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Introdu
tion
The natural 
omplexities of petroleum reservoir systems 
ontinue to providea 
hallenge to geos
ientists. The absen
e of reliable data often leads to aninadequate understanding of reservoir behaviour and 
onsequently to poorperforman
e predi
tions. Although this is an ongoing problem and one whi
hmay be di�
ult to resolve without additional data and/or investment, itis important to pursue the best possible solutions using whatever data isreadily available. Data integration, and risk and un
ertainty assessment,have be
ome the major issues in reservoir 
hara
terization. The large amountof data for ea
h well and the presen
e of di�erent wells to 
onsider togethermake this task also 
omplex espe
ially if the subje
tivity of the interpretationhas to be redu
ed.In past de
ades, 
lassi
al data pro
essing tools and physi
al models wereadequate for the solution of relatively �simple� geologi
al problems. Howeverbe
ause of the un
ertainties whi
h are inherent in geologi
al data, the 
hal-lenge we now fa
e is not just to predi
t the presen
e of hydro
arbons, butrather to quantify the 
on�den
e of reservoir predi
tions. We are in
reas-ingly being fa
ed with more and more 
omplex problems, and relian
e on



ii Introdu
tion
urrent te
hnologies based on 
onventional methodologies is be
oming lesssatisfa
tory. The development of reliable interpretation methods is of primeimportan
e regarding the reservoir understanding and data integration is a
ru
ial step in order to 
reate useful des
ription models and to redu
e theamount of time ne
essary for ea
h study.Arti�
ial intelligen
e, data mining te
hniques and statisti
s methods arewidely used in reservoir modelling, for instan
e in predi
tion of sedimentaryfa
ies1. Delineation of lithofa
ies from well log data is a typi
al 
lassi�
ationtask. Geologists have to spend a signi�
ant amount of time interpretinglogs to identify the lithologi
al 
omposition of the investigated ro
k, e.g.the per
entage of 
lay 
ontent. Based on this 
al
ulation, the fa
ies aredivided into di�erent 
lasses of lithofa
ies, a time 
onsuming task that mustbe repeated for ea
h well. The same result 
an be a
hieved with unsupervisedalgorithms, they 
an identify 
lusters of well-log responses along availableinput data (log parameters) that are representative of variuos ro
k fa
ies,similar to what a geologist would 
lassi
ally do. For example, bulk density,neutron porosity, soni
 travel time and potassium 
ontent 
an be used asinput data sets. Supervised ma
hine learning is the sear
h for algorithms (i.e.de
ision trees or regression methods) that reason from externally suppliedinstan
es to produ
e general hypotheses, whi
h then make predi
tions aboutfuture instan
es [43℄.Unsupervised and supervised te
hniques 
an help the geologist in fa
iesanalysis leading to the development of new interpretative methods for reser-voir 
hara
terization. However, reservoir 
hara
terization is improved wheninformation from di�erent wells in the same area is taken into 
onsideration,giving reliable support to further analysis of unknown wells in the same �eld.1A fa
ies is a body of sedimentary ro
k distinguished from others by its lithology,geometry, sedimentary stru
tures, proximity to other types of sedimentary ro
k, and fossil
ontent.



Introdu
tion iiiObje
tiveIn petroleum geology, exploration and produ
tion wells are often analysedusing image logs, be
ause they provide a visual representation of the boreholesurfa
e and they are fundamental to retrieve information on bedding andro
ks 
hara
teristi
s.Aim of the work was to de�ne and implement a suite of automati
 andsemi-automati
 tools for interpretation of image logs and large datasets ofsubsurfa
e data 
oming from geologi
al exploration. This led to the develop-ment of I2AM (Intelligent Image Analysis and Mapping), a semi-automati
system that exploits image pro
essing algorithms and arti�
ial intelligen
ete
hniques to analyse and 
lassify borehole images.More in detail, the obje
tives of the I2AM approa
h are: (1) to automat-i
ally extra
t ro
k properties information from all the di�erent types of datare
orded/measured in the wells, and visual features from image logs in parti
-ular; (2) to identify 
lusters along the wells that have similar 
hara
teristi
s;(3) to predi
t 
lass distribution over new wells in the same area.In parti
ular, we propose a 
as
ade of te
hniques, i.e., pattern re
ognition,
lustering and learning 
lassi�
ations algorithms, in order to:
• �rst, identify relevant features in image logs, su
h as vugs and sinusoids,by applying image pro
essing algorithms in order to extra
t numeri
alvalues for ea
h su
h feature;
• se
ond, 
luster several regions of the same well or of di�erent wells intosimilar groups, by applying hierar
hi
al 
lustering;
• 
hoose the set of most signi�
ant 
lusters: in this work, this is done bythe expert of the domain but it 
an also exploit indexes;
• �nally, feed a ma
hine learning algorithm with the identi�ed relevant
lusters as 
lasses, in order to learn a 
lassi�er to be applied to newinstan
es and wells, possibly 
o-lo
ated.



iv Introdu
tionThe main bene�ts of this approa
h are the ability to manage and use alarge amount of subsurfa
e data simultaneously. Moreover, the automati
identi�
ation of similar portions of wells by hierar
hi
al 
lustering saves alot of time for the geologist (sin
e he analyses only the previously identi�ed
lusters). The interpretation time redu
es from days to hours and subje
tiv-ity errors are avoided. Moreover, 
hosen 
lusters are the input for supervisedlearning methods whi
h learn a 
lassi�
ation that 
an be applied to new wells.Finally, the learned models 
an also be studied for a 
luster 
hara
terization,in a des
riptive approa
h.Sin
e a pro�table way to address the 
hallenge of the 
omputer aidedreservoir 
hara
terization was to use a standard pro
ess to guide the imple-mentation of a reliable and useful solution, we have 
onsidered a number ofthem. KDD (Knowledge Dis
overy in Databases), SEMMA (Sample, Ex-plore, Modify, Model, Assess) and CRISP-DM (Cross Industry StandardPro
ess for Data Mining) represent the state of the art methodologies in de-veloping data mining appli
ations [5℄. CRISP-DM provides a non proprietaryand freely available standard pro
ess for �tting data mining into the generalproblem-solving strategy of a business or resear
h unit. Due to its industrial
hara
ter and its 
ompleteness, CRISP-DM is the most interesting pro
essthat 
an easily map the reservoir 
hara
terization 
ontext. Therefore, in thisPh.D. work we adopt CRISP-DM pro
ess.Stru
tureThis thesis is organized following the CRISP-DM pro
ess.In Part I we provide an introdu
tion and some ba
kground informationabout data mining, petroleum geology and and how they 
an be relatedea
h other. Chapter 1 des
ribe the CRSIP-DM pro
ess, Chapter 2 providessome ba
kground and related works about data mining and ma
hine visionte
hniques used in this work. Chapter 3 des
ribes the Business & DataUnderstanding phase: petroleum exploration and produ
tion pro
ess are



Introdu
tion vexplained also in terms of available data.Part II is dedi
ated to the new approa
hes and solution proposed in thiswork. Data Preparation phase takes pla
e in Chapter 4: new ma
hinevision algorithm for image log interpretation are proposed and tested. Chap-ter 5 and Chapter 6 propose and dis
uss a new reservoir 
hara
terizationmodel based on data mining te
hniques, fo
ussing on theModeling & Eval-uation phases.Part III with Chapter 7 
on
ludes the thesis giving a brief overview to thedeveloped tools in the Deployment phase. Finally Chapter 8 summarizesresults and 
on
lusion.
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CHAPTER 1
CRISP-DM

There is a temptation in some 
ompanies, due to departmental inertia and
ompartmentalization, to approa
h data mining haphazardly, to reinvent thewheel and dupli
ate e�ort. A 
ross-industry standard was 
learly requiredthat is industry neutral, tool-neutral, and appli
ation-neutral. The Cross-Industry Standard Pro
ess for Data Mining (CRISP-DM) [16℄ was developedin 1996 by analysts representing DaimlerChrysler, SPSS, and NCR.This short 
hapter introdu
es the CRISP-DM methodology (Se
tion 1.1)and referen
e model (Se
tion 1.2), this is very useful in order to understandthe main stru
ture of the entire Ph.D. work.1.1 CRISP-DM methodologyIn the past two de
ades oil and gas 
ompanies have spent millions of dollarsto 
olle
t digital data or to 
onvert the existing data into digital form. Thisis due to the fa
t that they have realized the value of data and the potential



4 1. CRISP-DMit possesses in enhan
ing their operations. IT departments in larger oil andgas 
ompanies and major servi
e 
ompanies and other vendors have devel-oped sophisti
ated software tools that allow operators to organize their data,
urrently existing in di�erent databases, into a 
ohesive data warehouse andmake it available to information engineers. Furthermore, several software ap-pli
ations have been developed to put all that information on the geologists�nger tips so they 
an look at all sorts of data pertaining to a reservoir, a�eld or a well.Although these are absolutely essential for su

essful operation of a large
ompany, it has 
reated a new monster. There are far more data that theones that 
ould be e�e
tively analysed. Human brain, although being themost remarkable information pro
essing entity, 
an only work simultaneouslyin many dimensions and is in
apable of pro
essing very large volumes ofdata. As the volume of data in
reases, inexorably, the proportion of it thatpeople understand de
reases, alarmingly. Lying hidden in all this data isinformation, potentially useful information, that is rarely made expli
it ortaken advantage of.Data mining and knowledge dis
overy, as an integrated pro
ess 
an 
ometo res
ue in su
h o

asions. Data mining is de�ned as the pro
ess of dis-
overing patterns in data. The pro
ess must be automati
 or (more usually)semi-automati
. The patterns dis
overed must be meaningful in that theylead to some advantage, usually an e
onomi
 advantage.Data mining is also a 
reative pro
ess whi
h requires a number of dif-ferent skills and knowledge and it needs a standard approa
h whi
h will (1)help to translate business problems into data mining tasks, (2) suggest ap-propriate data transformations and data mining te
hniques, and (3) providemeans for evaluating the e�e
tiveness of the results and do
umenting theexperien
e. The CRISP-DM (CRoss Industry Standard Pro
ess for DataMining) proje
t [16℄ addressed parts of these problems by de�ning a pro
essmodel whi
h provides a framework for 
arrying out data mining proje
tswhi
h is independent of both the industry se
tor and the te
hnology used.



1.1 CRISP-DM methodology 5The CRISP-DM pro
ess model aims to make large data mining proje
ts, less
ostly, more reliable, more repeatable, more manageable, and faster.The CRISP-DM methodology is des
ribed in terms of a hierar
hi
al pro-
ess model, 
onsisting of sets of tasks des
ribed at four levels of abstra
tion(from general to spe
i�
): phase, generi
 task, spe
ialized task, and pro
essinstan
e (see Figure 1.1.).At the top level, the data mining pro
ess is organized into six phases, thatwill be de�ned later; ea
h phase 
onsists of several se
ond-level generi
 tasks.This se
ond level is 
alled generi
 be
ause it is intended to be general enoughto 
over all possible data mining situations. The generi
 tasks are intendedto be as 
omplete and stable as possible. Complete means 
overing boththe whole pro
ess of data mining and all possible data mining appli
ations.Stable means that the model should be valid for yet unforeseen developmentslike new modeling te
hniques.The third level, the spe
ialized task level, is the pla
e to des
ribe howa
tions in the generi
 tasks should be 
arried out in 
ertain spe
i�
 situations.For example, at the se
ond level there might be a generi
 task 
alled 
leandata. The third level des
ribes how this task di�ers in di�erent situations,su
h as 
leaning numeri
 values versus 
leaning 
ategori
al values, or whetherthe problem type is 
lustering or predi
tive modeling.The des
ription of phases and tasks as dis
rete steps performed in a spe-
i�
 order represents an idealized sequen
e of events. In pra
ti
e, many of thetasks 
an be performed in a di�erent order, and it will often be ne
essary torepeatedly ba
ktra
k to previous tasks and repeat 
ertain a
tions. Our pro-
ess model does not attempt to 
apture all of these possible routes throughthe data mining pro
ess be
ause this would require an overly 
omplex pro
essmodel.The fourth level, the pro
ess instan
e, is a re
ord of the a
tions, de
isions,and results of an a
tual data mining engagement. A pro
ess instan
e is orga-nized a

ording to the tasks de�ned at the higher levels, but represents whata
tually happened in a parti
ular engagement, rather than what happens in



6 1. CRISP-DMgeneral.

Figure 1.1: Four Level Breakdown of the CRISP-DM Methodology for DataMining.
1.2 The referen
e modelA

ording to CRISP-DM, a given data mining proje
t has a life 
y
le 
on-sisting of six phases. Figure 1.2 shows the phases of a data mining pro
ess.The sequen
e of the phases is not rigid. Moving ba
k and forth betweendi�erent phases is always required. It depends on the out
ome of ea
h phasewhi
h phase or whi
h parti
ular task of a phase, has to be performed next.The arrows indi
ate the most important and frequent dependen
ies betweenphases. Data mining is not over on
e a solution is deployed. The lessonslearned during the pro
ess and from the deployed solution 
an trigger new,often more fo
used business questions. Subsequent data mining pro
esseswill bene�t from the experien
es of previous ones.In the following, we outline ea
h phase brie�y.



1.2 The referen
e model 7

Figure 1.2: Phases of the CRISP-DM referen
e model.Business understandingThis initial phase fo
uses on understanding the proje
t obje
tives and re-quirements from a business perspe
tive, then 
onverting this knowledge intoa data mining problem de�nition and a preliminary plan designed to a
hievethe obje
tives.Data understandingThe data understanding phase starts with an initial data 
olle
tion and pro-
eeds with a
tivities in order to get familiar with the data, to identify dataquality problems, to dis
over �rst insights into the data or to dete
t inter-esting subsets to form hypotheses for hidden information.



8 1. CRISP-DMData preparationThe data preparation phase 
overs all a
tivities to 
onstru
t the �nal dataset(data that will be fed into the modeling tool(s)) from the initial raw data.Data preparation tasks are likely to be performed multiple times and not inany pres
ribed order. Tasks in
lude table, re
ord and attribute sele
tion aswell as transformation and 
leaning of data for modeling tools.ModelingIn this phase, various modeling te
hniques are sele
ted and applied and theirparameters are 
alibrated to optimal values. Typi
ally, there are severalte
hniques for the same data mining problem type. Some te
hniques havespe
i�
 requirements on the form of data. Therefore, stepping ba
k to thedata preparation phase is often ne
essary.EvaluationAt this stage in the proje
t you have built a model (or models) that appearsto have high quality from a data analysis perspe
tive. Before pro
eeding to�nal deployment of the model, it is important to more thoroughly evaluatethe model and review the steps exe
uted to 
onstru
t the model to be 
ertainit properly a
hieves the business obje
tives. A key obje
tive is to determineif there is some important business issue that has not been su�
iently 
on-sidered. At the end of this phase, a de
ision on the use of the data miningresults should be rea
hed.DeploymentCreation of the model is generally not the end of the proje
t. Even if thepurpose of the model is to in
rease knowledge of the data, the knowledgegained will need to be organized and presented in a way that the 
ustomer
an use it. It often involves applying �live� models within an organization'sde
ision making pro
esses, for example in real-time personalization of Web



1.2 The referen
e model 9pages or repeated s
oring of marketing databases. However, depending on therequirements, the deployment phase 
an be as simple as generating a reportor as 
omplex as implementing a repeatable data mining pro
ess a
ross theenterprise. In many 
ases it is the 
ustomer, not the data analyst, who
arries out the deployment steps. However, even if the analyst will not 
arryout the deployment e�ort it is important for the 
ustomer to understand upfront what a
tions need to be 
arried out in order to a
tually make use ofthe 
reated models.Images used in this 
hapter and more information about the CRISP-DMstandard pro
ess 
an be found at http://www.
risp-dm.org.





CHAPTER 2
Ba
kground

This 
hapter provides some preliminaries ba
kground about data miningte
hniques used in this work. First in Se
tion 2.1 a new and simple 
las-si�
ation of the pro
esses known as data mining is given, then in Se
tion 2.2
lustering algorithms are presented. Se
tion 2.3 explains supervised learningmethods and �nally Se
tion 2.4 presents some related works on unsuper-vised and supervised learning in 
as
ade, automati
 
lusters validation andma
hine vision applied in petroleum geology.2.1 A new Data Mining visionAs mentioned before, data mining is de�ned as the pro
ess of dis
overingpatterns in data. How are the patterns expressed? Useful patterns allowus to make nontrivial predi
tions on new data. There are two extremes forthe expression of a pattern: as a bla
k box whose innards are e�e
tivelyin
omprehensible and as a transparent box whose 
onstru
tion reveals the
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kgroundstru
ture of the pattern. Both, we are assuming, make good predi
tions.The di�eren
e is whether or not the patterns that are mined are representedin terms of a stru
ture that 
an be examined, reasoned about, and usedto inform future de
isions. Witten an Frank [78℄ 
all it stru
tural patternsbe
ause they 
apture the de
ision stru
ture in an expli
it way. In otherwords, patterns help to explain something about the data.The new interest in data mining may be attributed to the fa
t that thenew set of pro
esses that are 
alled data mining are a super set of the pro-
esses that previously were known as data mining. The original data miningpro
esses were summarized as a 
olle
tion of statisti
al analysis. The newdata mining pro
esses in
lude several ma
hine learning te
hniques as wellas statisti
al analysis. The addition of the re
ently popularized ma
hinelearning and intelligent pro
esses su
h as arti�
ial neural networks, geneti
algorithms, fuzzy logi
, and modi�ed 
luster analyses have 
onsiderably in-
reased the 
apabilities and utilities o�ered by data mining.Many authors have o�ered di�erent 
lassi�
ations of the pro
esses thatare 
olle
tively known as data mining [77℄. The most appropriate of thesede�nitions (one that suites petroleum industry most appropriately) seems tobe the one that identi�es two 
lasses of data mining pro
esses. These aredes
riptive and predi
tive data mining. In several 
ases, des
riptive datamining 
an be 
onsidered as a subset of predi
tive data mining. In otherwords, in order to perform predi
tive data mining su

essfully, one, mostprobably, will have to perform a des
riptive data mining �rst and then usethe information and the results of this pro
ess to 
omplete the predi
tivedata mining.2.1.1 Des
riptive Data MiningDes
riptive data mining is very useful for getting an initial understanding ofthe presented data. Des
riptive data mining is an exploratory pro
ess andattempts to dis
over patterns and relationships between di�erent featurespresent in the database. During the des
riptive data mining pro
ess the



