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ABSTRACT 

 

The neuropeptide nociceptin/orphanin FQ (N/OFQ) selectively binds and activates the N/OFQ peptide 

(NOP) receptor. In cells expressing the NOP receptor N/OFQ inhibits cAMP accumulation and Ca
2+

 

conductance and stimulates K
+
 currents. Via these cellular mechanisms N/OFQ regulates several biological 

functions in the central nervous system (pain, locomotion, memory, emotional responses, food intake), as 

well as in the periphery (airways, cardiovascular, genitourinary and gastrointestinal systems). Several 

research tools including knockout mice and NOP selective agonists and antagonists have been developed in 

the past and used to investigate the role played by this peptidergic system in pathophysiology and to identify 

possible therapeutic indications of NOP receptor ligands. The aim of the present study was to make available 

to the scientific community novel genetic and pharmacological tools to speed up the process of target 

validation of the NOP receptor.  

Knockout rats for the NOP receptor gene (NOP(-/-)) have been recently generated. These animals were used 

in the present study to investigate their emotional (open field, elevated plus maze, and forced swimming 

test), locomotor (drag and rotarod test), and nociceptive (plantar and formalin test) phenotype in comparison 

to NOP(+/+) littermates. The results were in line with previous findings obtained with selective NOP 

receptor antagonists in mice and rats and with mouse knockout studies and indicated that the blockage of 

N/OFQergic signalling elicits antidepressant and motor stimulant effects.  

A detailed pharmacological characterization of novel NOP receptor non peptide ligands has been performed. 

The compound GF-4 displayed high affinity and potency at recombinant human NOP receptor associated 

with pure antagonist properties. This profile was confirmed in N/OFQ sensitive animal tissues. In vivo GF-4 

elicited, similar to other NOP antagonists, beneficial effects in animal models of Parkinson disease. The 

NOP non-peptide agonists Ro 65-6570, SCH 221510 and compound 6d were characterized in vitro using a 

calcium mobilization assay and electrically stimulated mouse and rat vas deferens tissues. The results of 

these studies demonstrated that Ro 65-6570 and SCH-221510 behaved as full agonists showing however 

some level of NOP selectivity in rat, but not mouse, tissues. Compound 6d did not display NOP selectivity.  

Finally, mixed NOP/MOP receptor agonists were generated. [Dmt
1
]N/OFQ(1-13)NH2 was selected as the 

most potent compound. The mixed NOP/MOP full agonist activity and high affinity of [Dmt
1
]N/OFQ(1-

13)NH2 was confirmed at human recombinant receptors in receptor and [
35

S]GTPS binding studies, at rat 

spinal cord receptors in [
35

S]GTPS binding experiments, and at guinea pig receptors inhibiting neurogenic 

contractions in the ileum. In vivo in the mouse tail withdrawal assay in mice [Dmt
1
]N/OFQ(1-13)NH2 was 

also able to elicit a robust antinociceptive effect being more potent than N/OFQ (by 30 fold) and morphine 

(by 3 fold). The antinociceptive properties of spinal [Dmt
1
]N/OFQ(1-13)NH2 were confirmed in non human 

primate studies. Collectively these results demonstrate that [Dmt
1
]N/OFQ(1-13)NH2 behaves as mixed 

NOP/MOP agonist and susbtantiate the suggestion that such mixed ligands are worthy of development as 

innovative spinal analgesics.  
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1.  INTRODUCTION 

 

1.1  Orphan G-protein coupled receptors and the reverse pharmacology approach 

G-protein coupled receptors (GPCRs) are one of the largest family of proteins that are the 

main modulators of intercellular interactions and regulate a large variety of functions in the human 

body and in particularly in the central nervous system. There are numerous GPCRs in living 

organisms, but the function of many is still unknown. The human genome encompasses ~ 800 

GPCRs, of which more than half are olfactory and/or taste GPCRs. They are targets of most of the 

primary messengers including the neurotransmitters, all the neuropeptides, the glycoprotein 

hormones, lipid mediators and other small molecules; thus have considerable pharmaceutical 

interest. Drugs that are acting on GPCRs are used to treat numerous disorders. In fact, more than 

30% of the approximately 500 clinically used drugs, are modulators of GPCRs function, 

representing around 9% of global pharmaceutical sales, and making GPCRs the most successful of 

any target class in terms of drug discovery (Drews, 2000). 

367 transmitter GPCRs have been identified within the human genome, the majority of these 

GPCRs have been identified on the basis of their sequence similarities, either by homology cloning 

or by bioinformatics analyses. Many of these receptors are still „orphans‟, i.e. its endogenous ligand 

is unknown. 

The first step in the characterization of new orphan GPCRs is the search of the activating 

ligand. As the genomes of most studied model organism have now been sequenced, the process of 

discovery of GPCRs-ligand pairs has been reversed. In the past, neuropeptides have been 

traditionally identified either on the basis of their chemical characteristics (Tatemoto et al., 1980) or 

of their effects in particular assay systems (Erspamer et al., 1978). Although highly successful, 

these approaches had reached a stand still by the mid 80‟s. 

Through DNA recombination techniques, it is now possible to transfect the sequence of an 

orphan receptor of which the function is not yet known, into an appropriate cellular expression 
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system. This leads to the use of orphan receptors as baits to isolate their natural ligands from 

mixtures of synthetic ligands, including known GPCR ligands, naturally occurring bioactive 

molecules of unknown function, and randomized compounds in high-throughput screening. This 

approach has been named “reverse pharmacology”. Thus, drug identification precedes the 

mechanistic understanding of mode of action of the drug candidate. The expression system provides 

the necessary trafficking and G-protein-signalling machinery to enable the successful identification 

of the activating ligand. By exposing the transfected cell to a tissue extract containing the natural 

ligand of the orphan receptor, a change in intracellular second messengers will be induced and will 

serve as a parameter to monitor orphan receptor ligand purification. Despite the logic of the theory, 

the process is not simple, since the physical nature of the ligand and the type of the second 

messenger response that it will generate, are unknown. However, structural features in an orphan 

GPCR will determine its relationship to known receptors and will help in evaluating the nature of 

the receptor‟s ligand and its activity. Indeed, an orphan receptor which is related, even to a low 

degree, to a particular receptor family has a higher probability of sharing a ligand of the same 

physical nature and a coupling to similar G proteins. Notably this strategy has already led to several 

significant discoveries. The orphan receptor strategy was first proven to be successful with the 

discovery of the neuropeptide Nociceptin/Orphanin FQ (N/OFQ), the subject of this thesis, as the 

endogenous ligand of the orphan GPCR Opioid Receptor-Like 1 (ORL-1) (Meunier et al., 1995; 

Reinscheid et al., 1995). 
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Figure 1.1. The orphan receptor strategy (Civelli et al., 2001). The orphan receptor strategy was developed 

to identify the natural ligands of orphan G-protein-coupled receptors (GPCRs) with the aim of discovering 

novel transmitters (defined in the main text). This strategy involves: (1) expression of the cloned orphan 

GPCR in an heterologous cell line; (2) exposure of this transfected cell line to a tissue extract that is 

expected to contain the natural ligand; (3) recording of the change in second messenger response elicited by 

activation of the orphan GPCR; (4) fractionation of the tissue extract and isolation of a surrogate, the active 

component; (5) determination of the chemical structure of the active component and (6) chemical synthesis 

of the active component and demonstration that it exhibits identical activity to that of the purified ligand.  

 

 

This first successful example of orphan receptor strategy was followed by the identification 

of other novel bioactive peptides such as: hypocretins and orexins, prolactin-releasing peptide, 

apelin, ghrelin, melanin-concentrating hormone, urotensin II, neuromedin U, metastin, neuropeptide 

B, neuropeptide W and neuropeptide S. Each of these discoveries was a landmark in its field 

(Civelli, 2005). The success in GPCRs deorphanization led to the approach being used by the 

pharmaceutical industry (Wise et al., 2004), which had mastered the high throughput screening 

(HTS) of thousands of ligands. This led to thousands of potential transmitters and unexpected 

ligands (also of non-peptide nature) being tested on dozens of orphan GPCRs and a revival of the 

reverse pharmacology approach. Table 1.1 summarizes the transmitters of peptide and non-peptide 

nature identified as ligands of orphan GPCRs after 1995 (Civelli, 2005). 
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Table 1.1. Transmitters identified as ligands of previously orphan GPCRs after N/OFQ; taken 

from (Civelli, 2005). 
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1.2 The NOP receptor 

Pharmacological studies have defined at least three subtypes of opioid receptors, termed ,  

and  receptors, that are involved in the mediation of the numerous effects of opioid drugs, such as 

analgesia, respiratory depression, miosis, constipation, sensation of well being, tolerance and 

dependence. 

The nomenclature for the opioid receptors remains controversial. A 1996 review and 

proposal for a novel nomenclature (Dhawan et al., 1996) based on guidelines from NC-IUPHAR 

has not been widely accepted by the research community. The 1996 proposal recommended 

replacement of the terms μ, δ, and κ with the terms OP3, OP1, and OP2, respectively. However, in 

the three years or more since the publication of this recommendation, almost all papers referring to 

opioid receptors have continued to use the well-established Greek symbol nomenclature. Since 

Greek nomenclature gaves many problems in manuscript preparation and particularly WEB 

searches, this was substituted with terminology more consistent with the overall guidelines of NC-

IUPHAR that named the opioid receptors as: DOP, MOP, and KOP (Cox et al., 2000). 

Molecular cloning of the DOP receptor (Evans et al., 1992; Kieffer et al., 1992) was soon 

followed by the cloning of the KOP and MOP receptors (Chen et al., 1993; Yasuda et al., 1993). 

Further attempts to clone additional opioid receptor types and/or subtypes, by hybridization 

screening at low stringency with opioid receptor cDNA probes, or using probes generated by 

selective amplification of genomic DNA with degenerate primers, led several laboratories to isolate 

a cDNA encoding a homologous protein with a high degree of sequence similarity to the opioid 

receptors (Bunzow et al., 1994; Chen et al., 1994; Fukuda et al., 1994; Lachowicz et al., 1995; 

Mollereau et al., 1994; Wang et al., 1994). 

The novel clone, named Opioid Receptor Like-1 (ORL-1) receptor, displayed approximately 

50 % identity with the traditional opioid receptors overall, with the transmembrane regions showing 

even higher homologies of up to 80 %. Despite the close homology with the other opioid receptors, 

opioid ligands displayed very low affinities towards ORL-1 receptor, thus it was considered an 
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orphan receptor. ORL-1 receptor is a typical GPCR with seven predicted transmembrane domains 

(Figure 1.2). 

 

 

 

 

 

 

 

 

Figure 1.2. Schematic representation of ORL-1 receptor from (Topham et al., 1998)). TM helices are 

numbered 1 to 7. E/IL: Extracellular/Intracellular Loop. Visible at the C-terminal of TM 6 is the Gln 286 

(human receptor numbering) side chain. 

 

 

ORL-1 was subsequently named NOP (Nociceptin/Orphanin FQ Peptide) receptor according 

to the IUPHAR nomenclature (Cox et al., 2000). The ORL-1 receptor was identified in different 

species and showed substantial sequence identities (>90%) between species variants, namely the 

human (Mollereau et al., 1994), rat (Wang et al., 1994; Fukuda et al., 1994; Bunzow et al., 1994; 

Lachowicz et al., 1995), mouse (Nishi et al., 1994) and pig (NOP (Osinski et al., 1999b)). 

The human NOP receptor protein consists of 370 amino acids (Mollereau et al., 1994) and 

contains seven transmembrane (TM) domains. The N-terminal 44 amino acids contain 3 consensus 

sequences for N-linked glycosylation (Asn-X-Ser/Thr). There are also sites for potential 

phosphorylation by protein kinase A (in the third intracellular loop) and protein kinase C (in the 

second intracellular loop and the C-terminal). 
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Figure 1.3. Alignment of the amino acid sequence of the rat NOP receptor (Hyp 8-1) with the amino acid 

sequences of the rat brain DOP, MOP and KOP receptors. Sequences identical in at least 3 of 4 aligned 

sequences are boxed. Gaps in the alignment are indicated by a dash (-). Putative transmenbrane regions are 

underlined. Taken from Wick et al. (1994). 

 

The NOP sequence has 57-58% amino acid (aa) identity to each of the rat MOP (Chen et al., 

1994), DOP (Fukuda et al., 1993) and KOP (Minami et al., 1993). This percent identity is slightly 

lower than those obtained when the sequences of opioid receptors are compared to each other (62-

67%). 
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The conservation among the four receptors is highest (70%) in the II, III, and VII 

transmembrane domains, and approximately 50% in the I, V and VI, but significantly lower (24%) 

in the IV. This high level of sequence conservation within the transmembrane domains lends weight 

to the view that the NOP receptor contains a TM binding pocket that is the structural equivalent of 

alkaloid binding pocket of the opioid receptors. Indeed, the NOP receptor has retained the ability, 

with low affinity, to bind and/or respond to opioid receptor ligands, agonist and/or antagonist such 

as etorphine and diprenorphine (Mollereau et al., 1994), buprenorphine (Wnendt et al., 1999), 

lofentanil (Butour et al., 1997), and naloxone benzoylhydrazone (Noda et al., 1998). 

The NOP receptor gene, Oprl1, is located at the q13.2-13.3 region of the human 

chromosome 20 (Peluso et al., 1998) and has been mapped to the distal region of the mouse 

chromosome 2 (Nishi et al., 1994). In terms of intron-exon organization, the NOP receptor gene is 

nearly identical to that of the MOP, DOP, and KOP receptors, suggesting that the four genes have 

evolved from a common ancestor and hence belong to the same family (Meunier, 1997). Indeed, the 

NOP receptor appears to be evolutionary as old as the opioid receptors, since NOP receptor-like 

genomic sequences have been reported in teleost (Darlison et al., 1997), in cartilaginous fish (Li et 

al., 1996), in sturgeon (Danielson et al., 2001) and in zebra fish (Gonzalez-Nunez et al., 2003).  

Although pharmacological studies have not firmly established the existence of NOP receptor 

subtypes (Calo et al., 2000b), NOP receptor heterogeneity is still an open question. NOP receptor 

heterogeneity may result from differential expression of NOP splice variants. So far, five splice 

variants of NOP mRNA have been isolated. One, identified in rat (Wang et al., 1994), encodes a 

NOP variant with an insertion (intron 5) in the second extracellular loop. The second splice variant, 

exhibiting an in frame deletion of 15 nucleotides at the 3‟ end of the TMD 1 coding region (Halford 

et al., 1995; Wick et al., 1994), does encode a functional receptor and has already been isolated 

from human tissue (Peluso et al., 1998). Further, insertions of exons 3 and 4 (Curro et al., 2001) 

after the first coding exon (exon 2) in rats result in three additional splice variants (Pan et al., 1998), 

which again encode truncated and not functional receptors. 
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The NOP receptor is widely expressed in the CNS, in particular in the forebrain (cortical 

areas, olfactory regions, limbic structures: hippocampus and amygdala, thalamus), throughout the 

brainstem (central periaqueductal gray, substantia nigra, several sensory and motor nuclei), and in 

both dorsal and ventral horns of the spinal cord (Mollereau et al., 2000; Neal et al., 1999a). The 

distribution patterns have suggested the involvement of the NOP receptor system in motor and 

balance control, reinforcement and reward, nociception, stress response, sexual behaviour, 

aggression and autonomic control of physiological processes (Neal et al., 1999a). 

It is worthy of mention that NOP receptors co-express with MOP receptors in the dorsal 

horn of the spinal cord, the hippocampal formation and the caudate putamen (Anton et al., 1996; 

Letchworth et al., 2000) in the midbrain periaqueductal gray and the nucleus raphe magnus 

(Houtani et al., 2000). Distribution of NOP does not always overlap that of opioid receptors: these 

anatomical differences may provide a possible explanation for the different in vivo actions of 

N/OFQ and opioids (Ikeda et al., 1998; Monteillet-Agius et al., 1998; Sim et al., 1997). 

The NOP receptor mRNA has also been identified in the peripheral nervous system and 

several other organs. It is expressed in peripheral ganglia and in the immune system. It has been 

detected in rat intestine, vas deferens, skeletal muscles and spleen (Wang et al., 1994) in porcine 

gastrointestinal tract and kidney (Osinski et al., 1999b), in several guinea pig ganglia (Fischer et al., 

1998), also in rat retina and heart (Mollereau et al., 2000). 

Peluso and colleagues (1998) were the first to describe the distribution of NOP receptor 

transcripts in man, in different brain regions by RT-PCR technique: the highest amplification was 

observed in cortical areas (the frontal and temporal cortex), in the hypothalamus, mamillary bodies, 

the substantia nigra, and thalamic nuclei. Transcripts have also been detected in limbic structures 

(the hippocampus and amygdala), brainstem (the ventral tegmental area, the locus coeruleus) and 

the pituitary gland. This distribution, which is similar to that of rodents, suggests the participation 

of the NOP receptor in numerous human physiological functions, such as emotive and cognitive 

processes, neuroendocrine and sensory regulation. 
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Berthele and colleagues (2003) studied the differential expression of NOP receptors in the 

human brain (cortex, basal ganglia, hippocampal area and cerebellum) by utilizing on-section ligand 

binding corroborated with mRNA detection on parallel sections of the same brain tissues. In 

general, [
3
H]-N/OFQ ligand binding and NOP receptor mRNA expression were widespread and 

indicative of a considerable high NOP receptor expression in these anatomical regions. [
3
H]-N/OFQ 

ligand binding and NOP mRNA expression studies showed that the highest amounts of NOP 

receptor were observed in the cerebellum, in the cortex (cingulate and prefrontal cortex), in the 

striatum (caudate nucleus and the putamen) and in the lamina II, followed by laminae III, V and VI, 

in the principal neurons of the dentate gyrus and in the hippocampal area (Berthele et al., 2003). 

 

 

1.3 Nociceptin/orphanin FQ  

In 1995 Meunier and Reinsheid simultaneously described N/OFQ as the endogenous ligand 

for ORL-1, now known as NOP. CHO cells expressing the orphan receptor were used to identify its 

endogenous ligand. Based on structural similarities with the known opioid receptors, both the 

chemical nature of the endogenous ligand (peptide) and the consequences of receptor activation 

(inhibition of cyclic AMP) were assumed to be similar to those of classical opioids. Consequently, 

cells were stimulated with forskolin to activate adenylyl cyclase and increase intracellular cAMP. 

As a Gi/o-coupled orphan receptor, endogenous agonists at this receptor will inhibit the formation 

of cAMP. Extracts from rat (Meunier et al., 1995) or pig (Reinscheid et al., 1995) brain were 

screened. Fractions that were able to inhibit the adenylyl cyclase activity were further fractionated 

through reverse-phase high-performance liquid chromatography. The purification and mass 

spectrometry analyses identified a heptadecapeptide (Figure 1.4), the sequence of which was 

determined. The synthetic peptide was shown to have high affinity (in the nanomolar range) and to 

strongly inhibit forskolin-induced accumulation of cAMP in CHO cells expressing the NOP 

receptor (EC50 about 1 nM), while showing no activity in non transfected cells (Meunier et al., 
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1995). Moreover, when tested in vivo by intracerebroventricular (i.c.v.) injection in mice, the 

peptide induced hyperalgesia in the hot plate (Meunier et al., 1995) and tail flick  tests (Reinscheid 

et al., 1995).  

The group of Meunier termed the novel peptide nociceptin, based on apparent pro-

nociceptive properties, while that of Reinscheid named it orphanin FQ, as ligand of an orphan 

receptor, whose first and last amino acids are Phe (F) and Gln (Q), respectively. 

N/OFQ shares sequence homologies with the opioid peptide ligand dynorphin A (Figure 

1.4); despite the structural similarities these peptides are functionally quite distinct. N/OFQ has no 

significant affinity for any of the opioid receptors (Reinscheid et al., 1998). 

 

 

 

 

 

 

 

Figure 1.4. Structural similarities between dynorphin A and N/OFQ amino acid sequences (Guerrini et al., 

2000b). 

 

 

The N-terminal tetrapeptide sequences (message domain) of the two peptides are very 

similar, with the only difference of the first amino acid residue (Phe in N/OFQ and Tyr in 

dynorphin A); the C-terminal parts (address domain) of the two molecules are both enriched in 

positively charged residues, such as arginine and lysine, even if distributed in different positions.  

N/OFQ is a heptadecapeptide cleaved from the peptide precursor preproN/OFQ (ppN/OFQ). 

ppN/OFQ consists of a 181 amino acids in the rat, 176 amino acids in humans and 187 amino acids 

in the mouse (Mollereau et al., 1996; Nothacker et al., 1996) (Figure 1.5). The ppN/OFQ gene, that 

has been isolated from human, mouse and rat, is highly conserved in the three species. 
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Figure 1.5. Amino acid sequence for N/OFQ precursor, ppN/OFQ (Calo et al., 2000b). 

 

 

Analysis of the nucleotide sequence of the ppN/OFQ gene revealed structural and 

organisational characteristics very similar to those of the opioid peptide precursors, in particular 

preproenkephalin and preprodynorphin, suggesting that these peptides derive from a common 

ancestor (Mollereau et al., 1996; Nothacker et al., 1996). 

The ppN/OFQ gene is located on human chromosome 8 (8p21) (Mollereau et al., 1996). In 

the ppN/OFQ sequence there are several pairs of basic amino acids that present possible sites of 

cleavage for precursor maturation or for transcriptional regulation (Zaveri et al., 2000). Therefore, 

several biologically relevant peptides may derive from the N/OFQ precursor (Figure 1.5). 

Apparently two additional peptides are excised from the same precursor: N/OFQ2 and nocistatin 

(Okuda-Ashitaka et al., 1998). None of them bind to the NOP receptor (Mollereau et al., 1996; 

Nothacker et al., 1996), and until now specific receptors for them have not been identified. The 

peptide following the N/OFQ sequence, is a heptadecapeptide terminating with the couple FQ 

(N/OFQ2): it has been found to be biologically active, stimulating locomotor activity in mice 

(Florin et al., 1997) inducing antinociception both spinally and supraspinally (Rossi et al., 1998) 

and inhibiting gastrointestinal transit (Rossi et al., 1998). 
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The second peptide, named nocistatin (NST), has been reported to act as a functional 

antagonist of N/OFQ (Okuda-Ashitaka et al., 1998). In most studies, NST was found to be inactive 

per se, but was able to reverse several effects of N/OFQ, such as induction of allodynia after spinal 

administration in mice (Minami et al., 1998; Okuda-Ashitaka et al., 1998), inhibition of glutamate 

release from rat brain slices (Nicol et al., 1998), impairment of learning and memory in mice 

(Hiramatsu et al., 1999), stimulation of food intake in rats (Olszewski et al., 2000). Moreover, NST 

can, per se, cause antinociception after i.c.v. administration in the rat carrageenan test (Nakagawa et 

al., 1999) or after intratechal (i.t.) administration in the rat formalin test (Yamamoto et al., 2001). 

Interestingly, nocistatin or its C-terminal hexapeptide exerts anxiogenic-like effects in mice; in fact 

it has been reported that the C-terminal hexapeptide (the most conserved region among species), 

administered i.c.v., exerts clear anxiogenic-like effects in mice, in contrast to N/OFQ, that in the 

same experimental model, acts as an anxiolytic (Gavioli et al., 2002). Very recent findings 

demonstrated that the opposite effects of N/OFQ and NST on supraspinal pain modulation result 

from their opposing effects on the excitability of central amygdala nucleus-periaqueductal gray 

projection (CeA-PAG) neurons. Electrophysiological studies showed that N/OFQ hyperpolarized 

CeA-PAG projection neurons by enhancing an inwardly rectifying potassium conductance. In 

contrast, NST depolarized CeA-PAG neurons by causing the opening of TRPC cation channels via 

a Gαq/11-PLC-PKC pathway (Chen et al., 2009). 

In vitro studies demonstrated that bovine nocistatin (bNST) inhibited the K
+
-induced [

3
H]5-

HT release from mouse cortical synaptosomes, displaying similar efficacy but lower potency than 

N/OFQ; this inhibitory effect was not prevented either by the NOP receptor antagonist UFP-101, or 

by the non-selective opioid receptor antagonist, naloxone. In contrast to N/OFQ, bNST reduced 

[
3
H]5-HT release from synaptosomes obtained from NOP receptor knockout mice (Fantin et al., 

2007). 

The localization of N/OFQ-immunoreactive fibres and terminals and/or the localization of 

the ppN/OFQ mRNA correspond reasonably well with the NOP receptor. Limbic areas highly 
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express N/OFQ, in particular the bed nucleus of the stria terminals, and the amygdala nuclei (Boom 

et al., 1999; Neal et al., 1999b). A matching pattern of N/OFQ and NOP receptor expression in the 

human and rodent central nervous system has been observed (Berthele et al., 2003; Peluso et al., 

1998; Witta et al., 2004). As with the receptor, N/OFQ immunoreactivity and mRNA levels 

detected using in situ hybridization are closely correlated. N/OFQ is found in lateral septum, 

hypothalamus, ventral forebrain, claustrum, mammillary bodies, amygdala, hippocampus, thalamus, 

medial habenula, ventral tegmentum, substantia nigra, central gray, interpeduncular nucleus, locus 

coeruleus, raphe complex, solitary nucleus, nucleus ambiguous, caudal spinal trigeminal nucleus, 

and reticular formation, as well the ventral and dorsal horns of the spinal cord (Neal et al., 1999b). 

Recently N/OFQ was immunolocalized in rat lateral and medial olivocochlear efferents (Kho et al., 

2006). Although N/OFQ and opioid peptides show a similar distribution, they are not colocalized in 

nociceptive centres such as the dorsal horn, the sensory trigeminal complex or the periaqueductal 

gray (Schulz et al., 1996). This N/OFQ distribution in the central nervous system suggests that the 

peptide is potentially involved in the regulation of a variety of brain functions, including emotional 

processing, learning and memory, locomotion, reward, pain transmission, and autonomic regulation 

of peripheral organs and systems.  

 

In the periphery, mRNA of pp\N/OFQ was detected in rat ovary, in human spleen, 

lymphocytes, and fetal, but not adult kidney (Mollereau et al., 1996; Nothacker et al., 1996). 

Furthermore, it has been shown that, under physiological conditions, N/OFQ is present in the 

human plasma (~ 10 pg/ml) (Brooks et al., 1998). In several pathological conditions such as 

postpartum depression (Gu et al., 2003), Wilson‟s disease (Hantos et al., 2002), hepatocellular 

carcinoma (Horvath et al., 2004) and in acute and chronic pain states (Ko et al., 2002b), plasma 

levels of N/OFQ resulted increased. In contrast, lower N/OFQ plasma levels have been observed in 

patients suffering from fibromyalgia syndrome (Anderberg et al., 1998), cluster headache (Ertsey et 
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al., 2004) and migraine without aura (Ertsey et al., 2005). After all, a very recent findings indicate 

that N/OFQ plasma levels are increased in sepsis condition (Williams et al., 2008). 

 

Little is known about the biosynthesis of N/OFQ, apart from the involvement of prohormone 

convertase 2 as demonstrated by studies performed in mice knockout for this enzyme (Allen et al., 

2001). As far as N/OFQ metabolism is concerned, different studies demonstrated the involvement 

of aminopeptidase N (APN) that generates [desPhe
1
]N/OFQ a peptide lacking affinity for the NOP 

receptor. However different endopeptidases are also involved in N/OFQ metabolism. endopeptidase 

(EP) cleaves a variety of bonds to release inactive fragments, Figure 1.6 (Calo et al., 2000b), 

Endopeptidase 24.15 (EP 24.15) (Montiel et al., 1997) acts on the peptide bonds Ala
7
-Arg

8
, Ala

11
-

Arg
12

, Arg
12

-Lys
13

 and releases inactive compounds, where endopeptidase 24.11 (EP 24.11) acts on 

the cleavage site Lys
13

-Leu
14

 and plays a major role in the initial stage of N/OFQ metabolism in 

mouse spinal cord (Sakurada et al., 2002). C-terminal degradation also leads to a reduction in 

binding affinity of N/OFQ for NOP, loss of the 4 amino acids from the C-terminal tail as in 

N/OFQ(1-13) results in a 30-fold reduction in potency (Butour et al., 1997). However, amidation of 

C-terminus of N/OFQ(1-13) restores ligand affinity and potency, consequently N/OFQ(1-13)-NH2 

is the shortest sequence retaining the full biological activity of the endogenous ligand (Guerrini et 

al., 1997). 
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Figure 1.6. N/OFQ metabolism by aminopeptidase N (APN) and endopeptidases (EP), from (Calo et al., 

2000b). 

 

 

 

1.4 N/OFQ and NOP receptor system: Cellular and Biological actions 

The cellular actions of the classical opioid receptors (MOP/KOP/DOP) and the NOP receptor have 

been shown to be pertussis toxin sensitive and therefore couple to inhibitory G-proteins i.e. G-

proteins with Gi/o alpha subunits (Reinscheid et al., 1996). G-proteins are membrane 

bound/associated heterotrimeric proteins composed of α, β, γ subunits. There are four major classes 

of G proteins including Gi/Go, Gs, Gq. 

Activation of NOP, similar to MOP, KOP, and DOP opioid receptors activation, leads to: i) 

closing of voltage sensitive calcium channels, ii) stimulation of potassium efflux leading to 

hyperpolarisation and iii) reduced cyclic adenosine monophosphate (cAMP) production via 

inhibition of adenylyl cyclase. Overall this results in reduced neuronal cell excitability leading to a 
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reduction in transmission of nerve impulses along with inhibition of neurotransmitter release 

(Figure 1.7) (Hawes et al., 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Schematic representation of intracellular responses to NOP receptor activation. 
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The peptide also inhibits several types of voltage-gated Ca
2+

 channels: for example in 

human SH-SY5Y neuroblastoma cells it produces a partial inhibition of N-type Ca
2+

 conductance 

with an IC50 value of about 40 nM (Connor et al., 1996b), and in dissociated rat hippocampal 

neurones the peptide partially inhibits the three major types of Ca
2+

 channels, L, N and P/Q 

(Knoflach et al., 1996). The inhibition is no longer seen after β pertussis toxin treatment and cannot 

be prevented by high doses of naloxone. N/OFQ has been shown to mediate a pronounced 

inhibition of N-type calcium channels, whereas other calcium channel subtypes were not affected. 

N/OFQ has also been reported to increase the inwardly rectifying K
+
 conductance in rat 

brain slices containing the dorsal raphe nucleus (Vaughan et al., 1996), the locus coeruleus (Connor 

et al., 1996a), and the periaqueductal grey (Vaughan et al., 1997), in hippocampal slices (Madamba 

et al., 1999) and cultured hippocampal neurones (Amano et al., 2000). 

