




Abstract

The widespread use of multimedia services on the World Wide Web and the advances

in end-user portable devices have recently increased the user demands for better quality.

Moreover, providing these services seamlessly and ubiquitously on wireless networks and

with user mobility poses hard challenges. To meet these challenges and fulfill the end-user

requirements, suitable strategies need to be adopted at both application level and network

level. At the application level rate and quality have to be adapted to time-varying bandwidth

limitations, whereas on the network side a mechanism for efficient use of the network

resources has to be implemented, to provide a better end-user Quality of Experience (QoE)

through better Quality of Service (QoS). The work in this thesis addresses these issues by

first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC)

applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models

for real-time and non real-time video streaming have been proposed and a rate adaptation

technique is also developed to minimize with fairness the distortion of multiple videos

with difference complexities. To provide resiliency against errors, the effect of Unequal

Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has

been also included in the proposed R-D modelling. Moreover, to improve the support of

QoE at the network level for multimedia applications sensitive to delays, jitters and packet

drops, a technique to prioritise different traffic flows using specific QoS classes within an

intermediate DiffServ network integrated with a WiMAX access system is investigated.

Simulations were performed to test the network under different congestion scenarios.
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Chapter 1

Introduction

The popularity of multimedia applications is rapidly increasing. Multimedia applications

include video on demand, IP-TV, sport broadcasting, VoIP as well as real-time streaming.

They have become reality now thanks to the achievements in the compression and storage

technologies and the advances in transmission systems. The penetration of end user devices

such as 3G mobile devices, portable multimedia players (PMP), HDTV flat-panel displays,

and the availability of wired and wireless broadband internet access provides different ways

to deliver these multimedia services. Nevertheless, in such environment providing contents

everywhere while achieving efficiency is a challenge. Scalable Video Coding (SVC) which

is the extension of Advance Video Coding standard H.264/AVC provides an attractive solu-

tion to support video transmission in modern communication systems. In SVC some parts

of the encoded video can be removed so that the video stream can be adapted to the network

conditions. Moreover, SVC can fulfill the requirements of the users with different termi-

nal capabilities and varying network conditions by providing spatial, temporal and quality

scalabilities. Multimedia contents like voice and video can tolerate only to some extent jit-

ters, delays and packet drops but they need sufficiently wide bandwidth. WiMAX, which

is considered an alternative to DSL, can provide wireless broadband connectivity with its

rich set of QoS classes for different types of multimedia applications which can be further

1



2 CHAPTER 1. INTRODUCTION

translated to the intermediate wired networks like DiffServ.

1.1 Scope of the Thesis

The aim of this thesis was to study the issues related to the provision of better Quality

of Experience (QoE) for multimedia applications like video and voice and in this context

particular emphasis was given to Scalable Video Coding (SVC). This thesis proposes new

continuous Rate-Distortion (R-D) models both for real-time and non real-time videos. New

rate adaptation techniques based on fairness for multi-stream video communication are also

developed and applied to both the real and non real-time R-D models. Moreover, to further

enhance the model an Unequal Error Protection (UXP) mechanism is introduced to cope

with errors during transmission. The non real-time R-D model takes advantage of the SVC

encoder to get the original R-D points from the video sequence and find the best possible

R-D couple by curve fitting technique. To develop R-D models for real-time video transmis-

sion, raw video sequences are exploited to get Spatial Indexes (SI) and Temporal Indexes

(TI), which are also referred as spatial and temporal complexities, to be used to predict the

parameters of the R-D model, as well as the rate prior to the encoding process of the videos.

The multimedia information may flow through several networks before reaching to the final

destination. This can be the cause of quality degradation for the application in use because

of the bandwidth limitation of heterogeneous networks, the absence of prioritizing policies

for delay sensitive traffic in intermediate networks, and network congestion, just to name

few of them. To address this issue in limited context a solution for WiMAX and DiffServ

interworking is provided in which VoIP traffic from WiMAX network entering DiffServ

network is prioritized to get a preferential treatment in DiffServ networks and minimize

delays, jitters and packets drops.
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1.2 Outline of Thesis

This thesis is organized as follows: In Chapter 2 the basic concepts of SVC are explained.

In Chapter 3 a semi-analytical R-D model is proposed for non real-time SVC and, also a

multi-stream rate adaptation technique based on fairness among videos is developed. The

rate adaptation technique is then applied to the proposed R-D model and compared the

results with the Equal Rate (ER) scheme. In Chapter 4, the proposed R-D model and rate

adaptation technique of Chapter 3 is investigated for error prone channels using Unequal

Error Protection (UXP). The UXP is based on Reed-Solomon (RS) encoding with erasure

correction. In Chapter 5 a R-D model for SVC real-time video streams is proposed. The

proposed model exploits SI and TI values GOP by GOP from the raw videos. The SI and

TI values are then used to predict the rate of the video before encoding. The Proposed

model is then used for multi-stream video delivery using the rate adaptation technique

adopted in Chapter 3. The results of the proposed R-D model are compared with those

obtained with R-D model in Chapter 3 by applying the rate adaptation technique. In Chapter

6 the interworking of the WiMAX and DiffServ heterogeneous network is described. In

this proposed research work the Unsolicited Grant Service (UGS) from WiMAX network

is mapped to the Expedited Forwarding (EF) service of DiffServ network. Priority Queuing

(PQ) is applied inside the EF to deliver the delay sensitive traffic i.e. VoIP. The network is

then tested on several congested scenario to test its efficiency to delays, jitters and packets

drops with and without DiffServ network.

A part of work included in this thesis is published in [30] [46] [47] and [48] during my

PhD.





Chapter 2

Overview of Scalable Video Coding

2.1 Introduction

Advances in video coding techniques and standardization along with the rapid development

and improvements of network infrastructures, storage capacity and computing powers are

enabling an increasing number of video applications. Applications area, today, range from

MMS, video telephony and video conferencing over mobile TV etc. For these applications,

a variety of video transmission and storage systems may be employed.

Due to the rapidly growing number of portable and non-portable devices, there is a

strong need of a video standard that can be scaled according to the user and network needs.

Because of all theses consideration, scalability and flexibility are key points for the near

future of video services, whether these are new services or evolution of existing services.

Such scalability is need not only on the architecture and infrastructure levels, but also at

the content level [1].

Scalable Video Coding provides the appropriate tools to efficiently implement content

scalability and portability. It is the latest scalable video-coding solution, and has been stan-

dardized recently as an amendment to the now well-known and widespread H.264/AVC

standard [2] by the Joint Video Team (JVT).

5



6 CHAPTER 2. OVERVIEW OF SCALABLE VIDEO CODING

In general, a video bit stream is called scalable when parts of the stream can be re-

moved in a way that the resulting substream forms another valid bit stream for some target

decoder, and the substream represents the source content with a reconstruction quality that

is less than that of the complete original bit stream but is high when considering the lower

quantity of remaining data. Bit streams that do not provide this property are referred to as

single-layer bit streams [1]. Another benefit of SVC is that a scalable bit stream usually

contains parts with different importance in terms of decoded video quality. This property in

conjunction with unequal error protection is especially useful in any transmission scenario

with unpredictable throughput variations and/or relatively high packet loss rates. By us-

ing a stronger protection of the more important information, error resilience with graceful

degradation can be achieved up to a certain degree of transmission errors.

2.2 Concept of H.264/AVC Extension to H.264/SVC

In SVC encoding is performed once while it can be decoded multiple times to get the re-

quired bit stream as shown in figure 2.1. It states that the encoder has to encode once the

bit stream which has details about spatial temporal and quality scalabilities. This scalable

stream is then sent to the user and the user decode the stream according to its own require-

ment.

The principle of decoding is show in figure 2.2. As in Advance Video Coding, the en-

coding of the input video is performed at the Macro block basis. As the codec is based on

the layer approach to enable spatial scalability, the encoder provides a down sampling filter

stages that generates the lower resolution signal for each spatial layer. Encoder algorithm

(not mention here in this thesis) may select between inter and intra coding for block shaped

regions of each picture. 12 The video sequence is temporally decomposed into texture and

motion information. Motion information from the lower layer may be used for prediction

of the higher layer. The application of this prediction is switchable on a macro block or
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Figure 2.1: Principle of encoding.

Figure 2.2: Principle of decoding.

block basis. In case of intra coding, a prediction from surrounding macro blocks or from

co-located macro blocks of other layers is possible. These prediction techniques do not

employ motion information and hence, are referred to as intra prediction techniques. Fur-

thermore, residual data from lower layers can be employed for an efficient coding of the

current layer. The redundancy between different layers is exploited by additional inter-layer

prediction concepts that include prediction mechanisms for motion parameters as well as

for texture data (intra and residual data).The residual signal resulting from intra or mo-

tion compensated inter prediction is transform coded using AVC features. Three kinds of

prediction applied here are –Inter layer motion prediction, inter layer residual prediction
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and Inter layer intra prediction. An important feature of the SVC design is that scalability

is provided at a bit-stream level. Bit-streams for a reduced spatial and/or temporal resolu-

tion are simply obtained by discarding NAL units (or network packets) from a global SVC

bit-stream that are not required for decoding the target resolution. NAL units of PR slices

can additionally be truncated in order to further reduce the bit-rate and the associated re-

construction quality. Thus, one of the main design goals was that SVC should represent a

straightforward extension of H.264/AVC. As much as possible, components of H.264/AVC

are re-used, and new tools are only be added for efficiently supporting the required types

of scalability. As for any other video coding standard, coding efficiency has always to be

seen in connection with complexity in the design process.

2.3 Types of Scalabilities

Three scalability methods are possible in SVC, named temporal, spatial and SNR scalabil-

ity, that allow to extract a sub-stream in order to meet a particular frame rate, resolution and

quality, respectively. Each picture of a video sequence is coded and encapsulated into sev-

eral Network Abstraction Layer Units (NALUs), which are packets with an integer number

of bytes. Three key ID values, i.e. dependency id, temporal id, and quality id, are embed-

ded in the header by means of the high level syntax elements, in order to identify spatial,

temporal and quality layers.

2.3.1 Spatial scalability

For supporting spatial scalable coding, SVC follows the conventional approach of multiple-

layer coding, which is also used in MPEG-2 Video / H.262, H.263, and MPEG-4 Visual.

Each layer corresponds to a supported spatial resolution and is identified by a layer or de-

pendency identifier D. The layer identifier D for the spatial base layer is equal to 0, and it is
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Figure 2.3: Multi-layer structure with additional inter-layer prediction for enabling spatial

scalable coding.

increased by 1 from one spatial layer to the next. In each layer, motion-compensated pre-

diction and intra coding are employed as for single-layer coding. But in order to improve

the coding efficiency in comparison to simulating different spatial resolutions, additional

inter-layer prediction mechanisms are incorporated.. Although the basic concept for sup-

porting spatial scalable coding is similar to that in prior video standards, SVC contains new

tools that simultaneously improve the coding efficiency and reduced the decoder complex-

ity overhead in relation to single-layer coding. In order to limit the memory requirements

and decoder complexity, SVC requires that the coding order in base and enhancement layer

is identical. All representations with different spatial resolutions for a time instant form an

access unit and have to be transmitted successively in increasing order of their layer iden-

tifiers D. But lower layer pictures do not need to be present in all access units, which make

it possible to combine temporal and spatial scalability as illustrated in Figure 2.6.

2.3.2 Temporal scalability

Temporal scalability can be achieved by means of the concept of hierarchical predic-

tion. Each picture in one GOP is identified by a hierarchical temporal index or level t ∈

{0,1, . . . ,T}. The encoding/decoding process starts from the frame with the temporal in-

dex t = 0 that identifies a key-picture which must be intra-coded (I frame), in order to

allow a GOP-based decoding. The remaining frames of one GOP are typically coded as
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(a)

(b)

Figure 2.4: Enhancement temporal (a) and quality (b) layer prediction for a GOP of 8

frames.

P/B-pictures and predicted according to the hierarchical temporal index, thereby allowing

to extract a particular frame rate. An implicit encoding/Decoding Order Number (DON)

can be set up according to the temporal index and frame number of each frame.

In Figure 2.4(a) we show an example of the hierarchical prediction structure for a GOP

with 8 pictures. The DON is obtained by ordering the pictures according to the temporal
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index. If more than one frame have the same temporal level, the DON is assigned according

to the picture index. Let us note that the last frame is encoded as P-frame in order to allow

a GOP-based decoding, as mentioned before.

2.3.3 SNR scalability/Quality scalability

The SNR scalability allows to increase the quality of the video stream by introducing re-

finement layers. Two different possibilities are now available in SVC standard and imple-

mented in the reference software [3], namely Coarse Grain Scalability (CGS) and Medium

Grain Scalability (MGS). CGS can be achieved by coding quality refinements of a layer

using a spatial ratio equal to 1 and inter-layer prediction. However, CGS scalability can

only provide a small discrete set of extractable points equal to the number of coded layers.

