

since the system is always in some configuration. In 3.1 the first term on the right
hand side is the probability of the system to end up in configuration µ while being
in a state ν and the second term is the probability to move away to any state
ν from µ. The solution of 3.1 shines light on how the weights wµ change over
time. Now, let’s say that we want to calculate some quantity A which depends
on the configuration we are in, for example µ, so that we can write Aµ. How to
we calculate the expectation of A at a time t for the system? We can write it
down as:

⟨A⟩ =

µ

Aµ wµ(t). (3.3)

We can look at this equation in different way: one way would be to imagine,
having many realization of the system under study, each not interacting with the
other and with its own reservoir that keeps the temperature constant: the average
then would be done “reading” the value of A for each copy. Since each value Aµ

will be presented with a probability wµ, then we are executing a “correct” average.
Another way, which is undoubtedly more convenient in terms of realization, is to
read the value ofA in a sufficiently long interval of time and then averaging: again,
we would have the correct weights. In this second case we are integrating over
time the measure. This would work as long as the system visits each state µ with
the correct weight in the given time: one easy way out would be to increase the
observation time. Of course, something could go wrong: for example, the rate of
change of state could be very slow (and this could be cured by simply prolonging
the time in which we do the measures), or it could be that the system changes a
few configurations very slowly and passes through the other very quickly, so that
we have more probability of our measures be taken in the “slow part”. Last but
not least, they weights could change in the time scale of our measures, and we
would be measuring something that is itself changing over time. We will see that
for equilibrium system this is not the case: in fact once we reach equilibrium the
two term in the right hand side of 3.1 cancel out, and weights become constant
over time. The do not take just any value: they take the value of the Boltzmann
probability for a given configuration

pµ =
1

Z
e−βEµ (3.4)
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in the limit in which the weights, if we wait for a sufficient long time, become
constant. We can then rewrite the measure of a quantity A as

⟨A⟩ =

µ

Aµwµ =
1

Z


µ

Aµe
−βEµ . (3.5)

The important point here to note is that we know the probabilities for each
configuration, now, a priori, once we know how to calculate the energy for a
given configuration, which we know how to do if we have the Hamiltonian of the
system.

3.2 Measures and Fluctuations

Armed with what we just saw we can now write, for example for the internal
energy:

U =
1

Z


µ

Eµe
−βEµ (3.6)

which of course is also

U = − 1

Z

∂Z

∂β
= −∂ logZ

∂β
. (3.7)

Albeit quantities like U are definitely very interesting, we are deeply curious also
about fluctuations such as (we write U = ⟨E⟩)

(E − ⟨E⟩)2

= ⟨E2⟩ − ⟨E⟩2. (3.8)

We can calculate ⟨E2⟩ as

⟨E2⟩ = 1

Z


µ

E2
µe

−βEµ =
1

Z

∂2Z

∂β2
(3.9)

and hence we find

⟨E2⟩ − ⟨E⟩2 = 1

Z

∂2Z

∂β2
−

1

Z

∂Z

∂β


=

∂2 logZ

∂β2
, (3.10)

and since we know that

C = −kβ2∂
2 logZ

∂β2
(3.11)

we can finally write

⟨E2⟩ − ⟨E⟩2 = C

kβ2
(3.12)

which is like saying that the variance of the energy that we measure using Monte
Carlo techniques is proportional to the specific heat of the system. Now, this has
an obvious practical application, since C is a very interesting quantity, but also
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tells us a few things about what to expect. Since C is an extensive quantity, the
RMS energy fluctuations scale as

√
V where V is the size of the system. Now, the

internal energy scales like V , so that the relative size of the fluctuations compared
to the internal energy decreases as 1/

√
V : if V → ∞, in the thermodynamic limit,

relative fluctuations go to zero. With Monte Carlo simulations we cannot, how-
ever, simulate infinite systems, but we will see how to learn something from this
behaviour. To generalize a little this discussion we will say that every parameter
of the system, X, we can consider a conjugate variable, Y . For example we could
consider the magnetization, m and the external field, h. Now:

⟨X⟩ = 1

β

∂ logZ

∂Y
(3.13)

and so we can write
1

β

∂⟨X⟩
∂Y

= ⟨X2⟩ − ⟨X⟩2 (3.14)

which is the mean square fluctuation in the variable X. Now we can call

χ =
∂⟨X⟩
∂Y

(3.15)

the susceptibility of X to Y , which is the response of X to a change in Y . Hence
we can write:

⟨X2⟩ − ⟨X⟩2 = 1

β
χ, (3.16)

the fluctuations in a variable are proportional to the susceptibility of that variable
to its conjugate field, which is a fact know as linear response theorem. We can
extend this reasoning to a parameter that is defined on a particular site of the
lattice we are studying and ask ourselves what kind of effect a change for it has
in the conjugate variable at other positions.
In the first chapter we already mentioned susceptibilities: now we also know, in
a simulation, how to calculate them.

3.3 Importance Sampling

We have found a way in which we can calculate the value of an observable A
in Monte Carlo simulation. Obviously, we are not going to go through all the
possible configurations, or states, and the just calculate the correct average with
correct weights. There is a simple reason for that: for a very simple Ising ferro-
magnet defined on a cubic lattice of linear size L, there are 2L

3
possible configu-

rations. If L is big enough to do something useful with it (in terms of Physics)
that number is definitely too large to be handled. So a smart idea would be to
take only configurations which have an higher weight: in some sense the real sys-
tem will do the same, since in equilibrium it will present itself in a configuration
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accordingly with its Boltzmann probability. So our strategy will be to measure
A with probability pµ = 1

Z e
−βEµ , and hence our estimator for ⟨A⟩ will be:

AM =
1

M

M
i=0

Qµi (3.17)

3.4 Markov processes

It’s clear from previous section that the trickiest part of our Monte Carlo simula-
tion will be to generate configurations which agree with the correct probability.
To do this most Monte Carlo schemes use a Markov process: for our purposes
this is nothing more than a way, starting from a configuration µ to obtain a new
configuration ν, in some random fashion. Which is like saying that, if we are
in a state µ this gives us the probability to move to a state ν, P (µ → ν). In a
true Markov process P (µ → ν) has to satisfy two requirements: the probabilities
should not change in time and they should depend only on the two states µ and
ν, not on other states the system has passed through. This means that given a
state the probability to end in any other state is the same all the time we repeat
this change. Also, probabilities should satisfy


µ

P (µ → ν) = 1 (3.18)

which says that the Markov process generates always some state when fed with
another one, and also that the probability to stay in the same state, P (µ →
µ) need not to be zero. In our Monte Carlo we will use the Markov process
to generate a Markov chain of states. Our Markov Chain, starting from some
arbitrary state, will lead us to a succession of states which appear with probability
given by the Boltzmann distribution.
But aside from these requirements we have asked for on the Markov process, we
need to impose a few more to achieve this.

3.4.1 Ergodicity

In the last chapter we have been spending a lot of time on the concept of ergo-
dicity. We see now that also our Monte Carlo simulation must agree with this:
since every state in which our system can be found has some non-zero probability
attached then we must be able in our simulation, to move from any given state to
any other given state, no matter how long this could require. If some configuration
in the Markov chain has a null probability then, no matter how hard we try, we
will not be able to reach it, and so our simulation will not be ergodic.
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3.4.2 Detailed Balance

Another condition we wish to impose to our Monte Carlo simulation is that it
satisfies the Balance equation:

ν

pµP (µ → ν) =

ν

pνP (ν → µ) (3.19)

which is like saying that the rate at which we enter state µ is equal to the rate at
which we leave it: the system is in equilibrium. By using 3.18 we can write this
as

pµ =

ν

pνP (ν → µ). (3.20)

For any set of transition probabilities satisfying this equation the probability
distribution pµ will be an equilibrium of the dynamics of the Markov process.
However, simply satisfying this equation will not guarantee that the probability
distribution will tend to pµ from any state of the system if we run the process
long enough. To avoid, for example, that the system gets trapped in a closed
loop of configurations, which would violate ergodicity, we have to ask for

pµP (µ → ν) = pνP (ν → µ), (3.21)

known as Detailed Balance, to be satisfied. This last equation basically tells us
that the probability to be in state µ and then be moved to state ν equals the
reverse probability to be in state ν and be moved to state µ. This avoids limit
cycles.
Now, given we are respecting 3.21, we are free to choose the transition proba-
bilities as we please, but given that we want the pµ to tend to the Boltzmann
distribution, we can take

P (µ → ν)

P (ν → µ)
=

pν
pµ

= e−β(Eν−Eµ). (3.22)

This equation together with 3.18 are the constraints we impose to our transition
probabilities: if we respect these, and ergodicity, then the equilibrium distribution
of states in the Markov chain will be the Boltzmann distribution1.