Collectively, these data are consistent with the hypothesis that N/OFQ acts primarily to 

reduce synaptic transmission and neuronal excitability in the nervous system (Meunier, 1997). In 

the CNS, studies using synaptosomes and brain slices revealed that N/OFQ inhibits the release of 

noradrenaline (NA), serotonine (5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid 

(GABA), and glutamate (Schlicker et al., 2000). 

In the peripheral nervous system, studies showed the general modulatory effects (mostly 

inhibitory) of N/OFQ on neurotransmitter release from sympathetic, parasympathetic and 

nonadrenergic-noncholinergic sensory endings. In the respiratory, cardiovascular, genitourinary and 

gastrointestinal systems N/OFQ exerts inhibitory effects (Giuliani et al., 2000). Several isolated 

tissues from different species have been shown to be sensitive to N/OFQ. In particular, the 

electrically stimulated mouse and rat vas deferens and the guinea pig ileum have been described and 

used extensively in opioid receptor pharmacology: the guinea pig ileum, whose myenteric neuronal 

network contains mainly MOP receptors (Paton, 1957) has been shown to respond to N/OFQ (Calo 

et al., 1997; Calo et al., 1996; Zhang et al., 1997b); the mouse vas deferens whose nerve terminals 

contain mainly DOP receptors (Hughes et al., 1975) and the rat vas deferens, whose nerves contain 
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an uncharacterized opioid receptor (Lemaire et al., 1978), have also been reported to be N/OFQ 

sensitive preparations (Berzetei-Gurske et al., 1996; Calo et al., 1997; Calo et al., 1996; Nicholson 

et al., 1998; Zhang et al., 1997b). The twitch response in the three preparations is due to nerve 

activation and subsequent release of neurotransmitter since they are blocked by tetradotoxin. The 

release of NA from the sympathetic nerves is the major cause of the contractions of mouse and rat 

vas deferens, since they are blocked by the α-1 adrenoceptor antagonist prazosin. NOP receptors 

appear to be localized in sympathetic terminals since N/OFQ inhibits twitch evoked by electrical 

field stimulation, but does not modify contractions to exogenous NA (Calo et al., 1996). Similar 

results were obtained in the guinea pig ileum since N/OFQ inhibited atropine and tetradotoxin 

sensitive contractions derived from the release of ACh from cholinergic terminals of the myenteric 

plexus without affecting responses to exogenous ACh, thus demonstrating the prejunctional 

localization of the NOP receptor. In the three tissues the inhibitory effect of N/OFQ is not 

influenced by naloxone suggesting that classical opioid receptors are not targeted by the peptide. 

A similar picture has been found regarding the inhibitory effects of N/OFQ on sensory fibres 

on the guinea pig bronchus (Fischer et al., 1998; Rizzi et al., 1999b), renal pelvis and heart 

(Giuliani et al., 1996; Giuliani et al., 1997b), and cholinergic contractions of human bronchus 

(Basso et al., 2005). The rat anococcygeus has also been described as a preparation in which 

N/OFQ produces a concentration-dependent inhibition of the adrenergic motor response to 

electrical field stimulation, but does not affect the response to exogenous NA. In addition, selective 

opioid ligands do not exert any effect on this preparation, suggesting that in this preparation the 

NOP receptor occurs without the co-presence of the classical opioid receptors (Ho et al., 2000). In 

all the preparations analysed above, the N/OFQ-NOP receptor system displays a prejunctional 

inhibitory function, as do classical opioid receptors. 

Due to the widespread distribution of N/OFQ and NOP receptor, this peptidergic system is 

involved in a wide range of physiological responses with effects noted in the nervous system 

(central and peripheral), the cardiovascular system, the airways, the gastrointestinal tract, the 
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genitourinary and immune system. The role of this peptidergic system has been explored intensely 

with the pharmacological and biological tools available, such as i) antisense oligonucleotides 

targeting NOP receptor or ppN/OFQ gene, ii) antibodies directed against N/OFQ, iii) transgenic 

mice in which the receptor or the peptide precursor genes have been genetically eliminated, iv) 

selective and potent antagonists. Some of the more well-studied and noteworthy biological actions 

modulated by this system will be described below. 

 

1.4.1 Pain regulation 

Rodent studies 

Since the identification of N/OFQ there has been intense interest in the role of this peptide in 

pain processing. This is based on various factors, including the similarity of distribution of receptor 

and peptide to classical opioids within the defined pain pathway and the structural similarity to 

classical opioids. Application of N/OFQ has been shown to cause hyperalgesia, allodynia and 

analgesia. These conflicting findings are confounded by species and or strain differences in test 

animals, known to be fundamental in the supraspinal effects of nociception (Mogil et al., 1999). 

However, the route of administration and nociceptive paradigm under investigation are of 

paramount importance. 

 

When administred supraspinally, N/OFQ was shown to increase pain sensitivity in mice and 

rats in the two initial studies of the functions of this peptide (hence the name nociceptin; (Meunier 

et al., 1995; Reinscheid et al., 1995)). However, the hyperalgesic effect of N/OFQ was only seen 

after intracerebroventricular (i.c.v.), but not after intrathecal (i.t.) administration. It has been 

demonstrated that most prominent role of N/OFQ in supraspinal pain modulation is a “functional 

opioid antagonism” directed against many different opioid receptor agonists (Mogil et al., 2001). 

Since behavioural testing in pain models, in particular i.c.v. injections, expose animals to acute 

stress, the apparent pronociceptive action seen in the initial studies may thus be interpreted as the 
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reversal of stress-induced antinociception rather than as a genuine pronociceptive or hyperalgesic 

effect (Mogil et al., 2001). I.c.v. injection of N/OFQ was stressful, resulting in a release of central 

endogenous opioid peptides with their effects subsequently reversed by the delivered dose of 

N/OFQ (Lambert, 2008). The suggestion for an anti-opioid role of N/OFQ has since been 

corroborated by results obtained in a variety of assays: indeed, it has been shown that N/OFQ 

counteracts the analgesic effect of the endogenous opioids (Tian et al., 1997a; Tian et al., 1997b) or 

that of exogenously applied morphine (Bertorelli et al., 1999; Calo et al., 1998b; Grisel et al., 1996; 

Zhu et al., 1997) or that of selective opioid receptor agonists (King et al., 1998). Worthy of mention 

is the fact that tolerance develops to the antiopioid effects of N/OFQ (Lutfy et al., 1999). 

Since the NOP receptor and classical opioid receptors largely share the same transductional 

mechanisms, it is reasonable to speculate that their opposite effects on pain threshold are due to 

distinct localisations of N/OFQ and opioid peptides and their respective receptors on the neuronal 

networks involved in pain transmission at the supraspinal level. A cellular model explaining the 

antiopioidergic action of supraspinal N/OFQ focalizes on brain stem, in particular the nucleus raphe 

magnus of the RVM, the major site of supraspinal N/OFQ effects on pain processing. In this brain 

region, different types of neurons, so called ON and OFF cells, can be distinguished. ON cells fire 

immediately before a nociceptive reaction, while OFF cells are inhibited by the GABAergic ON 

cells and therefore silent at the same time. Activation of OFF cells induces spinal antinociception 

via descending antinociceptive tracts. MOP opioids inhibit ON cells and thereby cause a subsequent 

disinhibition of the antinociceptive OFF cells. By contrast, N/OFQ inhibits nearly all cell types in 

the RVM. Via a direct inhibition of OFF cells, N/OFQ counteracts the disinhibitory effects of MOP 

agonists on these cells and thereby reverses opioid-induced supraspinal analgesia. The same 

mechanism may also account for the apparent hyperalgesic effect of N/OFQ, providing a cellular 

basis for the reversal of stress-induced analgesia by N/OFQ. These studies demonstrate that the net 

effects of N/OFQ on nociception at supraspinal sites strongly depend on the activation state (resting 

versus sensitized) of pain controlling neuronal circuits (figure 1.8) (Zeilhofer and Calo, 2003). 
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The involvement of the NOP protein in the actions of N/OFQ on pain transmission has been 

investigated through the use of receptor antagonists, transgenic mice lacking the NOP receptor gene 

and with antisense oligonucletides. Indeed, the involvement of the NOP receptor in N/OFQ effects 

on nociception is supported by the following evidence: i) the pronociceptive action of N/OFQ is no 

longer present in NOP(-/-) mice (Nishi et al., 1997; Noda et al., 1998); ii) antisense 

oligonucleotides targeting the NOP receptor prevent the effect of N/OFQ (Tian et al., 1997b; Zhu et 

al., 1997); the pronociceptive effect of N/OFQ is reversed by NOP selective antagonists: 

[Nphe
1
]N/OFQ(1-13)-NH2 (Calo et al., 2000a; Di Giannuario et al., 2001; Rizzi et al., 2001b), 

UFP-101 (Calo et al., 2002), J-113397 (Ozaki et al., 2000; Yamamoto et al., 2001) and SB-612111 

(Rizzi et al., 2007a; Zaratin et al., 2004). 
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Figure 1.8. Schematic drawing showing how N/OFQ modulates synaptic transmission in the nucleus raphe 

magnus of the brain stem (A) and in the spinal cord dorsal horn (B). A, in the brain stem, MOP agonists 

including endogenous opioid peptides inhibit so-called secondary or ON cells. These cells are GABAergic 

and, in turn, inhibit descending antinociceptive OFF or primary cells. By inhibiting the ON cells, μ-opioids 

cause a disinhibition of OFF cells and elicit thereby antinociception. By contrast, N/OFQ inhibits both cell 

types at the same time. Under resting conditions, N/OFQ probably exerts no net effect on nociception. 

However, when MOP receptors on ON cells are activated N/OFQ can reverse this analgesia by inhibiting in 

addition OFF cells. B, in the spinal cord, N/OFQ selectively inhibits the release of glutamate and leaves the 

release of the inhibitory neurotransmitters glycine and GABA unaffected. Inhibition of glutamate release 

and the subsequent inhibition of nociceptive transmission through the spinal cord probably underlie the 

analgesic effect of nanomolar doses of spinally applied N/OFQ. NST by contrast reduces selectively the 

release of GABA and glycine via so far unknown 7-transmembrane receptor, but spares the release of 

glutamate. 

 

Many lines of evidence indicate that the spinal cord is an equally important CNS area for 

nociceptive processing and its modulation by N/OFQ and classical opioids. Neurons and fibres 

networks containing ppN/OFQ mRNA and N/OFQ like immunoreactivity have been located in the 

dorsal spinal cord (Lee et al., 1997; Mamiya et al., 1998; Meis et al., 1998; Meunier et al., 1995), 

and endogenously released N/OFQ can be detected following electrical field stimulation of the 

spinal cord (Lai et al., 2000). 
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The role of N/OFQ in modulating pain threshold in the spinal cord is controversial. 

Although some studies reported that i.t. injection of N/OFQ produces hyperalgesia/allodynia (Hara 

et al., 1997; Inoue et al., 1999) others found no effect (Grisel et al., 1996; Reinscheid et al., 1995). 

Most of the studies, however demonstrated that i.t. N/OFQ induces an antinociceptive effect similar 

to that evoked by classical opioid receptor agonists (Candeletti et al., 2000b; Erb et al., 1997; Hao 

et al., 1998; Kamei et al., 1999; King et al., 1998; Nazzaro et al., 2007; Wang et al., 1999; Xu et 

al., 1996). While tolerance develops to the antinociceptive effect of i.t. N/OFQ upon repeated 

administration, there is no cross tolerance with morphine, suggesting that different receptors are 

involved in the actions of the two agents (Hao et al., 1997). Differences in animal species or even in 

strains, as well as in N/OFQ doses used, may account for the conflicting results reported with 

N/OFQ in the spinal cord. Worthy of mention is the work of Inoue et al. (1999) showing the dose 

response curve to N/OFQ is bell-shaped: very low doses of peptide (fmol range) cause hyperalgesia, 

while at higher doses (nmol range) N/OFQ is antinociceptive and blocks the scratching, biting and 

licking induced by i.t. substance P. 

Collectively, the cellular mechanisms of the pronociceptive effects of N/OFQ in the spinal 

cord are still rather obscure, whereas inhibition of excitatory synaptic transmission presents as a 

clearly defined cellular mechanism underlying the spinal analgesia. The combination of opioid-like 

analgesia by N/OFQ at the level of the spinal cord with functional opioid antagonism at supraspinal 

sites, where most of the unwanted effects of classical opioids arise, has promoted the idea that NOP 

receptor agonists might be better tolerated spinally acting analgesics. It should however be noted 

that the only well studied non-peptide NOP receptor agonist Ro 64-6198 was anxiolytic, but not 

antinociceptive in acute pain rodent models (Jenck et al., 2000); Ro 64-6198 was recently reported 

to have an antiallodynic effect mediated by NOP receptors in a neuropathic pain model (Obara et 

al., 2005). Nevertheless, further studies with other NOP receptor agonists and in chronic pain 

models are desirable. 
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Nociceptive responses to acute noxious heat in NOP(-/-), ppN/OFQ(-/-) and double 

knockout mice were indistinguishable from those of NOP(+/+). However, NOP(-/-), ppN/OFQ(-/-) 

and double knockout mice showed markedly stronger nociceptive response during prolonged 

nociceptive stimulation (Depner et al., 2003). These results indicate that the N/OFQ system 

contributes significantly to endogenous pain control during prolonged nociceptive stimulation (e.g. 

formalin, zymosan A, writhing tests, SBL response to i.t. substance P), but does not affect acute 

(tail flick/immersion test) pain sensitivity (Depner et al., 2003). 

Similar to what seen at the spinal level in the periphery both pro and antinociceptive effects 

were reported for N/OFQ. For instance intradermal administration of very low doses of N/OFQ 

stimulates the flexor reflex in mice. This effect involves stimulation of the release of substance P 

from peripheral nerve endings. However at higher doses N/OFQ prevented the facilitatory effect of 

substance P (Inoue et al., 1999). In addition several groups reported the ability of N/OFQ to inhibit 

neuropeptide release from peripheral sensory neuron terminals in different organs including the 

airways, heart, and renal pelvis (Giuliani et al., 2000; Giuliani et al., 1996; Lee et al., 2006). 

 

Primate studies 

As far as the role of N/OFQ in modulating pain in primate species is concerned, extremely 

interesting are the studies of Ko and colleagues, that demonstrated that in non human primates 

spinal administration of N/OFQ or synthetic NOP ligands i) does not elicit any effect at low doses, 

ii) in the nanomolar range of doses induces a robust antinociceptive action that is sensitive to NOP 

antagonists but not naltrexone, iii) in contrast to morphine, does not induce pruritus and iv) elicits a 

synergistic antinociceptive effect when given in association with morphine (Ko et al., 2006). Thus 

evidence coming from non human primates strongly suggests NOP receptor agonists as spinal 

analgesics. Interestingly, this same research group demonstrated that the NOP selective non peptide 

agonist Ro 64-6198 given systemically is able to induce dose dependent antinociceptive effects in 

non human primates while being inactive in rodents. In monkeys antinociceptive doses of alfentanil 
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(and in generally of opioids) are associated with respiratory depression, itch/scratching responses 

and reinforcing effects under self-administration procedures while in parallel experiments 

antinociceptive doses of Ro 64-6198 did not produced these side effects (Ko et al., 2009). Further 

studies are however needed to draw firm conclusions on the therapeutic potential of systemic NOP 

agonists as analgesics. 

 

1.4.2 Modulation of locomotor activity 

One of the seminal investigations of N/OFQ reported a dose-dependent decrease in 

locomotor activity (i.e., hypolocomotion) when the peptide was given supraspinally (Reinscheid et 

al., 1995). This effect was significant only after i.c.v. application of 10 nmol N/OFQ. This finding 

was later confirmed by other authors in mice (Nishi et al., 1997; Noble et al., 1997; Noda et al., 

1998; Rizzi et al., 2001b). 

Repeated daily N/OFQ injections result in rapid development of tolerance to this depressor 

effect on locomotion behaviour (Devine et al., 1996). The action of N/OFQ is insensitive to 

naloxone (Noble et al., 1997), while it is reversed by NalBzOH (Noda et al., 1998). The locomotor-

inhibiting effects of N/OFQ seen in NOP(+/+) animals were not seen in NOP(-/-) mice, confirming 

the involvement of the NOP receptor in this effect (Nishi et al., 1997; Noda et al., 1998). However 

the spontaneous locomotor activity of NOP(-/-) mice is not different from that displayed by 

NOP(+/+) littermates which suggest that the N/OFQ-NOP receptor system does not play a tonic 

role in the physiological regulation of spontaneous locomotion. When microinjected directly into 

the hippocampus or ventromedial hypothalamus, but not the nucleus accumbens, high doses of 

N/OFQ (10–25 nmol) significantly decrease locomotor activity (Sandin et al., 1997). 

N/OFQ has also been reported to stimulate locomotor activity and exploratory behaviour at 

very low doses (0.01-0.1 nmol) (Florin et al., 1997). This effect of N/OFQ has been related to the 

anxiolitic-like actions of the peptide (Jenck et al., 1997). Thus, N/OFQ shows a biphasic dose 
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response curve for locomotor activity: stimulation at low doses (0.01-0.1 nmol), inhibition at high 

doses (1-10 nmol). 

It has been demonstrated that firing activity of dopaminergic cells of the substantia nigra, 

which express NOP receptors, is inhibited by microinjection of N/OFQ (Marti et al., 2004b). When 

microinjected into the substantia nigra, N/OFQ reduces dopamine release in the striatum and 

locomotor activity (Marti et al., 2004b). Conversely, the NOP receptor antagonists, UFP-101 and J-

113397, injected into the substantia nigra, enhanced striatal dopamine release and facilitated motor 

performance (Marti et al., 2004b). These data confirm that improvement in locomotor activity is 

due to the enhanced striatal dopamine release caused by blockade of endogenous N/OFQ signalling. 

The inhibitory role played by endogenous N/OFQ on motor activity was additionally strengthened 

by the finding that mice lacking the NOP receptor gene outperformed wild-type mice on the 

exercise stimulated locomotion (rotarod test) (Marti et al., 2004b). Microinjection of UFP-101 into 

the substantia nigra also reversed akinesia in haloperidol-treated (Marti et al., 2004a) or 6-

hydroxydopamine-hemilesioned rats (Marti et al., 2005). Enhancement of N/OFQ expression and 

release was observed in the latter parkinsonism model (Marti et al., 2005). Haloperidol-induced 

motor impairment and the dopaminergic neuronal toxicity induced by 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine, but not methamphetamine, were partially abolished in ppN/OFQ(-/-) mice 

(Brown et al., 2006; Marti et al., 2005). Increased locomotor activity was observed in NOP(-/-) 

mice (Marti et al., 2004b) and in rats treated with antisense-NOP (Blakley et al., 2004) or antisense-

ppN/OFQ (Candeletti et al., 2000a). These studies suggest that endogenous N/OFQ might have a 

negative regulation in striatal dopamine levels and motor activity. 

In the last few years, using a battery of behavioural tests, the group of Prof. Morari showed 

that NOP receptor antagonists such as J-113397 attenuated parkinsonian-like symptoms in 6-

hydroxydopamine hemilesioned rats by reducing glutamate release in the SN whereas deletion of 

the NOP receptor gene conferred mice partial protection from haloperidol-induced motor 

depression (Marti et al., 2005), They subsequently showed that coadministration of the NOP 
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receptor antagonist J-113397 and L-DOPA to 6-hydroxydopamine hemilesioned rats produced an 

additive attenuation of parkinsonism: J-113397 and L-DOPA decreased thalamic GABA release 

and attenuated akinesia, their combination resulting in a more profound effect (Marti et al., 2007). 

Very recently, it has been demonstrated that Trap-101, a non-peptide NOP antagonist, changes 

motor activity in naive rats and mice and alleviates parkinsonism in 6-hydroxydopamine 

hemilesioned rats: Trap-101 stimulates motor activity at 10 mg/kg and inhibits it at 30 mg/kg (Marti 

et al., 2008); such dual action was observed in NOP(+/+) but not in NOP(-/-) mice suggesting a 

specific involvement of NOP receptors (Marti et al., 2008). Overall, these studies provide novel 

insights into the mechanisms underlying the antiparkinsonian action of NOP receptor antagonists 

that may be used alone or as an adjunct to L-DOPA in the therapy of Parkinson‟s disease. This 

indication has also been confirmed in non-human primate studies (Viaro et al., 2008; Visanji et al., 

2008). 

 

1.4.3 Anxiety 

 Different laboratories have reported anxiolytic-like effects in response to i.c.v administration 

of N/OFQ in rodents in several models of anxiety. The peptide and its receptor are found in a 

number of central nervous system loci involved in emotion and stress regulation, including the 

amygdala, septal region, locus coeruleus, and hypothalamus (Neal et al., 1999a; Neal et al., 1999b). 

A number of standard behavioural assays reveal the ability of supraspinal N/OFQ to block 

fear and anxiety in both rats and mice (Jenck et al., 1997). Interestingly, these effects of N/OFQ 

were evident at relatively low doses (<1 nmol), which do not modify animal gross behaviour and 

are inactive with regard to other functions (i.e., nociception, food intake, etc.). Later, other 

laboratories confirmed the anxiolytic-like effects of the natural peptide N/OFQ in the elevated plus-

maze test (Gavioli et al., 2002; Vitale et al., 2006), in the holeboard test (Kamei et al., 2004), and in 

the defence test battery (Griebel et al., 1999). Furthermore, at relatively low doses, several non-

peptide agonists from Roche (Ro 65-6570 and Ro 64-6198) are generally reported as anxiolytic 
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(Varty et al., 2005; Wichmann et al., 1999). After peripheral administration in the range of doses 

0.1–3 mg/kg, Ro 64-6198 promoted anxiolytic-like effects in rats in the elevated plus-maze, fear-

potentiated startle, and operant conflict tests (Jenck et al., 2000). This has been corroborated by the 

findings that ppN/OFQ deficient mice display an increased susceptibility to acute and repeated 

stress, as compared to their wild-type littermates (Koster et al., 1999). In a study from Schering-

Plough the non-peptide agonist SCH 221510 was shown to be anxiolytic but with a reduced side-

effect profile when compared with benzodiazepines (Varty et al., 2008). Pfizer has recently reported 

two new non-peptide NOP receptor agonists: PCPB (Hirao et al., 2008a) and MCOPPB (Hayashi et 

al., 2009; Hirao et al., 2008b); both compounds are orally active and showed anxiolytic-like effects 

in mice. 

Importantly, very little information is present in the literature regarding the effects of 

selective NOP receptor antagonists on anxiety. It has been reported that the non-peptide molecule J-

113397 at 10 mg/kg i.p. antagonized the anxiolytic-like effect of Ro 64-6198 in the conditioned lick 

suppression test in rats without having any effect in this assay per se (Varty et al., 2005). Although 

very few studies have been performed to date on this topic, the available evidence obtained with 

two chemically unrelated NOP antagonists, i.e., J-113397 and UFP-101 (Gavioli et al., 2006; Vitale 

et al., 2006), suggest that the acute blockade of NOP receptor does not modify the level of anxiety 

in rodents. In other words, these results suggest that N/OFQergic signalling does not tonically 

control anxiety-related behaviour. 

Surprisingly, Fernandez et al. (2004) observed anxiogenic-like effects of N/OFQ given by 

i.c.v. injection in several anxiety-related procedures (i.e., open field, elevated plus maze, and dark-

light preference) in rats. Explanations given by the authors are a difference in baseline stress 

between studies, and/or strain differences. Even though a control experiment suggested that the 

anxiogenic-like effects were, at least in part, independent of effects on locomotion (Fernandez et al., 

2004), a more recent study by Vitale et al. (2006) may suggest the opposite. They replicated the 

anxiogenic-like effects of N/OFQ in the rat elevated plus-maze test, but observed anxiolytic-like 
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effects after 2 subsequent administrations of N/OFQ (Vitale et al., 2006). This change from 

anxiogenic- to anxiolytic-like effect of N/OFQ was accompanied by tolerance to the hypolocomotor 

effects of N/OFQ, suggesting that the anxiolytic-like effects of acute N/OFQ were masked by 

hypolocomotor effects. 

So far the anxiolytic mechanisms of N/OFQ are not well understood. It is likely that N/OFQ 

effects on anxiety may depend on the ability of this peptidergic system to modulate endogenous 5-

HTergic pathways since 5-HT is considered to play a pivotal role in the control of anxiety and fear 

(Millan, 2003). Moreover, recent findings suggested that the anxiolytic-like effects of N/OFQ might 

be mediated via activation of the GABA/benzodiazepine (Gavioli et al., 2008; Uchiyama et al., 

2008). It has also been suggested that N/OFQ can act as a functional corticotrophin releasing factor 

(CRF) antagonist, since it is able to revert the hypophagia induced by either stress or the central 

administration of CRF (Ciccocioppo et al., 2001). Since CRF is a major mediator of stress and a 

potent anxiogenic agent, the functional relationships between the N/OFQ and CRF systems are 

worthy of further investigation aimed at clarifying the mechanisms by which N/OFQ exerts its 

anxiolytic-like effects. 

Several lines of evidence also suggest that endogenous N/OFQ has an important role in 

anxiety and stress regulation. Enhanced anxiety was shown in ppN/OFQ(-/-) mice (Kest et al., 

2001; Ouagazzal et al., 2003; Reinscheid et al., 2002) and antisense-NOP treated rats (Blakley et 

al., 2004), but not in NOP(-/-) mice (Mamiya et al., 1998). Gavioli et al. (2007) demonstrated that 

there are no clear differences between NOP(-/-) and NOP(+/+) mice in some classical models of 

anxiety (open-field, hole-board and marble-burying tests). In contrast, when subjected to other 

models of anxiety such as novelty-suppressed feeding behaviour and the elevated T-maze test, 

NOP(-/-) mice display lower anxiety-related behaviours compared to NOP(+/+) mice (Gavioli et 

al., 2007). In the elevated plus-maze and light-dark box, NOP(-/-) mice displayed increased anxiety-

related behaviour (Gavioli et al., 2007). 
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Interestingly, the impact of ppN/OFQ deletion on the anxiety-like behaviours is more 

significant in group-housed, as compared with individual-housed mice, and male mice were more 

susceptible than females (Ouagazzal et al., 2003). In mice, differences in anxiety states are 

associated with differences in G protein coupling efficiency in the nucleus accumbens (but not in 12 

other brain regions) (Le Maitre et al., 2006). A likely explanation of this finding is that the observed 

increase in coupling in non-anxious mice leads to increased N/OFQ-mediated transmission and thus 

protects from anxiety (Le Maitre et al., 2006). 

However, the information that has been available to date has been too limited to propose a 

mechanistic interpretation of the anxiolytic-like effects of N/OFQ. Other studies aimed to the 

identification of the brain areas involved in this action are needed for a better understanding of 

N/OFQ role in this field. 

 

1.4.4 Mood 

 Studies performed in rodents subjected to behavioural despair tests support a role of the 

N/OFQ-NOP receptor system in the modulation of mood behaviours. 

NOP receptor antagonists, including [Nphe
1
]N/OFQ(1-13)-NH2, J-113397, UFP-101 and 

SB-612111 reduced immobility time in both the forced swim and tail suspension tests. N/OFQ 

(i.c.v.) alone did not affect immobility time (Gavioli et al., 2007; Gavioli et al., 2004; Redrobe et 

al., 2002). 

In our laboratories, using a combined pharmacological and genetic approach, we 

demonstrated that blockade of N/OFQ-NOP receptor signalling in the brain produces 

antidepressant-like effects in the mouse and rat forced swimming test and in the mouse tail 

suspension test. I.c.v. injection of N/OFQ did not induce any behavioural modification in mice, but 

the co-administration of 1 nmol of N/OFQ reversed the antidepressant-like effect induced by the 

NOP receptor antagonists UFP-101 (Gavioli et al., 2003; Gavioli et al., 2004). In addition, N/OFQ 

(1 nmol) also reverted the effects induced by the non-peptide NOP receptor antagonist J-113397 in 
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the mouse forced swimming test (Gavioli et al., 2006). Moreover, it has been demonstrated that 

antidepressant-like effects elicited by the selective NOP receptor antagonist UFP-101 are probably 

due to the block of the inhibitory effects of endogenous N/OFQ on brain monoaminergic (in 

particular serotonergic) neurotransmission (Gavioli et al., 2004). 

Whereas the immobility time in NOP(-/-) mice is less than that in NOP(+/+), the 

antidepressant-like effects of NOP receptor antagonists were not observed in NOP(-/-) mice 

(Gavioli et al., 2003), suggesting that endogenous N/OFQ plays a role in those depression-like 

behaviours. Treatment with UFP-101 (10 nmol) reduced immobility time in NOP(+/+) mice, while 

it was inactive in mice lacking the NOP receptor (Gavioli et al., 2003). Systemic administration of 

J-113397 (20 mg/kg) promoted a statistically significant reduction in immobility time in the forced 

swimming test in NOP(+/+), but not in NOP(-/-) animals. Additionally, SB-612111 (10 mg/kg, i.p.) 

reduced the immobility time in NOP(+/+) mice while being inactive in NOP(-/-) animals (Rizzi et 

al., 2007b). 

Vitale and colleagues investigated the effect of UFP-101 in the chronic mild stress paradigm 

in rats; UFP-101 (10 nmol/rat, i.c.v. continuously infused by means of minipumps for 24 days) did 

not influence sucrose intake in non stressed animals, but reinstated the basal sucrose consumption in 

stressed animals, beginning from the second week of treatment as did fluoxetine (10 mg/kg, i.p.), 

used as reference drug (Vitale, 2008). 

There is just one human study (Gu et al., 2003) in which plasma N/OFQ level was elevated 

in post-partum depressive women. This limited small study agrees with the notion that post-partum 

depression results from reduced 5-HT levels and that this is accompanied by elevated N/OFQ with 

the increase in N/OFQ possibly causing the fall in 5-HT (Lambert, 2008). Thus, NOP receptor 

antagonists may have the potential to be novel antidepressants. 
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1.4.5 Food intake 

 Soon after the isolation of N/OFQ, Pomonis and colleagues (1996) showed that supraspinal 

N/OFQ (1–10 nmol) increased food intake in satiated rats. N/OFQ effects are short-lasting, specific 

to food intake with neither water intake nor 1% sucrose intake affected, and accompanied by 

transient hypolocomotion (Polidori et al., 2000b). 