2.1 A new Data Mining vision 13data miner must keep in mind that relevan
e is an important issue. In otherwords, the relationships dis
overed by the miner must be those that userswould 
are about. During this pro
ess many non-obvious patters may popout that may be of interest to the data owners.The tools used during the des
riptive data mining pro
ess are usually
onsisted of di�erent types of 
luster analysis su
h as hierar
hi
al 
lustering,k-mean 
lustering, and fuzzy 
-mean 
lustering. Other popular des
riptivedata mining tools are asso
iation/
lassi�
ation rule indu
tion te
hniques.
2.1.2 Predi
tive Data MiningAs was previously mentioned, predi
tive data mining is a super set thatshould in
lude des
riptive data mining as part of its pro
esses, or at least,that is how we would like to de�ne it based on our past experien
e. Duringthe predi
tive data mining the des
riptive data mining pro
esses are usedas a prelude to development of a predi
tive model. The predi
tive model
an then be used in order to answer questions and assist the data miner inidentifying trends in the data. What is most interesting about predi
tivedata mining that distinguishes it from the des
riptive data mining is that it
an identify the type of patterns that might not yet exist in the dataset buthas the potential of developing.Unlike the des
riptive data mining that is an unsupervised pro
ess, pre-di
tive data mining is very mu
h a supervised pro
ess. Predi
tive data min-ing not only dis
overs the present patterns and information in the data itattempts to solve problems. Through the existen
e of modeling pro
essesin the analysis the predi
tive data mining 
an answer questions that 
annotbe answered by other te
hniques. Tools that are used in the predi
tive datamining pro
ess in
lude de
ision trees, neural networks, geneti
 algorithmsand fuzzy systems. De
ision trees are ideal for solving problems that 
an bedisse
ted into a logi
al progression of events [51℄.
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kground2.2 Clustering te
hniquesCluster analysis is an unsupervised learning method that 
onstitutes a 
or-nerstone of an intelligent data analysis pro
ess. It is used for the explorationof inter-relationships among a 
olle
tion of patterns, by organizing them intohomogeneous 
lusters. It is 
alled unsupervised learning be
ause unlike 
las-si�
ation (known as supervised learning), no a priori labeling of some patternsis available to use in 
ategorizing others and inferring the 
luster stru
ture ofthe whole data [42℄. It is de�ned as the task of 
ategorizing obje
ts havingseveral attributes into di�erent 
lasses su
h that the obje
ts belonging to thesame 
lass are similar, and those that are broken down into di�erent 
lassesare not. Intra-
onne
tivity is a measure of the density of 
onne
tions betweenthe instan
es of a single 
luster. A high intra-
onne
tivity indi
ates a good
lustering arrangement be
ause the instan
es grouped within the same 
lus-ter are highly dependent on ea
h other. Inter-
onne
tivity is a measure of the
onne
tivity between distin
t 
lusters. A low degree of inter
onne
tivity isdesirable be
ause it indi
ates that individual 
lusters are largely independentof ea
h other.Every instan
e in the dataset is represented using the same set of at-tributes. The attributes are 
ontinuous, 
ategori
al or binary. To indu
ea hypothesis from a given data set, a learning system needs to make as-sumptions about the hypothesis to be learned. These assumptions are 
alledbiases. Sin
e every learning algorithm uses some biases, it behaves well insome domains where its biases are appropriate while it performs poorly inother domains.A problem with the 
lustering methods is that the interpretation of the
lusters may be di�
ult. In addition, the algorithms will always assign thedata to 
lusters even if there were no 
lusters in the data. Therefore, ifthe goal is to make inferen
es about its 
luster stru
ture, it is essential toanalyse whether the data set exhibits a 
lustering tenden
y. In a real-worldappli
ation there may be errors (
alled noise) in the 
olle
ted data set due toina

urate measurement or due to missing values therefore a pre-pro
essing
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hniques 15is needed (e.g. 
hoose a strategy for handling missing attribute values).The 
hoi
e of whi
h spe
i�
 learning algorithm to use is a 
riti
al step, too.The issue of relating the learning algorithms to the type of data and to thenature of the problem to be solved still remains an open and fundamentalproblem [39℄.Cluster analysis is a di�
ult problem be
ause many fa
tors (su
h as ef-fe
tive similarity measures, 
riterion fun
tions, algorithms and initial 
ondi-tions) 
ome into play in devising a well tuned 
lustering te
hnique for a given
lustering problem. Moreover, it is well known that no 
lustering method 
anadequately handle all sorts of 
luster stru
tures (shape, size and density).Sometimes the quality of the 
lusters that are found 
an be improved bypre-pro
essing the data. It is not un
ommon to try to �nd noisy values andeliminate them by a prepro
essing step. Another 
ommon te
hnique is to usepost-pro
essing steps to try to �x up the 
lusters that have been found. Forexample, small 
lusters are often eliminated sin
e they frequently representgroups of outliers (instan
es with noise). Alternatively, two small 
lustersthat are 
lose together 
an be merged. Finally, large 
lusters 
an be splitinto smaller 
lusters.Outlier dete
tion is one of the major obje
tives in data mining, whosetask is to �nd small groups of data obje
ts that are ex
eptional when 
om-pared with rest large amount of data. Outlier mining has strong appli
ationba
kground in tele
ommuni
ation, �nan
ial fraud dete
tion, and data 
lean-ing, sin
e the patterns lying behind the outliers are usually interesting forhelping the de
ision makers to make pro�t or improve the servi
e quality.Generally, 
lustering algorithms 
an be 
ategorized into partitioningmeth-ods, hierar
hi
al methods, density-based methods, and grid-based methods.An ex
ellent survey of 
lustering te
hniques 
an be found in [39℄.2.2.1 Partitioning methodsPartitioning methods are divided into two major sub
ategories, the 
entroidand the medoids algorithms. The 
entroid algorithms represent ea
h 
luster
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kgroundby using the gravity 
entre of the instan
es. The medoid algorithms representea
h 
luster by means of the instan
es 
losest to the gravity 
entre.The most well-known 
entroid algorithm is the k-means [39℄. The k-means method partitions the data set into k subsets su
h that all points ina given subset are 
losest to the same 
entre. In detail, it randomly sele
ts kof the instan
es to represent the 
lusters. Based on the sele
ted attributes,all remaining instan
es are assigned to their 
loser 
entre. K-means then
omputes the new 
enters by taking the mean of all data points belongingto the same 
luster. The operation is iterated until there is no 
hange inthe gravity 
entres. If k 
annot be known ahead of time, various values of k
an be evaluated until the most suitable one is found. The e�e
tiveness ofthis method as well as of others relies heavily on the obje
tive fun
tion usedin measuring the distan
e between instan
es. The di�
ulty is in �nding adistan
e measure that works well with all types of data.Generally, the k-means algorithm has the following important properties:1) It is e�
ient in pro
essing large data sets, 2) It often terminates at a lo
aloptimum, 3) The 
lusters have spheri
al shapes, 4) It is sensitive to noise.2.2.2 Hierar
hi
al methodsThe hierar
hi
al methods group data instan
es into a tree of 
lusters. Thereare two major methods under this 
ategory. One is the agglomerative method,whi
h forms the 
lusters in a bottom-up fashion until all data instan
es be-long to the same 
luster. The other is the divisive method, whi
h splits up thedata set into smaller 
luster in a top-down fashion until ea
h 
luster 
ontainsonly one instan
e. Both divisive algorithms and agglomerative algorithms
an be represented by dendrograms (see Figure 2.1). Both agglomerativeand divisive methods are known for their qui
k termination. However, bothmethods su�er from their inability to perform adjustments on
e the splittingor merging de
ision is made. Other advantages are: 1) does not require thenumber of 
lusters to be known in advan
e, 2) 
omputes a 
omplete hierar-
hy of 
lusters, 3) good result visualizations are integrated into the methods,
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hniques 174) a ��at� partition 
an be derived afterwards (e.g. via a 
ut through thedendrogram).

Figure 2.1: Example of dendrogram and 
olor mosai
 with two open nodes(
yan nodes).Hierar
hi
al 
lustering te
hniques use various 
riteria to de
ide �lo
ally�at ea
h step whi
h 
lusters should be joined (or split for divisive approa
hes).For agglomerative hierar
hi
al te
hniques, the 
riterion is typi
ally to mergethe �
losest� pair of 
lusters, where �
lose� is de�ned by a spe
i�ed measureof 
luster proximity. There are three de�nitions of the 
loseness betweentwo 
lusters: single-link, 
omplete-link and average-link. The single-linksimilarity between two 
lusters is the similarity between the two most similarinstan
es, one of whi
h appears in ea
h 
luster. Single link is good at handlingnon-ellipti
al shapes, but is sensitive to noise and outliers. The 
omplete-link similarity is the similarity between the two most dissimilar instan
es, one
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h 
luster. Complete link is less sus
eptible to noise and outliers, but
an break large 
lusters, and has trouble with 
onvex shapes. The average-link similarity is a 
ompromise between the two.2.2.3 Ensembles of 
lustering algorithmsThe theoreti
al foundation of 
ombining multiple 
lustering algorithms isstill in its early stages. In fa
t, 
ombining multiple 
lustering algorithms isa more 
hallenging problem than 
ombining multiple 
lassi�ers. In [55℄ thereason that impede the study of 
lustering 
ombination has been identi�ed asvarious 
lustering algorithms produ
e largely di�erent results due to di�erent
lustering 
riteria, 
ombining the 
lustering results dire
tly with integrationrules, su
h as sum, produ
t, median and majority vote 
an not generate agood meaningful result.Cluster ensembles 
an be formed in a number of di�erent ways [66℄, su
has (1) the use of a number of di�erent 
lustering te
hniques (either deliber-ately or arbitrarily sele
ted); (2) the use of a single te
hnique many timeswith di�erent initial 
onditions; (3) the use of di�erent partial subsets offeatures or patterns.2.2.4 Other 
lustering te
hniquesDensity-based 
lustering algorithms try to �nd 
lusters based on density ofdata points in a region. One of the most well known density-based 
lusteringalgorithms is the DBSCAN [25℄.Grid-based 
lustering algorithms �rst quantize the 
lustering spa
e into a�nite number of 
ells (hyper-re
tangles) and then perform the required opera-tions on the quantized spa
e.Some of the grid-based 
lustering algorithms are:STatisti
al INformation Grid-basedmethod -STING [76℄, WaveCluster [65℄,and CLustering In QUEst - CLIQUE [1℄.
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hniques 192.3 Supervised learning te
hniquesIndu
tive ma
hine learning is the pro
ess of learning a set of rules frominstan
es (examples in a training set), or more generally speaking, 
reatinga 
lassi�er that 
an be used to generalize from new instan
es [43℄.The �rst step is de�ning the dataset. Every instan
e in any dataset usedby ma
hine learning algorithms is represented using the same set of features.The features may be 
ontinuous, 
ategori
al or binary. If instan
es are givenwith known labels (the 
orresponding 
orre
t outputs) then the learning is
alled supervised, in 
ontrast to unsupervised learning, where instan
es areunlabeled.The 
hoi
e of whi
h spe
i�
 learning algorithm should be used is a 
riti
alstep. On
e preliminary testing is judged to be satisfa
tory, the 
lassi�er(mapping from unlabeled instan
es to 
lasses) is available for routine use.The 
lassi�er's evaluation is most often based on predi
tion a

ura
y (theper
entage of 
orre
t predi
tion divided by the total number of predi
tions).There are at least three te
hniques whi
h are used to 
al
ulate a 
lassi�era

ura
y when applied to instan
es not in
luded in the learning set. Onete
hnique is to split the training set by using two-thirds for training andthe other third for estimating performan
e. In another te
hnique, known as
ross-validation, the training set is divided into mutually ex
lusive and equal-sized subsets and for ea
h subset the 
lassi�er is trained on the union of allthe other subsets. The average of the error rate of ea
h subset is thereforean estimate of the error rate of the 
lassi�er. Leave-one-out validation is aspe
ial 
ase of 
ross validation. All test subsets 
onsist of a single instan
e.This type of validation is, of 
ourse, more expensive 
omputationally, butuseful when the most a

urate estimate of a 
lassi�er's error rate is required.Supervised 
lassi�
ation is one of the tasks most frequently 
arried out byso-
alled Intelligent Systems. Thus, a large number of te
hniques have beendeveloped based on arti�
ial intelligen
e (logi
al/symboli
 te
hniques), per-
eptron based te
hniques and statisti
s (bayesian networks, instan
e-basedte
hniques). In next se
tions, we will fo
us on the most important super-
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kgroundvised ma
hine learning te
hniques, starting with logi
al/symboli
 algorithms.Logi
 based algorithms in
ludes de
ision trees and rule-based 
lassi�ers.All supervised learning te
hniques were tested in a real industry 
ontextusing WEKA, the open sour
e data mining software written in Java. WEKAis a suite of tools for data pre-pro
essing, 
lassi�
ation, regression, 
lustering,asso
iation rules, and visualization [36℄.2.3.1 De
ision treesDe
ision trees are trees that 
lassify instan
es by sorting them based onfeature values. Ea
h node in a de
ision tree represents a feature in an instan
eto be 
lassi�ed, and ea
h bran
h represents a value that the node 
an assume.Instan
es are 
lassi�ed starting at the root node and sorted based on theirfeature values.The problem of 
onstru
ting optimal binary de
ision trees is an NP-
omplete problem and thus theoreti
ians have sear
hed for e�
ient heuristi
sfor 
onstru
ting near-optimal de
ision trees. This problem 
an be solved re-
ursively. First, sele
t an attribute to pla
e at the root node and make abran
h for ea
h possible value. This splits up the example set into subsets,one for ea
h value of the attribute. In order to sele
t the attribute to 
on-sider, we must evaluate the results, and sele
t the attribute that splits theexample set in subsets 
ontaining instan
es of the same 
lass. To perfe
tlydis
riminate 
lasses valuing a single attribute is often impossible, so we must
hose the most �pure� division. Repeating re
ursively the pro
ess on thesubsets, we 
an rea
h a perfe
t division between 
lasses and then stop the
lassi�
ation.The feature that best divides the training data would be the root nodeof the tree. There are numerous methods for �nding the feature that bestdivides the training data su
h as information gain [37℄ and gini index [11℄.The most well-know algorithm in the literature for building de
ision treesis the C4.5 [57℄. In our experiments we use J48 algorithm, whi
h is animplementation of C4.5.
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hniques 21One of the most useful 
hara
teristi
s of de
ision trees is their 
ompre-hensibility. People 
an easily understand why a de
ision tree 
lassi�es aninstan
e as belonging to a spe
i�
 
lass. Sin
e a de
ision tree 
onstitutes ahierar
hy of tests, an unknown feature value during 
lassi�
ation is usuallydealt with by passing the example down all bran
hes of the node where theunknown feature value was dete
ted, and ea
h bran
h outputs a 
lass distri-bution. The output is a 
ombination of the di�erent 
lass distributions thatsum to 1. The assumption made in the de
ision trees is that instan
es belong-ing to di�erent 
lasses have di�erent values in at least one of their features.De
ision trees tend to perform better when dealing with dis
rete/
ategori
al.Random Forests is an algorithm based on a 
ombination of tree predi
-tors su
h that ea
h tree depends on the values of a random ve
tor sampledindependently and with the same distribution for all trees in the forest [12℄.The generalization error for forests 
onverges to a limit as the number oftrees in the forest be
omes large.Rotation Forest is an algorithm for generating ensembles of 
lassi�ers [60℄.It 
onsists in splitting the feature set into K subsets, running prin
ipal 
om-ponent analysis separately on ea
h subset and then reassembling a new ex-tra
ted feature set while keeping all the 
omponents. The data is transformedlinearly into the new features. A de
ision tree 
lassi�er is trained with thisdata set. Di�erent splits of the feature set will lead to di�erent rotations,thus diverse 
lassi�ers are obtained. On the other hand, the informationabout the s
atter of the data is 
ompletely preserved in the new spa
e ofextra
ted features. In this way it builts a

urate individual 
lassi�ers. Thus,we target diversity and a

ura
y together.2.3.2 Learning set of rulesDe
ision trees 
an be translated into a set of rules by 
reating a separaterule for ea
h path from the root to a leaf in the tree [57℄. However, rules
an also be dire
tly indu
ed from training data using a variety of rule-basedalgorithms. Classi�
ation rules represent ea
h 
lass by disjun
tive normal
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onstru
t the smallest rule-set that is 
onsistentwith the training data. A large number of learned rules is usually a sign thatthe learning algorithm is attempting to �remember� the training set, insteadof dis
overing the assumptions that govern it.For the task of learning binary problems, rules are more 
omprehensiblethan de
ision trees be
ause typi
al rule-based approa
hes learn a set of rulesfor only the positive 
lass. Moreover, the divide and 
onquer approa
h (usedby de
ision trees) is usually more e�
ient than the separate and 
onquerapproa
h (used by rule-based algorithms). Separate-and-
onquer algorithmslook at one 
lass at a time, and try to produ
e rules that uniquely identifythe 
lass. They do this independent of all the other 
lasses in the trainingset. For this reason, for small datasets, it may be better to use a divide-and-
onquer algorithm that 
onsiders the entire set at on
e.In our experiments we use PART and JRIP. PART is an algorithm for ruleindu
tion that 
ombines two di�erent approa
hes (C4.5 and RIPPER) in anattempt to avoid their respe
tive problems [30℄. The method 
ombines thedivide-and-
onquer strategy for de
ision tree learning with the separate-and-
onquer one for rule learning. It adopts the separate-and-
onquer strategy inthat it builds a rule, removes the instan
es it 
overs, and 
ontinues 
reatingrules re
ursively for the remaining instan
es until none are left. However, itdi�ers from the standard approa
h in the way that ea
h rule is 
reated. Inessen
e, to make a single rule, a pruned de
ision tree is built for the 
urrentset of instan
es, the leaf with the largest 
overage is made into a rule, and thetree is dis
arded. JRIP is the WEKA implementation of RIPPER (RepeatedIn
remental Pruning to Produ
e Error Redu
tion). It is able to generate
ompa
t and easy to read rules [19℄.2.3.3 Naive bayes 
lassi�ersConversely to arti�
ial neural networks, statisti
al approa
hes are 
hara
-terized by having an expli
it underlying probability model, whi
h providesa probability that an instan
e belongs in ea
h 
lass, rather than simply a
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lassi�
ation. Bayesian networks are the most well known representative ofstatisti
al learning algorithms. A 
omprehensive book on Bayesian networksis [40℄. Naive Bayesian networks (NB) are very simple Bayesian networkswhi
h are 
omposed of dire
ted a
y
li
 graphs with only one parent (repre-senting the unobserved node) and several 
hildren (
orresponding to observednodes) with a strong assumption of independen
e among 
hild nodes in the
ontext of their parent. The major advantage of the naive Bayes 
lassi�er isits short 
omputational time for training. In addition, sin
e the model hasthe form of a produ
t, it 
an be 
onverted into a sum through the use oflogarithms with signi�
ant 
onsequent 
omputational advantages.2.3.4 Linear regressionLinear regression 
an easily be used for 
lassi�
ation in domains with numeri
attributes. Indeed, we 
an use any regression te
hnique, whether linear ornon-linear, for 
lassi�
ation. The tri
k is to perform a regression for ea
h
lass, setting the output equal to one for training instan
es that belong tothe 
lass and zero for those that do not. The result is a linear expression forthe 
lass. Then, given a test example of unknown 
lass, 
al
ulate the valueof ea
h linear expression and 
hoose the one that is largest. This methodis sometimes 
alled multiresponse linear regression. We use Logisti
, animplementation of a two-
lass logisti
 regression model with a ridge estima-tor [46℄.Classifi
ationViaRegression is an algorithm that implements 
lassi-�
ation using regression methods as explained in [29℄. Model trees are atype of de
ision tree with linear regression fun
tions at the leaves, useful forpredi
ting 
ontinuous numeri
 values. They 
an be applied to 
lassi�
ationproblems by employing a standard method of transforming a 
lassi�
ationproblem into a problem of fun
tion approximation.A 
omplete review of supervised ma
hine learning te
hniques, in
ludingper
eptron based te
hniques (single or multi layered per
eptrons), radial ba-sis fun
tion networks, instan
e based learning and support ve
tor ma
hines,
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an be found in [43℄.2.4 Related worksThe new approa
h presented in this Ph.D. thesis uses a two step algorithm:�rst 
lustering is used to obje
tively and qui
kly evaluate a large dataset,then de
ision trees or regression methods are used to predi
t and propagatethe 
hara
terization in new unknown dataset.Unsupervised and supervised learning algorithms in 
as
ade are a knownsolution in all those problems where input are large datasets totally or par-tially unlabelled and where the goal is to 
reate a predi
tive model.Clustering is a major tool used in a number of appli
ations, basi
 dire
-tions in whi
h 
lustering is of use are: data redu
tion, hypothesis generation,hypothesis testing an predi
tion based on groups [67℄. Hierar
hi
al 
luster-ing, a te
hnique used in this Ph.D. work, do not a
tually partition a data setinto 
lusters, but 
ompute a hierar
hi
al model, whi
h re�e
ts its possibly
lustering stru
ture. The �rst problem with these algorithms is that 
lustersare not expli
it and have to be determined somehow from the representa-tion. Several 
lustering validity approa
hes have been developed [47℄. Inliterature, some methods for automati
 