3.5 Acceptance Ratios

The Markov chain let us free to choose the transition probabilities as we want. A
step further to actually define the probabilities, as we will see in the Metropolis
algorithm, is to break them in two parts as:

P (µ → ν) = g(µ → ν)A(µ → ν) (3.23)

1For a demonstration see the note by prof. A.P. Young, and references therein, on “Monte
Carlo Simulations in Statistical Physics” available on his homepage.
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in which the transition probability is divided in two step: first we propose, start-
ing from configuration µ, an arrival configuration, ν with probability g(µ → ν)
and then we accept the change with probability A(µ → ν), which we call the
acceptance ratio, while g(µ → ν) is usually called selection probability. The ac-
ceptance ratios says that if we start in a state µ and our algorithm generates a
new state ν from it, we should accept the state and change our system to the
new state with probability A(µ → ν). The rest of the time we will stay in state
µ. We are free to choose acceptance ratios to be in the interval between zero
and one: obviously if we set it to zero, then our system will stay forever in the
original state µ. This gives use absolute freedom on how to choose the selection
probability, since the constraint 3.22 only fixes the ratio

P (µ → ν)

P (ν → µ)
=

g(µ → ν)

g(ν → µ)

A(µ → ν)

A(ν → µ)
. (3.24)

The ratio of the acceptance probabilities, hence, can take any value between zero
and infinity, which means that both g(µ → ν) and g(ν → µ) can take any values
we like.
While this could sound “easily” done, there is a catch: we have design out Monte
Carlo simulation algorithm in such a way that it doesn’t get stuck. If the accep-
tance ratios are too low, then the algorithm will refuse to move in to the new
state most of the time and will not go anywhere, wasting a lot (our) of time.

3.6 The Metropolis algorithm

Armed with all the tools we have seen until now we turn now our attention to the
Metropolis algorithm, developed in 1953 by Metropolis and co-workers. This is
not the only algorithm available (by far) but we will use it to clarify the concept,
and refer to [33] and [34] for an extensive treatment. The idea is to propose
a change in the configuration of the system by flipping a single spin (chosen
at random), changing its state. In an Ising model that would mean invert its
sign, in a Potts model, select a new state between the p available. This is the
new configuration: having N = Ld spins this means that we have N non zero
selection probabilities and each takes the value

g(µ → ν) =
1

N
. (3.25)

With these selection probabilities 3.22 becomes

P (µ → ν)

P (ν → µ)
=

g(µ → ν)

g(ν → µ)

A(µ → ν)

A(ν → µ)
=

A(µ → ν)

A(ν → µ)
= e−β(Eν−Eµ). (3.26)

So we have now to choose the acceptance ratios: even if we still have some
maneuver space, we must be careful, otherwise our algorithm will end up being
highly inefficient. A clever trick is to set one of the two acceptance ratio in their
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ratio to 1 (ideally the largest) and then adjust the other to satisfy the constraints.
In our case the optimus would be

A(µ → ν) =


e−β(Eν−Eµ), if Eν − Eµ > 0

1, otherwise.
(3.27)

We choose one “direction” (the one that makes the energy go downhill) and set
its acceptance ratio to one and then fix the other. This tells us also that the
Metropolis algorithm will accept increases in energy of the system with a proba-
bility proportional to the length of jump uphill (in energy): the longer the jump,
the lower the probability.
It is worth mentioning that we can also choose not to select a spin at random,
but instead update the spin in a sequential order, starting from one corner of the
d-dimensional hypercube and ending at the opposite one. In this case, even if
the single spin updates probability respect detailed balance, their product (the
update probability of the whole lattice) does not, even if the probabilities are
still stationary: this is because the probability of the reverse transition is related
to the probability of the forward transition in the “correct way” only if the spins
are updated in reverse order2.

Another algorithm which is commonly used is Heat Bath. In this case we se-
lect the new value directly with a probability proportional the Boltzmann factor,
regardless to the actual state of the spin we are updating. The probability to
assign a given spin σi a value ±1 (in a EA model) is:

pHB(σi = 1) =
e−βE+

e−βE+e−βE−

pHB(σi = −1) = 1− pHB(σi = 1). (3.28)

The quantities E± are the local energies in the case the spin σi is 1 or −1,
respectively: this can be calculated as the sum of the products of the spins with
the respective couplings. It is possible to generalize the HB algorithm for the
Potts spins as:

pn =
e−βEnp
l=1 e

−βel
. (3.29)

Since the function returning the energy is simpler, in general the HB algorithm
is preferred where there is need to keep the computational load low. Also, in the
case of the Potts models the HB algorithm is sometime preferred, especially in the
case of high p. We can see why considering a two dimensional Potts model (eg.
ferromagnetic) in a case with p high. As long as we are in the high temperature
phase the acceptance ratio is close to one, but as we go to lower temperatures it
is not the case anymore. Consider a case in which all the four neighbours of a
spin have different values. There are four cases in which the spin is aligned with

2See, again, prof. Young’s note on this.
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Figure 3.1: Energy as a function of the configuration space {s} ≡ {σ}, the energy
landscape is rugged and complex. The configuration (blue point) is trapped in a local
minimum: if the temperature is low, then it cannot exit the minimum (red arrows), while
if temperature is higher (due to Parallel Tempering) it can exit the local minimum (green
arrows) and continue the quest for the global minimum.

one of its neighbours which have a lower energy (and hence an higher Boltzmann
weight) and p− 4 equivalent cases in which the energy is higher: all these states
in which the spin passes through in its MC evolution will have the same energy,
hence the Metropolis acceptance ratio will be one. On average then, it will take
p/4 steps to find one of the four desirable states. As p increases, this time will
increase and it will take longer and longer for the to find the low-energy states,
even if the acceptance ratios of the Metropolis algorithm is one, only because
there are many states to go through. The HB algorithm may use less time in
finding the appropriate state, by partitioning the interval [0, 1] of the probability
according to the Boltzmann weight: the more favorable state (or configuration)
will be more probable.

3.7 Parallel Tempering

While the Metropolis algorithm is a very clever way to simulate spin systems
(and not only these), we face a difficulty: once we start the simulation, if the
energy landscape is rugged, the system could get trapped inside a local minimum
of the energy quite easily. In fact, since the Metropolis algorithm favours the
“downhill” direction of the energy, if the well in which the system has fell is deep
enough, we will not be able, easily, to get it out. Parallel Tempering algorithm
[37] tries to solve this problem by simulating, in parallel, Nβ exact copies of the
system at different temperatures usually on both sides of the transition. Once
every M MC sweeps an exchange between two copies at different temperatures
is proposed and accepted with probability

p ∝ e∆E∆β, (3.30)
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Figure 3.2: Acceptance ratio for a short simulation, performed only for illustrational
purposes, of the Potts Glass p = 5, L = 6. The circles on the bottom show the tempera-
ture’s positions. The β axis is logarithmic.

which has the same form (except for ∆β) of the Metropolis acceptance probabil-
ity, and respects the detailed balance condition. Choosing the temperatures in
a skillful way allows copies at low temperatures, with a slow dynamic, to reach
higher temperatures and decorrelate. Once brought back to low temperatures
such copies will likely end in a different valley of the complex energy landscape,
which was our original aim. As a bonus, simulating in parallel copies of the sys-
tem lets us, in just one run, to have all the data points we need. If we try to swap
temperatures which are far away we might end up proposing a lot of exchanges
and accepting a very small part of them, so usually one proposes exchanges only
between adjacent temperatures. The details, such as in which order we select
temperatures to swap or in which direction we want to exchange copies, are not
fixed, and one can experiment: questions like how often do we do a Parallel
Tempering step or how we select temperatures require a trial-and-error approach
for the system under study. There are, though, some results that we can use to
understand better what is going on. Between these it is worth nothing the Incom-
plete Beta Law [38], which can help us understanding what to expect in terms
of acceptance ratio of the swaps in some cases. There is an extensive literature
which aim is to improve Parallel Tempering: increasing the acceptance ratio is
not the whole point, we also want the copies to be able to move from one end to
the other of the spectra of temperatures: various approaches are being tried, see
for example [39], [40], [41], [42], [43], [44] and [45].
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(a) (b)

Figure 3.3: (a) Topology of a Janus board: each SP communicates with its
nearest neighbours in the plane of the board. (b) Janus board in a Janus box,
commonly called “the coffin”.