 N/OFQ hyperphagia can be blocked by antisense treatment to NOP mRNA (Leventhal et al., 

1998)), competitive NOP antagonism (Polidori et al., 2000b) and functional antagonism by 

nocistatin (Olszewski et al., 2000). Surprisingly, naloxone/naltrexone pretreatment also blocks 

N/OFQ effects on food intake (Leventhal et al., 1998; Pomonis et al., 1996), although this is 

probably due to classical opioid receptors being involved in feeding control at a distal site or 

affecting motivational processes related to food intake. In addition, it was shown that the orexigenic 

action of 1 nmol of N/OFQ was prevented by SB-612111 (1 mg/kg) and no longer evident in NOP(-

/-) animals, indicating that the orexigenic effects induced by N/OFQ are exclusively due to NOP 

receptor activation (Rizzi et al., 2007b). 

 The orexigenic action of N/OFQ is suggested to be attributed to both the inhibition of 

anorexigenic systems and the activation of orexigenic systems (Olszewski et al., 2004). N/OFQ has 

been found to inhibit pathways that promote termination of food intake in the hypothalamic satiety 

centers, such as oxytocinergic neurons in the paraventricular nucleus and neurons in the arcuate 

nucleus (Olszewski et al., 2004). Moreover, Ciccocioppo et al. (2004) found that N/OFQ, at doses 

without hyperphagic effects, inhibited stress-induced anorexia and that this anti-anorexic effect is 

due to the fact that N/OFQ acts as a functional antagonist of CRF at the bed nucleus of the stria 

terminalis (Ciccocioppo et al., 2004). [Nphe
1
]N/OFQ(1-13)-NH2 did not affect food consumption 

per se in satiated rats, but reduced that in food-deprived rats (Polidori et al., 2000b). UFP-101 also 

did not affect free feeding in the rat (Economidou et al., 2006b). This suggested that endogenous 

N/OFQ plays a role in orexigenic tone in response to food deprivation but not in normal feeding. On 

the contrary, (Rizzi et al., 2007a) showed that the antagonist SB-612111 (1 and 10 mg/kg, i.p.), 
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tested in food deprived mice, did not modify food intake. Thus, the data obtained with SB-616211 

suggest that in mice, unlike in rats (Polidori et al., 2000b), the N/OFQ-NOP receptor system does 

not play a major role in controlling food intake induced by food deprivation. N/OFQ may also 

increase food intake by decreasing the release of the anorectic peptide cocaine and amphetamine 

regulated transcript and/or increasing the release of the orexigenic peptide Agouti related protein 

(Bewick et al., 2005). In addition there is evidence that corticosterone and central glucocorticoid 

receptors are involved in the orexigenic action of N/OFQ. All these studies indicate that the 

hyperphagic and the anti-anorectic effect of N/OFQ are mediated by separate brain structures and 

those synthetic N/OFQ agonists might have therapeutic potential as orexigenic drugs (Ciccocioppo 

et al., 2004; Economidou et al., 2006b). 

 

1.4.6 Reward and addiction 

 In animal models aimed at elucidating the rewarding properties of drugs of abuse the 

conditioned place preference (CPP) test is commonly used. In this assay N/OFQ has been shown to 

reduce CPP to alcohol (Ciccocioppo et al., 1999; Kuzmin et al., 2003), amphetamines (Kotlinska et 

al., 2003), cocaine (Kotlinska et al., 2003; Sakoori et al., 2004), and morphine (Sakoori et al., 

2004) indicating that this peptide was reducing reward to these stimuli. N/OFQ alone was inactive. 

All these experiments measured the acquisition or reinstatement of drug preferences, either as a 

conditioned response (place preference) or self-administration of the drug itself. However, it should 

be mentioned that N/OFQ failed to block heroin self-administration (Walker et al., 1998). Another 

study also showed that N/OFQ was effective in preventing stress-induced alcohol-seeking 

behaviour but not cocaine-seeking behaviour (Martin-Fardon et al., 2000). Finally, one study 

demonstrated that N/OFQ was able to block sensitization to cocaine, independent of context (Lutfy 

et al., 2002). 

 Since the mesolimbic dopaminergic system plays a pivotal role in opioid rewarding 

properties (Wise, 1989), it has been suggested that N/OFQ attenuates conditioned place preference 
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to any type of drug of abuse by inhibiting its stimulatory effect on mesolimbic dopamine release 

from the nucleus accumbens (Murphy et al., 1999). In fact, i.c.v. N/OFQ effectively inhibits 

dopamine release (as evaluated by in vivo microdialysis) in the nucleus accumbens of the rat 

stimulated by systemically injected morphine (Di Giannuario et al., 1999). Alternatively, the 

inhibitory effects of N/OFQ could be explained by the finding that N/OFQ inhibits GABAergic 

transmission and blocks ethanol-induced increase of GABA release in the central amygdala 

(Roberto et al., 2006). Interestingly, Ciccocioppo et al. (2007) found that buprenorphine, a partial 

agonist at MOP and NOP receptors, increased alcohol intake at lower doses through MOP receptors 

while decreased it at higher doses through NOP receptors. It is suggested that the therapeutic 

potential of buprenorphine in drug addiction might be attributed to NOP receptor activation.

 Recent findings demonstrated that the psychostimulant and rewarding actions of 

buprenorphine were enhanced in NOP(-/-) mice as compared to their NOP(+/+) littermates. 

However, these actions of morphine were not altered in mutant mice. Buprenorphine displaced 

specific binding of [
3
H]-N/OFQ in brain homogenates of NOP(+/+) mice; together these results 

suggest that the ability of buprenorphine to interact with NOP receptor compromises its acute motor 

stimulatory and rewarding actions (Marquez et al., 2008a).  

Other studies conduced on NOP(-/-) mice reported that mice are more sensitive to the 

rewarding effect of cocaine (Marquez et al., 2008a), nicotine (Sakoori et al., 2009), 

methamphetamine and alcohol (Sakoori et al., 2008). It was also previously reported that systemic 

administration of J-113397 potentiates the acquisition of cocaine-induced CPP in mice (Marquez et 

al., 2008b). In line with these findings are the studies conduced by Rutten and colleagues (2011) on 

NOP knockout rats and rats treated with  J-113397, which demonstrates that both pharmacological 

blockade and genetical ablation of the NOP receptor facilitates morphine-induced reward as 

assessed in a CPP paradigm in rats. 

Recent human studies indirectly support the involvement of the NOP system in alcohol and 

drug abuse/dependence as well. For example, Kuzmin et al. (2009) reported that alcoholic patients 
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showed reductions in the expression of the ppN/OFQ gene and the NOP receptor gene in the 

hippocampus and amygdala, respectively. Furthermore, evidence from human genetic studies 

implies an association between alcohol and drug abuse and several single nucleotide 

polymorphisms (SNPs) of the genes. As such, it was demonstrated that genetic variants of 

the NOP gene were associated with vulnerability to develop opiate addiction in a Caucasian 

population (Briant et al., 2003) and to play a role in Type I and Type II alcohol dependence in a 

Scandinavian population (Huang et al., 2008). Although neither gene appeared to be associated with 

alcohol or drug dependence, two SNPs in ppN/OFQ showed a marginal association with alcoholism 

and one with drug dependence, and two SNPs in NOP were marginally associated with opioid 

dependence (Xuei et al., 2008). Therefore, further research is required before definitive conclusions 

can be drawn on the possible involvement of the NOP system in human drug abuse and addiction.

 Also more work is obviously necessary to fully understand the effects of N/OFQ on drug 

reward and the mesolimbic dopamine system; it appears that N/OFQ agonists might provide useful 

compounds to control the rewarding properties of drugs. 

 

1.4.7 Learning and memory 

 N/OFQ may play a role in memory and learning processes since there is a high density of 

NOP receptors in the anterior cingulate, frontal cortex, basolateral complex of the amygdala and 

hippocampus. In fact N/OFQ injected into the hippocampus impairs spatial learning (Sandin et al., 

1997) and in vitro it inhibits synaptic transmission and long-term potentiation in rat hippocampal 

slices (Yu et al., 1997). Later, it was also seen that endogenously released N/OFQ interacts with 

noradrenergic activity within the basolateral complex of the amygdala in modulating memory 

consolidation (Roozendaal et al., 2007). 

 In line with these findings, NOP(-/-) mice show greater learning ability and have better 

memory retention than wild-type control mice.  Knockout mice lacking the NOP receptor displayed 

facilitated learning and memory in the water maze task and enhanced LTP induction in the 
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hippocampal CA1 region (Manabe et al., 1998). The impairment of learning induced by N/OFQ can 

be reversed by nocistatin (Hiramatsu et al., 1999) or by the non-selective NOP receptor antagonist 

NalBzOH (Mamiya et al., 1999). Moreover, a peptidic NOP receptor antagonist Ret-Noc-OMe, has 

been reported to strengthen memory retention in a passive avoidance test in mice (Jinsmaa et al., 

2000). It is worthy of note that pre-treatment with [Nphe
1
]N/OFQ(1-13)-NH2, a NOP receptor 

antagonist, prevented NOP-induced deficits. Using a pure pharmacological approach, i.e. NOP 

receptor blockade, a role for the N/OFQ and its receptor in learning and memory has been 

demonstrated (Redrobe et al., 2000). A recent study showed that intracerebroventricular or 

intrahippocampal infusions of N/OFQ impair long-term memory formation in the mouse object 

recognition task (Kuzmin et al., 2009). The synthetic NOP receptor agonist Ro 64-6198, 

administered systemically, also produced amnesic effects that were blocked by coinfusion of the 

NOP receptor antagonist UFP-101, into the dorsal hippocampus. In contrast, Ro 64-6198 had not 

effect on short-term memory or recall performances (Goeldner et al., 2008). Immunoblotting 

analysis revealed a strong suppressive action of Ro 64-6198 on learning-induced upregulation of 

hippocampal extracellular signal-regulated kinase (ERK) phosphorylation, which is crucial for 

long-term information storage (Goeldner et al., 2008). Thus, N/OFQ-NOP receptor system 

negatively regulates long-term recognition memory formation through a hippocampal ERK 

signalling mechanism (Goeldner et al., 2008). 

Collectively, these findings suggest that the N/OFQ-NOP receptor system may play negative 

roles in learning and memory, and that NOP receptor antagonists might be worthy of testing as 

drugs for memory disorders. 

 

1.4.8 Effects in the gastro intestinal system 

Like morphine or other opioid receptor agonists, N/OFQ inhibits in vitro neurogenic 

contractions of the stomach and the small intestine in a variety of species, including guinea pigs 

(Calo et al., 1997; Zhang et al., 1997a), pigs (Osinski et al., 1999b), rats (Yazdani et al., 1999) and 
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rabbits (Pheng et al., 2000). This depressor effect is resistant to blockade by naloxone. In contrast, 

N/OFQ causes concentration-dependent contractions in proximal rat colon, without changes in 

stomach, jejunum or ileum (Taniguchi et al., 1998; Yazdani et al., 1999). N/OFQ also contracts 

proximal and distal segments of mouse colon (Menzies et al., 1999; Osinski et al., 1999a; Rizzi et 

al., 1999a). 

In vivo, similar to opioids, central administration of N/OFQ also inhibits colon transit in the 

mouse (Osinski et al., 1999a). On the other hand, Taniguchi and colleagues (1998) reported that 

N/OFQ administered subcutaneously in rats actually accelerated transit rate in the large intestine, an 

action opposite to that induced by morphine or selective opioid receptor agonists. Broccardo and 

colleagues demonstrated that the NOP receptor antagonist [Nphe
1
]N/OFQ(1-13)-NH2 blocked the 

N/OFQ-evoked gastrointestinal anti-transit effect (Broccardo et al., 2004). It is worthy of note that 

[Nphe
1
]N/OFQ(1-13)-NH2 per se stimulated gastric acid secretion.  

Distal colonic contractions induced by N/OFQ were also dose-dependently antagonized by 

the NOP non-peptide antagonist J-113397 that behaves as selective NOP antagonist in the rat colon 

(Tada et al., 2002). 

All these findings led suggest that the N/OFQ-NOP receptor system is pharmacologically 

distinct from opioids but functionally very similar, and could represent a new target for the 

development of drugs (NOP receptor agonists) to reduce intestinal motility. 

In addition to the well-characterized inhibition of gastric motility, recent studies 

demonstrated that N/OFQ increases gastric mucosal resistance to ethanol induced lesions by acting 

both at central and peripheral levels (Morini et al., 2005). This effect is mediated by the NOP 

receptor since the selective NOP antagonist UFP-101 completely prevents the protective effects of 

N/OFQ (Morini et al., 2005). There is evidence for central and peripheral components to the 

regulation of gastrointestinal function: vagal cholinergic and sympathetic pathways mediate the 

central activity of N/OFQ, whereas vagal non-muscarinic pathways mediate the peripheral activity 

of the peptide (Broccardo et al., 2004; Ishihara et al., 2002).  
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An elegant study recently showed that N/OFQ and UFP-112, a novel highly potent NOP 

agonist, when administered intracerebroventrically and intraperitoneally decreased bead expulsion 

time and reduce the percentage of rats with castor oil-induced diarrhoea; UFP-112 showed greater 

efficacy, higher potency and longer-lasting effects than N/OFQ (Broccardo et al., 2008). These 

findings indicate that, in the rat, the central and peripheral N/OFQ system has an inhibitory role in 

modulating distal colonic propulsive motility under physiological as well as pathological conditions 

(Agostini et al., 2009; Broccardo et al., 2008). 

 

1.4.9 Effects in the airways 

N/OFQ was found to inhibit neurogenic contractions of the guinea pig isolated bronchus 

(Fischer et al., 1998; Rizzi et al., 1999b), of the rat trachea and bronchus (Wu et al., 2000), and of 

the cholinergic contractions of human bronchus (Basso et al., 2005). 

N/OFQ inhibited the cough responses provoked by capsaicin in guinea pigs or by 

mechanical stimulation of intrathoracic airways in cats (Bolser et al., 2001; McLeod et al., 2001). 

These antitussive actions might be mediated at both central and peripheral sites. 

N/OFQ decreased capsaicin-induced Ca
2+

 influx in nodose ganglia (McLeod et al., 2004), 

the sensory ganglia involved in the cough reflex (Reynolds et al., 2004), and the airway contraction 

in a manner blocked by tertiapin, an inwardly rectifying K
+
 channel blocker (Jia et al., 2002). In the 

brain, there are dense NOP receptors in the medullar nucleus tractus solitarius (Anton et al., 1996), 

which provides polysynaptic inputs to second-order neurons that modulate respiratory neuron 

activities (Reynolds et al., 2004). 

The antitussive effect of N/OFQ can be mimicked by the non-peptide agonist Ro 64-6198 in 

a J-113397-sensitive manner (McLeod et al., 2004). Codeine is the current gold-standard antitussive 

agent but has a poor side-effect profile that is typical of MOP receptor agonists (such as nausea, 

constipation, tolerance and dependence). So, orally active NOP agonists might represent a viable 

alternative for the treatment of cough (Lambert, 2008). 
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1.4.10 Cardiovascular system 

When given intravenously (i.v.) in anaesthetised rats, N/OFQ induces transient hypotension 

and bradycardia (Champion et al., 1997; Giuliani et al., 1997b). Similar results have been obtained 

in conscious rats (Kapusta et al., 1997) and mice (Madeddu et al., 1999), indicating that anaesthesia 

does not affect the cardiovascular effects of N/OFQ and that these effects are not restricted to the 

rat. Interestingly, N/OFQ induces similar cardiovascular effects when injected i.c.v. (Kapusta et al., 

1997) or into the rostral ventrolateral medulla of the rat (Chu et al., 1999). The effects occur at both 

central and peripheral sites. The most compelling evidence for peripheral effects is in the 

hypotension and bradycardia produced by intravenous administration of N/OFQ, a peptide that does 

not cross the blood-brain barrier (Lambert, 2008). It has been suggested that as the sympatholytic 

guanethidine reduced the hypotensive effects of N/OFQ, then this peptide acts to inhibit 

sympathetic control of the cardiovascular system (Giuliani et al., 1997a). In addition, the 

bradycardic effects of N/OFQ were reduced by vagotomy, indicating that N/OFQ increased 

parasympathetic activity (Giuliani et al., 1997a). 

On the other hand, N/OFQ has been shown to increase blood pressure and heart rate in sheep 

following i.v. administration (Arndt et al., 1999). Thus, there may be important differences in the 

cardiovascular effects of N/OFQ in different species. 

N/OFQ also produces vasodilatation in several isolated arteries of the cat (Gumusel et al., 

1997) and in pial arteries of the pig (Armstead, 1999) and in the mesenteric resistance arteries of the 

rat (Champion et al., 1998). These studies also demonstrated that the vasodilator responses to 

N/OFQ were not prevented by naloxone, nitric oxide synthase inhibitors, atropine, phentolamine or 

by a CGRP receptor antagonist. Recently a study showed that in a rat mesenteric microcirculation 

model, intravenous administration of N/OFQ dilated arterioles and venules (Brookes et al., 2007); 

dilation of these non-innervated vessels was blocked by histamine antagonists and mast-cell 

stabilizers, suggesting that the N/OFQ-mediated dilation of the microcirculation is possibly due to 

mast-cell release of histamine.  
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1.4.11 Renal function 

 The i.v. infusion of N/OFQ produces a marked increase in urine flow rate and a decrease in 

urinary sodium excretion (Kapusta et al., 1997). Concurrent with diuresis, N/OFQ infusion 

produced hypotension with no change in heart rate; this is in contrast to the concurrent bradycardia 

and hypotension elicited by N/OFQ when this peptide is administered as an i.v. bolus (Bigoni et al., 

1999; Champion et al., 1997; Giuliani et al., 1997b; Madeddu et al., 1999), intrathecally (Lai et al., 

2000), or when microinjected into the lateral cerebroventricle (Kapusta et al., 1999a; Kapusta et al., 

1999b; Kapusta et al., 1997; Shirasaka et al., 1999). Low doses of N/OFQ (i.v. infusion) also 

tended to decrease urinary sodium excretion without changes in heart rate or mean arterial pressure. 

These findings also suggest that the i.v. infusion of low doses of N/OFQ can be used to separate the 

cardiovascular and renal responses produced by this compound, with the peptide having a more 

pronounced effect on the renal handling of water (Kapusta, 2000). Following i.c.v. microinjection, 

N/OFQ produced a marked diuresis, antinatriuresis and renal sympathoinhibition in conscious rats 

(Kapusta et al., 1999a; Kapusta et al., 1999b; Kapusta et al., 1997; Shirasaka et al., 1999). 

It is worthy of note that the NOP partial agonists Ac-RYYRWK-NH2, Ac-RYYRIK-NH2 

(Dooley et al., 1997), [F/G]N/OFQ(1-13)-NH2 (Guerrini et al., 1997), ZP120 (Larsen et al., 2001) 

have been shown to behave as full agonists on cardiovascular and renal functions, mimicking the 

effects of N/OFQ, when given i.c.v. (Kapusta et al., 1999a). In contrast, the i.v. bolus injection of 

the same NOP receptor partial agonists produced responses unlike N/OFQ; N/OFQ evoking 

profound bradycardia and hypotension with no change in urine output, and i.v. bolus NOP receptor 

partial agonists eliciting water diuresis without altering cardiovascular function (Kapusta et al., 

2005a; Kapusta et al., 2005b). Indeed, Kapusta et al. showed that ZP120 (i.v. bolus or infusion) 

produced, in rats, a sodium-potassium-sparing aquaresis and a mild vasodilatory response without 

reflex tachycardia (Kapusta et al., 2005b). 
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Activation of NOP receptors in the paraventricular nucleus (PVN) of the hypothalamus by 

N/OFQ produces bradycardia, renal sympathoinhibition, and water diuresis. Recently, Krowicki et 

al. (2006) showed that endogenous N/OFQ produces a tonic inhibition on PVN activity since UFP-

101, when injected into the PVN, increased heart rate and renal sympathetic nerve activity and 

decreased urine flow rate. 

In summary, it was seen that in conscious rats NOP receptor partial agonists produced 

functionally selective effects on cardiovascular and renal function ranging from full agonist (i.c.v., 

cardiovascular depressor; i.c.v. and i.v., water diuresis), partial agonist (i.v., submaximal 

hypotension without altering heart rate) to antagonist (i.v., blockade of N/OFQ-evoked bradycardia 

and hypotension) behaviour. Based on their ability to produce a selective water diuresis after i.v. 

bolus injection without apparent adverse cardiovascular or CNS effects, it can be proposed that 

metabolically stable NOP receptor partial agonists (e.g., ZP120; (Kapusta et al., 2005b)) may be 

useful therapeutically as novel peripherally acting aquaretics for the acute management of severe 

water retention and/or hyponatremia. In fact, ZP120 was selected for clinical development as 

treatment of acute decompensated heart failure 

 

 

1.4.12 Micturition reflex 

In anaesthetised rats, i.v. N/OFQ produced a dose-dependent suppression of the micturition 

reflex induced by bladder distension or by topical application of capsaicin (Giuliani et al., 1998). 

Similar results were obtained by administering the peptide i.c.v. or i.t. indicating that N/OFQ 

inhibits the micturition reflex by acting at peripheral, spinal and supraspinal sites (Lecci et al., 

2000). All these effects are not affected by naloxone, thus excluding the involvement of opioid 

receptors. These animal studies were later confirmed in clinical investigations. Indeed, the 

urodynamic and clinical effects of N/OFQ were evaluated in normal subjects and in patients with 

neurogenic bladder. A preliminary report (Lazzeri et al., 2001) and a subsequent randomized, 
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placebo controlled, double-blind study (Lazzeri et al., 2003) demonstrated that intravescical 

instillation of 1 μM N/OFQ solution produce an inhibitory effect on micturition reflex in selected 

groups of patients suffering from neurogenic incontinence but not in normal subjects. These effects 

of N/OFQ are due to its ability to selectively activate the NOP receptor as suggested by the fact that 

[desPhe
1
]N/OFQ, a N/OFQ metabolite which does not bind NOP receptor (Kapusta et al., 1999a), 

is inactive in these patients (Lazzeri et al., 2003). Moreover, a more recent study (Lazzeri et al., 

2006) demonstrated that a daily treatment with 1 mg N/OFQ intravescically for 10 days, but not the 

placebo, inhibited the micturition reflex in patients suffering from neurogenic incontinence, thus 

demonstrating the clinical efficacy of a prolonged NOP receptor agonist treatment. Based on these 

findings N/OFQ selective and potent peptide agonists with long lasting effects in vivo may be 

proposed as innovative drugs for treating patients suffering from neurogenic incontinence. 

Moreover, Malaguti and colleagues in 2007  performed the neurophysiological assessment of the 

nociceptive flexion reflex in four healthy subjects and in five patients with lower urinary tract 

symptoms to investigate the N/OFQ neuronal site and functional mechanism of action. N/OFQ 

seems to selectively inhibit vesical sensory innervation in patients with lower urinary tract 

symptoms as it exerts a tonic inhibitory modulation of the nociceptive reflex, which is mediated by 

descending pathways (Malagutti et a., 2007). In healthy subjects N/OFQ modulation of the 

nociceptive reflex is not functionally active. These findings seem to provide evidence that N/OFQ is 

involved in the pathophysiology of lower urinary tract symptoms and make them attractive targets 

for new therapies. 

 

1.4.13 Immune system 

NOP receptors and N/OFQ are widely distributed throughout the immune system. NOP 

receptor mRNA and protein have been found in a variety of immune cells including mouse 

lymphocytes (Halford et al., 1995), human peripheral blood mononuclear cells (Wick et al., 1995) 

and human circulating granulocytes, lymphocytes and monocytes (Fiset et al., 2003; Peluso et al., 
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1998). Neutrophils are thought to be a source of N/OFQ in inflammatory tissues (Fiset et al., 2003). 

N/OFQ can function as an immunosuppressant by suppressing antibody production in mouse 

lymphocytes, by decreasing proliferation of phytohemagglutinin-stimulated PBMCs, and by 

inhibiting mast cell function (Civelli, 2008). In addition, it was shown that N/OFQ stimulates 

human monocyte chemotaxis via NOP receptor activation (Trombella et al., 2005).  

Carvalho and colleagues (2008) performed a caecal ligation/perforation model of sepsis and 

found that administration of N/OFQ in rats exacerbated the inflammatory process and increased 

mortality. Animals treated with N/OFQ had 100% mortality, compared with 70% in the control 

untreated group and 50% in those treated with NOP antagonist UFP-101 (Carvalho et al., 2008). 

N/OFQ treatment also increased plasma concentrations of TNFα and IL-1β. In addition, using 

anaesthetized (but non-septic) rats, Brookes and colleagues (2007) showed that N/OFQ produced an 

inflammatory response. In mesenteric vessels, there was vasodilatation, macromolecular leak, and 

leucocyte adhesion (Brookes et al., 2007). 

Conversely, intracerebroventricular administration of N/OFQ led to reduced cytokine 

production by peritoneal macrophages in rats undergoing exploratory laparotomy (Zhao et al., 

2002). It is possible that there is a difference in the immune response to N/OFQ between peripheral 

and central administration, and this is an avenue for further investigation. 

Further supporting evidence for the role of N/OFQ in the inflammatory response comes 

from gene NOP knockout mice where the gene for NOP is absent. A study of mice with induced 

colitis compared NOP(+/+) with NOP(−/−) mice (Kato et al., 2005). Administration of oral dextran 

sulphate sodium caused bloody diarrhoea in the NOP(+/+) group but normal stools in the 

NOP(−/−) group. On histological examination, the colon of NOP(+/+) mice had crypt distortion and 

increased number of lymphocytes, macrophages, and neutrophils (evidence of colitis), compared 

with normal crypts and reduced number of inflammatory cells in the NOP(−/−) group. This 

demonstrated that the absence of NOP significantly reduced the inflammatory response to a known 

pro-inflammatory stimulus. There is a need for further observational and mechanistic studies in 
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patients with established inflammatory processes or sepsis. These studies may facilitate the design 

of appropriate clinical studies to evaluate NOP ligands as modifiers of the inflammatory response. 

In a small study of 21 critically ill patients admitted to ICU with a diagnosis of sepsis, plasma 

N/OFQ concentrations over four consecutive days were measured. Plasma concentrations of N/OFQ 

at ICU admission were increased in patients who subsequently died (n=4) compared with those who 

survived (n=17) (Williams et al., 2008). More data are required to confirm these findings. 

 

1.5 Knockout animals 

Transgenic animals in particular receptor knockout represent essential research tools in 

modern pharmacology. For instance receptor knockout animals allow researchers to perform simple 

and meaningful experiments to investigate the in vivo selectivity of action of standard and novel 

receptor ligands and the involvement of the receptor in the control of a given biological function. In 

most cases the phenotype of receptor knockout animals is similar to what observed in normal 

animals after the administration of a selective receptor antagonist. An example of the massive 

increase in knowledge deriving from the use of knockout mice is summarized in the review by 

Kieffer (1999): “mice lacking opioid receptors or opioid peptides have been produced by gene 

targeting, providing molecular tools to study opioid function in vivo. Observations on mutant mice 

have shed new light on the mode of action of opioids, opioid receptor heterogeneity and 

interactions, and the involvement of each component of the opioid system in mouse physiology”. 

As far as the N/OFQ-NOP receptor system is concerned, transgenic knockout mice lacking 

functional expression of the NOP receptor gene (Oprl1; chromosome 2, 110cM) or the ppN/OFQ 

gene (Npnc1; genomic location unknown) are available to the scientific community. NOP(-/-) mice 

were first generated in 1997 (Nishi et al., 1997). Autoradiography studies demonstrated complete 

loss of N/OFQ binding in the brain of these animals. Subsequent in vitro functional studies 

demonstrated that in tissues taken from NOP(-/-) mice N/OFQ no longer elicits any effect. This 

includes data from bioassay studies (contractile action in the colon (Di Giannuario et al., 2001), 
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inhibitory effect in the electrically stimulated vas deferens(Carra et al., 2005a), inhibition of 

capsaicin induced bronchoconstriction (D'Agostino et al., 2010)), to neurochemical investigations 

(inhibition of serotonin release from cerebral cortex synaptosomes (Mela et al., 2004)), as well as to 

electrophysiological studies (inhibition of excitatory transmission in the spinal cord (Ahmadi et al., 

2001)). In addition, in vivo studies on NOP(-/-) mice demonstrated that the N/OFQ actions 

examined to date are solely mediated by NOP receptor activation. Receptor knockout studies are 

available in the literature regarding the following biological actions of N/OFQ: supraspinal 

pronociceptive (Nishi et al., 1997; Noda et al., 1998) and spinal antinociceptive effects (Nazzaro et 

al., 2007), induction of bradycardia, hypotension and diuresis (Burmeister et al., 2008), stimulation 

of food intake (Rizzi et al., 2007b) and inhibition of locomotor activity (Marti et al., 2004b; Nishi et 

al., 1997; Noda et al., 1998).  

NOP(-/-) mice were also used for investigating their phenotype. Nociceptive responses to 

acute noxious heat in NOP(-/-) were indistinguishable from those of NOP(+/+) mice (Depner et al., 

2003; Di Giannuario et al., 2001; Nishi et al., 1997). However, NOP(-/-) showed markedly stronger 

nociceptive responses during prolonged nociceptive stimulation (i.e. the formalin test). These 

results indicate that the N/OFQ system contributes significantly to endogenous pain control during 

prolonged nociceptive stimulation but does not affect acute pain sensitivity (Depner et al., 2003; 

Rizzi et al., 2006). NOP(-/-) mice presented an antidepressant phenotype in the forced swimming 

and tail suspension test (Gavioli et al., 2003). Several lines of evidence also suggest that 

endogenous N/OFQ has an important role in anxiety and stress regulation. No enhanced anxiety 

was shown in NOP(-/-) mice (Mamiya et al., 1998). Gavioli et al. (2007) demonstrated that there 

are no clear differences between NOP(-/-) and NOP(+/+) mice in some classical models of anxiety 

(open-field, hole-board and marble-burying tests). In contrast, when subjected to other models of 

anxiety such as novelty-suppressed feeding behaviour and the elevated T-maze test, NOP(-/-) mice 

display lower anxiety-related behaviours compared to NOP(+/+) mice (Gavioli et al., 2007). In the 

elevated plus-maze and light-dark box, NOP(-/-) mice displayed increased anxiety-related 
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behaviour (Gavioli et al., 2007). Increased locomotor performance in rotarod assay was observed in 

NOP(-/-) mice (Marti et al., 2004b). This study suggest that endogenous N/OFQ signalling might 

have a negative regulation on motor activity. NOP(-/-) mice show greater learning ability and have 

better memory retention than wild-type control mice.  Knockout mice  displayed facilitated learning 

and memory in the water maze task and enhanced LTP induction in the hippocampal CA1 region 

(Manabe et al., 1998). 