lusters extra
tion from a hierar
hi-
al representation 
an be found on [3, 61, 8℄. In [3℄ the authors propose amethod for rea
hability plots that is based on the steepness of the �dents�in a rea
hability plot. Unfortunately, this method requires an input pa-rameter, whi
h is di�
ult to understand and hard to determine. In [61℄,the authors analyze the relation between hierar
hi
al 
lustering algorithmsthat have di�erent outputs, i.e. between the Single-Link method, whi
h pro-du
es a dendrogram,and OPTICS, whi
h produ
es a rea
hability plot. Theydevelop methods to 
onvert dendrograms and rea
hability plots into ea
hother. Then they introdu
e a new te
hnique to 
reate a tree that 
ontainsonly the signi�
ant 
lusters from a hierar
hi
al representation as nodes. In athird work, [8℄, several 
luster evaluation te
hniques for gene expression data
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ribed. Normalisation and validity aggregation strategies areproposed to improve the predi
tion of the number of relevant 
lusters.Theauthors use K-means 
lustering algorithm and the work is tested only overa 2-
lasses datasets. Another interesting and pioneering work is [10℄ wherea non-horizontal dendrogram 
ut is proposed for the �rst time. This paperpresents a tool for intera
tive interpretation of hierar
hi
al 
lustering resultsand it has been tested on a ele
tri
 load 
urve dataset. Even if this last paperintrodu
es the idea of a non-horizontal 
ut of the dendrogram, it does notprovide any automati
 pro
edure for this task. In this Ph.D. work we thende
ided to extend and apply the 
on
epts of automati
 
luster extra
tion,presented in the former papers, in this parti
ular tree 
utting pro
ess, seeSe
tion 5.1.The goal of supervised learning is to build a 
on
ise model of the distri-bution of 
lass labels in terms of predi
tor features. The resulting 
lassi�ersis then used to assign 
lass labels to the testing instan
es where the val-ues of the predi
tor features are known, but the value of the 
lass label isunknown [43℄. Combining these two approa
hes we 
an take advantages interms of data understanding and predi
tion a

ura
y.Most appli
ations of 
ombined te
hniques are related to natural languageand text mining. For instan
e 
lustering 
an be used as a feature 
ompressionand/or extra
tion method: features are 
lustered into groups based on se-le
ted 
lustering 
riteria. Typi
ally, the parameters of the 
luster be
ome theweighted average of the parameters of its 
onstituent features [45℄. Anotherinteresting resear
h area, in text 
lassi�
ation, is semi-supervised learning:training data 
ontain both labelled and unlabelled examples. Clustering 
anbe used, in 
as
ade with supervised algorithms, as a method to extra
t infor-mation from the unlabelled data in order to boost the 
lassi�
ation task. Forinstan
e is used: i) to 
reate a training set from unlabelled data [31℄, [20℄,ii) to augment the dataset with new features [59℄ and iii) to 
o-train a 
las-si�er [44℄.In reservoir analysis best results are given when the domain expert iden-
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kgroundti�es right number of 
lusters. Very interesting solutions to this problem,that use 
luster ensemble te
hniques, are presented in [33℄. There are a largenumber of appli
ations of supervised learning algorithms in reservoir 
hara
-terization, modelling and predi
tion. They use Markov 
hain [9℄ to predi
tfa
ies distribution also integrating di�erent sour
es (
onventional log, imagelog and 
ores) [7℄ from same well. Some 
lustering te
hniques help the geolo-gist in fa
ies analysis [81℄ and 
ombining this with neural networks led to thedevelopment of new interpretative methods for reservoir 
hara
terization [41℄.Subsurfa
e data analysis also involves ma
hine vision algorithms in orderto extra
t image features and use them as dataset for unsupervised learningalgorithms. Main topi
s of well log image analysis are 
urve dete
tion andimage segmentation. Several approa
hes have been studied for dete
tion of
urves, that represent fra
tures, over a noisy image su
h as [80℄, [74℄, highpro
ess time is the 
ru
ial disadvantage of these methods. In this Ph.D. workfra
tures dete
tion is based on [72℄: it uses a simpli�ed version of orientationspa
e as prepro
essing step for a generalized radon transformation [48℄.Image segmentation is used for porosity ro
k measurement: pores appearas 
ir
ular spots in log images. Segmentation algorithms are based on oneof two basi
 properties of intensity values: dis
ontinuity and similarity. Inthe �rst 
ategory, the approa
h is to partition an image based on abrupt
hanges in intensity, su
h as edges (i.e. Canny edge dete
tor [13℄). Theprin
ipal approa
hes in the se
ond 
ategory are based on partitioning animage into regions that are similar a

ording to a set of prede�ned 
riteria.Thresholding, region growing (i.e. [50℄), and region splitting and merging areexamples of methods in this 
ategory. Other proposed re
ent approa
hes [22℄are segmentation based on the mean shift pro
edure [21℄, multiresolutionsegmentation of low-depth-of-�eld images [75℄, a Bayesian-framework-basedsegmentation involving the Markov 
hain Monte Carlo te
hnique [70℄, andan EM-algorithm-based segmentation using a Gaussian mixture model [14℄.A sequential segmentation approa
h that starts with texture features andre�nes segmentation using 
olor features is explored in [17℄. An unsupervised
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h for segmentation of images 
ontaining homogeneous 
olor/textureregions has been proposed in [23℄. In this work the fo
us is on segmentationobtained by threshold operations. Other interesting te
hniques for automati
image texture analysis are developed in [79℄.





CHAPTER 3
Business & Data Understanding

In this 
hapter we will see an introdu
tion to the geologi
al ba
kground:petroleum exploration is the sear
h by petroleum geologists and geophysi-
ists for hydro
arbon deposits beneath the Earth's surfa
e, su
h as oil andnatural gas. The extra
tion (or produ
tion) of petroleum is the pro
essby whi
h usable petroleum is extra
ted and removed from the earth. Oiland gas exploration and produ
tion (E&P) are grouped under the s
ien
e ofpetroleum geology.Following the CRISP-DM model this is the Business & Data Under-standing phase where the fo
us is on the proje
t obje
tives and requirementsfrom a business perspe
tive. In this phase it is important to identify the key
on
epts and 
onvert them into a data mining problem de�nition. Availabledata are presented and observed from a te
hni
al point of view.This 
hapter is stru
tured as follows: Se
tion 3.1 presents some basi
s
on
ept about petroleum E&P, Se
tion 3.2 shows available data in reservoirmodeling pro
ess. Se
tion 3.3 explains the �manual� methodology used for
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al interpretation of subsurfa
e data that this work tries to 
onvert ina semi-automated pro
ess. Finally Se
tion 3.4 presents two main 
ategoriesof well log.3.1 Petroleum Exploration and Produ
tionIn order to have a 
ommer
ial deposit of gas or oil, three geologi
al 
onditionsmust have been met. First, there must be a sour
e ro
k in the subsurfa
e ofthe area that generated the gas or oil at some time in the geologi
al past.Se
ond, there must be a separate, subsurfa
e reservoir ro
k to hold the gasor oil. Third, there must be a trap on the reservoir ro
k to 
on
entrate thegas or oil into 
ommer
ial quantities.The uppermost 
rust of the earth in oil-and-gas produ
ing areas is 
om-posed of sedimentary ro
k layers. Sedimentary ro
ks are the sour
e andreservoir ro
ks for gas and oil. These ro
ks are 
alled sedimentary ro
ks be-
ause they are 
omposed of sediments. Sediments are (1) parti
les su
h assand grains that were formed by the breakdown of pre-existing ro
ks andtransported, (2) seashells, or (3) salt that pre
ipitated from of water. Thesedimentary ro
ks that make up the earth's 
rust are millions and sometimesbillions of years old. During the vast expanse of geologi
al time, sea levelhas not been 
onstant. Many times in the past, the seas have risen to 
overthe land and then fallen to expose the land. During these times, sedimentswere deposited (Figure 3.1). These sediments are relatively simple mate-rials su
h as sands deposited along bea
hes, mud on the sea bottom, andbeds of seashells. These an
ient sediments, piled layer upon layer, form thesedimentary ro
ks that are drilled to �nd and produ
e oil and gas.The sour
e of gas and oil is the organi
 matter that is buried and preservedin the an
ient sedimentary ro
ks. These ro
ks 
ontain not only inorgani
 par-ti
les su
h as sand grains and mud, but also dead plant and animal material.The most 
ommon organi
-ri
h sedimentary ro
k (the sour
e ro
k for mostof the gas and oil) is bla
k shale. It was deposited as organi
-ri
h mud on an
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Figure 3.1: Sediments deposition.an
ient o
ean bottom.Gas and oil are relatively light in density 
ompared to water that alsoo

urs in the subsurfa
e sedimentary ro
ks. After oil and gas have beengenerated, they rise due to buoyan
y through fra
tures in the subsurfa
ero
ks. The rising gas and oil 
an interse
t a layer of reservoir ro
k. A reservoirro
k is a sedimentary ro
k that 
ontains billions of tiny spa
es 
alled pores.A 
ommon sedimentary ro
k is sandstone 
omposed of sand grains similarto the sand grains on a bea
h or in a river 
hannel. Sand grains are likespheres, and there is no way the grains will �t together perfe
tly. There arepore spa
es between the sand grains on a bea
h and in a sandstone ro
k. Thegas and oil �ow into the pores of the reservoir ro
k layer (see Figure 3.2).How are subsurfa
e deposits of gas and oil lo
ated? During the earlydays of drilling, it was thought that there were large, �owing underground
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Figure 3.2: Gas, oil and water �ow into the pores of a ro
k.rivers and subsurfa
e pools of oil. Early drillers, however, had some su

essbe
ause many subsurfa
e traps are leaky. There are small fra
tures in the
apro
k, and some of the oil and gas leaks up and seeps onto the surfa
e.The early drillers lo
ated their Wells on the seeps.By the early 1900s, the prin
iples of subsurfa
e gas and oil deposits werebe
oming better known. Oil 
ompanies realized that by mapping how thesedimentary ro
k layers 
rop our on the surfa
e of the ground, the ro
k layers
ould be proje
ted into the subsurfa
e, and traps 
ould be lo
ated. Geologistswere hired to map ro
k out
rops.Later, seismi
 method was developed to dete
t hidden traps in the sub-surfa
e. Seismi
 exploration uses a sour
e and dete
tor. The sour
e is lo
atedon or near the surfa
e and gives o� an impulse of sound energy into the sub-surfa
e. The sound energy boun
es o� sedimentary ro
k layers and returnsto the surfa
e to be re
orded by the dete
tor. Sound e
hoes are used to makean image of the subsurfa
e ro
k layers.The only way to know for sure if a trap 
ontains 
ommer
ial amounts ofgas and oil is to drill a well. A well drilled to �nd a new gas or oil �eld is
alled a wild
at well. Most wild
at wells are dry holes with no 
ommer
ialamounts of gas or oil. The well is drilled using a rotary drilling rig. There 
anbe thousands of feet of drillpipe with a bit on the end, 
alled the drillstring,suspended in the well.To evaluate the well, a servi
e 
ompany runs a wireline well log. A loggingtru
k is driven out to the well. A long 
ylinder 
ontaining instruments 
alled
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Figure 3.3: Migration and trap of hydro
arbons.a sonde is unloaded from the tru
k and lowered down the well on a wireline.As the sonde is brought ba
k up the well, the instruments remotely sense theele
tri
al, soni
, and radioa
tive properties of the surrounding ro
ks and their�uids. These measurements are digitally re
orded in a well log (Figure 3.4).It is used to determine the 
omposition of ea
h ro
k layer, whether the ro
klayer has pores, and what �uid (water, gas, or oil) is in the pores. Dependingon the test results, the well 
an be plugged and abandoned as a dry hole or
ompleted as a produ
er.3.2 Reservoir modeling and interpretationAs it 
an be easily understood, geos
ientists need reliable and a

urate in-formation to support their studies and help them in their sear
h for re-sour
es [63℄. This information has di�erent origins su
h as out
rops or sub-surfa
e data.An out
rop is a visible exposure of bedro
k or an
ient super�
ial depositson the surfa
e of the Earth [38℄. Out
rops do not 
over the majority ofthe Earth's land surfa
e be
ause in most pla
es the bedro
k or super�
ialdeposits are 
overed by a mantle of soil and vegetation and 
annot be seenor examined 
losely. However in pla
es where the overlying 
over is removedthrough erosion or te
toni
 uplift, the ro
k may be exposed, or 
rop out. In
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Figure 3.4: A well logging tru
k re
ording a well log.petroleum resear
h out
rop information has been progressively repla
ed bydrilling data or 
ompleted by surfa
e geophysi
s or borehole geophysi
s, thelatter in
luding wireline logging.Subsurfa
e data 
an in
lude: surfa
e seismi
 data, 
ores and well logging.Information provided by surfa
e seismi
 is the only one that allows 
on-tinuous study of formation subsurfa
e. It 
ompletes our per
eption of theseformation on the out
rops. Two and three dimensional pi
tures of subsurfa
eare extremely important tools for exploration of subsurfa
e sin
e they givedire
t information on petrophysi
al properties of the formation.Core obtained while drilling, by virtue of their size and 
ontinuous nature,permit a thorough geologi
al analysis over a 
hosen interval. Even more they
an provide information at mi
ros
ope s
ale su
h as grain and pore size.



3.2 Reservoir modeling and interpretation 35Well logging is de�ned as:
• the a
t or pro
ess of making or re
ording a log;
• the method or te
hnique by whi
h subsurfa
e formations are 
hara
-terized relative to depth, by measurements or observation on the ro
ksof a borehole.A log is a 
ontinuous re
ord as a fun
tion of depth of observations madeon the ro
k and �uids of the geologi
 se
tion exposed in a well bore. Welllogs are of spe
ial interest for several reasons. They provide the only sour
eof data to give a

urate information on the depth and the apparent, andeven real, thi
kness of beds. They give a nearly 
ontinuous analysis of theformations and also they generally analyse a volume of ro
k that is oftengreater than the one represented by a 
ore or plug. Consequently, theyare more representative of the mean properties of the ro
k, espe
ially inheterogeneous ro
ks. But, at the same moment they provide a very detaildes
ription of the formations if images are re
orded. This is the reasonwhy logging data are so important. It is no more possible to 
on
eive anygeologi
al synthesis and reservoir evaluation without the exploitation of welllogging data.There are many types of logging tools, ranging from 
ommon measure-ments (pressure and temperature), to advan
e ro
k properties and fra
tureanalysis, �uid properties in the wellbore or formation properties. See Fig-ure 3.7 for an example of well log.The 
omplete 
hara
terization of depositional fa
ies and stru
tural fea-tures is an important step in the pro
ess of understanding the reservoir po-tentiality. Fa
ies distribution, depositional geometries, porosity types andfra
ture/stylolites identi�
ations are key parameters to 
orre
tly des
ribereservoirs. In the pro
ess of reservoir de�nition the availability of dire
tsubsurfa
e information (
ores) is fundamental, when dire
t subsurfa
e infor-mation are s
ar
e or their quality is poor the use of indire
t tools, to de�neand predi
t depositional fa
ies and stru
tural geometries, is important to
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omplete appre
iation of the entire reservoir. In this 
ase, it isimportant to properly 
alibrate the indire
t tools with the 
ore observationsand analysis. Image logs represent one of the more advan
ed and importantindire
t tools to des
ribe the ro
ks 
hara
teristi
s; when 
orre
tly 
alibratedwith 
ores and used in asso
iations the other 
onventional ele
tri
 logs, it
an represent a key element to predi
t fa
ies and 
hara
teristi
s in un-
oredse
tions of the reservoir.The FMI (Fullbore FormationMi
roImager, see Figure 3.5 and Figure 3.6)is an ele
tri
al imaging devi
e made by ele
trode that measure resistivity andrequire a 
ondu
tive borehole �uid. As with 
onventional resistivity loggingdevi
es, the resistivity measurement is a fun
tion of porosity, pore �uid, poregeometry, 
ementation and 
lay 
ontent and is in�uen
ed by mineralogy [54℄.Ea
h sensor of the ele
tri
al devi
e, makes a resistivity measurement of theborehole wall as a fun
tion of azimuth and depth. The resistivity loggingmeasurements, in general, represent a ro
k volume some distan
e into theformation, beyond the borehole wall. Normal drilling 
onditions for
e bore-hole �uid espe
ially into fra
tures, thereby 
reating a 
ondu
tivity 
ontrastwith the adja
ent ro
k formations. These 
ontrasts are measured by ele
tri-
al imaging devi
es whi
h makes them ex
ellent tools for fra
ture dete
tionand 
hara
terization. Considering the quality of the image it is possible alsoto use these devi
es to interpret every surfa
e that represent a 
ontrast of re-sistivity in the formation, thus beds with di�erent lithologi
al 
hara
teristi
s,layer surfa
es, erosional surfa
es.3.3 Geologi
al interpretation of subsurfa
e dataThe obje
tive of the geologi
al interpretation is to try to integrate and tointerpret image and ele
tri
al logs in order to 
orrelate all the logs to geo-logi
al 
hara
teristi
s of the ro
k (lithology, surfa
es, porosity) and of thedepositional environment or stratigraphi
 unit.The approa
h to the geologi
al 
hara
terization of FMI log image 
onsists
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Figure 3.5: FMI measurement devi
e with 
urrent path.in a visual analysis of the FMI images over the 
onsidered se
tion of the well.The analysis fo
us on the 
hara
teristi
s of the image and in parti
ular on:the homogeneity of the image (texture of the image); the type of features ob-served (linear surfa
es, pat
hes) on dimensions of features (
ontinuity, thi
k-ness); organization of features and image (organized, disorganized, aligned,sparse); the 
ontrast of resistivity between the matrix and the features andbetween di�erent features (high, low resistivity 
ontrast).These properties represent the main parameters to 
hara
terize the FMIimage and based on these 
hara
teristi
s the entire log is s
anned and stud-
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Figure 3.6: Examples of high resolution wireline imaging tools. (a) The FMIresistivity imager. (b) The STAR resistivity imager. (
) The CBIL a
ousti
imager.ied. At the end of this pro
ess it is possible to identify some repetitive
hara
teristi
s of the images that 
ombined between them supply a typi
alimage response to the FMI. In this way, it is possible to build a model that
onsiders the most important FMI images observed repeatedly on the log.The model is represented by a map (Textural Map, see Figure 3.8) whereall the observed FMI images are organized based on their main 
hara
teris-ti
s. All the FMI images 
an be grouped in FMI fa
ies distinguished on theirimage 
hara
teristi
s. The FMI fa
ies on
e pla
ed on the textural map 
overit entirely. The following step is to 
alibrate, over the 
ored intervals, theFMI texture fa
ies with 
ore images/des
riptions in order to assign to ea
h
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Figure 3.7: Example of image log and ele
tri
al log plotted together.
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ies a distin
tive geologi
al meaning. The �nal step of this pro
essis to interpret the propagate FMI fa
ies over the entire FMI log. The �nalresult is a log that asso
iates the FMI fa
ies with depth (FMI Texture Log,see Figure 3.9).