3.8 The Janus computer

Janus is a dedicated computer for the simulation of discrete spin systems such as
Ising and Potts models. It makes possible, as we will see in the next chapters,
to simulate these for an unprecedented Monte Carlo time. In the first run of the
Janus computer we were able to simulate an EA model for a “real time” of a
tenth of a second, several orders of magnitude more than any previous work [46].
It is the product of a collaboration between BiFi (Institute for Biocomputation
and Physics of Complex Systems) of the University of Zaragoza, universities of
Madrid, Badajoz, Rome and Ferrara together with an industrial partner, Eu-
rotech.
Janus is designed as an heterogeneous system comprising conventional proces-
sor and FPGAs and to be modular: each board contains 17 FPGA-based mini-
boards called nodes, of which 16 are used for computation, called Scientific Proces-
sors (SPs), and one for input/output operations, called Input/Output Processor
(IOP). Each board is driven by a conventional computer, called the Janus Host.
The first system installed is composed of 16 boards and 8 Janus hosts, for a total
of 256 SPs, 32 conventional computer’s core, 32 GB of RAM and several TB of
disk space.
In a single board each SP is linked to its nearest-neighbours SPs with periodic
boundary condition, in such a way that the SPs form a 2-dimensional mesh
toroidal network: this allows for communication between SPs, that in turn allows
parallelization at the SPs level. Each SP is also connected with a point-to-point
connection to the IOP for initialization purposes and for input/output opera-
tions, for example in communicating with the Janus host: the latter is connected
to the boards via a Gigabit Ethernet connection, using a set of specifically crafted
low-level C libraries accessing the raw Gigabit Ethernet level.
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Programming the Janus machine can be accomplished by either an interactive
Perl shell, mostly used for debugging and testing purposes, or physics-oriented
C libraries, which make relatively easy to access hardware resources without the
necessity of extensive hardware knowledge.
SPs are programmed using VHDL code which is in turn compiled to obtain a
firmware to load onto the FPGAs, and as of writing there are several firmwares
available: spin glasses mostly , such as EA and Potts, for different linear sizes
and different p, as well as an implementation of the Graph Coloring problem
using an antiferromagnetic Potts model and Simulated Annealing. For each of
these models both Metropolis and Heat Bath update algorithms are available. In
these firmwares all the available parallelisms are exploited: at the sample level,
simulating different realizations of the disorder on different SPs and at replica
and spin level, using an efficient checkerboard scheme which updates the whites
of one replica at the same time of the black of the other replica. This allows for
the update of as many as 1024 spin sites per clock cycle.
Parallel Tempering can be implemented in Janus in two ways: one can have all
the Nβ copies of the system in the same SP. This is feasible as long as the system
is not too big: for a L ≤ 32 and a reasonable number of temperatures, there are
no problems of space: we can trade lattice size for number of copies, given that
the space inside the FPGA is limited. Also, we need two replicas (in some cases
four) of the same system at the same temperature, to calculate the overlap, so
we need a total of 2Nβ copies of the system in the same SP. In another way we
could, for bigger systems, simulate more replicas of the same system on one SP
and then implement Parallel Tempering between different SPs, using the IOP to
decide about temperature swaps.
The Janus project was started in 2004, the first prototypes were available around
the summer of 2007, and the first system built later the same year: in March
2008 the first run (a 25 days simulation with just one system crash due to severe
weather condition that cause a power failure) with results submitted to the Gor-
don Bell Prize, and producing already relevant physics. In May 2008 the system
was installed in Zaragoza and it has running several physics simulations codes
ever since.



Chapter 4

Monte Carlo Simulations and
Observables

In this chapter we will define and discuss the observables used in the Monte
Carlo simulations. We will also detail the simulations themselves, and describe
the methods used in the analysis.

4.1 A few initial words

The simulations that have been performed on the Potts Glass had the purpose
of studying the paramagnet-glass phase transition. We know that in mean field
theory there is a transition, and its character depends on p, and we want to
investigate its existence and nature in finite size systems (in detail in d = 3). To
do this we are run Monte Carlo simulations and analyze the results, since there
is no way, in a three-dimensional system, to look for the transition temperature
analytically. Simulations and analysis let us locate the transition and at the same
time study the critical exponents of the system.
We were able to simulate lattices of linear dimension L = 4, 6, 8, 12, 16 (not all
sizes for all p) and to thermalize most of them: we will see where thermalization
failed, and we will try to understand why. The smaller lattices were simulated
on a traditional computer cluster, while for linear size equal or above 8 we used
the Janus dedicated machine (see previous chapter, but also [47], [48] and [49]):
as a comparison the simulation of the Potts Glass for L = 16, d = 3, p = 4 on an
Intel Core2Duo running at 2.4 GHz would have taken thousands of CPU-years,
while it was manageable on the Janus system.
The model we simulated is described by the Hamiltonian

H = −

⟨i,j⟩

Ji,jδ(σi, σj) (4.1)

with bimodal couplings Jij = ±1 with equal probability, defined on a cubic lattice,
with periodic boundary condition.

59
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Figure 4.1: The Parisi-Rapuano shift register Random Number Generator (RNG): a
set of 32-bits words (the wheel): R(k) is the new random number, produced by I(k) =
I(k − 24) + I(k − 55), R(k) = I(k)I(k − 61). We initialize the wheel with externally
generated random values. I(k) is the new element of the updated wheel: ip1 = 24,
ip2 = 55, ip3 = 61: hence ip = ip1 + ip2 and the new random is ip · ip3. At each step
the value of k is incremented by one, modulo the length of the wheel.

In all the simulations we have used the Heat Bath and the Parallel Tempering
algorithms. We define a Monte Carlo Sweep (MCS) as the subsequent spin update
of N = L3 spins in sequential order. In Monte Carlo simulations we use, as it
may appear evident from the discussion of the latest chapter, a very big number
of random numbers: for each spin sweep update, we need, at most, N of them.
It is of paramount importance that the pseudo random numbers are of really
good quality: we used the Parisi-Rapuano [50] pseudo random number generator
(see figure 4.1), which has, so far, been satisfying. The implementation on the
Janus computer produces one random number per clock cycle: up to 1013 random
numbers we were not able to appreciate any correlation in the random numbers
produced. Even given this, to be sure to avoid dangerous correlations, we refresh
every 106 MCS the random wheel.

4.2 Observables

The first observable that we will define for the Monte Carlo runs is the magneti-
zation. As a first step we need to change the labeling of the spins to something
more “handy” to use. We will use the simplex [51] representation, in which one
associates to each state p a unit length vector pointing to the p vertices of the
(p−1)-dimensional hypertetrahedron. A few examples are in figure 4.2, for p ≤ 4.
These vectors satisfy the relation:

S⃗a · S⃗b =
p

p− 1
(δ(a, b)− 1). (4.2)

For example, for p = 3, the simplex vectors lie on a two dimensional plane,
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Figure 4.2: p unit vectors pointing in the p symmetric directions of the p−1-dimensional
hypertetrahedron, used to represent Potts spins: from left to right p = 2, p = 3 and p = 4.

and they take to form:

S⃗1 = (0, 1)

S⃗2 =

√
3

2
,−1

2



S⃗3 =


−
√
3

2
,−1

2


(4.3)

(4.4)

The simplex representation lets us, as a first thing, rewrite the Hamiltonian in a
more familiar way:

H = −

⟨i,j⟩

J ′
ij S⃗i · S⃗j (4.5)

where we have rescaled the couplings as

J ′
ij =

p− 1

p
Jij . (4.6)

In this way we can easily study the magnetization as:

m⃗ =
1

N

N
i=1

S⃗i. (4.7)

We also define the ferromagnetic susceptibility, which will signal to us the onset
of ferromagnetic order and hence the possible presence of a para-ferromagnetic
transition as

χM = N

⟨|m⃗|2⟩


av

(4.8)

where we have averaged both in the thermal sense and on the disorder.
In a different way from what we did in the first chapter, we will use the Fourier
transform of the spin glass order parameter:

qµν(k⃗) =
1

N

N
i=1

S
µ(1)
i S

ν(2)
i eik⃗·R⃗i (4.9)
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Figure 4.3: A schematic semilog plot of the number of MCS per L for different p.

where S
µ(1)
i is the µth component of the ith spin in the first replica, and S

ν(2)
i

is the νth component of the same spin in the second replica: as it may appear
now obvious, and as we noted earlier, we are simulating two replicas of the same
realization of the coupling with different random numbers (with different time
evolutions). We also use the Fourier transform of the spin glass susceptibility as

χq


k⃗

= N


νµ


⟨|qµν(k⃗)|2⟩


av
. (4.10)

Finally we define the correlation length, ξ, in terms of the ratio of Fourier trans-
form of the spin glass susceptibility

ξ =
1

2 sin

k⃗m
2

  χq(0)

χq(k⃗m)
− 1

 1
2

(4.11)

where k⃗m is the minimum wave vector allowed in the lattice, which with periodic
boundary condition is k⃗m =


2π
L , 0, 0


or any of the other two vectors obtained

permuting the indexes [52]. We are very interested in ξ since it will give us a
reliable method for estimating the transition point by simulating different sizes
of the system and looking for the intersection point of ξ/L.