Mice knockout for the ppN/OFQ gene have been also generated (Koster et al., 1999). 

However these ppN/OFQ(-/-) animals were only used in a small number of studies. The limited 

information available suggests that these animals behave in a similar manner as NOP(-/-) mice in 

terms of pain transmission (Depner et al., 2003) while they display differences from receptor 

knockout animals in terms of response to stress (Kest et al., 2001; Ouagazzal et al., 2003; 

Reinscheid et al., 2002). However parallel experiments with NOP(-/-) and ppN/OFQ(-/-) mice 

should be performed before drawing firm conclusions on behavioural differences between the two 

mutant genotypes. Moreover the following consideration is worthy of mention. As indicated in 

section 1.3 the ppN/OFQ gene codes for, in addition to N/OFQ, other biologically active peptides. 

Since ppN/OFQ(-/-) mice do not express N/OFQ as well as the other peptides encoded by the same 

gene caution should be exerted in interpreting behavioral differences between ppN/OFQ(-/-) and 

ppN/OFQ(+/+) mice as solely due to the lack of the N/OFQ peptide.  

 

1.6 Pharmacology of NOP receptors 

From the numerous modulatory actions of N/OFQ on several biological functions, it is clear 

that NOP receptor may represent an important molecular target for the development of novel 

therapeutics for several pathological conditions. The identification of new molecules possibly of 

non-peptide nature that selectively activate (agonists) or block (antagonists) the NOP receptor will 

represent a major achievement in this research field, providing pharmacological tools for 
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clarification of the physiological and pathophysiological roles of the this new system and ultimately 

for the identification of possible therapeutic agents acting at the NOP receptor. 

Peptide compounds usually show high selectivity and specificity but low metabolic stability 

and limited distribution. In contrast, non-peptide molecules demonstrate better pharmacokinetic 

features while their specificity is often low. There is an evident interest of academia and 

pharmaceutical companies in developing both agonist and antagonist ligands for the NOP receptor 

as potential drugs for various human disorders (see series of patents quoted by Zaveri (2003) and 

Bignan et al. (2005)). 

 

Peptide ligands 

N/OFQ shows a significant homology with dynorphin A. The first four amino acids differ 

from the canonical opioid sequence only by the presence of Phe
1
 instead of Tyr

1
. This difference 

may be sufficient to prevent N/OFQ binding to opioid receptors. In fact, replacement of Phe
1
 by 

Tyr
1
 results in a peptide that also binds the opioid receptors (Calo et al., 1997; Varani et al., 1999). 

Amidation of the C-terminus (N/OFQ-NH2) maintains full potency and activity (Guerrini et al., 

1997). C terminal truncation studies showed that up to four C-terminal amino acids can be deleted 

without loss of activity. Although the free acid N/OFQ(1–13)-OH loses receptor affinity, amidation 

of the C-terminus to give N/OFQ(1–13)-NH2 restores potency and agonist activity comparable to 

the parent peptide (Calo et al., 1996; Dooley et al., 1996; Reinscheid et al., 1996). C-terminal 

amidation protects from degradation by carboxypeptidases and is now a standard feature of most 

N/OFQ-based peptide ligands. In fact, the truncated peptide N/OFQ(1–13)-NH2 has been used as a 

chemical template for SAR studies aimed to investigation of novel ligands for NOP receptor. 

Initial structure-activity studies on N/OFQ(1–13)-NH2 by Guerrini et al. (1997) determined 

that the N-terminal peptide FGGF is essential for activity and that Phe
4
 and Phe

1
 appear to be 

crucial for receptor activation. Further studies on N-terminal modification resulted in the discovery 

of a purported NOP antagonist in which the Phe
1
-Gly

2
 amide bond was replaced with a 
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pseudopeptide (CH2-NH) bond (Calo et al., 1998a; Guerrini et al., 1998). This peptide [Phe
1
Ψ(CH2-

NH)Gly
2
]N/OFQ(1–13)-NH2 abbreviated as [F/G]N/OFQ(1–13)-NH2, was shown to behave as a 

selective and competitive antagonist in the electrically stimulated guinea pig ileum and mouse vas 

deferens (Guerrini et al., 1998). This report initiated a surge of in vitro and in vivo studies (Calo et 

al., 2000a) which showed that this peptide behaved as an antagonist, partial agonist, or even full 

agonist, depending on the preparation under study. Thus, while [F/G]N/OFQ(1–13)-NH2 showed 

different levels of partial agonist activity in [
35

S]GTPγS assays in CHO cells transfected with 

human or mouse NOP (Berger et al., 2000b; Burnside et al., 2000), it showed full agonist activity in 

several in vivo CNS assays (Calo et al., 1998b; Carpenter et al., 1998; Grisel et al., 1998; Xu et al., 

1998). McDonald and colleagues demonstrated that agonism is primarily dependent upon receptor 

density and coupling efficiency (McDonald et al., 2003). As these parameters are tissue/model 

dependent, intrinsic activity in different tissues can vary. Using the ecdysone-inducible expression 

system containing the human NOP receptor expressed in Chinese hamster ovary cells they 

performed [
35

S]GTPγS binding and inhibition of adenylyl cyclase studies to examine the activity of 

a range of partial agonists. They found that profile of [F/G]N/OFQ(1–13)-NH2 can be manipulated 

to encompass full and partial agonism along with antagonism (McDonald et al., 2003). 

Further modifications of the N/OFQ N-terminus led to the design of [Nphe
1
]N/OFQ(1–13)-

NH2 by transposition of the Phe
1
 side chain from the α-carbon of Phe

1
 to the N-terminal nitrogen 

(Guerrini et al., 2000). This peptide was the first NOP pure antagonist of peptide nature; it had low 

potency (pA2 values 6.0–6.4) (Calo et al., 2000a) but was devoid of any residual agonist activity. 

This modified N/OFQ peptide selectively antagonized the effects of N/OFQ in vitro in various 

isolated tissues and in CHO cells expressing the human recombinant NOP receptor (Berger et al., 

2000b; Calo et al., 2000a; Hashimoto et al., 2000). In vivo, i.c.v. administration of this peptide 

inhibited the pronociceptive and antiopioid actions of N/OFQ (Calo et al., 2000a) and reversed the 

effects of N/OFQ on memory (Redrobe et al., 2000), food intake (Polidori et al., 2000a), and 

locomotor activity (Rizzi et al., 2001a). This compound, per se, is able to induce changes opposite 
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to that evoked by N/OFQ such as antinociception (Calo et al., 2000a), prevention of ibotenate 

induced neurotoxicity (Laudenbach et al., 2001) and inhibition of food intake (Polidori et al., 

2000a), facilitation of the flexor reflex with no depression (Xu et al., 2002). Importantly, a study by 

Di Giannuario and colleagues has shown that no tolerance develops to the antinociceptive action of 

this antagonist, unlike with opioid analgesics, suggesting that NOP antagonists can be developed as 

a novel class of supraspinal analgesics (Di Giannuario et al., 2001). 

Modification of N/OFQ and N/OFQ(1–13)-NH2 has also produced peptide agonists more 

potent than N/OFQ. (Okada et al., 2000) reported the synthesis of [Arg
14

Lys
15

]N/OFQ, which had 

3-fold higher binding affinity than N/OFQ at human NOP and was 17 times more potent in the 

[
35

S]GTPγS functional assay. [Arg
14

Lys
15

]N/OFQ was the first NOP receptor agonist more potent 

than the natural ligand; in addition its effects are long lasting in vivo (Rizzi et al., 2002c). 

Guerrini et al. (2001) focused their attention on the Phe
4
 residue and found that para-

substituted electron-withdrawing groups such as pF and pNO2 increased binding affinity to NOP 

receptor 5- and 3-fold, respectively. These agonist peptides were more potent than N/OFQ at 

recombinant hNOP and at native NOP receptor sites expressed in isolated tissues (Bigoni et al., 

2002; McDonald et al., 2002). These agonists also display longer duration of action in vivo in 

several assays, compared to N/OFQ (Rizzi et al., 2002b). 

Furthermore in a series of structure-activity studies (Guerrini et al., 2005) the chemical 

modifications which reduce ([Phe
1
Ψ(CH2-NH)Gly

2
]) or eliminate ([Nphe

1
]) agonist efficacy, in the 

N/OFQ-NH2 structure, were combined with those which increase agonist potency i.e. [(pF)Phe
4
] 

and [Arg
14

Lys
15

]. This study led to the identification of a very potent antagonist, 

[Nphe
1
Arg

14
Lys

15
]N/OFQ-NH2 (UFP-101) (Calo et al., 2002), and [(pF)Phe

4
Arg

14
Lys

15
]N/OFQ-

NH2 (UFP-102) (Carra et al., 2005b), a highly potent and selective full agonist at NOP receptors. 

The gain in potency was accompanied by slow onset and relatively long duration of action that was 

observed in in vitro and especially in in vivo assays (Carra et al., 2005b; Economidou et al., 2006a). 
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A very potent partial agonist [Phe
1
ψ(CH2-NH)-Gly

2
(pF)Phe

4
Arg

14
Lys

15
]N/OFQ-NH2 (Guerrini et 

al., 2005) was also identified. 

Regarding the potent and selective antagonist UFP-101 a detailed summary of its 

pharmacological characterization was reported by our group (Calo et al., 2005). Collectively data 

obtained in vitro in a variety of preparations with different approaches demonstrated that UFP-101 

behaves as a potent, competitive and selective antagonist at NOP receptors. In vivo, UFP-101 has 

been tested against N/OFQ in a series of experiments aimed at the investigation of the role of the 

N/OFQ-NOP receptor system in regulating various biological functions including pain 

transmission, locomotor activity, mood-related behaviours, drug abuse, food intake and 

cardiovascular, renal and gastrointestinal function. It has been demonstrated that UFP-101 

antagonizes the following actions of N/OFQ: hyperalgesia, reversal of stress-induced analgesia, 

inhibition of locomotor activity, stimulation of diuresis in mice, bradycardia, hypotension and 

reduction of plasma NE levels in guinea pig ileum, stimulation of food intake and spinal analgesia 

in rats. UFP-101 (like other selective NOP antagonists) also produced antidepressant-like effects in 

normal mice in the forced swimming or the tail suspension test. In mice lacking the NOP receptor 

gene these actions are absent (Calo et al., 2005).Vitale an colleagues (2009) demonstrated that 

chronic treatment with UFP-101 produces antidepressant-like effects in rats subjected to CMS. 

Moreover several works by Morari and colleagues demonstred the anti-akinetic action of UFP-101 

in parkinsonian rats and mice, when administred in the substantia nigra reticulate (Marti et al., 

2004a; Marti et al., 2004b; Marti et al., 2010). 

Previous structure–activity and NMR studies on N/OFQ demonstrated that Aib substitution 

of Ala
7 

and/or Ala
11

 increases peptide potency through an alpha helix structure induction 

mechanism (Zhang et al., 2002). Based on these findings Arduin et al. (2007) synthesised a series 

of N/OFQ-NH2 analogues substituted in position 7 and 11 with Ca,a-disubstituted cyclic, linear and 

branched amino acids. None of the 20 novel N/OFQ analogues produced better results than 

[Aib
7
]N/OFQ-NH2. Thus, this substitution was combined with other chemical modifications known 
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to modulate peptide potency and/or efficacy generating [Nphe
1
Aib

7
Arg

14
Lys

15
]N/OFQ-NH2 (coded 

as UFP-111), [(pF)Phe
4
Aib

7
Arg

14
Lys

15
]N/OFQ-NH2 (UFP-112) and the compound [Phe

1
Ψ(CH2–

NH)Gly
2
(pF)Phe

4
Aib

7
Arg

14
Lys

15
]N/OFQ-NH2 (UFP-113). These novel peptides behaved as highly 

potent NOP receptor ligands showing full (UFP-112) and partial (UFP-113) agonist and pure 

antagonist (UFP-111) activities in a series of in vitro functional assays performed on 

pharmacological preparations expressing native as well as recombinant NOP receptors (Arduin et 

al., 2007). In vitro data obtained in the electrically stimulated mouse vas deferens demonstrated that 

UFP-112 behaved as a high potency (pEC50 9.43) full agonist at the NOP receptor. UFP-112 effects 

were sensitive to the NOP antagonist UFP-101 but not naloxone and no longer evident in tissues 

taken from NOP(-/-) mice. In vivo,. In different tests, UFP-112 mimicked the N/OFQ effects, with 

higher potency  and longer lasting effects: antinociception (in rodents and monkeys), increase of 

food intake in mice, inhibition of locomotor activity, of ethanol consumption, of gastric motility, 

decrease in heart rate, blood pressure and urinary sodium excretion with increase in urine flow 

(Calo et al., 2011; Rizzi et al., 2007b). 

 

Small peptide ligands 

The small peptides in this group were identified by screening of synthetic peptide combinatorial 

libraries. Peptide III-BTD was identified from a combinatorial library of β-turn constrained peptides 

(Becker et al., 1999). This conformationally restricted peptide is a mixed NOP antagonist / opioid 

agonist (Bigoni et al., 2000b). Five hexapeptides (Ac-RYYRIK-NH2, Ac-RYYRWK-NH2, Ac-

RYYRWR-NH2, Ac-RYYLWR-NH2, Ac-RYYKWK-NH2) with high affinity and selectivity for the 

NOP receptor were identified from a peptide library containing about 52 million compounds made 

considering all the natural amino acids except cysteine (Dooley et al., 1997). Similar to 

[F/G]N/OFQ(1-13)-NH2, these peptides were partial agonists whose final effects vary from full 

agonist to antagonist depending on the tissue and system used in the study (Berger et al., 1999; 

Berger et al., 2000a; Dooley et al., 1997; Ho et al., 2000; Mason et al., 2001; Rizzi et al., 1999b). 
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These hexapeptides, the shortest peptide sequences interacting with the NOP receptor, have been 

used as chemical templates for SAR studies. The head to tail cyclization of Ac-RYYRWK-NH2 

produced a drastic decrease in binding affinity (Thomsen et al., 2000b) while the N-terminal 

acylation with a pentanoyl group (Judd et al., 2003) or the replacement of the Tyr
2
,
3
 residues with 

(pF)Phe (Judd et al., 2004) led to the discovery of high affinity low efficacy NOP receptor ligands. 

The N-terminal alkylation of the central core YYRW with groups bearing a guanidine function 

generated a NOP receptor agonist (Ishiama et al., 2001). Modifications on the Trp (W) were also 

preformed by our group (Carra et al., 2005a). Finally, substitution of the C-terminal amide with an 

alcoholic function produced Ac-RYYRIK-ol, a NOP receptor ligand that displays high affinity (pKi 

7.91) for NOP receptor expressed in rat brain membranes. Ac-RYYRIK-ol antagonized N/OFQ 

effects in the vas deferens while it mimicked N/OFQ action in the colon. In vivo, the peptide 

consistently behaved as a NOP receptor agonist mimicking the supraspinal pronociceptive, 

orexigenic, and motor inhibiting actions and the spinal antinociceptive effects of N/OFQ (Gunduz et 

al., 2006). This study was confirmed by Bojnik and colleagues (Bojnik et al., 2010) using different 

biochemical and pharmacological techniques,  showing that Ac-RYYRIK-ol has agonist and 

antagonist effects toward the NOP receptors; this is likely due to its partial agonist pharmacological 

activity . 

SinVax Inc. proposed the compound pentanoyl-RYYRWR-NH2 as NOP receptor antagonist. 

In [
35

S]GTPγS assays performed in CHO cells transfected with human NOP it displayed a very high 

affinity with a very low agonist activity (pA2 value of 8.99). When tested in vivo, this compound 

had a modest analgesic effect, somewhat less than has been reported with other NOP antagonists. 

Moreover this compound inhibited morphine-induced analgesia suggesting some agonist activity in 

vivo (Judd et al., 2003). 

In order to improve the stability and therapeutic utility of these small peptide ligands, a 

novel technology called structure inducing probes (SIP) (Larsen, 1999) was applied to the 

hexapeptide Ac-RYYRWK-NH2 (Dooley et al., 1997), resulting in the design of the peptide Ac-
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RYYRWKKKKKKK-NH2 (ZP120) (Larsen et al., 2001). ZP120 behaved as potent and selective 

NOP receptor partial agonist whose in vivo effects are long lasting (Fischetti et al., 2009; Rizzi et 

al., 2002a) and, after i.v. administration, confined to periphery. This pharmacological profile makes 

ZP120 an interesting drug candidate especially for those indications (i.e. aquaresis (Kapusta, 2000)) 

for which NOP partial agonists that produce renal but not cardiovascular effects are more selective 

than full agonists which are known to elicit both renal and cardiovascular actions (Kapusta et al., 

2002). This hypotesis was recently confirmed by Kapusta and collegues that candidate ZP120 as 

aquaretic drug for its selectivity to produce renal but not cardiovascular effects (Kapusta et al., 

2005b).  

Although the design and pharmacological characterization of peptide ligands for NOP has 

facilitated great advances in elucidating the functional role of the N/OFQ-NOP receptor system, the 

therapeutic utility of NOP ligands, particularly for neurological disorders, can only be assessed with 

potent non-peptide ligands. This is because as compared to peptide ligands, non-peptide would be 

expected to be more resistant to enzymatic breakdown following oral or parenteral administration 

and allow greater penetration into the CNS where they may have therapeutic utility. Many 

pharmaceutical companies and different groups have discovered potent non-peptide agonists and 

antagonists. These are summarized below. 

 

Non-peptide ligands 

Non-peptide ligands are generally discovered via HTS in pharmaceutical industry 

laboratories. Since the NOP receptor displays high homology with opioid receptors, the search for 

non-peptide NOP ligands was initiated by examining small-molecule opioid ligands, such as: i) 

DOP-receptor ligands carbetapentane and rimcazole (Kobayashi et al., 1997); ii) MOP receptor 

ligands lofentanil (an anilidopiperidine) and etorphine (an oripavine derivative(Butour et al., 1997); 

iii) anilidopiperidines, morphinans and benzomorphan classes of opiate ligands (Hawkinson et al., 
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2000); iv) MOP receptor ligand buprenorphine (Wnendt et al., 1999); v) 

naloxonebenzoylhydrazone (NalBzOH) (Noda et al., 1998). 

The non-peptide NOP receptor ligands can be broadly divided into six structural classes. It is 

noteworthy that many of these ligands were first reported in the patent literature (patents from 

Pfizer, Banyu Pharmaceutical Co., Hoffmann La Roche, EuroCeltique S.A., NovoNordisk, 

Schering-Plough, Smith Kline Beecham, Japan Tobacco Inc, Toray Industries, etc). However, the 

biological data of some of them are still not available, thus making it difficult to define clearly the 

structural requirements for NOP receptor affinity and selectivity. 

 

i) Morphinan-based ligands: Among this group TRK-820 was reported to antagonize the 

effects of N/OFQ on cAMP accumulation in CHOhNOP cells (Seki et al., 1999). Thus, the morphinan 

skeleton may provide a good lead for a unique profile of NOP antagonism coupled with opioid 

agonist activity for a novel class of analgesics. 

 

ii)  Benzimidazopiperidines: The first non-peptide pure NOP antagonist to be reported was a 

benzimidazolinone, J-113397 (Figure 1.9), reported by Banju researchers (Kawamoto et al., 1999; 

Ozaki et al., 2000). J-113397 was shown to bind with nanomolar affinity to NOP receptors and to 

display 100-300 fold selectivity over classical opioid receptors (Hashiba et al., 2001; Ozaki et al., 

2000). J-113397 antagonized N/OFQ effects at human NOP receptor in a competitive manner with 

pA2 values in the range of 7.5 – 8.9 in cAMP and [
35

S]GTPγS assays (Bigoni et al., 2000a; Hashiba 

et al., 2002a; Hashiba et al., 2002b; Ozaki et al., 2000). The selective antagonist properties of J-

113397 were confirmed at native NOP receptors expressed in isolated tissues (Bigoni et al., 2000a; 

Tada et al., 2002) and in brain preparations evaluated with biochemical (Olianas et al., 2002), 

neurochemical (Marti et al., 2003; Rominger et al., 2002) and electrophysiological (Chiou et al., 

2002; Luo et al., 2002) techniques. J-113397 was also investigated in vivo where, in the range of 1-

30 mg/kg, it prevented the actions of N/OFQ on pain transmission (Ko et al., 2002a; Ozaki et al., 



 58 

2000; Ueda et al., 2000), on airways (Corboz et al., 2001) and the chough reflex (Bolser et al., 

2001; McLeod et al., 2002), and on gastrointestinal functions (Ishihara et al., 2002; Tada et al., 

2002). Moreover J-113397 produced per se pronociceptive effects in the rat (Yamamoto et al., 

2001) and mouse (Rizzi et al., 2006) formalin test, antidepressant like effects in the forced 

swimming test (Redrobe et al., 2002), reduction of kainate induced seizures (Bregola et al., 2002), 

potentiation of buprenorphine analgesia in wild type but not in NOP knockout mice (Lutfy et al., 

2003), and facilitation of striatal dopamine release and locomotor performance on the rotarod in rats 

(Marti et al., 2004b). This latter effect was later confirmed in 6-hydroxydopamine lesioned animals 

(Marti et al., 2005). 

To date, J-113397 represents the non-peptide NOP receptor antagonist most widely used in 

pharmacological studies. However, the synthesis, purification, and enantiomer separation of this 

molecule, which contains two chiral centers, is rather difficult and low-yielding. A series of 

simplified J-113397 analogues was synthesized and tested to investigate the importance of the 

stereochemistry and the influence of the substituents at position 3 of the piperidine nucleus and on 

the nitrogen atom of the benzimidazolidinone nucleus. The compound coded as Trap-101 (Figure 

1.9), an achiral analogue of J-113397, combines a pharmacological profile similar to that of the 

parent compound with a practical, high-yielding preparation (Trapella et al., 2006). In in vitro 

N/OFQ sensitive preparations Trap-101 was a NOP selective antagonist with a potency 2-3 fold 

lower than the reference compound J-113397. In vivo, Trap-101 facilitated motor performance in 

naive rats and mice and alleviated parkinsonism in 6-hydroxydopamine hemilesioned rats (Marti et 

al., 2008).  
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J-113397       Trap-101 

 

Figure 1.9. Structures of non-peptide NOP antagonist J-113397 and Trap-101. 

 

Pfizer has also reported a new series of benzimidazoles as NOP agonists, among them PCPB 

and MCOPPB (Figure 1.10). PCPB bound to the NOP receptor in mouse brain membranes (Ki = 

0.12 nM) and to recombinant human NOP receptor (Ki = 2.1 nM). Orally administered PCPB (30 

mg/kg) exhibited anxiolytic activity in mice subjected to the Vogel conflict test that was 

comparable to the maximal response induced by diazepam (Hirao et al., 2008a). MCOPPB showed 

a high affinity for the human NOP receptor (pKi = 10.07) and selectivity for the NOP receptor over 

other members of the opioid receptor family. In vivo MCOPPB (10 mg/kg, p.o.) elicited anxiolytic-

like effects in mice without affecting locomotor activity or memory (Hirao et al., 2008b). 

 

 

 

 PCPB MCOPPB 

 

Figure 1.10. Structures of non-peptide NOP agonist PCPB and MCOPPB. 
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iii)  Spiropiperidines: Hoffmann La Roche disclosed a series of 1,3,8-triazaspiro[4,5]decan-4-

ones, discovered through high throughput screening. Among them Ro 65-6570 and Ro 64-6198 

were two of those ligands widely used as pharmacological tools (Adam, 1998) (Figure 1.11). 

Although Ro 65-6570 was found to show anxiolytic effects (Wichmann et al., 1999), it was only 5 

to 10-fold selective over opioid receptors (Hashiba et al., 2001). Ro 64-6198, on the other hand, is 

far more selective and has shown an impressive anxiolytic profile comparable to benzodiazepines, 

in several in vivo anxiety paradigms (Jenck et al., 2000; Le Pen et al., 2002). As an agonist only 

slightly less potent than N/OFQ itself (Hashiba et al., 2002b), Ro 64-6198 can potentially be used 

as a therapeutic agent in disorders where a NOP agonist may prove beneficial, such as anorexia 

(Ciccocioppo et al., 2002), anxiety (Jenck et al., 2000), and inhibition of drug reward pathways 

(Dautzenberg et al., 2001; Rutten et al., 2011). However, Ro 64-6198 was found not to affect 

cocaine-induced conditioned place preference (Kotlinska et al., 2003). Moreover, at higher doses, 

Ro 64-6198 was found to have affinity for dopamine and sigma receptors (Jenck et al., 2000) and 

increased alcohol drinking in genetically selected alcohol-preferring Marchigian Sardinian rats 

while other NOP agonists such as UFP-102 and UFP-112 reduce alcohol drinking; an effect 

probably due to residual agonist activity of this compound at MOP receptors (Economidou et al., 

2006a). For review see Shoblock (2007). 
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Figure 1.11. Structures of Hofmann-La Roche lead compounds Ro 65-6570 and Ro 64-6198. 
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Interestingly, Novo Nordisk has also reported on the synthesis and characterization of 1,3,8-

triazaspirodecanones, similar to the Roche compounds, starting  with spiroxatrine as their lead 

(Thomsen et al., 2000a). Their best ligand, NNC 63-0532 had binding affinity of 6.3 nM at human 

NOP but only a 12-fold selectivity over classical opioid receptors. This low selectivity was also 

seen in electrically stimulated mouse vas deferens where NNC 63-0532 produced a concentration-

dependent inhibition of the electrically induced twitches showing, in comparison with N/OFQ, 

lower potency and higher maximal effects. In addition, contrary to N/OFQ, the effects of NNC 63-

0532 were insensitive to the NOP selective antagonist UFP-101 but were prevented by naloxone 

(Guerrini et al., 2004). Recently it was seen that NNC 63-0532 (0.01 nM-10 µM) like N/OFQ 

induces a concentration-dependent endocytosis and recycling of the N/OFQ receptor. This 

mechanism contributes to maintain receptor signaling as it counteracts desensitization development 

and enhances a compensatory upregulation of adenylyl cyclase activity (Spampinato et al., 2006). 

 

iv) Aryl piperidines: Designing compounds in this group led several pharmaceutical companies 

(Schering Plough, Roche etc) to obtain patents. SB-612111 (Zaratin et al., 2004) was patented by 

GlaxoSmithKline  (Figure 1.12). The results describe SB-612111 as a high affinity and broadly 

selective NOP receptor antagonist in vitro and in vivo. Furthermore SB-612111 can resensitize mice 

to morphine in animals which had been chronically treated with opiate, suggesting utility of this 

class of NOP receptor antagonist in prolonging the analgesic action of morphine (Zaratin et al., 

2004). SB-612111 was synthesized by our laboratories and  investigated in vitro and in vivo. In 

vitro SB-612111 displayed subnanomolar affinity for the NOP receptor and high selectivity over 

classical opioid receptors (Spagnolo et al., 2007; Zaratin et al., 2004). Functional studies 

([
35

S]GTPγS binding and cAMP accumulation) in CHO cells expressing the human NOP receptor 

demonstrated pure, competitive and high potency antagonism exerted by this molecule against 

N/OFQ (pKB value of 9.70 and 8.63 in the [
35

S]GTPγS binding and cAMP accumulation 

experiments, respectively (Spagnolo et al., 2007). In isolated peripheral tissues of mice, rats, and 
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guinea pigs and in mouse cerebral cortex synaptosomes preloaded with [
3
H]5-HT, SB-612111 

competitively antagonized the inhibitory effects of N/OFQ, with pA2 values in the range of 8.20 to 

8.50 (Spagnolo et al., 2007). In a recent study conduced on rat midbrain periaqueductal gray slices, 

a crucial site for morphine-induced supraspinal analgesia as well as the site of action that N/OFQ 

reverses morphine-induced analgesia. SB-612111 was able to block the activation of inwardly 

rectifying K+ (GIRK) channels induced by N/OFQ (Chee et al., 2011; Liao et al., 2011). In vivo, in 

the mouse tail withdrawal assay, SB-612111 given i.p. up to 3 mg/kg prevented the pronociceptive 

and the antinociceptive action of 1 nmol of N/OFQ given i.c.v. and i.t., respectively (Rizzi et al., 

2007a). In food intake studies performed in sated mice, SB-612111 (1 mg/kg i.p.) had no effect on 

food consumption but fully prevented the orexigenic effect of 1 nmol of N/OFQ i.c.v. (Rizzi et al., 

2007a). In the mouse forced swimming and tail suspension tests, SB-612111 (1-10 mg/kg) reduced 

immobility time. The antidepressant-like effect elicited by SB-612111 in the forced swimming test 

was reversed by the i.c.v. injection of 1 nmol of N/OFQ and was no longer evident in mice 

knockout for the NOP receptor gene (Rizzi et al., 2007a). In conclusion, SB-612111 is among the 

most potent and NOP-selective non-peptide antagonists identified to date. 
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Figure 1.12. Structure of SB-612111. 

 

v) 4-Aminoquinolines: These are an entirely different chemical class of NOP ligands disclosed 

by Japan Tobacco Inc. in a patent (Shinkai et al., 2000). The optimized ligand, JTC-801 (Figure 

1.13), was obtained through an extensive structure-activity study. Detailed pharmacological 
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studies with JTC-801 were reported (Yamada et al., 2002). Its binding affinity for hNOP was 

44.5 nM. It completely antagonized the inhibition of cAMP accumulation by N/OFQ. However, 

JTC-801 in the same assay didn‟t show an appreciable selectivity over classical opioid receptors, 

and this was confirmed by receptor binding assays performed by Lambert and colleagues 

(personal communication). Furthermore, when administered in vivo orally or i.v., at doses of 0.1-

1 mg/kg, it antagonized N/OFQ induced allodynia in mice and increased latency in the mouse 

hot plate test. These effects were not inhibited by naloxone. Moreover, a Schild-plot analysis 

showed that this compound behaves as non surmountable antagonist, unlike piperidine and 

spiropiperidine ligands (Sestili et al., 2004). Other JTC-801 analogues with NOP antagonistic 

properties have been described in a patent by Japan Tobacco Inc (Shinkai et al., 2006). 
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Figure 1.13. Structure of JTC-801, a Japan Tobacco Inc compound. 