Here the focus is on MGS scalability which provides finer granularity with respect to CGS

coding by dividing a quality enhancement layer into up to 16 MGS layers. MGS coding

distributes the transform coefficients obtained from a macro-block by dividing them into

multiple sets. The R-D relationship and its granularity depends on the number of MGS

layers and the coefficient distribution, [4]. In [4] the authors analyzed the impact on perfor-

mance of different numbers of MGS layers with different configurations used to distribute

the transform coefficients. We also verified their results, by noting that more than five MGS

layers reduce the R-D performance without giving a substantial increase in granularity. This

is mainly due to the fragmentation overhead that increases with the number of MGS layers.

While extracting an MGS stream two possibilities are available in the reference soft-

ware: a flat-quality extraction scheme, and a priority-based extraction scheme. The second

scheme requires a post-encoding process, executed by an entity denoted as Priority Level

Assigner, that computes a priority level for each NALU. It achieves higher granularity, as

well as better R-D-performance [5]. The priority level ranges from 0 to 63, where 63 is in-

tended for the base-layer, and is assigned to each NALU according to quality dependencies
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and R-D improvement. Nevertheless, in order to exploit the temporal scalability at the de-

coder side, we re-assign different priority levels to the base-layer frames (those with q = 0),

according to their temporal indexes, as specified afterwards. This feature is only exploited

by the UXP profiler in subsection 4.2.2 and therefore does not change the 6-bit header of the

packet which is necessary to perform the quality-based extraction. The R-D performance

of the quality layers can be improved by using quality frames for motion compensation

and introducing the concept of key-picture, which allows for a trade-off between drifting

and coding efficiency. Nevertheless, this tool should not be applied in a rate-adaptation

framework where all quality layers are often discarded by the rate adaptation module as

exemplified in Figure 2.3(b).

2.3.3.1 Coarse Grain Scalability (CGS)

Coarse grain scalability (CGS) can be viewed as a special case of spatial scalability in

H.264 SVC, in that similar encoding mechanisms are employed but the spatial resolution

is kept constant. More specifically, similar to spatial scalability, CGS employs inter-layer

prediction mechanisms, such as prediction of macroblock modes and associated motion

parameters and prediction of the residue signal [1]. CGS differs from spatial scalability in

that the up-sampling operations are not performed. In CGS, the residual texture signal in

the enhancement layer is re-quantized with a quantization step size that is smaller than the

quantization step size of the preceding CGS layer. SVC supports up to eight CGS layers,

corresponding to eight quality extraction points [6], i.e., one base layer and up to seven

enhancement layers.

2.3.3.2 Medium Grain Scalability (MGS)

While CGS provides quality scalability by dropping complete enhancement layers, MGS

provides a finer granularity level of quality scalability by partitioning a given enhancement
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layer into several MGS layers [1]. Individual MGS layers can then be dropped for quality

(and bit rate) adaptation.

a) Splitting Transform Coefficients into MGS Layers: Medium grain scalability (MGS)

splits a given enhancement layer of a given video frame into up to 16 MGS layers (also

referred to as quality layers). In particular, MGS divides the transform coefficients, ob-

tained through transform coding of a given macroblock, into multiple groups. Each group

is assigned to a prescribed MGS layer.

b) Bit Rate Extraction: With MGS encoding, the video bit rate is adjusted by dropping

enhancement layer NALUs, one at a time, until the target bit rate is achieved. No NALUs

are dropped from the base layer.

2.3.3.3 Fine Grain Scalability (FGS)

In order to support fine-granular SNR scalability, so-called progressive refinement (PR)

slices have been introduced. Each PR slice represents a refinement of the residual signal that

corresponds to a bisection of the quantization step size (QP increase of 6). These signals

are represented in a way that only a single inverse transform has to be performed for each

transform block at the decoder side. The ordering of transform coefficient levels in PR

slices allows the corresponding PR NAL units to be truncated at any arbitrary byte-aligned

point, so that the quality of the SNR base layer can be refined in a fine-granular way. Figure

2.5 shows general concepts of Fine Granular Scalability in terms of layers.

Figure 2.5: Fine granular scalability.
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The main reason for the low performance of the FGS in MPEG-4 is that the motion

compensated prediction (MCP) is always done in the SNR base layer. In the SVC design,

the highest quality reference available is employed for the MCP of non-key pictures as

depicted in Figure 2.5. Note that this difference significantly improves the coding efficiency

without increasing the complexity when hierarchical prediction structures are used. The

MCP for key pictures is done by only using the base layer representation of the reference

pictures. Thus, the key pictures serve as resynchronization points, and the drift between

encoder and decoder reconstruction is efficiently limited. In order to improve the FGS

coding efficiency, especially for low-delay IPPP coding, leaky prediction concepts for the

motion-compensated prediction of key pictures have been additionally incorporated in the

SVC design.

2.4 Backward Compatibility

It is desirable in SVC scheme that a so called base layer be compatible with non Scalable

video coding standards like AVC. It is also desired that additional scalable layers should

be carried out in such a way that non-scalable video decoders, which have no knowledge

of scalability, will ignore all scalable layers and only decode the base layer [7]. For these

coded data that follow H.264/AVC and to ensure compatibility with existing H.264/AVC

decoder, another new type of NAL (type 20) is used. This NAL carry the header informa-

tion [8]. The base layer by design is compatible to H.264/AVC. During transmission, the

associated prefix NAL units, which are introduced by SVC and when present are ignored by

H.264/AVC decoders, may be encapsulated within the same RTP packet as the H.264/AVC

VCL NAL units, or in a different RTP packet stream(when Multi session transmission mode

is used) [9].

When using Multi session transmission mode-When a H.264/AVC compatible subset

of the SVC base layer is transmitted in its own session in multi session transmission mode,



2.4. BACKWARD COMPATIBILITY 15

the packetization of RFC 3984 must be used, such that RFC 3984 of receivers can be

part of multi transmission mode and receive only this session [10]. When using Single

session transmission mode-When an H.264/AVC compatible subset of SVC base layer is

transmitted using single session transmission, the packetization of RFC 3984 must be used,

thus ensuring compatibility with RFC 3984 receivers [8].





Chapter 3

Rate Adaptation Using MGS for SVC

3.1 Introduction

H.264 Advanced Video coding (AVC) standard with scalable extension, also called Scal-

able Video Coding (SVC) [1], provides flexibility in rate adaptation by coding an origi-

nal video sequence into a scalable stream. Three scalability methods are possible in SVC,

named temporal, spatial and SNR scalability, that allow to extract a sub-stream in order to

meet a particular frame rate, resolution and quality, respectively. Due to the dierent com-

plexities of the scenes composing a video sequence, the relationships between the rate and

the quality of a set of videos can be really different among them. If individual video streams

are transmitted to different users in a broadcast dedicated channel, as for instance in the case

of on-demand IP-TV services [11], an equal rate allocation can lead to unacceptable distor-

tion of high-complexity videos with respect to low-complexity ones. Adaptive transmission

strategies must be investigated to dynamically optimize the quality of experience (QoE) of

each end-user.

In this chapter, we focus on rate adaptation, also called in literature statistical multi-

plexing, of SNR-scalable video streams, with a fixed temporal and spatial resolution. Many

17
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contributions exist in the literature that provide rate adaptation exploiting the Fine Gran-

ularity Scalability (FGS) tool, e.g. [12],[13] and [14]. FGS coding allows to extract an

arbitrary rate-distortion (R-D) point while maintaining the monotonic non-decreasing be-

havior of the R-D curves. Nevertheless FGS mode has been removed from SVC, due to its

complexity.

Two different possibilities for the SNR scalability tool are now available in SVC stan-

dard and implemented in the reference software [3], namely Coarse Grain Scalability (CGS)

and Medium Grain Scalability (MGS). CGS can be achieved by coding quality refinements

of a layer using a spatial ratio equal to 1 and inter-layer prediction. However, CGS scalabil-

ity can only provide a small discrete set of extractable points equal to the number of coded

layers. MGS provides a ner granularity of quality scalability by dividing a CGS layer into

up to 16 MGS layers. The granularity can be also improved if a post-processing quality

layer (QL) insertion and a consequent quality-based extraction is performed with the aim

to optimize the R-D performance [5]. With this tool MGS can be seen as alternative to the

FGS coding.

The rest aim of this work is to analyze the performance of the MGS with QL and to

provide a general R-D model. Other contributions exist in literature that estimate the R-D

model for SNR-based scalable stream, with CGS and MGS, e.g. [15], [16], either analytical

and semi-analytical. The analytical models are dependent on the probability distribution

of discrete cosine transform (DCT) coefficients and often incur in a loss of accuracy. To

achieve higher accuracy, semi-analytical R-D models are preferable. The semi-analytical

models are based on parametrized functions that follow the shape of analytically derived

functions, but are evaluated through curve-fitting from a subset of the rate-distortion em-

pirical data points. In [16], the authors proposed an accurate semi-analytical square-root

model for MGS coding and compared it with linear and semi-linear model. They concluded

that the best performance is obtained by changing the model according to a parameter that
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estimates the temporal complexity, evaluated before encoding the entire sequence. How-

ever, a general model, that is able to estimate the R-D relationship of a large range of video

sequences, is necessary to perform analytical optimization of the rate-adaptation problem.

Besides, they did not consider the post-processing QL insertion that produces a variation

of the R-D performance.

In [17] the authors proposed a general semi-analytical rate-distortion model for video

compression, also verified in [18] for SVC FGS layer, where the rate and the distortion have

an inverse relationship. Three sequence-dependent parameters must be estimated through

the knowledge of six empirical R-D points. We have also verified this model with reference

to SNR scalability with MGS and QL. The high accuracy of the results led us to investi-

gate a simplified model with lower complexity, where the number of R-D points can be

reduced by eliminating one of the parameters to estimate. Thus, we propose and compare

a simplified two-parameters semi-analytical rate-distortion model. This simplification has

two main advantages: (i) only four empirical points are needed by the curve fitting algo-

rithm to achieve good performance, (ii) it allows the derivation of a low-complexity optimal

procedure to solve the multi-stream rate-adaptation problem, with a maximum number of

iterations equal to the number of streams involved in the optimization.

This Chapter has the following main contributions: in section 3.2, a general optimiza-

tion problem is formulated with the aim to provide the maximum quality to each video

while minimizing their distortion difference, and by fulfilling the available bandwidth. In

section 3.3 we analyze and verify two similar semi-analytical models for MGS with QL

by comparing them with respect to complexity and the normally used goodness parame-

ters: the root mean square error (RMSE) and the coefficient of determination R2 [19]. An

optimum and computationally efficient procedure to solve the relaxed general problem is

derived in section 3.4, with a discussion about complexity and optimality. Finally the nu-

merical results, discussed in section 3.5, show (i) the goodness of our framework by looking

at the error between the relaxed and discrete solutions, (ii) the performance improvement
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with respect to a blind adaptation, and (iii) the complexity of the proposed algorithm with

respect to a sub-optimal golden search algorithm proposed in literature.

3.2 General Problem Formulation for Multi-Stream Rate

Adaptation

In general, the aim of multi-stream rate adaptation is to optimize a certain number of utility

functions Ui with respect to a quality metric and according to rate constraints [20]. Before

or after the encoding process the original high quality video must be adapted, to meet a

particular QoE metric depending on spatial, temporal and SNR resolutions.

In this section we provide a general problem formulation for multi-stream rate adap-

tation. Let K be the number of streams involved in the optimization. Given a set of lossy

compression techniques 1, ...,Nk, we can define in general Dk = d1,k, ...,dN,k, k = 1, ...,K

as the set of distortion values for the k-th stream. Let us note that its cardinality |Dk|= Nk

is generally not equal for each video source, as in the case of high- flexibility SNR-based

compression techniques.

The rate-distortion theory evaluates the minimum bit-rate Rk required to transmit the

k-th stream with a given distortion dn,k, by defining a functionFk that maps the distortion

to the rate, i.e.

Fk : dn,k → R
+

dn,k → Rk = Fk(dn,k) (3.1)

One of the desirable properties of Fk is the strictly decreasing monotony, i.e.
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Fk(di,k)> Fk(d j,k), di,k,d j,k : di,k < d j,k (3.2)

When multiple streams have to be transmitted in a shared channel the rate adaptation

algorithm must choose at each time slot and according to one optimization strategy, the best

vector D∗ = [D1, ...,D
∗
K] ∈ D = D1 × ...×DK.D contains all the possible combinations of

the elements of Dk, k = 1, ...,K and has cardinality N = ∏ K
k=1Nk.

The main purpose of multi-stream rate adaptation is to provide the minimum distor-

tion, or equivalently the maximum rate according to assumption (2), to each video under

a total bit-rate constraints Rc. However, the solution of such problem can generally lead to

large distortion variations among different streams, due to the different complexity of video

sources. Quality fairness is an important issue that must be addressed when multiple videos

from different sources are transmitted in a shared channel. In [13] the authors have shown

that, given a continuous decreasing exponential R-D relationship with a constant exponent

equal for each source, the solution to the problem of minimizing the distortion variations

is also the solution to the problem of minimizing the total average distortion. However,

an exponential R-D relationship is not an accurate model for all the different video com-

pression techniques, particularly for the SVC SNR scalable stream [13]. Thus, a general

multi-objective problem has to be formulated and a continuous relaxation of the problem

leads to some particular simplification under certain assumptions. The general objective of

our proposed framework is to minimize the differences among the distortions provided to

each video stream while maximizing the sum of the rates until a maximum bit-rate is met.