4.3 Details of the simulations

We ave used the Heat Bath algorithm and PT in our simulations. The first
question which arises is: what is the best number of HB sweeps between PT
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steps? A correct answers should be dependent on the details of the system we
are simulating. We have performed testing to understand this dependence not
only for Potts models but also for the EA spin glass. Starting from 1 HB/PT
(each HB step perform a PT step), to 10 HB/PT and then to 100 HB/PT results
do not really significantly. We decided for 5 HB/PT when simulating on the
cluster and 10 HB/PT when simulating on Janus. The difference is driven by the
fact that while a PT step on a conventional computer does not “cost” more than
an HB step (in terms of time they are equal), on Janus a PT step is approximately
60% more expensive, in terms of time, than the HB step, due to the architecture
used. Reducing the frequency of PT steps, having first checked that the Physics
is all right with it, lets us decrease the total wall clock time of the simulation.
The second question regards the temperatures we simulate: how to select them?
Of course this decision has two important sides we should consider. In the first
place we have to ensure that Parallel Tempering is doing its job: the copies of the
system must be able to move freely from one end to the other of the spectra of
temperatures, otherwise we would be calculating averages in the wrong way. This
is particularly hard when the system we are simulating exhibits a discontinuous
phase transition, or a continuous phase transition with critical exponents very
near to the discontinuous boundary (see [43] for an example). Secondly, we wish
to simulate a range of temperatures which lets us gather information on both the
sides of the transition. In doing this one has to be extremely careful since, we
noticed, going too deep in the cold region, where the dynamic is slow, could mean
trap copies there, making very hard for them to exit the region to decorrelate. In
general we started using uniformly distributed inverse temperature, increasing the
temperature’s density near the transition. This is typically an iterative procedure,
where one checks the behaviour of the copies of the system in Parallel Tempering,
and looks for a temperatures’ density which lets the copies freely move from one
side to the other of the transition, keeping an eye on the acceptance ratios and
on the average round trip time (or, in another way, to the number of round trips
from low to high temperatures and back that a copy performs).
Details for the simulation of the Potts Glass p = 4, 5, 6 are summarized in table
4.1. While one could argue that for the different values of p the parameters are,
more or less, the same there are a few important differences. What one notes
first is that the thermalization of L = 16 was possible only for p = 4, while for
p = 5 we were able to reach it just a few samples: enough to gain some insight
on the behaviour of the system, but not enough to have good data. If we look
at the p = 4 case we can note that the interval between temperatures for L = 4
is approximately 0.44, for L = 6 is 0.35, for L = 8 is 0.09375 and for L = 16
is 0.075: the temperature density increases with L, and the upper temperature
lowers in agreement to what we just said. The temperature density, anyway, tells
just half of the story: the other half is in the disposition around the critical point.
If we turn our attention to the total number of Monte Carlo Sweeps per sample,
we note immediately that for increasing p the difficulty in reaching a thermalized
phase increases: while for p = 4 thermalizing L = 16 required 8 × 109 mcs we
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p L Nsamples MCS [βmin, βmax] Nβ NHB Nm

4 4 1000 3.2× 105 [2.0,6.0] 9 5 103

6 1000 8× 105 [2.5.5.0] 7 5 103

8 1000 2× 108 [2.7,4.2] 16 10 2× 105

16 1000 8× 109 [1.7,4.1] 32 10 2× 105

5 4 2400 107 [1.6, 9.5] 18 5 103

6 2400 2× 107 [1.6, 9.5] 22 5 103

8 2448 4× 108 [1.7, 6.5] 24 10 2× 105

12 2451 6× 109 [1.8, 5.5] 20 10 2× 105

6 4 2400 107 [2.1, 9.8] 10 5 103

6 2400 2× 107 [2.0, 9.65] 16 5 103

8 1280 109 [1.7, 7.5] 30 10 2× 105

12 1196 6× 1010 [1.6, 6.5] 22 10 2× 105

Table 4.1: For p = 4, 5, 6 and for each lattice size, number of disorder samples
analyzed, number of MCS per sample, range of simulated inverse temperatures,
number of (uniformly distributed) β values used for PT, number of MCS per-
formed between two PT steps (NHB) and the number of MCS between measure-
ments (Nm).

needed 6× 1010 to thermalize L = 12 in p = 6. A schematic plot of the MCS as
a function of L is in figure 4.3.
In the end we note that, for each temperature, we simulate two different replicas
(identical realization of the disorder), to be able to calculate q.

4.4 Thermalization

Before proceeding with the analysis, we have to be sure that the data we are
looking at comes from systems which are well thermalized. A common test is
to consider a physical quantity and average (thermally first, then on disorder,
in this order) over logarithmically increasing time windows. In this way the
last point of our thermalization check, if we have a total Nsweep sweeps, will
represent the time between Nsweep/2 and Nsweep, averaged, the previous point
the average of the data from the time between Nsweep/4 and Nsweep/2 and so
on. Ideally we can say the system has reached thermalization once the value of
the quantity we are measuring doesn’t change over the last few (3, in our case)
points, corresponding to the three last time windows. There is no need to apply
this kind of analysis to all the temperatures configuration: if we do this only for
the coldest temperature we can be sure that all the others will be thermalized
too, since the lowest temperature is the slowest to thermalize. This also gives us
a pretty clear idea on how much we have discard of the first part of the simulation
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Figure 4.4: ξ as a function of the Monte Carlo sweeps for the Potts Glass p = 4. Data
are log binned. All error bars are smaller than the point size. We can see the transient
and the plateau.

to be sure to average only on well thermalized data, since we can tell the plateau,
that we keep, from the transient, that we throw away. Thermalization tests for
the Potts Glass, p = 4, 5, 6, are shown in figures 4.4, 4.5 and 4.6. In all of
them, the last three points (or more) agree within error bars: we can be sure to
be dealing with well thermalized data.

4.4.1 Temperature-temperature time correlation function

In order to check the time scales of the dynamical process and to asses the ther-
malization and the statistical significance of our statistical samples, we compute
a few dynamical observables that characterize the Parallel Tempering dynamics.
One of them is the temperature-temperature time correlation function as intro-
duced in [53] (and in references therein): this will tell us if we have simulated
each single sample for a MC time long enough for it to thermalize. Doing this we
can investigate thermalization on a sample per sample basis, whereas in studying
ξ’s plateau we were looking at the problem using the whole sample group.
Let β(i)(t) be the inverse temperature of the system (i) at time t, where i ∈
{0, 1, . . . , Nβ − 1} and with Nβ equal to the number of systems (and hence tem-
peratures) evolving with Parallel Tempering. Let f(β) be an arbitrary function of
the temperatures which changes sign at βc, the temperature where the transition

is. Let f
(i)
t be

f
(i)
t = f(β(i)(t)). (4.12)
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Figure 4.5: ξ as a function of the Monte Carlo sweeps for the Potts Glass p = 5. Data
are log binned. All error bars are smaller than the point size.

Figure 4.6: ξ as a function of the Monte Carlo sweeps for the Potts Glass p = 6. Data
are log binned. All error bars are smaller than the point size.
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In equilibrium, system i can be found at any of the NT temperatures, for all i
and all t, hence

⟨f (i)
t ⟩ =

NT−1
k=0

f(βk)

NT
(4.13)

The function f must be as simple as possible ([53] chooses it to be a cubic
polynomial) such that

Nβ−1
k=0

f(βk)

Nβ
= 0. (4.14)

In [55] we choose a slightly different function:

f(β) =


a(β − βc), for β < βc

b(β − βc), for β > βc.
(4.15)

where the ratio of the slopes, a/b is fixed by the condition 4.14. Since the overall
normalization is irrelevant we choose a = 1.
Now we can define the correlation function

C
(i)
f (t) =

1

M − |t|

M−|t|
s=1

f (i)
s f

(i)
s+|t|, (4.16)

where M is the total simulation time. C
(i)
f (t) in 4.16 can be normalized as

ρ
(i)
f (t) =

C
(i)
f (t)

C
(i)
f (0)

. (4.17)

To gain statistics we consider

ρf (t) =
1

Nβ

NT−1
i=0

ρ
(i)
f (t). (4.18)

We have characterized the correlation function through its integral autocorrela-
tion time

τint =

 Λint

0
dtρf (t) (4.19)

where Λint = ωτint and where it is convenient to set ω = 10. In figure 4.7 is shown
the typical behaviour of the correlation function: an initial fast (exponential)
decay and, later in time, fluctuations around zero.