Figure 3.8: Example of FMI fa
ies identi�
ation: (top) FMI fa
ies 
hara
-terization, (bottom) textural map.Using the texture log, the texture map and the FMI fa
ies/
ore 
alibrationit is possible to have a better idea of the distribution of the di�erent geologi
al
hara
teristi
s over the 
onsidered se
tion.In order to implement a 
omplete geologi
al interpretation of all the data



3.4 Subsurfa
e data: image and ele
tri
 logs 41it is important to integrate image logs with ele
tri
 logs. The previous steps
an also be improved by adding information and log provided by other wellsin the same area. In this 
ase we 
an 
hara
terize the entire reservoir areaby using logs from di�erent wells.3.4 Subsurfa
e data: image and ele
tri
 logsThere are many types of logging tools, therefore there are many type of logs.Resistivity, porosity and a
ousti
 logs are 
ommon ele
tri
 logs type. Imagelogs or FMI logs are digital images a
quired by a spe
ial logging tool (seeFigure 3.5 in Se
tion 3.2 for a detailed view of the tool) within a borehole,see Figure 3.11 for an example. An interpretation of these measurements isthen made to lo
ate and quantify potential depth zones 
ontaining oil andgas [63℄.In this work we use all of the previous log types properly integrated in alarge dataset. While ele
tri
 logs are provided as table of numeri
al valuesalong the well depth, image logs are digital images that represent resistivitymeasurements of the ro
k formation taken by the wellbore surfa
e.3.4.1 Image logsImage logs are resistivity or a
ousti
 devi
es that measure 
ertain physi
alproperties of the ro
k at or near the well that 
an be displayed as imagesof the wellbore, whi
h 
an then be interpreted on a 
omputer. Typi
allyro
k properties are 
ontrolled by fa
tors su
h as variations in 
omposition,diagenesis, grain size, grain orientation, pore �uid variations, et
.Image logs 
an provide detailed pi
ture of the wellbore that represent thegeologi
al and petrophysi
al properties of the se
tion being logged. In thelate 1980's S
hlumberger introdu
ed the 
on
ept of borehole ele
tri
al im-ages by pro
essing variations of the shallow mi
roresistivity of wellbore wallsre
orded by modi�ed versions of its Stratigraphi
 High Resolution DipmeterToolTM . Called the Formation Mi
ro-S
annerTM (FMS), the tool measured
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Figure 3.9: Example of FMI fa
ies des
ription: (top) FMI 
hara
terization,(bottom) textural map, (right) 
ores.
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tri
 logs 43
losely spa
ed arrays of fo
used shallow resistivity readings that are relatedto 
hanges in ro
k 
omposition and texture, stru
ture, and �uid 
ontent [63℄.Pro
essing the data, in whi
h a range of 
olors are assigned to the lateral(side-to-side) and verti
al variations of the mi
roresistivity along the well-bore, produ
es an image of the borehole wall.The 
urrent generation of tools, 
alled the fullbore Formation Mi
ro Im-agerTM (FMI), re
ords an array of mi
roresistivity measurements from 192sensors on eight pads mounted on four orthogonally pla
ed 
aliper arms.The spa
ing and position of the pads provides 80% 
overage of an eight-in
hdiameter hole and a resolution of 5 mm.The FMI yields a 
ontinuous, high-resolution ele
tri
al image of a bore-hole and therefore 
omplements whole 
ores 
ut in the same well. Resistivitymeasurements are 
onverted into gray-level or 
olor-
oded intensity values,and ea
h measurement 
orresponds to a pixel in the FMI image. This imageis the unrolled version of the well surfa
e and it is made by six verti
al stripsof measurement. There is a strip for ea
h pad of sensors in the FMI tool, seeFigure 3.11 for an example.

Figure 3.10: Working s
hema of FMI devi
e.If the FMI-derived image is of su�
ient quality and 
alibrated against
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ore, it 
an provide a 
ontinuous survey of the formation in pla
es where
ore is not 
ut, there was no 
ore re
overy, or when a 
ore has been damagedthrough handling, transportation, or plugging.

Figure 3.11: Portion of FMI Image with 6 verti
al strips. This image isa
quired using a tool with 6 measurement pads.3.4.2 Ele
tri
 logsEle
tri
 logs are based on physi
al measurements made by instruments low-ered into the hole (geophysi
al logs).Gamma Ray log is a re
ord of formation's radioa
tivity. The radiationemanates from naturally-o

urring uranium, thorium and potassium. Thegamma ray gives the radioa
tivity of the three elements 
ombined, while the
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 logs 45spe
tral gamma ray shows the amount of ea
h individual element 
ontribut-ing to this radioa
tivity. The geologi
al signi�
an
e of radioa
tivity lies inthe distribution of these three elements.Caliper log measures variation in borehole diameters with depth. The
aliper log is printed as a 
ontinuous series of values of hole diameter withdepth. Where the hole has the same size as the bit whi
h drilled it, theformation is 
oherent and usually quite hard. Holes with a mu
h largerdiameter than the bit size are 
aved or washed out.Density log determines ro
k bulk density along a wellbore. This is theoverall density of a ro
k in
luding solid matrix and the �uid en
losed in pores.Geologi
ally, bulk density is a fun
tion of the density of the minerals forminga ro
k (i.e. matrix) and the en
losed volume of free �uids (porosity).Porosity log provides a 
ontinuous re
ord of a formation's rea
tion to fastneutron bombardment. It is quoted in terms of neutron porosity. Quanti-tatively, the neutron log is used to measure porosity. Qualitatively, it is anex
ellent dis
riminator between gas and oil. When 
ombined with the densitylog on 
ompatible s
ales, it is one of the best subsurfa
e lithology indi
atorsavailable, a

ording to our �rst goal: identify lithology of the wells.Resistivity log: is a measurement of formation's resistivity; that is itsresistan
e to the passage of an ele
tri
 
urrent. Condu
tivity log measurea formation's 
ondu
tivity or its ability to 
ondu
t an ele
tri
 
urrent butthis value is generally 
onverted dire
tly to resistivity. The prin
ipal use ofresistivity log is to �nd hydro
arbons. Resistivity is de�ned as logarithmi
log, so in our dataset we 
onverted in logarithmi
 s
ale values of resistivity.Soni
 or a
ousti
 log shows a formation's interval transit time. It is ameasure of a formation's 
apa
ity to transmit sound waves. Geologi
ally,this 
apa
ity varies with lithology and with ro
k texture, notably porosity.
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CHAPTER 4
Data Preparation

Data Preparation involves all the a
tivities for dataset generation. Datatransformation, 
onversion and integration take pla
e in this fundamentalstep. This 
hapter presents an approa
h used to 
onvert image observationsin numeri
al values and to integrate dataset from di�erent sour
es.In Se
tion 4.1 ma
hine vision te
hniques for image log interpretation arepresented. Two main tasks: 
urves and va
uoles dete
tion are des
ribed anda solution is proposed and tested. Finally Se
tion 4.2 addresses the problemof integration of di�erent logs.4.1 Ma
hine vision for log interpretationFMI logs interpretation is a very 
omplex task, due to the large numberof variables and to the huge amount of data to be analysed. Usually, thegeologist performs the bedding and fra
ture analysis by hand, in a tediousand expensive task, and then he tries to identify di�erent 
lasses that group
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tions at di�erent depths with similar visual 
hara
teristi
s.In order to integrate data from di�erent sour
es it needs to 
onvert imagelog observation and interpretation in numeri
 data. The approa
h used forgeologi
al image interpretation is based on the dete
tion/measurement ofsome features for ea
h analysis window (360 x 100 pixel image), over theentire well. The size of the window is important be
ause it has a dire
timpa
t on the resolution of the output/analysis and on the time of analysisof the entire well.In parti
ular these four features are:
• surfa
es (bedding or fra
turing that visually 
orrespond to sinusoids);
• number of vugs;
• 
ontrast between the previous features and ba
kground;
• organization of the texture (homogeneous vs. granular).Sinusoids in the log image 
an have di�erent geologi
al meanings: beddingor fra
ture. They do not appear entirely in the FMI, only short parts ofthem are dire
tly visible. Several approa
hes, listed in Se
tion 2.4, have beenstudied for sinusoids dete
tion. Our approa
h is based on [72℄, in Se
tion 4.1.1a detailed des
ription of used te
hniques is given.To �nd and 
ount vugs/va
uoles is important to understand the ro
kporosity and type of �uid that �lls the va
uoles. In the FMI image va
uolesappear as 
ir
ular or ellipsoidal areas with uniform 
olor, with a high orlow 
ontrast with the ba
kground. After �ltering the image, the sele
tionis made by 
ertain 
riteria on the dete
ted regions (i.e., area dimension oraverage 
olor). The goal is to separate va
uoles from the ba
kground andto distinguish them on the basis of these visual features. A trivial 
ount ofthe va
uoles and sinusoids dete
ted in a zone are fundamental features forthe 
lassi�
ation of the ro
k. In Se
tion 4.1.3 we des
ribe our approa
h forva
uoles dete
tion.
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ontrast value is signi�
ant be
ause it 
an easily highlight the vari-ation of resistivity in the ro
k formation. The resistivity variation usuallydepends on the lithology and the type of ro
k or type of �uids that �ll thepores. This is a
hieved by using a properly �ltered image FFT (Fast FourierTransform), in order to link to ea
h analysis window a value that 
an repre-sent a reliable measure of image 
ontrast.The internal organization of a ro
k is an important parameter to under-stand petrophysi
s and petrographi
 
hara
teristi
s of a ro
k. The textureorganization is highly variable and is an important information for the fullinterpretation of ro
k formation, it 
an be �ne-grained to 
oarse-grained.A grainy FMI image has several small areas (grains) in 
ontrast with theba
kground, and these areas 
ould be highlighted through an edge dete
tionalgorithm. The total amount of pixels in the edges of the pro
essed image,is proportional to the texture organization.For 
ontrast and texture dete
tion algorithms please refer to [26℄.4.1.1 Curves dete
tion: methodologyWe are interested in dete
tion of planar events that 
ut a 
ylinder, this
ylinder represent the borehole well. In order to identify these planes in thebi-dimensional FMI image, it is ne
essary to determine the 
urve de�ned bythem.Let n̂ = (nx, ny, nz) be the ve
tor normal to the planar event. n̂ 
an beexpressed as a fun
tion of two angles: θd the dip angle and φa the azimuthangle, in this way:
n̂ =









nx

ny

nz









=









cos(φa) sin(θd)

sin(φa) sin(θd)

cos(θd)









(4.1)Dip angle represents the in
lination of the planes, while the azimuth angleis the orientation.
~v points of the plane that 
ross origin must satisfy:
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~v • n̂ = 0 (4.2)In order to de�ne a plane at an arbitrary depth, it is possible to addan o�set α, ~v + αn̂, where α represents distan
e from a plane with sameorientation that 
ross the origine. Let ~w be the points of the plane. Theymust satisfy:
~w • n̂ = α (4.3)

~u points of the 
ylinder are de�ned by:
~u = (R cos ν, R sin ν, z) (4.4)where ν and z represent independent 
oordinates over the 
ylinderwall,and R the 
ylinder radius.Interse
ting points of the plane and points of the 
ylinder wall we have:

z(ν) =
1

nz

(α− Rnx cos ν −Rny sin ν) (4.5)this 
an be rede�ned as:
z(ν) = A sin(ν − ν0) + d (4.6)with:

d =
α

nz

(4.7)
A = −

R
√

n2
x + n2

y

nz

(4.8)
ν0 = arg(ny − jnx) (4.9)

θd and φa angles 
an be expressed as a fun
tion of the previous parameters:
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φa = ν0 +

π

2
(4.10)

θd = arctan(−
A

R
) (4.11)Planar events appear as sinusoids with amplitude A, phase ν0 and o�set d.Plane orientation is importante and it is determined by ν0 and A. Figure 4.1explain 
orrelation between plane and sinusoid.

Figure 4.1: A plane 
uts the borehole well. On
e the 
ylinder is unrolled,the plane be
ome a sinusoid. α angle is the dip angle while h is the peak topeak amplitude of the sinusoid.Hen
e, the main obje
tive of an algorithm for automati
 fra
ture de-te
tion is to �nd the three parameters that de�ne a sinusoid in the image.Figure 4.2 shows some planar events in the FMI log.Planar events that 
ut the borehole well 
an have di�erent origins: sed-imentation or fra
turing. In sedimentation, several planes appear as groupsof sinusoid with small amplitude. Conversely fra
tures are isolated sinusoidin 
ontrast with the ba
kground and with a big amplitude.
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Figure 4.2: Sinusoids in FMI image.Generalized Radon Transform (GRT) is a te
hnique used to dete
t 
urvesin an image [6℄. This te
hnique, used in 
ombination with the OrientationSpa
e (see [18℄ and [73℄), 
an give better performan
e in terms of dete
tionpre
ision. Our approa
h is based on the te
hniques presented in [72℄ and [74℄.The algorithm uses GRT in order to generate the parameter spa
e, thisis a tri-dimensional spa
e. In this spa
e every possible sinusoid in the im-age is de�ned by 3 parameters: amplitude, phase and o�set. Converselyfrom other works i.e. [34℄ and [68℄, GRT is not dire
tly applied on the bi-dimensional image but on the Orientation Spa
e 
reated from original image.On
e obtained the parameter spa
e the obje
tive is to identify peaks in thatspa
e, ea
h peaks represent sinusoids dete
ted in the image. Due to somenoisy sour
es and in order to remove similar peaks (that represent) similarsinusoids, a results 
leaning phase is ne
essary.
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hine vision for log interpretation 55Steps of our algorithm, applied to �xed size images, are the following (seeFigure 4.3):1. Orientation Spa
e generation;2. parameter spa
e 
omputation, this is the result of the appli
ation ofGRT over the Orientation Spa
e;3. lo
al maxima (peaks) dete
tion over paramenter spa
e;4. results �ltering;5. �nal output is a list of dete
ted sinusoids, de�ned by three parameters(amplitude, phase, o�set).Orientation Spa
e is obtained �ltering the sour
e image using a set oforiented �lters. A detailed des
ription of the shape of the �lters is presentedin [15℄. Filters are oriented in the range [−π

2
,
π

2
) and the output is an imageper ea
h oriented �lters. Output images or �sli
es� 
an be sta
ked up and
reate a tri-dimensional stru
ture. Number of �sli
es� is determined by the Nparameter of the �lter. It is important to note that the �lter is not a fun
tionof the image, thus it 
an be 
omputed a priori in ea
h oriented version.Due to the 
ylindir
al shape of the weel, in our 
ase image is expressed in
ylindri
al 
oordinates I(ν, z) while Orientation Spa
e is I [φ](ν, z, φ). A 
urvein sour
e image is mapped on a 
urve in the Orientation Spa
e: proje
tionof new 
urve on plane (ν, z) 
orresponds to the original 
urve. Interesting
urves are sinusoids, they 
an be de�ned by three parameters:

~c(ν;A, ν0, d) = (ν, z(ν;A, ν0, d)) (4.12)In order to represent this 
urve in the Orientation Spa
e, the third 
o-ordinate φ(ν) is needed. The slope of the 
urve in ea
h points is dz(ν)/dν.Lo
al φ orientation is normal to the 
urve (see Figure4.4). Then we have:
φ(ν) = arg(−

dz

dν
(ν;A, ν0, d) + j) (4.13)
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Figure 4.3: Algorithm for sinusoids dete
tion in borehole well images.



