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Introduction

The natural complexities of petroleum reservoir systems continue to provide
a challenge to geoscientists. The absence of reliable data often leads to an
inadequate understanding of reservoir behaviour and consequently to poor
performance predictions. Although this is an ongoing problem and one which
may be difficult to resolve without additional data and/or investment, it
is important to pursue the best possible solutions using whatever data is
readily available. Data integration, and risk and uncertainty assessment,
have become the major issues in reservoir characterization. The large amount
of data for each well and the presence of different wells to consider together
make this task also complex especially if the subjectivity of the interpretation
has to be reduced.

In past decades, classical data processing tools and physical models were
adequate for the solution of relatively “simple” geological problems. However
because of the uncertainties which are inherent in geological data, the chal-
lenge we now face is not just to predict the presence of hydrocarbons, but
rather to quantify the confidence of reservoir predictions. We are increas-

ingly being faced with more and more complex problems, and reliance on
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current, technologies based on conventional methodologies is becoming less
satisfactory. The development of reliable interpretation methods is of prime
importance regarding the reservoir understanding and data integration is a
crucial step in order to create useful description models and to reduce the

amount of time necessary for each study.

Artificial intelligence, data mining techniques and statistics methods are
widely used in reservoir modelling, for instance in prediction of sedimentary
facies'. Delineation of lithofacies from well log data is a typical classification
task. Geologists have to spend a significant amount of time interpreting
logs to identify the lithological composition of the investigated rock, e.g.
the percentage of clay content. Based on this calculation, the facies are
divided into different classes of lithofacies, a time consuming task that must
be repeated for each well. The same result can be achieved with unsupervised
algorithms, they can identify clusters of well-log responses along available
input data (log parameters) that are representative of variuos rock facies,
similar to what a geologist would classically do. For example, bulk density,
neutron porosity, sonic travel time and potassium content can be used as
input data sets. Supervised machine learning is the search for algorithms (i.e.
decision trees or regression methods) that reason from externally supplied
instances to produce general hypotheses, which then make predictions about

future instances [43].

Unsupervised and supervised techniques can help the geologist in facies
analysis leading to the development of new interpretative methods for reser-
voir characterization. However, reservoir characterization is improved when
information from different wells in the same area is taken into consideration,

giving reliable support to further analysis of unknown wells in the same field.

LA facies is a body of sedimentary rock distinguished from others by its lithology,
geometry, sedimentary structures, proximity to other types of sedimentary rock, and fossil

content.
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Objective

In petroleum geology, exploration and production wells are often analysed
using image logs, because they provide a visual representation of the borehole
surface and they are fundamental to retrieve information on bedding and
rocks characteristics.

Aim of the work was to define and implement a suite of automatic and
semi-automatic tools for interpretation of image logs and large datasets of
subsurface data coming from geological exploration. This led to the develop-
ment, of I?’AM (Intelligent Image Analysis and Mapping), a semi-automatic
system that exploits image processing algorithms and artificial intelligence
techniques to analyse and classify borehole images.

More in detail, the objectives of the I>’AM approach are: (1) to automat-
ically extract rock properties information from all the different types of data
recorded /measured in the wells, and visual features from image logs in partic-
ular; (2) to identify clusters along the wells that have similar characteristics;
(3) to predict class distribution over new wells in the same area.

In particular, we propose a cascade of techniques, i.e., pattern recognition,

clustering and learning classifications algorithms, in order to:

e first, identify relevant features in image logs, such as vugs and sinusoids,
by applying image processing algorithms in order to extract numerical

values for each such feature;

e second, cluster several regions of the same well or of different wells into

similar groups, by applying hierarchical clustering;

e choose the set of most significant clusters: in this work, this is done by

the expert of the domain but it can also exploit indexes;

e finally, feed a machine learning algorithm with the identified relevant
clusters as classes, in order to learn a classifier to be applied to new

instances and wells, possibly co-located.
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The main benefits of this approach are the ability to manage and use a
large amount of subsurface data simultaneously. Moreover, the automatic
identification of similar portions of wells by hierarchical clustering saves a
lot of time for the geologist (since he analyses only the previously identified
clusters). The interpretation time reduces from days to hours and subjectiv-
ity errors are avoided. Moreover, chosen clusters are the input for supervised
learning methods which learn a classification that can be applied to new wells.
Finally, the learned models can also be studied for a cluster characterization,
in a descriptive approach.

Since a profitable way to address the challenge of the computer aided
reservoir characterization was to use a standard process to guide the imple-
mentation of a reliable and useful solution, we have considered a number of
them. KDD (Knowledge Discovery in Databases), SEMMA (Sample, Ex-
plore, Modify, Model, Assess) and CRISP-DM (Cross Industry Standard
Process for Data Mining) represent, the state of the art methodologies in de-
veloping data mining applications [5]. CRISP-DM provides a non proprietary
and freely available standard process for fitting data mining into the general
problem-solving strategy of a business or research unit. Due to its industrial
character and its completeness, CRISP-DM is the most interesting process
that can easily map the reservoir characterization context. Therefore, in this
Ph.D. work we adopt CRISP-DM process.

Structure

This thesis is organized following the CRISP-DM process.

In Part I we provide an introduction and some background information
about data mining, petroleum geology and and how they can be related
each other. Chapter 1 describe the CRSIP-DM process, Chapter 2 provides
some background and related works about data mining and machine vision
techniques used in this work. Chapter 3 describes the Business & Data

Understanding phase: petroleum exploration and production process are
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explained also in terms of available data.

Part II is dedicated to the new approaches and solution proposed in this
work. Data Preparation phase takes place in Chapter 4: new machine
vision algorithm for image log interpretation are proposed and tested. Chap-
ter 5 and Chapter 6 propose and discuss a new reservoir characterization
model based on data mining techniques, focussing on the Modeling & Eval-
uation phases.

Part III with Chapter 7 concludes the thesis giving a brief overview to the
developed tools in the Deployment phase. Finally Chapter 8 summarizes

results and conclusion.
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CHAPTER 1

CRISP-DM

There is a temptation in some companies, due to departmental inertia and
compartmentalization, to approach data mining haphazardly, to reinvent the
wheel and duplicate effort. A cross-industry standard was clearly required
that is industry neutral, tool-neutral, and application-neutral. The Cross-
Industry Standard Process for Data Mining (CRISP-DM) [16] was developed
in 1996 by analysts representing DaimlerChrysler, SPSS, and NCR.

This short chapter introduces the CRISP-DM methodology (Section 1.1)
and reference model (Section 1.2), this is very useful in order to understand

the main structure of the entire Ph.D. work.

1.1 CRISP-DM methodology

In the past two decades oil and gas companies have spent millions of dollars
to collect digital data or to convert the existing data into digital form. This

is due to the fact that they have realized the value of data and the potential
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it possesses in enhancing their operations. IT departments in larger oil and
gas companies and major service companies and other vendors have devel-
oped sophisticated software tools that allow operators to organize their data,
currently existing in different databases, into a cohesive data warehouse and
make it available to information engineers. Furthermore, several software ap-
plications have been developed to put all that information on the geologists
finger tips so they can look at all sorts of data pertaining to a reservoir, a

field or a well.

Although these are absolutely essential for successful operation of a large
company, it has created a new monster. There are far more data that the
ones that could be effectively analysed. Human brain, although being the
most remarkable information processing entity, can only work simultaneously
in many dimensions and is incapable of processing very large volumes of
data. As the volume of data increases, inexorably, the proportion of it that
people understand decreases, alarmingly. Lying hidden in all this data is
information, potentially useful information, that is rarely made explicit or

taken advantage of.

Data mining and knowledge discovery, as an integrated process can come
to rescue in such occasions. Data mining is defined as the process of dis-
covering patterns in data. The process must be automatic or (more usually)
semi-automatic. The patterns discovered must be meaningful in that they

lead to some advantage, usually an economic advantage.

Data mining is also a creative process which requires a number of dif-
ferent skills and knowledge and it needs a standard approach which will (1)
help to translate business problems into data mining tasks, (2) suggest ap-
propriate data transformations and data mining techniques, and (3) provide
means for evaluating the effectiveness of the results and documenting the
experience. The CRISP-DM (CRoss Industry Standard Process for Data
Mining) project [16] addressed parts of these problems by defining a process
model which provides a framework for carrying out data mining projects

which is independent of both the industry sector and the technology used.
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The CRISP-DM process model aims to make large data mining projects, less

costly, more reliable, more repeatable, more manageable, and faster.

The CRISP-DM methodology is described in terms of a hierarchical pro-
cess model, consisting of sets of tasks described at four levels of abstraction
(from general to specific): phase, generic task, specialized task, and process

instance (see Figure 1.1.).

At the top level, the data mining process is organized into six phases, that
will be defined later; each phase consists of several second-level generic tasks.
This second level is called generic because it is intended to be general enough
to cover all possible data mining situations. The generic tasks are intended
to be as complete and stable as possible. Complete means covering both
the whole process of data mining and all possible data mining applications.
Stable means that the model should be valid for yet unforeseen developments

like new modeling techniques.

The third level, the specialized task level, is the place to describe how
actions in the generic tasks should be carried out in certain specific situations.
For example, at the second level there might be a generic task called clean
data. The third level describes how this task differs in different situations,
such as cleaning numeric values versus cleaning categorical values, or whether

the problem type is clustering or predictive modeling.

The description of phases and tasks as discrete steps performed in a spe-
cific order represents an idealized sequence of events. In practice, many of the
tasks can be performed in a different order, and it will often be necessary to
repeatedly backtrack to previous tasks and repeat certain actions. Our pro-
cess model does not attempt to capture all of these possible routes through
the data mining process because this would require an overly complex process

model.

The fourth level, the process instance, is a record of the actions, decisions,
and results of an actual data mining engagement. A process instance is orga-
nized according to the tasks defined at the higher levels, but represents what

actually happened in a particular engagement, rather than what happens in
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general.
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Figure 1.1: Four Level Breakdown of the CRISP-DM Methodology for Data
Mining.

1.2 The reference model

According to CRISP-DM, a given data mining project has a life cycle con-
sisting of six phases. Figure 1.2 shows the phases of a data mining process.
The sequence of the phases is not rigid. Moving back and forth between
different phases is always required. It depends on the outcome of each phase
which phase or which particular task of a phase, has to be performed next.
The arrows indicate the most important and frequent dependencies between
phases. Data mining is not over once a solution is deployed. The lessons
learned during the process and from the deployed solution can trigger new,
often more focused business questions. Subsequent data mining processes

will benefit from the experiences of previous ones.

In the following, we outline each phase briefly.
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Business | ~ Data
Understanding | Understanding

S

Data
Preparation

3

Deployment

Y

Modeling

Evaluation

Figure 1.2: Phases of the CRISP-DM reference model.

Business understanding

This initial phase focuses on understanding the project objectives and re-
quirements from a business perspective, then converting this knowledge into
a data mining problem definition and a preliminary plan designed to achieve

the objectives.

Data understanding

The data understanding phase starts with an initial data collection and pro-
ceeds with activities in order to get familiar with the data, to identify data
quality problems, to discover first insights into the data or to detect inter-

esting subsets to form hypotheses for hidden information.
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Data preparation

The data preparation phase covers all activities to construct the final dataset
(data that will be fed into the modeling tool(s)) from the initial raw data.
Data preparation tasks are likely to be performed multiple times and not in
any prescribed order. Tasks include table, record and attribute selection as

well as transformation and cleaning of data for modeling tools.

Modeling

In this phase, various modeling techniques are selected and applied and their
parameters are calibrated to optimal values. Typically, there are several
techniques for the same data mining problem type. Some techniques have
specific requirements on the form of data. Therefore, stepping back to the

data preparation phase is often necessary.

Evaluation

At this stage in the project you have built a model (or models) that appears
to have high quality from a data analysis perspective. Before proceeding to
final deployment of the model, it is important to more thoroughly evaluate
the model and review the steps executed to construct the model to be certain
it properly achieves the business objectives. A key objective is to determine
if there is some important business issue that has not been sufficiently con-
sidered. At the end of this phase, a decision on the use of the data mining

results should be reached.

Deployment

Creation of the model is generally not the end of the project. Even if the
purpose of the model is to increase knowledge of the data, the knowledge
gained will need to be organized and presented in a way that the customer
can use it. It often involves applying “live” models within an organization’s

decision making processes, for example in real-time personalization of Web
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pages or repeated scoring of marketing databases. However, depending on the
requirements, the deployment phase can be as simple as generating a report
or as complex as implementing a repeatable data mining process across the
enterprise. In many cases it is the customer, not the data analyst, who
carries out the deployment steps. However, even if the analyst will not carry
out the deployment effort it is important for the customer to understand up
front what actions need to be carried out in order to actually make use of
the created models.

Images used in this chapter and more information about the CRISP-DM

standard process can be found at http://www.crisp-dm.org.






CHAPTER 2

Background

This chapter provides some preliminaries background about data mining
techniques used in this work. First in Section 2.1 a new and simple clas-
sification of the processes known as data mining is given, then in Section 2.2
clustering algorithms are presented. Section 2.3 explains supervised learning
methods and finally Section 2.4 presents some related works on unsuper-
vised and supervised learning in cascade, automatic clusters validation and

machine vision applied in petroleum geology.

2.1 A new Data Mining vision

As mentioned before, data mining is defined as the process of discovering
patterns in data. How are the patterns expressed? Useful patterns allow
us to make nontrivial predictions on new data. There are two extremes for
the expression of a pattern: as a black box whose innards are effectively

incomprehensible and as a transparent box whose construction reveals the
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structure of the pattern. Both, we are assuming, make good predictions.
The difference is whether or not the patterns that are mined are represented
in terms of a structure that can be examined, reasoned about, and used
to inform future decisions. Witten an Frank [78] call it structural patterns
because they capture the decision structure in an explicit way. In other
words, patterns help to explain something about the data.

The new interest in data mining may be attributed to the fact that the
new set, of processes that are called data mining are a super set of the pro-
cesses that previously were known as data mining. The original data mining
processes were summarized as a collection of statistical analysis. The new
data mining processes include several machine learning techniques as well
as statistical analysis. The addition of the recently popularized machine
learning and intelligent processes such as artificial neural networks, genetic
algorithms, fuzzy logic, and modified cluster analyses have considerably in-
creased the capabilities and utilities offered by data mining.

Many authors have offered different classifications of the processes that
are collectively known as data mining [77]. The most appropriate of these
definitions (one that suites petroleum industry most appropriately) seems to
be the one that identifies two classes of data mining processes. These are
descriptive and predictive data mining. In several cases, descriptive data
mining can be considered as a subset of predictive data mining. In other
words, in order to perform predictive data mining successfully, one, most
probably, will have to perform a descriptive data mining first and then use
the information and the results of this process to complete the predictive

data mining.

2.1.1 Descriptive Data Mining

Descriptive data mining is very useful for getting an initial understanding of
the presented data. Descriptive data mining is an exploratory process and
attempts to discover patterns and relationships between different features

present in the database. During the descriptive data mining process the
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data miner must keep in mind that relevance is an important issue. In other
words, the relationships discovered by the miner must be those that users
would care about. During this process many non-obvious patters may pop

out that may be of interest to the data owners.

The tools used during the descriptive data mining process are usually
consisted of different types of cluster analysis such as hierarchical clustering,
k-mean clustering, and fuzzy c-mean clustering. Other popular descriptive

data mining tools are association/classification rule induction techniques.

2.1.2 Predictive Data Mining

As was previously mentioned, predictive data mining is a super set that
should include descriptive data mining as part of its processes, or at least,
that is how we would like to define it based on our past experience. During
the predictive data mining the descriptive data mining processes are used
as a prelude to development of a predictive model. The predictive model
can then be used in order to answer questions and assist the data miner in
identifying trends in the data. What is most interesting about predictive
data mining that distinguishes it from the descriptive data mining is that it
can identify the type of patterns that might not yet exist in the dataset but
has the potential of developing.

Unlike the descriptive data mining that is an unsupervised process, pre-
dictive data mining is very much a supervised process. Predictive data min-
ing not only discovers the present patterns and information in the data it
attempts to solve problems. Through the existence of modeling processes
in the analysis the predictive data mining can answer questions that cannot
be answered by other techniques. Tools that are used in the predictive data
mining process include decision trees, neural networks, genetic algorithms
and fuzzy systems. Decision trees are ideal for solving problems that can be

dissected into a logical progression of events [51].
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2.2 Clustering techniques

Cluster analysis is an unsupervised learning method that constitutes a cor-
nerstone of an intelligent data analysis process. It is used for the exploration
of inter-relationships among a collection of patterns, by organizing them into
homogeneous clusters. It is called unsupervised learning because unlike clas-
sification (known as supervised learning), no a priori labeling of some patterns
is available to use in categorizing others and inferring the cluster structure of
the whole data [42]. Tt is defined as the task of categorizing objects having
several attributes into different classes such that the objects belonging to the
same class are similar, and those that are broken down into different classes
are not. Intra-connectivity is a measure of the density of connections between
the instances of a single cluster. A high intra-connectivity indicates a good
clustering arrangement because the instances grouped within the same clus-
ter are highly dependent on each other. Inter-connectivity is a measure of the
connectivity between distinct clusters. A low degree of interconnectivity is
desirable because it indicates that individual clusters are largely independent,
of each other.

Every instance in the dataset is represented using the same set of at-
tributes. The attributes are continuous, categorical or binary. To induce
a hypothesis from a given data set, a learning system needs to make as-
sumptions about the hypothesis to be learned. These assumptions are called
biases. Since every learning algorithm uses some biases, it behaves well in
some domains where its biases are appropriate while it performs poorly in
other domains.

A problem with the clustering methods is that the interpretation of the
clusters may be difficult. In addition, the algorithms will always assign the
data to clusters even if there were no clusters in the data. Therefore, if
the goal is to make inferences about its cluster structure, it is essential to
analyse whether the data set exhibits a clustering tendency. In a real-world
application there may be errors (called noise) in the collected data set due to

inaccurate measurement or due to missing values therefore a pre-processing
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is needed (e.g. choose a strategy for handling missing attribute values).
The choice of which specific learning algorithm to use is a critical step, too.
The issue of relating the learning algorithms to the type of data and to the
nature of the problem to be solved still remains an open and fundamental
problem [39].