This is also important since sample fluctuations of τint are very large as we
can see in figure 4.4.1. To be sure that we are dealing with thermalized data,
we can increase the number of Monte Carlo sweeps (the Monte Carlo time)[55]:
we increase the total number of MCS if the estimated τint is bigger than M/c
(where M is the length of the simulation in MCS and c is a constant of order 20
for L = 8 and 15 for L = 12 in the p = 5 case).
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Figure 4.7: The Correlation function for a generic sample (p = 6, L = 8) as defined in
4.18.

Figure 4.8: τint for all p = 5, L = 8 samples simulated, in units of blocks of ten measures
(corresponding to ≈ 20003 MCS). Those samples whose τint is above the green have been
simulated for a longer Monte Carlo time
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4.5 The critical temperature and the critical expo-
nents

Consider an intensive quantity, O, for example the energy density or magnetiza-
tion density or magnetization susceptibility, which behaves in the thermodynamic
limit as

⟨O⟩L→∞ ∝ |t|−xO (4.20)

when |t| ≡ T−Tc
Tc

≈ β−βc

βc
→ 0. The Finite Size Scaling ansazt (FSS) lets us write

that the mean value for a lattice of size L behaves like

⟨O⟩L = LxO/νfO(L/ξ∞). (4.21)

This is based on the assumption that the finite size behaviour is governed by
the ratio L/ξ∞, where ξ∞ is the correlation length of the infinite system. fO
is an analytic function of its argument, that depends on the particular quantity
we consider. It is expected to be universal, even if dependent on the boundary
conditions we impose on the system. We have also to consider corrections to
scaling, writing

⟨O⟩L(β) = LxO/ν

fO(L

1/νt) + L−ωhO(L
1/νt) + . . .


(4.22)

where ω is the corrections-to-scaling exponent. The derivation of this, quite
lengthy, can be found in [52]: the basic idea is that one can write corrections to
⟨O⟩L in an asymptotic expansion. We can say that we are in the FSS regime if L ≤
ξ∞, or, equivalently, if |t|L1/ν ∼ 1. It is interesting to note the correspondence
between ξL(t)/L and tL1/ν . In the FSS regime

ξL = Lfξ(L
1/νt)


1 + L−ωhξ(L

1/νt) + . . .

. (4.23)

We can equivalently write, for 4.22,

⟨O⟩L(β) = Lxo/ν

f̃O(ξL/L) + L−ωh̃O(ξL/L) + . . .


. (4.24)

We can use the FSS ansatz (with corrections) to extrapolate results from finite
size simulations to infinite volume (which is absolutely necessary to compare
results from simulations to experiments). There is a variety of ways to perform
such extrapolations, we will consider here the method described in [35]. We fix s
(s > 1) the scaling factor, and then form a ratio

RO(β, L, s) =
⟨O⟩(β, sL)
⟨O⟩(β, L)

(4.25)

Note that nothing forbids to use O ≡ ξ. From equation 4.24 we can obtain

RO(β, L, s) = fs,O(ξL/L)

1 + L−ωhs,O(ξL/L) + . . .


, (4.26)
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with fs,O a universal function that tends to one in the thermodynamic limit, for
periodic boundary condition:

fs,O(x) ∼ 1 +AOe
−1/x + . . . (4.27)

where AO is a constant. The extrapolation to the thermodynamic limit can be
done by first obtaining an estimate of the scaling functions fs,O and fs,ξ, for
example from Monte Carlo simulations: from data pairs (ξL(β), RO(β, L, s)) we
can obtain fs,O by plotting RO(β, L, s) as a function of (ξL(β)/L) and by fitting
RO(β, L, s) to a polynomial in e−L/ξL . Once we have these estimates from data
pairs (ξL(β), ⟨O⟩L(β)) (obtained at size L) we can obtain the corresponding pair
for lattices of size sL with

⟨O⟩sL(β) = ⟨O⟩L(β)fs,O

ξL(β)

L


,

ξsL(β) = ξL(β)fs,ξ


ξL(β)

L


. (4.28)

From this, one can move to lattices of size s2L in the same way, using the data
of sL just obtained.

We do not know beforehand the value of the critical temperature and the
idea is to employ a similar method to bypass the problem. We consider a pair
of lattices of size L and sL, with s > 1 as before. A typical value of s is 2. As
before we consider the ratios defined in equation 4.25. It is of particular interest
the ratio Rξ at the temperature βL,s

c at which

Rξ(β
L,s
c , L, s) = s, (4.29)

which can be rewritten as

ξL(β
L,s
c )

L
=

ξsL(β
L,sL
c )

sL
. (4.30)

At this temperature the correlation length in unit of lattice size is independent of
the latter: it coincides for both systems. This is an expression of scale invariance
which should be true only at the critical temperature. Nonetheless, due to scaling
corrections, βL,s

c differs slightly from the true critical temperature by a quantity
proportional to both s−ω and L−ω− 1

ν . An interpretation of the coincidence of
ξL/L and ξsL/sL can be given in terms of a kind of renormalization, due to
Nightingale [36]: one considers a kind of real space renormalization group which
maps a system of size sL into a system of size L which the same Hamiltonian.
The temperature in the renormalized system is obtained from the temperature
in the original system via:

βsL → βL :
ξL(βL)

L
=

ξsL(βsL)

sL
. (4.31)
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Hence, βL,s
c is the fixed point of this transformation. This enforces scale invari-

ance, as expressed before.
Recalling 4.24 and considering the ratio for a generic observable at βL,s

c we can
write:

RO(β
L,s
c , L, s) = sxO/ν

f̃O(ξL/L)

1 + s−ωL−ωh̃O(ξL/L) + . . .


f̃O(ξL/L)


1 + L−ωh̃O(ξL/L) + . . .


= sxO/ν +AOL

−ω + . . . , (4.32)

where AO is a constant and the dots stand for higher order corrections. Equation
4.32 lets us extract the exponent xO/ν by means of an extrapolation in L−ω: by
applying this to different observables we can obtain different the critical expo-
nents. By using it with O = ∂βξ we obtain 1+ ν, while applying it to χm we can
obtain 2− ηm. The same holds for χq, resulting in ηq.
This work is well described in [56]: even if the model has no analytical solu-
tion, we can obtain the critical exponents by means of the FSS ansatz and this
technique, which goes by the name of Quotient Method.

4.6 The ferromagnetic phase

As we noted in the first chapter, the Potts Glass can enter, for sufficiently low
temperature, a ferromagnetically ordered phase. We need to check whether the
system is in such a phase, since we want to be sure that we are characterizing
a spin glass phase transition, and the corresponding phase, and not a para-ferro
transition. Ferromagnetic ordering could influence the spin glass phase even close
to the glass transition, hence biasing our analysis. The problem is very serious if
the temperatures of the two transitions (para-ferro and para-glass) are expected
to be very close. It is then very important to check whether there is a region with
nonzero spontaneous magnetization close to the spin glass critical region. We have
all the tools to study this: the critical exponent of the magnetic susceptibility,
ηm, first. If this exponent has value close to 2 then we expect no divergence,
hence no transition, since χm diverges as 2 − ηm. But we can also study the
magnetization and magnetic susceptibility for the whole range of temperatures:
in the paramagnetic region the m is random in sign and so it modulus ⟨|m⃗|⟩ is
proportional to 1/

√
N , N = Ld in our case d = 3, and the magnetic susceptibility

is independent of size. By contrast in the ferromagnetic phase ⟨|m⃗|⟩ tends to a
positive value at large N so that χm diverges, proportionally to N .
Checking both of these two ways of controlling the ferromagnetic ordering will
let us keep the situation under control: a value of ηm around 2 and the non-
divergence of χm will make us sure that we are not dealing with a ferromagnetic
phase, and hence we are characterizing a spin glass transition.
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Chapter 5

Results

In this chapter results from the simulations will be presented: before that we will
quickly review what to expect, by reviewing results from literature about Monte
Carlo simulations, and in the end we will try to put together all the insights we
obtained from the simulations.