As mentioned above, these two objectives alone can generally lead to different solutions.

Thus, we formulate the general problem as a multi-objective problem:

min
DDD∈D

∑
i

∑
j<i

∆(Di,D j) (3.3)
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max
DDD∈D

K

∑
k=1

Fk(Dk) (3.4)

s.t.
K

∑
k=1

Fk(Dk)≤ Rc (3.5)

where

∆(Di,D j) =











0 if (i,j) ∈ XD ∨(j, i) ∈ XD

|Di −D j| otherwise

(3.6)

with

XD = {(i, j) ∈ Z
2 : (Di = Dmax,i ∧D j > Di)∨ (Di = Dmin,i ∧D j < Di)} (3.7)

and Dmin,i = minn dn,i,Dmax,i = maxn dn,i. The operators ∧ and ∨ are the logic ”AND”

and ”OR”, respectively.

Ideal fairness among the distortion values assigned to the multiple video streams, i.e.

Di =D j, ∀i 6= j, is hard to be achieved. This fact is due to (i) the discretization of the R-D

relationship and (ii) the presence of the minimum and the maximum distortion values for

each source that are related to the complexity of each video and which can be very differ-

ent. The definition of the fairness metric takes this fact into account. In fact, the difference

among video distortions ∆(Di,D j) is slightly modified to take into account the minimum

and the maximum constraints. It is worth noting that, under the assumption (3.2), this prob-

lem admits a feasible solution only if at least the sum of the minimum rates of the video

sequences is supported by the transmission bandwidth Rc, i.e

K

∑
k=1

Fk(Dmax,k)≤ Rc (3.8)
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otherwise a certain number of videos are not admitted in the transmission until this

constraint is not satisfied. The solution of the problem in (3.3)-(3.5) requires in general an

exhaustive search in the space D of all possible vectors. If N becomes large the required

complexity can be not suitable for real-time adaptation. On the other hand if N is small,

i.e there are few video sources as well as few related R-D points, the problem solution can

lead to a waste of the available bandwidth and a large distortion differences among multiple

videos.

In the next section we will propose a semi-analytical R-D model with reference to

the SNR scalability tool of SVC with MGS and QL layers [5]. This continuous model

will allow us to apply a continuous relaxation to the optimization problem leading to a

simplification in a single-objective problem formulation.

3.3 Rate Distortion Model for MGS with Quality Layer

We consider here SNR scalability obtained through the MGS coding and QL post-processing

insertion, with a fixed temporal and spatial resolution. In this case the components of Dk are

the distortion values of the extractable sub-streams from the high quality original encoded

stream.

MGS coding allows to distribute the transform coefficients obtained from a macro-

block by dividing them into multiple sets. The number of sets identifies the number of

weights, often named MGS layers, in the MGS vector. Thus, the elements of the MGS

vector correspond to the cardinality of each set.

The R-D relationship and its granularity depend on the number of MGS layers and the

coefficient distribution [21], [4]. In [4] the authors analyzed the impact on performance

of different numbers of MGS layers with different configurations used to distribute the

transform coefficients. We also verified their results, by noting that more than five MGS

layers reduce the R-D performance without giving a substantial increase in granularity.
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This is mainly due to the fragmentation overhead that increases with the number of MGS

layers.

While extracting an MGS stream two possibilities are available in the reference soft-

ware: a flat-quality extraction scheme, and a QL-based extraction scheme. The second

scheme requires a post-encoding process that computes a priority index for each NAL unit,

but achieves higher granularity, as well as better R-D-performance [5]. However, differ-

ently to flat-quality extraction scheme, the quality-based extraction process does not give

substantial variations in granularity and R-D performance when varying the distribution of

the coefficients, as also shown in [15]. In our extensive simulation campaign the best results

in terms of granularity and R-D performance are obtained with a MGS vector equal to [3 2

4 2 5].

When the SVC video has to be adaptively transmitted it is common practice to analyze

the R-D model with respect to a xed set of frames identified by one group of pictures (GOP).

In this way, the adaptation module can follow the complexity variations of the different

scenes. Therefore, throughout this paper we assume that the reference time interval used to

analyze the R-D relationship as well as to optimize the distortion of multiple streams is the

GOP interval.

In [17] the authors propose a general continuous semi-analytical R-D model for video

compression, also verified in [18] for SVC FGS layers, with the following relationship :

Rk(D) =
ηk

D+θk

+φk (3.9)

The distortion D is evaluated as the average mean square error (MSE) of the decoded

video. The drawback of this approach is the need to estimate the three sequence/encoder

dependents parameters, ηk,θk and φk, by using curve-fitting from a subset of the rate-

distortion data points. The curve-fitting algorithm requires a relevant number of iterations

and function evaluations and six empirical R-D points. To reduce the complexity, we can

simplify this parametrized model by eliminating one parameter, i.e.
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Rk(D) =
αk

D
+βk (3.10)

In this case, only four R-D points need to be evaluated to estimate the two sequence-

dependent parameters αk and βk, and as a result the number of iterations and function eval-

uations decreases. Beside the complexity reduction, this model allows a simple derivation

of the solution of the problem (3.3)-(3.5), as we will show later.

Table 3.1 compares the goodness of the two models with respect the coefficient of

determination R2, the RMSE, the number of iterations and function evaluations required

by a non-linear Least Square Trust-Region (LSTR) algorithm to converge. It can be noted

how the number of function evaluations as well as the number of iterations decrease while

a minimum loss occurs in the goodness parameter. In Figure 3.1, we plot the empirical

R-D relationship for the five sequences, used to obtain numerical results, as well as their

related R-D curves based on model (3.10). All of them are referred to the GOP with the

worst RMSE value (the minimum in Table 3.1). We can also appreciate in this figure the

achievable granularity of the quality-based extraction.

In the next section we will apply a continuous relaxation to the problem (3.3)-(3.5) by

exploiting the model (3.10) and we will provide a low-complexity optimal procedure to

solve it.
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Video Model R2[min,max] RMSE [min,max] Av. No.

iteration

Av. No.

Function

Evaluation

Coastguard Model(10)

Model (9)

[0.9842 , 0.9934]

[0.9956 , 0.9982]

[37.895 , 79.992]

[22.261 , 36.724]

30.23

34.7

89.6

155.9

Crew Model(10)

Model (9)

[0.9752 , 0.9944]

[0.9914 , 0.9972]

[23.038 , 89.130]

[20.019 , 52.489]

30.9

35.6

94.2

159.9

Football Model(10)

Model (9)

[0.9662 , 0.9891]

[0.9809 , 0.9993]

[53.403 , 205.572]

[12.940 , 99.810]

29.0

38.0

89.5

169.3

Foreman Model(10)

Model (9)

[0.9669 , 0.9955]

[0.9906 , 0.9980]

[19.710 , 53.371]

[13.516 , 33.745]

25.7

34.1

73.2

154.3

Harbour Model(10)

Model (9)

[0.9854 , 0.9907]

[0.9952 , 0.9991]

[51.860 , 73.344]

[18.883 , 44.822]

37.5

45.3

129.8

164.3

Table 3.1: Comparison between the two semi-analytical model in (3.9) and (3.10) with

respect to the minimum and maximum RMSE and the coefficient of determination R2

evaluated for each GOP (GOP size equal to 16) of five video sequence with CIF resolution

and frame rate of 30 fps. The video are encoded with one base layer (QP equal to 38) and

two enhancement layers (QP equal to 32 and 26), both with 5 MGS layers and a weights

vector equal to [3 2 4 2 5].

Figure 3.1: R-D Model (straight line), according to eq. (3.10) fitting the empirical R-D

relationship for the GOP with the worst RMSE with reference to Table 3.1.
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3.4 GOP-Based Multi-Stream Rate Adaptation

Framework

Without loosing generality we assume that each video is coded with the same GOP size

and the rate allocation is performed at the GOP boundaries. Thus, from now on we focus

on one GOP interval. Considering all the discussions in the previous sections, we apply a

continuous relaxation to the optimization problem based on the model (10). Therefore we

assume that the discrete variable Dk becomes continuous (denoted by D̃k), but limited by

the minimum and maximum distortion, i.e.

D̃k ∈ [Dmin,k,Dmax,k] (3.11)

With reference to the SNR scalability, the points {Dmax,k,Fk(Dk,max)} and

{Dmin,k,Fk(Dk,min)} are the base layer and the highest enhancement layer points, respec-

tively. Those values are two of the four R-D points required by the curve-fitting algorithm.

It is worth noting that a trivial solution can be derived if the sum of the full quality

encoded stream rates is less then or equal to the available bandwidth, that corresponds to

transmit the entire encoded streams without adaptation. Thus, we analyze the non-trivial

case where the following constraint holds :

K

∑
k=1

Fk(Dk,min)> Rc (3.12)

According to the continuous relaxation (3.11) and the assumptions (3.8) and (3.12),

a feasible solution is obtained when the constraint on the overall channel bandwidth is

active with equality. A single-objective problem, where the second objective, i.e (3.4) in

the problem formulation, is eliminated and replaced by an equality constraints can be then

formulated. Nevertheless, as a result of the relaxation of the problem, the two constraints

referred to the maximum and minimum available rates of each stream must be added. They
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imply that each video sequence has to obtain at least the base layer and not more than the

maximum available bit-rate must be allocated to each video source to save bandwidth.

Thus, the relaxed problem can be formulated as

min
D̃DD∈RK

∑
i

∑
j<i

∆(D̃i, D̃ j) (3.13)

s.t.
K

∑
k=1

Rk(D̃k) = Rc (3.14)

Rk(D̃k)≥ Fk(Dk,max) ∀k (3.15)

Rk(D̃k)≤ Fk(Dk,min) ∀k (3.16)

Note that the model Rk(D̃k) replaces the actual R-D relationship Fk(Dk). In the next

subsection we will derive an optimal procedure to solve this relaxed problem using methods

that are computationally efficient and without the use of heuristics or brute-force search.

3.4.1 Problem Solution

A solution to the relaxed problem (3.13)-(3.16) can be derived by using sub-optimal proce-

dures as the golden search algorithm proposed in [12] for a piecewise linear model. Nev-

ertheless, the continuous formulation of model (3.10) allows us to derive a low-complexity

optimal procedure, by noting that the solutions to the problem without the constraints (3.15)

and (3.16) can be easily derived as follows:

D̃∗ = D̃∗
k =

∑
K
k=1 αk

Rc −∑
K
k=1 βk

, ∀k (3.17)

Since those constraints imply that a minimum (maximum) or a maximum (minimum)

rate (distortion) has to be allocated to each video stream, these solutions can be improved

successively through a simple iterative procedure.
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Let xk,yk ∈ {0,1},k = 1, . . . ,K, be binary variables that indicate whether or not the two

constraints are active for the video stream k and will be updated during the procedure. We

can then define:

Axxx,yyy =
K

∑
k=1

xkykαk (3.18)

Bxxx,yyy =
K

∑
k=1

xkykβk (3.19)

Rav
xxx,yyy = Rc −

K

∑
k=1

(1− xk)Fk(Dk,max)−
K

∑
k=1

(1− yk)Fk(Dk,min) (3.20)

where Rav
xxx,yyy is the available rate for the videos which have not active constraints. The

iterative procedure works as follows:

1. Initialize : xk = 1 and yk = 1 ∀k = 1, . . . ,K

2. For each k : xk · yk = 1 Compute :

D̃∗
k =

Axxx,yyy

Rav
xxx,yyy−Bxxx,yyy

R̃∗
k = Rk(D̃

∗
k) based on model (3.10)

condition = 0

2a. If R̃
∗
k > Fk(Dk,min) then

R̃∗
k = Fk(Dk,min)

D̃∗
k = Dk,min

yk = 0

condition = 1

2b. elseif R̃
∗
k < Fk(Dk,max)

R̃∗
k = Rk(Dk,max)

D̃∗
k = Dk,max

xk = 0

condition = 1
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3. If condition = 1

Go to step 2

4. else break

The final relaxed solutions, given xk and yk, k = 1, . . . ,K, are then given by:

R̃∗
k =



























αk

D̃∗
k

+βk if xk · yk = 1

Fk(Dk,max), if xk = 0

Fk(Dk,min), if yk = 0

(3.21)

with

D̃∗
k =



























Axxx,yyy

Rav
xxx,yyy−Bxxx,yyy

if xk · yk = 1

Dk,max, if xk = 0

Dk,min, if yk = 0

(3.22)

The algorithm requires in the worst case, a maximum of K iterations with (K−1)/2 rate

and distortion evaluations. At the first iteration, due to the initialization, D̃∗
k is computed as

in (\ref{primal-solution}). At each iteration the algorithm checks if the related rate solu-

tions violate one of the constraints (3.15), (3.16). If it happens for one video, the algorithm

assigns the relative minimum or maximum rate to this particular video and re-evaluates the

distortion for the other video streams.