Cluster analysis is a difficult problem because many factors (such as ef-
fective similarity measures, criterion functions, algorithms and initial condi-
tions) come into play in devising a well tuned clustering technique for a given
clustering problem. Moreover, it is well known that no clustering method can
adequately handle all sorts of cluster structures (shape, size and density).

Sometimes the quality of the clusters that are found can be improved by
pre-processing the data. It is not uncommon to try to find noisy values and
eliminate them by a preprocessing step. Another common technique is to use
post-processing steps to try to fix up the clusters that have been found. For
example, small clusters are often eliminated since they frequently represent
groups of outliers (instances with noise). Alternatively, two small clusters
that are close together can be merged. Finally, large clusters can be split
into smaller clusters.

Outlier detection is one of the major objectives in data mining, whose
task is to find small groups of data objects that are exceptional when com-
pared with rest large amount of data. Outlier mining has strong application
background in telecommunication, financial fraud detection, and data clean-
ing, since the patterns lying behind the outliers are usually interesting for
helping the decision makers to make profit or improve the service quality.

Generally, clustering algorithms can be categorized into partitioning meth-
ods, hierarchical methods, density-based methods, and grid-based methods.

An excellent survey of clustering techniques can be found in [39].

2.2.1 Partitioning methods

Partitioning methods are divided into two major subcategories, the centroid

and the medoids algorithms. The centroid algorithms represent each cluster
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by using the gravity centre of the instances. The medoid algorithms represent
each cluster by means of the instances closest to the gravity centre.

The most well-known centroid algorithm is the k-means [39]. The k-
means method partitions the data set into k subsets such that all points in
a given subset are closest to the same centre. In detail, it randomly selects k
of the instances to represent the clusters. Based on the selected attributes,
all remaining instances are assigned to their closer centre. K-means then
computes the new centers by taking the mean of all data points belonging
to the same cluster. The operation is iterated until there is no change in
the gravity centres. If k cannot be known ahead of time, various values of k
can be evaluated until the most suitable one is found. The effectiveness of
this method as well as of others relies heavily on the objective function used
in measuring the distance between instances. The difficulty is in finding a
distance measure that works well with all types of data.

Generally, the k-means algorithm has the following important properties:
1) Tt is efficient in processing large data sets, 2) It often terminates at a local

optimum, 3) The clusters have spherical shapes, 4) It is sensitive to noise.

2.2.2 Hierarchical methods

The hierarchical methods group data instances into a tree of clusters. There
are two major methods under this category. One is the agglomerative method,
which forms the clusters in a bottom-up fashion until all data instances be-
long to the same cluster. The other is the divisive method, which splits up the
data set into smaller cluster in a top-down fashion until each cluster contains
only one instance. Both divisive algorithms and agglomerative algorithms
can be represented by dendrograms (see Figure 2.1). Both agglomerative
and divisive methods are known for their quick termination. However, both
methods suffer from their inability to perform adjustments once the splitting
or merging decision is made. Other advantages are: 1) does not require the
number of clusters to be known in advance, 2) computes a complete hierar-

chy of clusters, 3) good result visualizations are integrated into the methods,
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4) a “flat” partition can be derived afterwards (e.g. via a cut through the

dendrogram).
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Figure 2.1: Example of dendrogram and color mosaic with two open nodes

(cyan nodes).

Hierarchical clustering techniques use various criteria to decide “locally”
at each step which clusters should be joined (or split for divisive approaches).
For agglomerative hierarchical techniques, the criterion is typically to merge
the “closest” pair of clusters, where “close” is defined by a specified measure
of cluster proximity. There are three definitions of the closeness between
two clusters: single-link, complete-link and average-link. The single-link
similarity between two clusters is the similarity between the two most similar
instances, one of which appears in each cluster. Single link is good at handling
non-elliptical shapes, but is sensitive to noise and outliers. The complete-

link similarity is the similarity between the two most dissimilar instances, one
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from each cluster. Complete link is less susceptible to noise and outliers, but
can break large clusters, and has trouble with convex shapes. The average-

link similarity is a compromise between the two.

2.2.3 Ensembles of clustering algorithms

The theoretical foundation of combining multiple clustering algorithms is
still in its early stages. In fact, combining multiple clustering algorithms is
a more challenging problem than combining multiple classifiers. In [55] the
reason that impede the study of clustering combination has been identified as
various clustering algorithms produce largely different results due to different
clustering criteria, combining the clustering results directly with integration
rules, such as sum, product, median and majority vote can not generate a

good meaningful result.

Cluster ensembles can be formed in a number of different ways [66], such
as (1) the use of a number of different clustering techniques (either deliber-
ately or arbitrarily selected); (2) the use of a single technique many times
with different initial conditions; (3) the use of different partial subsets of

features or patterns.

2.2.4 Other clustering techniques

Density-based clustering algorithms try to find clusters based on density of
data points in a region. One of the most well known density-based clustering
algorithms is the DBSCAN [25].

Grid-based clustering algorithms first quantize the clustering space into a
finite number of cells (hyper-rectangles) and then perform the required opera-
tions on the quantized space.Some of the grid-based clustering algorithms are:
STatistical INformation Grid-basedmethod -STING [76], WaveCluster [65],
and CLustering In QUEst - CLIQUE [1].
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2.3  Supervised learning techniques

Inductive machine learning is the process of learning a set of rules from
instances (examples in a training set), or more generally speaking, creating
a classifier that can be used to generalize from new instances [43].

The first step is defining the dataset. Every instance in any dataset used
by machine learning algorithms is represented using the same set of features.
The features may be continuous, categorical or binary. If instances are given
with known labels (the corresponding correct outputs) then the learning is
called supervised, in contrast to unsupervised learning, where instances are
unlabeled.

The choice of which specific learning algorithm should be used is a critical
step. Once preliminary testing is judged to be satisfactory, the classifier
(mapping from unlabeled instances to classes) is available for routine use.
The classifier’s evaluation is most often based on prediction accuracy (the
percentage of correct prediction divided by the total number of predictions).
There are at least three techniques which are used to calculate a classifier
accuracy when applied to instances not included in the learning set. One
technique is to split the training set by using two-thirds for training and
the other third for estimating performance. In another technique, known as
cross-validation, the training set is divided into mutually exclusive and equal-
sized subsets and for each subset the classifier is trained on the union of all
the other subsets. The average of the error rate of each subset is therefore
an estimate of the error rate of the classifier. Leave-one-out validation is a
special case of cross validation. All test subsets consist of a single instance.
This type of validation is, of course, more expensive computationally, but
useful when the most accurate estimate of a classifier’s error rate is required.

Supervised classification is one of the tasks most frequently carried out by
so-called Intelligent Systems. Thus, a large number of techniques have been
developed based on artificial intelligence (logical /symbolic techniques), per-
ceptron based techniques and statistics (bayesian networks, instance-based

techniques). In next sections, we will focus on the most important super-
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vised machine learning techniques, starting with logical /symbolic algorithms.
Logic based algorithms includes decision trees and rule-based classifiers.

All supervised learning techniques were tested in a real industry context
using WEKA, the open source data mining software written in Java. WEKA
is a suite of tools for data pre-processing, classification, regression, clustering,

association rules, and visualization [36].

2.3.1 Decision trees

Decision trees are trees that classify instances by sorting them based on
feature values. Each node in a decision tree represents a feature in an instance
to be classified, and each branch represents a value that the node can assume.
Instances are classified starting at the root node and sorted based on their
feature values.

The problem of constructing optimal binary decision trees is an NP-
complete problem and thus theoreticians have searched for efficient heuristics
for constructing near-optimal decision trees. This problem can be solved re-
cursively. First, select an attribute to place at the root node and make a
branch for each possible value. This splits up the example set into subsets,
one for each value of the attribute. In order to select the attribute to con-
sider, we must evaluate the results, and select the attribute that splits the
example set in subsets containing instances of the same class. To perfectly
discriminate classes valuing a single attribute is often impossible, so we must
chose the most “pure” division. Repeating recursively the process on the
subsets, we can reach a perfect division between classes and then stop the
classification.

The feature that best divides the training data would be the root node
of the tree. There are numerous methods for finding the feature that best
divides the training data such as information gain [37| and gini index [11].
The most well-know algorithm in the literature for building decision trees
is the C4.5 [57]. In our experiments we use J48 algorithm, which is an

implementation of C4.5.
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One of the most useful characteristics of decision trees is their compre-
hensibility. People can easily understand why a decision tree classifies an
instance as belonging to a specific class. Since a decision tree constitutes a
hierarchy of tests, an unknown feature value during classification is usually
dealt with by passing the example down all branches of the node where the
unknown feature value was detected, and each branch outputs a class distri-
bution. The output is a combination of the different class distributions that
sum to 1. The assumption made in the decision trees is that instances belong-
ing to different classes have different values in at least one of their features.
Decision trees tend to perform better when dealing with discrete/categorical.

Random Forests is an algorithm based on a combination of tree predic-
tors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest [12].
The generalization error for forests converges to a limit as the number of
trees in the forest becomes large.

Rotation Forest isan algorithm for generating ensembles of classifiers [60].
It consists in splitting the feature set into K subsets, running principal com-
ponent analysis separately on each subset and then reassembling a new ex-
tracted feature set while keeping all the components. The data is transformed
linearly into the new features. A decision tree classifier is trained with this
data set. Different splits of the feature set will lead to different rotations,
thus diverse classifiers are obtained. On the other hand, the information
about the scatter of the data is completely preserved in the new space of
extracted features. In this way it builts accurate individual classifiers. Thus,

we target diversity and accuracy together.

2.3.2 Learning set of rules

Decision trees can be translated into a set of rules by creating a separate
rule for each path from the root to a leaf in the tree [57]. However, rules
can also be directly induced from training data using a variety of rule-based

algorithms. Classification rules represent each class by disjunctive normal
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form (DNF). The goal is to construct the smallest rule-set that is consistent
with the training data. A large number of learned rules is usually a sign that
the learning algorithm is attempting to “remember” the training set, instead
of discovering the assumptions that govern it.

For the task of learning binary problems, rules are more comprehensible
than decision trees because typical rule-based approaches learn a set of rules
for only the positive class. Moreover, the divide and conquer approach (used
by decision trees) is usually more efficient than the separate and conquer
approach (used by rule-based algorithms). Separate-and-conquer algorithms
look at one class at a time, and try to produce rules that uniquely identify
the class. They do this independent of all the other classes in the training
set. For this reason, for small datasets, it may be better to use a divide-and-
conquer algorithm that considers the entire set at once.

In our experiments we use PART and JRIP. PART is an algorithm for rule
induction that combines two different approaches (C4.5 and RIPPER) in an
attempt to avoid their respective problems [30]. The method combines the
divide-and-conquer strategy for decision tree learning with the separate-and-
conquer one for rule learning. It adopts the separate-and-conquer strategy in
that it builds a rule, removes the instances it covers, and continues creating
rules recursively for the remaining instances until none are left. However, it
differs from the standard approach in the way that each rule is created. In
essence, to make a single rule, a pruned decision tree is built for the current
set of instances, the leaf with the largest coverage is made into a rule, and the
tree is discarded. JRIP is the WEKA implementation of RIPPER (Repeated
Incremental Pruning to Produce Error Reduction). It is able to generate

compact and easy to read rules [19].

2.3.3 Naive bayes classifiers

Conversely to artificial neural networks, statistical approaches are charac-
terized by having an explicit underlying probability model, which provides

a probability that an instance belongs in each class, rather than simply a
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classification. Bayesian networks are the most well known representative of
statistical learning algorithms. A comprehensive book on Bayesian networks
is [40]. Naive Bayesian networks (NB) are very simple Bayesian networks
which are composed of directed acyclic graphs with only one parent (repre-
senting the unobserved node) and several children (corresponding to observed
nodes) with a strong assumption of independence among child nodes in the
context of their parent. The major advantage of the naive Bayes classifier is
its short computational time for training. In addition, since the model has
the form of a product, it can be converted into a sum through the use of

logarithms with significant consequent computational advantages.

2.3.4 Linear regression

Linear regression can easily be used for classification in domains with numeric
attributes. Indeed, we can use any regression technique, whether linear or
non-linear, for classification. The trick is to perform a regression for each
class, setting the output equal to one for training instances that belong to
the class and zero for those that do not. The result is a linear expression for
the class. Then, given a test example of unknown class, calculate the value
of each linear expression and choose the one that is largest. This method
is sometimes called multiresponse linear regression. We use Logistic, an
implementation of a two-class logistic regression model with a ridge estima-
tor [46].

ClassificationViaRegression is an algorithm that implements classi-
fication using regression methods as explained in [29]. Model trees are a
type of decision tree with linear regression functions at the leaves, useful for
predicting continuous numeric values. They can be applied to classification
problems by employing a standard method of transforming a classification
problem into a problem of function approximation.

A complete review of supervised machine learning techniques, including
perceptron based techniques (single or multi layered perceptrons), radial ba-

sis function networks, instance based learning and support vector machines,
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can be found in [43].

2.4 Related works

The new approach presented in this Ph.D. thesis uses a two step algorithm:
first clustering is used to objectively and quickly evaluate a large dataset,
then decision trees or regression methods are used to predict and propagate
the characterization in new unknown dataset.

Unsupervised and supervised learning algorithms in cascade are a known
solution in all those problems where input are large datasets totally or par-
tially unlabelled and where the goal is to create a predictive model.

Clustering is a major tool used in a number of applications, basic direc-
tions in which clustering is of use are: data reduction, hypothesis generation,
hypothesis testing an prediction based on groups [67]. Hierarchical cluster-
ing, a technique used in this Ph.D. work, do not actually partition a data set
into clusters, but compute a hierarchical model, which reflects its possibly
clustering structure. The first problem with these algorithms is that clusters
are not explicit and have to be determined somehow from the representa-
tion. Several clustering validity approaches have been developed [47]. In
literature, some methods for automatic clusters extraction from a hierarchi-
cal representation can be found on [3, 61, 8]. In [3] the authors propose a
method for reachability plots that is based on the steepness of the “dents”
in a reachability plot. Unfortunately, this method requires an input pa-
rameter, which is difficult to understand and hard to determine. In [61],
the authors analyze the relation between hierarchical clustering algorithms
that have different outputs, i.e. between the Single-Link method, which pro-
duces a dendrogram,and OPTICS, which produces a reachability plot. They
develop methods to convert dendrograms and reachability plots into each
other. Then they introduce a new technique to create a tree that contains
only the significant clusters from a hierarchical representation as nodes. In a

third work, [8], several cluster evaluation techniques for gene expression data
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analysis are described. Normalisation and validity aggregation strategies are
proposed to improve the prediction of the number of relevant clusters.The
authors use K-means clustering algorithm and the work is tested only over
a 2-classes datasets. Another interesting and pioneering work is [10] where
a non-horizontal dendrogram cut is proposed for the first time. This paper
presents a tool for interactive interpretation of hierarchical clustering results
and it has been tested on a electric load curve dataset. Even if this last paper
introduces the idea of a non-horizontal cut of the dendrogram, it does not
provide any automatic procedure for this task. In this Ph.D. work we then
decided to extend and apply the concepts of automatic cluster extraction,
presented in the former papers, in this particular tree cutting process, see
Section 5.1.

The goal of supervised learning is to build a concise model of the distri-
bution of class labels in terms of predictor features. The resulting classifiers
is then used to assign class labels to the testing instances where the val-
ues of the predictor features are known, but the value of the class label is
unknown [43]. Combining these two approaches we can take advantages in

terms of data understanding and prediction accuracy.

Most applications of combined techniques are related to natural language
and text mining. For instance clustering can be used as a feature compression
and/or extraction method: features are clustered into groups based on se-
lected clustering criteria. Typically, the parameters of the cluster become the
weighted average of the parameters of its constituent features [45]. Another
interesting research area, in text classification, is semi-supervised learning:
training data contain both labelled and unlabelled examples. Clustering can
be used, in cascade with supervised algorithms, as a method to extract infor-
mation from the unlabelled data in order to boost the classification task. For
instance is used: i) to create a training set from unlabelled data [31], [20],
ii) to augment the dataset with new features [59] and iii) to co-train a clas-
sifier [44].

In reservoir analysis best results are given when the domain expert iden-
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tifies right number of clusters. Very interesting solutions to this problem,
that use cluster ensemble techniques, are presented in [33]. There are a large
number of applications of supervised learning algorithms in reservoir charac-
terization, modelling and prediction. They use Markov chain [9] to predict
facies distribution also integrating different sources (conventional log, image
log and cores) [7]| from same well. Some clustering techniques help the geolo-
gist in facies analysis [81] and combining this with neural networks led to the

development of new interpretative methods for reservoir characterization [41].

Subsurface data analysis also involves machine vision algorithms in order
to extract image features and use them as dataset for unsupervised learning
algorithms. Main topics of well log image analysis are curve detection and
image segmentation. Several approaches have been studied for detection of
curves, that represent fractures, over a noisy image such as [80], [74], high
process time is the crucial disadvantage of these methods. In this Ph.D. work
fractures detection is based on [72]: it uses a simplified version of orientation

space as preprocessing step for a generalized radon transformation [48|.

Image segmentation is used for porosity rock measurement: pores appear
as circular spots in log images. Segmentation algorithms are based on one
of two basic properties of intensity values: discontinuity and similarity. In
the first category, the approach is to partition an image based on abrupt
changes in intensity, such as edges (i.e. Canny edge detector [13]). The
principal approaches in the second category are based on partitioning an
image into regions that are similar according to a set of predefined criteria.
Thresholding, region growing (i.e. [50]), and region splitting and merging are
examples of methods in this category. Other proposed recent approaches [22]
are segmentation based on the mean shift procedure [21], multiresolution
segmentation of low-depth-of-field images [75], a Bayesian-framework-based
segmentation involving the Markov chain Monte Carlo technique [70], and
an EM-algorithm-based segmentation using a Gaussian mixture model [14].
A sequential segmentation approach that starts with texture features and

refines segmentation using color features is explored in [17]. An unsupervised
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approach for segmentation of images containing homogeneous color/texture
regions has been proposed in [23|. In this work the focus is on segmentation
obtained by threshold operations. Other interesting techniques for automatic

image texture analysis are developed in [79].