4.1 Ma
hine vision for log interpretation 57

Figure 4.4: Lo
al φ orientation is normal to the 
urve.It is possible to represent ~c 
urve in the Orientation Spa
e, using this
urve ~c[φ]:
~c[φ](ν;A, ν0, d) = (ν, z(ν), φ(ν)) (4.14)In parameter spa
e ea
h point (A, ν0, d), de�ned by amplitude, phase ando�set, is a 
urve in sour
e image. This spa
e is obviuosly limited: phase variesbetween 0 to 2π, while the o�set is limited between 0 and the height of theimage (number of rows of the image). Amplitude represents the orientationof the plane that 
ut the well and will be limited. Radon Transform assignsto ea
h point of the parameter spa
e the value of the Radon integral: a highvalue means that the point represents an a
tual sinusoids in image sour
ewith a high probability.The des
ribed approa
h is depi
ted in Figure 4.5.A salien
y test is then applied to the identi�ed lo
al maxima, in fa
t notall of them represents an a
tual sinusoids in the sour
e image. This is due tosome di�erent fa
tors:1. di�erent 
urves that share some points in image sour
e are mixed to-gether during Radon transform;2. very similar 
urves;3. fake 
urves, due to the noise in the image;
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Figure 4.5: The 
urve is transformed in another 
urve in the OrientationSpa
e. In the parameter spa
e this 
urve is represented as a point.4. missing data in FMI image due to the partial 
overage of the tool.In order to remove false sinusoids, all dete
ted 
urves, 
alled 
andidateevents, are listed and sorted in des
ending order by their Radon integralvalue. Then the following steps are applied:1. top event in the list is taken;2. the Radon integral is re-
omputed;3. let p be the original integral value and p
′ the new one. If p′

>= Tp,with 0 < T < 1, then:(a) the event is a

epted;(b) points of the event are removed from the Orientation Spa
e;(
) return to step 1.4. else, remove the 
andidate event.This algorithm guarantees that ea
h point of the Orientation Spa
e rep-resents, at most, only one event : if there are event that share same points,only one of them (the one with the highest integral value) is saved.Detailed des
riptions of the implementation in JAVA language of thealgorithm are provided in [15℄.
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tion: evaluationIn order to evaluate performan
es of the algorithm, we tested it over a set ofimages from two di�erent borehole well.The algorithm always dete
ts some events in sour
e images: even if thesour
e images are uniform, there will be always present some peaks probablydue to the image noise. During our experiments we noted that value of thesepeaks is always mu
h smaller than peaks of a
tual planar events. Then, inour software, we implemented two type of threshold (lo
al and global) inorder to remove false �noisy� sinusoid.Only for the �rst well a list of human dete
ted sinusoids was provided:the geologist identi�es beddings and fra
tures, and only in this 
ase we 
andire
tly 
ompare results.For the other well, no sinusoids are provided. Imagesshow also dete
ted va
uoles.Well 1Figure 4.6 shows �rst sele
ted depth: there are few easy-to-dete
t sinusoids,this is be
ause they are in 
ontrast with the uniform ba
kground. Left imageshows sinusoids dete
ted by the geologist, on the right the result of the auto-mati
 dete
tion. Results are very similar: in parti
ular sinusoids (a, b, 
) are
learly dete
ted, at the bottom there is a sinusoids bundle. Manual analysisallows a

urate sele
tion of di�erent sinusoids; the result is still good and,even if the sampling in the parameters spa
e a�e
ts the sinusoids pre
ision,two main sinusoids (d, e) are dete
ted.Figure 4.7 show depth 2 for well 1: there are some evident fra
tures thatinterse
t other 
urves. In terms of dete
ted sinusoids algorithm results are
omparable to the manual dete
tion. Beddings (a, b, 
, d) are well identi�edwhile fra
tures (1, 2 ) are dete
ted by the algorithm and not by the geologist.Third sele
ted depth in well 1 is presented in Figure 4.8. In this se
tionthere are some fra
tures mixed with a sinusoid bundle (beddings) not visibleto the naked eye. Fra
tures are 
orre
tly identi�ed (1, 2, 3 ) and also twosinusoids of beddings are dete
ted (a, b). The algorithm misses sinusoids
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(a) Manual dete
tion (b) Automati
 dete
tionFigure 4.6: Depth 1, well 1.with big amplitude, this is due to the sele
ted limitation in max amplitude.In Figure 4.9 we note di�eren
es between manual and automati
 ap-proa
h. There are a lot of beddings and automati
 te
hnique identi�es onlymore evident sinusoids in the bundle (1-8 ). Dete
ted orientation is the sameof the manual approa
h, the main di�eren
e is in the number of dete
tedsinusoids, this is due to the sampling and to the 
leaning points phase inparameter spa
e. There are also other two sinusoids (a, b) not dete
ted bythe geologist, but it is di�
ult to prove if they 
orrespond to a
tual events.Figure 4.10 shows latest depth for well 1. There are high amplitudefra
tures: sinusoids a, 
, e, f automati
ally dete
ted are almost the samedete
ted with manual te
hnique. Sinusoid b is not dete
ted by the geologist,but in the sour
e image there is a partial support for it. Conversely sinusoidd 
ould be an error of double dete
tion (it is very similar to e).Table 4.1 summarise all evaluation: number of dete
ted sinusoids in man-ual and automati
 approa
h is reported per ea
h depth. C are 
orre
ted
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(a) Manual dete
tion (b) Automati
 dete
tionFigure 4.7: Depth 2, well 1.sinusoids, identi�ed in both manual and automati
 approa
h. FP are falsepositive sinusoids while ND are all sinusoids not dete
ted by the geologist,but that it seems they 
orrespond to a
tual events.Depth Manual Approa
h Automati
 Approa
hC FP NDDepth 1 7 6 0 0Depth 2 4 4 1 1Depth 3 6 4 1 1Depth 4 >> 10 8 1 1Depth 5 5 5 0 1Total ≈ 35 27 3 4Table 4.1: Results of dete
ted sinusoids for well 1.From the numeri
al point of view, the behavior of the algorithm seemsfairly 
lose to the evaluation of the geologist: over a total of about 35 sinusoids
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(a) Manual dete
tion (b) Automati
 dete
tionFigure 4.8: Depth 3, well 1.dete
ted by the geologist, the algorithm was able to 
orre
tly dete
t 27, or
80%. At the same time, the number of false positives is quite limited (onlyamounted to 3).The numeri
 data, 
onjugated with the visual 
omparison for ea
h depth
on�rms the e�e
tiveness of the algorithm: the most obvious sinusoids aredete
ted in almost all 
ases. The more evident disadvantage with respe
t tomanual analysis 
onsists in less a

ura
y in the dete
tion of sinusoids very
lose: this behavior, as already mentioned, is due to the sampling strategyof the parameter spa
e.Well 2For this well, it was not possible to 
ompare automati
 dete
tion resultswith the manually validated ones. Therefore we will pro
eed to a qualitativedes
ription of the obtained results.The �rst analysed depth is shown in Figure 4.11: the image is rather
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(a) Manual dete
tion (b) Automati
 dete
tionFigure 4.9: Depth 4, well 1.grainy. The algorithm 
orre
tly identi�es two main sinusoids: there is alsoa fake sinusoid (low angle, at the 
enter of the �gure). This sinusoid isformed by the support belonging to two di�erent 
urves, a
tually present inthe image: in this 
ase the salien
y test has not been able to remove theimperfe
tion.In depth 2 (shown in Figure 4.12), there are many sinusoids, often in-terse
ted with ea
h other. The algorithm dete
ts a good number of a
tualsinusoids (sometimes also with double dete
tions, be
ause of the thi
kness):as in the previous 
ase, there are some fake results, due to in
orre
t interpo-lation of supports belonging to di�erent 
urves.The last depth is shown in Figure 4.13: in this area many sinusoids arepresent, with di�erent angle. On
e again, the behaviour of the algorithm isgood, despite the presen
e of some false positive.
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(a) Manual dete
tion (b) Automati
 dete
tionFigure 4.10: Depth 5, well 1.4.1.3 Va
uoles dete
tion: methodologyOur approa
h for va
uoles dete
tion 
an be divided in three steps: segmen-tation, labeling and sele
tion. Segmentation identi�es a set of interestingregions that are eligible to spots. Labeling provides the regions 
onne
ted
omponents in order to then sele
t only those that are a
tual obje
ts.In image analysis, one of the most re
urrent problem is the separationof 
omponents in the image: the ability to identify and to separate obje
tsfrom the ba
kground. This a
tivity is 
alled image segmentation [35℄.In our work we fo
us on segmentation obtained by threshold operations.Let f(x, y) be the fun
tion that des
ribes our image. The image 
onsistsof a white obje
t on a dark ba
kground. The extra
tion of the obje
t 
anbe a
hieved by de�ning a threshold T and then 
omparing ea
h pixel valuewith it. If the pixel value ex
eeds the threshold, the pixel is 
lassi�ed as anobje
t pixel, if the value is lower than the threshold, the pixel is 
lassi�ed as a
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(a) Sour
e image (b) Automati
 dete
tionFigure 4.11: Depth 1, well 2.

(a) Sour
e image (b) Automati
 dete
tionFigure 4.12: Depth 2, well 2.
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(a) Sour
e image (b) Automati
 dete
tionFigure 4.13: Depth 3, well 2.ba
kground pixel. The result is typi
ally a binary image, where obje
t pixelsare represented in white and ba
kground pixel are represented in bla
k.Thresholding 
an be de�ned as an operation that involves a test against a
T fun
tion, whi
h has the following form: T = T [x, y, p(x, y), f(x, y)] where
f(x, y) is the fun
tion that des
ribes the gray-level intensity for ea
h pixel inthe image; p(x, y) des
ribes some lo
al properties for ea
h pixel in the image;
(x, y) represents the position of pixels in the image.Depending on T , there are di�erent types of threshold:

• Global Threshold: T depends only on f(x, y);
• Lo
al Threshold: T depends on f(x, y) and p(x, y);
• Lo
al Adaptive Threshold: T depends on (x, y), f(x, y) and p(x, y).Global threshold is the simplest operation: the threshold value T is 
om-puted on
e for the whole image, and the image is thresholded by 
omparing
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h pixel value with T , as des
ribed above. The result depends on the shapeof the image histogram. If the histogram 
ontains two separated peaks (onepeak 
orresponding to ba
kground pixels, and the other 
orresponding to ob-je
t pixels), then a single value of T , if properly 
omputed, 
an produ
e goodresults in segmentation. Many te
hniques have been proposed for the auto-mati
 
omputation of the threshold value: some of these te
hniques produ
ean optimal value, whi
h means that the value minimizes a parameter relatedto the image. Otsu's method [53℄, for example, produ
es the threshold valuethat minimizes the intra-
lasses varian
e, de�ned as the weighted sum of thevarian
e of the 
lasses. The 
lass weight 
orrespond to the probability thata pixel belongs to that 
lass.A global value for T may not be enough in order to obtain good resultsin segmentation: the lo
al approa
h, instead, 
omputes a di�erent thresholdvalue for ea
h pixel in the image, based on lo
al statisti
al features. A neigh-bourhood is de�ned for ea
h pixel: in this neighbourhood some statisti
alparameters are 
al
ulated (i.e.: mean, varian
e and median), whi
h are usedto 
al
ulate the threshold value T (x, y). Di�erent algorithms use di�erent
ombinations of these parameters in order to generate the threshold value.Nibla
k's algorithm [52℄ is an example of this type of thresholding.As pointed out before, the global threshold method is very simple andfast, but 
an only be su

essful if the separation between the two 
lasses(obje
t vs. ba
kground) is 
lear. This happens only if the s
ene illuminationis uniform throughout the image. In real images, this assumption is typi
allynot true. In the image, there 
an be intensity jumps that makes it impossibleto use a single threshold value. The lo
al threshold method attempts to solvethis issue, be
ause the threshold value is not �xed, but 
al
ulated for ea
hpixel on the basis of the lo
al image features.We developed three di�erent segmentation algorithms starting from twomain methods. The �rst method uses a parti
ular 
onvolution mask anda global thresholding te
hnique. In order to remove noise and unne
essarydetails, the image is �rst smoothed with a median �lter. The 
onvolution
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ir
ular derivative mask provides a new image whereround areas or 
ir
ular stru
tures, approximately of the same size of themask, are highlighted. The new image is then thresholded, using two globalthreshold values: Tlow and Thigh. All the (x, y) pixel where f(x, y) <= Tlow or
f(x, y) >= Thigh are 
onsidered obje
t pixels, others are ba
kground pixels.Using two di�erent threshold is possible to �nd two types of spots: darkspots in light ba
kground and vi
e versa. Generally we use a per
entile valueto de�ne two thresholds: Tlow is the 20th per
entile and Thigh the 80th. Inorder to remove isolated pixels a opening morphologi
al operator [62℄ is thenapplied.This method leads to the implementation of two di�erent algorithm. Thedi�eren
e between these two implementations is in how the 
onvolution man-ages the image ba
kground. In some 
ases images 
an have zones with non-relevant or missing information. Our �rst algorithm 
onsiders these zonesas ba
kground pixels, 
onversely in the se
ond algorithm these pixels are
onsidered null values (zones with no image).The se
ond method uses the approa
h based on lo
al threshold. The �rststep is the appli
ation of a low-pass �lter to the image. The purpose of the�lter is to redu
e the noise in the image. Then, on
e de�ned the size of theneighbourhood, intensity mean (µ) and varian
e (σ) are 
omputed for ea
hpixel. For the 
al
ulation of the threshold value, the Nibla
k's algorithm [52℄is applied:

T (x, y) = µ(x, y) + kσ(x, y)The threshold value is de�ned as the sum of mean plus the standarddeviation, weighted by the parameter k. Mean and varian
e are 
al
ulatedin the neighbourhood of ea
h pixel. Here, we are assuming that the image
ontains white obje
ts on dark ba
kground. The dete
tion of dark obje
tson light ba
kground 
an be a
hieved by inverting the original image (doingthis 
auses that dark pixels turn into light pixels and vi
e versa) and thenapplying the same algorithm.In pra
ti
e, two new images are built, starting from the original: in the



4.1 Ma
hine vision for log interpretation 69�rst image, the pixel value is repla
ed with the mean value in the neigh-bourhood. In the se
ond image, the pixel value is repla
ed with the varian
e
al
ulated in the neighbourhood. To apply the Nibla
k's algorithm to thepixel (x, y) is su�
ient to get the pixel value from the original image, and itsmean and varian
e from the new images.The Nibla
k's algorithm is reinfor
ed with an additional 
onstraint, basedon the absolute value of the varian
e. Varian
e is related to the image 
on-trast. A small value 
orresponds to an area fairly uniform in the image. Toavoid the dete
tion of false positives, a pixel must belong to a non uniformarea: this means that the varian
e is to assume a high enough value. Hen
e athreshold value is needed to 
ompare the varian
e. First the varian
e imagehistogram is built, then the threshold is sele
ted as the value 
orrespondingto an arbitrary per
entile (for example, the 20th per
entile). The pixel forwhi
h the varian
e is lower than this value are automati
ally 
lassi�ed asba
kground pixel. Nibla
k's algorithm is applied only to pixels that pass thistest.In order to dete
t light and dark obje
ts, the method is applied to theoriginal image and to the inverted image. The result are two binary images,where only the obje
t pixels are highlighted in white. As before, the openingmorphologi
al operator is then applied to the binary images, in order tosmooth the 
ontours of the regions identi�ed.The se
ond step in the proposed approa
h is aimed at identifying andlabeling the 
onne
ted 
omponents resulting from the segmentation pro
ess.On
e we obtain a binary image a labeling algorithm is applied to dete
t allthe image regions. The labeling algorithm identi�es the 
onne
ted 
ompo-nents in an image and assigns ea
h 
omponent a unique label. The algorithmruns an image s
an and groups its pixels into regions, based on pixel 
on-ne
tivity. This pro
edure is often applied to binary images, resulting fromsegmentation. On
e 
omplete, the pro
edure returns a list of 
onne
ted re-gions that were found in the image. Ea
h region should represent an imageobje
t.
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Figure 4.14: Example of vugs: a dark vug in a light ba
kground (on the left)and vi
e versa (on the right).Finally in the last step, for ea
h identi�ed region a test is applied on thesize and shape. In parti
ular, the tested parameters might be:

• Area: must be between a minimum and a maximum value;
• Roundness: for example, the region must be roughly 
ir
ular;
• Ratio: ratio between maximum height and maximum width.These tests prevent the algorithm from dete
ting regions whi
h do not
orrespond to a
tual obje
ts.4.1.4 Va
uoles dete
tion: evaluationTo evaluate our algorithm we test the dete
tion of va
uoles (or vugs). Theyare roughly 
ir
ular areas in 
ontrast with the ba
kground, see Figure 4.14for an example.Three di�erent algorithms were implemented: the �rst two (algorithm 1and 2) are very similar, and use the approa
h based on 
onvolution. The third(algorithm 3) is an implementation of the lo
al threshold method des
ribedin previous se
tion. All the algorithms are written in JAVA and algorithm 3is written using ImageJ [58℄ digital image pro
essing libraries.To determine whi
h method is most suitable for this task, a test wasperformed on an entire well FMI image. The analysis is 
arried out througha sliding window te
hnique. From the main image, 300 pixel height windowsare extra
ted, and algorithms are applied dire
tly to them. Windows arepartially overlapping: this is designed to improve the a

ura
y dete
tionnear the edges of the windows.
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e 
ompleted the analysis on the entire well, in order to evaluate theresults, about ten windows, 
onsidered signi�
ant, have been taken: win-dows, namely, showing the most 
ommon situations in whi
h the geologistis interested. For example, a window 
ontaining a lot of small sized vugswas sele
ted, rather than a window with a few large va
uoles. The 
hosenwindows, and the three results for ea
h of them, were shown to three geol-ogists: it was asked them, for ea
h window, to vote the algorithm (or thealgorithms) that produ
ed best results. At the end of the pro
edure, all voteswere 
olle
ted and a ranking was produ
ed.In our experiment algorithms 1 and 2 have a 7x7 pixel smoothing �lterand a 9x9 pixel 
ir
ular derivative 
onvolution mask. Algorithm 3 runs witha 5x5 pixel smoothing �lter; the radius of the neighbourhood is 13 pixel and
k = 0.5 in the Nibla
k's algorithm.On
e ea
h image region is labeled, a test is applied on the size and shape.In our work the total area of ea
h region must be in the range 25 - 500 pixel.Roundness is de�ned as

roundness =
4πA

p2where A is the region area and p is the perimeter. All the regions with a
roundness lower than 0.25 pass the test and 
an be 
onsidered as vugs. Thelast test is based on the width-height ratio: for ea
h region the maximumwidth and height are 
omputed and only if the ratios width/height and
height/width are greater than 1.8, the region pass the test.Details on the vote are shown in Table 4.2, �nal ranking is shown inTable 4.3.In Figure 4.15 the input image (depth1 ) shows a lots of small vugs, witha low 
ontrast with respe
t to the ba
kground; two strips in the middle arevery dark due to a measurement error1. The geologist 
hoi
e is algorithm 3with two votes. Although this algorithm dete
ts less vugs than the others,1This is an unavoidable error and 
an happens often in these type of image. Dueto the 
omplexity and the 
ost of the image a
quisition, it is not possible to repeat themeasurement. The �nal image is made by a single run over the entire well.



72 4. Data PreparationGeologist A Geologist B Geologist Cdepth1 1,3 2,3 1depth2 2,3 2 3depth3 2,3 2 3depth4 3 3 3depth5 2 n.d. 3depth6 3 3 2depth7 2,3 2 3depth8 2 2 3depth9 3 n.d. 3Table 4.2: Ea
h geologist votes for the best algorithms (algorithm 1, 2 or 3)for ea
h well depth. Cells 
ontains geologist 
hoi
e.votesalgorithm 1 2algorithm 2 11algorithm 3 17Table 4.3: Sum of votes for ea
h algorithm.this was preferred be
ause of it provides better results (no false positive) inthe dark strips.Figure 4.16 shows the image input and output for ea
h algorithm atdepth2. In this 
ase the input image shows few big vugs and algorithm 2and 3 give best results, both gaining 2 votes. It is important to note thatalgorithm 3 shows, in general, a 
lear output and best a

ura
y, with a lowernumber of false positive. Detailed image results 
an be found in [15℄.The algorithm that produ
ed the best overall results was the one based onthe lo
al threshold method. Table 4.3 shows that the se
ond 
hoi
e was thealgorithm 2. This indi
ates that, regardless the image shape, the 
onvolutionoperator gives best results if it 
onsiders only a
tual image zones.Results show that the algorithm 3, that uses a lo
al threshold, was pre-
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(a) Input image. (b) Algorithm 1 dete
ted spots.

(
) Algorithm 2 dete
ted spots. (d) Algorithm 3 dete
ted spots.Figure 4.15: Example of gray-level image input (a) and output (b,
,d) atdepth1. In output images, dete
ted vugs are round grey area with bla
k thinborder.
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(a) Input image. (b) Algorithm 1 dete
ted spots.

(
) Algorithm 2 dete
ted spots. (d) Algorithm 3 dete
ted spots.Figure 4.16: Example of gray-level image input (a) and output (b,
,d) atdepth2. In output images, dete
ted vugs are round grey area with bla
k thinborder.