5.1 Overview of known results

The complexity of the simulation of the Potts Glass, in some sense, kept the
probing of the critical behaviour of the model at bay, even if there have been
attempts to tackle it. Without any particular order we will try to review the re-
sults, mostly from Monte Carlo simulation, on the short-range three-dimensional
Potts Glass with both Gaussian and Bimodal couplings. Some of these results
will also be from Mean-Field Potts Glass, such as some papers from Brangian,
Kob and Binder.
In 1988, [58], Carmesin and Binder simulated a three-dimensional, short-range,
three-states Potts Glass with Gaussian couplings, without having the possibility
to distinguish if there was a phase transition for Tc > 0, but stating, anyway,
that a non zero transition temperature is doubtful. Scheucher, Reger, Binder
and Young in 1990, [59], simulated the same model, applying a finite-size-scaling
study. They, too, suggest a zero-temperature phase transition, with exponentially
diverging correlation length, implying a lower critical dimension of 3. Scheucher
and Reger, in 1992, simulates a three-state three-dimensional Potts Glass with
Bimodal couplings, [60]: they find, too, no signs of transition for Tc > 0, and
conclude that 3 is the critical lower dimension. They conclude, too, that the
Bimodal three-state Potts Glass has not a different behaviour from the Gaussian
three-state Potts Glass. In the meantime, in 1989, Cieplak and Banavar, see [61]
and [62], studied the same model, the three-state, three-dimensional Potts Glass:
they conclude, using domain-wall renormalization group calculation (at T = 0)
and found that the lower critical dimension is dl < 3 for Gaussian couplings and
dl > 3 for Bimodal couplings, with a transition temperature Tc ≃ 0.27 for the

73
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Gaussian couplings. In 1998 Dillmann, Janke and Binder, see [63], studied the
mean-field Potts glass with Bimodal couplings for p = 3 and p = 6. They state:
“Another unsatisfactory feature of our results is that they cannot distinguish the
difference in character of the transition for p = 3 and p = 6” [63]. They also
study the self-averaging properties of the moments of the magnetization distribu-
tion and their conclusion is that it seems to imply weak self-averaging for p = 3
and strong self-averaging for p = 6. The same year Reuhl, Nielaba and Binder,
[64], study the three-dimensional, three-state Bimodal coupling Potts Glass us-
ing Monte Carlo simulations finding results compatible with a zero-temperature
phase transition, even if, in their own words, “they do not prove it” [64]. They
also reconsider the simulations of [58] as suffering from possibly insufficient ther-
mal equilibrium: in their work they have reached 4.6 × 106 MCS for L = 16
lattices. In a series of works, [65] [66] [67] [68] [69] [70], Brangian Kob and Binder
study both the mean-field and the short-range ten-states Potts Glass with J0 < 0
to suppress ferromagnetic ordering. They find no plateau for C(t) at T = TD

revealing that no dynamic transition is observed and no signs of the static transi-
tion. They use the Heat-Bath algorithm for up to 108 MCS for sizes up to L = 16.
Basically, they state that in the p = 10 Potts Glass both transitions, dynamic
and static, are wiped out. Lee, Katzgraber and Young, in 2006, see [71], studied
the three-states and ten-states three-dimensional Potts Glass using Finite Size
Scaling. Simulations were carried out using Parallel Tempering. Results indicate
a phase transition for the Gaussian couplings around Tc ≃ 0.273 (which is curi-
ously similar to the one of Banavar and Cieplak in [61] and [62]) and Tc ≃ 0.377
for Bimodal couplings, in the case p = 3. For the p = 10 case they find no phase
transition for three-dimension and a transition temperature Tc ≃ 0.536 for the
four-dimensional model. Hence, their results for the ten-states Potts Glass with
nearest neighbours of this work agree with the ones of Brangian, Kob and Binder:
there is no phase transition. Recently, Andrist, Larson and Katzgraber, using a
slightly different model, simulated the ten-states non-mean-field Potts glass [72].
They used a one-dimensional model (with periodic boundary conditions, so that
is basically a ring of circumference L), with interactions between spins that fall
off as

Jij =
εij
rσij

(5.1)

with ε Normal distributed random variables and

rσij =


L

π


sin

π|i− j|
L

(5.2)

which represents the distances of the spins i and j on the ring. By tuning the
parameter σ they are hence able to change the behaviour of the model from mean-
field to non-mean-field, from above the upper critical dimension (ds = 6) to an
effective short-range hypercubic model below 6 dimensions. In their work they
set J0 = −1, and reach up to 107(226) MCS. They do see a phase transition, for
values of σ compatible with the Potts Glass below ds, at a very low temperature
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(Tc ≃ 0.025 for σ = 0.85). They do not see any hint of a discontinuous phase
transition: by analyzing the distribution functions of the energy they do not find
any sign of the double peak which is indicative of a first order phase transition
and they also note that setting J0 = 0 would have increased ferromagnetic order-
ing in respect to J0 = −1. Also, they note, the critical temperature seems to be
affected by this change: it seems to be reduced by a factor 2− 3 and the change
of J0 does not change the complexity of the simulation.
It is worth mentioning also the study of a different model, even if only briefly,
which goes by the name of Commutative Random Permutation Glassy Potts.
Introduced originally in [73] by Marinari, Mossa and Parisi, with the explicit
purpose of avoiding ferromagnetism, it was studied extensively in [74] by Fer-
nandez, Maiorano et al.. In the latter the model was studied in three and four
dimensions (the four dimensions version was studied also in the original work,
finding a critical temperature Tc ≃ 1.5). In [74] the authors were able to refine
the estimate of the transition temperature, for d = 4, as Tc ≃ 1.41, while for d = 3
the transition was found to be compatible with a Kosterliz-Thouless behaviour,
but, it was not clear to them if they were dealing with a transient effect due to
the vicinity of the lower critical dimension.

5.2 A quick reminder

What to expect from our simulations? How to decide the range of the tempera-
tures to study? Which scenario between those outlined in literature do we expect
to deal with? These questions, innocent at first look, require attention. We know
from chapter one that the Potts Glass in MFT undergoes a phase transition, in
which replica symmetry is broken, at a temperature that depends on the number
of available states, p. Empirically, we expect this transition to happen at an
inverse temperature βc(p) ≈ p. This comes from [75]: in that work they use an
expansion in 1/d for Kc (that is thereby defined as Kc = J/kBTc, and is thus
equivalent to our βc) as a consistency check for the series expansion of χq finding
β2
c = p2/2d + . . ., where the dots represent other terms of the expansion, whose

coefficient are reported in the paper cited. If we look at the model for p = 2 the
transition temperature is βc(2) ≈ 1.80 and for p = 3, we know from literature,
βc(3) ≈ 2.65, so, roughly, we wonder if the slope, which in [75] should be 1/6
for d = 3, is correct. We will check in the last section of this chapter if this
empirical law holds, and if the slope, which just by plotting these two critical
inverse temperatures outlines looks suspicious, is correct (or not).
The selection of the temperatures to simulate has a fundamental role for two
reasons: firstly we will take measures on these temperatures, so we need them to
gives us enough details, but, secondly, we absolutely need Parallel Tempering to
be able to move copies of the system up and down in the temperature range: in
high temperatures the system will decorrelate, giving us the ability, as we already
pointed out, to obtain averages from a system who has visited many valleys. The
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Figure 5.1: Plot of the spin glass correlation length over the system size as a function of
β for all linear sizes of the Potts Glass p = 4. In the inset: magnification of the crossing
between L = 8 and L = 16. Lines are just a guide for the eye.

choice, hence, is a bit of trial and error. Ideally we start with equally spaced tem-
peratures in a range from very hot temperatures (low β) to temperatures which
are not too advanced in the cold region: this “extension” in the cold region gets,
in the simulations hereby described, smaller and smaller as the size of the system
increases. Meanwhile, when the size of the system increases, we add tempera-
tures near the temperature that we suspect, following the empirical rule pointed
out above, to be critical. As said there is no clear rule for this: we basically try
to obtain a sufficient acceptance ratio in Parallel Tempering to allow copies to
perform the correct random walk in temperature space.
We expect the ferromagnetic transition temperature to follow

TFM =


p− 2

2


, (5.3)

so that, since we want to investigate the para-spin-glass transition, we have to be
sure that we have no ferromagnetic effects.

5.3 The p = 4 Potts Glass

The p = 4 case in of particular interest for various reasons: firstly for p = 4
we expect a continuous transition, while for p ≥ 4 this should change. Sec-
ondly, the spin glass and ferromagnetic transition should be at same temperature,
TFM = TRSB = 1, so in this sense the p = 4 case is marginal. Whether, or not,
these prediction of Mean Field Theory apply to a three dimensional system it is
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(L1, L2) βcr(L1, L2) ν(L1, L2) ηq(L1, L2) ηm(L1, L2)

(4, 8) 3.59(4) 0.83(5) 0.15(4) 1.84(3)

(8, 16) 4.00(4) 0.96(8) 0.12(6) 2.06(3)

Table 5.1: Results for the critical exponents using the Quotient Method for the Potts
Glass p = 4. (L1, L2) are the two lattice sizes used and βcross is the inverse temperature
where the two curves ξ/L cross. The values for ν and ηq are extracted from measurements
involving q, whereas ηm has been computed from the magnetization.