CHAPTER 3

Business & Data Understanding

In this chapter we will see an introduction to the geological background:
petroleum exploration is the search by petroleum geologists and geophysi-
cists for hydrocarbon deposits beneath the Earth’s surface, such as oil and
natural gas. The extraction (or production) of petroleum is the process
by which usable petroleum is extracted and removed from the earth. Oil
and gas exploration and production (E&P) are grouped under the science of
petroleum geology.

Following the CRISP-DM model this is the Business & Data Under-
standing phase where the focus is on the project objectives and requirements
from a business perspective. In this phase it is important to identify the key
concepts and convert them into a data mining problem definition. Available
data are presented and observed from a technical point of view.

This chapter is structured as follows: Section 3.1 presents some basics
concept about petroleum E&P, Section 3.2 shows available data in reservoir

modeling process. Section 3.3 explains the “manual” methodology used for
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geological interpretation of subsurface data that this work tries to convert in
a semi-automated process. Finally Section 3.4 presents two main categories

of well log.

3.1 Petroleum Exploration and Production

In order to have a commercial deposit of gas or oil, three geological conditions
must have been met. First, there must be a source rock in the subsurface of
the area that generated the gas or oil at some time in the geological past.
Second, there must be a separate, subsurface reservoir rock to hold the gas
or oil. Third, there must be a trap on the reservoir rock to concentrate the
gas or oil into commercial quantities.

The uppermost crust of the earth in oil-and-gas producing areas is com-
posed of sedimentary rock layers. Sedimentary rocks are the source and
reservoir rocks for gas and oil. These rocks are called sedimentary rocks be-
cause they are composed of sediments. Sediments are (1) particles such as
sand grains that were formed by the breakdown of pre-existing rocks and
transported, (2) seashells, or (3) salt that precipitated from of water. The
sedimentary rocks that make up the earth’s crust are millions and sometimes
billions of years old. During the vast expanse of geological time, sea level
has not been constant. Many times in the past, the seas have risen to cover
the land and then fallen to expose the land. During these times, sediments
were deposited (Figure 3.1). These sediments are relatively simple mate-
rials such as sands deposited along beaches, mud on the sea bottom, and
beds of seashells. These ancient sediments, piled layer upon layer, form the
sedimentary rocks that are drilled to find and produce oil and gas.

The source of gas and oil is the organic matter that is buried and preserved
in the ancient sedimentary rocks. These rocks contain not only inorganic par-
ticles such as sand grains and mud, but also dead plant and animal material.
The most common organic-rich sedimentary rock (the source rock for most

of the gas and oil) is black shale. Tt was deposited as organic-rich mud on an
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Figure 3.1: Sediments deposition.

ancient ocean bottom.

Gas and oil are relatively light in density compared to water that also
occurs in the subsurface sedimentary rocks. After oil and gas have been
generated, they rise due to buoyancy through fractures in the subsurface
rocks. The rising gas and oil can intersect a layer of reservoir rock. A reservoir
rock is a sedimentary rock that contains billions of tiny spaces called pores.
A common sedimentary rock is sandstone composed of sand grains similar
to the sand grains on a beach or in a river channel. Sand grains are like
spheres, and there is no way the grains will fit together perfectly. There are
pore spaces between the sand grains on a beach and in a sandstone rock. The
gas and oil flow into the pores of the reservoir rock layer (see Figure 3.2).

How are subsurface deposits of gas and oil located? During the early

days of drilling, it was thought that there were large, flowing underground
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Figure 3.2: Gas, oil and water flow into the pores of a rock.

rivers and subsurface pools of oil. Early drillers, however, had some success
because many subsurface traps are leaky. There are small fractures in the
caprock, and some of the oil and gas leaks up and seeps onto the surface.
The early drillers located their Wells on the seeps.

By the early 1900s, the principles of subsurface gas and oil deposits were
becoming better known. Oil companies realized that by mapping how the
sedimentary rock layers crop our on the surface of the ground, the rock layers
could be projected into the subsurface, and traps could be located. Geologists
were hired to map rock outcrops.

Later, seismic method was developed to detect hidden traps in the sub-
surface. Seismic exploration uses a source and detector. The source is located
on or near the surface and gives off an impulse of sound energy into the sub-
surface. The sound energy bounces off sedimentary rock layers and returns
to the surface to be recorded by the detector. Sound echoes are used to make
an image of the subsurface rock layers.

The only way to know for sure if a trap contains commercial amounts of
gas and oil is to drill a well. A well drilled to find a new gas or oil field is
called a wildcat well. Most wildcat wells are dry holes with no commercial
amounts of gas or oil. The well is drilled using a rotary drilling rig. There can
be thousands of feet of drillpipe with a bit on the end, called the drillstring,
suspended in the well.

To evaluate the well, a service company runs a wireline well log. A logging

truck is driven out to the well. A long cylinder containing instruments called
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a sonde is unloaded from the truck and lowered down the well on a wireline.
As the sonde is brought back up the well, the instruments remotely sense the
electrical, sonic, and radioactive properties of the surrounding rocks and their
fluids. These measurements are digitally recorded in a well log (Figure 3.4).
It is used to determine the composition of each rock layer, whether the rock
layer has pores, and what fluid (water, gas, or oil) is in the pores. Depending
on the test results, the well can be plugged and abandoned as a dry hole or

completed as a producer.

3.2 Reservoir modeling and interpretation

As it can be easily understood, geoscientists need reliable and accurate in-
formation to support their studies and help them in their search for re-
sources [63]. This information has different origins such as outcrops or sub-
surface data.

An outcrop is a visible exposure of bedrock or ancient superficial deposits
on the surface of the Earth [38]. Outcrops do not cover the majority of
the Earth’s land surface because in most places the bedrock or superficial
deposits are covered by a mantle of soil and vegetation and cannot be seen
or examined closely. However in places where the overlying cover is removed

through erosion or tectonic uplift, the rock may be exposed, or crop out. In
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Figure 3.4: A well logging truck recording a well log.

petroleum research outcrop information has been progressively replaced by
drilling data or completed by surface geophysics or borehole geophysics, the
latter including wireline logging.

Subsurface data can include: surface seismic data, cores and well logging.

Information provided by surface seismic is the only one that allows con-
tinuous study of formation subsurface. It completes our perception of these
formation on the outcrops. Two and three dimensional pictures of subsurface
are extremely important tools for exploration of subsurface since they give
direct information on petrophysical properties of the formation.

Core obtained while drilling, by virtue of their size and continuous nature,
permit a thorough geological analysis over a chosen interval. Even more they

can provide information at microscope scale such as grain and pore size.
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Well logging is defined as:
e the act or process of making or recording a log;

e the method or technique by which subsurface formations are charac-
terized relative to depth, by measurements or observation on the rocks

of a borehole.

A log is a continuous record as a function of depth of observations made
on the rock and fluids of the geologic section exposed in a well bore. Well
logs are of special interest for several reasons. They provide the only source
of data to give accurate information on the depth and the apparent, and
even real, thickness of beds. They give a nearly continuous analysis of the
formations and also they generally analyse a volume of rock that is often
greater than the one represented by a core or plug. Consequently, they
are more representative of the mean properties of the rock, especially in
heterogeneous rocks. But, at the same moment they provide a very detail
description of the formations if images are recorded. This is the reason
why logging data are so important. It is no more possible to conceive any
geological synthesis and reservoir evaluation without the exploitation of well
logging data.

There are many types of logging tools, ranging from common measure-
ments (pressure and temperature), to advance rock properties and fracture
analysis, fluid properties in the wellbore or formation properties. See Fig-
ure 3.7 for an example of well log.

The complete characterization of depositional facies and structural fea-
tures is an important step in the process of understanding the reservoir po-
tentiality. Facies distribution, depositional geometries, porosity types and
fracture/stylolites identifications are key parameters to correctly describe
reservoirs. In the process of reservoir definition the availability of direct
subsurface information (cores) is fundamental, when direct subsurface infor-
mation are scarce or their quality is poor the use of indirect tools, to define

and predict depositional facies and structural geometries, is important to
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have a more complete appreciation of the entire reservoir. In this case, it is
important to properly calibrate the indirect tools with the core observations
and analysis. Image logs represent one of the more advanced and important
indirect tools to describe the rocks characteristics; when correctly calibrated
with cores and used in associations the other conventional electric logs, it
can represent a key element to predict facies and characteristics in un-cored
sections of the reservoir.

The FMI (Fullbore Formation Microlmager, see Figure 3.5 and Figure 3.6)
is an electrical imaging device made by electrode that measure resistivity and
require a conductive borehole fluid. As with conventional resistivity logging
devices, the resistivity measurement is a function of porosity, pore fluid, pore
geometry, cementation and clay content and is influenced by mineralogy [54].
Each sensor of the electrical device, makes a resistivity measurement of the
borehole wall as a function of azimuth and depth. The resistivity logging
measurements, in general, represent a rock volume some distance into the
formation, beyond the borehole wall. Normal drilling conditions force bore-
hole fluid especially into fractures, thereby creating a conductivity contrast
with the adjacent rock formations. These contrasts are measured by electri-
cal imaging devices which makes them excellent tools for fracture detection
and characterization. Considering the quality of the image it is possible also
to use these devices to interpret every surface that represent a contrast of re-
sistivity in the formation, thus beds with different lithological characteristics,

layer surfaces, erosional surfaces.

3.3 Geological interpretation of subsurface data

The objective of the geological interpretation is to try to integrate and to
interpret image and electrical logs in order to correlate all the logs to geo-
logical characteristics of the rock (lithology, surfaces, porosity) and of the
depositional environment or stratigraphic unit.

The approach to the geological characterization of FMI log image consists
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Figure 3.5: FMI measurement device with current path.

in a visual analysis of the FMI images over the considered section of the well.
The analysis focus on the characteristics of the image and in particular on:
the homogeneity of the image (texture of the image); the type of features ob-
served (linear surfaces, patches) on dimensions of features (continuity, thick-
ness); organization of features and image (organized, disorganized, aligned,
sparse); the contrast of resistivity between the matrix and the features and

between different features (high, low resistivity contrast).

These properties represent the main parameters to characterize the FMI

image and based on these characteristics the entire log is scanned and stud-
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Figure 3.6: Examples of high resolution wireline imaging tools. (a) The FMI
resistivity imager. (b) The STAR resistivity imager. (¢) The CBIL acoustic

imager.

ied. At the end of this process it is possible to identify some repetitive
characteristics of the images that combined between them supply a typical
image response to the FMI. In this way, it is possible to build a model that

considers the most important FMI images observed repeatedly on the log.

The model is represented by a map (Textural Map, see Figure 3.8) where
all the observed FMI images are organized based on their main characteris-
tics. All the FMI images can be grouped in FMI facies distinguished on their
image characteristics. The FMI facies once placed on the textural map cover
it entirely. The following step is to calibrate, over the cored intervals, the

FMI texture facies with core images/descriptions in order to assign to each
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Figure 3.7: Example of image log and electrical log plotted together.
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FMI facies a distinctive geological meaning. The final step of this process
is to interpret the propagate FMI facies over the entire FMI log. The final
result is a log that associates the FMI facies with depth (FMI Texture Log,
see Figure 3.9).

Fﬁ:‘i:g Image Characteristics Pl

PTBL fine to medium texture, highly bedded, low contrast
coT coarse to medium texture, high contrast, few low resolution features
Fx coarse texture (high contrast) to homogeneous, rare features (low
contrast)
pY Patchy (high contrast, variable size and organisation - from bedded to
diserganised), variable texture, rare features (beddings, fractures)
CBT variable texture, variable lamination with medium to high contrast
NB fine texture, bedded with medium to high contrast beds ("thick")
PTB medium to fine texture, highly bedded (mainly subparallel),
CcB medium to fine texture, highly bedded (not parallel), high contrast
FMIFACIES on TEXTURE MAP Low LAYER CONTRAST Hos
(colour code) . ¢ >
4
§0‘5‘ -7 Y A 3
i : -
“ - e ]
m——-—_—-
%
w m
& z
=] 2
Bk x
T z
¢ 3
3 &
& .
-] - L 1 - -
EV g? ..o‘ ‘ = ) : L ;
. N et |

; : ~Co-
LOW TEXTURE ORGANISATION HIGH

Figure 3.8: Example of FMI facies identification: (top) FMI facies charac-

terization, (bottom) textural map.

Using the texture log, the texture map and the FMI facies/core calibration
it is possible to have a better idea of the distribution of the different geological
characteristics over the considered section.

In order to implement a complete geological interpretation of all the data
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it is important to integrate image logs with electric logs. The previous steps
can also be improved by adding information and log provided by other wells
in the same area. In this case we can characterize the entire reservoir area

by using logs from different wells.

3.4 Subsurface data: image and electric logs

There are many types of logging tools, therefore there are many type of logs.
Resistivity, porosity and acoustic logs are common electric logs type. Image
logs or FMI logs are digital images acquired by a special logging tool (see
Figure 3.5 in Section 3.2 for a detailed view of the tool) within a borehole,
see Figure 3.11 for an example. An interpretation of these measurements is
then made to locate and quantify potential depth zones containing oil and
gas [63].

In this work we use all of the previous log types properly integrated in a
large dataset. While electric logs are provided as table of numerical values
along the well depth, image logs are digital images that represent resistivity

measurements of the rock formation taken by the wellbore surface.

3.4.1 Image logs

Image logs are resistivity or acoustic devices that measure certain physical
properties of the rock at or near the well that can be displayed as images
of the wellbore, which can then be interpreted on a computer. Typically
rock properties are controlled by factors such as variations in composition,
diagenesis, grain size, grain orientation, pore fluid variations, etc.

Image logs can provide detailed picture of the wellbore that represent the
geological and petrophysical properties of the section being logged. In the
late 1980’s Schlumberger introduced the concept of borehole electrical im-
ages by processing variations of the shallow microresistivity of wellbore walls
recorded by modified versions of its Stratigraphic High Resolution Dipmeter
Tool?™ . Called the Formation Micro-ScannerTM (FMS), the tool measured
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Figure 3.9: Example of FMI facies description: (top) FMI characterization,

(bottom) textural map, (right) cores.
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closely spaced arrays of focused shallow resistivity readings that are related
to changes in rock composition and texture, structure, and fluid content [63].
Processing the data, in which a range of colors are assigned to the lateral
(side-to-side) and vertical variations of the microresistivity along the well-
bore, produces an image of the borehole wall.

The current generation of tools, called the fullbore Formation Micro Im-
agerTM (FMI), records an array of microresistivity measurements from 192
sensors on eight pads mounted on four orthogonally placed caliper arms.
The spacing and position of the pads provides 80% coverage of an eight-inch
diameter hole and a resolution of 5 mm.

The FMI yields a continuous, high-resolution electrical image of a bore-
hole and therefore complements whole cores cut in the same well. Resistivity
measurements are converted into gray-level or color-coded intensity values,
and each measurement corresponds to a pixel in the FMI image. This image
is the unrolled version of the well surface and it is made by six vertical strips
of measurement. There is a strip for each pad of sensors in the FMI tool, see

Figure 3.11 for an example.

Figure 3.10: Working schema of FMI device.

If the FMI-derived image is of sufficient quality and calibrated against
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the core, it can provide a continuous survey of the formation in places where
core is not cut, there was no core recovery, or when a core has been damaged

through handling, transportation, or plugging.

Figure 3.11: Portion of FMI Image with 6 vertical strips. This image is

acquired using a tool with 6 measurement pads.

3.4.2 Electric logs

Electric logs are based on physical measurements made by instruments low-
ered into the hole (geophysical logs).

Gamma Ray log is a record of formation’s radioactivity. The radiation
emanates from naturally-occurring uranium, thorium and potassium. The

gamma ray gives the radioactivity of the three elements combined, while the
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spectral gamma ray shows the amount of each individual element contribut-
ing to this radioactivity. The geological significance of radioactivity lies in
the distribution of these three elements.

Caliper log measures variation in borehole diameters with depth. The
caliper log is printed as a continuous series of values of hole diameter with
depth. Where the hole has the same size as the bit which drilled it, the
formation is coherent and usually quite hard. Holes with a much larger
diameter than the bit size are caved or washed out.

Density log determines rock bulk density along a wellbore. This is the
overall density of a rock including solid matrix and the fluid enclosed in pores.
Geologically, bulk density is a function of the density of the minerals forming
a rock (i.e. matrix) and the enclosed volume of free fluids (porosity).

Porosity log provides a continuous record of a formation’s reaction to fast
neutron bombardment. It is quoted in terms of neutron porosity. Quanti-
tatively, the neutron log is used to measure porosity. Qualitatively, it is an
excellent discriminator between gas and oil. When combined with the density
log on compatible scales, it is one of the best subsurface lithology indicators
available, according to our first goal: identify lithology of the wells.

Resistivity log: is a measurement of formation’s resistivity; that is its
resistance to the passage of an electric current. Conductivity log measure
a formation’s conductivity or its ability to conduct an electric current but
this value is generally converted directly to resistivity. The principal use of
resistivity log is to find hydrocarbons. Resistivity is defined as logarithmic
log, so in our dataset we converted in logarithmic scale values of resistivity.

Sonic or acoustic log shows a formation’s interval transit time. It is a
measure of a formation’s capacity to transmit sound waves. Geologically,

this capacity varies with lithology and with rock texture, notably porosity.
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CHAPTER 4

Data Preparation

Data Preparation involves all the activities for dataset generation. Data
transformation, conversion and integration take place in this fundamental
step. This chapter presents an approach used to convert image observations
in numerical values and to integrate dataset from different sources.

In Section 4.1 machine vision techniques for image log interpretation are
presented. Two main tasks: curves and vacuoles detection are described and
a solution is proposed and tested. Finally Section 4.2 addresses the problem

of integration of different logs.