 

JTC-801 was chosen as a candidate for clinical trials for analgesia because of its oral 

bioavailability profile, which was more favourable than that of some other more potent analogs in 

this series. It was seen that JTC-801 alleviates heat-evoked hyperalgesia in chronic constriction 

injury rats (Suyama et al., 2003). 
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vi) N-benzyl-D-proline: Banyu Pharmaceuticals discovered a novel class of NOP antagonists 

using a focused library approach starting from a moderately active hit compound found in their 

chemical collection. The N-benzyl-D-proline analogue (Compound 24) (Figure 1.14) showed 

significantly improved antagonistic activity when compared with other reported NOP antagonists 

and showed good brain penetrability and in vivo antagonistic activity (Goto et al., 2006). These 

pharmacological features of Compound 24 were confirmed by Fischetti and colleagues (Fischetti et 

al., 2009) in various assays and preparations expressing the human recombinant as well as the 

animal native receptors. In addition, the NOP selective antagonist properties of Compound 24 was 

confirmed in vivo in mice subjected to the tail withdrawal assay. Systemically administered 

Compound 24 was also able to improve motor activity in hemiparkinsonian rats  acting via the 

blockade of nigral NOP receptors (Volta et al., 2011) 
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Figure 1.14. Structure of Compound 24, a novel Banyu Pharmaceuticals compound. 

 

Based on this novel antagonist structure we performed a structure activity analysis of 

Compound 24, focusing on its N-benzyl-D-proline, amide bond and benzoisofurane moieties; this 

latter structure was substituted with moieties taken from known non-peptide NOP ligands such as 

Ro 64-6198, SB-612111 and J-113397. Trapella and colleagues (Trapella et al., 2009) performed 

SAR studies onCompound 24 structure; twelve new derivates were synthesized and evaluated for 

their ability to bind the human recombinant NOP receptor. The molecule showing the highest 
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affinity Compound 35 has been further characterized. in vitro in various assays, Compound 35 

consistently behaved as a pure, highly competitive and NOP selective antagonist. However 

compound 35 was found inactive when challenged against N/OFQ in vivo in the mouse tail 

withdrawal assay. Thus, the usefulness of the novel NOP ligand compound 35 is limited to in vitro 

investigations. 

 

Finally, there is a recent description of a 4-aryl-tropane NOP agonist, SCH 221510 (Varty et 

al., 2008) a new molecule discovered by Schering-Plough (Figure 1.15). SCH 221510 binds with 

high affinity (Ki 0.3 nM) to the NOP receptor and was shown to be anxiolytic with a reduced side-

effect profile when compared with benzodiazepines (Varty et al., 2008). 
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Figure 1.15. Structure of SCH 221510. 
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2. AIMS 

 

The general objective of the present work has been to increase the knowledge related to the 

neurobiology and pharmacology of the N/OFQ – NOP receptor system and to provide the scientific 

community with new tools and ideas useful for validating the NOP receptor as target for innovative 

drugs. In particular the following knockout and pharmacological studies have been performed:  

  

 Detailed investigation of the phenotype of rats lacking of the NOP receptor (NOP(-/-)). The 

anxiety- and mood-related behaviours and locomotor and nociceptive phenotype of NOP(-/-) 

rats have been investigated and compared to those of their wild type littermates. The absence of 

functional NOP receptors was proved in vitro by comparing the effect of N/OFQ on electrically 

stimulated vas deferens taken from NOP(+/+) and NOP(-/-) animals. 

 Pharmacological characterization of novel non peptide ligands selective for the NOP receptor. 

In the frame of these studies we characterized the pharmacological profile of i) a novel NOP 

receptor antagonist coded as GF-4, and ii) a short panel of NOP receptor agonists.  

 Design, synthesis and characterization of novel peptides as mixed NOP/MOP agonists. SAR 

studies on Phe
1
 of N/OFQ and related peptides allowed the identification of [Dmt

1
]N/OFQ(1-

13)-NH2 as the most interesting compound that has been further pharmacologically 

characterized in vitro and in vivo.  [Dmt
1
]N/OFQ(1-13)-NH2 has been demonstrated in rodent 

and non human primate studies to be a promising molecule and represent a prototype of 

innovative spinal analgesics. 

 

To pharmacologically characterize the above mentioned compounds, in vitro studies on 

N/OFQ-sensitive isolated tissues from different species and on cells expressing the recombinant 

NOP and classical opioid receptors, were performed. Moreover, in vitro and in vivo experiments 

were performed using normal mice as well as NOP(+/+) and NOP(-/-) mice. 
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3.  MATERIALS & METHODS 

 

3.1 Drugs and reagents 

The peptides used in this study were synthesized in the laboratory of Prof Salvadori (Department of 

Pharmaceutical Sciences, University of Ferrara) using standard solid-phase synthesis techniques 

and purified using High Pressure Liquid Chromatography, according to previously published 

methods (Guerrini et al., 1997). Amino acids, protected amino acids, and chemicals were purchased 

from Bachem, Novabiochem, Fluka (Switzerland) or Chem-Impex International (U.S.A).  

Ro 65-6570 was synthetized as reported by (Rover et al., 2000). SCH 221510 was sinthetized in 

house as reported in figure 3.1, compound 6d was sinthesized by Prof. Mustazza group 

(Dipartimento del Farmaco dell‟ Istituto Superiore della Sanità di Roma) (Mustazza et al., 2008). 

GF-4 was synthesized in house following the procedures described in detail in (Trapella et al., 

2006)(see page 694, scheme 1, the only modification is the last step of the synthesis (j) where in 

stead of lithyumaluminiumhydride was used the methyl magnesium bromide to obtain compound 

GF-4). 

J-113397 was prepared as a racemic mixture, according to (De Risi et al., 2001), Trap-101 is 

obtained through treatment with LiAlH4 on a common intermediate from the J-113397 synthesis 

(Trapella et al., 2006). The compound SB-612111 was purchased from Tocris ltd. (U.K.). 

Captopril, amastatin, bestatin, phosphoramidon, naloxone, bovine serum albumin (BSA), guanosine 

5‟-O-(3-thiotri-phosphate) (GTPS), GDP, unlabelled GTPS, bacitracin and probenecid were from 

Sigma Chemical Co. (Poole, U.K.) or E. Merck (Darmstadt, Germany). All tissue culture media and 

supplements were from Invitrogen (Paisley, U.K.). [
35

S]GTPγS (1250 Ci mmol
-1

), 

[
3
H]Diprenorphine ([

3
H]DPN, 75-133 Ci/mmol) were from Perkin Elmer Life Sciences (Boston, 

Mass., USA), [leucyl-
3
H]UFP-101 and [leucyl-

3
H]N/OFQ ([

3
H]-N/OFQ, 150 Ci/mmol) was from 

Amersham Pharmacia Biotech (Buckinghamshire, UK). All other consumables and reagents were 

of the highest purity available. 
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For in vitro experiments, the peptides were solubilized in H2O and stock solutions (1 mM or 2 mM) 

were stored at -20 °C until use; the non-peptide compounds were solubilized in dimethyl sulfoxide 

at a final concentration of 10 mM, and the successive dilutions were made in saline or water, stock 

solutions were kept at -20 °C until use. For in vivo studies, peptides were dissolved in sterile saline 

solution just before injections. 

 
 

Figure 3.2. Procedure adopted for the synthesis of SCH-221510. 

 

 

3.2  In vitro studies 

 

Receptor or  GTP[35
S]binding assay 

3.2.1CHO expressing the recombinant NOP and classical opioid receptors 

Chinese Hamster Ovary cells (CHO) stably expressing the human NOP receptor (CHOhNOP) cells 

were cultured consisting of Dulbecco's MEM/HAMS F12 (50/50) supplemented with 5% foetal calf 

serum (FCS), penicillin (100 IU/ml), streptomycin (100 g/ml), fungizone (2.5 g/ml), geneticin 

(G418; 200 g/ml) and hygromycin B (200 g/ml) at 37˚C in 5% CO2/humidified air. CHO cell 

stocks expressing the human classical opioid (DOP, MOP and KOP) receptors (CHOMOP/DOP/KOP) 

were maintained in Ham F12 containing 10% FCS, 100 IU/ml P, 100 μg/ml S and 400 μg/ml G418, 

for CHO non-transfected cells G-418 and hygromycin B were omitted. Cell cultures were kept at 

37˚C in 5% CO2/humidified air. In all cases experimental cultures were free from selection agents 

(hygromycin B, G418). 
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3.2.2 Cell harvesting and membranes preparation 

When confluence was reached (3-4 days), cells were sub-cultured as required using trypsin//EDTA 

and used for experimentation. Cells were harvested from sterile tissue culture flasks using harvest 

buffer (HEPES (10 mM), EDTA (1.1 mM), NaCl (154 mM), pH 7.4 with NaOH) and gentle 

agitation. Cells were suspended in either wash buffer (displacement assay)(Tris-HCl (50 mM), 

MgSO4 (5 mM), pH 7.4 with KOH for experiments of N/OFQ or UFP-101 displacement, where for 

displacement diprenorphine a Mg
++

 free solution was used) or homogenising buffer (GTP[
35

S] 

assay)( Tris-HCl (50 mM), pH 7.4 with KOH), homogenised using an Ultra Turrax, for 10 seconds 

followed by 6 consecutive 1-second bursts. The homogenate was then centrifuged at 13,500 rpm for 

10 min at 4C, this was carried out a total of three times. The membrane fraction was resuspended 

in an appropriate volume of assay buffer ( composed by Tris-HCl (50 mM), MgSO4 (5 mM), pH 7.4 

with KOH, 0.5% BSA for N/OFQ or UFP-101 displacement binding experiments, a Mg free 

solution for the diprenorphine displacement binding)( Tris-HCl (50 mM), EGTA (0.2 mM), NaCl 

(100 mM), MgCl2 (1 mM), pH 7.4 with NaOH for GTP[
35

S] experiments)  and the total protein 

content determined as set out below. 

 

3.2.3 Rat spinal cord and cerebral cortex  membrane preparation 

The spinal cord and cerebral cortex were taken from male albino Sprague Dooley rats (200-250 g) 

The tissues were suspended in homogenising buffer (GTP[
35

S] assay), homogenised using an Ultra 

Turrax, for 10 seconds followed by 2 consecutive 5-second bursts. The homogenate was then 

centrifuged at 13,500 rpm for 10 min at 4C, this was carried out a total of three times. The 

membrane fraction was resuspended in an appropriate volume of assay buffer and the total protein 

content determined as set out below. 
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3.2.4 Protein assay 

The protein concentration was determined for membrane fractions using the method of Lowry 

(Lowry et al., 1951): BSA protein standards at set concentrations of 0, 50, 100, 150, 200, 250 g 

protein/ml were made up in 0.1 M NaOH. Samples of unknown protein concentration were diluted 

in 0.1 M NaOH. 0.5ml volumes of standards and samples were incubated for 10 min in 2.5 ml of 

solution consisting of, A (NaHCO3 in 0.1 M NaOH) B (1% CuSO4) and C (2% Na
+
 K

+
 tartrate) 

mixed to the ratio 100:1:1. Folin‟s reagent (diluted 1:4 in dH2O) was then added and incubated at 

room temperature for a further 30min. The absorbance at 750 nm for standards and samples was 

then determined using a spectrophotometer. Linear regression of the known BSA protein 

concentrations was used to produce a standard curve (Figure 3.2) from which sample protein 

concentrations were determined. 

 

 

0 50 100 150 200 250 300
0

200

400

600

[Protein] (g/ml)

A
b

s
o

rb
a
n

c
e
 (

7
5
0
n

m
) r

2
 = 0.99

 

Figure 3.2. Example of protein assay standard curve used to determine the protein mass of unknown samples. 
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3.2.5 Displacement binding assay 

100 g protein of CHONOP homogenate were assayed in a total volume of 0.5 ml comprising 

competition homogenising buffer, with the addition of 10 M peptidase inhibitors (amastatin, 

bestatin, captopril and phosphoramidon), 0.9 nM [Leucyl-
3
H]UFP-101 and 100 nM – 0.1 pM of 

competing ligands. Non-specific binding (NSB) was determined in the presence of 1 M N/OFQ. 

50 µg (CHOMOP and CHODOP) or 150 µg (CHOKOP) membrane protein were incubated in 0.5 ml 

homogenising buffer supplemented with 0.5% BSA, approximately 0.7 nM [
3
H]Diprenorphine. 

NSB binding was defined in the presence of 10 µM naloxone. Reactions were incubated for 1 hour 

at room temperature and harvested under vacuum filtration using a Brandel cell harvester. Whatman 

GF/B filters were soaked in 0.5% polyethylenimine, to reduce NSB, and loaded onto the harvester 

wet. Radioactivity was determined following filter extraction (8 hours, Optiphase Safe) using liquid 

scintillation spectroscopy. 

 

 

3.2.6 [
35
S]GTPγS stimulation binding assay 

Experimentation was performed essentially as described by (Berger et al., 2000b). Freshly prepared 

CHONOP membranes (50 g), CHOMOP (50 g), or rat spinal cord (100 g) or cerebral cortex 

membranes (50 g) were incubated  in 0.5 ml volumes of buffer consisting Tris (50 mM), EGTA 

(0.2 mM), GDP (100 M), bacitracin (0.15 mM), BSA (1 mg/ml), peptidase inhibitors (amastatin, 

bestatin, captopril, phosphoramidon; 10 M), [
35

S]GTPγS (~150 pM) and ligands in the 

concentration range of 1 pM – 10 µM. NSB was determined in the presence of 100 M unlabelled 

GTPS. Assays were incubated for 1 h at 30
o
C with gentle shaking and bound and free radiolabel 

were separated by vacuum filtration onto Whatman GF/B filters. Polyethylenimine was not used. In 

all cases radioactivity was determined following filter extraction (8 hours) using liquid scintillation 

spectroscopy. 
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Calcium mobilization assay 

3.2.7 Experimental protocols  

CHO cell lines stably co-expressing NOP or classical opioid receptors and the C-terminally 

modified Gαqi5 were generated as previously described by (Camarda et al., 2009) Camarda and Calo 

(in press). CHOMOP, CHODOP, CHOKOP and CHONOP stably expressing the Gαqi5 protein were 

seeded at a density of 40,000 cells/well into 96-well black, clear-bottom plates. After 24 hours 

incubation the cells were loaded with medium supplemented with 2.5 mM probenecid, 3 µM of the 

calcium sensitive fluorescent dye Fluo-4 AM and 0.01% pluronic acid, for 30 min at 37 °C (Figure 

x). Afterwards the loading solution was aspirated and 100 µl/well of assay buffer: HBSS buffer 

supplemented with 20 mM HEPES, 2.5 mM probenecid and 500 µM Brilliant Black was added. 

Stock solutions (1 mM) of ligands were made in distilled water and stored at -20 °C. Serial dilutions 

of ligands for experimental use were made in HBSS/HEPES (20 mM) buffer (containing 0.02% 

BSA fraction V). After placing both plates (cell culture and compound plate) into the FlexStation II 

(Molecular Device, Union City, CA 94587, US), fluorescence changes were measured at room 

temperature. On-line additions were carried out in a volume of 50 µl/well. 

 

 

 

Figure 3.3. Diagram depicting the experimental protocol of the calcium mobilization assay. Cells are 

incubated with Fluo-4 AM, de-esterification of the ester group (AM) traps the dye in the cells and further 

leakage of the dye is prevented by blockage of organic anion-transport inhibitors using probenecid. 

Background fluorescence is reduced by addition of Brilliant Black dye which blocks extracellular 

signalling from any leaked Fluo-4. 
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3.2.8 Cell counting 

Accurate numbers in a cell suspension can be calculated by counting the cells in a cell counting 

chamber (Burker‟s chamber, Figure 3.4). A small volume of the cell suspension (10 µl) was 

pipetted onto the chamber, the capillary action under the cover slip will draw the suspension into 

the counting chamber. The space between the cover slip and the counting chamber ensures a 

specific volume of cell suspension is present. 

 

 

 

 

Figure 3.4. Burker‟s chamber. 

 

 

Under a microscope the number of cells in diagonally opposite counting areas were counted, Figure 

3.5.  

 

Figure 3.5. Schematic representation of the counting grid of the Burker‟s chamber. 
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The Burker‟s chamber is formed of 3 x 3 major squares, each of these major squares is subdivided 

into a grid of 4 x 4 squares. The number of cells present in three major cells are counted, cells in 

contact with two of the squares sides are included and the average taken. The volume of a major 

square is 0.1 mm
3
 which is equal to 0.0001 ml. To determine the number of cells per ml the average 

number of cells determined is increased by a factor of 10
4
. 

 

3.2.9 Instruments 

 [Ca
2+

]i levels were monitored using a FlexStation II fluorimeter (Figure 3.6). The 

FlexStation II system includes: 

 Xenon-lamp light source 

 Automatic eight-channel pipettor 

 Tip rack drawer 

 Compound plate drawer 

 Reading chamber drawer 

 

 

 The Xenon-lamp light source and dual monochromators permit the use of essentially all 

dual-wavelength dyes for functional cellular assays. 
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Figure 3.6. Diagram of FlexStation II used for calcium mobilization assay. 
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Figure 3.7. Raw data of calcium mobilization assay: concentration response curve (from 1 pM to 1 µM) 

to N/OFQ obtained in CHO cells expressing the recombinant human NOP receptor and the chimeric 

Gαqi5 protein . 
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Isolated tissues 

3.2.10 Methods 

The in vitro experiments were performed on mouse vas deferens (mVD), rat vas deferens (rVD) and 

guinea pig ileum (gpI). The animals (Morini, Reggioemilia, Italy) were handled according to 

guidelines published in the European Communities Council directives (86/609/EEC), National 

regulation (D.L 116/92). They were housed in 425 x 266 x 155 mm cages (Techniplast, Milan, 

Italy), fifteen animals/cage, under standard conditions (22ºC, 55 % humidity, 12-h light/dark cycle, 

light on at 7:00 am) with food (MIL, standard diet; Morini, Reggio Emilia, Italy) and water ad 

libitum. 

 

3.2.11 Tissue preparation  

Tissues were taken from male Swiss mice (25-30 g), guinea pigs (300-350 g) and Sprague Dowley 

rats (300-350 g). On the day of the experiments the animals were killed by a lethal injection of 

urethane. From the mouse and rat the prostatic portion of the vas deferens was isolated, and 

prepared according to (Hughes et al., 1975) and (Schulz et al., 1979), respectively; from the guinea 

pig segments of ileum (1.5-2 cm in length) were taken as described by (Paton, 1957). The tissues 

were suspended in 5 ml organ baths containing heated Krebs solution (mM): NaCl 118.5, KCl 4.7, 

MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, CaCl2 2.5, glucose 10. For the experiments on the mouse vas 

deferens and rat vas deferens, a Mg
++

-free and 1.8 mM CaCl2 Krebs solution were used, 

respectively. For the experiments on guinea pig ileum the normal medium was added with 

hexamethonium bromide 2.2 mM and benadril 1.37 mM. The solution was oxygenated with 95% 

O2 and 5% CO2 (pH 7.4). The temperature was set at 33 °C for the mVD and at 37 °C for the other 

tissues. A resting tension of 0.3 g was applied to the mVD, 1 g to the gpI and rVD. 
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3.2.12 Experimental protocols 

The mVD, gpI and rVD were continuously stimulated through two platinum ring electrodes with 

supramaximal voltage rectangular pulses of 1 msec duration and 0.05 Hz frequency. The 

electrically evoked contractions (twitches) were measured isotonically with a strain gauge 

transducer (Basile 7006; UgoBasile s.r.l., Varese, Italy). After an equilibration period of about 60 

min the contractions induced by electrical field stimulation were stable; at this time, cumulative 

concentration-response curves to N/OFQ, N/OFQ related peptides, or to opioid ligands were 

performed (0.5 log unit steps). The concentration-response curve consists of progressive 

administration of increasing concentrations of peptide without changing the Krebs solution in which 

the tissue is bathed; the injection of a certain concentration of ligand must be done only when the 

previous concentration produced a stable effect (plateau). About 1 hour with 3 changes of Krebs 

solution (wash out) is needed to the tissue to recover the original twitch. 

When required, in all the preparations described above, receptor antagonists, at adequate 

concentrations, were added to the medium 15 min before performing the concentration response 

curve to agonists. 

 

3.2.13  Instruments 

For the in vitro bioassays two chamber-glass bathes for isolated organs were utilized (Figure 3.8). 

The outer chamber contains water heated at 33 or 37 °C, while the inner chamber contains 5 ml of 

oxygenated Krebs solution. One end of the tissue is fixed to the bottom side of the inner chamber 

and the other end is linked to a force transducer by a surgery thread. The role of the transducer is to 

convert the mechanical signal in electrical signal, then amplified and recorded with a PC-based 

acquisition system Power Lab 4/25 (model ML845, ADInstrument, USA). 
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Figure 3.8. Diagram of the tissue chamber used for isolated tissues assays. 
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Figure 3.9. Raw data of isolated tissues assay: concentration response curve to N/OFQ obtained in the 

mouse vas deferens. 
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3.3 In vivo studies 

 

Experimental protocol 

3.3.1 Animals 

Mice 

Male Swiss and male CD1/C57-BL6J/129 NOP(+/+) and NOP(-/-) mice weighing 20-25 g were 

used. All transgenic animals were genotyped by PCR. Details of the generation and breeding of 

mutant mice have been published previously (Gavioli et al., 2003). The animals were handled as 

described above in the isolated tissues section. 

I.t. injections (5 µl/mouse) were adapted according to the method of (Hylden et al., 1980). A 28-

gauge stainless steel needle attached to a 50 µl 65 Hamilton microsyringe was inserted, with an 

angle of about 20° in the spinal subarachnoid space between the L5 and L6 segments in mice. 2 

hours before the i.t. injection a cutaneous incision was performed on the mice back under isofluoran 

anaesthesia. 

 

+/- +/+ -/- 

 

Figure 3.10. PCR analysis of tail biopsies taken from NOP(+/-),NOP(+/+) or NOP(-/-)  CD1. The 372 bp 

PCR product was from NOP(+/+) mice, while the 384 bp was from the knokout litermates. The NOP(+/-) 

mice showed both the products. 

 

 

 

- 372 bp 

- 384 bp 
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NOP(-/-) rats  

Experiments were conducted using 11 NOP(+/+) and 11 NOP(-/-) male littermate rats supplied by 

GenOway (Lyon, France). These rats were generated in a Brown Norway background and 

subsequently backcrossed on a Wistar background for four generations as previously described in 

detail (Homberg et al., 2009). The animals were 3 month old on arrival in our animal facility and 

were housed under standard conditions (12 h light/dark cycle, lights on at 7.00, temperature 21 ± 

1°C, 60% relative humidity, food and water available ad libitum) in groups of 3-4 rats per cage. All 

experiments were performed between 9.00 and 13.00.  

The different series of experiments were performed according to the following schedule: week I 

elevated plus maze, week II open field, week III forced swimming test, week V plantar test and 

formalin test. At the end of this schedule, during week VI rats were killed and their vasa deferentia 

collected and used for in vitro studies. The average body weight of NOP(+/+) and NOP(-/-) rats was 

300 ± 9 and 288 ± 11 g on arrival in our animal facility, and 384 ± 9 and 374 ± 9 g after 

experiments at week VI, respectively. An expert observer who was blind to the animal genotype 

made all behavioural measurements. 

 

3.3.2 Methods 

Mouse Tail withdrawal assay  

 Male Swiss albino mice weighing 25–30 g were used. Animals were handled according to 

guidelines published in the European Communities Council directives (86/609/EEC) and Italian 

national regulations (D.L. 116/92). They were housed in 425x266x155 mm cages (Techniplast, 

Milan, Italy), fifteen animals cage
-1

, under standard conditions (22 °C, 55% humidity, 12-h 

light/dark cycle, light on at 7:00 am) with food (MIL, standard diet; Morini, Reggio Emilia, Italy) 

and water ad libitum for at least 5 days before experiments began. Each mouse was used only once. 

I.t. (5 μl mouse
-1

) injections were given according to the procedure described by Hylden and Wilcox 

(1981). All experiments were started at 10:00 am. The mice were placed in a holder and the distal 
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half of the tail was immersed in water at 52 °C. Withdrawal latency time was measured by an 

experienced observer blind to drug treatment. A cut-off time of 10 s was chosen to avoid tissue 

damage. For each experiment sixteen mice were used by randomly assigning four animals to each 

treatment group. The experiment was repeated four times; therefore, each experimental point is the 

mean of the results obtained in 16 mice. Tail-withdrawal latency was determined immediately 

before and 15, 30, 60, 120, and 180 min after i.t. injection of vehicle (saline), morphine (0.1 – 10 

nmol), N/OFQ (1 - 100 nmol), N/OFQ(1-13)-NH2 (1 - 100 nmol) or [Dmt
1
]N/OFQ(1-13)-NH2 (0.01 

– 10 nmol). 

 

Rat elevated Plus Maze 

The procedure was carried out essentially as previously described by Pellow et al. (Pellow et al., 

1985). The elevated plus maze apparatus (Campden Instruments, Loughborough, UK) consists of 

two open arms (50 x 10 cm) which face two opposite closed arms (50 x 10 cm, 40 cm high) 

connected by a central platform (10 x 10 cm) elevated 86 cm from the floor. A red dim light ( 100 

lux) was focused on the central platform. Each rat was placed on the platform, facing an open arm, 

and allowed to explore the apparatus for 5 min. The time spent in and the number of entries into the 

open and closed arms were recorded during the test. An individual entry was recorded when the 

animal entered the arm with all the four paws. The incidence of ethological parameters such as 

stretch-attend postures, head-dipping over the edges, grooming and rearing behaviour, and number 

faecal pellets were also recorded. Between each trial, the apparatus was cleaned and dried. 

 

Rat open field 

This assay was performed by placing rats, individually, into a white wooden arena (50 x 50 cm, 

closed by walls (45 cm high) divided into 25 squares. This test was performed under dim red light 

( 100 lux). The animal was placed in the center of the arena and then allowed to explore the novel 

environment for 5 min. The number of crossings into peripheral and central zones, the time spent in 
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the central area and the number of rearings were recorded. Between each trial, the apparatus was 

cleaned and dried. 

 

Rat forced Swimming 

Rats were placed, individually, in Plexiglas cylinders (46 cm high, 20 cm in diameter) containing 

water (24-26°C, 30 cm deep), for two swimming sessions: an initial 15 min training session, which 

was followed, 24 h later, by a 5 min test session. At the end of each swimming session, the animal 

was removed from the cylinder, dried with paper towels, placed in an individual cage to rest and 

recover for 15 min and then returned to its collective home cage. The following behavioural 

parameters, previously shown to be reliable and validated for the detection of antidepressant drug 

effects (Detke et al., 1995), were scored cumulatively in the second (test) swimming session: i) 

immobility time (i.e. the time spent floating in the water without struggling, making only those 

movements necessary to keep the head above the water), ii) swimming time (i.e. the time spent 

making active swimming motions to move around the cylinder), iii) climbing time (i.e. the time 

spent making active movements with its forepaws in and out of the water, directed specifically to 

the cylinder wall). Between each trial, the cylinder was cleaned and the water changed. 

 

Rat plantar test 

Changes in thermoceptive responses were evaluated according to (Hargreaves et al., 1988) using a 

Plantar test apparatus (Ugo Basile, Varese, Italy). On the day of the experiment, rats were 

individually placed in transparent observation chambers (32 cm high, 24 cm diameter) for 

adaptation. After 1 h of habituation, the plantar surface of the left hind paw was exposed to a beam 

of radiant heat though the glass floor. The radiant heat source consisted of an infrared bulb (IR 90). 

A photoelectric cell detected light reflected from the paw and turned off the lamp when paw 

movement interrupted the reflected light. The cutoff time was set at 10 s in order to prevent tissue 
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damage. Three responses were obtained for each animal at 10 min intervals and averaged. Between 

each trial, the apparatus was cleaned and dried. 

 

Rat formalin test 

Rats were placed individually in a transparent chamber (32 cm high, 24 cm diameter) with a mirror 

placed on the back to aid observation for 45 min before the beginning of the test. Under light 

isoflurane (4%) anesthesia (loss of spontaneous movement with preservation of spontaneous 

respiration, blink and pinnae reflexes) 50 µl of a 2% formalin solution was injected subcutaneously 

into the dorsal surface of the right hind paw with a 27ga needle (BD, Drogheda, Ireland). 

Immediately after injection, the rat was returned to the observation chamber. Within 1 min of 

formalin injection, the rat displayed the behaviour typical of this assay, i.e. it held the injected paw 

just off the floor. During this period spontaneous flinching of the injected paw was observed. 

Flinching is characterized by a rapid and brief withdrawal or flexion of the injected paw. This pain-

related behaviour was quantified by counting the number of flinches with a hand-held stopwatch in 

5-min blocks for 60 min following formalin injection and expressed as the number of nociceptive 

behaviours per min. Cumulative response times during the 0-10 min and 15-60 min periods were 

regarded as I° and II° phase, respectively. Between each trial, the apparatus was cleaned and dried. 

 

Monkey Tail withdrawal assay 

Ten adult intact male and female rhesus monkeys (Macaca mulatta) with body weights ranging 

between 6.8 and 12.5 kg were used. The monkeys were housed individually with free access to 

water and were fed approximately 25 biscuits (Purina Monkey Chow; Ralston Purina, St. Louis, 

MO) and fresh fruit daily. No monkey had exposure to any opioid drug one month before the 

present study. The monkeys were housed in facilities accredited by the American Association for 

the Accreditation of Laboratory Animal Care. The studies were conducted in accordance with the 

University Committee on the Use and Care of Animals in the University of Michigan (Ann Arbor, 
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MI) and the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the 

U.S. National Institutes of Health (Bethesda, MD).  

The warm water tail-withdrawal assay was used to evaluate thermal antinociceptive effects of the 

test compound (Ko et al., 2006). Briefly, monkeys were seated in primate restraint chairs, and the 

lower part of their shaved tails (approximately 15 cm) were immersed in a thermal flask containing 

water maintained at either 42, 46, or 50
o
C. Tail-withdrawal latencies were measured using a 

computerized timer by an experimenter who did not know dosing conditions. In each test session, 

monkeys were evaluated once with three temperatures given in a random order. If the monkeys did 

not remove their tails within 20 s (cutoff), the flask was removed and a maximum time of 20 s was 

recorded. Test sessions began with determining a control value at each temperature. Subsequent tail-

withdrawal latencies were determined every 30 min after intrathecal administration. The same group 

of subjects (n=4) was tested in a 3-hr time course by using a single dosing procedure. 

Scratching behavior, inferred as a response to itch sensation (Ko et al., 2004), was recorded on 

videotape while the monkeys were in their home cages. A scratch was defined as one short-duration 

(< 1 s) episode of scraping contact of the forepaw or hind paw on the skin surface of other body 

parts. Scratching responses were scored by individuals who were blinded to experimental 

conditions. Each recording session was conducted for 15 min per test session that occurred every 30 

min after intrathecal administration. The same group of subjects (n=6) was tested in a 3-hr time 

course by using a single dosing procedure. 