The optimality of the solutions (3.21) and (3.22) can be easily proved, by noting that the

sum of the difference functions in (3.13) is always kept to zero, i.e. ∑i ∑ j<i ∆(D̃∗
i , D̃

∗
j) = 0

and the sum of the rates is always equal to the available bandwidth. In fact, if at the n-th

iteration a maximum rate constraint (condition of step 2a) is violated for the i-th video, the

distortion of the other videos at the next iteration, D̃∗
k [n+1], will decrease, i.e.
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D̃∗
k [n+1]< D̃∗

k [n]< Di,min, ∀k 6= i : xk[n+1] · yk[n+1] = 1,yi[n] = 0 (3.23)

Vice versa, when the second constraint (condition of step 2b) is violated for the j-th

video the distortion D̃∗
k [n+1] of the other video will increase, i.e.

D̃∗
k [n+1]> D̃∗

k [n]> D j,max, ∀k 6= j : xk[n+1] · yk[n+1] = 1,x j[n] = 0 (3.24)

For all other videos with xk ·yk = 1 the solutions are left untouched, as shown in (3.22).

The inequalities (3.23) and (3.24) follow from the monotony property of the R-D function.

Let us finally note that the conditions of steps 2a and 2b are auto-exclusive for each

video source if

Ds,max > Dp,min, ∀s 6= p, s, p = 1, . . . ,K (3.25)

When two or more video streams have a very different scene complexity in the same

GOP, the inequality (3.25) may not be verified and the evaluated distortion D̃∗
k may fall

inside the interval [Ds,max,Dp,min]. In this particular case, to assure the best fairness, the

algorithm would require some temporary additional steps to evaluate which constraints has

to be applied first, which leads to a small increase in the complexity. In order to keep the

complexity low we propose for this case to prioritize the distortion minimization. Thus,

we first apply the constraints on the maximum rate (step 2a) by assigning the minimum

distortion Dp,min to the p-th video. At the next iteration, the distortion will decrease, due to

the convexity of the R-D functions. If the distortion decreases in such way that the evaluated

rate of thes-th video do not violate its maximum distortion constraint, the algorithm will be

able to assign a lower distortion to it. Let us note that this choice does not compromise the

optimality of the solution of the problem according to eq. (3.6).
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From a mathematical perspective the optimal discrete solution DDD∗, starting from the

relaxed one D̃DD
∗
, should be derived by applying optimization techniques, e.g. branch &

bound search. Nevertheless, such techniques require the knowledge of all the empirical

discrete R-D points or a subset of R-D points close to the relaxed optimum solutions, with

an increase in complexity. To keep the complexity low, it is common practice to extract the

higher discrete bit-rate under the optimal relaxed solution, by paying a minimum waste of

bandwidth due to the granularity of the empirical R-D relationship.

3.5 Numerical Results

In this section we evaluate the performance of the proposed rate adaptation framework by

using the JSVM reference software [3]. We encode five video sequences with different

scene complexity, i.e. coastguard, crew, football, foreman, harbour in CIF resolution with

a frame rate of 30 fps. The SNR-scalability is obtained through 2 enhancement layers, each

one split in 5 MGS layers with vector distribution [3 2 4 2 5]. The quantization parame-

ter (QP) of the base and enhancement layers are equally spaced and set to 38, 32 and 26,

respectively. Each sequence is coded GOP-by-GOP with a GOP size equal to 16, and the

post-processing quality-based process is then applied, as mentioned throughout the paper.

We first provide the performance metrics for a particular case of bandwidth, i.e. Rc = 3000

kbps, then we study the impact of different Rc values. The fairness is evaluated through

two metrics: the average MSE difference δav = (1/S)∑i ∑ j<i |D
∗
i −D∗

j |, where the aver-

age is computed with respect to the number S = K(K − 1)/2 of terms in the sum, and the

most used MSE variance for each GOP. We first compare the solution of our algorithm

(OPT) with an equal-rate (ER) scheme where no adaptation is performed, i.e. the same

proportion of the available bandwidth is assigned to each video. To have a fair compar-

ison we apply to ER scheme the constraints (3.15) and (3.16) in order to guarantee the

base-layer to each video and to fulfill the available bandwidth. Therefore, after sorting the
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streams in two vectors into decreasing order according to base-layer bit-rate and into in-

creasing order according to highest layer bit-rate, respectively, we iteratively check if the

bit-rate Rk = Rc/K required by each ordered stream violates one of those constraints. If

it happens, we assign the corresponding bit-rate and equally re-distribute the remaining

bandwidth to the other streams. Table 3.2 shows the average MSE resulting from the rate

assigned to each video sequences for the first 15 GOPs. As expected, the ER scheme is

able to provide less distortion to the low-complexity video, i.e. crew, foreman, by compro-

mising the distortion of the video sequences with more complexity. Our algorithm, while

providing fairness, is able to improve the performance of the complex videos, by allocating

more bits to video with more complex scenes. This is more clear in figure 3.2 where we

plot the rate assigned to each video sequence GOP-by-GOP. More bit-rate is assigned to

coastguard, football and harbour video sequences, allowing them to achieve more quality.

In Table 3.3, we show the improvements of our proposed schemes with respect to ER. The

average MSE difference is significantly reduced and equivalently the variance is decreased

up to ten times. However, in this particular case of bandwidth, the MSE difference (vari-

ance) is still quite high, due to the minimum rate constraints. The average modified MSE

difference ∆av = (1/S)∑i ∑ j<i ∆(D∗
i ,D

∗
j) according to definition in (3.6), is also evaluated

in Table 3.3 . Let us note that this metric also give us the information of the error generated

when the discrete solution replaces the continuous solution of the relaxed problem, whose

∆av is zero. This error includes two contributions: the estimation error of the model and the

integrality gap. As expected the average error is not small due to mainly the low granularity

of the low-rate points.

In figure 3.3, the MSE variance averaged over 15 GOPs is evaluated for different band-

widths. In the bandwidth interval considered, the assumptions (3.8) and (3.12) hold for each

GOP. When the bandwidth is very low the two schemes provide approximately the same

MSE because the optimization range is limited by the minimum rate constraints. When the

bandwidth increases, our procedure improves the fairness leading the variance close to 0.
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A slight variance increase occurs at large bandwidths when the maximum rate constraints

limit the achievable distortion. On the other hand the ER scheme generally increases the

MSE variance until the base-layer constraints are active for most of the streams. This be-

havior can be partially reduced by controlling the base-layer bit-rate [22] to each video

according to their complexity as performed for instance in [12].

To further assess our proposed scheme, we compared it to the golden search algorithm

(GSA) proposed in [12], to solve the problem (3.13)-(3.16). This algorithm can be seen

as a suboptimal version of our procedure. The initial solution is computed as function

of the golden-section value and the difference between the lower and higher bounds, i.e.

a = mink Dk,min and b = maxk Dk,max, identified by the minimum and the maximum distor-

tion among the videos. At each iteration the solution is updated by applying the per-video

constraints and by compressing the search interval consequently. The GSA terminates when

the difference between the sum of the assigned rates and the available bandwidth is less of

a chosen value ε . Nevertheless, an additional termination condition must be introduced to

assure the convergence of the algorithm, that is usually indicated by the tolerance τ , i.e.

|a− b| ≤ τ . In order to provide a fair comparison we set ε = 0.0002Rc, and τ = 0.01,

leading to a sub-optimality error under 0.5% over all the investigated cases. In figure 3.4

the plot shows average number of iterations required by the two algorithms for different

bandwidths. The number of iterations of our algorithm is limited by the number of video

sequences, as mentioned in sub-section 3.4.1, and decreases away from the minimum and

the maximum bandwidths obtained as the sum of minimum and maximum rates of each

video. The GSA algorithm requires generally more iterations due to the sub-optimal choice

of the starting-point. This result does not change by increasing the number of videos in-

volved in the optimization, as we also verified.
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Figure 3.2: Rate assigned by our adaptation algorithm in each GOP, with bandwidth equal

to 3000 kbps.

GOP Index ∆av δav Variance

ER OPT ER OPT ER OPT

1 36.12 0.43 36.12 13.86 884.40 145.41

2 35.51 1.00 36.17 15.67 889.50 171.43

3 33.78 0.84 37.37 14.50 941.76 148.35

4 19.53 0.55 32.65 13.85 705.43 139.62

5 24.79 1.48 27.44 8.89 489.84 53.75

6 29.92 1.64 29.92 10.31 614.97 69.38

7 33.67 1.42 33.67 11.37 752.18 84.72

8 27.28 2.21 27.28 8.72 495.50 52.27

9 23.39 2.01 23.39 6.20 382.93 26.39

10 21.24 1.93 21.24 8.72 319.33 54.28

11 24.30 1.46 25.10 9.68 398.50 73.46

12 24.56 1.22 24.56 6.81 420.64 34.09

13 26.90 1.54 26.90 9.69 463.11 70.69

14 32.00 0.30 32.00 11.40 680.44 98.23

15 32.64 1.05 32.64 8.87 730.21 73.16

Av. 28.37 1.21 29.76 10.57 611.25 86.35

Table 3.3: Average modified MSE difference ∆av, average MSE difference δav and MSE

variance in each GOP interval. Comparison between the proposed algorithm (OPT) and

equal-rate (ER) assignment with bandwidth equal to 3000 kbps.
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Figure 3.3: Variance of the MSE averaged over 15 GOPs, with different bandwidth values.

Comparison between the proposed algorithm (OPT) and equal-rate (ER) assignment.

Figure 3.4: Average number of iterations required by our adaptation algorithm (OPT) and

golden search algorithm (GSA) to converge.

3.6 Conclusions

In this work we proposed a multi-stream rate adaptation framework with reference to SNR-

scalability of SVC with MGS and QL. We formulated a general discrete problem with the

aim to minimize the average distortion while providing fairness to different video sources.

Two similar semi-analytical model that estimate the R-D relationship of each video source

GOP-by-GOP are evaluated and compared with respect to goodness parameters and com-

plexity.

The general discrete problem was then relaxed and an optimal procedure was derived
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based on a low-complexity model. In the numerical results we showed the feasibility of

our framework by analyzing the gap between the relaxed and discrete solution according

to fairness metrics, the improvements with respect to an equal-rate scheme and the lower

complexity of the proposed procedure with respect to an existing algorithm in the literature.



Chapter 4

Rate Adaptation for Error Prone

Channels in SVC

4.1 Introduction

The high data-rate resulting from the actual and the next generation systems is enabling

the providers to support several video services, as, for instance, video-on demand, IP-TV

and real-time streaming. A high degree of flexibility and adaptivity is required from the

video delivery system to meet different levels of quality requirements depending on the

different characteristics of end-user devices and access networks. This is made possible by

encoding video sequences with encoders that support multiple layers or bit-streams that can

be sequentially dropped providing a graceful degradation. H.264 Advanced Video coding

(AVC) standard with scalable extension, also called Scalable Video Coding (SVC) [1],

allows flexibility in rate adaptation by encoding an original video sequence into a scalable

stream.

Due to the different complexities of the scenes composing a video sequence, the rela-

tionships between the rate and the quality can be really different within a set of videos. If

39
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individual video streams are transmitted to different users in a broadcast dedicated chan-

nel, an equal rate allocation could lead to unacceptable distortion of high-complexity videos

with respect to low-complexity ones. Adaptive transmission strategies have to be investi-

gated to dynamically optimize the quality of experience (QoE) of each end-user.

Beside the distortion due to lossy encoding process, the quality of each video can be

heavily reduced due to the transmission errors and the consequent loss of part of the video

stream. The automatic repeat-request (ARQ) schemes have the main drawback to increase

the delay and can not be suitable for many application where the playback time is a stringent

constraint. Within the framework of video delivery schemes based on SVC, Forward Error

Correction (FEC) has been proposed to recover channel errors and many contributions in

the literature have proved its effectiveness[23], [24], [25].

In this chapter we analyze a scenario that can cover different video applications. The

unique assumption is that the multimedia provider is able to perform o-line some computation-

expensive processes, such as encoding and quality-computation for each video. In this

framework, applications like video on-demand [26], IP-TV [11], sport broadcasting, where

an initial transmission delay in the order of seconds can be tolerated by the end-users, as

well as real-time streaming [27], are well suited to the low-complexity transmission scheme

proposed. Each one of these applications requires a multimedia provider that has to serve

several end-users which request different video sources. Thus, we suppose that the lower-

layers dedicate a shared constant bandwidth to a particular set of users, and inform the

application layer about channel conditions, in terms of packet losses. In this scenario qual-

ity fairness is an important issue that must be addressed. In fact, the end-user expectation is

to receive the best feasible quality independently of the particular video complexity. In this

light, the adaptation module of the media provider is required to extract from the original

video sequences a set of scaled streams with a fair assignment of expected end-user quality,

even in presence of packet losses.