4.1 Machine vision for log interpretation

FMI logs interpretation is a very complex task, due to the large number
of variables and to the huge amount of data to be analysed. Usually, the
geologist performs the bedding and fracture analysis by hand, in a tedious

and expensive task, and then he tries to identify different classes that group
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well sections at different depths with similar visual characteristics.

In order to integrate data from different sources it needs to convert image
log observation and interpretation in numeric data. The approach used for
geological image interpretation is based on the detection/measurement of
some features for each analysis window (360 x 100 pixel image), over the
entire well. The size of the window is important because it has a direct
impact on the resolution of the output/analysis and on the time of analysis
of the entire well.

In particular these four features are:

e surfaces (bedding or fracturing that visually correspond to sinusoids);
e number of vugs;

e contrast between the previous features and background;

e organization of the texture (homogeneous vs. granular).

Sinusoids in the log image can have different geological meanings: bedding
or fracture. They do not appear entirely in the FMI, only short parts of
them are directly visible. Several approaches, listed in Section 2.4, have been
studied for sinusoids detection. Our approach is based on [72], in Section 4.1.1
a detailed description of used techniques is given.

To find and count vugs/vacuoles is important to understand the rock
porosity and type of fluid that fills the vacuoles. In the FMI image vacuoles
appear as circular or ellipsoidal areas with uniform color, with a high or
low contrast with the background. After filtering the image, the selection
is made by certain criteria on the detected regions (i.e., area dimension or
average color). The goal is to separate vacuoles from the background and
to distinguish them on the basis of these visual features. A trivial count of
the vacuoles and sinusoids detected in a zone are fundamental features for
the classification of the rock. In Section 4.1.3 we describe our approach for

vacuoles detection.
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The contrast value is significant because it can easily highlight the vari-
ation of resistivity in the rock formation. The resistivity variation usually
depends on the lithology and the type of rock or type of fluids that fill the
pores. This is achieved by using a properly filtered image FFT (Fast Fourier
Transform), in order to link to each analysis window a value that can repre-
sent a reliable measure of image contrast.

The internal organization of a rock is an important parameter to under-
stand petrophysics and petrographic characteristics of a rock. The texture
organization is highly variable and is an important information for the full
interpretation of rock formation, it can be fine-grained to coarse-grained.
A grainy FMI image has several small areas (grains) in contrast with the
background, and these areas could be highlighted through an edge detection
algorithm. The total amount of pixels in the edges of the processed image,
is proportional to the texture organization.

For contrast and texture detection algorithms please refer to [26].

4.1.1 Curves detection: methodology

We are interested in detection of planar events that cut a cylinder, this
cylinder represent the borehole well. In order to identify these planes in the
bi-dimensional FMI image, it is necessary to determine the curve defined by
them.

Let n = (ny, ny,n,) be the vector normal to the planar event. 7 can be
expressed as a function of two angles: 6; the dip angle and ¢, the azimuth

angle, in this way:

Ny cos(¢,) sin(fy)
n=|n, | = | sin(¢,)sin(f,) (4.1)
n, cos(0y)

Dip angle represents the inclination of the planes, while the azimuth angle
is the orientation.

U points of the plane that cross origin must satisfy:
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ven =0 (4.2)

In order to define a plane at an arbitrary depth, it is possible to add
an offset a, v + an, where « represents distance from a plane with same
orientation that cross the origine. Let @ be the points of the plane. They

must satisfy:

wen=a«a (4.3)

i points of the cylinder are defined by:

= (Rcosv,Rsinv, z) (4.4)

where v and z represent independent coordinates over the cylinderwall,
and R the cylinder radius.

Intersecting points of the plane and points of the cylinder wall we have:

1
z(v) = n—(a — Rn, cosv — Rny sinv) (4.5)

this can be redefined as:

2(v) = Asin(v — ) +d (4.6)
with:
«
R 2 + 2
R NCRRT 48)
ny
vy = arg(ny, — jny) (4.9)

04 and ¢, angles can be expressed as a function of the previous parameters:



4.1 Machine vision for log interpretation 53

™
gba =1+ 5 (410)
A
0, = arctan(——) (4.11)
R
Planar events appear as sinusoids with amplitude A, phase v and offset d.

Plane orientation is importante and it is determined by vy and A. Figure 4.1

explain correlation between plane and sinusoid.
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Figure 4.1: A plane cuts the borehole well. Once the cylinder is unrolled,
the plane become a sinusoid. « angle is the dip angle while A is the peak to

peak amplitude of the sinusoid.

Hence, the main objective of an algorithm for automatic fracture de-
tection is to find the three parameters that define a sinusoid in the image.
Figure 4.2 shows some planar events in the FMI log.

Planar events that cut the borehole well can have different origins: sed-
imentation or fracturing. In sedimentation, several planes appear as groups
of sinusoid with small amplitude. Conversely fractures are isolated sinusoid

in contrast with the background and with a big amplitude.
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Figure 4.2: Sinusoids in FMI image.

Generalized Radon Transform (GRT) is a technique used to detect curves
in an image [6]. This technique, used in combination with the Orientation
Space (see [18] and [73]), can give better performance in terms of detection

precision. Our approach is based on the techniques presented in [72] and [74].

The algorithm uses GRT in order to generate the parameter space, this
is a tri-dimensional space. In this space every possible sinusoid in the im-
age is defined by 3 parameters: amplitude, phase and offset. Conversely
from other works i.e. [34] and [68], GRT is not directly applied on the bi-
dimensional image but on the Orientation Space created from original image.
Once obtained the parameter space the objective is to identify peaks in that
space, each peaks represent sinusoids detected in the image. Due to some
noisy sources and in order to remove similar peaks (that represent) similar

sinusoids, a results cleaning phase is necessary.
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Steps of our algorithm, applied to fixed size images, are the following (see
Figure 4.3):

1. Orientation Space generation;

2. parameter space computation, this is the result of the application of

GRT over the Orientation Space;
3. local maxima (peaks) detection over paramenter space;
4. results filtering;

5. final output is a list of detected sinusoids, defined by three parameters

(amplitude, phase, offset).

Orientation Space is obtained filtering the source image using a set of
oriented filters. A detailed description of the shape of the filters is presented
in [15]. Filters are oriented in the range [—g, g) and the output is an image
per each oriented filters. Output images or “slices” can be stacked up and
create a tri-dimensional structure. Number of “slices” is determined by the N
parameter of the filter. It is important to note that the filter is not a function
of the image, thus it can be computed a priori in each oriented version.

Due to the cylindircal shape of the weel, in our case image is expressed in
cylindrical coordinates I(v, z) while Orientation Space is I%l(v, z, ¢). A curve
in source image is mapped on a curve in the Orientation Space: projection
of new curve on plane (v, z) corresponds to the original curve. Interesting

curves are sinusoids, they can be defined by three parameters:

Av; A, vy, d) = (v, 2(v; A, 1, d)) (4.12)

In order to represent this curve in the Orientation Space, the third co-
ordinate ¢(v) is needed. The slope of the curve in each points is dz(v)/dv.

Local ¢ orientation is normal to the curve (see Figure4.4). Then we have:

8(v) = arg(~ (v 4,0, ) 4 5) (1.13)
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Figure 4.3: Algorithm for sinusoids detection in borehole well images.
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Figure 4.4: Local ¢ orientation is normal to the curve.

It is possible to represent ¢ curve in the Orientation Space, using this

curve ¢l

&N A v, d) = (v, 2(v), G(v)) (4.14)

In parameter space each point (A, 1y, d), defined by amplitude, phase and
offset, is a curve in source image. This space is obviuosly limited: phase varies
between 0 to 27, while the offset is limited between 0 and the height of the
image (number of rows of the image). Amplitude represents the orientation
of the plane that cut the well and will be limited. Radon Transform assigns
to each point of the parameter space the value of the Radon integral: a high
value means that the point represents an actual sinusoids in image source
with a high probability.

The described approach is depicted in Figure 4.5.

A saliency test is then applied to the identified local maxima, in fact not
all of them represents an actual sinusoids in the source image. This is due to

some different factors:

1. different curves that share some points in image source are mixed to-

gether during Radon transform;
2. very similar curves;

3. fake curves, due to the noise in the image;
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Orientation space Parameter space
Image space

N

Figure 4.5: The curve is transformed in another curve in the Orientation

Space. In the parameter space this curve is represented as a point.

4. missing data in FMI image due to the partial coverage of the tool.

In order to remove false sinusoids, all detected curves, called candidate
events, are listed and sorted in descending order by their Radon integral

value. Then the following steps are applied:
1. top event in the list is taken;
2. the Radon integral is re-computed;

3. let p be the original integral value and p the new one. If p' >= T'p,
with 0 <T" < 1, then:
(a) the event is accepted,;
(b) points of the event are removed from the Orientation Space;

(c) return to step 1.
4. else, remove the candidate event.

This algorithm guarantees that each point of the Orientation Space rep-
resents, at most, only one event: if there are event that share same points,
only one of them (the one with the highest integral value) is saved.

Detailed descriptions of the implementation in JAVA language of the
algorithm are provided in [15].
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4.1.2 Curves detection: evaluation

In order to evaluate performances of the algorithm, we tested it over a set of
images from two different borehole well.

The algorithm always detects some events in source images: even if the
source images are uniform, there will be always present some peaks probably
due to the image noise. During our experiments we noted that value of these
peaks is always much smaller than peaks of actual planar events. Then, in
our software, we implemented two type of threshold (local and global) in
order to remove false “noisy” sinusoid.

Only for the first well a list of human detected sinusoids was provided:
the geologist identifies beddings and fractures, and only in this case we can
directly compare results.For the other well, no sinusoids are provided. Images

show also detected vacuoles.

Well 1

Figure 4.6 shows first selected depth: there are few easy-to-detect sinusoids,
this is because they are in contrast with the uniform background. Left image
shows sinusoids detected by the geologist, on the right the result of the auto-
matic detection. Results are very similar: in particular sinusoids (a, b, ¢) are
clearly detected, at the bottom there is a sinusoids bundle. Manual analysis
allows accurate selection of different sinusoids; the result is still good and,
even if the sampling in the parameters space affects the sinusoids precision,
two main sinusoids (d, e) are detected.

Figure 4.7 show depth 2 for well 1: there are some evident fractures that
intersect other curves. In terms of detected sinusoids algorithm results are
comparable to the manual detection. Beddings (a, b, ¢, d) are well identified
while fractures (1, 2) are detected by the algorithm and not by the geologist.

Third selected depth in well 1 is presented in Figure 4.8. In this section
there are some fractures mixed with a sinusoid bundle (beddings) not visible
to the naked eye. Fractures are correctly identified (7, 2, 3) and also two

sinusoids of beddings are detected (a, b). The algorithm misses sinusoids
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(a) Manual detection (b) Automatic detection

Figure 4.6: Depth 1, well 1.

with big amplitude, this is due to the selected limitation in max amplitude.

In Figure 4.9 we note differences between manual and automatic ap-
proach. There are a lot of beddings and automatic technique identifies only
more evident sinusoids in the bundle (7-8). Detected orientation is the same
of the manual approach, the main difference is in the number of detected
sinusoids, this is due to the sampling and to the cleaning points phase in
parameter space. There are also other two sinusoids (a, b) not detected by
the geologist, but it is difficult to prove if they correspond to actual events.

Figure 4.10 shows latest depth for well 1. There are high amplitude
fractures: sinusoids a, ¢, e, f automatically detected are almost the same
detected with manual technique. Sinusoid b is not detected by the geologist,
but in the source image there is a partial support for it. Conversely sinusoid
d could be an error of double detection (it is very similar to e).

Table 4.1 summarise all evaluation: number of detected sinusoids in man-

ual and automatic approach is reported per each depth. C are corrected



4.1 Machine vision for log interpretation

61

(a) Manual detection (b) Automatic detection

Figure 4.7: Depth 2, well 1.

sinusoids, identified in both manual and automatic approach. FP are false
positive sinusoids while ND are all sinusoids not detected by the geologist,

but that it seems they correspond to actual events.

Depth | Manual Approach | Automatic Approach
C | FP ND

Depth 1 6 0 0
Depth 2 4 4 1 1
Depth 3 4 1 1
Depth 4 >> 10 8 1 1
Depth 5 5 0 1

Total ~ 35 271 3 4

Table 4.1: Results of detected sinusoids for well 1.

From the numerical point of view, the behavior of the algorithm seems

fairly close to the evaluation of the geologist: over a total of about 35 sinusoids
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(a) Manual detection (b) Automatic detection

Figure 4.8: Depth 3, well 1.

detected by the geologist, the algorithm was able to correctly detect 27, or
80%. At the same time, the number of false positives is quite limited (only
amounted to 3).

The numeric data, conjugated with the visual comparison for each depth
confirms the effectiveness of the algorithm: the most obvious sinusoids are
detected in almost all cases. The more evident disadvantage with respect to
manual analysis consists in less accuracy in the detection of sinusoids very
close: this behavior, as already mentioned, is due to the sampling strategy

of the parameter space.

Well 2

For this well, it was not possible to compare automatic detection results
with the manually validated ones. Therefore we will proceed to a qualitative
description of the obtained results.

The first analysed depth is shown in Figure 4.11: the image is rather
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(a) Manual detection (b) Automatic detection

Figure 4.9: Depth 4, well 1.

grainy. The algorithm correctly identifies two main sinusoids: there is also
a fake sinusoid (low angle, at the center of the figure). This sinusoid is
formed by the support belonging to two different curves, actually present in
the image: in this case the saliency test has not been able to remove the

imperfection.

In depth 2 (shown in Figure 4.12), there are many sinusoids, often in-
tersected with each other. The algorithm detects a good number of actual
sinusoids (sometimes also with double detections, because of the thickness):
as in the previous case, there are some fake results, due to incorrect interpo-

lation of supports belonging to different curves.

The last depth is shown in Figure 4.13: in this area many sinusoids are
present, with different angle. Once again, the behaviour of the algorithm is

good, despite the presence of some false positive.
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(a) Manual detection (b) Automatic detection

Figure 4.10: Depth 5, well 1.

4.1.3 Vacuoles detection: methodology

Our approach for vacuoles detection can be divided in three steps: segmen-
tation, labeling and selection. Segmentation identifies a set of interesting
regions that are eligible to spots. Labeling provides the regions connected

components in order to then select only those that are actual objects.

In image analysis, one of the most recurrent problem is the separation
of components in the image: the ability to identify and to separate objects

from the background. This activity is called image segmentation [35].

In our work we focus on segmentation obtained by threshold operations.
Let f(z,y) be the function that describes our image. The image consists
of a white object on a dark background. The extraction of the object can
be achieved by defining a threshold 7" and then comparing each pixel value
with it. If the pixel value exceeds the threshold, the pixel is classified as an

object pizel, if the value is lower than the threshold, the pixel is classified as a
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(a) Source image

(b) Automatic detection

Figure 4.11: Depth 1, well 2.

(a) Source image

(b) Automatic detection

Figure 4.12: Depth 2, well 2.
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(a) Source image (b) Automatic detection

Figure 4.13: Depth 3, well 2.

background pixel. The result is typically a binary image, where object pixels
are represented in white and background pixel are represented in black.

Thresholding can be defined as an operation that involves a test against a
T function, which has the following form: T' = Tz, y, p(z,y), f(z,y)] where
f(z,y) is the function that describes the gray-level intensity for each pixel in
the image; p(z,y) describes some local properties for each pixel in the image;
(x,y) represents the position of pixels in the image.

Depending on T, there are different types of threshold:

e Global Threshold: T depends only on f(z,y);

e Local Threshold: T depends on f(x,y) and p(z,y);

e Local Adaptive Threshold: 7 depends on (x,y), f(z,y) and p(z,y).

Global threshold is the simplest operation: the threshold value 7" is com-

puted once for the whole image, and the image is thresholded by comparing
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each pixel value with 7', as described above. The result depends on the shape
of the image histogram. If the histogram contains two separated peaks (one
peak corresponding to background pixels, and the other corresponding to ob-
ject pizels), then a single value of T, if properly computed, can produce good
results in segmentation. Many techniques have been proposed for the auto-
matic computation of the threshold value: some of these techniques produce
an optimal value, which means that the value minimizes a parameter related
to the image. Otsu’s method [53], for example, produces the threshold value
that minimizes the intra-classes variance, defined as the weighted sum of the
variance of the classes. The class weight correspond to the probability that

a pixel belongs to that class.

A global value for 7" may not be enough in order to obtain good results
in segmentation: the local approach, instead, computes a different threshold
value for each pixel in the image, based on local statistical features. A neigh-
bourhood is defined for each pixel: in this neighbourhood some statistical
parameters are calculated (i.e.: mean, variance and median), which are used
to calculate the threshold value T'(z,y). Different algorithms use different
combinations of these parameters in order to generate the threshold value.

Niblack’s algorithm [52] is an example of this type of thresholding.

As pointed out before, the global threshold method is very simple and
fast, but can only be successful if the separation between the two classes
(object vs. background) is clear. This happens only if the scene illumination
is uniform throughout the image. In real images, this assumption is typically
not true. In the image, there can be intensity jumps that makes it impossible
to use a single threshold value. The local threshold method attempts to solve
this issue, because the threshold value is not fixed, but calculated for each

pixel on the basis of the local image features.

We developed three different segmentation algorithms starting from two
main methods. The first method uses a particular convolution mask and
a global thresholding technique. In order to remove noise and unnecessary

details, the image is first smoothed with a median filter. The convolution
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of this image with a circular derivative mask provides a new image where
round areas or circular structures, approximately of the same size of the
mask, are highlighted. The new image is then thresholded, using two global
threshold values: T}, and Tj;g,. All the (z,y) pixel where f(z,y) <= T4, or
f(x,y) >= Thign are considered object pizels, others are background pixels.
Using two different threshold is possible to find two types of spots: dark
spots in light background and vice versa. Generally we use a percentile value
to define two thresholds: Tj,, is the 20th percentile and T};g, the 80th. In
order to remove isolated pixels a opening morphological operator [62] is then
applied.