For i.t. administration in monkeys, [Dmt
1
]N/OFQ(1-13)NH2 was administered at a total volume of 1 

ml. The detailed description for intrathecal drug delivery can be referred to previous studies (Ko et 

al., 2006). All experiments using intrathecal administration in monkeys were conducted with a 10-

day inter-injection interval. 
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3.4 Data analysis and terminology 

All data are expressed as means ± standard error of the mean (s.e.m.) of n experiments. For potency 

values 95% confidence limits were indicated. Data have been statistically analyzed with the 

Student‟s t test for unpaired data or one way ANOVA followed by the Dunnett‟s test, as specified in 

table x and figure x legends; p values less than 0.05 were considered to be significant. The 

pharmacological terminology adopted in this manuscript is consistent with the IUPHAR 

recommendations (Neubig et al., 2003). 

Receptor binding data are expressed as pKi derived from the Cheng and Prusoff (Cheng et al., 

1973) equation: 

 

Ki = IC50 / (1+([R]/KD)) 

 

where IC50 is the concentration of the competitor producing 50 % displacement, [R] is the 

concentration of the radiolabel and KD is the radiolabel affinity for the receptor under investigation. 

The [
3
H]N/OFQ KD was 83 pM while those of [

3
H]Diprenorphine were 125, 323, and 134 pM (in-

house laboratory values) at MOP, DOP, and KOP, respectively. pKi is the antilogarithm of the Ki 

values obtained after the calculations.  

 [
35

S]GTPS data are expressed as stimulation factor i.e. the ratio between specific agonist 

stimulated [
35

S]GTPS binding and basal specific binding. Calcium mobilization data are expressed 

as fluorescence intensity units (FIU) in percent over the baseline. Isolated tissues data are expressed 

as percent of the control twitch induced by electrical field stimulation.  

Agonist potencies are given as pEC50 = the negative logarithm to base 10 of the molar concentration 

of an agonist that produces 50% of the maximal possible effect. Concentration response curve to 

agonists were fitted with the following equation:  

 

Effect = baseline + (Emax-baseline)/(1+10^((LogEC50 - X)*HillSlope)) 
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where X is the agonist concentration. Curve fitting was performed using PRISM 5.0 (GraphPad 

Software In., San Diego, U.S.A.) 

Surmountable antagonist potencies are expressed in terms of pA2. pA2 is the negative logarithm to 

base 10 of the antagonist molar concentration that makes it necessary to double the agonist 

concentration to elicit the original response (Schild, 1973). The pA2 values are calculated using 

Schild‟s linear regression, that correlates the log of concentrations of antagonists (x axis) to the log 

of (CR-1) (y axis), where CR is the ratio between the EC50 (nM) values of agonist, in the presence 

and in absence of antagonist. The value of x for y=0 represents the pA2 value, and the slope not 

significantly different from the unity means that the antagonist is competitive. When one single 

concentration of antagonist is utilized, the pKB value is calculated with the Gaddum Schild 

equation: 

 

KB = ((CR - 1)/[antagonist]) 

 

assuming a slope equal to unity. For calcium mobilization experiments pKB values were derived 

from inhibition response curves using the following equation:  

 

KB = IC50/([2 +([A]/EC50)
n
]
1/n

 – 1) 

 

where IC50 is the concentration of antagonist that produces 50% inhibition of the agonist response, 

[A] is the concentration of agonist, EC50 is the concentration of agonist producing a 50% maximal 

response and n is the Hill coefficient of the concentration response curve to the agonist (Kenakin, 

2004). the pKB for insurmountable antagonists evaluated at different concentrations against the 

concentration response curve to N/OFQ were calculated using the following equation: 
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KB = [antagonist]/(slope – 1) 

 

where slope is calculated from a double-reciprocal plot of equieffective concentrations of agonist in 

the absence and presence of antagonist (Kenakin, 2004). 

For in vivo rat studies statistical analyses were performed (Prism software; GraphPad Software, San 

Diego, California) on raw data using Student t-test with the only exception of the drag and rotarod 

data, which have been analyzed by repeated measures two-way ANOVA (genotype and day) 

followed by Bonferroni‟s test for multiple comparison. P values < 0.05 were considered statistically 

significant. For in vivo mouse studies tail withdrawal latency data are shown in time course 

experiments as mean ± SEM. Each data point was obtained from 16 animals. These data were used 

for calculating the area under the curve (AUC, latencies x time) to better display the dose response 

curves to the different agonists. AUC data were statistically analysed using one way ANOVA 

followed by the Dunnett test for multiple comparison. The criterion for significant differences was 

set at p<0.05. For monkey studies mean values (mean ± SEM) were calculated from individual 

values for all behavioral endpoints. Comparisons were made for the same monkeys across all test 

sessions. Data were analyzed by a two-way repeated analysis of variance (ANOVA) followed by 

the Newman-Keuls test for multiple comparisons. The criterion for significant differences was set at 

p<0.05. 
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4.  RESULTS AND DISCUSSION 

 
 

4.1 Knockout studies - Phenotype of NOP(-/-) rats 

Recently, knockout rats for the NOP receptor gene have also been generated using target-selected 

N-ethyl-N-nitrosourea (ENU)-driven mutagenesis. Autoradiographic studies demonstrated that 

[
3
H]N/OFQ binding was completely absent in brain slices of NOP(-/-) rats with no compensatory 

changes in classical opioid receptor expression (Homberg et al., 2009). In the present study these 

NOP(-/-) rats were used to investigate anxiety- and mood-related behaviour (open field, elevated 

plus maze, and forced swimming test), locomotor (drag and rotarod test), and nociceptive (plantar 

and formalin test) phenotypes in comparison to their NOP(+/+) littermates. In addition, N/OFQ 

sensitivity has been assessed in electrically stimulated vas deferens tissues taken from NOP(+/+) 

and NOP(-/-) rats. 

 

As shown in figure 4.1, in the elevated plus maze assay rats lacking the NOP receptor gene 

exhibited a statistically significant reduction in the time spent in the open arms as well as of the 

number of open arm entries compared to their wild type littermates. Moreover, as described in 

table 4.1, NOP(-/-) rats spent more time in the closed arms and exhibited less head-dipping and 

rearing behaviors than NOP(+/+) animals. 
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Figure 4.1. Elevated Plus Maze. Time spent (left panel) and number of entries (right panel) into the open 

arms by NOP(+/+) and NOP(-/-) rats. Sample size was 11 NOP(+/+) and 11 NOP(-/-) animals. All data 

represent mean ± SEM. *p < 0.05 compared to NOP(+/+) rats according to Student‟s t-test for unpaired 

data. tDF = 2.5320 and 2.1320 for left and right panel, respectively. 

 

 

Table 4.1. Behavioural parameters displayed by NOP(+/+) and NOP(-/-) rats in the elevated plus maze. 
Sample size was 11 NOP(+/+) and 11 NOP(-/-) animals. All data represent mean ± SEM. *p < 0.05 

compared to NOP(+/+) rats according to Student‟s t-test for unpaired data. NS, non statistically 

significant. 

 

 NOP(+/+) NOP(-/-) 

Time in open arms (s) 22.6 ± 7.2 4.5 ± 2.7* 

Time in closed arms (s) 171.5 ± 7.0 224.3 ± 10.7* 

Number of open arm entries 2.1 ± 0.6 0.5 ± 0.4* 

Number of arm entries 6.9 ± 0.7 4.3 ± 0.8* 

Number of stretch attend postures 2.6 ± 0.5 1.5 ± 0.3 

Number of head-dipping 4.8 ± 0.9 1.4 ± 0.5* 

Grooming (s) 6.8 ± 1.6 3.9 ± 0.9 

Number of rearings 25.1 ± 1.2 15.8 ± 1.9* 

Number of faecal pellets 0.6 ± 0.4 2.5 ± 0.8* 

 

 

In the open field, the behaviour of NOP(-/-) rats showed no statistically significant differences 

compared to that of NOP(+/+) littermates, although the latter animals showed a trend towards a 

reduction in all of the measured parameters (figure 4.2) .  
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Figure 4.2. Open field test. Time spent and number of crossings into the central area (left panel) and total 

number of crossings and rearings (right panel) displayed by NOP(+/+) and NOP(-/-) rats subjected to the 

test. Sample size was 11 NOP(+/+) and 11 NOP(-/-) animals. All data represent mean ± SEM. 

 

 As shown in figure 4.3, in the forced swimming assay rats lacking the NOP receptor gene 

exhibited a statistically significant reduction in immobility time associated with an increase in 

climbing and swimming time. 
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Figure 4.3. Forced Swimming test. Immobility, climbing and swimming time displayed by NOP(+/+) 

and NOP(-/-) rats subjected to the test. Sample size was 11 NOP(+/+) and 11 NOP(-/-) animals. All data 

represent mean ± SEM. *p < 0.05 compared to NOP(+/+) rats according to Student‟s t-test for unpaired 

data.  
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In the plantar test there were no differences in paw withdrawal latency between NOP(+/+) (5.2 ± 

0.3 s) and NOP(-/-) rats (5.7 ± 0.2 s). 

Rats receiving 50 µl of saline into the dorsal surface of the right hind paw did not show any pain 

related behaviour (data not shown, n=4 for both genotypes). In contrast, intraplantar injection of 50 

µl of a 2% formalin solution into the dorsal surface of the right hind paw produced clear 

nociceptive responses in NOP(+/+) rats which lasted for the time course of the experiment. Of 

note, these animals did not display the typical biphasic response to formalin, showing 

approximately 7 responses per min over the time course of the experiment (figure 4.4, top panel). 

Genetic ablation of the NOP receptor gene produced a statistically significant increase in 

nociceptive behaviour of the mutant rats and in these animals the response to formalin injection 

was clearly biphasic (figure 4.4, top panel). As shown in figure 4.4 bottom panel NOP(-/-) rats 

displayed a statistically significantly higher nociceptive response to formalin then their NOP(+/+) 

littermates both in the I° and II° phase of the assay. 
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Figure 4.4. Time course of formalin-induced pain behaviour in NOP(+/+) and NOP(-/-) (top panel). The 

total nociceptive behaviour (responses/min) is plotted versus time (min). Formalin-induced pain 

behaviour during I° and II° phases (bottom panels). Sample size was 7 NOP(+/+) and 7 NOP(-/-) 

animals. * p < 0.05 vs NOP(+/+) according to the Student‟s t-test for unpaired data. tDF = -2.2212 and -

7.1812 for left and right bottom panel, respectively. 

 

 

Finally the electrically-stimulated rVD was used as an in vitro pharmacological preparation to 

assess the effects of N/OFQ in tissues taken from NOP(+/+) and NOP(-/-) animals. In NOP(+/+) 

tissues, N/OFQ inhibited in a concentration-dependent manner the electrically-induced twitches 

with a pEC50 of 7.13 and an Emax of 90 ± 1%. In contrast, the peptide was inactive in tissues taken 

from NOP(-/-) animals up to 3 µM (figure 4.5, left panel). In parallel experiments, the opioid 

receptor agonist etorphine displayed similar potency and efficacy in vas deferens tissues taken 

from NOP(+/+) (pEC50 8.36 and 95 ± 2%, respectively) and NOP(-/-) (8.23 and 97 ± 1%, 

respectively) rats (figure 4.5, right panel). 
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Figure 4.5. Electrically stimulated rat vas deferens. Concentration response curve to N/OFQ (left panel) 

and etorphine (right panel) in tissues taken from NOP(+/+) and NOP(-/-) rats. Points indicate the means 

and vertical lines the S.E.M. of three separate experiments. 

 

 

The present study investigated the anxiety- and mood-related behaviour and locomotor and 

nociceptive phenotype of NOP receptor knockout rats. The results clearly indicated that the 

N/OFQ-NOP receptor system plays an important role in controlling anxiety- and mood-related 

behaviours, exercise driven locomotion and nociception. These results are in line with previous 

findings obtained with selective NOP receptor antagonists in mice and rats as well as with NOP(-/-

) mice. Clearly N/OFQergic control over these biological functions appears to be maintained 

across animal species, experimental conditions and different behavioural assays. These 

observations may be relevant in the identification of the therapeutic indications (and 

contraindications) of NOP receptor antagonists. Moreover the present findings indicate that the 

NOP(-/-) animals generated by (Homberg et al., 2009) are a useful model for investigating the 

range of biological functions controlled by the N/OFQ – NOP receptor system in rats. This is of 

particular importance for neuropharmacological studies since most of our knowledge in the field is 

based on rat models of pathology.  
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In the electrically-stimulated rVD taken from NOP(+/+) rats N/OFQ produced a concentration-

dependent inhibition of the twitch response with maximal effects and potency values similar to 

those described in the literature (Bigoni et al., 1999). This action was no longer evident in tissues 

taken from NOP(-/-) animals. In contrast, the inhibitory effects elicited by the classical opioid 

receptor agonist etorphine were superimposable in NOP(+/+) and NOP(-/-) rat tissues. Collectively 

these findings demonstrated that the gene knockout technology used by (Homberg et al., 2009)was 

indeed successful and the lack of [
3
H]N/OFQ binding to brain slices of NOP(-/-) rats is  associated 

with a loss of NOP mediated biological actions.  

As far as anxiety related behaviours are concerned, NOP(-/-) rats displayed an anxiety-like 

phenotype in the elevated plus maze but not in the open field, as previously shown for NOP(-/-) 

mice (Gavioli et al., 2007). Importantly no differences were recorded for spontaneous locomotor 

activity between the two genotypes in the open field test. Therefore elevated plus maze results are 

not confounded by this parameter. These findings are in line with a large body of evidence 

demonstrating that N/OFQ given i.c.v. (Gavioli et al., 2008; Gavioli et al., 2002; Griebel et al., 

1999; Jenck et al., 1997; Kamei et al., 2004; Uchiyama et al., 2008; Vitale et al., 2006) as well as 

non peptide NOP agonists given systemically (Hayashi et al., 2009; Hirao et al., 2008a; Jenck et 

al., 2000; Varty et al., 2005; Varty et al., 2008) promote anxiolytic-like actions in rodents. The 

mechanism underlying these anxiolytic-like effects are not fully understood (for details on this 

issue see (Gavioli et al., 2006)), but recent findings indicate that GABAA receptor signalling might 

be involved (Gavioli et al., 2008; Uchiyama et al., 2008). NOP receptor selective antagonists such 

as J-113397 (Hirao et al., 2008a; Varty et al., 2005) and UFP-101 (Gavioli et al., 2006) did not 

elicit anxiogenic actions per se at doses able to prevent the anxiolytic-like effect of NOP agonists. 

This contrasts with the anxiety-like phenotype displayed by NOP(-/-) rats (present results) and 

mice (Gavioli et al., 2007). However, it is worthy to note that in the above studies the experimental 

conditions were possibly optimized for detecting anxiolytic-like effects of NOP agonists rather 

than anxiogenic effects of NOP antagonists. Further studies are needed to investigate under which 
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conditions endogenous N/OFQ-NOP receptor signalling is activated to control stress and anxiety 

levels. This information is particularly relevant since anxiety states might represent a 

contraindication to the clinical use of NOP antagonists.  

As far as emotional responses are concerned, NOP(-/-) rats displayed a robust antidepressant-like 

phenotype in the forced swimming test indicating that blockade of N/OFQ-NOP receptor 

signalling in the brain produces antidepressant-like effects. This indication is corroborated by 

pharmacological and genetic evidence. Indeed, NOP(-/-) mice showed an antidepressant-like 

phenotype in the tail suspension and forced swimming tests (Gavioli et al., 2003; Gavioli et al., 

2004), while selective NOP receptor antagonists ([Nphe
1
]N/OFQ(1-13)NH2, UFP-101, J-113397, 

and SB-612111) elicited dose-dependent antidepressant-like effects in these tests (Gavioli et al., 

2006; Gavioli et al., 2003; Gavioli et al., 2004; Redrobe et al., 2002; Rizzi et al., 2007a). 

Differences in immobility time between NOP(+/+) and NOP(-/-) rats might reflect differences in 

their locomotor performance (see below). However, we found no correlation (r
2
 always < 0.06) 

between locomotor activity (drag and rotarod tests; data not shown) and immobility time in the 

forced swimming test; this holds true for NOP(+/+) and NOP(-/-) rats. Thus, it can be proposed 

that changes in locomotor activity do not bias the results of the forced swimming test. Recent 

findings support this proposal. In fact, UFP-101 produced antidepressant-like effects in mice after 

bilateral injection into the dorsal hippocampus without modifying locomotor performance 

(Goeldner et al., 2010). More importantly, UFP-101 was recently shown to elicit antidepressant-

like effects in the chronic mild stress assay in rats measuring a behavioural parameter (i.e. sucrose 

solution intake) that is predictive for antidepressant-like effects and not affected by changes in 

locomotor activity (Vitale et al., 2009). To further confirm the involvement of N/OFQ in mood 

regulation, plasma N/OFQ levels were found to be significantly increased in depressed patients 

compared to normal subjects (Wang et al., 2009). Similar results were found in patients with 

postpartum depression compared to healthy women; in this latter case a significant negative 

correlation between N/OFQ and 5-HT levels was also reported (Gu et al., 2003). Overall, these 
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studies support the proposal that the NOP receptor represents a candidate target for the 

development of innovative antidepressant drugs.  

Spontaneous locomotion in the open field was similar for NOP(+/+) and NOP(-/-) rats. However 

when animals were forced to perform a sustained motor task such as in the drag and rotarod assay, 

NOP(-/-) rats outperformed NOP(+/+) animals. This result suggests that the inhibitory influence of 

endogenous N/OFQ over motor activity becomes relevant during exercise rather than at rest. In 

fact, systemic administration of J-113397 or central administration of UFP-101 facilitated in a 

dose-dependent manner rat performance in the drag and rotarod tests (Marti et al., 2004b). NOP(-/-

) mice also outperformed NOP(+/+) mice in the same assays (Marti et al., 2004b). Consistently, 

systemic administration of J-113397 and its analogues Trap-101 and GF-4 increased motor activity 

in NOP(+/+) but not in NOP(-/-) mice (Marti et al., 2008; Viaro et al., 2008; Volta et al., 2010). In 

addition, preliminary evidence that J-113397 facilitates motor performance in non human primates 

has been presented (Viaro et al., 2008). Collectively, these findings corroborate the view that NOP 

receptor blockade may represent an innovative strategy for the control of hypokinetic disorders. 

Indeed, NOP receptor antagonists attenuated motor deficits in rodent (Mabrouk et al., 2010; Marti 

et al., 2005; Marti et al., 2008; Viaro et al., 2010; Viaro et al., 2008; Volta et al., 2010) and non 

human primate (Viaro et al., 2008; Visanji et al., 2008) models of parkinsonism. The finding that 

N/OFQ levels are 3.5-fold elevated in the cerebrospinal fluid of parkinsonian patients compared to 

controls (Marti et al., 2010) may provide a rational for developing NOP receptor antagonists as 

drugs to treat Parkinson‟s disease. 

Nociceptive threshold in the plantar test was similar in NOP(+/+) and NOP(-/-) rats. This result 

suggests that endogenous N/OFQ-NOP receptor signalling does not control the responses to acute 

noxious stimulation. This statement is supported by evidence obtained with NOP(-/-), ppN/OFQ(-/-

), and NOP(-/-)/ppN/OFQ(-/-) mice (Carra et al., 2005b; Depner et al., 2003; Nishi et al., 1997; 

Ueda et al., 1997) whose nociceptive response to acute stimulation is superimposable to that of 

their wild type littermates. Consistently, selective NOP receptor antagonists (e.g. J-113397, SB-
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612111, Comp 24) do not modify pain threshold to acute noxious stimulation (Fischetti et al., 

2009; Ozaki et al., 2000; Rizzi et al., 2007a; Zaratin et al., 2004). By contrast, when subjected to 

the formalin test NOP(-/-) rats displayed a robust pronociceptive-like phenotype, as observed with 

different knockout mice genotypes (Depner et al., 2003; Rizzi et al., 2006). In addition, systemic 

administration of J-113397 as well as intrathecal injection of UFP-101 elicited pronociceptive 

effects in normal mice subjected to the formalin assay (Rizzi et al., 2006). Similar results were 

obtained after intrathecal injection of J-113397 in rats (Yamamoto et al., 2001). Thus, converging 

pharmacological and genetic findings suggests that endogenous N/OFQergic signalling is activated 

during prolonged noxious stimulation and elicits antinociception. Since the effect of the peptide on 

pain transmission at supraspinal and spinal levels are opposite (i.e. supraspinal pronociceptive 

effect vs spinal antinociceptive action (Zeilhofer and Calo, 2003)) it could be proposed that, at 

least under the present experimental conditions, spinal antinociceptive action prevails over 

supraspinal pronociceptive effects (as discussed in details in (Rizzi et al., 2006)). Interestingly, 

spinal levels of N/OFQ increased in response to formalin injection (Candeletti S., personal 

communication). The antinociceptive properties of spinal N/OFQ are well documented in rodents 

(Zeilhofer and Calo, 2003) and were recently confirmed in non human primates (Ko et al., 2009; 

Ko et al., 2006). The mechanism by which N/OFQ promotes spinal antinociception is probably 

related to its ability to inhibit excitatory neurons and the synaptic release of glutamate (Liebel et 

al., 1997; Luo et al., 2002). Collectively it appears that blocking the endogenous N/OFQ-NOP 

receptor signalling produces pronociceptive effects during tonic nociceptive stimulation. Chronic 

pain may therefore represent a contraindication for NOP selective antagonists. 
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4.2 Pharmacological studies 

 NOP selective ligands 

The non-peptidic antagonist GF-4 

To date, J-113397 represents the most used non-peptide NOP receptor antagonist widely used in 

pharmacological studies. However, the synthesis, purification, and enantiomer separation of this 

molecule, which contains two chiral centers, is rather difficult and low-yielding. The compound 

coded as Trap-101, an achiral analogue of J-113397, combines a pharmacological profile similar to 

that of the parent compound with a practical, high-yielding preparation (Trapella et al., 2006). In in 

vitro N/OFQ sensitive preparations Trap-101 was a NOP selective antagonist with a potency 2-3 

fold lower than the reference compound J-113397 but as selective (>100 fold) as J-113397 

(racemic mixture) for NOP over classical opioid receptors.. In vivo, Trap-101 changed motor 

activity in naive rats and mice and alleviated parkinsonism in 6-hydroxydopamine hemilesioned 

rats (Marti et al., 2008). The aim of the present study was the in vitro pharmacological 

characterization of a Trap-101 analogue, named GF-4, obtained introducing in the Trap-101 

structure two methyl groups in the hydroxymethyl function at the carbon 3 of the piperidine ring 

(Fig. 4.6).  

 

 

 

 

Figure 4.6. Structure of GF-4. 
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 In receptor binding experiments performed on CHONOP cell membranes GF-4 displaced 

[
3
H]N/OFQ in a concentration dependent manner showing nanomolar affinity (pKi 7.46, Table 

4.2). In parallel experiments J-113397 and Trap-101 displayed pKi values of 8.58 and 8.36. Under 

the same experimental conditions, GF-4 did not bind to the DOP receptor and showed lower 

affinities for MOP and KOP receptors (pKi 6.78 and 6.84, respectively) (Table 4.2).  

 

Table 4.2. Receptor binding profile of GF-4 to human recombinant NOP and classical opioid receptors 

expressed in CHO cells. Data are mean (CL95%) of 3 separate experiments. 

 

 pKi values (CL 95%) 

 CHOhNOP CHOhMOP CHOhDOP CHOhKOP 

Standard ligand 

N/OFQ 

9.27 

(9.07-9.47) 

Endomorphin-1 

8.41 

(8.15-8.67) 

Naltrindole 

9.46 

(9.12-9.80) 

Norbinaltorphimine 

9.93 

(9.8-10.06) 

GF-4 
7.46 

(7.09-7.83) 

6.78 

(6.57-6.99) 
<6 

6.84 

(6.52-7.16) 

 

 

In calcium mobilization experiments performed on CHONOP cells stably expressing the Gαqi5 

chimeric protein N/OFQ evoked a concentration dependent stimulation of calcium release 

displaying high potency (pEC50  9.24 (CL 95% 9.10 – 9.38)) and maximal effects ( 200% over the 

basal values).  
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Figure 4.7. Concentration response curve to N/OFQ in calcium mobilization experiments performed in 

CHOhNOP cells stably expressing the Gαqi5 protein. N/OFQ effects was expressed as % over the baseline. 

Data are the mean of 4 separate experiments performed in duplicate. 

 

Up to 10 µM concentrations, J-113397, Trap-101 and GF-4 did not stimulate calcium release. 

Inhibition response experiments were performed by testing increasing concentrations of J-113397, 

Trap-101 and GF-4 (10 pM – 10 µM) against a fixed concentration of N/OFQ (10 nM), 

approximately corresponding to the EC80. As shown in Figure 4.8, J-113397, Trap-101 and GF-4 

were able to inhibit in a concentration-dependent manner the stimulatory effect of N/OFQ, 

showing similar pIC50 values. pKB values of 7.88, 7.93 and 7.27 were calculated from these 

experiments for J-113397, Trap-101 and GF-4, respectively (Table 4.3).  
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Figure 4.8. Inhibition experiments obtained by challenging 10 nM N/OFQ with increasing 

concentrations of NOP receptor antagonists in the calcium mobilization assay performed in CHOhNOP 

cells stably expressing the Gαqi5 protein. Data are the mean of 4 separate experiments performed in 

duplicate. 

 

To assess the selectively of action of GF-4 similar experiments were performed in CHO cells 

stably expressing Gαqi5 and classical opioid receptors. Dermorphin, DPDPE and Dynorphin A 

were used in these experiments as agonists for MOP, DOP and KOP receptors, respectively. They 



 101 

produced a concentration dependent stimulation of calcium with the following values of pEC50 and 

Emax: Dermorphin 7.93 (CL 95% 7.67 – 8.19), 196 ± 9%; DPDPE 8.82 (CL 95% 8.43 – 9.21), 130 ± 

10%; Dynorphin A 8.47 (CL 95% 8.16 – 8.78) 174 ± 14%. GF-4, inactive up to 1 µM against 

DPDPE and Dynorphin A, inhibited the effect of the MOP receptor agonists Dermorphin showing 

pKB value of 6.48. In parallel experiments Trap-101 inhibited the stimulator effect of Dermorphin 

with a potency value close to that of GF-4 (pKB 6.24) (Figure 4.9, Table 4.3). 
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Figure 4.9. Inhibition experiments obtained by challenging 100 nM Dermorphin (top panel), 100 nM 

DPDPE (middle panel) and 100 nM Dynorphine A (bottom panel) with increasing concentrations of 

Trap-101 and GF-4 in the calcium mobilization assay performed in CHO co-expressing the classical 

opioid receptors and the Gαqi5 protein. Data are the mean of 4 separate experiments performed in 

duplicate. 
 

In parallel experiments Naloxone was inactive up to 1 µM against N/OFQ while inhibited the 

effects of the classical opioid receptors agonists showing higher potency at MOP (pKB 9.09) than 

KOP (pKB 7.14) and DOP (pKB 7.32) (Table 4.3). 
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Table 4.3. Antagonist potencies of GF-4 and naloxone evaluated in calcium mobilization experiments 

performed in CHO cells expressing NOP or classical opioid receptors and the Gαqi5 protein. Data are 

mean (CL95%) of 4 separate experiments 

 

 NOP MOP DOP KOP 

agonist 
N/OFQ 

10 nM 

Dermorphin 

100 nM 

DPDPE 

100 nM 

Dynorphin A 

100 nM 

     

Naloxone < 6 
9.09 

(8.73-9.45) 

7.32 

(6.11-8.53) 

7.14 

(6.60-7.68) 

Trap-101 
7.93 

(7.25-8.61) 

6.24 

(5.90-6.58) 
< 6 < 6 

GF-4 
7.27 

(6.69-7.85) 

6.48 

(6.07-6.89) 
< 6 < 6 

 

 

 

J-113397, Trap-101 and GF-4 were assessed against N/OFQ in the electrically stimulated mouse 

and rVD. In the mVD N/OFQ inhibited the twitch response to electrical field stimulation in a 

concentration dependent manner (pEC50 of value 7.55, Emax = 76 ± 2% inhibition of control 

twitch). The antagonists were tested at the single concentration of 100 nM against the effects of 

N/OFQ. J-113397, Trap-101 and GF-4 up to 1 µM did not modify the electrically induced twitch 

response. However, the antagonists produced a rightward shift of the concentration response curve 

to N/OFQ without significantly affecting the maximal agonist response. The pKB values 

extrapolated from these experiments were 8.13, 7.46 and 7.82 for J-113397, Trap-101 and GF-4, 

respectively (Figure 4.10). 

 



 104 

-10 -9 -8 -7 -6 -5
0

20

40

60

80

100

Control

GF4 100 nM

Log[N/OFQ]

%
 c

o
n

tr
o

l 
tw

it
c
h

-10 -9 -8 -7 -6 -5
0

20

40

60

80

100

Control

J-113397 100 nM

Log[N/OFQ]

%
 c

o
n

tr
o

l 
tw

it
c
h

-10 -9 -8 -7 -6 -5
0

20

40

60

80

100

Control

Trap-101 100 nM

Log[N/OFQ]

%
 c

o
n

tr
o

l 
tw

it
c
h

 

Figure 4.10. Concentration-response curve to N/OFQ obtained in the absence and presence of J-113397, 

Trap-101 and GF-4 (100 nM) in the electrically stimulated mouse vas deferens. The values are means ± 

SEM of 4 separate experiments. 

 

In the rVD N/OFQ inhibited the twitch response to electrical field stimulation in a concentration 

dependent manner (pEC50 of value 7.51, Emax = 78 ± 2% inhibition of control twitch). J-113397, 

Trap-101 and GF-4 were inactive up to 1 µM, while tested at the single concentration of 100 nM 

produced a rightward shift of the concentration response curve to N/OFQ without significantly 

affecting the maximal agonist response. The estimated pKB values were 7.37, 7.53 and 7.30 for J-

113397, Trap-101 and GF-4, respectively (Figure 4.11). 
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Figure 4.11. Concentration-response curve to N/OFQ obtained in the absence and presence of J-113397, 

Trap-101 and GF-4 (100 nM) in the electrically stimulated rat vas deferens. The values are means ± SEM 

of 4 separate experiments. Antagonist pKB values obtained from these experiments are summarized in 

Table 3. 
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Table 4.4. pKB values of J-113397, Trap-101 and GF-4 vs. N/OFQ in the electrically stimulated mouse 

and rat vas deferens. 