4.2 Well log integration 75ferred by the domain expert. In general it dete
ts less vugs than other algo-rithms, but it seems to be most suitable in all that 
ases with a low 
ontrastbetween spots and ba
kground.Vugs dete
tion is very important for the geologist who wants to evaluatethe porosity of a ro
k, in order to quantify potential depth zones 
ontainingoil and gas. Our approa
h helps the geologist redu
ing the time for dete
tionof vugs in the image logs and improving the dete
tion a

ura
y.4.2 Well log integrationOn
e the system has analysed the entire image log, and the algorithms haveextra
ted the values that represent ea
h feature, these information are sum-marized in a feature table (a row for ea
h analysis window, a 
olumn for ea
himage feature). This table is the �nal numeri
al dataset from FMI log. Nowit 
an be properly merged with other ele
tri
 logs.All datasets provided by ele
tri
 and image logs are, in fa
t, tables ormatri
es of features values along the well depth. In this sense integration ofseveral datasets 
an be viewed as alignement of 2 matri
es using depth as areferen
e parameter. This operation is then repeated for ea
h new datasetthat has to be added. The alignement is due by the fa
t that ea
h dataset
ould have its own resolution and then di�erent depth indi
ation. In orderto properly integrate these dataset a simple algorithm for data merging wasdeveloped.When we 
ompare depths of two matri
es it is possible that the numberof rows of the �rst matrix (
alled referen
e matrix ) is di�erent from se
ondmatrix (the matrix to be aligned). In this 
ase we de
ide that the resultmatrix must have the same number of rows of the referen
e matrix. Forea
h row of the this matrix a set of nearest rows from the se
ond matrix issele
ted. Feature values in this set are merged a

ording to several providedstatisti
s su
h as mean, median, max or min.In order to better explain the algorithm a simple example of matrix inte-



76 4. Data Preparationgration is here provided. Let matrix1 be the referen
e matrix and matrix2the matrix to be merged (see Tables 4.4 and 4.5). Suppose that all depthsare in as
ending order (this is the real 
ase) and that both matri
es start andstop at the same depth. In this 
ase matrix2 has a number of rows greaterthan matrix1. On
e a row of matrix1 is sele
ted, in order to �nd the set ofnearest rows to be merged, the algorithm use the following rule.
Feat.A Feat.B Feat.C Depth123 12 987 10033 145 44 10110 100 11 10220 200 42 103Table 4.4: matrix1 the refer-en
e matrix.

Feat.A Feat.B Depth1 2 100.233 145 100.439 45 100.63 45 100.879 7 101.296 45 101.413 65 101.6Table 4.5: matrix2 the matrixto be added.Let x and y be two arrays. For ea
h xi the algorithm sear
hes j indexsu
h that:
|xi − yj| < |xi−1 − yj| ∧ |xi − yj| < |xi+1 − yj| (4.15)In our example x is the depth 
olumn of matrix1 while y of matrix2.For example, sele
ting row number 2 in matrix1 (see Table 4.6) the al-gorithm 
y
le over ea
h row of matrix2. The �rst depth is 100.2; the Equa-tion 4.16 is not true then the row is not sele
ted for merge.

|100.2− 101| < |100.2− 100| ∧ |100.2− 101| < |100.2− 102| (4.16)All features values in Feat.A and Feat.B of true rows in matrix2 mustbe merged (
omputing mean, median, max or min) in one row. This row willbe added to the i− th row of matrix1.
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Feat.A Feat.B Feat.C Depth123 12 987 10033 145 44 10110 100 11 10220 200 42 103

matrix1

Feat.A Feat.B Depth1 2 100.2 false33 145 100.4 false39 45 100.6 true3 45 100.8 true79 7 101.2 true96 45 101.4 true13 65 101.6 false
matrix2Table 4.6: Merging algorithm: se
ond row sele
ted.It is possible that for some rows in matrix1 there are no true rows in

matrix2, see Table 4.7. In this 
ase the algorithm 
hoose the row withminimum distan
e and add it in sele
ted row in matrix1

Feat.A Feat.B Feat.C Depth123 12 987 10033 145 44 10110 100 11 10220 145 44 103
matrix1.

Feat.A Feat.B Depth1 2 100.2 false33 145 100.4 false39 45 100.6 false3 45 100.8 false79 7 101.2 false96 45 101.4 false13 65 101.6 false
matrix2Table 4.7: Merging algorithm: last row sele
ted.Table 4.8 is the aligned matrix: red 
olumns 
omes from matrix1, 
yan
olumns are merged data from matrix2. In this example merged values are
al
ulated using the statisti
al mean. To be more 
lear: �rst row 
ontainsvalues 17 and 73.5, these are mean values between 1 and 33 and between 2and 145.



78 4. Data PreparationFeat.A Feat.B Feat.C Depth Feat.A Feat.B123 12 987 100 17 73.533 145 44 101 54.25 35.510 100 11 102 13 6520 200 42 103 13 65Table 4.8: Resulting matrix after integration: red 
olumns 
ome form
matrix1, 
yan 
olumns are merged rows from matrix2.Implementation of this algorithm was realized in a JAVA appli
ation seeSe
tion 7.2 for more details.



CHAPTER 5
Modeling & Evaluation:Des
riptive Data Mining

This and the following 
hapter (Chapter 6) represent theModeling & Eval-uation phase of the CRISP-DM pro
ess where several modeling te
hniquesare sele
ted, applied and evaluated.In Se
tion 5.1 a detailed des
ription of hierar
hi
al 
lustering te
hniquesand automati
 
lustering extra
tion are provided. Further details on indexevaluation for 
lustering te
hniques 
an be found in [71℄. Se
tion 5.3 
ontin-ues with supervised algorithms applied in order to learn and to des
ribe a
luster partition.5.1 Hierar
hi
al 
lustering and validationAs reported in Se
tion 2.2, hierar
hi
al agglomerative 
lustering builds thehierar
hy starting from the individual elements 
onsidered as single 
lusters,
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riptive Data Miningand progressively merges 
lusters a

ording to a 
hosen similarity measurede�ned in features spa
e [67℄. The output of hierar
hi
al 
lustering is a treerepresented by a dendrogram: a tree-like plot where ea
h step of hierar
hi-
al 
lustering is represented as a node merging two bran
hes into a singleone. These nodes represent 
lusters obtained on ea
h step of hierar
hi
al
lustering, see Figure 5.1 for an example.

Figure 5.1: Example of dendrogram and 
olor mosai
 with �ve open nodes(
yan nodes).All of the examples of the given dataset are ideally represented by theleaves in the lower part of the dendrogram. These leaves are iterativelymerged by the bran
hes (the height of ea
h bran
h is proportional to thedistan
e between the 
lusters merged by it) raising until the �root� node onthe top.In bioinformati
s [2℄, a dendrogram is often displayed with a 
olor mosai
(lower part of the main window in Figure 6.2): a graphi
al representation ofthe feature table 
ontents. The numeri
al values of the table are 
onverted



5.1 Hierar
hi
al 
lustering and validation 81into 
olor tiles. By default, a high value has a bright red 
olor and a low valuehas bright green 
olor. The middle value has a bla
k 
olor. When a valuegets 
loser to the middle value between the green and the red lines, the 
olorbe
omes darker. It is important to noti
e that the arrangement of 
olumnsof the 
olor mosai
 display is sorted a

ording to the 
lustering result, thusthe 
olor mosai
 doesn't show the dataset in its original ordering but ea
h
olumn (i.e. ea
h example) is 
lose to a 
olumn with similar features. The
olor mosai
 provides to the human expert an aid to represent of all thefeatures of the whole dataset �at a glan
e�.The most standard way to de�ne a partition from the tree built by ahierar
hi
al 
lustering algorithm is to make an horizontal 
ut of the tree ata spe
i�ed level. This is usually done by de�ning a parameter: either thenumber of desired 
lasses, or the height of the 
utting line. A more �exibleapproa
h is to allow the user to perform a non-horizontal 
ut. This approa
h
an provide more opportunist 
uttings: the user may want to have moredetails in some 
lasses than in some others, or may want to group into thesame 
lass obje
ts whi
h appear to be unsimilar a

ording to the 
lustering
riterion [10℄. Starting from the root node, the user 
an divide the 
lustersgoing down through the tree stru
ture, by sele
ting a node to �open�, i.e. he
an split that 
luster in two sub-
lusters. In this way, it is possible to 
hoosethe number of 
lasses by �
utting� the tree at desired level. In Figure 5.1there is an example in whi
h a non-horizontal 
ut provides a partition that
an not be obtained by an horizontal 
ut: the dataset is split into �ve 
lusters.As a result, ea
h identi�ed 
luster represents a set of instan
es with similardistribution of the features.One of the most important issues in 
luster analysis is the evaluation of
lustering results in order to �nd the partition (
luster 
on�guration) thatbest �ts the underlying data: this is the main goal of 
luster validation.There are several evaluation indexes, su
h as Dunn, Davies-Bouldin andC-index, whi
h assess 
luster 
ompa
tness and isolation. In this work we
onsider Dunn's Index, sin
e it is simple to 
ompute and it did provide the
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riptive Data Miningbest results in in our experiments.The Dunn's Index [24℄ is based on the idea of identifying the 
luster sets,that are 
ompa
t and well separated. For any partition of 
lusters, where cirepresents the i − th 
luster of su
h partition, the Dunn's validation index,
D, 
an be 
omputed with the following formula:

D = min
1≤i≤n

{

min
1≤j≤n

{

δ (Ci, Cj)

max1≤k≤n {∆(Ck)}

}}where δ (Ci, Cj) is the distan
e between 
lusters Ci and Cj (inter-
lusterdistan
e1); max1≤k≤n {∆(Ck)} is the intra-
luster distan
e of 
luster Ck, and
n is the number of 
lusters.In order to assess a quality measure for ea
h single 
luster of a givenpartition, we also de�ned a spe
i�
 value for ea
h index. These spe
i�
indexes 
an be used to identify the good 
lusters and the weak ones and 
andrive the user (or an automati
 system) in the tree 
utting task, by lettinghim/it open the �bad� 
lusters, re�ning the partition. The spe
i�
 value ofthe index 
an be 
omputed with the formula:

Di =
min {d(xi, xj)}

max {d(xi, yi)}
, xi, yi ∈ Ci, xj ∈ Cj, i 6= j.The main goal of this measure is to maximize the inter-
luster distan
esand minimize the intra-
luster distan
es. Therefore, the 
luster partitionthat maximize D 
an be taken as the optimal 
ut of the 
lustering tree.5.2 Index driven automati
 
lusters extra
tionAfter the 
reation of the dendrogram by using an agglomerative 
lusteringalgorithm, it is ne
essary to 
ut the tree in order to 
reate a 
luster stru
ture.In simpli�ed theory, only horizontal 
uttings are legal, sin
e non-horizontal
uttings violate the optimality property that two obje
ts belonging to thesame 
lass are 
loser to ea
h other than two obje
ts from di�erent 
lasses.1Inter-
luster distan
e is referred to two obje
ts from di�erent 
lusters, intra-
lusterdistan
e is referred to two obje
ts from the same 
luster.



5.2 Index driven automati
 
lusters extra
tion 83But in pra
ti
e there is a need for building 
lasses 
orresponding to moreopportunist 
uttings [10℄.Our te
hnique performs this type of 
uttings, 
alled non-horizontal, andour tool implements it in a graphi
al user interfa
e. The 
utting is simplydone by 
li
king over a node of the dendrogram; for every 
luster partitionand for every single 
luster the tool provides the validity index 
omputation.In order to automati
ally extra
ting a 
lustering partition, by using thenon-horizontal 
utting, our te
hnique performs an index-based explorationof the 
lustering tree. It is possible to explore the 
lustering tree in severalways and we study two di�erent methods based on the sele
tion of the nodeto open: by 
hoosing the node that brings to the 
lustering with the bestglobal index (Go-to-best sear
h) and by 
hoosing to open the node with theworst spe
i�
 index (Expand-worst sear
h).The iterative exploration of the tree stops when the obtained 
lusteringdoes not improve the sele
ted index, indeed the algorithm follows a greedyapproa
h. Expand-worst sear
h has given, with all the datasets, the mostsigni�
ant results and in next se
tions we only 
onsider this method. Thefollowing pseudo 
ode shows how our te
hnique works with 
hoosen sear
hmethod driven by Dunn's Index:while(delta>epsilon) {oldDunnIndex = newDunnIndex;newClustering = dendrogram.sele
tClusterToSplit(expand-worst);newDunnIndex = newClustering.
omputeGlobalDunnIndex;delta = newDunnIndex - oldDunnIndex; }First, we have to 
reate and show the dendrogram, then we start to exploreit using Expand-worst sear
h. The result of this method is a new 
lusterpartition where the node with the worst Dunn's Index (due to the nature ofthe index this is the smaller index) is opened produ
ing two di�erent 
lustersfrom a single one. Now, we 
ompute the global Dunn's Index of the newpartition and the di�eren
e with the old value. If this value is smaller thana �xed threshold, we stop the tree exploration.
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riptive Data MiningBy 
hoosing a negative threshold the algorithm 
ontinue to sear
h untilthe new 
lustering partition is signi�
antly worse than the previous one (lowerthan ǫ), 
onsidering Dunn's Index validity measure. This threshold providesa simple method to avoid lo
al maxima or �at zones.We tested our te
hnique over di�erent datasets from UCI Ma
hine Learn-ing Repository [4℄: the Iris and the Syntheti
 Control Chart Time Seriesdataset. As a �rst step, we normalized all of the attributes with a linearadjustment in order to bring them in [0.0, 1.0℄ range. Then, we used a hi-erar
hi
al agglomerative 
lustering algorithm with Eu
lidean distan
e and
omplete linkage strategy. The 
hoi
e of these distan
e and linkage strategywas driven by two simple 
onsiderations: �rst they are the most known andused te
hniques and se
ond our tests gives best results only with these ones.Every result was �nally evaluated through the true instan
e-
lass assign-ment given by the dataset. Using Expand-worst sear
h driven by Dunn'sIndex with ǫ = −0.005 we obtained interesting results. Further tests withdi�erent distan
es and linkage strategies for 
lustering algorithms or the useof other validity indexes to drive the sear
h of 
lustering 
on�guration, didnot have yielded the expe
ted results for these dataset, also using Go-to-bestsear
h we do not obtain signi�
ant improvements. In another work [28℄, weused Dunn, Davies-Bouldin and C-index in a 
ombined solution to performthe driven sear
h of 
luster 
on�guration. In that 
ase we also 
ompareddi�erent sear
h strategies and tree 
utting mode but automati
 extra
tion of
lusters do not lead to a signi�
ant improvement in 
luster readability andinterpretation, therefore the expert have to manually identify 
lasses.To evaluate the improvement of our te
hnique we also 
ompared our hi-erar
hi
al 
lustering results with 
lustering partitions given by K-means al-gorithm [49℄. For ea
h 
lustering solution we use the number of 
lusters as aparameter to run K-means and then we 
omputed the information entropy.More details on experiments and results 
an be found on [27℄.Observing results, the best partition is sele
ted 
utting the tree in anon-horizontal way. Moreover, the behaviour of information gain 
on�rms
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lusters des
ription 85that the obtained partitions mat
h well with the underlying stru
ture of thedatasets.5.3 Learning 
lusters des
riptionIn order to produ
e a symboli
 des
ription of 
hara
teristi
s of the sele
ted
luster partitions in geology 
ontext, we tested supervised learning te
hniquesusing ele
tri
 and image logs from 5 di�erent wells lo
ated in the same area.Starting from a dataset already partitioned in 
lusters, the obje
tive wasto des
ribe ea
h 
luster. Cluster des
riptions must be provided in a humanreadable way and must be based on features values or range of them. Thisled to the identi�
ation of two types of assessments: a quantitative evaluationbased on the a

ura
y of provided des
ription, and a qualitative evaluationmade by the geologist on understandability and usefulness.Our experiments was 
ondu
ted following the s
hema in Figure 5.2. Thewhole dataset has been built by appending all the data from the 5 wells in asingle table (see Figure 5.2). Available wells and number of instan
es: well1(1023), well2 (1214), well3 (1041), well4 (953), well5 (1799).After a testing phase we de
ided to use only �ve of the available logs.Sele
ted attributes are:1. number of sinusoid in the analysis window (SIN);2. spe
tral gamma ray (SGR);3. bulk density (RHOB);4. delta-T 
ompressional (DTCO);5. neutron porosity (PHI).well5 does not have the number of sinusoids be
ause the image log wasnot available.The dataset was then partitioned using hierar
hi
al 
lustering and the�nal dataset, used as training set for the learning phase (see Figure 5.2),
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Figure 5.2: S
hema of the des
riptive approa
h.
ounts 6030 instan
es and 7 attributes: SIN, SGR, RHOB, DTCO, PHI plusWELL-NAME and ID_CLUSTER.We tested four supervised algorithms from three main te
hniques:
• de
ision tree: J48;
• 
lassi�
ation rules: PART and JRIP;
• bayes 
lassi�er: NaiveBayes.Ea
h algorithm was tested using 10-fold 
ross validation te
hniques.In Table 5.1 there are results for tested algorithms: for de
ision treesnumber of leaves and number of nodes are reported, for rules generation thenumber of rules is reported. Per
entage of 
orre
ted 
lassi�ed instan
es isshown for ea
h algorithm (see Figure 5.3).From a quantitative point of view all algorithms ex
ept NaiveBayes showa per
entage of 
orre
ted 
lassi�ed instan
es greater than 80%. In this sense
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Figure 5.3: Pre
entage of 
orre
ted 
lassi�ed instan
es for ea
h algorithm.J48 is the best algorithm but in des
riptive data mining pre
ision is not theonly important parameter.The geologi
al point of view, or in general human point of view, needmore readability of data learnt stru
ture. To this purpose we evaluate notonly pre
ision but also number of nodes and number of rules. This qualitativeevaluation was done looking also at output representation for ea
h algorithm.Figure 5.5 and Figure 5.4 show output of JRIP and NaiveBayes algorithms.JRIP (see Figure 5.5) list a rule per row and at the end the identi�ed 
luster.Starting from this and reading ba
kward, geologist 
ould have a �rst simplesight of 
luster 
hara
teristi
s. NaiveBayes (see Figure 5.4) shows for ea
h
luster useful statisti
al measures for ea
h feature.In 
on
lusion, the output of J48 is di�
ult to interpret for domain expert.Algorithms for rule generation provide readable results and PART gives higherpre
ision than JRIP but, due to the low number of generated rules, the latteris more useful. NaiveBayes was also the geologist 
hoi
e be
ause it produ
essimple information about data stru
ture that 
ould be used as summary of
lusters partition.
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Figure 5.4: Example of NaiveBayes output for wells dataset.
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well1 well2 well3 well4 well5J48 leaves: 97 leaves: 57 leaves: 58 leaves: 47 leaves: 39nodes: 193 nodes: 113 nodes: 115 nodes: 93 nodes: 77CC: 85.0% CC: 86.7% CC: 84.8% CC: 83.1% CC: 86.0%PART rules: 64 rules: 29 rules: 41 rules: 37 rules: 28CC: 82.7% CC: 86.1% 85.7% 81.8% 84.3%JRIP rules: 28 rules: 21 rules: 23 rules: 17 rules: 17CC: 82.4% CC: 85.5% 82.2% 78.8% 81.9%NaiveBayes CC: 75.6% CC: 79.7% CC: 78.8% CC: 80.5% CC: 84.0%Table 5.1: Results of test with 4 supervised learning algorithm. CC areCorre
tly Classi�ed instan
es.
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Figure 5.5: Example of output rules for JRIP algorithm for wells dataset.