In this work, we focus on rate adaptation of temporal and quality scalable video streams
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transmitted with a fixed spatial resolution over an error-prone channel. Nevertheless, the

entire framework can be extended to spatially scalable streams. In Figure 4.1 shows the

architecture of the video delivery system. Each video sequence is encoded by the SVC

encoder to fully support temporal and quality scalability. The resulting streams are encap-

sulated into Network Abstraction layer Units (NALUs), which are packets of an integer

number of bytes, and stored in a media server. The NALUs have different importance ac-

cording to a certain coding paradigm. To support the features of both Adaptation module

and Unequal Erasure Protection (UXP) profiler, the video streams are also processed with

the aim of extracting the information on the quality of each stream. After the encoder, the

priority level assigner evaluates a priority index for each NALU, by considering the Rate-

Distortion (R-D) relationship and the dependency on the other NALUs. Such information

is encapsulated in the NALU header and then exploited by both the UXP profiler and the

Adaptation module. These two processes are executed off-line.

The UXP profiler aims at determining for each NALU the level of protection against

transmission losses, which is obtained by adding parity bytes according to a specified UXP

strategy. We assume, in the case investigated here, that the UXP is based on the use of

Reed-Solomon (RS) encoding with erasure correction. This task is executed by taking into

account the estimated packet-loss rate of the lower layers which can be supplied at regular

intervals. The protection profile is then sent to the Adaptation module which first estimates

the expected R-D relationship, then extracts a suitable bit-stream from each video stream

to meet fairness and bandwidth constraints. Each outcoming bit-stream is then encoded by

the RS encoder. Finally, the resulting codewords are encapsulated in a transmission block

and interleaved over RTP packets which are forwarded to the lower layers.

4.1.1 Related Works

One of the aims of this paper is to analyze the performance of the SVC encoder and to

provide a general R-D model. Other contributions exist in literature that estimate the R-D
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Figure 4.1: System architecture. Each sequence is encoded to fully support temporal and

quality scalability and a priority level is assigned to the NALUs. The UXP profiler evalu-

ates the overhead required according to a certain protection policy and RTP packet failure

rate, and provides R-D information to the Adaptation module. The Adaptation module ex-

tracts sub-streams according to the estimated bandwidth and sends the data bytes to the

RS encoder. The resulting codewords are then encapsulated in a transmission block, inter-

leaved in RTP packets and forwarded to the lower layers. The receiver performs the inverse

operations (RS decoding and deinterleaving) in order to extract the NALUs which are sent

to the SVC decoder.

model for SNR based scalable stream, e.g. [15], [16], either analytical or semi-analytical.

The analytical models are dependent on the probability distribution of discrete cosine trans-

form (DCT) coefficients and often incur in a loss of accuracy. To achieve higher accu-

racy, semi-analytical R-D models are preferable. The semi-analytical models are based

on parametrized functions that follow the shape of analytically derived functions, but are

evaluated through curve-fitting from a subset of the RD empirical data points. In [16], the

authors proposed an accurate semi-analytical square-root model for MGS coding and com-

pared it with linear and semi-linear models. They concluded that the best performance is

obtained by changing the model according to a parameter that estimates the temporal com-

plexity, evaluated before encoding the entire sequence. However, a general model for the
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estimation of the R-D relationship for a large set of video sequences, is necessary to derive

analytical solutions for the rate-adaptation problem. In [17] the authors proposed a general

semi-analytical R-D model for video compression, also verified in [24] for SVC FGS layer,

where the relationship between rate and distortion depends on three sequence-dependent

parameters which must be estimated through the evaluation of six empirical R-D points.

We have verified this model with reference to SNR scalability with MGS and the high ac-

curacy of the results led us to investigate a simplified two-parameters model with lower

complexity, where the number of R-D points needed to estimate the parameters is reduced.

Many contributions exist in the literature that consider fairness-oriented rate adaptation, but

they exploit the Fine Granularity Scalability (FGS) tool, e.g. [12], [13], [14]. Nevertheless,

FGS mode has been removed from SVC, due to its complexity, and these works do not take

into account the effects of transmission losses.

Cross-layer optimization of video streaming over packet-erasure channel is also highly

investigated, within the framework of SVC [24], [25], [28]. In [24] and in earlier works the

authors proposed a complete framework to analyze and model the video streaming system

over packet erasure channel, also in presence of play-out deadline. They derived an analyt-

ical model to estimate the the R-D in case of base-layer packet losses, while using a semi

analytical model for the quality layers. An UXP profiler, based on the same priority level

assigner used in our work, solves a rate-minimizing cost functions. However, the rate adap-

tation aims at minimizing the distortion of each video without taking into account fairness

issues. Maani et al. [25] proposed a model to solve the problem of joint bit extraction and

channel rate allocation over packet erasure channels.

This Chapter is organized as follows. Section 4.2 we discuss the transmission of SVC

streams over erasure-packet channel. In Section 4.3 we analyze semi-analytical R-D model

for erasure-packet channel cases. Performance assessment in the case of transmission over

packet erasure channel is illustrated in Section 4.4. Finally we present our conclusions in

Section 4.5.
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4.2 Unequal Erasure Protection

Due to the different importance and the temporal/quality dependency of the different frames,

Unequal Erasure Protection (UXP) schemes can generally overcome schemes based on

equal protection. In our work, we follow the guidelines presented and discussed in [23] for

SVC transmission over packet-erasure channel, by focusing our attention on a GOP-based

transmission. Each GOP is mapped into one Transmission Sub-Block (TSB) that carries

either data and parity bytes, as exemplified in Figure 4.2. Each row of the TSB identifies a

RS (n,m) codeword where m is number of data bytes and n is the total bytes of the code-

word. If a packet-erasure detection is available at the lower-layers, the RS codes are able

to correct up to n−m bytes, equal to the number of parity bytes. The aim of the UXP pro-

filer is to assign a different protection to each frame according to its dependencies and R-D

improvements.

A first step is to order the NALUs according to their protection class. As mentioned

before, a priority-index greater than 62 is re-assigned to the different temporal base layer

frames (q = 0), to have lower priority indexes for high temporal indexes. Thus, all the

frames are sorted according to the priority level p and sequentially inserted into one TSB,

according a given UXP profile MMM∗ = {m∗
f ,q,p}, where m∗

f ,q,p identify the protection class

assigned to frame with frame index f , quality index q and priority level p.

Finally, one or more TSB are placed into a transmission block (TB) whose columns

become the payload of RTP packets. In this way the RS codewords are interleaved over

the different RTP packets. Therefore, RTP packet errors (or erasures) can be assumed as

uniformly distributed inside the codewords. In order to reduce the overhead due to the need

of padding for compensating the different NALU lengths, the part of the codeword left

unused by a given NALU is filled with the data from the subsequent NALU. For simplicity

of presentation and without loosing generality, we assume that the size S f ,q,p of each NALU

is always greater than or equal to the total size n of the RS code:
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Figure 4.2: Transmission Sub-Block (TSB) structure. Following the priority level, the

NALUs of one GOP are placed into one TSB according to a given UXP profile (protec-

tion class) from upper left to lower right. The columns of one ore more TSB are then

encapsulated into RTP packets

S f ,q,p ≥ n (4.1)

This assumption ensure that each TSB row contains no more than two different frames.

Let us finally note that a Multi Time Aggregation Packet (MTAP) header must be inserted

before each priority level NALU in order to deliver the decoding order number (DON) and

timing information assignment.
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4.2.1 Frame error probability and expected distortion

Let assume that the RTP packet error rate information, Pe,rt p, is periodically collected

from the lower-layers, as shown in Figure 4.1. According to the proposed UXP scheme a

closed formulation of the expected error probability can be derived by using the failure

probability of a single (n,m) RS codeword:

P(n,m) =
n

∑
i=m−n+1

(

n

i

)

Pi
e,rt p(1−Pe,rt p)

n−i (4.2)

The individual frame error probability now depends on the number of TB rows asso-

ciated to each frame r f ,q,p =

⌈

S f ,q,p

m∗
f ,q,p

⌉

, and on whether or not some bytes of the frame are

inserted in the row using the protection class of the preceding priority level. Let z ∈ {0,1}

be a boolean variable that indicates whether or not this last event occurs. The frame error

probability FEP is then computed as one minus the probability that all codewords of the

TB, associated to the frame, can be correctly decoded by the RS decoder:

FEPf ,q = 1−

[

(

1−P(m∗
f ,q,p,n)

)r f ,q,p
(

1−P(m∗
f ,q,p−1,n)

)z
]

(4.3)

According to the derived FEP, a closed formula for the expected distortion can be now

computed. Let ϒD f ,q = |d f ,q −d f ,q−1| be the quality improvement resulting from the

correct decoding of the f -th frame with quality id q, which is computed by the priority

level assigner. In order to compute the quality improvement ϒD f ,0 due to the enhancement

(temporal) frames of the base layer we assume an error concealment (EC) method based

on the picture copy (PC). Therefore the distortion increment due to the loss of an

enhancement picture is computed by considering the difference between the enhancement

frame and the copy of the previous one. The expected distortion due to the loss of frames

with quality index q ≤ Q can be computed as:

d f ,q,loss =
q

∑
r=0

ϒD f ,r

[

FEPf ,0u f−1 +
q

∑
j=1

FEPf , j

j−1

∏
s

(

1−FEPf ,s

)

]

(4.4)
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where ux is the Heaviside function. The first term of the sum takes into account the

distortion due to the loss of a temporal enhancement layer. Since a loss of the I-frame

will results in a infinite distortion we assume here that the associated NALUs will receive

enough protection to have FEP0,0 close to zero.

The second sum, on the other hand, takes into account the cumulative probability that

the j− 1 quality layers have been successfully received but the j-th quality frame is lost,

where j ≤ q. Finally, the total expected distortion of the entire GOP is the sum of the

individual frame loss distortions:

ds,loss =
G−1

∑
f=0

d f ,q,loss (4.5)

Let us note that the number of quality layers of each frame in one GOP can be different

after the rate adaptation. Thus, the index s maps the vector whose elements are the resulting

number of the quality-layer of each frame f : its range is from 0 to GQ. The values of the

expected distortion can be finally used, together with the required rate, to reshape the R-D

relationship according to the values of the FEP.

4.2.2 Proposed UXP profiler

The derivation of an optimal UXP profile is hard to achieve. It should be computed accord-

ing to the solutions of an optimization problem aimed at balancing the trade-off between

protection and overhead. This it is a discrete problem since the FEP, as well as the over-

head resulting from the RS encoding, strictly depends on the discrete variable m, as shown

in Figure 4.3. In order to guarantee a rate distortion relationship strictly decreasing, the FEP

of each frame should increase as the quality and the temporal indexes increase. However,

due to the granularity of the available values of m, sometimes this condition is not met.

This problem could be partially solved by a joint optimization of the encoding process and
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Figure 4.3: Resulting logarithmic FEP for the first I frame of Football (byte size equal to

11519) mapped to RS codewords (128,m) at different RTP packet error probability.

the UXP profiler. In this research work the UXP profiler simply drops this cases by slightly

compromising the R-D granularity.

We propose a simple strategies by fixing an error probability profile (EPP) πππ f ,q,p, for

each frame f with quality id q and priority level p. Based on this approach, the UXP profile

is derived by finding the minimum m f ,q,p ∈ [n
2
+1,n] such that

FEPf ,q ≤ π f ,q,p (4.6)

Differently to other solutions in literature, this approach has the main advantage that the

expected distortion becomes quasi-independent from the RTP packet failure rate whereas a

change of the Pe,rt p will only results in a rate increment or decrement. This feature will be

exploited while modeling the expected R-D curves, as we will see later.

As a case of study to provide numerical results and illustrate how rate adaptation works

when UXP is implemented, we consider here the following choice for the EPP, by differ-

entiating the base and the enhancement layer protections.
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4.2.2.1 A case study for the design of EEP

Since the priority level of the quality layers carries both the information of the R-D im-

provements and the dependency of each frame, the values of the EPP for the quality frames,

i.e. q > 0, can be derived according to the following formula

π f ,q,p =











(

p
α

)

10−
p
α if p ≥ α

ln(10)

1+
(

1
e
− ln(10)

)

p
α otherwise

(4.7)

where α allows for a trade-off between protection and overhead.

The priority levels for the base layer frames are normally set equal to 63 by the quality

processing tool. If the UXP profile used eq. (4.7), it would assign similar protection to the

base layer and the first enhancement layers. A smaller frame error rate is ensured for the

I-frame, since its loss will produce the drop of all the frames in the GOP. To avoid this we

set then π0,0,p = 10−6 ∀α . Moreover, in order to exploit the temporal scalability at the

decoder we propose to re-assign to frames of the enhancement temporal layer, with q = 0,

an higher priority level and to use again the eq. (4.7) to derive the relative EEP values. The

choice of the priority level for the enhancement temporal layer depends on the particular

frame rate that must be ensured to each user.