 

 Electrically Stimulated Tissues 

 Mouse Vas Deferens Rat Vas Deferens 

 pKB pKB 

J-113397 8.13 (7.69-8.57) 7.37 (6.88-7.86) 

Trap-101 7.46 (6.97-7.92) 7.53 (6.73-8.33) 

GF-4 7.82 (7.61-8.03) 7.30 (6.58-8.02) 

 

 

GF-4 is a novel NOP receptor antagonist generated from the Trap-101 structure. In vitro, GF-4 

antagonized N/OFQ actions at human recombinant and rodent native NOP receptors in a 

concentration-dependent and competitive manner (pKB 7.27-7.88) without exerting primary 

effects. The affinity at recombinant NOP receptors (~35 nM, pKi 7.45) is ~100-fold lower than 

those of the most potent nonpeptide NOP receptor antagonists thus described, namely Compound 

24 (0.27 nM; (Goto et al., 2006))and SB-612111 (0.33 nM; (Zaratin et al., 2004)), ~10-fold lower 

than that of J-113397 and Trap-101 (see also (Ozaki et al., 2000; Spagnolo et al., 2007; Zaratin et 

al., 2004)) and closer to that of JTC-801 (8.2  nM (Shinkai et al., 2000); 30.8 nM(Zaratin et al., 

2004)). In vitro potency values in recombinant and native preparations are in line with this rank 

order, although the differences are less pronounced. For instance, in calcium mobilization assay, 

GF-4 was ~57-fold less potent than Compound 24 (Fischetti et al., 2009) and ~5-fold less potent 

than Trap-101. In the mVD, GF-4 was only ~5-fold less potent than SB-612111 (Spagnolo et al., 

2007) and Compound 24 (Fischetti et al., 2009), and ~2-fold less potent than J-113397. In this 

preparation, GF-4 was found ~2-fold more potent than Trap-101 (see also (Trapella et al., 2006)) 

while in the rVD the reverse was true, Trap-101 being more potent than GF-4. Since no species 

differences with respect to responsiveness to NOP receptor ligands have been observed in these 

preparations, it is likely that these slight discrepancies in potency are due to experimental 

variability. Therefore, Trap-101 and GF-4 can be considered equipotent in isolated tissues. 
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Original binding and functional experiments in recombinant systems (Ozaki et al., 2000) revealed 

that J-113397 is at least 350-fold selective over MOP and >1000-fold selective over DOP and KOP 

receptors. More recent studies (Spagnolo et al., 2007; Zaratin et al., 2004), confirmed the high 

selectivity over DOP receptors but found the selectivity over KOP (30-fold) and, particularly, 

MOP (10-15-fold) receptors to be much lower than previously reported. Introduction of a double 

bond in the J-113397 molecule (i.e. elimination of chirality) did not change selectivity as shown by 

a comparative study between J-113397 and Trap-101 (Trapella et al., 2006). Conversely, the 

introduction of a tertiary alcohol function had dramatic effects, since selectivity over MOP 

receptors dropped from ~49-fold (Trap-101) to ~6-fold (GF-4). This finding questions about the 

usefulness of GF-4 in in vivo experiments. The group of prof. Morari conduced a pharmacological 

characterization of GF-4 in vivo; in vivo selectivity of GF-4 was studied in NOP receptor knock-

out mice (NOP(-/-)). The antiparkinsonian potential of GF-4 was investigated in 6-OHDA 

hemilesioned rats through a battery of previously validated behavioral tests: the bar, drag and 

rotarod tests (Marti et al., 2005; Marti et al., 2008; Marti et al., 2007; Viaro et al., 2008). Finally, 

to unravel the circuitry involved in motor actions of GF-4, GABA and GLU release was monitored 

in the lesioned SNr and ipsilateral VMTh in animals subjected to microdialysis and simultaneously 

performing the bar test. In these experiments, despite its poor in vitro selectivity, GF-4 was 

selective for NOP receptors in mice up to 30 mg/Kg. Interestingly, as previously shown for J-

113397 (Viaro et al., 2008) and Trap-101 (Marti et al., 2008), GF-4 was able to exert dual control 

over stepping activity, namely facilitation at low doses and inhibition at high ones. These effects 

were mediated by NOP receptors since GF-4 was ineffective in NOP(-/-) mice. Antiparkinsonian 

properties of GF-4 were investigated in 6-hydroxydopamine hemilesioned rats. GF-4 ameliorated 

akinesia, bradykinesia and overall gait ability in the 0.1-10 mg/Kg dose range, but inhibited motor 

activity at 30 mg/Kg. To investigate the circuitry underlying motor facilitating and inhibitory 

effects of GF-4, microdialysis coupled to behavioral testing (akinesia test) was performed. An anti-

akinetic dose of GF-4 (1 mg/Kg) reduced glutamate (GLU) and enhanced GABA release in SNr, 
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while the pro-akinetic dose of GF-4 (30 mg/Kg) evoked opposite effects. Moreover, the anti-

akinetic dose of GF-4 reduced GABA and increased GLU release in ventro-medial thalamus, the 

pro-akinetic dose decreasing GABA without affecting GLU release in this area. 

Altogether, these  results indicate that the chemical modification of  Trap-101, obtained by 

introducing two methyl groups in the hydroxymethyl function at the position 3 of the piperidine 

nucleus, did not alter the pharmacological activity of the compound (a pure and competitive NOP 

receptor antagonist) but slightly reduced its potency at recombinant NOP receptors and, more 

dramatically, in vitro selectivity over classical opioid receptors. Nevertheless, GF-4 was NOP 

receptor selective in vivo, replicating the antiparkinsonian effect and neurochemical changes typical 

of its parent compounds, and being as potent as J-113397 (Marti et al., 2007). Further studies are 

needed to elucidate whether the in vivo gain in potency is due to greater metabolic stability, 

possibly to greater resistance to cytochrome oxidation as predicted on the basis of the structural 

changes made (Trapella et al., 2006). The present data offer new insights into the structural 

requirements for optimal antagonist activity at NOP receptors and selectivity over classical opioid 

receptors. Moreover, they confirm that NOP receptor antagonists are able to attenuate parkinsonian-

like symptoms via re-setting of GLU and GABA inputs upon nigro-thalamic GABA projection 

neurons (Marti et al., 2005; Marti et al., 2008; Marti et al., 2007). 
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Pharmacological studies 

The non-peptidic agonists Ro 65-6570, SCH-221510 and Compound 6d 

Ro 64-6198 is a high affinity (pKi 9.41) and highly selective (120-, 229- and 3548-fold over  MOP,  

KOP and  DOP, respectively) ligand for the NOP receptor. Ro 64-6198 is a full agonist for 

stimulation of [
35

S]GTPγS binding and inhibition of forskolin-stimulated cAMP formation. In 

addition, the authors completed a number of in vivo behavioural tests and showed an impressive 

anxiolytic profile for this compound comparable to benzodiazepines (Jenck et al., 2000).  

The pharmacological profile and in vivo activity of Ro- 646198 have been confirmed by several 

groups (Shoblock, 2007).Another Ro 64-6198 chemically similar compound, named Ro 65-6570, 

was identified as a non-peptide NOP agonist with high affinity and moderate selectivity over the 

opioid (MOP,DOP,KOP) receptors (Wichmann et al., 1999). In this study, we have evaluated the 

in vitro pharmacological profile of Ro 65-6570 and compared this with N/OFQ on NOP 

recombinant receptor (in Chinese hamster ovary (CHO) cells expressing the human NOP 

(CHOhNOP)) and on native receceptor (in the electrically stimulated mouse and rVD). In addition, 

we compared these responses with those obtained by two novel non-peptide NOP agonists: SCH-

221510 (Varty et al., 2008) and Compound 6d (Mustazza et al., 2008). 

 

 

Calcium mobilization experiments were first performed. In CHOhNOP cells stably expressing the 

Gαqi5 chimeric protein, N/OFQ evoked a concentration dependent stimulation of calcium release 

displaying high potency (pEC50  9.30 (CL 95% 9.20 – 9.39)) and maximal effect (246% over the 

basal values). The non-peptide ligand, Ro 65-6570, stimulated calcium levels in a concentration-

dependent manner with a maximal effect (Emax  267%) similar to that of N/OFQ while exhibiting a 

30 fold lower potency (pEC50  7.95 (CL 95% 7.84 – 8.10)). Under the same experimental conditions, 

SCH 221510 showed maximal effect ( 170% over the basal values) similar to that of N/OFQ 

(165%) and a potency that was 100 fold lower (pEC50  6.76 (CL 95% 6.60 – 6.92)) than that of 
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N/OFQ (pEC50  8.47 (CL 95% 8.37– 8.56)). In another series of experiments compound 6d was 

tested: in this series of experiments N/OFQ mobilized intracellular calcium with potency of 8.92 

(CL95% 8.79 – 9.05)  and maximal effect of 180% over the baseline. Compound 6d mimicked the 

N/OFQ effects with lower potency (pEC50 7.36( CL95% 7.32 – 7.40)) and similar maximal effect 

(Emax 146% ). 
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Figure 4.12. Concentration response curve to N/OFQ and Ro 65-6570 (left panel), SCH 221510 (middle 

panel), and Compound 6d (right panel) in calcium mobilization experiments performed in CHOhNOP cells 

stably expressing the Gαqi5 protein. Compounds effects was expressed as % over the baseline. Data are 

the mean of 4 separate experiments performed in duplicate. 

 

In the isolated mVD N/OFQ inhibited the twitch response to electrical field stimulation in a 

concentration dependent manner (pEC50 7.64 (CL 95% 7.53 –7.75), Emax = 69± 2% inhibition of 

control twitch). Ro 65-6570 mimicked the inhibitory effect of N/OFQ with a pEC50 value of 6.79 

(CL 95% 6.40 –7.18) appearing about 10 fold less potent than N/OFQ and producing a maximal 

effect value significantly higher than that of the peptide (90± 3%) (fig. 4.13, left panel). The  

inhibitory effect induced by N/OFQ takes place immediately after adding the peptide to the bath, 

whereas Ro 65-6570 induced a very slow inhibitory effect which reaches the plateau only after 15-

20 min. SCH 221510 effects in the mVD appeared similar to that observed with Ro 65-6570. 

Indeed, SCH 221510 showed a pEC50 value of 6.56 (CL 95% 6.27 –6.85) that was 10 fold lower 

than that calculated for N/OFQ in the same experimental set (pEC50 of value 7.55 (CL 95% 7.46 –

7.64), Emax = 69± 2% inhibition of control twitch) (fig. 4.13, middle panel). SCH 221510, as Ro 

65-6570, displayed very slow kinetics, with the plateau reached after 15-20 min from the injection. 
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Compound 6d was then tested; it behaved as an agonist less potent than Ro 65-6570 and SCH 

221510, showing  a potency value of 5.56 (CL95% 5.36-5.86). In the same experiments N/OFQ 

showed potency values 30 fold higher (pEC50=7.14) (figure 4.13, right panel). 
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Figure 4.13. Concentration response curve to N/OFQ and Ro 65-6570 (left panel), SCH 221510 (middle 

panel), and Compound 6d (right panel) in the electrically stimulated mouse vas deferens. The values are 

means ± SEM of 5 separate experiments. 

 

As shown in figure 4.14, the effects of N/OFQ and the non-peptide agonists were evaluated in the 

presence of the NOP selective antagonist, J-113397 (1 µM). J-113397 did not modify per se the 

control twitches, and produced a rightward shift of the concentration-response curve to N/OFQ 

showing a pKB value of 7.88. At the contrary, 1 µM J-113397 did not significantly modify the 

concentration-response curve to Ro 65-6570 (figure 4.14, top right panel). Under the same 

experimental conditions, the effect of SCH 221510 was evaluated in the presence of J-113397 1 

µM (figure 4.14, bottom left panel). The concentration response curve to SCH 221510 was not 

modified by the antagonist. Finally, compound 6d was tested in presence of J-113397 (1 µM). The 

antagonist was poorly effective against compound 6d (figure 4.14, bottom right panel).  
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Figure 4.14. Concentration-response curve to N/OFQ (top left panel), Ro 65-6570 (top right panel), SCH 

221510 (bottom left panel), Compound 6d (bottom right panel) obtained in the absence and presence of 

J-113397 (1 µM) in the electrically stimulated mouse vas deferens. The values are means ± SEM of 5 

separate experiments. 
 

All the compounds were then tested in tissues taken from NOP(-/-) animals. 

In NOP(+/+) tissues, Ro 65-6570 mimicked the inhibitory effect of N/OFQ (pEC50 7.66 (CL 95% 

7.50 –7.77), Emax = 72± 3%) showing lower potency (pEC50 6.86 (CL 95% 6.08–7.64)) and higher 

maximal effect (Emax = 94± 2%). In tissues taken from NOP(-/-) mice, N/OFQ was found inactive 

while Ro 65-6570 produced similar inhibitory effects as those measured in NOP(+/+) tissues 

(pEC50 7.05 (CL 95% 6.54 –7.56), Emax = 95± 1%) (fig. 4.15 top panels). SCH 221510, examined in 

NOP(+/+) tissues. 
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In NOP(-/-)  tissues, SCH 221510 showed a pEC50 value of 5.85(CL 95% 5.04 –6.64) and a maximal 

effect of 73 ± 5% (fig. 4.15 bottom left panel). Compound 6d was then tested: it displayed similar 

low potency in both NOP(+/+) and NOP(-/-) tissues (figure 4.15 bottom right panel). 
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Figure 4.15. Concentration-response curve to N/OFQ, Ro 65-6570, SCH 221510 and Compound 6d 

obtained in vasa deferentia taken from NOP(+/+) and NOP(-/-) mice. The values are means ± SEM of 3 

separate experiments. 

 

In the rVD N/OFQ inhibited the twitch response to electrical field stimulation in a concentration 

dependent manner (pEC50 of value 7.24, Emax = 80 ± 2% inhibition of control twitch). 

Ro 65-6570 mimicked the inhibitory effect of N/OFQ with a pEC50 value of 7.11 (CL 95% 6.77 –

7.45) and producing a maximal effect value similar to that  of N/OFQ (85± 4%, figure 4.16). 
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In  these tissues, SCH 221510 inhibited the electrically induced contraction with potency of 5.73 

(CL95% 4.82-6.63) and with maximal effects of 80 ± 5%, where N/OFQ showed a potency value of 

7.26 (CL95% 6.91-7.61) and Emax = 80 ± 4%.  

In a parallel set of experiments the compound 6d effects were tested. In these tissues N/OFQ 

inhibited the twitch in a concentration-dependent manner (pEC50 = 6.93 (CL95% 6.78 – 7.08) Emax = 

90 ± 3%). At the contrary, Compound 6d showed a concentration dependent stimulatory action, 

augmenting the tissues contraction with on effect of 380 ± 35% at 10µM. 
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Figure 4.16. Concentration-response curve to N/OFQ and Ro 65-6570 (left panel), SCH 221510 (middle 

panel), and Compound 6d (right panel)  in the electrically stimulated rat vas deferens. The values are 

means ± SEM of 4 separate experiments. 

 

Also in this case, the effects of the three compounds were evaluated in the presence of the NOP 

selective antagonist, J-113397 (1 µM). J-113397 produced a rightward shift of the concentration-

response curve to N/OFQ showing a pKB value of 7.73. 1 µM J-113397 modified the 

concentration-response curve to Ro 65-6570 reducing its maximal effect. Under the same 

conditions, J-113397 1 µM produced a marked shift of the SCH 221510 concentration-response 

curve (figure 4.17). Compound 6d was also tested in presence of J-113397. The antagonist was 

inactive against the stimulatory effect of Compound 6d (figure 4.17).  
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Figure 4.17. Concentration-response curve to N/OFQ (top left panel), Ro 65-6570 (top right panel), SCH 

221510 (bottom left panel), Compound 6d (bottom right panel) obtained in the absence and presence of 

J-113397 (1 µM) in the electrically stimulated rat vas deferens. The values are means ± SEM of 5 

separate experiments. 
 

A final note is referred to the compound kinetics: N/OFQ showed a fast kinetic reaching the 

plateau of action in approximately 1 min and eliciting effects that were easily reverible by washing 

the tissues, on the contrary Ro 65-6570, SCH 221510 and compound 6d showed a slow kinetic 

profile (15-20 min needed to reach the plateau), and produced non reversible effects. In fact, while 

N/OFQ crc could be repeated in the same tissue, the crc to the other compounds could not be 

repeated in the same tissue. 

 

As mentioned in the introduction after more than ten years from its discovery (Jenck et al., 2000), 

Ro 64-6198 still represents the most potent and selective and the most used NOP non peptide 

agonist. This molecule has been and still is surely useful for increasing our knowledge regarding the 
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N/OFQ - NOP receptor system and the possible therapeutic indications of drugs interacting with the 

NOP receptor (Shoblock, 2007). However to firmly identify drug class effects the actions of Ro 64-

6198 must be compared to those elicited by other, possibly chemically unrelated, non peptide 

compounds acting as selective NOP agonists. To this aim the molecules Ro 65-6570 (Wichmann et 

al., 1999), SCH 221510 (Varty et al., 2008) and compound 6d (Mustazza et al., 2008) were selected 

and characterized in vitro at human recombinant and animal native NOP receptors.  

The full agonist properties of the three molecules at human recombinant NOP receptors were 

confirmed in calcium mobilization studies. In fact all compounds mimicked the stimulatory action 

of N/OFQ eliciting similar maximal effects. The potency of Ro 65-6570, SCH 221510 and 

compound 6d were lower than that of the natural peptide. This is in line with previous studies 

performed in different laboratories in which these compounds were evaluated in receptor binding as 

well as functional assays (either cAMP levels or stimulated GTPS binding) (Hashiba et al., 2001; 

Mustazza et al., 2008; Varty et al., 2008). However it is also worthy of mention that the potency of 

these molecules in the present calcium assay (N/OFQ concentration ratio from 22 to 51) is lower 

compared to that reported in literature for instance in the GTPS assay (concentration ratio from 1 

to 10). Similar results were reported for Ro 64-6198 that displayed a N/OFQ concentration ratio of 

30 in this calcium assay (Camarda et al., 2009) while its concentration ratio in the GTPS assay was 

1 (Jenck et al., 2000). Thus the present assay seems to underestimate the potency of these ligands. 

As mentioned in the results, the kinetics of the inhibitory effect elicited by N/OFQ in electrically 

stimulated tissues is rapid and immediately and completely reversible after washing while that of 

Ro 65-6570, SCH 221510 and compound 6d (and also of Ro 64-6198, (Rizzi et al., 2001c)) is 

characterized by slow onset and development, and slow and partial reversibility after washing. The 

slow kinetic of action of these ligands may be relevant for the estimation of their potency in the 

Gαqi5 NOP receptor calcium assay. In fact, the long time required to get full activation of NOP 

receptors with these agonists may be incompatible with the rapid kinetics which characterized the 

calcium transient response. As a matter of fact, the different kinetics of N/OFQ and the above 
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mentioned ligands recorded in isolated tissues could not be detected in the present calcium 

mobilization experiments. 

 

In the electrically stimulated mouse vas deferens N/OFQ inhibited the twitch response in a 

concentration dependent manner showing values of potency and maximal effects similar to those 

reported in literature (Calo et al., 1996). The three compounds mimicked N/OFQ effects showing 

lower potency but higher maximal effects. The lower potency of these compounds is expected 

based on results obtained at the recombinant NOP receptors while their higher maximal effects may 

suggest that the NOP receptor is not the exclusive target of action of these molecules. This 

hypothesis is corroborated by the results obtained in receptor antagonist and knockout studies. In 

fact in the mouse vas deferens the inhibitory action of N/OFQ is antagonized effectively by the 

NOP antagonist J-113397 that displayed pKB values in line with literature findings (Bigoni et al., 

2000a). In addition the action of the peptide was no longer evident in tissues taken from NOP(-/-) 

animals. Thus the results of these experiments clearly demonstrated that the biological effect of 

N/OFQ in this preparation is entirely due to its ability to activate the NOP protein. On the contrary, 

the effects of Ro 65-6570, SCH 221510 and compound 6d were resistant to J-113397 and were 

similar in tissues taken from NOP(+/+) and NOP(-/-) mice. Thus these findings suggest that the 

three compounds do not behave as selective NOP agonists in this preparation. 

Somewhat different results were obtained in the rat vas deferens. In fact in this preparation Ro 65-

6570 and SCH 221510 mimicked the inhibitory effects of the natural peptide showing similar 

maximal effects while compound 6d was found inactive in the nanomolar range of concentration 

and was able to stimulate the twitch response at micromolar concentrations. The NOP receptor 

antagonist J-113397 produced a rightward shift of the concentration response curve to N/OFQ and 

SCH 221510, strongly reduced the maximal effect of Ro 65-6570, and did not modify the 

stimulatory action of compound 6d. These results demonstrated that in this preparation SCH 

221510 behaves as a selective NOP agonist, Ro 65-6570 displayed reduced selectivity for NOP 
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while compound 6d interact only at high concentration with an undefined site whose activation 

produces stimulatory effects. The residual effect of Ro 65-6570 in the presence of J-113397 can be 

possibly be attributed to the activation of classical opioid receptors since this molecule displayed 

poor selectivity particularly over MOP receptors (~10 fold, (Hashiba et al., 2001)).  

Interestingly, similar results were obtained in the past with Ro 64-6198. This compound, similar to 

SCH 221510 and to a lesser extend to Ro 65-6570, elicited inhibitory effects in the rat vas deferens 

that were sensitive to NOP antagonists (J-113397 and [Nphe
1
]N/OFQ(1-13)-NH2) while in the 

mouse vas deferens its action was resistant to the same molecules (Rizzi et al., 2001c).  

Collectively the present results confirmed the NOP agonist properties of SCH 221510, Ro 65-

6570, and compound 6d but demonstrated important limitations of these molecules related to their 

selectivity of action. In particular compound 6d displayed NOP antagonist resistant effects in both 

mouse and rat preparations; SCH 221510 and Ro 65-6570 showed a tissue dependent profile 

behaving as NOP selective agonists only in the rat tissue. Based on these results compound 6d can 

not be recommended for in vivo use. Ro 65-6570 and particularly SCH 221510 can be used in vivo 

together with the standard molecule Ro 64-6198, however caution should be adopted in the 

interpretation of their effects and antagonist and/or knockout experiments should be always 

performed to demonstrate the involvement of the NOP receptor in the actions elicited by these 

molecules.  
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Pharmacological studies 

 NOP/MOP mixed agonists: [Dmt
1
]N/OFQ(1-13)-NH2 

The aim of the present study was the design, synthesis and pharmacological characterization of 

novel peptides acting as non selective NOP/MOP agonists and their in vivo evaluation as spinal 

analgesics. Thus, some [X
1
] substituted N/OFQ analogues were synthesised and evaluated 

pharmacologically in calcium mobilization experiments performed in Chinese hamster ovary 

(CHO) cells expressing the human NOP or MOP receptors as well as the chimeric G protein Gαqi5 

which forces Gi coupled receptors to signal via the PLC-IP3-Ca
2+

 pathway (Camarda et al., 2009; 

Fischetti et al., 2009). From these experiments [Dmt
1
]N/OFQ(1-13)-NH2 was selected as the most 

potent and least selective NOP/MOP agonist. The pharmacological profile of this peptide was then 

evaluated in vitro in i) membranes of CHO cells expressing the NOP, MOP, DOP or KOP 

receptors studied with receptor binding and stimulation of [
35

S]GTPS binding experiments for 

MOP and NOP, ii) membranes of the rat cerebral cortex or spinal cord in the [
35

S]GTPS assay, 

and iii) the electrically stimulated guinea pig ileum, a pharmacological preparation expressing both 

MOP and NOP receptors. The in vivo activity of [Dmt
1
]N/OFQ(1-13)-NH2 was investigated in the 

mouse tail withdrawal assay by injecting the peptide i.t.. Finally the antinociceptive action of 

spinal [Dmt
1
]N/OFQ(1-13)-NH2 was assessed in non human primates.  

 

 

In CHONOP cells stably expressing the Gαqi5 chimeric protein, N/OFQ evoked a concentration 

dependent stimulation of calcium release displaying high potency (pEC50 9.30 (CL95% 9.05 – 9.55)) 

and maximal effect (240  14 % over the basal values) while dermorphin was inactive up to 10 µM 

(figure 4.18, left panel). Opposite results were obtained in CHOMOP cells stably expressing the 

Gαqi5 chimeric protein, where dermorphin concentration dependently stimulated calcium 

mobilization (pEC50 8.17 (CL95% 7.93 – 8.41)); Emax 130  12 % over the basal values) while 

N/OFQ was inactive up to 1 µM (figure 4.18, right panel). Under the same experimental 
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conditions, N/OFQ analogues were assayed in both cell lines. Table 4.5 summarizes the results 

obtained in this series of experiments. The amide form of N/OFQ displayed similar potency, 

maximal effects and selectivity of action as the natural peptide. [Tyr
1
]N/OFQ-NH2 displayed a 

slight reduction in NOP potency (pEC50 9.14 (CL95% 8.93 – 9.35)) while being able to activate the 

MOP receptor although only in the micromolar range of concentrations (pEC50 6.07 (CL95% 5.90 – 

6.24)). The substitution of Phe
1
 with Dmt produced a reduction of NOP potency by 10 fold (pEC50 

8.57 (CL95% 8.28 – 8.86)) associated with an important increase in MOP potency (pEC50 7.05 

(CL95% 6.55 – 7.55)). Similar results were obtained when the [Tyr
1
] and [Dmt

1
] modifications were 

applied to the N/OFQ(1-13)-NH2 template. N/OFQ(1-13)-NH2 behaves as a highly potent (pEC50 

9.49 (CL95% 9.42 – 9.56)) and selective NOP agonist. [Tyr
1
]N/OFQ(1-13)-NH2 displayed a slight 

reduction in NOP potency (pEC50 9.16 (CL95% 8.91 – 9.41)) and selectivity. [Dmt
1
]N/OFQ(1-13)-

NH2 similar to [Dmt
1
]N/OFQ-NH2 behaved as a mixed NOP/MOP agonist showing only 26 fold 

selectivity for NOP over MOP receptors. From this series of experiments the compound 

[Dmt
1
]N/OFQ(1-13)-NH2 was selected as the most potent and least selective NOP/MOP agonist.  
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Figure 4.18. Calcium mobilization experiments. Concentration-response curves to N/OFQ and 

dermorphin in CHO cells stably expressing the Gαqi5 chimeric protein and the NOP (left panel) and MOP 

(right panel) human recombinant receptor. Data are the mean  SEM of 4 separate experiments performed 

in duplicate.  
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Table 4.5. Effects of standard and novel agonists in calcium mobilization experiments performed in CHO 

cells stably expressing the human NOP or MOP receptor and the Gαqi5 protein. 

 

  NOP MOP MOP/NOP 

  pEC50(CL95%) Emax± SEM pEC50(CL95%) Emax± SEM  

Dermorphin < 5 - 8.17 (7.93-8.41) 133 ± 12% < 0.0007 

N/OFQ 9.30 (9.05-9.55) 235 ± 14% < 5 - > 20.000 

N/OFQ-NH2 9.49 (9.42-9.56) 255 ± 13% < 5 - > 30.000 

[Tyr
1
]N/OFQ-NH2 9.14 (8.93-9.35) 289 ± 14% 6.07 (5.90-6.24) 121 ± 16% 1174 

[Dmt
1
]N/OFQ-NH2 8.57 (8.28- 8.86) 259 ± 7% 7.05 (6.55-7.55) 97 ± 10% 33 

N/OFQ(1-13)-NH2 9.49 (9.42-9.56) 222 ± 10% < 5 - > 30.000 

[Tyr
1
]N/OFQ(1-13)-NH2 9.16 (8.91-9.41) 235 ± 17% 6.01 (5.67-6.49) 105 ± 6% 1412 

[Dmt
1
]N/OFQ(1-13)-NH2 8.94 (8.39-9.49) 242 ± 12% 7.52 (7.18-7.86) 126 ± 18% 26 

The values are the means of 3-4 separate experiments performed in duplicate. 

 

 

 [Dmt
1
]N/OFQ(1-13)-NH2 affinity for NOP and classical opioid receptors was assessed in 

displacement binding experiments performed in membranes of CHO cells transfected with human 

recombinant receptors and compared with affinities of standard ligands. In CHONOP cell 

membranes N/OFQ displaced the radioligand with a pKi value of 10.18. N/OFQ(1-13)-NH2 bound 

the receptor with a pKi of 10.60. The NOP selective antagonist J-113397 displayed an affinity of 

9.44. [Dmt
1
]N/OFQ(1-13)-NH2 displaced the radioligand with a pKi value of 10.59 (figure 4.19, 

top left panel). In CHOMOP cell membranes [Dmt
1
]N/OFQ(1-13)-NH2 displaced [

3
H]DPN with a 

pKi of 10.48. The standard ligands dermorphin and naloxone showed pKi values of 8.90 and 8.95, 

respectively (figure 4.19, top right panel). In CHODOP cell membranes [Dmt
1
]N/OFQ(1-13)-NH2 

showed a pKi value of 9.43, where the standard DOP agonist DPDPE, the selective DOP 

antagonist naltrindole and the non selective opioid receptor antagonist naloxone displaced 
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[
3
H]DPN with pKi values of 7.29, 9.74 and 7.46, respectively (figure 4.19, bottom left panel). 

Finally [Dmt
1
]N/OFQ(1-13)-NH2 showed a pKi value of 9.83 in CHOKOP cell membranes. The 

KOP agonist dynorphin A displayed a pKi value of 10.71, where the KOP selective antagonist nor-

binaltorphimine and the opioid universal ligand naloxone displaced [
3
H]DPN with pKi values of 

10.14 and 8.44, respectively (figure 4.19, right bottom panel). 
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Figure 4.19. Receptor binding experiments. Competition binding curves to [Dmt

1
]N/OFQ(1-13)-NH2 

and standard ligands in membranes of CHO cells expressing the NOP (top left panel), MOP (top right 

panel), DOP (bottom left panel), or KOP (bottom right panel) receptors. [
3
H]UFP-101 was used as 

radioligand for the NOP and [
3
H]DPN for classical opioid receptors. Data are the mean  SEM of 3 

separate experiments performed in duplicate.  