This method leads to the implementation of two different algorithm. The
difference between these two implementations is in how the convolution man-
ages the image background. In some cases images can have zones with non-
relevant or missing information. Our first algorithm considers these zones
as background pixels, conversely in the second algorithm these pixels are
considered null values (zones with no image).

The second method uses the approach based on local threshold. The first
step is the application of a low-pass filter to the image. The purpose of the
filter is to reduce the noise in the image. Then, once defined the size of the
neighbourhood, intensity mean () and variance (o) are computed for each
pixel. For the calculation of the threshold value, the Niblack’s algorithm [52]
is applied:

T(x,y) = pu(r,y) + ko(z,y)

The threshold value is defined as the sum of mean plus the standard
deviation, weighted by the parameter k. Mean and variance are calculated
in the neighbourhood of each pixel. Here, we are assuming that the image
contains white objects on dark background. The detection of dark objects
on light background can be achieved by inverting the original image (doing
this causes that dark pixels turn into light pixels and vice versa) and then
applying the same algorithm.

In practice, two new images are built, starting from the original: in the
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first image, the pixel value is replaced with the mean value in the neigh-
bourhood. In the second image, the pixel value is replaced with the variance
calculated in the neighbourhood. To apply the Niblack’s algorithm to the
pixel (z,y) is sufficient to get the pixel value from the original image, and its

mean and variance from the new images.

The Niblack’s algorithm is reinforced with an additional constraint, based
on the absolute value of the variance. Variance is related to the image con-
trast. A small value corresponds to an area fairly uniform in the image. To
avoid the detection of false positives, a pixel must belong to a non uniform
area: this means that the variance is to assume a high enough value. Hence a
threshold value is needed to compare the variance. First the variance image
histogram is built, then the threshold is selected as the value corresponding
to an arbitrary percentile (for example, the 20th percentile). The pixel for
which the variance is lower than this value are automatically classified as
background pixel. Niblack’s algorithm is applied only to pixels that pass this
test.

In order to detect light and dark objects, the method is applied to the
original image and to the inverted image. The result are two binary images,
where only the object pizels are highlighted in white. As before, the opening
morphological operator is then applied to the binary images, in order to

smooth the contours of the regions identified.

The second step in the proposed approach is aimed at identifying and
labeling the connected components resulting from the segmentation process.
Once we obtain a binary image a labeling algorithm is applied to detect all
the image regions. The labeling algorithm identifies the connected compo-
nents in an image and assigns each component a unique label. The algorithm
runs an image scan and groups its pixels into regions, based on pixel con-
nectivity. This procedure is often applied to binary images, resulting from
segmentation. Once complete, the procedure returns a list of connected re-
gions that were found in the image. Each region should represent an image

object.
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Figure 4.14: Example of vugs: a dark vug in a light background (on the left)

and vice versa (on the right).

Finally in the last step, for each identified region a test is applied on the

size and shape. In particular, the tested parameters might be:

e Area: must be between a minimum and a maximum value;
e Roundness: for example, the region must be roughly circular;

e Ratio: ratio between maximum height and maximum width.

These tests prevent the algorithm from detecting regions which do not

correspond to actual objects.

4.1.4 Vacuoles detection: evaluation

To evaluate our algorithm we test the detection of vacuoles (or vugs). They
are roughly circular areas in contrast with the background, see Figure 4.14
for an example.

Three different algorithms were implemented: the first two (algorithm 1
and 2) are very similar, and use the approach based on convolution. The third
(algorithm 3) is an implementation of the local threshold method described
in previous section. All the algorithms are written in JAVA and algorithm 3
is written using ImageJ [58] digital image processing libraries.

To determine which method is most suitable for this task, a test was
performed on an entire well FMI image. The analysis is carried out through
a sliding window technique. From the main image, 300 pixel height windows
are extracted, and algorithms are applied directly to them. Windows are
partially overlapping: this is designed to improve the accuracy detection

near the edges of the windows.
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Once completed the analysis on the entire well, in order to evaluate the
results, about ten windows, considered significant, have been taken: win-
dows, namely, showing the most common situations in which the geologist
is interested. For example, a window containing a lot of small sized vugs
was selected, rather than a window with a few large vacuoles. The chosen
windows, and the three results for each of them, were shown to three geol-
ogists: it was asked them, for each window, to vote the algorithm (or the
algorithms) that produced best results. At the end of the procedure, all votes
were collected and a ranking was produced.

In our experiment algorithms 1 and 2 have a 7x7 pixel smoothing filter
and a 9x9 pixel circular derivative convolution mask. Algorithm 3 runs with
a bxb pixel smoothing filter; the radius of the neighbourhood is 13 pixel and
k = 0.5 in the Niblack’s algorithm.

Once each image region is labeled, a test is applied on the size and shape.
In our work the total area of each region must be in the range 25 - 500 pixel.

Roundness is defined as

47 A

roundness = ——
2

where A is the region area and p is the perimeter. All the regions with a
roundness lower than 0.25 pass the test and can be considered as vugs. The
last test is based on the width-height ratio: for each region the maximum
width and height are computed and only if the ratios width/height and
height /width are greater than 1.8, the region pass the test.

Details on the vote are shown in Table 4.2, final ranking is shown in
Table 4.3.

In Figure 4.15 the input image (depth!) shows a lots of small vugs, with
a low contrast with respect to the background; two strips in the middle are
very dark due to a measurement error'. The geologist choice is algorithm 3

with two votes. Although this algorithm detects less vugs than the others,

'This is an unavoidable error and can happens often in these type of image. Due
to the complexity and the cost of the image acquisition, it is not possible to repeat the

measurement. The final image is made by a single run over the entire well.
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Geologist A | Geologist B | Geologist C
depth1 1,3 2,3 1
depth2 2,3 2 3
depthSs 2,3 2 3
depthy 3 3 3
depthb 2 n.d. 3
depth6 3 3 2
depth7 2,3 2 3
depth8 2 2 3
depth9 3 n.d. 3

Table 4.2: Each geologist votes for the best algorithms (algorithm 1, 2 or 3)

for each well depth. Cells contains geologist choice.

votes

algorithm 1 2
algorithm 2 11
algorithm 3 17

Table 4.3: Sum of votes for each algorithm.

this was preferred because of it provides better results (no false positive) in
the dark strips.

Figure 4.16 shows the image input and output for each algorithm at
depth2. In this case the input image shows few big vugs and algorithm 2
and 3 give best results, both gaining 2 votes. It is important to note that
algorithm 3 shows, in general, a clear output and best accuracy, with a lower

number of false positive. Detailed image results can be found in [15].

The algorithm that produced the best overall results was the one based on
the local threshold method. Table 4.3 shows that the second choice was the
algorithm 2. This indicates that, regardless the image shape, the convolution

operator gives best results if it considers only actual image zones.

Results show that the algorithm 3, that uses a local threshold, was pre-
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(¢) Algorithm 2 detected spots. (d) Algorithm 3 detected spots.

Figure 4.15: Example of gray-level image input (a) and output (b,c,d) at
depthl1. In output images, detected vugs are round grey area with black thin
border.
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(a) Input image. (b) Algorithm 1 detected spots.
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(c) Algorithm 2 detected spots. (d) Algorithm 3 detected spots.

Figure 4.16: Example of gray-level image input (a) and output (b,c,d) at
depth2. In output images, detected vugs are round grey area with black thin

border.
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ferred by the domain expert. In general it detects less vugs than other algo-
rithms, but it seems to be most suitable in all that cases with a low contrast
between spots and background.

Vugs detection is very important for the geologist who wants to evaluate
the porosity of a rock, in order to quantify potential depth zones containing
oil and gas. Our approach helps the geologist reducing the time for detection

of vugs in the image logs and improving the detection accuracy.

4.2 Well log integration

Once the system has analysed the entire image log, and the algorithms have
extracted the values that represent each feature, these information are sum-
marized in a feature table (a row for each analysis window, a column for each
image feature). This table is the final numerical dataset from FMI log. Now
it can be properly merged with other electric logs.

All datasets provided by electric and image logs are, in fact, tables or
matrices of features values along the well depth. In this sense integration of
several datasets can be viewed as alignement of 2 matrices using depth as a
reference parameter. This operation is then repeated for each new dataset
that has to be added. The alignement is due by the fact that each dataset
could have its own resolution and then different depth indication. In order
to properly integrate these dataset a simple algorithm for data merging was
developed.

When we compare depths of two matrices it is possible that the number
of rows of the first matrix (called reference matriz) is different from second
matrix (the matrix to be aligned). In this case we decide that the result
matriz must have the same number of rows of the reference matriz. For
each row of the this matrix a set of nearest rows from the second matrix is
selected. Feature values in this set are merged according to several provided
statistics such as mean, median, max or min.

In order to better explain the algorithm a simple example of matrix inte-
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gration is here provided. Let matrizl be the reference matriz and matrixz2
the matrix to be merged (see Tables 4.4 and 4.5). Suppose that all depths
are in ascending order (this is the real case) and that both matrices start and
stop at the same depth. In this case matriz2 has a number of rows greater
than matrizl. Once a row of matrizl is selected, in order to find the set of

nearest rows to be merged, the algorithm use the following rule.

Feat.A | Feat.B | Depth

1 2 100.2

33 145 | 100.4

Feat.A | Feat.B | Feat.C | Depth 39 45 | 100.6
123 12 987 100 3 45 | 100.8

33 145 44 101 79 71 101.2

10 100 11 102 96 45 | 1014

20 200 42 103 13 65 | 101.6

Table 4.4: matrizl the refer- Table 4.5: matrix2 the matrix

ence matriz. to be added.

Let = and y be two arrays. For each z; the algorithm searches j index
such that:

i = y;] <|wic1 = y5l Az = y;] < l@ira — vyl (4.15)

In our example x is the depth column of matrizl while y of matriz2.
For example, selecting row number 2 in matrizl (see Table 4.6) the al-
gorithm cycle over each row of matrix2. The first depth is 100.2; the Equa-

tion 4.16 is not true then the row is not selected for merge.

1100.2 — 101| < |100.2 — 100| A [100.2 — 101| < [100.2 — 102|  (4.16)

All features values in Feat.A and Feat.B of true rows in matriz2 must
be merged (computing mean, median, max or min) in one row. This row will

be added to the i — th row of matrixl.
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Feat.A | Feat.B | Depth
1 2 | 100.2 | false
33 145 | 100.4 | false
Feat.A | Feat.B | Feat.C | Depth 39 45 | 1006 | true
123 12 87 100 3 45 | 100.8 | true
33 145 4] 101 79 7| 1012 | true
10 100 11 102 96 45 | 1014 | true
20 200 42 103 13 65 | 101.6 | false
matrixl matriz2

Table 4.6: Merging algorithm: second row selected.

It is possible that for some rows in matrizl there are no true rows in
matrix2, see Table 4.7. In this case the algorithm choose the row with

minimum distance and add it in selected row in matrizl

Feat.A | Feat.B | Depth

1 2 | 100.2 | false

Feat.A | Feat.B | Feat.C | Depth 33 145 | 100.4 | false
123 12 987 100 39 45 | 100.6 | false
33 145 44 101 3 45 | 100.8 | false
10 100 11 102 79 7 101.2 | false
20 145 44 103 96 45 | 101.4 | false
13 65 | 101.6 | false

matrizl
matriz2

Table 4.7: Merging algorithm: last row selected.

Table 4.8 is the aligned matrix: red columns comes from matrixl, cyan
columns are merged data from matrix2. In this example merged values are
calculated using the statistical mean. To be more clear: first row contains
values 17 and 73.5, these are mean values between 1 and 33 and between 2
and 145.
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Feat.A | Feat.B | Feat.C | Depth | Feat.A | Feat.B
123 12 987 100 17 73.5
33 145 44 101 | 54.25 5.5
10 100 11 102 13 65
20 200 42 103 13 65

Table 4.8: Resulting matrix after integration: red columns come form

matrixzl, cyan columns are merged rows from matrix?2.

Implementation of this algorithm was realized in a JAVA application see

Section 7.2 for more details.



CHAPTER b

Modeling & Evaluation:
Descriptive Data Mining

This and the following chapter (Chapter 6) represent the Modeling & Eval-
uation phase of the CRISP-DM process where several modeling techniques
are selected, applied and evaluated.

In Section 5.1 a detailed description of hierarchical clustering techniques
and automatic clustering extraction are provided. Further details on index
evaluation for clustering techniques can be found in [71]. Section 5.3 contin-
ues with supervised algorithms applied in order to learn and to describe a

cluster partition.

5.1 Hierarchical clustering and validation

As reported in Section 2.2, hierarchical agglomerative clustering builds the

hierarchy starting from the individual elements considered as single clusters,
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and progressively merges clusters according to a chosen similarity measure
defined in features space [67]. The output of hierarchical clustering is a tree
represented by a dendrogram: a tree-like plot where each step of hierarchi-
cal clustering is represented as a node merging two branches into a single
one. These nodes represent clusters obtained on each step of hierarchical

clustering, see Figure 5.1 for an example.

i |

I \

T

1l

Figure 5.1: Example of dendrogram and color mosaic with five open nodes

(cyan nodes).

All of the examples of the given dataset are ideally represented by the
leaves in the lower part of the dendrogram. These leaves are iteratively
merged by the branches (the height of each branch is proportional to the
distance between the clusters merged by it) raising until the “root” node on
the top.

In bioinformatics [2], a dendrogram is often displayed with a color mosaic
(lower part of the main window in Figure 6.2): a graphical representation of

the feature table contents. The numerical values of the table are converted
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into color tiles. By default, a high value has a bright red color and a low value
has bright green color. The middle value has a black color. When a value
gets closer to the middle value between the green and the red lines, the color
becomes darker. It is important to notice that the arrangement of columns
of the color mosaic display is sorted according to the clustering result, thus
the color mosaic doesn’t show the dataset in its original ordering but each
column (i.e. each example) is close to a column with similar features. The
color mosaic provides to the human expert an aid to represent of all the

features of the whole dataset “at a glance”.

The most standard way to define a partition from the tree built by a
hierarchical clustering algorithm is to make an horizontal cut of the tree at
a specified level. This is usually done by defining a parameter: either the
number of desired classes, or the height of the cutting line. A more flexible
approach is to allow the user to perform a non-horizontal cut. This approach
can provide more opportunist cuttings: the user may want to have more
details in some classes than in some others, or may want to group into the
same class objects which appear to be unsimilar according to the clustering
criterion [10]. Starting from the root node, the user can divide the clusters
going down through the tree structure, by selecting a node to “open”, i.e. he
can split that cluster in two sub-clusters. In this way, it is possible to choose
the number of classes by “cutting” the tree at desired level. In Figure 5.1
there is an example in which a non-horizontal cut provides a partition that
can not be obtained by an horizontal cut: the dataset is split into five clusters.
As a result, each identified cluster represents a set of instances with similar

distribution of the features.

One of the most important issues in cluster analysis is the evaluation of
clustering results in order to find the partition (cluster configuration) that

best fits the underlying data: this is the main goal of cluster validation.

There are several evaluation indexes, such as Dunn, Davies-Bouldin and
C-index, which assess cluster compactness and isolation. In this work we

consider Dunn’s Index, since it is simple to compute and it did provide the
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best results in in our experiments.

The Dunn’s Index |24] is based on the idea of identifying the cluster sets,
that are compact and well separated. For any partition of clusters, where ¢;
represents the ¢ — th cluster of such partition, the Dunn’s validation index,

D, can be computed with the following formula:

. . 4 (Ci, Cj)
D _ 79 J
121& {1r§nj1£n { maxj<g<n {A (Ck)} }}

where ¢ (C;, C;) is the distance between clusters C; and C; (inter-cluster

distance!); max; <<, {A (Cy)} is the intra-cluster distance of cluster Cy, and
n is the number of clusters.

In order to assess a quality measure for each single cluster of a given
partition, we also defined a specific value for each index. These specific
indexes can be used to identify the good clusters and the weak ones and can
drive the user (or an automatic system) in the tree cutting task, by letting
him /it open the “bad” clusters, refining the partition. The specific value of
the index can be computed with the formula:
min {d(x;, x;)}
max {d(z;, y;) }

The main goal of this measure is to maximize the inter-cluster distances

D; =

and minimize the intra-cluster distances. Therefore, the cluster partition

that maximize D can be taken as the optimal cut of the clustering tree.

5.2 Index driven automatic clusters extraction

After the creation of the dendrogram by using an agglomerative clustering
algorithm, it is necessary to cut the tree in order to create a cluster structure.
In simplified theory, only horizontal cuttings are legal, since non-horizontal
cuttings violate the optimality property that two objects belonging to the

same class are closer to each other than two objects from different classes.

'Inter-cluster distance is referred to two objects from different clusters, intra-cluster

distance is referred to two objects from the same cluster.
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But in practice there is a need for building classes corresponding to more
opportunist cuttings [10].

Our technique performs this type of cuttings, called non-horizontal, and
our tool implements it in a graphical user interface. The cutting is simply
done by clicking over a node of the dendrogram; for every cluster partition
and for every single cluster the tool provides the validity index computation.

In order to automatically extracting a clustering partition, by using the
non-horizontal cutting, our technique performs an index-based exploration
of the clustering tree. It is possible to explore the clustering tree in several
ways and we study two different methods based on the selection of the node
to open: by choosing the node that brings to the clustering with the best
global index (Go-to-best search) and by choosing to open the node with the
worst specific index (Ezpand-worst search).

The iterative exploration of the tree stops when the obtained clustering
does not improve the selected index, indeed the algorithm follows a greedy
approach. FEzxpand-worst search has given, with all the datasets, the most
significant results and in next sections we only consider this method. The
following pseudo code shows how our technique works with choosen search

method driven by Dunn’s Index:

while(delta>epsilon) {
oldDunnIndex = newDunnlIndex;
newClustering = dendrogram.selectClusterToSplit (expand-worst)
newDunnIndex = newClustering.computeGlobalDunnIndex;

delta = newDunnIndex - oldDunnIndex; }

First, we have to create and show the dendrogram, then we start to explore
it using Fxpand-worst search. The result of this method is a new cluster
partition where the node with the worst Dunn’s Index (due to the nature of
the index this is the smaller index) is opened producing two different clusters
from a single one. Now, we compute the global Dunn’s Index of the new
partition and the difference with the old value. If this value is smaller than

a fixed threshold, we stop the tree exploration.

b
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By choosing a negative threshold the algorithm continue to search until
the new clustering partition is significantly worse than the previous one (lower
than €), considering Dunn’s Index validity measure. This threshold provides

a simple method to avoid local maxima or flat zones.