4.3 Rate-distortion modeling with Packet Losses

The model in (3.10) for the R-D relationship is still applicable in case of frame losses due

to the transmission error in the channel. In this case the empirical points of the encoder are

replaced by new points taking into account the effects of packet erasures and UXP. These

new points are the result of the rate increase due to UXP , i.e. ∑
G−1
f=0

n−m∗
f ,q,p

m∗
f ,q,p

r f ,q,p, and the

novel expected distortion ds,loss evaluated as in (4.5). In Figure 4.4 we plot the empirical R-

D function resulting from the encoder, as the reference curve, and the related R-D functions

outcoming from the UXP profiler at different packet error probabilities Pe,rt p > 0 for the
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Figure 4.4: R-D Model (straight line), according to eq. (3.10) fitting the empirical R-D

relationship for one GOP (size G equal to 8) of the Football test-sequence with different

error probabilities and α=30. The lower curve refers to the R-D relationship of the encoder.

first GOP of the test-sequence Football. We can see that the distortion is almost unchanged

for the lower points of the curve with respect to the reference case, since high protection

is provided to the high priority levels which are the first to be extracted. At larger bit rates

the gap with respect to the reference case increases due to insertion of quality frames with

lower protection.

Generally a dynamic adaptation of the UXP to different Pe,RT P would require the peri-

odical application of the curve-fitting algorithm to derive the two parameters of the model,

thereby increasing the complexity. This problem can be overcome when the UXP profiler

adaptively tracks the FEP profile by changing the protection class assigned to the different

NALUs. In this way only rate has significant changes while expected distortion practi-

cally does not change. While comparing the empirical points resulting from different error
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Video
Pe,rt p

α = 15 α = 30

Overhead dGQ,loss[MSE] Overhead dGQ,loss[MSE]

Foreman

0.01 8.4 % 1.82 5.3 % 4.54

0.05 17.7 % 2.13 13.7 % 5.15

0.1 28.0 % 2.17 23.1 % 5.31

Harbour

0.01 7.8 % 8.95 5.1 % 19.87

0.05 17.1 % 9.86 13.3 % 20.32

0.1 27.6 % 10.13 23.4 % 20.89

Table 4.1: Percentage of the overhead and expected distortion dGQ,loss in term of MSE with

respect to the full quality video streams (Q = 10 and G = 8), for different values of RTP

packet error probability and α parameter in the EEP profile.

probabilities (Pe,rt p > 0), we can note in the figure how the proposed UXP profile leads

to similar distortion at different Pe,RT P values. Therefore the adaptation module adapts the

sequence-dependent parameters by simply adding a constant dependent on the value of

Pe,rt p. According to extensive simulations the rate shifting is independent of the encoded

sequence and can be determined by empirical evaluations.

This result can also be appreciated in Table 4.1 where the average expected distor-

tion due to different Pe,rt p and the resulting average overhead is evaluated for two video

sequences with full quality.

The selection of a small value of α for the EEP results in a small FEP for the quality

layers, thereby increasing the overhead. On the other hand, a loss in the expected quality is

experienced by doubling α with a consequent rate gain in the order of 5%. As mentioned

before, the overhead is approximately constant even for video sequences with high spatial

and temporal complexity difference, such as Foreman and Harbour. On the other hand,

the loss in the expected quality strictly depends on the range of the distortion values as

normally increase with the complexity of the video raises if the same encoding paradigm

is used for each sequence.
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4.4 Packet-erasure channel

In this section we asses the performance in the case of transmission over packet-erasure

channel, by evaluating only the proposed algorithm with two different GOP sizes. The

number of bytes per RS codeword is set equal to n = 128 (as a shortened version of the

code with natural length 255) by allowing the insertion of more than one GOP into a TB

and then filling the payload of each RTP packet with a reasonable number of bytes. In

order to limit the overhead to about 20% for the worst case considered, i.e. Pe,rt p = 0.1, the

parameter α is set equal to 30 (see Table 4.1). According to extensive simulations we define

the range of the EPP values for the enhancement temporal layers between 10−6, which is

intended to the I-frame, and 10−(6−T ). We also consider a value of bandwidth sufficiently

high, i.e. Rc= 7000 kbps, to allow the insertion of the higher quality layers which have less

protection.

Table 4.2 shows the average distortion resulting at different Pe,rt p for the different video

sequences. The average is obtained by looping the first 240 frames of each sequences for

1000 times. Here, D∗
rec,av is the average received MSE; D∗

av is the average expected dis-

tortion which is the discrete solution of the adaptation algorithm, and D∗
enc,av is its related

encoding distortion. We can note that the expected distortions as well as the received dis-

tortions at the same RTP packet failure rate Pe,rt p are approximately equal, showing the

goodness of the framework even in presence of packet erasures. The distortion values de-

crease for most of the video sequences, while the packet error rate increases, due to the

effect of bandwidth constraint. At large values of Pe,rt p the outcoming overhead from the

UXP profiler increases and the Adaptation module reacts by reshaping the rate of each se-

quence, thereby increasing the distortion to provide fairness. This behavior is less marked

in the case of GOP size equal to 8 for the Foreman sequence whose distortion does not
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Video Pe,rt p
G = 8 G = 16

D∗
rec,av D∗

av D∗
enc,av D∗

rec,av D∗
av D∗

enc,av

Coastguard

0.01 33.9 37.4 29.6 27.3 29.4 19.8

0.05 37.5 40.1 33.6 31.2 32.0 22.4

0.1 40.8 42.3 37.8 36.1 37.7 27.0

Crew

0.01 36.5 36.6 36.2 28.4 28.4 28.2

0.05 39.3 39.4 39.1 32.4 32.5 32.3

0.1 41.4 41.5 41.3 36.6 37.0 36.0

Football

0.01 35.2 35.6 34.0 27.9 28.4 26.4

0.05 38.4 38.9 37.1 30.8 31.6 29.2

0.1 41.8 41.8 40.5 35.9 37.3 34.3

Foreman

0.01 35.7 35.6 34.2 28.1 28.7 27.9

0.05 35.9 36.0 35.4 0.4 30.8 30.1

0.1 36.2 37.1 36.1 33.8 34.9 33.2

Harbour

0.01 35.3 38.8 23.7 29.8 30.3 18.2

0.05 40.6 42.2 26.5 32.0 32.3 20.3

0.1 42.8 44.2 31.0 34.4 37.8 22.9

Table 4.2: Average received distortion,D∗
rec,av, expected distortion, D∗

av, and encoding dis-

tortion, D∗
enc,av, in term of the MSE for different video sequences, GOP size G, and packet-

erasure rate values Pe,rt p, resulting from the proposed rate-adaptation algorithm. Available

bandwidth is Rc =7000 kbps.

change significantly, since it receives in most cases only the base-layer with the highest

protection. The slight increase of distortion with respect to the encoding MSE is due to the

loss of certain enhancement temporal layers.

As expected, an higher GOP size decreases the distortion thanks to the higher coding

efficiency, that allows to improve the R-D performance of the base layer. Nevertheless, such

gain is reduced with respect to the case of error-free channel, since more quality layers with

low protection are transmitted. This behavior can be improved with a more careful design

of the EPP aimed at balancing overhead and degree of protection according to the available

bandwidth.
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4.5 Conclusions

In this work a multi-stream rate adaptation framework has been proposed with reference

to temporal/SNR-scalability of SVC with MGS and by considering transmission over a

packet-erasure channel. A simple UXP scheme has also been included with the aim to

maintain high expected quality even in presence of high packet error rate. This framework

is suitable for video applications such as video on-demand, IP-TV services and real-time

streaming. A general discrete problem aimed at maximizing the average distortion while

providing fairness to different video sources has been proposed. Then, a semi-analytical

model that estimate the R-D relationship of each video source GOP-by-GOP has been

developed and successively tested with respect to goodness parameters and complexity. The

general discrete problem has then been relaxed and an optimal procedure has been derived

based on the low-complexity R-D model. The numerical results have shown the feasibility

of our framework through the investigation of the achieved fairness, the gap between the

relaxed and the related discrete solution according to the fairness metrics adopted, and the

improvements with respect to an equal-rate assignment scheme.



Chapter 5

Rate Distortion Modeling for Real-time

MGS Coding

5.1 Introduction

Video streaming is one of the most popular applications of today’s Internet. As the Internet

is a best effort network, it poses several challenges specially for high quality video streams.

The Advanced Video Coding (H.264/AVC) scalable extension, also called Scalable Video

Coding (SVC), provides an attractive solution for the difficulties encountered when video

source is transmitted over wireless transmission systems. Such challenges include error

prone channels, heterogeneous networks and capacity limitations and fluctuations [1]. Scal-

able video coding provides three types of scalabilities, namely spatial, temporal and SNR

scalability. These types of scalability allow a sub stream of a particular resolution, frame

rate and quality to be extracted in order to be adapted to various network conditions and

terminal capabilities.

Rate-Distortion (R-D) models are used to predict rate and distortion of video sequences

prior to the encoding process. The rate of a video sequence is expressed in bytes/s, while

the distortion is defined in terms of Mean Square Error (MSE). The Peak Signal to Noise

55
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Ratio (PSNR) is more often used to express the quality of a video sequence.

Within SVC, each sequence is encoded with one base layer and several enhancement

layers which can be sequentially dropped by providing a graceful degradation. SNR scala-

bility is achieved by using Coarse Grained Scalability (CGS) or Medium Grained Scalabil-

ity (MGS) [14]. In CGS a limited number of discrete points can be extracted which is equal

to the number of coded layers, while MGS provides finer granularity of quality scalability

by dividing each CGS layer into 16 MGS layers.

Different video sequences have different complexities, hence the relationship between

rate and quality differs from one video sequence to another. Assuming the same physical

resources are shared among different video sequences, an equal rate allocation scheme

would divide the available rate equally among the sequences, which may lead to a high or

even unacceptable level of distortion for more complex videos which require higher rates.

To optimize transmission strategy based on the QoE of the end user, the rate should be

allocated among the videos based on fairness criterion.

In the literature several R-D models have been proposed to predict rate and distortion

prior to the completion of the encoding process. Enhanced R-D models for H.264/AVC

were proposed for coded video sequences in [19]. However the parameter extraction is per-

formed after transformation and quantization in the encoding process. The late extraction

of the parameters can significantly affect real time applications such as video over wireless

networks. An improved real time rate distortion model for medium grain scalable video

coding is proposed in [15] which reduces significantly the dependency on the encoding

process. In this model the delay is reduced by extracting the parameters before transforma-

tion.

In this chapter we propose a new rate-distortion model for real time MGS video streams.

Our model only uses two parameters which are calculated taking into account the charac-

teristics of the video sequences through a spatial and a temporal index extracted from the

original raw video streams. Moreover we also use these complexity indexes to calculate
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base layer and enhancement layer rates of the given video stream.

This Chapter is organized as follows: Section 5.2 reports a brief overview of rate-

distortion modeling. Our proposed rate distortion model is illustrated in Section 5.3. Sec-

tion 5.4 describes simulation and model verification of our algorithm, while conclusion is

drawn in Section 5.5.

5.2 Overview of Rate Distortion modeling

In this section we give a brief overview of R-D models. R-D models describe the relation-

ship between the bit rate and the expected distortion and vice versa in the reconstructed

video stream. The trade-off between the goal of reducing the bit rate and the goal of keep-

ing the distortion at acceptable levels can be afforded dynamically, in order to perform

adaptation to different conditions. A R-D model enables to predict the minimum bit rate

required to achieve a target quality. The performance of the streaming system is directly

affected by the accuracy of the rate distortion model [29].

The time required to model the R-D curve for a given sequence may drive the decision

on the methodology/algorithm to be adopted for the model.

For real time video streaming systems the computation of the model should be fast

enough to deal with the timing constraints of the video stream. Many rate distortion models

have been proposed in the literature for real time and non-real time video streaming. They

are often categorized in analytic, semi analytic and empirical models. Empirical models

require the computation of all the set the R-D points resulting in a high complexity. Semi-

analytical models aim at reducing such complexity by deriving parametrized functions that

follow the shape of analytically derived functions, but are evaluated through curve fitting

from a subset of the rate-distortion empirical data points. In this preliminary work we inves-

tigate techniques to further reduces the complexity of semi-analytical models. This is made

possible by introducing new functions dependent only on the uncoded video sequences.
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The coefficients of this new functions can be estimated off-line through a prior knowledge

of the parameters of a set of video sequence samples, and then used for any future video

sequence.

5.3 Proposed Model

In this section we propose a parametric R-D model for MGS SVC which is simple enough

to be used by rate-adaptation techniques in real-time video streaming. The models depends

on the Spatial Indexes (SI) and the Temporal Indexes (TI) of the original raw video se-

quence.

After encoding, the GOP of the k-th generic video results in a finite discrete set of codes

with rate rk and distortion dk. The rate-distortion function which represents this set of point

is often modeled as a continuous function, because it can be more easily used to obtain

simple rate adaptation algorithms. We consider as a reference R-D model Rk(D) the one

introduced in [30] which is based on two parameters:



























Rk(D) = αk

D
+βk

Rk(D)≥ Rk,BL

Rk(D)≤ Rk,EL

(5.1)

The parameters αk and βk are sequence dependent parameters of the k-th GOP while

D is the distortion evaluated as a Mean Square Error (MSE). Rk,BL and Rk,EL are the

Base Layer and highest Enhancement Layer rates obtained from the encoded video. The

drawback of this model is the fact that its parameters can only be evaluated by looking for

the best fitting of at least 4 R-D points after the encoding process of the video, making it of

difficult use for real time applications.