CHAPTER 6
Modeling & Evaluation:Predi
tive Data Mining

In this 
hapter a novel interpretation system for predi
tive data mining, basedunsupervised and supervised learning te
hniques in 
as
ade, is presented.This 
hapter 
ontinues the Modeling & Evaluation phase started inthe previous one but, in following se
tions, a more fun
tional approa
h isused. First, in Se
tion 6.1, learning algorithms and evaluation te
hniquesare explained following the general s
hema of the interpretation system. Se
-tion 6.2 
on
ludes with tests and experimental results.6.1 Cas
ade of te
hniques for predi
tionThe developed method helps the geos
ientists in his analysis, extrapolatingthe maximum amount of information integrating all the sele
ted logs.Our approa
h involves two phases (see Figure 6.1): �rst, hierar
hi
al
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lustering is applied to a set of 
o-lo
ated wells in order to �nd an hiddendata stru
ture. In this step, the domain expert 
hooses the best 
lusteringpartition that �ts the observed the fa
ies distribution. Then, starting fromidenti�ed 
lusters, a supervised learning algorithm is used to learn a 
lassi�erwhi
h 
an be applied to new wells, in order to predi
t the distribution offa
ies.We �rst 
reate a large dataset that in
ludes data from di�erent wellsin the same area, this is the input of a 
lustering task. In our appli
ationwe use hierar
hi
al agglomerative 
lustering that produ
es a 
luster hierar
hyrepresented in a dendrogram. Using the dendrogram the geologist 
an 
hoosethe most suitable 
luster partition. The se
ond phase involves the predi
tionof fa
ies distribution over a new, unknown well in the same area. This task isa
hieved by learning the model of ea
h 
luster from the previous des
riptionby applying supervised learning algorithms. To this purpose it is possibleto use di�erent supervised te
hniques. In order to �nd the best 
lassi�erfor fa
ies distribution predi
tion, in Se
tion 6.2, we test several algorithms:de
ision trees, 
lassi�
ation rules and regression methods. These te
hniquesallow the propagation of 
lasses to new wells.Following these two phases we obtain a semi-automati
 interpretation andpredi
tion method for well logs. This is a semi-automati
 approa
h be
ausea human quality 
ontrol is needed in order to obtain a meaningful 
luster-ing partition in the domain 
ontext; but this is also the main advantage: thegeologist identi�es 
lusters only on
e 
onsidering all the available data simul-taneously and saving time. It is important to note that the method 
an begeneralized to di�erent appli
ation �eld. For instan
e in bioinformati
s, the
as
ade of unsupervised and supervised te
hniques 
an be suitable in tumoranalisys and subtype dis
overing, produ
ing useful models based on humanvalidated 
lusters [32℄.
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ade of te
hniques for predi
tion 936.1.1 Data integration and 
lusteringThe dataset has been built by appending all the data from the 5 wells in asingle table (see Figure 6.1).The �rst phase of the approa
h is the same as Se
tion 5.3 where 
luster-ing pro
ess was 
ondu
ted using a hierar
hi
al agglomerative approa
h. InFigure 6.2 the resulting dendrogram, the geologist splitted the dataset into 8
WELL2

WELLn+1

WELL3 WELLn

HIERARCHICAL
CLUSTERING

GEOLOGICAL
Q.C.

LEARNING
training

set

WELLn+1
classification

WELL1
WELL...

CLASSIFIER

Figure 6.1: Cas
ade of unsupervised and supervised te
hniques. First hier-ar
hi
al 
lustering is applied and the expert 
hooses the 
lustering partition.Then a supervised learning algorithm is used to learn a 
lassi�er suitable forfa
ies distribution predi
tion over new wells.
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lusters (labeled from 1 to 8) at di�erent levels. As a result, ea
h identi�ed
luster (bla
k nodes) represents a set of examples with similar distributionof the features.

Figure 6.2: Hierar
hi
al 
lustering result: the dendrogram with the 
olor mo-sai
. The geologist identi�es 8 
lasses 
utting the tree at di�erent distan
es(bla
k nodes).From the 
hosen 
lusters, given as training examples, we 
an learn a
lassi�er by applying supervised learning. In order to �nd the most reli-able interpretation method and the best predi
tion algorithm, we tested sev-eral te
hniques based on di�erent learning approa
hes. We use J48, RandomForests, PART and Rotation Forest as de
ision trees indu
tion and 
lassi-�
ation rules generation algorithms.For regression we use Classifi
ationViaRegression and Logisti
.In order to show the 
apabilities of the 
as
ade method and to evaluateresults and advantages, we tested it using di�erent approa
hes.In the standard predi
tions approa
h (see Se
tion 6.2.1) we predi
t fa
iesdistribution using a 
lassi�er trained on the dataset 
reated by merging thedata from all the wells, in
luding the well to be used as test set. In this
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ase the 
lassi�er's evaluation is often based on predi
tion a

ura
y (seeSe
tion 2.3).The standard predi
tions approa
h is, in fa
t, far from the real use: thegeologist 
ould start the analysis with some wells and then a new unknownwell, from the same area, is added. This is the usual 
ase and it is importantto reuse the previous learned models.In blind predi
tions approa
h (see Se
tion 6.2.2) the well to predi
t it isnot 
ombined in the 
lustering with all other datasets. This means that the�new� well does not 
ontribute to the formation of the 
lustering partitionthat represents fa
ies distribution. In this 
ase we 
an't apply dire
tly none ofthe previous validation te
hniques be
ause, we miss the real 
lass informationfor ea
h item to 
al
ulate the predi
tion a

ura
y. In order to evaluate thepredi
tion algorithms we must set a referen
e 
lassi�
ation of the unknownwell. This will be used as an ideal result to 
ompare performan
es of di�erentpredi
tion algorithms. We adopt two di�erent type of evaluation based ondi�erent datasets: the �rst te
hnique (see Figure 6.3) uses a new datasetmade by the merging of the starting dataset with the dataset of the unknownwell, the se
ond te
hnique uses only the dataset of the unknown well (seeFigure 6.4).The geologist 
reates the 
luster partition by 
utting the tree possiblyat di�erent distan
es. It is important to 
ut the tree for the same numberof 
lusters and to use the same 
riteria used in the initial 
lustering (i.e.
olor mosai
 observations or 
lustering metri
s). In this way we obtain a
lustering solution that will be used as referen
e 
lassi�
ation 
omparablewith the one 
reated in the predi
tion1. First we use a visual 
omparisonbetween predi
ted 
lasses and referen
e 
lassi�
ation. This 
an be done usinga software that shows 
lasses sequen
e with di�erent 
olors along the well(see Figure 6.5 and Figure 6.6). In these results it is easy to observe 
lasses
hanges and trends. Moreover with the referen
e 
lassi�
ation we still 
an't1For 
larity we will refer to referen
e 
lassi�
ation as 
lusters, and the predi
ted 
las-si�
ation as 
lasses.



96 6. Modeling & Evaluation: Predi
tive Data Mining

WELL...

WELL3

HIERARCHICAL
CLUSTERING

GEOLOGICAL
Q.C.

WELLn+1
classification

EVALUATION
evaluation

results

WELL2

WELLn

WELLn+1

WELL1

Figure 6.3: Blind predi
tions. In the evaluation phase we use the wholedataset.dire
tly 
al
ulate the a

ura
y of the predi
tion algorithm be
ause the new
lusters do not ne
essarily mat
h with 
lasses of the predi
ted 
lassi�
ation.We need a measure of how two di�erent 
lassi�
ations are homogeneous and
onsistent, regardless the name of the 
lasses. We use entropy and purity.

WELLn+1
HIERARCHICAL
CLUSTERING

GEOLOGICAL
Q.C.

WELLn+1
classification

EVALUATION
evaluation

results

Figure 6.4: Blind predi
tions. In the evaluation phase we use only the datasetof the unknown well.In order to assess the quality of our results, we also de�ne an entropy-based evaluation of the 
luster partition. This measure aims to highlight
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hing between the obtained 
lustering partition and the underlying 
las-si�
ation stru
ture. If a 
lass attribute is de�ned in the given dataset, wemay want to evaluate the 
lustering obtained with respe
t to the 
lass at-tribute. Even if the 
lustering task remains an unsupervised pro
ess (i.e.without 
onsidering the 
lass attribute in learning), a good mat
hing of itsresult with an underlying 
lassi�
ation is often desirable. A reliable measurefor this type of analysis is information entropy [56, 64℄.We 
an de�ne the information entropy of a single 
lass as the un
ertaintyrelative to the 
luster attribute for its examples. Entropy for the i− th 
lass
an be 
omputed using the following equation:
Hi = −

nc
∑

j=1

nij

ni

log
nij

niwhere nc is the number of 
lusters, ni the number of examples of the i− th
lass, and nij the number of examples of the j − th 
luster in the i − th
lass. A low entropy value reveals the �homogeneity� of a 
lass, with respe
tto the 
luster attribute. A 
lass 
ontaining instan
es from only one 
luster,will s
ore an information entropy equal to 0. We 
an evaluate the entropyof the whole predi
ted 
lassi�
ation by 
omputing the weighted mean of theentropy of ea
h 
lass. The number of instan
es belonging to the 
lass is usedas weight. This equation 
an be written as:
H =

1

N

nC
∑

i=1

niHiwhere N is the number of instan
es in the whole dataset, nC the number of
lasses and ni the number of examples into the i− th 
lass. A low overall en-tropy value represents a good mat
hing between the predi
ted 
lassi�
ationand the referen
e 
lassi�
ation. To 
ompare di�erent and sequential 
luster-ing 
on�gurations in the same dendrogram, we also use the information gainmeasure. This value is equal to the di�eren
e between the entropy value ofthe sele
ted partition and the one of the previous 
lustering 
on�guration.The information gain provides an easy way to reveal improvements in 
lusterhomogeneity.
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tive Data MiningWe 
hoose entropy and information gain measures sin
e they providean evaluation of the homogeneity of the obtained 
lusters with respe
t tothe underlying 
lasses. This type of measure does not need the number of
lusters to be equal to the number of 
lasses, sin
e it does not 
onsider adire
t asso
iation between a 
luster and a spe
i�
 
lass.Purity is a simple and transparent quality evaluation measure of 
lassi-�
ation solution. To 
ompute purity, ea
h 
lasses is assigned to the 
lusterwhi
h is most frequent in the 
lass, and then the a

ura
y of this assignmentis measured by 
ounting the number of 
orre
tly assigned items and dividingby N . Formally purity for i− th 
lass is:
Pi =

1

ni

max(nij)The overall purity of the predi
ted solution 
ould be expressed as aweighted sum of individual 
lasses purities:
P =

nc
∑

i=1

ni

N
PiIn general, bigger the value of purity better the solution.6.2 Experimental resultsThe input dataset is the same used in Se
tion 5.3 and it is 
omposed by 6030items and 7 variables.There are also three additional attributes: the depth of the measurement(DEPTH), the geologi
al unit2 (UNIT)and the name of the well (WELL-NAME). Every dataset has a sampling resolution of 10 in
hes.The data 
leaning stage and the dataset preparation was very importantand it had a signi�
ant role in the entire approa
h. This step was madein 
onjun
tion with the domain expert that knows the geologi
al meaning2A body of ro
k or i
e that has a distin
t origin and 
onsists of dominant, unifyingfeatures that 
an be easily re
ognized and mapped.



6.2 Experimental results 99and the 
orrelation between di�erent measurement. It also needed parti
ularattention, be
ause of the heterogeneity of data sour
es.It is important to note that well2 was perforated really 
lose to well1,indeed in terms of image and ele
tri
al logs they show very similar 
hara
-teristi
s.Our 
lustering algorithm uses the following settings:
• Z normalization3;
• Manhattan distan
e4;
• maximum linking.6.2.1 Standard predi
tionThis approa
h uses a large dataset 
reated merging well1, well2, well3, well4,well5 datasets.Removing UNIT and WELL-NAME attributes we obtain adataset of 6030 instan
es with DEPTH, SIN, SGR, RHOB, DTCO, PHI. Inwell5 values of SIN attribute are set to null. In this 
ase the knowledgeabout the 
hara
teristi
s of the well that will be predi
ted is 
ombined withall other wells and used in the hierar
hi
al 
lustering phase.The geologist identi�ed 8 di�erent 
lusters, re
orded as CLUSTER-NAMEattribute in the dataset. The training set is then 
reated extra
ting from 
lus-tering solution all instan
es of one well. The extra
ted well is used as testset (CLUSTER-NAME is removed for the test set).The validation of the approa
h, in the �rst part of our experiments, was
ondu
ted using the 10-fold 
ross validation, then we adopted a sort of leave-one-out validation where the test subset 
onsists of the instan
es from a singlewell. In the following we refer to this test as leave-one-well-out.3A linear normalization of ea
h variable that brings mean to 0 and varian
e to 1.4The distan
e algorithm used in the 
lustering pro
ess 
an handle missing data. Ifsome attributes are missing for 
ertain examples, the distan
e has been 
omputed onlywith the remaining ones.
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tive Data MiningFirst, using the 10-fold 
ross-validation te
hnique, we test the a

ura
yof the whole dataset. In this 
ase test set is randomly pi
ked from thestarting dataset regardless the well, this is not the usual way of use, but itgive an indi
ation of the best algorithms to 
hoose. Table 6.1 shows 
orre
tly
lassi�ed instan
es for normal and extended dataset. Rotation Forest givesbest results. normal dataset extended datasetJ48 85.2% 85.0%Random Forests 87.6% 87.2 %PART 84.6% 84.7%Rotation Forest 89.1% 88.8 %Classifi
ationViaRegression 86.6% 86.4%Logisti
 81.4% 81.9%Table 6.1: Corre
tly 
lassi�ed instan
es for normal and extended datasetusing 10-fold 
ross-validation.We test the predi
tion of ea
h well on 5 algorithms using leave-one-well-out validation. Table 6.2 and Table 6.3 show results of 
orre
tly 
lassi�edinstan
es for normal and extended dataset.In the normal dataset, well2 shows very similar results of 
orre
tly 
las-si�ed instan
es, Rotation Forest gives best result; also well3 shows similarvalues and PART gives the highest result. But the unexpe
ted result is thatin normal dataset 3 algorithms show best result for well3 instead of well2.In order to elu
idate these results we extend the dataset by adding twoattributes: normalized depth (NORM-DEPTH) and UNIT. UNIT is the nu-meri
al ID of the geologi
al unit and NORM-DEPTH is the depth linearnormalization: its value is 0 at the top and 1 at the bottom of the analysedse
tion. These values are the same for all the wells although, due to thedi�erent geologi
al des
ription, the real depth are di�erent. Swapping theDEPTH with the NORM-DEPTH in 
onjun
tion with UNIT in the predi
-tion algorithm, it is possible to better 
onsider di�erent ro
k type. In fa
t,



6.2 Experimental results 101well1 well2 well3 well4 well5J48 76.2% 79.0% 80.2% 73.2% 85.2%Random Forests 79.2% 80.6% 81.6% 77.9% 87.8%PART 78.4% 80.4% 82.1% 79.6% 86.5%Rotation Forest 79.8% 84.9% 78.0% 83.4% 88.7%Classifi
ationViaRegression 79.7% 81.1% 81.0% 79.8% 87.6%Logisti
 70.6% 80.3% 78.1% 79.0% 84.2%Table 6.2: Corre
tly 
lassi�ed instan
es for normal dataset.well1 well2 well3 well4 well5J48 76.0% 82.0% 79.4% 76.4% 83.1%Random Forests 77.4% 77.9% 75.0% 77.6% 84.4%PART 76.4% 78.9% 75.7% 76.6% 85.8%Rotation Forest 75.7% 84.9% 81.0% 85.6% 88.8%Classifi
ationViaRegression 79.4% 83.5% 82.5% 81.3% 88.2%Logisti
 70.1% 80.0% 79.3% 80.2% 84.7 %Table 6.3: Corre
tly 
lassi�ed instan
es for extended dataset.most of the predi
tion have better a

ura
y with the extended dataset.As shown in Table 6.3, the best results for the extended dataset has beenobtained by Rotation Forest in well5, well4 and well2. For well1 and well3Classifi
ationViaRegression gives good results. But 
hoosing RotationForest method we obtain the best result for all the wells.Another important result is the relatively short time taken by the analysis.As reported before the manual interpretation of a well 
an take up to onemonth. Our approa
h takes from 3 to 7 hours for the image analysis phaseof a well, then the 
lassi�
ation and predi
tion takes from 2 to 5 minutes.Adding more time for the data preparation and geologi
al quality 
ontrol(human made), we 
an 
ount at most two days per well.



102 6. Modeling & Evaluation: Predi
tive Data Mining6.2.2 Blind predi
tionIn our tests the supervised learning algorithm uses as training set the dataset
reated by merging 4 of the 5 wells datasets, then predi
ts 
lasses in a testwell, ex
luded from the same large dataset. In all our experiments we use astest wells well2 and well4.When the test set is well2 the training set is made up of 5007 instan
es(well1, well3, well4, well5 ) and when the test is well4 the training set 
ount4989 items (well1, well2, well3, well5 ). We extend the datasets by adding twoattributes: normalized depth (NORM-DEPTH) and UNIT. For every datasetwe use 6 attributes: SIN, SGR, RHOB, DTCO, PHI, NORM-DEPTH, andUNIT.Visual 
omparisonFigure 6.5 and Figure 6.6 show a visual 
omparison between predi
ted 
lassesand referen
e 
lassi�
ation. First two 
olumns are the referen
e 
lassi�
ation:made by using the whole dataset and made by using only the test well.Dashed lines represent 
hanges in 
luster distribution 
orre
tly dete
ted bypredi
tion algorithms. Due to the evaluation method, in this 
omparison thedi�eren
es between referen
e and predi
ted 
olor 
lasses does not matter.More important are 
hanges in 
lasses sequen
e.In well4 (Figure 6.6) is di�
ult to evaluate algorithms be
ause it presentsrapid 
lasses 
hanges along the well, but in both wells UNIT IV.3 is 
learlydete
ted by predi
ted 
lassi�
ation. Also the transition between UNIT IV.2and UNIT III is 
orre
tly identi�ed by all the algorithms. An important
onsideration made by the geologist is that, due to the number of the 
lassesit is very di�
ult to evaluate and 
hoose the best algorithm, but looking atthe referen
e 
lassi�
ation, it seems that the �rst 
olumn (
lustering madeby using the whole dataset) is more readable than the se
ond. It presentsless details and it is less 
omplex.
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omparisonTable 6.4 shows results of entropy and purity for ea
h well. In order tobetter understand results, making further tests, we 
hoose to predi
t someinteresting se
tions of well2 and well4 : UNIT IV.2 and UNIT IV.3 5 Tolo
ate them see Figure 6.5 and Figure 6.6. For ea
h se
tion we 
reate thetraining set extrapolating the same geologi
al unit from all the wells.Using both the evaluation te
hniques, the whole dataset evaluation (seeFigure 6.3) and the test dataset evaluation (see Figure 6.4), we predi
t and
al
ulate entropy and purity of ea
h well and se
tion. Looking at theseresults, Logisti
 shows better performan
e than other algorithms in most
ases. Logisti
 results for well2 - UNIT IV.2 are not very good, but in fa
tthis se
tion is not very meaningful be
ause it is short and very homogeneous.This result 
on�rms, as expe
ted, that regression methods are suitable forpredi
tion of 
ontinuous numeri
 values.