the main point of interest.
After having checked for correct thermalization, as we did in the previous chap-
ter, we proceed in looking for the spin glass transition temperatures, using ξ/L,
where L is the linear size of the system. A complete plot of ξ/L as a function of
β for all simulated system sizes is reported in figure 5.1. There is not an obvious
crossing point common to all system sizes, due to correction to scaling: we see
that, anyway, there are crossing points, so that we can quite sure in saying that
we are looking at a phase transition. There is, of course, the possibility that for
L → ∞ the critical temperature goes to zero, and in that case there would be no
transition. Looking at the critical exponents we think this is not the case.
We proceed, as we discussed, using the Quotient Method: we select two linear
sizes whose ratio is s = 2, and we look for the crossing point. To do this we in-
terpolate the curves using cubic splines. Since we cannot be sure that our results
are independent of the interpolation, a linear interpolation around the crossing
point has been implemented and the results checked with the cubic splines’ one:
they do agree within statistical precision. From the same Quotient Method we
can also estimate the values of the critical exponents, computing the spin glass
susceptibility and the derivative of ξ at the crossing points. Results are in table
5.1.
Even thought simulating the Potts Glass p = 4 for L = 4, 6, 8, 16 is a notable
computing effort, we do not have, as of now, enough information to extrapolate
the critical temperature in the thermodynamic limit. The two values of βcr are
quite different: this suggest a small value of ω (the leading correction to scaling
exponent) in equation 4.32, which says we cannot reliably compute the asymp-
totic critical exponents. From table 5.1 we can infer that, given the behaviour of
ηq as a function of the size of the systems involved in its computation, there is a
transition: were ηq to tend to a value of 2 it would be the opposite. So far, data
suggest the existence of a spin glass phase transition at finite temperature, but
we also need to check for ferromagnetic effects around the transition which could
bias our analysis.
Since the ferromagnetic and the spin glass transitions are expected, in MFT, to
happen at the same temperature, in p = 4, these effects could be very strong.
Magnetic susceptibility and ⟨|m|⟩ are represented in figure 5.2: we see no diver-
gence of χm around the spin glass critical point, in agreement with the fact that
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Figure 5.2: Plots of χm and ⟨|m|⟩ as a function of temperature, to check for ferromag-
netic ordering in proximity of the spin glass transition, for the p = 4 Potts Glass.

(L1, L2) βcr(L1, L2) ν(L1, L2) ηq(L1, L2) ηm(L1, L2)

(4, 8) 4.83(5) 0.82(3) 0.13(2) 1.72(2)

(6, 12) 5.01(4) 0.81(2) 0.16(2) 1.94(2)

Table 5.2: Numerical values of the estimates for the crossing point of the curves ξ/L,
together with the critical exponents, as in 5.1, for the case p = 5.

ηm is around 2, and, in the inset of the same figure, we see that the behaviour of
⟨|m|⟩ is proportional to 1/

√
L3, as it should be in the paramagnetic phase.

What is of most interest to us in the p = 5 and p = 6 cases is to study
if, and when, the spin glass transition changes nature, in the three-dimensional
short-ranged model, and how the critical exponents change as a function of p.
We proceed, in the next two sections, in a fashion similar to the p = 4 case.

5.4 The p = 5 Potts Glass

We proceed in our analysis with the p = 5 case: as before, we look for crossings,
calculate critical exponents, check for the absence of magnetization. Figure 5.3
is the equivalent of figure 5.1 in the p = 5 case: crossings for all lattice sizes are
neatly in just one point in this case, and, since we already assessed thermalization
and transient length, we can proceed in calculating the critical exponents, once
we have looked for the crossing points. Scaling corrections are again visible, in
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Figure 5.3: As in figure 5.1, plot of the spin glass correlation length over the system
size as a function of β for all linear sizes of the Potts spin glass, p = 5. Lines are just a
guide for the eye.

the small but steady drift of the crossing temperature to the lower side (increas-
ing β), as the linear size of the lattices increases. The results for the crossing
temperatures and critical exponents, as before using the Quotient Method (we
set s = 2), are resumed in table 5.2. We do not have enough data to extrapolate
to L → ∞, or to evaluate ω, but there is strong evidence of a phase transition,
and we are quite sure about the absence of ferromagnetic ordering, given that ηm
is around 2. The values of ηq is compatibile with a spin glass phase transition. To

be sure, we plot, in figure 5.4, χm and ⟨|m|⟩ where it is clear that we do not have
divergence around the critical point for the former and that the latter behaves
like 1/

√
L3, imprint of a paramagnetic phase.

We can see that the behaviour of χm and ⟨|m|⟩ are consistent with the absence of
ferromagnetic ordering around the spin glass transition temperatures, signaling,
again, that we are looking only at a spin glass transition.

5.5 The p = 6 Potts Glass

At last, we analyze the p = 6 Potts Glass. If we consider for a moment again
table 4.1 we can see how hard it is to simulate p = 6 compared to p = 5 and
p = 4. This may be a first hint in explaining why we were not able to simulate
L = 16 in these cases, but we will see that there is more than this. As we did
before, we proceed in looking for the crossing points for ξ/L as a function of
temperature, looking thus for the spin glass transition temperatures. As we can
see in figure 5.5 the curves meet in a unique point (with good approximation).
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Figure 5.4: As in figure 5.2, χm and ⟨|m|⟩ as a function of temperature for the p = 5
Potts Glass.

Figure 5.5: As in figure 5.1, plot of the spin glass correlation length over the system
size as a function of β for all linear sizes of the Potts spin glass, p = 6. Lines are just a
guide for the eye.
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(L1, L2) βcross(L1, L2) ν(L1, L2) ηq(L1, L2) ηm(L1, L2)

(4, 8) 6.30(9) 0.80(2) 0.10(2) 1.453(19)

(6, 12) 6.26(7) 0.80(4) 0.16(2) 1.971(19)

Table 5.3: As in table 5.2, but p = 6.

Figure 5.6: As in figure 5.2, χm and ⟨|m|⟩ as a function of temperature for the p = 6
Potts Glass.

Since the curves meet in one point and then splay out, it is natural to think that
we are looking at a continuous transition, eg. not a Kosterliz-Thouless transition.
In table 5.3 results from the Quotient Method for the crossing temperatures and
critical exponents ν, ηq and ηm. As before we have set s = 2. Correction to
scaling is smaller in this case, even if it is present. We do not have, again, enough
data to extrapolate critical temperatures and exponents to the thermodynamical
limit, nor to calculate ω, nonetheless data strongly suggest a phase transition.
Critical exponents are compatible with a continuous phase transition, and ηm,
which seems to converge to 2 as lattices size increase, suggest that there is not
ferromagnetic ordering. To check this last information, as before, we plot χm

and ⟨|m|⟩ as a function of β and check for divergence of the former and the
asymptotic behaviour of the latter, in figure 5.6 we plot them: since the first
shows no divergence and the second goes like 1/

√
L3 we conclude that there are

ferromagnetic phase effects in the region of the critical spin glass temperature,
and hence, as in the p = 4, 5 cases, that we are dealing with a spin glass transition.
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5.6 Piercing it all together

It is interesting to put together all the information we have obtained about the
transitions of the Potts Glass with different number of states, consider it as a
function of p and compare it with know results in literature. In MFT we would
expect the nature of the transition to change for p > 4. In the large p limit a
discontinuous disordered phase transition should be observed. Does this change
in lowering the number of dimensions of the system to three? Also, in other
works, for example [71], [65], [66], [67], [68], [70] and [75] different behaviours
for the Potts Glass, albeit with a few difference we will see in a moment, have
been described. The main difference with some of the works just cited is that,
in their case, J0 is negative, to suppress ferromagnetic ordering, whereas in our
simulations is zero. This might be a small difference or not so small: in their
paper Lee, Katzgraber and Young do not observe a spin glass phase transition
for a p = 10 Potts Glass with Gaussian couping with, as said, J0 = −1, the
correlation length remains well small for all temperatures.
In figure 5.7 the critical temperature βc and the critical exponents ν and ηq are
represented as a function of p. The dashed line in the plot of ν versus p is the value
of 2/3: using finite size scaling to study a disordered first-order phase transition
one expects to find [54], ν = 2/d. In our d = 3 case this means νfirst = 2/3 and
ηq, first = 1/2, since the spin glass susceptibility grows like Ld/2. In the plot of βc
versus p the dashed line represents the function βc(p) = p. We notice immediately
that this fit holds very well.
We have used, in the plot, data from table 5.4: some are from literature, some
from the best estimates of this analysis, to say: the ones with the biggest lattices
sizes. The value of ν from [76] is from the analysis of ξL/L. It is different,
and more reliable, than the one obtained from the spin glass susceptibility, that,
because of large scaling corrections, would severely depend on the kind of analysis.
In the table, from the same reference, the value of ηq is from the study of the
spin glass susceptibility. From figure 5.7 we see that is confirmed our empirical
relation about βc: it increases linearly in p. ηq increases in value for increasing p
reaching a plateau (which should go to 1/2, limit value for the first order phase
transition), while ν lowers its value for increasing p leaning towards the value of
2/3, without reaching it. This signals to us that, while the boundary value of
the spin glass susceptibility exponent is not reached, the nature of the continuous
disordered phase transition changes, becoming increasingly stronger. The trend
of ηq as a function of p is as well compatible with the tending, increasing p, to
a change of the nature of the phase transition from continuous to discontinuous,
for some value of p > 6. For p < 6 the transition is still continuous, but gets, as
we said, stronger. There are two possible explanation for what happens to the
system increasing p: the first is the one we just dealt with (the transition for some
value of p changes from continuous to discontinuous, even if it is possible that
there is a rounding due to finite size) and the second is that, for all values of p,
the three dimensional Potts Glass has a continuous disordered phase transition,
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(a)