We tested our technique over different datasets from UCI Machine Learn-
ing Repository [4]: the Iris and the Synthetic Control Chart Time Series
dataset. As a first step, we normalized all of the attributes with a linear
adjustment in order to bring them in [0.0, 1.0] range. Then, we used a hi-
erarchical agglomerative clustering algorithm with Euclidean distance and
complete linkage strategy. The choice of these distance and linkage strategy
was driven by two simple considerations: first they are the most known and

used techniques and second our tests gives best results only with these ones.

Every result was finally evaluated through the true instance-class assign-
ment given by the dataset. Using Ezpand-worst search driven by Dunn’s
Index with ¢ = —0.005 we obtained interesting results. Further tests with
different distances and linkage strategies for clustering algorithms or the use
of other validity indexes to drive the search of clustering configuration, did
not have yielded the expected results for these dataset, also using Go-to-best
search we do not obtain significant improvements. In another work [28], we
used Dunn, Davies-Bouldin and C-index in a combined solution to perform
the driven search of cluster configuration. In that case we also compared
different search strategies and tree cutting mode but automatic extraction of
clusters do not lead to a significant improvement in cluster readability and

interpretation, therefore the expert have to manually identify classes.

To evaluate the improvement of our technique we also compared our hi-
erarchical clustering results with clustering partitions given by K-means al-
gorithm [49]. For each clustering solution we use the number of clusters as a
parameter to run K-means and then we computed the information entropy.

More details on experiments and results can be found on [27].

Observing results, the best partition is selected cutting the tree in a

non-horizontal way. Moreover, the behaviour of information gain confirms
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that the obtained partitions match well with the underlying structure of the

datasets.

5.3 Learning clusters description

In order to produce a symbolic description of characteristics of the selected
cluster partitions in geology context, we tested supervised learning techniques
using electric and image logs from 5 different wells located in the same area.

Starting from a dataset already partitioned in clusters, the objective was
to describe each cluster. Cluster descriptions must be provided in a human
readable way and must be based on features values or range of them. This
led to the identification of two types of assessments: a quantitative evaluation
based on the accuracy of provided description, and a qualitative evaluation
made by the geologist on understandability and usefulness.

Our experiments was conducted following the schema in Figure 5.2. The
whole dataset has been built by appending all the data from the 5 wells in a
single table (see Figure 5.2). Available wells and number of instances: welll
(1023), well2 (1214), well3 (1041), well4 (953), well5 (1799).

After a testing phase we decided to use only five of the available logs.

Selected attributes are:

1. number of sinusoid in the analysis window (SIN);

[N

. spectral gamma ray (SGR);
3. bulk density (RHOB);
4. delta-T compressional (DTCO);

5. neutron porosity (PHI).

well5 does not have the number of sinusoids because the image log was
not available.
The dataset was then partitioned using hierarchical clustering and the

final dataset, used as training set for the learning phase (see Figure 5.2),
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Figure 5.2: Schema of the descriptive approach.

counts 6030 instances and 7 attributes: SIN, SGR, RHOB, DTCO, PHI plus
WELL-NAME and ID _CLUSTER.

We tested four supervised algorithms from three main techniques:
e decision tree: J48;

e classification rules: PART and JRIP;

e bayes classifier: NaiveBayes.

Each algorithm was tested using 10-fold cross validation techniques.

In Table 5.1 there are results for tested algorithms: for decision trees
number of leaves and number of nodes are reported, for rules generation the
number of rules is reported. Percentage of corrected classified instances is
shown for each algorithm (see Figure 5.3).

From a quantitative point of view all algorithms except NaiveBayes show

a percentage of corrected classified instances greater than 80%. In this sense
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Figure 5.3: Precentage of corrected classified instances for each algorithm.

J48 is the best algorithm but in descriptive data mining precision is not the
only important parameter.

The geological point of view, or in general human point of view, need
more readability of data learnt structure. To this purpose we evaluate not
only precision but also number of nodes and number of rules. This qualitative
evaluation was done looking also at output representation for each algorithm.
Figure 5.5 and Figure 5.4 show output of JRIP and NaiveBayes algorithms.
JRIP (see Figure 5.5) list a rule per row and at the end the identified cluster.
Starting from this and reading backward, geologist could have a first simple
sight of cluster characteristics. NaiveBayes (see Figure 5.4) shows for each
cluster useful statistical measures for each feature.

In conclusion, the output of J48 is difficult to interpret for domain expert.
Algorithms for rule generation provide readable results and PART gives higher
precision than JRIP but, due to the low number of generated rules, the latter
is more useful. NaiveBayes was also the geologist choice because it produces
simple information about data structure that could be used as summary of

clusters partition.
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Class

Atcribute CLUSTER1 CLUSTERE CLUSTERS CLUSTER4 CLUSTER7 CLUSTER3Z CLUSTERZ CLUSTERS
(0.23) {0.21) {0.18) {0.04) {0-14) (0.12) (0} {0}
NAME
mean 2387_8711 2268.0301 2250.3242 2257_S889 22795.254 2205.34%2 2072_8%32 2346.7825
std. dew. 118.032 130.1725 93.1765 128.1256 121.0153 111.0462 B1.7335 170.4075
weight sum 1778 1245 1144 265 B3z 723 18 27
precision 0.1034 0.1034 0.1034 0.1034 0.1034 0.1034 0.1034 0.1034&
SIN
mean 2.7576 0.7058 0.B563 5_283% 1.0B81 2.5446 4.7334 1.4316
std. dew. z 558 1.0036 1207 16917 1.5369 1.768 2 2573 1_368
weight sum 305 681 495 138 351 314 11 13
precision 1.1333 1.1333 1.1333 1.1333 1.1333 1.1333 1.1333 1.1333
SGR_90_P
mean 145.6654 30.3489 27.7806 S8.9896 32.1632 31.7672 105.0145 39.0636
std. dew. 40.0333  10.3824 7.088% 36.38956 10.24%34  16.7375 5_6868  18.1422Z
weight sum 1778 1245 1144 265 B32 723 1le £7
precision 0.0381 0.0381 0.0381 0.03B1 0.0381 0.0381 0.0381 0.0381
RHO
mean 2 _653¢ Z_4305 2_.5711 Z_5458 Z_5406 2_4353 Z_5316 z_3229
std. dev. 0.03874 0.0439 0.033 0.0508 0.0288 0.0526 0.0847 0.0879
weight sum 1711 1192 1057 255 765 708 15 18
precision 0.000S 0.0005 0.0005 0.0005 0.0005 0.000S 0.000% 0.000S
DTCO_RES
mean 66_E154 64_.8B83 S58.0857 62.21%& &1.5151 &7.7306 6€5.6651 57.4005
std. dev. 5.361 2.3547 2.250% 2.6002 1.38€68 2.3277 5.0312 4.4284
weight sum 1778 1245 1144 265 B3z 723 18 27
precision 0_0076 0.0076 0.0076 0.007& 0.0076 0.007¢& 0.0076 0.0076
DHI
mean 0.0723 0.0199 0.0037 D.0173 0.0089 0.0256 0.3231 0.0236
std. dew. 0.0483 0.008 0.007 0.0138& 0.007 0.0117 0.0633 0.0236
weight sum 1778 1245 1144 265 832 723 1le 27
precision 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Figure 5.4: Example of NaiveBayes output for wells dataset.



5.3 Learning clusters description

welll well?2 well3 well4 wells

J48 leaves: 97 | leaves: 57 | leaves: 58 | leaves: 47 | leaves: 39

nodes: 193 | nodes: 113 | nodes: 115 | nodes: 93 | nodes: 77

CC: 85.0% | CC: 86.7% | CC: 84.8% | CC: 83.1% | CC: 86.0%

PART rules: 64 rules: 29 rules: 41 rules: 37 rules: 28
CC: 82.7% | CC: 86.1% 85.7% 81.8% 84.3%

JRIP rules: 28 rules: 21 rules: 23 rules: 17 rules: 17
CC: 82.4% | CC: 85.5% 82.2% 78.8% 81.9%

NaiveBayes | CC: 75.6% | CC: 79.7% | CC: 78.8% | CC: 80.5% | CC: 84.0%

Table 5.1: Results of test with 4 supervised learning algorithm. CC are

Correctly Classified instances.
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JRIP rules:

(REQ ¢= 2.276] and (WAME <= 5063.36) => ID CLUSTER=CLUSTERS (4.0/0.0)
(RAQ <= 2.446) and (DTCO_RES >= §7.9156) and (SGR_90 P <= 37,28983) => ID CLUSTER=CLUSTER? (356.0/12.0)

(REQ <= 2.4729) and (DICO_RES >= 67.125) and (PHI <= 0,0284) and (SGR 90 P <= 24.9219) => 1D CLUSTER=CLUSTERT (59.0/1.0}

(DTCO_RES 3= 65.976) and (SGR_90 P <= 58.405) and (DTCO_RES >= 68.61) => 10 CLUSTER=CLUSTERT (108.0/13.0)

(RHO <= 2.435) and (SIN >= 2) => ID CLUSTER=CLUSTERT (5&.0/18.0)

(REQ <= 2.475) and (NAME <= 5065.142) and (RHO <= 2.4297) and (DTCO RES >= 65.9856) and (SGR 90 P <= 21.763) => ID CLUSTER=CLUSTERT (10.0/1.0)

(REC <= 2.4774) and (RHO <= 2.40§3) and (DICO_RES >= 66.157) => ID CLUSTER=CLUSTERT (21.0/6.0)

(REQ <= 2,476) and (SIN >= 5) and (DICO_RES >= 63.6) and (NAME <= 5086.462) => ID CLUSTER=CLUSTER] (10,0/1.0)

9625) and (SGR_90_P <= 52.41) and (MAME <= 4097.26) and (SIN >= 5) => I0_CLUSTER=CLUSTERT (10.0/2.0)

3575) and (DICO_RES <= 63.357) and (RHO <= 2.541) and (SIN <= 0) and (RHO %= 2.482) and (DICO_RES >= 56.377) => ID_CLUSTER=CLUSTER4 (155.0/2.0)

(DTCO_RES >= &4,
(SGR_90_P <= 34,
(S5R_90_P <= 34
(S5B 90 P <= M.
(SGR_90_P <= 34.
(SGR_30_P <= 33.
(SGR_90_ P <= 34,
(S8R_90_P <= 34.
(S6R_90_P <= 34,
(SGR_90_P <= 3.
(S5R 90 P <= 34,
(SGR_90 P »= 33
(SGR_90_P »= 33,
(SGR_90_P >= 33,
(SGR_90_P 3= 33,
(SGR_90_P >= 33,
(S6R_90 P >= 32,
(S6R_90_F <= 69
(S6R_90 P <= 69,
(SGR_90_P <= 69.
(SGR_90_P <= 75.
(SGR_90_P <= 6.
(S8R_90_P <= 7e.
(S5B_90_F <= 78,
(SGR_90_P <= 78,
(S58_90 P ¢= 77
(DTCO_RES <= 60.
(DTCO_RES <= 6L.
(DTCO_RES <= 6L,
(DTCO_RES <= 6L,

574)
574)
431)
574)
845)
845)
574)
574)
445)
547)
415)
415)
445)
189)

and

and

.067) and (DTCO_RES <= 63.23) and (DTCO_RES >= 61.008) and (DICO _RES <= 62.7494) and (PHI >= 0.0074) and (SIN <= 0) => ID_CLUSTER=CLUSTER4 (52.0/6.0)

(DICO RES <= 63.88) and (DTCO RES >= 60.929) and (DTCO RES <= 62.7518) and (PHI >= 0.0074) and (NAME <= 3507.06) and (3GR 30_P <= 32.4414) and (NAME »= 2244.09) => ID CLUSTER=CLUSIERY (35.0/3.0)
(DTCO_RES <= £4.269) and (DICO RES »>= 61.003) and (DICO RES <= 62,721) and (SGR 90 _P <= 26.511) and (NAME <= 2259.48) => ID CLUSTER=CLUSTER4 (25.0/5.0)

(DTCO_RES <= £4.662) and (RHO <= 2.5503) and (DTCO RES ¢= 62.526) and (RHQ ¢= 2.5268) and (DICO_RES >= 58.7i1) => ID CLUSTER=CLUSTER4 (177.0/64.0)

{DICO_RES <= 64.629) and (DICO_RES >= 61.003) and (RHO >= 2.516) and (NAME <= 2291.03) and (NAME >= 2286) and (RHO <= 2.5609) => ID CLUSIER=CLUSTER4 (19.0/0.0)
(DICO_RES <= §4.662) and (DICO_RES >= 60.923) and (SGR_90_P <= 26.674) and (RHO >= 2.491) and (PHI >= 0.0107) =» ID CLUSTER=CLUSTER4 (74.0/24.0)

(DICO_RES <= 63.8606) and (DICO_RES >= 61.003) and (PEI <= 0.0114) and (DICO_RES >= 62.4837) and (PHI <= 0,0051) => ID CLUSTER=CLUSTER4 (59.0/23.0)

{DTCO_RES <= 63.357) and (FHI »= 0.007) and {DICO_RES >= 60.821) and (DICC_RES <= 62.1B56) and (NAME <= 3528.14) => 1D CLUSTER=CLUSTER4 (40.0/15.0)

(DICO_RES <= 63.357) and (RHO <= 2,5492) and (SIN <= 1)| and (DICO RES <= €0.328) and (DICC RES >= §8.245) and (SGR 90 P <= 25.902) => ID CLUSTER=CLUSTER4 (16.0/1.0)
(SGR_90 P <= £9.4682) and (SGR 90 P >= 40.443) and (S6R 90 P <= 56.821) and (3GR 90 P >= 46.3771) and (RHO <= 2.53) => ID CLUSTER=CLUSTERé (94.0/11.0)

{SGR_90_F <= £9.462) and (3GR_90_PF >= 40.84) and (SIN <= 3) and (SIN >= 2) => ID CLUSTER=CLUSTERé (114.0/16.0)

(SGR_90_P <= £2.955) and (SGR_90_P >= 40.4258) and (DICO RES <= 62.7786) and (DICO _RES >= 59.9194} and (SIN <= 3) => ID_CLUSTER=CLUSTERE (53.0/4.0)

(SGR_90_P <= 69.21) and (SGR _90_P >= 39.203) and (DICO_RES <= 61.906) and (DICO RES >= 59.658) => ID CLUSTER=CLUSTERE {142.0/49.0)

(S6R_90 P <= 69.21) and (SGR_90_P »= 43.522) and (DTCO_RES >= &4) and (SGR_90_P <= 59.447) and (NAME >= 3314.27) => ID_CLUSTER=CLUSTERE (92.0/26.0)

{56R_90_P <= 70,494) and (DTCO RES <= 62.632) and (DICO RE5 >= 59.958) and (RAO >= 2.5537) and (SGR 80 P <= 46,6899) => ID_CLUSTER=CLUSTERG (75.0/12.0)

.21) and (SGR_30 P >= 34.917) and (PHI 3= 0.0217) and (DTCO_RES >= 64.428) and (PHI <= 0.041) and (NAME <= 6649.B1) and (PHT >= 0.029) => 1D CLUSTER=CLUSTERE (35.0/6.0)

108) and (S6R_90_F >= 34.2644) and (SGR_90 P >= 40.443) and (SGR 80 P <= 53.228) and (EHI >= 0.021) => ID CLUSTER=CLUSTERE (63.0/27.0)

21) and (SGR 90 P »= 35.363) and (DTCO RES <= 62.6213) and (DICO RES = 50.1) and (PHI <= 0.0133) and (SGR 90 P ¢= 38.1084) => ID CLUSTER=CLUSTER6 (54.0/15.0)

4642) and (SIN »= 4) => ID_CLUSTER=CLUSTERS (216.0/38.0)

645) and (WAME <= 4077.7) and (DICO_RES <= 61.3069) and (SIN >= 2) and (DICO_RES >= 57.981) and (DICO RES <= 60.081) => ID CLUSTER=CLUSTERS (46.0/3.0)

2322) and (NAME <= 3§09.68) and (DICC_RES <= 62.624) and (DICO_RES »>= 58.62) and (SGR_90_P >= 25.2009) and (SGR_90_P <= 27.902) and (RHO >= 2.5526) => ID CLUSTER-CLUSTERE (52.0/18.0)
2322) and (DICO_RES <= €3.1531) and (DICO_RES >= 58.216) and (DICO_RES <= 60.181) and (RHO <= 2,549) and (SBR_90_P <= 23.69) => ID CLUSTER=CLUSTERE {25.0/5.0)

2322) and (WAME <= 4090.65) and (DTCO_RES <= 63.6513) and (SGR 90_P >= 41.127) and (SGR_90 P <= 49.447) => ID CLOSTER=CLUSTERE {61.0/27.0)

.123) and (DICO_RES <= 62.849) and (DICO_RES »>= 58.324) and (DICO RES <= 60.181) and (PHI >= 0.0052) and (DTICO RES »>= 59.138) and (NAME <= 4077.7) => ID CLUSTER=CLUSIERE (62.0/24.0)

8687) and (DTCO RES <= 58.774) and (PHI <= 0.001) => IDﬁCLUSTERﬂSTE‘RZ (358.0/30.0)

178) and (SGR_90_P <= 98.469) and (SIN <= 1) and (RHO >= 2.571) and (SGR_90_F <= 41.398) => ID CLUSTER=CLUSTER? {116.0/1.0)

1) and (SGR 90 P <= 102.805) and (DICO RES <= 58.055) and (DICO RES <= 56.182) end (MAME >= 5240.682) => ID CLUSTER=CLUSTER2 (52.0/2.0)
178) and (S6R_90_P <= 103.124) and (SIN <= 1) and (RHO >= 2.551;‘ and (DICC_RES >= 58.333) => ID CLUSTER=CLUSIER2 (81.0/11.0)

Figure 5.5: Example of output rules for JRIP algorithm for wells dataset.