5In well2 we 
onsider UNIT IV.3 as UNIT IV.3inf + UNIT IV.3sup.



104 6. Modeling & Evaluation: Predi
tive Data Miningwhole dataset eval. test dataset eval.entropy purity entropy puritywell2Classifi
ationViaRegression 0.902 0.652 0.865 0.633J48 0.946 0.625 0.948 0.603Logisti
 0.873 0.646 0.778 0.668PART 0.944 0.628 0.943 0.608Random Forests 0.905 0.636 0.873 0.622Rotation Forest 0.854 0.665 0.853 0.635well2 - UNIT IV.2Classifi
ationViaRegression 0.199 0.963 0.262 0.938J48 0.132 0.975 0.195 0.951Logisti
 0.199 0.963 0.262 0.938PART 0.132 0.975 0.195 0.951Random Forests 0.149 0.963 0.181 0.963Rotation Forest 0.199 0.963 0.262 0.938well2 - UNIT IV.3Classifi
ationViaRegression 0.817 0.663 0.774 0.694J48 0.869 0.641 0.842 0.665Logisti
 0.760 0.679 0.677 0.719PART 0.889 0.647 0.859 0.679Random Forests 0.854 0.647 0.806 0.680Rotation Forest 0.837 0.663 0.811 0.680well4Classifi
ationViaRegression 0.718 0.741 0.755 0.689J48 0.745 0.735 0.775 0.681Logisti
 0.703 0.751 0.737 0.697PART 0.694 0.774 0.0.742 0.705Random Forests 0.728 0.748 0.779 0.689Rotation Forest 0.683 0.769 0.761 0.696well4 - UNIT IV.2Classifi
ationViaRegression 0.743 0.720 0.702 0.732J48 0.799 0.701 0.805 0.720Logisti
 0.674 0.732 0.739 0.720PART 0.643 0.768 0.759 0.720Random Forests 0.690 0.750 0.742 0.701Rotation Forest 0.640 0.739 0.743 0.726well4 - UNIT IV.3Classifi
ationViaRegression 0.902 0.671 0.509 0.787J48 1.004 0.606 0.559 0.740Logisti
 0.908 0.628 0.612 0.697PART 0.998 0.599 0.564 0.711Random Forests 0.965 0.625 0.550 0.733Rotation Forest 0.904 0.657 0.516 0.765Table 6.4: Result of entropy and purity for 
hosen wells and se
tions. Boldvalues are the best ones for ea
h well se
tion.
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Figure 6.5: Visual 
omparison of 
lustering results of well2.
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Figure 6.6: Visual 
omparison of 
lustering results of well4.
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CHAPTER 7
Deployment

In this Ph.D. work we used several software tools, some of them were inter-nally developed and others were already available and well known. They areall integrated in a unique semi-automati
 system 
alled I2AM (IntelligentImage Analysis and Mapping). Following the CRISP-DM model this is theDeployment phase where all the e�orts are in developing a system that al-lows the use of the studied approa
h and model in a pro�table and repeatableway in business 
ontexts. Se
tion 7.1 des
ribes the main system developedin this Ph.D. work while Se
tion 7.2 presents another important developedtools for data integration and 
lustering. Finally some works and industrialappli
ation of our system are presented in Se
tion 7.3.7.1 I2AMI2AM is a semi-automati
 system that exploits image pro
essing algorithmsand arti�
ial intelligen
e te
hniques to analyse and 
lassify subsurfa
e data
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tri
 logs). The I2AM approa
h 
an be summarized in foursteps and ea
h of them represents a fun
tional part of the entire system:1. automati
 features extra
tion from FMI image log;2. features re�nement and validation;3. data integration and 
lustering;4. 
lusters validation and predi
tion.7.1.1 Automati
 features extra
tion from FMI image logIn order to automati
ally extra
t image features from the FMI log, �rstthe system takes as input a numeri
 table (raw data) and represents it asimage. In the raw data table there is a row for ea
h depth, a 
olumn for ea
hdegree (360 degrees) and ea
h single 
ell 
ontains the resistivity measurement.This step produ
es an i2m �le readable by the main visualization tool. InFigure 7.1 the 
omplete s
hema for automati
 extra
tion.Then the system analyses the entire well using a �xed size window andprodu
es an i2mr �le that 
ontains extra
ted features at ea
h depth. Thistask 
an take up to 7 hours for a well of 500 m but this is strongly related tothe requested pre
ision analysis, hen
e it is related to the exe
ution param-eters of ea
h algorithm.All the algorithms were implemented in JAVA using also some ImageJ [58℄libraries. Ea
h exe
ution produ
es also a log �le where ea
h row represent thepro
essed analysis windows with the depth, the window progressive number,the used system memory and a timestamp. The following is an example ofexe
ution log.Tue O
t 26 17:57:57 CEST 2010 LOG: File 'tawke_1.660.i2m_analysis.log'Tue O
t 26 17:57:57 CEST 2010 LOG: Loading data from file:/home/denis/databases/fmi/dno/tawke_1/tawke_1.660.i2mTue O
t 26 17:58:10 CEST 2010 LOG: Time to load: 12614 millis---------------------------------Well: tawke_1.660



7.1 I2AM 111Size: [0, 163331℄Width: 329Analysis Size: [0, 163331℄---------------------------------Tue O
t 26 17:58:10 CEST 2010LOG: Window 1 of 1633 Row: 0 Analysis win [0, 100℄ used mem (Mb):237 SKIP.Tue O
t 26 17:58:12 CEST 2010LOG: Window 2 of 1633 Row: 100 Analysis win [100, 200℄ used mem (Mb):280Tue O
t 26 17:58:13 CEST 2010LOG: Window 3 of 1633 Row: 200 Analysis win [200, 300℄ used mem (Mb):286Tue O
t 26 17:58:14 CEST 2010LOG: Window 4 of 1633 Row: 300 Analysis win [300, 400℄ used mem (Mb):280......Tue O
t 26 18:21:04 CEST 2010LOG: Window 1632 of 1633 Row: 163100 Analysis win [163100, 163200℄ used mem (Mb):333Tue O
t 26 18:21:04 CEST 2010LOG: Window 1633 of 1633 Row: 163200 Analysis win [163200, 163300℄ used mem (Mb):333 SKIP.Tue O
t 26 18:21:04 CEST 2010 LOG: Engine Time: 00:22:53Tue O
t 26 18:21:04 CEST 2010 LOG: Write to .i2mr File: tawke_1.660.i2mr7.1.2 Features re�nement and validationAfter the automati
 extra
tion of the features, results obtained by this stepare graphi
ally presented to the interpreter.Figure 7.2 shows a s
reenshot of the main window of I2AM system. Inthe left window there is the original FMI image, the i2m �le, 
oloured with aneditable palette. This palette 
an be modi�ed using the 
olor bar in the upperleft 
orner and this is useful in order to highlight some low 
ontrast imagefeatures. The I2AM visualisation system exploits the layers idea: on
e a i2m�le is showed, it is possible to load i2mr or i2m
 �les. i2mr 
ontains onlyextra
ted graphi
al features while i2m
 
ontains also well 
lustering. The
enter window shows this two types of �les, all the visual features are drawnover the sele
ted FMI image (the beddings are also presented by tadpoles onthe right). The other measures (
ontrast and texture) are represented using a
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7.Deployme

nt
Figure 7.1: S
hema of automati
 features extra
tion phase: the visualization system 
onverts numeri
 table in image,then the analysis engine pro
ess the entire image logs produ
ing a �le that 
ontains extra
ted features for ea
h depth.
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Figure 7.2: S
reenshot of the main window of I2AM system. In the leftwindow there is the original FMI image 
oloured with an editable palette. Inthe 
enter window the extra
ted graphi
al features are drawn over the sameFMI. The right 
oloured bar is a small thumbnail of the well and it is usedto easily explore it. In the bottom there are some well se
tion samples forea
h identi�ed 
luster.bar plot on the right of ea
h analysis window, where the length of the yellowbar represents the 
ontrast and the blue bar represents the texture. Thebottom window shows some well se
tion samples for ea
h identi�ed 
luster.The right 
oloured bar is a small thumbnail of the well and it is used toeasily explore it: sele
ting a depth, the other two windows shows the relativezoomed se
tion of the well.In feature and validation step the interpreter 
an 
he
k the output ofthe algorithms and validate the extra
ted features. I2AM allows 
orre
tingvisible results, in three ways:



114 7. Deployment1. add/modify/remove sinusoids;2. add/modify/remove va
uoles;3. mark some windows as �poor� (not reliable for further analysis).In order to easily perform the 
orre
tion of bedding dete
tion, anothertool has been integrated in the prototype: sinCAD (sinusoids ComputerAided Design). See Figure 7.3 for a s
reenshot. This tool provides a fast anduseful method for identifying the sinusoids missed by the automated analysis.The interpreter 
an draw a surfa
e dire
tly on the image, by mouse-
li
kingthree or more points. Then the software is able to sear
h for other surfa
esparallel to this one, and it automati
ally dete
ts the whole set of beddings.

Figure 7.3: The sinCAD interfa
e. Using this tool it is possible to 
orre
t,to add and to remove sinusoids automati
ally dete
ted by the algorithm.A similar approa
h was developed for va
uoles 
orre
tion. The va
uoles�nder helps the interpreter in va
uoles 
orre
tion. On
e sele
ted the depthit is possible to manually 
he
k automati
ally dete
ted va
uoles and then



7.1 I2AM 115add or remove them. Figure 7.4 shows the va
uoles �nder interfa
e whilethe geologist is removing some va
uoles from a FMI log.

Figure 7.4: va
uoles �nder helps the interpreter in va
uoles 
orre
tion. Inleft 
olumn the interpreter 
hooses the editing mode: to add or to removeva
uoles. Left image is the sour
e image, right image shows dete
ted va
uoles.
Finally, an important feature of I2AM system is the �poor� window mark-ing. A variety of environmental 
onditions and instrumental error 
an 
om-promise the measurement of some part of the well, and these defe
ts areusually not automati
ally dete
table. By simply 
li
king on the well image,the interpreter 
an mark some of the analysed windows as �poor� and ex
ludethem from further pro
essing. This step signi�
antly advantages the 
lassi-�
ation task, sin
e it removes some se
tions that 
an produ
e non reliableinterpretation.
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lusteringOn
e the image results are validated it is possible to integrate ele
tri
al logswith image logs withDI4G, the tool presented in Se
tion 7.2. Finally, duringthe 
lustering pro
ess (see Figure 7.5), it is ne
essary to 
hoose the 
lustersstru
ture. The interpreter 
an sele
t the better suggested 
lustering solutionand modify the number of 
lusters. This pro
ess produ
es the i2m
 �le that
ontains the sele
ted 
lustering partition.

Figure 7.5: Clustering pro
ess in the I2AM software.
7.1.4 Clusters validation and predi
tionLoading the i2m
 �le (Figure 7.2) the geologist 
an validate 
lusters 
he
k-ing depth-by-depth the entire well. In this step the interpreter 
an assign aname to ea
h 
luster and it is also possible to make some lo
al 
orre
tionsby hand (i.e. 
hange the 
luster assigned to a given analysis window). Fi-nally resulting i2m
 �le 
an be exported and used in WEKA [36℄ for 
lassespredi
tion.



7.2 DI4G 117The �nal predi
ted 
lassi�
ation form the basis of the analysis on whi
hthe geologist 
arries out its 
onsiderations. The �nal result is a series of imagefa
ies that are identi�ed along the image log and that 
an be 
alibratedusing 
ores to sedimentary fa
ies to assign the geologi
al meaning. This
lassi�
ation result 
an also be exported in di�erent �le format in order tobe used in other spe
i�
 geologi
 software for reservoir analysis.7.2 DI4GDI4G (Data Integrator for Geology) is a tool developed in JAVA that usesthe algorithms explained in Se
tion 4.2 in order to merge di�erent dataset.The values obtained from image analysis 
an be aligned and merged withother data logs from the same well (su
h as density, porosity, gamma ray,et
.), and the tool builds a new dataset 
olle
ting data from all the sele
tedlogs (Figure 7.6).

Figure 7.6: DI4G builds a new dataset 
olle
ting data from all the sele
tedlogs.After the merging phase, DI4G let the user 
hoose the 
olumns to usein the 
lustering task and the ones that might be dis
arded (Figure 7.7).
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Figure 7.7: The 
olumn 
hooser s
reen shot of DI4G. The user 
an de
idewhi
h 
olumn are to be dis
arded for the following 
lustering pro
ess.The following task is the 
lustering pro
ess. For further details on DI4Grefer to [69℄.7.3 WorksThe I2AM system andDI4G are used by G.E.Plan Consulting srl in di�erentproje
ts. G.E.Plan Consulting is an oil and gas 
onsulting 
ompany thatprovides innovative servi
es for new exploration and development proje
tsand has spe
ialisti
 skills in 
arbonate sedimentology and reservoir analysis.The 
ompany uses I2AM sin
e 2009, helping in development and testingphase and providing real dataset.The �rst important proje
t that involves I2AM system was the litho-logi
al analysis of a �eld of 6 wells, using image and ele
tri
 logs. In this
ase the analysis made �by hand� by the geologist was improved using resultfrom I2AM. Another interesting work used only ma
hine vision te
hiniquefor a porosity analysis proje
t of 7 wells from the same area. We used andmodi�ed the algorithm for va
uoles dete
tion in order to 
ount the presen
eand to measure the size of va
uoles along well depth.



CHAPTER 8
Con
lusions

In petroleum geology the understanding and 
hara
terization of reservoirsneeds integration of di�erent subsurfa
e data in order to 
reate reliable reser-voir models. The large amount of data for ea
h well and the presen
e ofdi�erent wells to be simultaneously analysed make this task both 
omplexand time 
onsuming. In this s
enario, the development of reliable 
hara
-terization methods is of prime importan
e in order to help the geologist andredu
e the subje
tivity of data interpretation.In this Ph.D. thesis we address the 
omplexity of reservoir modeling us-ing ma
hine vision and data mining te
hniques in order to des
ribe and topredi
t hidden data stru
tures in subsurfa
e data. To this purpose a novelinterpretation approa
h based on the use of unsupervised and supervisedlearning te
hniques in 
as
ade was studied, tested and then implemented ina system 
alled I2AM. It 
onsisted of merging dataset of di�erent wells inthe same area, 
lustering the new dataset in order to identify fa
ies distribu-tion (human interpretation), learning the 
lustering solution in a des
ription
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lusionsmodel and then 1) des
ribing data stru
ture of wells and 2) predi
ting re-sults for a new well from the same area. Ea
h well dataset was made ofthe integration of di�erent data: ele
tri
al logs and image logs. Image logsare automati
ally pro
essed in order to obtain a numeri
al des
ription of theinterested features.By implementing I2AM image analysis engine we have identi�ed the mostsuitable methods for the extra
tion of features from FMI log images. Forea
h of these features, we developed one or more advan
ed image pro
essingalgorithms that 
an verify their presen
e and quantify them. Results showthat the implemented algorithms are suitable for a fast image log analysisbut geos
ientist intera
tion is fundamental for the validation. Hen
e, it isimportant to give him tools and methods for result 
orre
tion.Des
riptive approa
h was tested �rst with hierar
hi
al 
lustering te
h-niques using information entropy over a dataset made by the merging ofseveral borehole wells from a hydro
arbon reservoir. Supervised te
hniquesare then used to summarize 
lustering partitions in a human readable rep-resentation in order to help the geos
ientist in reservoir understanding. Thedeveloped 
lustering tool was intended as an helpful tool to better visualizeand understand the global stru
ture and the organization of all dete
ted fea-tures over the entire well. The full vision of the well 
hara
teristi
s providedby the 
lustering tool is a 
ru
ial aspe
t of our system, sin
e the interpre-tation task be
omes simpler and its result more reliable. In parti
ular, thedendrogram used to visualize and modify the result of the 
lustering opera-tion, improves the human expert intera
tion allowing a sensitivity 
orre
tionand a better interpretation. Moreover using 
luster validation indexes, wedeveloped an algorithm that produ
es more realisti
 
lusters, 
utting thedendrogram in a non-horizontal way. Observing results, we 
an assess thatthis te
hnique provides a reliable partition. Moreover, the behaviour of in-formation gain 
on�rms that the obtained partitions mat
h well with theunderlying stru
ture of the datasets. Regarding supervised algorithms, rulegeneration te
hniques provide readable results and PART gives higher pre
i-
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lusions 121sion than JRIP but, due to the low number of generated rules, the latter ismore useful. NaiveBayes was also the geologist 
hoi
e be
ause it produ
essimple information about data stru
ture that 
ould be used as summary of
lusters partition.Predi
tive approa
h was tested using two di�erent strategies: standardand blind predi
tions. In standard predi
tions, on
e the large dataset is 
re-ated (merging 5 known wells from a hydro
arbon reservoir), we used a partof it as training set of de
ision trees or regression te
hniques and then we testthe learned model predi
ting the fa
ies distribution over the wells. In blindpredi
tions we tested the learned model by predi
ting the fa
ies distribu-tion over two unknown wells and some se
tions of them. The two unknownwells was not in
luded in the initial 
lustering partition. In order to testthe entire method and to �nd a reliable predi
tion algorithm we test sev-eral supervised te
hniques. For standard predi
tions Rotation Forest andClassifi
ationViaRegression show best results, but Rotation Forest isa good 
ompromise for the predi
tion of the entire set of wells. For blindpredi
tions we evaluated results using a visual 
omparison and 
omputingentropy and purity over a referen
e 
lassi�
ation. This 
lassi�
ation is gen-erated using two di�erent dataset: the starting dataset merged with theunknown well dataset and the only test well dataset. Logisti
 was a good
ompromise for the predi
tion of tested wells.The data preparation phase is also important in order to �nd the bestway to des
ribe and to highlight 
orrelation between wells in the same area.The main advantages of this approa
h are the simple management anduse a large amount of data simultaneously; the extra
tion of realisti
 infor-mation about ro
k properties and fa
ies identi�
ation that 
an help in thereservoir 
hara
terization; the avoidan
e of interpretation subje
tivity; andthe redu
tion of the interpretation time by largely automating the log inter-pretation, although some levels of human intera
tion are ne
essary. Timingis a 
ru
ial fa
tor in this �eld, 
onsequently the time redu
tion given by ourapproa
h has a great impa
t in 
osts of reservoir analysis and interpretation.



122 Con
lusionsThe experimental results show that the approa
h is viable for reservoir fa
iespredi
tion in real industrial 
ontext where is important to reuse informationsabout wells already analysed.
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