(b)

(c)

Figure 5.7: βc, ν and ηq as a function of p, from the results we obtain in the simulations
of the Potts Glass for p = 4, 5, 6 plus some results know from literature. The dashed
horizontal line in ν vs. p is νfirst = 2/3, while the dashed line in βc vs. p is a fit with the
function βc(p) = p. Data for βc for p = 4, 5, 6 are our best estimates: the ones for the
biggest lattices sizes.
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p βc ν ηq R

2 (from [76]) 1.786(6) 2.39(5) −0.366(16) 2.187(8)

2 (from [77]) 1.804(16) 2.45(15) −0.375(10) 2.209(20)

3 (from [71]) 2.653(35) 0.91(2) 0.02(2) 2.17(3)

4 4.000(48) 0.96(8) 0.12(6) 2.45(3)

5 5.010(40) 0.81(2) 0.16(2) 2.51(2)

6 6.262(71) 0.80(4) 0.16(2) 2.69(3)

Table 5.4: Critical parameters as a function of p. All data are for binary couplings,
with J0 = 0. R denotes the ratio between the critical β in three dimensions and
the one computed in Mean Field Theory.

with exponents that show a strong transition (with the values of ν and ηq close
to the ones of a discontinuous transition). The fact that in literature the Potts
Glass with a big p has been found not to have a phase transition could depend
on the fact that in those simulations, such as the ones in [71], the expectation
value of the couplings was negative, while in our simulation was zero. On the
other hand, if the empirical rule βc(p) ≈ p holds it would be necessary, to see
the transition, to reach an inverse temperature βc = 10, which, in [71] was not
reached.

5.7 The curious case of p = 5, L = 16

It is interesting for a moment to consider the p = 5, L = 16 case which was not
included in the calculations above. The reason why is that we were not able to
thermalize the system, even though we simulated it for 1012 − 1014 Monte Carlo
Sweeps, 2 − 4 orders of magnitude more than L = 12 with the same number of
available states. It is possible to appreciate its non-thermalization in figure 5.10:
the two curve come from two different trials. In the first curve, the one for β = 5.2
we employ PT with a set if 32 inverse temperatures, simulating 280 samples. The
second one, for β = 5.1, is another test we did, using 46 inverse temperatures.
The first one was simulated for a longer time than the second and with different
frequency of HB steps between PT steps. Following the thermalization criteria
we defined, a sample set is said thermalized if the last three measures in log bin-
ning of the data agree within errors, we say that these data come from systems
which are not thermalized. What is interesting to investigate is the reason why
this happens.
If we look at the evolution of configurations in temperature space in the Parallel
Tempering evolution, what we see is a bottleneck around the critical temperature,
even if we increase the number of temperatures around the critical one, systems
are not able to perform a complete random walk from low to high, and back, tem-
peratures, and they just stay in one phase, with high probability. Occasionally
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Figure 5.8: Example of an almost good looking random walk in temperature space,
at least for the last part. In the first part even if the system moves, complete round
trip from low to high β happen, the system is not completely stuck. In the second part
the situation gets better, and round trips are more frequent. MCS on the x axis and
Temperature Index in the y axis. The dashed line is, approximately, where the transition
temperature should be.

Figure 5.9: A bad random walk in temperature space. MCS on the x axis and Tem-
perature Index in the y axis. The dashed line is, approximately, where the transition
temperature should be. The configuration, after a very short transient where it moves
up and down, gets trapped in a phase. The part of the “T-index” axis above the dashed
line is the high β zone.
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they do change phase, but in doing this a configuration gets trapped inside that
phase, and with high probability they almost never go from end to end in their
random walk. A situation somewhat intermediate between completely stuck in a
phase and correctly mobile configurations, is quite frequent, too. Some examples
of walks in temperature space, obtained for the p = 5, L = 16 Potts Glass, are
shown in figure 5.8 and 5.9.
Why does this happen? We have tried many different configurations of Parallel
Tempering: we changed the temperatures’ distribution, the range, the frequency
of PT updates, but somewhat it eludes us why we keep seeing the same behaviour.
We know, from the first chapter, that the Potts Glass in MFT, in the case of a
first-order phase transition, does not have a latent heat, but nonetheless sugges-
tions like the ones found in literature (for example, [38]) come to mind. The basic
idea in [38] is that acceptance ratio is proportional to the inverse of the latent
heat: if we had latent head, we could explain the drop in acceptance ratio by
this.
What we can hypothesise is that there might be a crossover between continu-
ous and discontinuous transition behaviour: for smaller sizes the discontinuous
transition is rounded to to finite size effects, while for larger sizes this rounding
disappears, showing the true nature of the transition. As we said in the previous
section, this must be added with the two possibilities of not having a change
in the phase transition depending on p, or to have the nature change for some
p > 6, which remain both available at this stage. The only way to probe what is
happening is to perform simulations with larger systems.

Figure 5.10: ξ vs. MCS for the L = 16, p = 5 Potts Glass. Represented are the curve for
understanding thermalization of the system for two different temperature, from different
simulations. The red curve (β = 5.2) is the result of a simulation of 280 samples, using
32 betas for PT. The blue one (β = 5.1) is from the simulation of 32 samples, using 46
betas.



Chapter 6

Conclusion

The main aim of this thesis was to fill the gap in the simulation of the Potts Glass,
for p = 4, 5, 6 in three dimensions. In this range of p many things in the behaviour
of the model changes: the most striking change being, for the ∞-dimensional case
of Mean Field Theory, the different nature of the phase transition which is ex-
pected to be discontinuous for p > 4 and continuous in all other cases.

Our progress was tainted by the impressive computational requirements of
the simulation of this model, requirements that kept growing as p increased, so
much that – in spite of state-of-the-art computing facilities – we were not able to
thermalize systems greater than L = 12 for p ≥ 5. Nonetheless we have used all
available information to understand the behaviour of the system and to formulate
educated guesses of what might happen for p > 6 which is, also, the target of
the next round of simulations, possibly using the next generation of dedicated
computers.
We gained insight on the Potts Glass: the indications of the existence of the
para-spin glass phase transition for all the p we studied, and the nature of the
phase transition which, according to the critical exponents we have calculated,
well rests in the range of a continuous transition, albeit drifting, as p increases,
toward the lower bound values for the transition to stay continuous.
While these results need more simulations to be confirmed, we can look beyond
the mere numbers and infer what to expect from future simulations: there are
basically two different scenarios. In the first, the transition as p increases beyond
6 might continue to be continuous, or, as a second option, for some value of p > 6
it might change and become discontinuous.
In our simulations, up to p = 6, we have a strong hint that the transition stays
continuous, but there is one point that might suggest that, as opposed to what
we have identified as two different possibilities, the change in the nature of the
transition might have happened in the range of p between 4 and 6 so that we are
effectively looking at a discontinuous transition, rounded by the small sizes of the
lattices.

87
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Unfortunately there is no way, right now, to understand what is going on, but we
can have some hints: it is of particular interest the behaviour of Parallel Temper-
ing, as p increases. Despite our efforts in trying to make the Parallel Tempering
well behave in letting configurations visit the whole range of temperatures, we
were not able to reach an optimum: we tried to change in different ways the values
(and intervals in between) inverse temperatures and increase (as much as accept-
able) the total simulation time. In all our efforts, there is a bottleneck around
the critical temperature, which is the mark of a discontinuous phase transition
as seen from the Parallel Tempering perspective. In this sense, we may suppose
that there is a rounding in the nature of the transition, and it may well already
be discontinuous: only the ability to simulate bigger system sizes will shine light
on this point.

In conclusion this work enriches the phenomenology of the Potts Glass, and
this has been a “good excuse” to understand better the Parallel Tempering
method and its applicability, too. While the results obtained are not conclu-
sive on the matter, they are to be intended as a roadmap for further steps in the
simulation of this model in order to deepen our knowledge and to understand if
the Potts Glass can be a relevant candidate for the description of orientational
glasses.

In the future we might be able to increase both the values of p we simulate
and the size L of the systems: only then we will have definitive results. This
thesis tries to set the right direction to follow.
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