CHAPTER 0

Modeling & Evaluation:
Predictive Data Mining

In this chapter a novel interpretation system for predictive data mining, based
unsupervised and supervised learning techniques in cascade, is presented.
This chapter continues the Modeling & Evaluation phase started in
the previous one but, in following sections, a more functional approach is
used. First, in Section 6.1, learning algorithms and evaluation techniques
are explained following the general schema of the interpretation system. Sec-

tion 6.2 concludes with tests and experimental results.

6.1 Cascade of techniques for prediction

The developed method helps the geoscientists in his analysis, extrapolating
the maximum amount of information integrating all the selected logs.

Our approach involves two phases (see Figure 6.1): first, hierarchical
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clustering is applied to a set of co-located wells in order to find an hidden
data structure. In this step, the domain expert chooses the best clustering
partition that fits the observed the facies distribution. Then, starting from
identified clusters, a supervised learning algorithm is used to learn a classifier
which can be applied to new wells, in order to predict the distribution of

facies.

We first create a large dataset that includes data from different wells
in the same area, this is the input of a clustering task. In our application
we use hierarchical agglomerative clustering that produces a cluster hierarchy
represented in a dendrogram. Using the dendrogram the geologist can choose
the most suitable cluster partition. The second phase involves the prediction
of facies distribution over a new, unknown well in the same area. This task is
achieved by learning the model of each cluster from the previous description
by applying supervised learning algorithms. To this purpose it is possible
to use different supervised techniques. In order to find the best classifier
for facies distribution prediction, in Section 6.2, we test several algorithms:
decision trees, classification rules and regression methods. These techniques

allow the propagation of classes to new wells.

Following these two phases we obtain a semi-automatic interpretation and
prediction method for well logs. This is a semi-automatic approach because
a human quality control is needed in order to obtain a meaningful cluster-
ing partition in the domain context; but this is also the main advantage: the
geologist identifies clusters only once considering all the available data simul-
taneously and saving time. It is important to note that the method can be
generalized to different application field. For instance in bioinformatics, the
cascade of unsupervised and supervised techniques can be suitable in tumor
analisys and subtype discovering, producing useful models based on human
validated clusters [32].
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6.1.1 Data integration and clustering

The dataset has been built by appending all the data from the 5 wells in a
single table (see Figure 6.1).

The first phase of the approach is the same as Section 5.3 where cluster-
ing process was conducted using a hierarchical agglomerative approach. In

Figure 6.2 the resulting dendrogram, the geologist splitted the dataset into 8

S %

HIERARCHICAL GEOLOGICAL
CLUSTERING Q.C.
\
training
LEARNING
set
\2
WELLN+1 >( CLASSIFIER
\

WELLN+1
classification

Figure 6.1: Cascade of unsupervised and supervised techniques. First hier-

archical clustering is applied and the expert chooses the clustering partition.
Then a supervised learning algorithm is used to learn a classifier suitable for

facies distribution prediction over new wells.
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clusters (labeled from 1 to 8) at different levels. As a result, each identified
cluster (black nodes) represents a set of examples with similar distribution

of the features.

—
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Figure 6.2: Hierarchical clustering result: the dendrogram with the color mo-
saic. The geologist identifies 8 classes cutting the tree at different distances

(black nodes).

From the chosen clusters, given as training examples, we can learn a
classifier by applying supervised learning. In order to find the most reli-
able interpretation method and the best prediction algorithm, we tested sev-
eral techniques based on different learning approaches. We use J48, Random
Forests, PART and Rotation Forest as decision trees induction and classi-
fication rules generation algorithms.

For regression we use ClassificationViaRegression and Logistic.

In order to show the capabilities of the cascade method and to evaluate
results and advantages, we tested it using different approaches.

In the standard predictions approach (see Section 6.2.1) we predict facies
distribution using a classifier trained on the dataset created by merging the

data from all the wells, including the well to be used as test set. In this
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case the classifier’s evaluation is often based on prediction accuracy (see
Section 2.3).

The standard predictions approach is, in fact, far from the real use: the
geologist could start the analysis with some wells and then a new unknown
well, from the same area, is added. This is the usual case and it is important

to reuse the previous learned models.

In blind predictions approach (see Section 6.2.2) the well to predict it is
not combined in the clustering with all other datasets. This means that the
“new” well does not contribute to the formation of the clustering partition
that represents facies distribution. In this case we can’t apply directly none of
the previous validation techniques because, we miss the real class information
for each item to calculate the prediction accuracy. In order to evaluate the
prediction algorithms we must set a reference classification of the unknown
well. This will be used as an ideal result to compare performances of different
prediction algorithms. We adopt two different type of evaluation based on
different datasets: the first technique (see Figure 6.3) uses a new dataset
made by the merging of the starting dataset with the dataset of the unknown
well, the second technique uses only the dataset of the unknown well (see
Figure 6.4).

The geologist creates the cluster partition by cutting the tree possibly
at different distances. It is important to cut the tree for the same number
of clusters and to use the same criteria used in the initial clustering (i.e.
color mosaic observations or clustering metrics). In this way we obtain a
clustering solution that will be used as reference classification comparable
with the one created in the prediction'. First we use a visual comparison
between predicted classes and reference classification. This can be done using
a software that shows classes sequence with different colors along the well
(see Figure 6.5 and Figure 6.6). In these results it is easy to observe classes

changes and trends. Moreover with the reference classification we still can’t

'For clarity we will refer to reference classification as clusters, and the predicted clas-

sification as classes.
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evaluation
WEI___Ln+_1 EVALUATION
classification results

N

GEOLOGICAL
Q.C.
Z)

T~

N
HIERARCHICAL
CLUSTERING

Figure 6.3: Blind predictions. In the evaluation phase we use the whole

dataset.

directly calculate the accuracy of the prediction algorithm because the new
clusters do not necessarily match with classes of the predicted classification.
We need a measure of how two different classifications are homogeneous and

consistent, regardless the name of the classes. We use entropy and purity.

evaluation
WEI._!_n+.1 EVALUATION
classification results

A

GEOLOGICAL
Q.C.

I\

HIERARCHICAL

WELLN+1 > CLUSTERING

Figure 6.4: Blind predictions. In the evaluation phase we use only the dataset

of the unknown well.

In order to assess the quality of our results, we also define an entropy-

based evaluation of the cluster partition. This measure aims to highlight
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matching between the obtained clustering partition and the underlying clas-
sification structure. If a class attribute is defined in the given dataset, we
may want to evaluate the clustering obtained with respect to the class at-
tribute. Even if the clustering task remains an unsupervised process (i.e.
without considering the class attribute in learning), a good matching of its
result with an underlying classification is often desirable. A reliable measure
for this type of analysis is information entropy [56, 64].

We can define the information entropy of a single class as the uncertainty
relative to the cluster attribute for its examples. Entropy for the ¢ — th class

can be computed using the following equation:

Uz

_ Tij nij

j=1 " ‘
where n, is the number of clusters, n; the number of examples of the ¢ — th
class, and n;; the number of examples of the j — th cluster in the i — th
class. A low entropy value reveals the “homogeneity” of a class, with respect
to the cluster attribute. A class containing instances from only one cluster,
will score an information entropy equal to 0. We can evaluate the entropy
of the whole predicted classification by computing the weighted mean of the
entropy of each class. The number of instances belonging to the class is used

as weight. This equation can be written as:

1 no
H=~ ; n;H;
where N is the number of instances in the whole dataset, nc the number of
classes and n; the number of examples into the i —th class. A low overall en-
tropy value represents a good matching between the predicted classification
and the reference classification. To compare different and sequential cluster-
ing configurations in the same dendrogram, we also use the information gain
measure. This value is equal to the difference between the entropy value of
the selected partition and the one of the previous clustering configuration.
The information gain provides an easy way to reveal improvements in cluster

homogeneity.
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We choose entropy and information gain measures since they provide
an evaluation of the homogeneity of the obtained clusters with respect to
the underlying classes. This type of measure does not need the number of
clusters to be equal to the number of classes, since it does not consider a
direct association between a cluster and a specific class.

Purity is a simple and transparent quality evaluation measure of classi-
fication solution. To compute purity, each classes is assigned to the cluster
which is most frequent in the class, and then the accuracy of this assignment
is measured by counting the number of correctly assigned items and dividing

by N. Formally purity for ¢ — th class is:

1
b=— ij
nimax(nj)

The overall purity of the predicted solution could be expressed as a

weighted sum of individual classes purities:
Ne n;

P = —PF,
2N

In general, bigger the value of purity better the solution.

6.2 Experimental results

The input dataset is the same used in Section 5.3 and it is composed by 6030
items and 7 variables.

There are also three additional attributes: the depth of the measurement
(DEPTH), the geological unit? (UNIT)and the name of the well (WELL-
NAME). Every dataset has a sampling resolution of 10 inches.

The data cleaning stage and the dataset preparation was very important
and it had a significant role in the entire approach. This step was made

in conjunction with the domain expert that knows the geological meaning

2A body of rock or ice that has a distinct origin and consists of dominant, unifying

features that can be easily recognized and mapped.
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and the correlation between different measurement. It also needed particular
attention, because of the heterogeneity of data sources.

It is important to note that well2 was perforated really close to welll,
indeed in terms of image and electrical logs they show very similar charac-
teristics.

Our clustering algorithm uses the following settings:
e 7 normalization®;
e Manhattan distance*;

e maximum linking.

6.2.1 Standard prediction

This approach uses a large dataset created merging welll, well2, well3, well/,
well5 datasets.Removing UNIT and WELL-NAME attributes we obtain a
dataset of 6030 instances with DEPTH, SIN, SGR, RHOB, DTCO, PHI. In
well5 values of SIN attribute are set to null. In this case the knowledge
about the characteristics of the well that will be predicted is combined with
all other wells and used in the hierarchical clustering phase.

The geologist identified 8 different clusters, recorded as CLUSTER-NAME
attribute in the dataset. The training set is then created extracting from clus-
tering solution all instances of one well. The extracted well is used as test
set (CLUSTER-NAME is removed for the test set).

The validation of the approach, in the first part of our experiments, was
conducted using the 10-fold cross validation, then we adopted a sort of leave-
one-out validation where the test subset consists of the instances from a single

well. In the following we refer to this test as leave-one-well-out.

3A linear normalization of each variable that brings mean to 0 and variance to 1.
4The distance algorithm used in the clustering process can handle missing data. If

some attributes are missing for certain examples, the distance has been computed only

with the remaining ones.
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First, using the 10-fold cross-validation technique, we test the accuracy
of the whole dataset. In this case test set is randomly picked from the
starting dataset regardless the well, this is not the usual way of use, but it
give an indication of the best algorithms to choose. Table 6.1 shows correctly
classified instances for normal and extended dataset. Rotation Forest gives

best results.

normal dataset | extended dataset
Jas 85.2% 85.0%
Random Forests 87.6% 87.2 %
PART 84.6% 84.7%
Rotation Forest 89.1% 88.8 %
ClassificationViaRegression 86.6% 86.4%
Logistic 81.4% 81.9%

Table 6.1: Correctly classified instances for normal and extended dataset

using 10-fold cross-validation.

We test the prediction of each well on 5 algorithms using leave-one-well-
out validation. Table 6.2 and Table 6.3 show results of correctly classified
instances for normal and extended dataset.

In the normal dataset, well2 shows very similar results of correctly clas-
sified instances, Rotation Forest gives best result; also well? shows similar
values and PART gives the highest result. But the unexpected result is that
in normal dataset 3 algorithms show best result for well3 instead of well2.

In order to elucidate these results we extend the dataset by adding two
attributes: normalized depth (NORM-DEPTH) and UNIT. UNIT is the nu-
merical ID of the geological unit and NORM-DEPTH is the depth linear
normalization: its value is 0 at the top and 1 at the bottom of the analysed
section. These values are the same for all the wells although, due to the
different geological description, the real depth are different. Swapping the
DEPTH with the NORM-DEPTH in conjunction with UNIT in the predic-

tion algorithm, it is possible to better consider different rock type. In fact,
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welll well2 well3 welly wellb
J48 76.2% | 79.0% | 80.2% | 73.2% | 85.2%
Random Forests 79.2% | 80.6% | 81.6% | T7.9% | 87.8%
PART 784% | 804% | 82.1% | 79.6% | 86.5%
Rotation Forest 79.8% | 84.9% | 78.0% | 83.4% | 88.7%
ClassificationViaRegression | 79.7% | 81.1% | 81.0% | 79.8% | 87.6%
Logistic 70.6% | 80.3% | 781% | 79.0% | 84.2%

Table 6.2: Correctly classified instances for normal dataset.

welll well?2 well3 well4 welld
Ja8 76.0% | 82.0% | 79.4% | 76.4% | 83.1%
Random Forests 77.4% | T7.9% | 75.0% | 77.6% | 84.4%
PART 76.4% | 78.9% | 75.7% | 76.6% | 85.8%
Rotation Forest 75.7% | 84.9% | 81.0% | 85.6% | 88.8%
ClassificationViaRegression | 79.4% | 83.5% | 82.5% | 81.3% | 88.2%
Logistic 70.1% | 80.0% | 79.3% | 80.2% | 84.7 %

Table 6.3: Correctly classified instances for extended dataset.

most of the prediction have better accuracy with the extended dataset.

As shown in Table 6.3, the best results for the extended dataset has been

obtained by Rotation Forest in wells, well/ and well2. For welll and well3

ClassificationViaRegression gives good results. But choosing Rotation

Forest method we obtain the best result for all the wells.

Another important result is the relatively short time taken by the analysis.

As reported before the manual interpretation of a well can take up to one

month. Our approach takes from 3 to 7 hours for the image analysis phase

of a well, then the classification and prediction takes from 2 to 5 minutes.

Adding more time for the data preparation and geological quality control

(human made), we can count at most two days per well.
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6.2.2 Blind prediction

In our tests the supervised learning algorithm uses as training set the dataset
created by merging 4 of the 5 wells datasets, then predicts classes in a test
well, excluded from the same large dataset. In all our experiments we use as

test wells well2 and wellj.

When the test set is well2 the training set is made up of 5007 instances
(welll, well3, well4, well5) and when the test is well4 the training set count
4989 items (welll, well2, well3, well5). We extend the datasets by adding two
attributes: normalized depth (NORM-DEPTH) and UNIT. For every dataset
we use 6 attributes: SIN, SGR, RHOB, DTCO, PHI, NORM-DEPTH, and
UNIT.

Visual comparison

Figure 6.5 and Figure 6.6 show a visual comparison between predicted classes
and reference classification. First two columns are the reference classification:
made by using the whole dataset and made by using only the test well.
Dashed lines represent changes in cluster distribution correctly detected by
prediction algorithms. Due to the evaluation method, in this comparison the
differences between reference and predicted color classes does not matter.

More important are changes in classes sequence.

In well (Figure 6.6) is difficult to evaluate algorithms because it presents
rapid classes changes along the well, but in both wells UNIT IV.3 is clearly
detected by predicted classification. Also the transition between UNIT TV.2
and UNIT IIT is correctly identified by all the algorithms. An important
consideration made by the geologist is that, due to the number of the classes
it is very difficult to evaluate and choose the best algorithm, but looking at
the reference classification, it seems that the first column (clustering made
by using the whole dataset) is more readable than the second. It presents

less details and it is less complex.



6.2 Experimental results 103

Entropy and purity comparison

Table 6.4 shows results of entropy and purity for each well. In order to
better understand results, making further tests, we choose to predict some
interesting sections of well2 and well/: UNIT IV.2 and UNIT IV.3° To
locate them see Figure 6.5 and Figure 6.6. For each section we create the
training set extrapolating the same geological unit from all the wells.

Using both the evaluation techniques, the whole dataset evaluation (see
Figure 6.3) and the test dataset evaluation (see Figure 6.4), we predict and
calculate entropy and purity of each well and section. Looking at these
results, Logistic shows better performance than other algorithms in most
cases. Logistic results for well2 - UNIT IV.2 are not very good, but in fact
this section is not very meaningful because it is short and very homogeneous.
This result confirms, as expected, that regression methods are suitable for

prediction of continuous numeric values.

In well2 we consider UNIT IV.3 as UNIT IV.3inf + UNIT IV.3sup.
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whole dataset eval. | test dataset eval.

entropy | purity entropy | purity
well2
ClassificationViaRegression 0.902 0.652 0.865 0.633
J48 0.946 0.625 0.948 0.603
Logistic 0.873 0.646 0.778 0.668
PART 0.944 0.628 0.943 0.608
Random Forests 0.905 0.636 0.873 0.622
Rotation Forest 0.854 0.665 0.853 0.635
well2 - UNIT IV.2
ClassificationViaRegression 0.199 0.963 0.262 0.938
J48 0.132 0.975 0.195 0.951
Logistic 0.199 0.963 0.262 0.938
PART 0.132 0.975 0.195 0.951
Random Forests 0.149 0.963 0.181 0.963
Rotation Forest 0.199 0.963 0.262 0.938
well2 - UNIT IV.3
ClassificationViaRegression 0.817 0.663 0.774 0.694
J48 0.869 0.641 0.842 0.665
Logistic 0.760 0.679 0.677 0.719
PART 0.889 0.647 0.859 0.679
Random Forests 0.854 0.647 0.806 0.680
Rotation Forest 0.837 0.663 0.811 0.680
welly
ClassificationViaRegression 0.718 0.741 0.755 0.689
Jas 0.745 0.735 0.775 0.681
Logistic 0.703 0.751 0.737 0.697
PART 0.694 0.774 0.0.742 0.705
Random Forests 0.728 0.748 0.779 0.689
Rotation Forest 0.683 0.769 0.761 0.696
wellj - UNIT IV.2
ClassificationViaRegression 0.743 0.720 0.702 0.732
J48 0.799 0.701 0.805 0.720
Logistic 0.674 0.732 0.739 0.720
PART 0.643 0.768 0.759 0.720
Random Forests 0.690 0.750 0.742 0.701
Rotation Forest 0.640 0.739 0.743 0.726
wellj - UNIT IV.3
ClassificationViaRegression 0.902 0.671 0.509 0.787
J48 1.004 0.606 0.559 0.740
Logistic 0.908 0.628 0.612 0.697
PART 0.998 0.599 0.564 0.711
Random Forests 0.965 0.625 0.550 0.733
Rotation Forest 0.904 0.657 0.516 0.765

Table 6.4: Result of entropy and purity for chosen wells and sections. Bold

values are the best ones for each well section.
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Figure 6.5: Visual comparison of clustering results of well2.