 

In CHONOP cell membranes N/OFQ stimulated  [
35

S]GTPS binding in a concentration dependent 

manner with a pEC50 value of 8.52 (CL95% 7.92 – 9.12) and Emax of 4.80  0.37. N/OFQ(1-13)-NH2 

and [Dmt
1
]N/OFQ(1-13)-NH2 mimicked the stimulatory effect of the natural peptide showing 

similar potency and maximal effects. The MOP agonist dermorphin produced a weak stimulation 

only at the highest concentration tested i.e. 10 M. (figure 4.20, left panel). On the contrary, in 

CHOMOP cell membranes dermorphin stimulated  [
35

S]GTPS binding in a concentration dependent 

manner with high potency and maximal effects (pEC50 7.74 (CL95% 7.56 – 7.91); Emax of 5.47  
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0.13). [Dmt
1
]N/OFQ(1-13)-NH2 mimicked the stimulatory effect of the opioid peptide showing 

similar maximal effects and even higher potency (pEC50 8.19 (CL95% 8.00 – 8.39)). In these cell 

membranes N/OFQ was found inactive up to micromolar concentrations (figure 4.20, right panel).  
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Figure 4.20. [
35

S]GTPS binding experiments. Concentration-response curves to N/OFQ, N/OFQ(1-13)-

NH2, dermorphin, and [Dmt
1
]N/OFQ(1-13)-NH2 in membranes of CHO cells stably expressing the NOP 

(left panel) or MOP (right panel) human recombinant receptors. Data are the mean  SEM of 5 separate 

experiments performed in duplicate. 

 

In rat cerebral cortex membranes (figure 4.21) N/OFQ stimulated [
35

S]GTPS binding in a 

concentration dependent manner with a pEC50 value of 7.82 (CL95% 7.49 – 8.15) and Emax of 1.40  

0.03. N/OFQ(1-13)-NH2 mimicked the stimulatory effect of N/OFQ with similar maximal effects 

but higher potency (pEC50 8.48 (CL95% 8.09 – 8.87)). The MOP agonist dermorphin displayed a 

relatively low potency in this preparation and this prevented a precise determination of its maximal 

effects. [Dmt
1
]N/OFQ(1-13)-NH2 produced a stimulation of [

35
S]GTPS binding with a pEC50 

value of 8.01 (CL95% 7.969 – 8.32) and Emax of 1.68  0.04; of note, the maximal effect elicited by 

[Dmt
1
]N/OFQ(1-13)-NH2 was significantly higher than those produced by the other ligands (figure 

4.21).  
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Figure 4.21. [
35

S]GTPS binding experiments. Concentration-response curves to N/OFQ, N/OFQ(1-13)-

NH2, dermorphin, and [Dmt
1
]N/OFQ(1-13)-NH2 in membranes of the rat cerebral cortex. Data are the 

mean  SEM of 4 separate experiments performed in duplicate.  

 

In rat spinal cord membranes N/OFQ and N/OFQ(1-13)-NH2 produced superimposable results 

(pEC50  7.6; Emax  1.25). Dermorphin displayed a lower potency (pEC50 of 6.41 (CL95% 5.66 – 

7.17)) but higher maximal effect (1.42  0.10). [Dmt
1
]N/OFQ(1-13)-NH2 produced a stimulation 

of [
35

S]GTPS binding with similar potency to N/OFQ (pEC50 7.81 (CL95% 7.47 – 8.16)) and 

maximal effects higher than those elicited by dermorphin (figure 4.22, top left panel). In this 

preparation the stimulatory effects of N/OFQ, dermorphin and [Dmt
1
]N/OFQ(1-13)-NH2 were 

challenged with the NOP selective antagonist J-113397 and the universal opioid receptor 

antagonist naloxone. As shown in figure 4.22 top right panel the effects of N/OFQ were resistant to 

naloxone while sensitive to J-113397 (pKB 7.95). On the contrary the action of dermorphin was 

antagonized by naloxone (pKB 8.07) but not by J-113397 (bottom left panel). As shown in figure 

4.22 bottom right panel, the stimulatory effect elicited by [Dmt
1
]N/OFQ(1-13)-NH2 was sensitive 

to both naloxone and J-113397. The coapplication of the two antagonists did not produce a further 

shift of the concentration response curve to [Dmt
1
]N/OFQ(1-13)-NH2. 
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Figure 4.22. [
35

S]GTPS binding experiments. Concentration-response curves to N/OFQ, N/OFQ(1-13)-

NH2, dermorphin, and [Dmt
1
]N/OFQ(1-13)-NH2 in membranes of the rat spinal cord (top left panel). 

Effects of naloxone and J-113397 vs N/OFQ (top right panel), dermorphin (bottom left panel), and 

[Dmt
1
]N/OFQ(1-13)-NH2 (bottom right panel). Data are the mean  SEM of 5 separate experiments 

performed in duplicate.  

 

In the electrically stimulated guinea pig ileum N/OFQ inhibited the twitch response in a 

concentration dependent manner (pEC50 8.26 (CL95% 8.16 – 8.36), Emax = 40 ± 2% inhibition of 

control twitch). The MOP receptor agonist dermorphin mimicked the effect of N/OFQ being 

however more potent  (pEC50 8.61 (CL95% 8.50 –8.72) and efficacious (Emax = 80 ± 2% inhibition 

of control twitch). [Dmt
1
]N/OFQ(1-13)-NH2 inhibited the electrically induced twitch showing 

similar potency and maximal effects as dermorphin (figure 4.23, top left panel). The inhibitory 

action of N/OFQ was not affected by naloxone but was antagonized by J-113397 (pKB 7.87) 

(figure 4.23, top right panel). In contrast, the effects of dermorphin were sensitive to naloxone 

(pKB 8.55) but not J-113397 (figure 4.23, bottom left panel). Finally, the effects of 

[Dmt
1
]N/OFQ(1-13)-NH2 were challenged with J-113397, naloxone and the cocktail of the two 

antagonists. As shown in figure 4.23 bottom right panel, naloxone antagonized the inhibitory effect 

of [Dmt
1
]N/OFQ(1-13)-NH2 producing a rightward shift of the concentration response curve and 

no modifications of maximal effects; a pKB value of 7.97 was derived from these experiments. J-
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113397 1 µM was also able to counteract [Dmt
1
]N/OFQ(1-13)-NH2 effects by producing a slight 

displacement to the right of the concentration response curve associated with a reduction in 

maximal effect; a pKB value of 5.96 was derived from these experiments. When the two 

antagonists were assayed together they displayed an additive effect. 
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Figure 4.23. Electrically stimulated guinea-pig ileum. Concentration-response curves to N/OFQ, 

dermorphin, and [Dmt
1
]N/OFQ(1-13)-NH2 (top left panel). Effects of naloxone and J-113397 vs N/OFQ 

(top right panel), dermorphin (bottom left panel), and [Dmt
1
]N/OFQ(1-13)-NH2 (bottom right panel). 

Data are the mean  SEM of 4 separate experiments performed in duplicate.  

 

 

In the mouse tail withdrawal assay, mice injected i.t. with saline displayed tail withdrawal latencies 

around 1 s and this value remained stable over the time course of the experiment i.e. 3 h. The i.t. 

injection of morphine in the dose range 0.1 – 10 nmol produced a dose dependent antinociceptive 

effect that peaked at 15 min and then slowly and progressively declined (figure 4.24, top panels). 

Similarly, the i.t. injection of N/OFQ (1 – 100 nmol) elicited antinociceptive effects. The peptide 

was about 10 fold less potent than the alkaloid.  However while the antinociceptive effects of the 

alkaloid were behaviourally selective (morphine did not modify the animal gross behaviour), those 
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elicited by N/OFQ were associated with flaccidity of the hind limbs and a consequent reduction of 

locomotion. These signs were present in approximately 50% of the animals treated with 10 nmol 

and in 85% of those treated with 100 nmol. The i.t. injection of N/OFQ(1-13)-NH2 produced 

antinociceptive effects superimposable to those of the natural peptide in terms of kinetics of action, 

potency and associated side effects. The i.t. administration of [Dmt
1
]N/OFQ(1-13)-NH2 (figure 

4.24, bottom panels) produced dose dependent antinociceptive effects. This peptide displayed very 

high potency being approximately 30 fold more potent than NOP agonists and 3 fold more potent 

than morphine. In terms of side effects, at antinociceptive doses [Dmt
1
]N/OFQ(1-13)-NH2 induced 

flaccidity of the hind limbs in a percent of animals similar to that of N/OFQ and N/OFQ(1-13)-

NH2. However this effect was less pronounced with [Dmt
1
]N/OFQ(1-13)-NH2 than with the other 

agonists.  
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Figure 4.24. Mouse tail withdrawal assay. Dose response curves (left panels) and relative cumulative 

AUC data (right panels) to i.t. morphine, N/OFQ, N/OFQ(1-13)-NH2, and [Dmt
1
]N/OFQ(1-13)-NH2. 

Data are the mean  SEM of 4 separate experiments (4 mice per treatment per experiment).  
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In a separate series of experiments subthreshold doses of morphine and N/OFQ(1-13)NH2 were 

evaluated alone and in combination (figure 4.25). Morphine 0.1 nmol and N/OFQ(1-13)NH2 1 

nmol produced a slight and short lasting antinociceptive effect that did not reach statistical 

significance. In contrast, when the two drugs were injected together they produced a robust and 

statistically significant antinociceptive effect. This effect was larger than double the sum of the 

single effects (figure 4.25). Interestingly no behavioural side effects (i.e. flaccidity of the hind 

limbs) were observed in the animals treated with the combination of the two drugs.  
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Figure 4.25. Mouse tail withdrawal assay. Effects of morphine 0.1 nmol and N/OFQ(1-13)-NH2 1 nmol 

alone and in combination. Data are the mean  SEM of 4 separate experiments (4 mice per treatment per 

experiment).  

 

Finally, in collaboration group of prof. Ko, the spinal effects of [Dmt
1
]N/OFQ(1-13)NH2 on pain 

transmission were evaluated in non human primates (figure 4.26). In the dose range of 1 and 10 

nmol the peptide produced dose-dependent antinociceptive effects. Of note at 10 nmol 

[Dmt
1
]N/OFQ(1-13)NH2 elicited maximal antinociceptive effects (top left panel) without causing 

itch/scratching responses (top right panel). By contrast, supramaximal doses of peptide i.e. 30 and 

100 nmol still produced full antinociceptive effects (bottom left panel) that were however 

associated with robust scratching responses (bottom right panel).  
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Figure 4.26. Monkey tail withdrawal assay. Effect of low (top panels) and high (bottom panels) doses of 

[Dmt
1
]N/OFQ(1-13)-NH2 on nociception (left panels) and scratching behaviour (right panels). Data are 

the mean  SEM of data (4 separate experiments for left panels and 6 experiments for right panels). The 

asterisk represents a significant. 

 

Based on the recent evidence of a synergistic antinociceptive effect in response to the simultaneous 

activation of spinal NOP and MOP receptors (Hu et al., 2010; Ko et al., 2009), the present study 

was carried out with the aim to identify, pharmacologically characterize, and evaluate as innovative 

spinal analgesics non selective MOP/NOP agonists. [Dmt
1
]N/OFQ(1-13)-NH2 was identified in the 

calcium mobilization primary screening assay as the most potent and least selective NOP/MOP 

agonist. This pharmacological activity of the peptide was then confirmed in various in vitro assays 

performed on recombinant human receptors (receptor binding, [
35

S]GTPS binding) as well as at 

native animal receptors expressed in the rat cerebral cortex and spinal cord and in the guinea pig 

ileum. In vivo in the tail withdrawal assay performed in mice and monkeys [Dmt
1
]N/OFQ(1-13)-

NH2 produced dose dependent antinociceptive effects. Of note, while [Dmt
1
]N/OFQ(1-13)-NH2 
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displayed in vitro similar potency to N/OFQ, in vivo in both animal species the peptide was 

approximately 30 fold more potent. These results corroborate our hypothesis that non selective 

MOP/NOP agonists may behave as innovative spinal analgesics and candidate [Dmt
1
]N/OFQ(1-

13)-NH2 as the prototype of this class of drugs.  

 

The calcium mobilization assay used for screening the novel NOP/MOP receptor ligands has been 

validated in previous studies. In particular the pharmacological profile of the human NOP receptor 

coupled with calcium signalling has been assessed with a rather large panel of ligands 

encompassing full and partial agonist as well as pure antagonist activity (Camarda et al., 2009). 

Similar experiments were performed investigating the pharmacological profile of human MOP 

receptor although, in this case, the panel of ligands investigated was relatively small (Camarda and 

Calo, in press). For both receptors the results obtained with the calcium assay were virtually 

superimposable to those described in literature using classical assays for Gi coupled receptors (i.e. 

cAMP levels or stimulation of [
35

S]GTPS binding). 

The design of non selective NOP/MOP agonists was based on the following evidence: i) N/OFQ(1-

13)-NH2 maintains the same potency and efficacy as the natural peptide (Calo et al., 1997; Varani et 

al., 1999); the substitution of Phe
1
 with Tyr in N/OFQ as well as N/OFQ(1-13)-NH2 sequences 

causes a reduction in selectivity for NOP over classical opioid receptors (Calo et al., 1997; Varani 

et al., 1999); the substitution of Tyr
1
 with Dmt in opioid peptide sequences increases ligand potency 

(Salvadori et al., 1995; Schiller, 2010). The results obtained in the calcium assay demonstrated that 

this design strategy was indeed successful. In fact, the substitution of Phe with Tyr in position 1 

generated less selective peptides. However both [Tyr
1
]N/OFQ-NH2 and [Tyr

1
]N/OFQ(1-13)-NH2 

were more than 1000 fold more potent at NOP than at MOP. These results are in line with previous 

findings. In fact [Tyr
1
]N/OFQ-NH2 and [Tyr

1
]N/OFQ(1-13)-NH2 were able to bind to both NOP 

and MOP sites in guinea pig brain membranes but with higher affinity at the former receptor 

(Varani et al., 1999). Moreover in the electrically stimulated guinea pig ileum [Tyr
1
]N/OFQ(1-13)-
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NH2 at low concentrations (< 30 nM) produced naloxone resistant inhibitory effects; however, at 

higher concentrations, the opioid antagonist partially counteracted the action of the peptide(Varani 

et al., 1999). Finally, when tested in vivo [Tyr
1
]N/OFQ mimicked the effect of the natural peptide 

decreasing systemic arterial pressure in the rat (Champion et al., 1997) and eliciting erectile activity 

in the cat (Champion et al., 1998). The non-natural amino acid Dmt has been widely and 

successfully used in the past for generating highly potent ligands for opioid receptors (Briant et al., 

2003; Schiller, 2010). The ability of this residue to increase opioid receptor affinity compared to 

Tyr has been confirmed in the present study. In fact [Dmt
1
]N/OFQ-NH2 and [Dmt

1
]N/OFQ(1-13)-

NH2 displayed a slight decrease in NOP potency associated with a substantial increase in potency at 

MOP receptors. As a consequence, the selectivity of these peptides for NOP over MOP receptors 

dropped to only  30 fold. Since [Dmt
1
]N/OFQ(1-13)-NH2 displayed slightly higher potency and 

lower selectivity compared to [Dmt
1
]N/OFQ-NH2, it was selected as candidate for further studies.  

 

The high NOP/MOP affinity and full agonist activity of [Dmt
1
]N/OFQ(1-13)-NH2 were then 

confirmed in receptor binding and [
35

S]GTPS stimulation binding experiments performed using 

membranes prepared from CHO cells expressing NOP or classical opioid receptors. In these 

experiments the peptide displayed extremely high affinity both for NOP and MOP sites. Of note, 

[Dmt
1
]N/OFQ(1-13)-NH2 also showed high affinity for DOP and KOP. In [

35
S]GTPS assay the 

peptide behaved as potent full agonist both at NOP and at MOP receptors. In these experiments 

[Dmt
1
]N/OFQ(1-13)-NH2 displayed, in line with calcium mobilization data, higher potency at NOP 

than at MOP but its ratio of selectivity (2) was substantially lower than that derived from calcium 

mobilization studies (26). Collectively these results clearly demonstrated that [Dmt
1
]N/OFQ(1-13)-

NH2 behaved as a non selective NOP/MOP full agonist at recombinant human receptors.  

 

The pharmacological activity of the peptide was then reassessed at native animal receptors by 

performing [
35

S]GTPS binding experiments with membranes from the rat cerebral cortex and 
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spinal cord and bioassay experiments in the guinea pig ileum. In line with previous findings N/OFQ 

and dermorphin stimulated [
35

S]GTPS binding in the rat cerebral cortex and spinal cord 

membranes (Albrecht et al., 1998; Narita et al., 1999; Sim et al., 1997). In both preparations 

[Dmt
1
]N/OFQ(1-13)-NH2 behaved as a potent agonist producing maximal effects higher than those 

elicited by the selective agonists. The receptor mechanism involved in the stimulant effects of 

[Dmt
1
]N/OFQ(1-13)-NH2 in rat spinal cord membranes has been investigated in receptor antagonist 

experiments. While the stimulatory effect of N/OFQ and dermorphin were sensitive to J-113397 

and naloxone, respectively, that elicited by [Dmt
1
]N/OFQ(1-13)-NH2 was counteracted by both 

molecules. This result suggests that stimulation of [
35

S]GTPS binding by N/OFQ and dermorphin 

derives from the selective activation of NOP and MOP receptors, respectively, while that elicited by 

[Dmt
1
]N/OFQ(1-13)-NH2 is due to the simultaneous activation of both proteins. This view is 

corroborated by findings obtained in the electrically stimulated guinea pig ileum. In this preparation 

J-13397 and naloxone selectively antagonized the inhibitory effects of N/OFQ and dermorphin, 

respectively, with pKB values similar to those obtained in the rat spinal cord membranes and the 

literature (Bigoni et al., 2000a; Calo et al., 1997). In contrast, the inhibitory action of 

[Dmt
1
]N/OFQ(1-13)-NH2 was sensitive to both antagonists and a profound shift to the right of the 

concentration response curve to the agonist was obtained when J-113397 and naloxone were 

coapplied. Collectively these findings clearly demonstrated that [Dmt
1
]N/OFQ(1-13)-NH2 acts as a 

potent and non selective NOP/MOP receptor full agonist at native animal receptors expressed in the 

periphery and in the central nervous system.  

 

In the spinal cord NOP and MOP receptor stimulation elicits antinociceptive effects via similar 

cellular mechanism i.e. presynaptic inhibition of neurotransmitter release from primary sensory 

neurons (Zeilhofer and Calo, 2003). Moreover recent studies performed in non human primates 

suggest that the simultaneous activation of both receptors produces synergistic antinociceptive 

effects (Hu et al., 2010; Ko et al., 2009). This evidence prompted us to assess the spinal 
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antinociceptive properties of the non selective NOP/MOP agonist [Dmt
1
]N/OFQ(1-13)-NH2. In the 

mouse tail withdrawal assay morphine given i.t. elicited a dose dependent antinociceptive effect. 

Similar antinociceptive effects were recorded in response to spinal administration of N/OFQ or 

N/OFQ(1-13)-NH2. The two peptides were approximately 10 fold less potent than the alkaloid. 

However it should be emphasized that while the antinociceptive effects of morphine were 

behaviourally selective those elicited by N/OFQ (or N/OFQ(1-13)-NH2) were associated with 

flaccidity of the hind limbs. Previous receptor antagonist and knockout studies demonstrated the 

exclusive involvement of NOP receptor activation in the spinal antinociceptive effects of N/OFQ 

(Fischetti et al., 2009; Nazzaro et al., 2007; Rizzi et al., 2007b) and MOP receptors in that of 

morphine (Kieffer, 1999). [Dmt
1
]N/OFQ(1-13)-NH2 injected i.t. elicited a robust antinociceptive 

effect in the mouse tail withdrawal assay. This antinociceptive effect was associated with flaccidity 

of the hind limbs that was however less pronounced than that in response to NOP selective agonists. 

The potency of [Dmt
1
]N/OFQ(1-13)-NH2 was approximately 30 fold higher than that of N/OFQ or 

N/OFQ(1-13)-NH2. These data contrast to the similar NOP potency displayed by [Dmt
1
]N/OFQ(1-

13)-NH2 and N/OFQ or N/OFQ(1-13)-NH2 in vitro. It has been demonstrated that [desPhe
1
]N/OFQ 

is a major metabolite of N/OFQ when the peptide is given i.t. (Ko et al., 2006). Therefore the 

presence of the non-natural amino acid Dmt in position 1 may reduce susceptibility to enzymatic 

degradation. This may cause an increase in peptide potency in vivo where metabolism is likely 

more relevant than in vitro. However it is unlikely that the huge increase in [Dmt
1
]N/OFQ(1-13)-

NH2 potency is solely due to increased metabolic stability. Rather it is suggested that the high 

potency of the synthetic peptide mainly derives from its ability to simultaneously activate NOP and 

MOP receptors. This simultaneous receptor activation produced synergistic antinociceptive effects 

as demonstrated in previous monkey studies performed with subthreshold doses of morphine and 

N/OFQ (Ko et al., 2009) or the potent and selective NOP agonist UFP-112 (Hu et al., 2010). This 

same synergistic antinociceptive effect of NOP and MOP receptor activation seems to be operative 

also in the mouse spinal cord as demonstrated in the present study by the robust antinociceptive 
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effect obtained in response to coapplication of subthreshold doses of morphine and N/OFQ(1-13)-

NH2.  

 

Finally the spinal antinociceptive properties of [Dmt
1
]N/OFQ(1-13)-NH2 have been evaluated in 

non human primates. It should be emphasized that in this species antinociceptive effects in response 

to spinal administration of NOP agonists is behaviourally selective while those elicited by MOP 

agonists are always associated with scratching (Ko et al., 2004; Ko et al., 2006). In monkeys 

[Dmt
1
]N/OFQ(1-13)-NH2 induced significant antinociceptive effects at the dose 3 nmol and full 

antinociception at 10 nmol. Thus, compared to N/OFQ (Ko et al., 2009; Ko et al., 2006), 

[Dmt
1
]N/OFQ(1-13)-NH2 was found about ~10-30 fold more potent and elicited longer lasting 

effects. Interestingly, over this range of doses the antinociceptive effect of [Dmt
1
]N/OFQ(1-13)-

NH2 was not associated with scratching. At higher supramaximal doses (i.e. 30 and 100 nmol) 

[Dmt
1
]N/OFQ(1-13)-NH2 was able to induce scratching similar to morphine (Ko et al., 2009; Ko et 

al., 2006).  These results, in line with mouse studies, strongly suggest that the high antinociceptive 

potency of [Dmt
1
]N/OFQ(1-13)-NH2 may derive from its non selective NOP/MOP agonist activity.  

In conclusion the present study describes the design, synthesis and in vitro pharmacological 

characterization of [Dmt
1
]N/OFQ(1-13)-NH2, a potent non selective NOP/MOP agonist. The spinal 

administration of this peptide in mice and non human primates elicits potent and antinociceptive 

effects similar to those produced by a combination of NOP and MOP selective agonists. These 

results suggest that [Dmt
1
]N/OFQ(1-13)-NH2 could be considered the prototype of a novel class of 

spinal analgesics worthy of consideration for clinical development.   
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5. GENERAL CONCLUSIONS 

 

Following the formal identification of the receptor NOP and of its endogenous ligand 

N/OFQ, an extensive search has started to assess the biological functions regulated by this peptide-

receptor system and to foresee the therapeutic indications of drugs interacting selectively with the 

NOP receptor. In parallel, academic and industrial laboratories generated new molecules that 

selectively activate or block the NOP receptor thus providing the pharmacological tools needed for 

target validation studies. This large research effort is documented by the number scientific articles 

published in this field (nowadays a pubmed search for nociceptin or orphanin/FQ generates more 

than 1500 results). Our laboratory, in close collaboration with the group of medicinal chemists lead 

by Prof Salvadori, contributed to this field since its very beginning with the design and synthesis of 

novel NOP ligands, their in vitro and in vivo pharmacological characterization, and their use 

together with transgenic animals for target validation studies. The present PhD thesis summarizes 

the work we performed in the field of N/OFQ and its receptor during the last three years. In 

particular the following lines of research were developed: investigation of the phenotype of NOP(-/-

) rats, in vitro pharmacological characterization of non peptide NOP ligands, and in vitro and in 

vivo studies on novel peptides acting as mixed NOP/MOP agonists.   

The behavioural phenotype of rats knockout for the NOP receptor gene has been 

investigated. Loss of NOP mediated functions in NOP(-/-) rat tissues were demonstrated in bioassay 

experiments. In behavioural studies NOP(-/-) rats displayed a robust antidepressant-like phenotype 

associated with a better exercise-driven motor performance. These results are in line with previous 

pharmacological studies and suggest that selective NOP receptor antagonists may act as innovative 

drugs for the treatment of depression and hypokinetic disorders. In addition, NOP(-/-) rats displayed 

a mild anxiety-like phenotype and clear pronociceptive like phenotype in the formalin assay. These 

data combined with evidence arising from genetic and pharmacological investigations in rodents 

call for caution in the use of NOP receptor antagonists in anxious patients and chronic pain states. 
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Actually, these conditions may possibly represent contraindications for the use of NOP antagonists. 

These considerations are based on preclinical studies and in some cases on indirect clinical 

evidence. They might be useful for the design of controlled clinical trials performed with selective 

and potent NOP antagonists. Such studies will demonstrate the correct place in therapy for these 

innovative drugs. 

As far as non peptide NOP ligands are concerned, studies were performed both on 

antagonists and agonists. GF-4 is a derivative of the NOP selective antagonist Trap-101; it was 

obtained by introducing two methyl groups in the hydroxymethyl function at the position 3 of the 

piperidine nucleus. Such chemical modification did not alter the pharmacological activity of the 

compound (a pure and competitive NOP receptor antagonist) but slightly reduced its potency at 

recombinant NOP receptors and, more dramatically, in vitro selectivity over classical opioid 

receptors. Nevertheless, GF-4 was NOP receptor selective in vivo, replicating the antiparkinsonian 

effect and neurochemical changes typical of its parent compound, and being as potent as J-113397. 

Further studies are needed to elucidate whether the in vivo gain in potency of GF-4 is due to greater 

metabolic stability possibly due to resistance to cytochrome oxidation. The results obtained with 

GF-4 from one hand offer new insights into the structural requirements for optimal antagonist 

activity at NOP receptors and selectivity over classical opioid receptors and, from the other hand, 

confirmed and extended previous findings demonstrating that NOP receptor blockage attenuate 

parkinsonian-like symptoms in rodents.  

In vitro pharmacological studies were also performed with non peptide NOP agonists. These 

studies confirmed the NOP agonist properties of all the investigated molecules but also 

demonstrated their limitation in terms of selectivity of action. At present, only little information is 

available in literature about toxicology, pharmacokinetics, and therapeutic levels of non peptide 

NOP agonists. Moreover the following issues makes the development of these compounds difficult: 

most of the studies have been performed in a limited number of species (rats, mice, and guinea pigs) 

and particularly with a very limited number of molecules (quite often only with Ro 64-6198); 
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several side effects, including impairments of motor activity, coordination, learning, and memory, 

as well as hyperphagic and hypothermic effects have been described in rodents; the doses at which 

these side effects are produced depend on the species (it is therefore difficult predict whether a 

therapeutic dose range with limited side effects will exist in humans); as previously demonstrated 

for Ro 64-6198 and confirmed in this study with other molecules there is some tissue-dependent 

variability of agonist efficacy and particularly selectivity of action. Despite these considerations, the 

fact that anxiolytic like effects in response to NOP selective agonists have been reported in different 

laboratories and with chemically unrelated molecules represents a robust experimental evidence that 

candidates this kind of putative drugs as innovative anxiolytics. Moreover recent findings obtained 

in non human primates demonstrated interesting antinociceptive properties in response to systemic 

administration of Ro 64-6198. Thus, the available evidence is still too limited to draw firm 

conclusions on the potential of non peptide NOP agonists as novel drug to treat anxiety and pain.  

I.t infusions of analgesics have been increasingly utilized during the last two decades for the 

treatment of persistent cancer pain. With recent technological advances in the field, this therapeutic 

option has been extended to moderate or severe pain related to cancer and non cancer origins. 

However only morphine and ziconotide have been approved for i.t. administration; thus there is a 

strong medical need for novel drugs to be used as spinal analgesics. At this regard non selective 

NOP/MOP agonists such as [Dmt
1
]N/OFQ(1-13)-NH2 may represent an interesting option. Indeed 

the synergistic antinociceptive effect generated by the simultaneous activation of NOP and MOP 

receptors may offer important advantages: i) during acute administration a complete analgesic effect 

can be achieved with reduction or even elimination of the side effects associated to the full 

activation of a single receptor, ii) during chronic treatment the desired level of analgesia can 

maintained for longer (i.e. reduction of tolerance liability) since the analgesic action does not derive 

from the full and prolonged activation of a single receptor. These are however intriguing 

speculations that need rigorous experimental validation. We have contributed to this line of research 

by describing the design, synthesis and in vitro pharmacological characterization of 
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[Dmt
1
]N/OFQ(1-13)-NH2, a potent non selective NOP/MOP agonist. The spinal administration of 

this peptide in mice and non human primates elicits potent and antinociceptive effects similar to 

those produced by a combination of NOP and MOP selective agonists. These results suggest that 

[Dmt
1
]N/OFQ(1-13)-NH2 could be considered the prototype of a novel class of spinal analgesics 

worthy of consideration for clinical development.   
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invidiano il colore di copertina della sua tesi, troppo glamour…). Eliana, che era nel lab di sopra, 

ma da me adottata… Il buon Andrea, che spero si laurei al più presto, e anche Camilla, che è stata 

l‟unica persona in grado di complicarmi la vita ancora prima di entrare in tesi (anche se la cosa mi 

diverte molto…). 

Voglio ridordare poi il gruppo del Geppo; Marcello e Raffo (e anche Serena, ma lei è più recente 

come acquisto) e dire; ah-aaah il Geco bar è mio, e anche il mondo… 

Se poi vogliamo continuare ci sarebbe una marea di gente, praticamente tutti i componenti di tutti i 

gruppi presenti in questa gabbia di matti, nonché la bella gente di UniLeichester, soprattutto quel 

Malaka (non vi spiego il significato) del Nik… 
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Ringrazio tanto la mia famiglia, che non si decide ancora a non rompermi le scatole, e quel cartone 

animato di mia sorella Simona, che nonostante tutto mi è sempre stata vicina… (ahhh, lasciami 

stare!!) 

Ci sarebbero poi i miei amici, a cui chiedo perdono per le lunghe latitanze… 

Uff… la lista è lunga e qui stiamo sforando le 180 pagine, e non solo quelle…  

Perciò saluto tutti, anche quei debosciati della commanderia di Ferrara, ed inizio a chiudere bottega, 

o forse No??? 

 

 

Un abbraccio 

n.n. 

 

Ste 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P.S. Ringrazio anche Daitarn 3, Goldrake, Daltanious, il puffo ninja e il beneplacito del 

Condominio… chi ha orecchi per intendere, intenda. 

P.S. Ringrazio, dulcis in fundo, Ginevra Grace K., dicendole; Non ti preoccupare, ce la farai… 

 