5.3. PROPOSED MODEL 59

The model proposed here replaces the parameters αk and βk with the spatial index SIk

and the temporal index T Ik, also called spatial and temporal complexities, in the following

way:

αk = p1 + p2SIk + p3T Ik (5.2)

βk = q1 +q2SIk +q3T Ik (5.3)

The same approach is used to replace base layer and enhancement layer rates, by mod-

eling them as:

Rk,BL = r1 + r2SIk + r3T Ik (5.4)

Rk,EL = s1 + s2SIk + s3T Ik (5.5)

The sets {p1, p2, p3}, {q1, q2, q3}, {r1, r2, r3} and {s1, s2, s3} are the coefficients

that are calculated using linear least square fitting method [31] with Least Absolute Resid-

uals (LAR) [32] for robustness in a sufficiently large set of GOPs from different video

sequences. As mentioned above, this process is executed offline only once, assuming the

availability of a reasonable set of video sequences.

The spatial and temporal complexities are evaluated on the luminance component [33]

of the video by means of Spatial Information and Temporal Information [34] of the k-th

GOP respectively as follows:
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SIk = maxn stdσ{Sobel[Fn(σ)]}

T Ik = maxn stdσ{Mn(σ)}

where

Mn(σ) = Fn(σ)−Fn−1(σ)

Mn(σ) is the motion difference and Fn(σ) is the luminance component with n and σ

temporal and spatial coordinates, respectively, of the frame sequence used to encode GOP

k.

To summarize, the R-D model is obtained by substituting in (5.1) the parameters αn

and βn from (5.2) and (5.3), and Rk,BL and Rk,EL from (5.4) and (5.5), respectively:



























Rk(D) = p1+p2SIk+p3T Ik

D
+q1 +q2SIk +q3T Ik

Rk(D)≥ r1 + r2SIk + r3T Ik

Rk(D)≤ s1 + s2SIk + s3T Ik

(5.6)

The proposed R-D model is verified by considering video sequences generated by the

JSVM software [3] We encoded 6 video sequences i.e Crew, Football, Coastguard, Soccer,

City, and Mother and Daughter (MD) having different scene complexities, in CIF resolu-

tion with the frame rate of 30 fps. We denote this set of 6 videos as the training set. Two

enhancement layers are used to obtain SNR scalability where each layer is split into 5 MGS

layers with vector distribution of [3 2 4 2 5]. All the videos are coded GOP by GOP with a

GOP size of 8 to obtain sequences comprising 26 GOPs. The Quantization Parameter (QP)

is set to 38, 32 and 26 to obtain the base layer and the two enhancement layers.

Figure 5.1, 5.2, 5.3 and 5.4 shows α , β , base layer (BL) and enhancement layer (EL)

models as in (5.2), (5.3), (5.4) and (5.5), respectively, using spatial and temporal indexes.
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Figure 5.1: Proposed model for α with R2= 0.987 and RMSE = 1598

In figures 5.1 and 5.2 the markers are referred to the values of αk and βk derived according

to model (5.1) and plotted for each GOP versus the corresponding value of SIk and T Ik.

In figures 5.3 and 5.4 the markers are referred to the BL and EL layer rates derived by

encoding the sequences with JSVM [3].

It can be observed that the values of the parameters for all the models closely follow a

linear behaviour. The metrics used to evaluate the goodness of the model in fitting the set

of points are the coefficient of determination (R2) and Root Mean Square Error (RMSE).

The sets of coefficients p, q, r, and s, appearing in (5.2), (5.3), (5.4) and (5.5) of the

proposed model, result to be, for the training set, as follows:

p = {-2.4×104, 3975, 540.5}

q = {-246.1, 24.13, 3.328}

r = {41.27, 17.09, 9.12}

s = {-237, 145.6, 34.02}
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Figure 5.2: Proposed model for β with R2= 0.973 and RMSE = 21.2

Figure 5.3: Proposed model for (BL) with R2= 0.979 and RMSE = 22.98
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Figure 5.4: Proposed model for (EL) with R2= 0.985 and RMSE = 79.36

In Figure 5.5 the different R-D models are shown and compared for two sample GOPs

of three video sequences. The accuracy changes GOP by GOP: figure 5.5(a) shows the

result for a sample GOP with good matching between proposed model in (5.6) and model

in (5.1), whereas the figure 5.5(b) shows a result with poor matching. As it will be shown

in Section 5.4, the GOPs with less accurate model do not have significant impact on the

behavior of rate adaptation strategies in real time multivideo transmission.

To evaluate the goodness of BL and EL rate estimation, we compare in Figure 5.6 the

rates estimated with the model in (5.4) and (5.5) to the original rates obtained from the

encoded sequences.

We consider not only the video sequences in the training set but also the sequences

outside the training set. More emphasis is given to base layer rate as it is the minimum rate

requirement of each video sequence when transmitted in bandwidth constrained channels.

It can be observed from Figure 5.6 that our model predicts the BL rate quite accurately,

not only within the training set but also for the sequences outside this set, as shown for

Mobile and Foreman in Figure 5.6. Moreover it can also be seen from Figure 5.6 that the
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Figure 5.5: R-D comparison among model in eq (5.1), proposed model and actual values

for two sample GOPs.
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Figure 5.6: BL and EL rates over 26 GOPs for two sequences in the training set (Football

and City) and two sequences outside the training set (Mobile and Foreman). The marker

points refer to the original BL and EL rates, whereas the solid lines refer to rates estimated

from (5.4) and (5.5), respectively.
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estimation is good also for EL rate.

5.3.1 Validation of the proposed models

The proposed models are useful to build up rate-adaptation algorithms that adaptively set

encoding parameters or scale the video to suitably optimize the transmission in a bandwidth-

constrained, time-variant channel shared by multiple videos. The rate adaptation algorithm

used to validate the proposed R-D model is explained in section 3.2 and 3.4 of Chapter 3.

5.4 Simulation and Model Verification

In this section we verify the proposed R-D model in the transmission of multiple videos

over a bandwidth constrained channel by using the rate adaptation algorithms outlined in

Section IV and described in detail in [30]. We propose results for both the videos in the

training set and videos outside it. In the first case a bandwidth limited to Rc = 3500 kbps is

considered. In the second case a set of 4 sequences, i.e Foreman, Harbour, Container and

Mobile, and a bandwith limited to Rc = 3000 kbps is considered.

Tables 5.1 and 5.2 show the average MSE taken over the first 26 GOPs for the model

(5.1) and our proposed model. It can be seen that ER algorithm assigns less distortion to the

low complexity videos like MD, City in the training set and Foreman and Container outside

the training set, thus compromising the quality of more complex videos like Football,

Coastguard or Harbour and Mobile. This behavior is mitigated by the OPT algorithm, as

expected. Moreover, it can also be observed from both tables that the average MSE values

for the proposed model closely follow to the model (5.1) except for Harbour and Container

in Table 5.2 with OPT algorithm. For the ER algorithm in both table 5.1 and 5.2, the results

for model (5.1) and our proposed model show only slight differences mainly due to the

fact that our estimated maximum and minimum rates which are the BL and EL rates are

different from the original BL and EL rates.
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Sequence
Model (1) Proposed Model

ER OPT ER OPT

Crew 36.99 38.00 36.24 44.09

Football 53.11 44.00 53.11 46.69

Coastguard 70.78 45.72 69.09 46.82

Soccer 39.93 42.15 38.21 34.72

City 37.61 51.05 35.41 49.10

MD 9.00 20.65 8.69 20.59

Table 5.1: Average MSE over 26 GOPs obtained with the model (5.1) and proposed model

in the transmission of the training set of 6 videos.

Sequence
Model (1) Proposed Model

ER OPT ER OPT

Foreman 19.02 34.90 18.29 31.60

Harbour 79.78 57.86 79.18 81.11

Container 15.88 35.39 15.45 18.14

Mobile 103.84 65.44 103.84 72.76

Table 5.2: Average MSE over 26 GOPs obtained with the model (5.1) and proposed model

in the transmission of 4 videos not included in the training set.

A more detailed observation can be done through Figure 5.7 which compares the MSE

obtained after rate adaptation for the sequences Football, City, Mobile and Foreman, with

our proposed model and the model (5.1). It can be observed that, with the exception of

some large deviations experienced in few GOPs of City and Mobile, our model closely

follow model (5.1). The exceptions suggest, in practical applications, that video servers

determine off-line different models as in (5.6) for a limited number of video classes having

homogeneous characteristics.
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Figure 5.7: Averaged MSE for each GOP of two sample videos in the transmission over

bandwidth constrained channel with rate adaptation. Figures Football and City refer to the

transmission of the 6 videos of the training set (Rc = 3500 kbps), wheres figures Mobile and

Foreman refer to the transmission of 4 videos not included in the training set (Rc = 3000

kbps).
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5.5 Conclusions

In this work we proposed a new rate-distortion model using spatial and temporal indexes

for MGS scalable video coded streams with reference to SNR scalability. The model has

been developed with particular aim to real time video streaming over wireless channels, as

it only needs spatial and temporal indexes from the original unencoded video to build the

R-D relationship and to estimate base layer and enhancement layer rates. The model has

been compared to the state of the art non real time model in applications where multiple

video are transmitted over a bandwidth constrained channel with rate adaptation showing

that the proposed model works well.





Chapter 6

QoS for VoIP Traffic in Heterogeneous

Networks

6.1 Introduction

The popularity of wireless networks is widely recognized because of its strong support

and ease of use in the end systems. Heterogeneous wireless networks are becoming of

widespread use with Internet’s real-time multimedia applications. Short range WLAN sys-

tems, as well as different cellular systems and WiMAX, provide some level of QoS and

are needed to realize ubiquitous Internet services. But real time multimedia applications, in

particular interactive and live streaming applications, set strict requirements for the QoS.

Some applications need relatively wide bandwidth; the bandwidth should be available in

both directions constantly. Applications like voice and video need short transmission delay

and jitter but they still have ability to tolerate some packet loss [35]. WiMAX is capable of

reaching remote areas with high data rate transfer, mobility support and a native Quality of

Service management (even if just limited to the wireless IEEE802.16 links) [36]. By look-

ing at the literature, a remapping mechanism is proposed in [37] to dynamically adjust the

mapping rules for nrtPS and rtPS (for VBR traffic sources) classes of WiMAX to DiffServ.

71
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An architecture for signaling and WiMAX resources management is proposed in [38] con-

sidering an end-to-end QoS enabled scenario. In this approach interoperability is provided

between WiMAX and other networks which have different QoS schemes, like DiffServ.

WiMAX and WLAN Integration design is proposed in [39] for link layer QoS. Here, a

mapping scheme of DiffServ to the link layer services for both WiMAX and WLAN is

shown. The end-to-end QoS mechanisms were developed to serve the users with the wired

terminals. More research work on DiffServ approach applied to the wireless systems and

mobile users in heterogeneous environment is needed in order to understand the benefits

of the DiffServ networks. Current research is open regarding the mapping of QoS classes

and the design of complete interworking models between WiMAX and DiffServ networks.

In our work, a WiMAX DiffServ QoS test-bed scenario is implemented to test the inter-

operability and the different functionalities between domains with different QoS models.

The aim of our research is to map and analyse the QoS class for CBR traffic types (VoIP

without silence suppression, as an example) which need constant bandwidth in both wired

and wireless networks.

To provide better Quality of Experience (QoE) to customers in efficient manner i.e

with respect to cost as well as with QoS. From this point we understood that QoS & QoE

are mutually dependent and to achieve QoE, QoS is the basic building block [40]. The

requirement of QoE and QoS along with the QoS parameters with priority order can be

helpful for both the operators and users to maximize the network performances and user

satisfaction level with the limited resources. During the limited resource condition, QoS

requirement can be optimized according to the service type, price, user requirement and

priority of QoS parameters [41].

This chapter is organized as follows. Section 6.2 explains the mechanism for IP QoS.

Section 6.3 depicts the QoS mechanism in WiMAX network. Section 6.4 illustrates our

simulation scenario and results, whereas conclusion are drawn in section 6.5.
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6.2 Mechanism for IP QoS

There are two main IP based QoS mechanisms, IntServ and DiffServ. IntServ provides

end-to-end QoS in flow-based manner and uses the Resource Reservation Protocol (RSVP)

for signalling, which follows the data path, performs the reservation and maintains per

flow state in each router. DiffServ has more suitable mechanisms for providing end-to-

end QoS by working with aggregate traffic classes [42]. Packets of a particular service

class are marked with a QoS class and receive a specific Per Hop Behaviour (PHB) for

forwarding. The PHB is an externally observable forwarding behaviour which is applied to

a DiffServ compliant node, or it refers to queuing scheduling, shaping or policing behaviour

of a node on any packet. There are several available standard PHBs, which include default

PHB, Assured Forwarding (AF) PHB and Expedited Forwarding (EF) PHB. The packets

scheduled by default PHB receive the traditional Best Effort (BE) service which has the

lowest priority. The AF class is further categorized into four classes, namely AF1, AF2,

AF3 and AF4, and each class has three drop precedences: Low, Medium and High. The

purpose of the AF PHB is to allow the DiffSev network to provide different levels of QoS

assurances. Generally AF class is used for the traffic which can tolerate more delay and

packet loss, but requires better QoS than Best effort (BE) class. The main purpose of the

EF PHB is to provide assured bandwidth equivalent to ‘virtual leased line’. Asynchronous

Transfer Mode (ATM) has also attempted the same assured service in its Constant Bit Rate

(CBR) traffic mode. The characteristic of this type of service is to provide low delay and

small packet loss ratio.