6. Modeling & Evaluation: Predictive Data Mining

106

amjuoieioy
Hias

IR0 JUopuEy
i

1uvd
Hiam

uorssaubayuALONE ) ESETD
A

195838p pijaM

ay3 o bupzysnpp ™

Jase1ep Ioym
ay3 jo Buuaysnpy MM

AHdVHODILLVHLS (Pw) WIS

FMI

|

N

I LINA

T —

Figure 6.6: Visual comparison of clustering results of well/.



Part |11

TOOLS

107






CHAPTER [

Deployment

In this Ph.D. work we used several software tools, some of them were inter-
nally developed and others were already available and well known. They are
all integrated in a unique semi-automatic system called I?’AM (Intelligent
Image Analysis and Mapping). Following the CRISP-DM model this is the
Deployment phase where all the efforts are in developing a system that al-
lows the use of the studied approach and model in a profitable and repeatable
way in business contexts. Section 7.1 describes the main system developed
in this Ph.D. work while Section 7.2 presents another important developed
tools for data integration and clustering. Finally some works and industrial

application of our system are presented in Section 7.3.

7.1 12AM

I?AM is a semi-automatic system that exploits image processing algorithms

and artificial intelligence techniques to analyse and classify subsurface data
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(image and electric logs). The T2 AM approach can be summarized in four

steps and each of them represents a functional part of the entire system:
1. automatic features extraction from FMI image log;
2. features refinement and validation;
3. data integration and clustering;

4. clusters validation and prediction.

7.1.1 Automatic features extraction from FMI image log

In order to automatically extract image features from the FMI log, first
the system takes as input a numeric table (raw data) and represents it as
image. In the raw data table there is a row for each depth, a column for each
degree (360 degrees) and each single cell contains the resistivity measurement.
This step produces an i2m file readable by the main visualization tool. In
Figure 7.1 the complete schema for automatic extraction.

Then the system analyses the entire well using a fixed size window and
produces an i2mr file that contains extracted features at each depth. This
task can take up to 7 hours for a well of 500 m but this is strongly related to
the requested precision analysis, hence it is related to the execution param-
eters of each algorithm.

All the algorithms were implemented in JAVA using also some ImageJ [58]
libraries. Fach execution produces also a log file where each row represent the
processed analysis windows with the depth, the window progressive number,
the used system memory and a timestamp. The following is an example of

execution log.

Tue Oct 26 17:57:57 CEST 2010 LOG: File ’tawke_1.660.i2m_analysis.log’
Tue Oct 26 17:57:57 CEST 2010 LOG: Loading data from file:
/home/denis/databases/fmi/dno/tawke_1/tawke_1.660.i2m

Tue Oct 26 17:58:10 CEST 2010 LOG: Time to load: 12614 millis

Well: tawke_1.660



7.1 ’PAM 111

Size: [0, 163331]
Width: 329
Analysis Size: [0, 163331]

Tue Oct 26 17:58:10 CEST 2010
LOG: Window 1 of 1633 Row: O Analysis win [0, 100] used mem (Mb):237 SKIP.

Tue Oct 26 17:58:12 CEST 2010
LOG: Window 2 of 1633 Row: 100 Analysis win [100, 200] used mem (Mb):280

Tue Oct 26 17:58:13 CEST 2010
LOG: Window 3 of 1633 Row: 200 Analysis win [200, 300] wused mem (Mb):286

Tue Oct 26 17:58:14 CEST 2010
LOG: Window 4 of 1633 Row: 300 Analysis win [300, 400] used mem (Mb) :280

Tue Oct 26 18:21:04 CEST 2010
LOG: Window 1632 of 1633 Row: 163100 Analysis win [163100, 163200] used mem (Mb):333

Tue Oct 26 18:21:04 CEST 2010
LOG: Window 1633 of 1633 Row: 163200 Analysis win [163200, 163300] used mem (Mb):333 SKIP.

Tue Oct 26 18:21:04 CEST 2010 LOG: Engine Time: 00:22:53
Tue Oct 26 18:21:04 CEST 2010 LOG: Write to .i2mr File: tawke_1.660.i2mr

7.1.2 Features refinement and validation

After the automatic extraction of the features, results obtained by this step
are graphically presented to the interpreter.

Figure 7.2 shows a screenshot of the main window of I?AM system. In
the left window there is the original FMI image, the i2m file, coloured with an
editable palette. This palette can be modified using the color bar in the upper
left corner and this is useful in order to highlight some low contrast image
features. The I?AM visualisation system exploits the layers idea: once a i2m
file is showed, it is possible to load i2mr or i2mc files. i2mr contains only
extracted graphical features while i2mc contains also well clustering. The
center window shows this two types of files, all the visual features are drawn
over the selected FMI image (the beddings are also presented by tadpoles on

the right). The other measures (contrast and texture) are represented using a
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Visualization System

Visualization System

Raw Data Sliding Windows Extraction

Analysis Engine

227763, 30035. 58347, 58203

Numerical Values for each Characteristic

Figure 7.1: Schema of automatic features extraction phase: the visualization system converts numeric table in image,

then the analysis engine process the entire image logs producing a file that contains extracted features for each depth.
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Figure 7.2: Screenshot of the main window of I?’AM system. In the left
window there is the original FMI image coloured with an editable palette. In
the center window the extracted graphical features are drawn over the same
FMI. The right coloured bar is a small thumbnail of the well and it is used
to easily explore it. In the bottom there are some well section samples for

each identified cluster.

bar plot on the right of each analysis window, where the length of the yellow
bar represents the contrast and the blue bar represents the texture. The
bottom window shows some well section samples for each identified cluster.
The right coloured bar is a small thumbnail of the well and it is used to
easily explore it: selecting a depth, the other two windows shows the relative
zoomed section of the well.

In feature and validation step the interpreter can check the output of
the algorithms and validate the extracted features. 2 AM allows correcting

visible results, in three ways:
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1. add/modify/remove sinusoids;
2. add/modify /remove vacuoles;
3. mark some windows as “poor” (not reliable for further analysis).

In order to easily perform the correction of bedding detection, another
tool has been integrated in the prototype: sinCAD (sinusoids Computer
Aided Design). See Figure 7.3 for a screenshot. This tool provides a fast and
useful method for identifying the sinusoids missed by the automated analysis.
The interpreter can draw a surface directly on the image, by mouse-clicking
three or more points. Then the software is able to search for other surfaces

parallel to this one, and it automatically detects the whole set of beddings.

[EE ixi
“Commands- i iger
=]
Depth: 95600
Shiow
Rows! 500
Sinusoids Drawing Radon analisys |
Sogliali 13
i o
Sogliaz: 1.5707963267948966 -
Accept Sinusoids. | Cancel Sinusoids | o
e
o
L 4
o
o
o
¥
&
Save Result | Clase SinCAD | LI

Figure 7.3: The sinCAD interface. Using this tool it is possible to correct,

to add and to remove sinusoids automatically detected by the algorithm.

A similar approach was developed for vacuoles correction. The vacuoles
finder helps the interpreter in vacuoles correction. Once selected the depth

it is possible to manually check automatically detected vacuoles and then
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add or remove them. Figure 7.4 shows the vacuoles finder interface while

the geologist is removing some vacuoles from a FMI log.
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Figure 7.4: vacuoles finder helps the interpreter in vacuoles correction. In
left column the interpreter chooses the editing mode: to add or to remove

vacuoles. Left image is the source image, right image shows detected vacuoles.

Finally, an important feature of I?AM system is the “poor” window mark-
ing. A variety of environmental conditions and instrumental error can com-
promise the measurement of some part of the well, and these defects are
usually not automatically detectable. By simply clicking on the well image,
the interpreter can mark some of the analysed windows as “poor” and exclude
them from further processing. This step significantly advantages the classi-
fication task, since it removes some sections that can produce non reliable

interpretation.
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7.1.3 Data integration and clustering

Once the image results are validated it is possible to integrate electrical logs
with image logs with DI4G, the tool presented in Section 7.2. Finally, during
the clustering process (see Figure 7.5), it is necessary to choose the clusters
structure. The interpreter can select the better suggested clustering solution
and modify the number of clusters. This process produces the i2mc file that

contains the selected clustering partition.

Ill[m}h!u

dld

r!.',,n!}\;

‘W ” \'{;‘1" |

¥
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Figure 7.5: Clustering process in the I?AM software.

7.1.4 Clusters validation and prediction

Loading the i2mc file (Figure 7.2) the geologist can validate clusters check-
ing depth-by-depth the entire well. In this step the interpreter can assign a
name to each cluster and it is also possible to make some local corrections
by hand (i.e. change the cluster assigned to a given analysis window). Fi-
nally resulting i2mc file can be exported and used in WEKA [36] for classes

prediction.
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The final predicted classification form the basis of the analysis on which
the geologist carries out its considerations. The final result is a series of image
facies that are identified along the image log and that can be calibrated
using cores to sedimentary facies to assign the geological meaning. This
classification result can also be exported in different file format in order to

be used in other specific geologic software for reservoir analysis.

7.2 DIl4G

DI4G (Data Integrator for Geology) is a tool developed in JAVA that uses
the algorithms explained in Section 4.2 in order to merge different dataset.
The values obtained from image analysis can be aligned and merged with
other data logs from the same well (such as density, porosity, gamma ray,
etc.), and the tool builds a new dataset collecting data from all the selected

logs (Figure 7.6).

Dataset Loader
INTEGRAL | TEXTURE | VUGSNUM... SINSNUM... = SININWIN | RHOM DTCo GR APSC
3.59717298... [24080.0 17.0 7.0 4.0 2.486 624 |40.367 0.105 A
3.54219761... [22919.0 22.0 8.0 6.0 2.588 |58.390 |23.078 0.0z —
3.29401221... [21544.0 32.0 6.0 4.0 2577 59,391 56.92 0.036
3.31372576... [21475.0 8.0 5.0 4.0 2.793 75.022 169.36 0.159
3.36374352... |23632.0 23.0 8.0 4.0 2.79 73.792 170.152 0.146
3.44246158. .. [22853.0 36.0 7.0 3.0 2.793 73.905 172,193 0.137
3.57592072... [22936.0 30.0 7.0 3.0 231 73.117 160.382 0.139
3.56394076... [22540.0 5.0 7.0 4.0 2.783 69.872 160.569 0.125
3.40350758... [21570.0 210 5.0 5.0 2.795 65.916 176,811 0.097
3.47616641... [21782.0 0.0 110 4.0 2804 68,181 186,131 0.12
3.39294698... [22145.0 23.0 10.0 5.0 2754 66.827 392,379 0.104
3.32265611... [20943.0 19.0 10.0 4.0 2.728 63.831 211.222 0.085
3.47250640.... [21256.0 210 7.0 4.0 2.691 62.252 116.825 0.071
3.61160058. .. [20971.0 35.0 8.0 4.0 2632 64.705 109.077 0.073
3.33117376... [21748.0 14.0 9.0 4.0 2.593 63.139 100.426 0.067
3.35438127... |22322.0 17.0 9.0 5.0 2.621 62.791 101.765 0.068
3.46635492... [21892.0 3.0 10.0 5.0 2.597 64.216 86.323 0.065 &
< I | >
Cone ) [Chi> |

Figure 7.6: DI4G builds a new dataset collecting data from all the selected
logs.

After the merging phase, DI4G let the user choose the columns to use
in the clustering task and the ones that might be discarded (Figure 7.7).
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I Dataset Loader
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Cal:0 Col:1 Col:2 Col:3 Cal:4 Col:5 Cok:6
DEPTH ac pEN R NEU peF RoEP &
12136.0384 |52.2282 12.6522 144.0256 .0123 2.6254 [3569.229 =
12136.1908 1521304 12.6591 47.5765 L0133 2.7502 12958.8071
{2136.3432 a2, 289 12.6545 149.1596 L0158 12.6221 [2521.0686
12136.4956 (51.9984 [2.6599 148.7702 .0162 12,8286 [2352.7507
12136.648 52,3431 12.656 1504889 L0165 2.7267 12373.929
12136.8004 1528803 12,6554 (50.5924 0166 2.7636 12539.0823
12136.9528 53.0216 12.6548 52,1808 0166 2.5514 12828.3933
{2137.1052 53.5617 12.6537 156.6552 .0138 2.364 3149.1521
{2137.2576 53.0256 [2.6715 60. 706 .0104% {2.5341 3332.9006 »
[ Cancel } I < Indietro ] [ Avanti =

Figure 7.7: The column chooser screen shot of DI4G. The user can decide

which column are to be discarded for the following clustering process.

The following task is the clustering process. For further details on DI4G
refer to [69].

7.3 Works

The I?AM system and DI4G are used by G.E.Plan Consulting srl in different
projects. G.E.Plan Consulting is an oil and gas consulting company that
provides innovative services for new exploration and development projects
and has specialistic skills in carbonate sedimentology and reservoir analysis.
The company uses I2AM since 2009, helping in development and testing
phase and providing real dataset.

The first important project that involves I?’AM system was the litho-
logical analysis of a field of 6 wells, using image and electric logs. In this
case the analysis made “by hand” by the geologist was improved using result
from I2AM. Another interesting work used only machine vision techinique
for a porosity analysis project of 7 wells from the same area. We used and
modified the algorithm for vacuoles detection in order to count the presence

and to measure the size of vacuoles along well depth.
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Conclusions

In petroleum geology the understanding and characterization of reservoirs
needs integration of different subsurface data in order to create reliable reser-
voir models. The large amount of data for each well and the presence of
different wells to be simultaneously analysed make this task both complex
and time consuming. In this scenario, the development of reliable charac-
terization methods is of prime importance in order to help the geologist and
reduce the subjectivity of data interpretation.

In this Ph.D. thesis we address the complexity of reservoir modeling us-
ing machine vision and data mining techniques in order to describe and to
predict hidden data structures in subsurface data. To this purpose a novel
interpretation approach based on the use of unsupervised and supervised
learning techniques in cascade was studied, tested and then implemented in
a system called T?’AM. Tt consisted of merging dataset of different wells in
the same area, clustering the new dataset in order to identify facies distribu-

tion (human interpretation), learning the clustering solution in a description
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model and then 1) describing data structure of wells and 2) predicting re-
sults for a new well from the same area. Each well dataset was made of
the integration of different data: electrical logs and image logs. Image logs
are automatically processed in order to obtain a numerical description of the

interested features.

By implementing I2AM image analysis engine we have identified the most
suitable methods for the extraction of features from FMI log images. For
each of these features, we developed one or more advanced image processing
algorithms that can verify their presence and quantify them. Results show
that the implemented algorithms are suitable for a fast image log analysis
but geoscientist interaction is fundamental for the validation. Hence, it is

important to give him tools and methods for result correction.

Descriptive approach was tested first with hierarchical clustering tech-
niques using information entropy over a dataset made by the merging of
several borehole wells from a hydrocarbon reservoir. Supervised techniques
are then used to summarize clustering partitions in a human readable rep-
resentation in order to help the geoscientist in reservoir understanding. The
developed clustering tool was intended as an helpful tool to better visualize
and understand the global structure and the organization of all detected fea-
tures over the entire well. The full vision of the well characteristics provided
by the clustering tool is a crucial aspect of our system, since the interpre-
tation task becomes simpler and its result more reliable. In particular, the
dendrogram used to visualize and modify the result of the clustering opera-
tion, improves the human expert interaction allowing a sensitivity correction
and a better interpretation. Moreover using cluster validation indexes, we
developed an algorithm that produces more realistic clusters, cutting the
dendrogram in a non-horizontal way. Observing results, we can assess that
this technique provides a reliable partition. Moreover, the behaviour of in-
formation gain confirms that the obtained partitions match well with the
underlying structure of the datasets. Regarding supervised algorithms, rule

generation techniques provide readable results and PART gives higher preci-
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sion than JRIP but, due to the low number of generated rules, the latter is
more useful. NaiveBayes was also the geologist choice because it produces
simple information about data structure that could be used as summary of

clusters partition.

Predictive approach was tested using two different strategies: standard
and blind predictions. In standard predictions, once the large dataset is cre-
ated (merging 5 known wells from a hydrocarbon reservoir), we used a part
of it as training set of decision trees or regression techniques and then we test
the learned model predicting the facies distribution over the wells. In blind
predictions we tested the learned model by predicting the facies distribu-
tion over two unknown wells and some sections of them. The two unknown
wells was not included in the initial clustering partition. In order to test
the entire method and to find a reliable prediction algorithm we test sev-
eral supervised techniques. For standard predictions Rotation Forest and
ClassificationViaRegression show best results, but Rotation Forest is
a good compromise for the prediction of the entire set of wells. For blind
predictions we evaluated results using a visual comparison and computing
entropy and purity over a reference classification. This classification is gen-
erated using two different dataset: the starting dataset merged with the
unknown well dataset and the only test well dataset. Logistic was a good

compromise for the prediction of tested wells.

The data preparation phase is also important in order to find the best

way to describe and to highlight correlation between wells in the same area.

The main advantages of this approach are the simple management and
use a large amount of data simultaneously; the extraction of realistic infor-
mation about rock properties and facies identification that can help in the
reservoir characterization; the avoidance of interpretation subjectivity; and
the reduction of the interpretation time by largely automating the log inter-
pretation, although some levels of human interaction are necessary. Timing
is a crucial factor in this field, consequently the time reduction given by our

approach has a great impact in costs of reservoir analysis and interpretation.
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The experimental results show that the approach is viable for reservoir facies
prediction in real industrial context where is important to reuse informations

about wells already analysed.
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