DiffServ uses IP header field (Type Of Service (TOS) in IPv4 and traffic class in IPv6) to

denote the QoS class of a packet as shown in figure 6.1. Using DiffServ Code Point (DSCP)

each router in the network can mark, shape or drop the incoming traffic. The DSCP field is

made of eight bits out of which only six bits are currently in use while the last two bits are

for future use. The first three bits of the class selector code points are used to specify the
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Figure 6.1: DiffServ Code Point field.

different classes with different priorities. The next three bits of the DSCP field are used to

handle drop precedence of each of these classes.

6.3 QoS Mechanism in WiMAX Network

IEEE 802.16, referred to as WiMAX, provides specifications for air interface of Metropoli-

tan Area Network. The standard specifies connection-oriented QoS support [43]. There are

different types of services for different types of classes, which include: Unsolicited Grant

Service (UGS) for real-time uplink Service Flows (SFs) of fixed packet size on periodic

basis, Real-time Polling Service (rtPS) for real-time SFs having variable-size packets on

periodic basis, Non real-time Polling Service (nrtPS) which supports delay tolerant data

having variable-size packets for which minimum data rate is needed, and Best Effort (BE)

for the data streams for which no minimum service is required. Service Flows are cre-

ated and modified between MS and BS through MAC message exchange. The exchange of

Dynamic Service Deletion (DSD), Dynamic Service Change (DSC) and Dynamic Service



6.3. QOS MECHANISM IN WIMAX NETWORK 75

Addition (DSA) messages are initiated by either BS or MS.

The distinguishing feature of WiMAX over its other competitors (i.e. 802.11 and 3G) is

its QoS provisioning based on the association of each packet with a service flow. WiMAX

is connection-oriented and each connection has a unique Connection ID (CID) and Service

Flow ID (SFID) which is associated to that particular class. The data is mapped by the upper

part of the MAC to QoS service classes. The external application can also request desired

QoS parameters using the named service class. The traffic shaping engine is included in

the MAC which is ultimately responsible for the transmission and reception of the 802.16

packets according to the applied QoS parameters. These parameters are different from one

service flow to another.

WiMAX allocates traffic to a service flow and then maps it to a MAC connection using

CID as shown in figure 6.2. In this way, IP and UDP protocols which are connectionless are

transformed into connection-oriented service flows. An application or group of applications

can be represented with a connection with same CID.
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Figure 6.2: IEEE 802.16 QoS Architecture

The MAC layer of WiMAX is divided into two sub-layers: the common part sub-layer

and the convergence sub-layer. The transport layer specific traffic is mapped by the conver-

gence sub-layer to the core MAC common part sub-layer. The common part sub-layer is

responsible for fragmentation and segmentation and is independent of the transport mech-

anism.

The incoming traffic type (e.g. web surfing, voice ATM CBR etc.) is classified by the

convergence sub-layer and a 32- bit SFID is assigned to it. When a service flow is active

or admitted, it is mapped to a 16 bit unique CID which handles its QoS requirements.

Each service flow is defined by a QoS parameter set which describes its jitter, latency and

throughput assurances.

After the service flow is assigned with a unique CID, it is then forwarded to the appro-

priate queue. Base Station (BS) performs the uplink packet scheduling by signaling to the
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Subscriber Station (SS) [43]. The packet scheduler in the SS will extract the packets from

the queues and transmits them to the network with an appropriate time slots sent by the BS

in the Uplink MAP (UL-MAP) message.

6.4 Inter-Working Model and Simulation

We consider here the scenario of Figure 6.3, where the traffic from the WiMAX domain

enters the DiffServ core network. In the core network the traffic will be mapped to the

equivalent class of WiMAX according to Table 6.1 [35]. In this scenario the two nodes,

Node1 and Node2, are used to generate traffic that competes with WiMAX traffic.

Figure 6.3: WiMAX and DiffServ Network Simulation Scenario

In our test network we have considered a VoIP application with Unsolicited Grant ser-

vice (UGS) and mapped it to the Expedited Forwarding (EF) class of the DiffServ network.

The aim of the simulation is to examine different QoS parameters when WiMAX traffic

enters the DiffServ network and when DiffServ domain is not used for CBR traffic.

In the test-bed the UGS type of traffic coming from WiMAX is mapped to a high prior-

ity queue in the edge router of the DiffServ core network which provides the service of EF
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WiMAX Scheduling Class DiffServ PHB Service Example

UGS EF VoIP without VAD

rtPS AF4 Audio/Video streaming

nrtPS AF3 Transactional Services

BE BE E-mail download

Table 6.1: WiMAX and DiffServ traffic class mapping

class. This queue has high scheduling priority compared to the other queues and the data in

this queue will be scheduled first.

6.4.1 Priority Queuing (PQ)

In our simulation scenario we have implemented Priority Queuing in the edge router of

the DiffServ core network. PQ realizes a simple way of class distinction. As shown in

Figure 6.4, if N queues are created, then the priority goes from 1 to N. The scheduler

will schedule higher priority queue first and when that queue is empty it will schedule the

packets from the next high priority queue. The j-th queue packets are processed only if

the higher priority queues, i.e. queue 1 to j-1, are empty. If the scheduler is at queue j a

packet arrives in a higher priority queue, say j-3, the scheduler will go to the queue j-3. PQ

is particularly suitable for high priority traffic and provides premium service to the traffic

which is extremely critical and needs to be processed as soon as possible.
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Figure 6.4: Priority Queuing Implemented in Edge Router

We selected priority queuing because it provides dedicated queues for real time traffic,

e.g. video and voice over IP.

6.4.2 Simulation Results

The scenario is simulated in OMNeT++ 4.0 with INET framework [44]. The simulation is

performed according to the parameters shown in table 6.2. The simulation is run under the

traffic load of 100%, 112.5% and 125% with and without DiffServ enabled core network.

Node 1 and Node 2 generate exponentially distributed traffic with different arrival rates

mentioned in table 6.2. The packets from both the nodes are not marked with DiffServ

code point so they will be treated as best effort traffic upon their arrival on the edge router

of the DiffServ core network.

Figure 6.5 shows the number of dropped packets without DiffServ core network en-

abled with different loads. Packets are dropped when the bandwidth required to transmit

them exceeds the allocated capacity. We found no dropped packets from VoIP stream with

DiffServ enabled core network because of the preferential treatment over the other traffic
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Figure 6.5: Packets dropped without DiffServ support.

types. When the core network is not DiffServ enabled, it cannot provide preferential treat-

ment to the VoIP packets coming from WiMAX domain. All the VoIP packets are treated

as best effort on the edge router along with the traffic from Node 1 and Node 2.

As our interest lies in VoIP traffic from the mobile station, in figure 6.5 we have not

considered the dropped packets coming from the other nodes.

In Figures 6.6, 6.7 and 6.8 some simulation traces for packet delay in the network are

shown under different network loads, with and without DiffServ enabled network. H1 and

H2 represent Node1 and Node 2 while MS1 represents the Mobile Station in the simulation

scenario of Figure 6.3.

Figure 6.6 shows the packet delay along the simulation time in the scenario without

DiffServ core network and with 100% of network load. As can be seen from the figure,

the packets from the mobile station are mixed with those from node 1 and node 2 and

routed without QoS provision. The VoIP packets are experiencing different delays over

the simulation time, though these packets need a fixed and constant bandwidth and are

generated with fixed size on periodic intervals. These delays affect the time sensitive data.
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Figure 6.6: Delay without DiffServ support and with 100% load.

In Figure 6.7 the delay of the VoIP data from the mobile station varies between 37

milliseconds and 58 milliseconds in different intervals of simulation time. On the other

hand, figure 6.7 refers to the VoIP stream passing through a DiffServ enabled network

which shows a smooth data flow along the simulation time. It can be seen that almost all

the packets experience the same fixed delay which is about 35 milliseconds and there is an

average gain of 10 to 15 milliseconds achieved with DiffServ enabled network.

Figure 6.7: Delay with DiffServ support and 100% load.

Figure 6.8 shows the packet delays in a scenario with 112.5% traffic load condition,

without DiffServ enabled network. The VoIP stream of the mobile station experiences
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Figure 6.9: Delay with DiffServ support and 112.5% load

higher delays and most of the packets experience a delay between 46 milliseconds and

56 milliseconds. In Figure 6.9, referred to DiffServ enable network, the delay is stable at

nearly 35 milliseconds.

Figure 6.8: Delay without DiffServ support and 112.5% load.

Figures 6.10 and 6.11 show packet delays for VoIP traffic in scenarios with and without

DiffServ and with 125% traffic load. Without DiffServ enabled network the majority of

the packets have delays above 50 milliseconds whereas the delays in the DiffServ enabled

network for VoIP is still constant around 35 milliseconds.
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Figure 6.10: Delay without DiffServ support and 125% load

Figure 6.11: Delay with DiffServ support and 125% load

It is important to note from all the figures that the delays of the VoIP packets are constant

for all the traffic loads when DiffServ is enabled, because, as mentioned before, PQ is used

which provides premium service to the higher priority queue and all the packets will be

scheduled first before providing the service to lower priority queue.

On the other hand, in the scenario with with DiffServ enabled network the traffic from

node 1 and node 2 experiences delay larger than the one in non DiffServ network. Though

in both the cases we have not marked the packets of nodes 1 and 2, so their traffic is treated

as Best Effort. The increase of the delay is the cost of the preferential treatment provided

to the VoIP packets.
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Jitter and delays affect the QoS of the VoIP stream. From the point of view of perceived

QoS, jitters and delays of few milliseconds are acceptable. According to ITU-T specifica-

tion [45] one way delay should not be more than 150 ms while there is no precise limit for

jitters. Figure 6.12 shows the values of jitters for different loads with and without DiffServ

enabled network. It can be seen that as the network load increases, the jitter of the packets

decreases: this is because when the network approaches saturation point the fluctuations of

packet delays decrease.

Standard Deviation of Delay (s)

Figure 6.12: VoIP service jitters in networks with and without DiffServ.

6.5 Conclusions

The measurements in the test-bed network show that DiffServ network clearly provides

better QoS for multimedia services. Though the effect of DiffServ in normal traffic condi-

tions is not significant, it clearly performs better in congested network. Internet by default
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is a Best Effort network and DiffServ improves the performance of the core network by

providing the minimum required QoS level. Time sensitivity may not have a big impact on

applications like FTP but it is a great limitation for real-time traffic. PQ should be used only

when the amount of delay-sensitive traffic is small compared to overall traffic and needs

to be processed as soon as possible, as in our test-bed where we were sending 64 Kbps of

voice traffic while the total bandwidth of the core was around 5 Mbps.





Conclusions

In this PhD thesis several methodologies are proposed to provide better QoE to the end

user for multimedia applications like video and voice. More emphasis was given to video

for which R-D models and adaptation algorithms were developed for real-time and non

real-time video applications, while error protection technique was also proposed for the

non real-time R-D model to cope with the errors during transmission. For VoIP applica-

tion, though WiMAX provide a dedicated class of service to prioritize the voice packets

but it may lose significance if the intermediate networks cannot offer an equivalent pref-

erential treatment. The R-D model proposed for non real-time video streams in Chapter

3 not only reduces the complexity by reducing a sequence dependent parameter but also

the number of iterations and functions evaluations, thereby allowing minimum loss in the

goodness parameters. A framework for the rate adaptation is also proposed which provides

minimum rate required for each video in the transmission while providing fairness among

the videos based on distortion. To cope with errors during transmission an unequal error

protection scheme based on Reed-Solomon encoding with erasure correction is introduced

in Chapter 4 with the aim to maintain high expected quality even in the presence of high

packet error rate. This error protection framework is suitable for video application such as

video on demand, IP-TV services and real-time streaming. A new R-D model for real time

video streams is proposed in Chapter 5. This real-time R-D model is based on the R-D

model proposed in Chapter 3, as it estimates the sequence dependent parameters through

spatial and temporal indexes. These indexes are obtained from raw video sequences. Also
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these index values are used to estimate the base layer and the highest enhancement layer

rates. As the index values are obtained from raw videos the R-D model and the base layer

and the enhancement layer rates are estimated before encoding the video stream thereby

making it more suitable for real-time video streams. Chapter 6 discusses some network

level issues related to prioritization of delay and time sensitive incoming VoIP traffic from

WiMAX network. The measurement from the test bed network shows that by implement-

ing DiffServ Network clearly provides better QoS. Prioritization is more beneficial when

the bandwidth is limited and time critical data has to be transmitted within the minimum

required standards.
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