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Introduction

In rotating neutron stars the existence of the Coriolis force allows the presence of

the so-called r-modes oscillations, which are similar to Rossby waves in the Earth’s

atmosphere and oceans. The first proposal of the r-modes in Newtonian stellar

pulsation theory was advanced in a paper by Papaloizou and Pringle, in 1978 [1].

In rotating neutron stars, in the absence of damping mechanisms, r-modes be-

come unstable due to the emission of gravitational waves by the Chandrasekhar-

Friedman-Schutz (CFS) mechanism [2, 3]. Therefore, these modes play a very

important role in the astrophysics of rapidly rotating compact stars and in the

search for gravitational waves. In particular the r-mode instability may play a

role in the evolution of the fastest spinning pulsars, and they may be presently

active in the rapidly spinning neutron stars observed in Low Mass X-Ray Bina-

ries (LMXBs). This scenario can provide an explanation for the sub-breakup spin

rates of both LMXBs and of young, hot neutron stars.

The possibility that the rotation of recycled pulsars may be limited by the emis-

sion of gravitational radiation is interesting because the gravitational waves, from

a neutron star unstable with respect to r-modes, may be detectable with the new

generation of interferometric detectors.

Another important point concerns the possibility to investigate through r-modes
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2 Introduction

the physics and the composition of the inner regions of compact stars. Indeed, a

significant damping mechanism of the r-mode instability is provided by viscosity,

either shear or bulk, that depends critically on temperature and composition of

the star. This condition provide a link between spin frequency, spin down rate,

temperature and internal composition of the star, that is possible to investigate

making use of the observational data about the fastest spinning pulsars.

R-mode instability is also associated with kinematical secular effects which gen-

erate differential rotation in the star and large scale mass drifts, particularly in

the azimuthal direction. Differential rotation in turn can produce very strong

toroidal magnetic fields inside the star and these fields damp instabilities con-

verting the energy of the mode into magnetic energy.

This scenario was investigated in [4, 5, 6] in the case of young, rapidly rotating

neutron stars. It was shown that, in these objects, the r-mode instability can

generate huge magnetic fields, thus opening new interesting possibilities in the

investigation of some astrophysical phenomena, e.g. the generation of Gamma

Ray Bursts (GRBs).

In the Thesis I concentrate on the interaction between magnetic field and r-

modes in the core of accreting neutron stars. I consider the back-reaction of the

magnetic fields on r-mode instabilities by inserting for the first time the magnetic

damping rate into the evolution equations of r-modes. In this way we can follow

the temporal evolution of both magnetic fields and r-modes even on a long time

scale.

In particular I investigate two astrophysical scenarios:

• Stabilization with respect to r-modes of neutron stars accelerated to mil-
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lisecond spin period by accretion of matter : above few hundreds Hertz the

viscosity is not able to stabilize further the star with respect to r-modes;

without other damping mechanisms, the star spins down by emission of

gravitational waves; I show how the development of the r-mode instabilities

can generate very strong magnetic fields in accreting millisecond pulsars,

and how these fields can stabilize the star at higher spin frequencies.

• Spin frequency evolution of the rapidly rotating neutron stars in LMXBs

when the accretion of matter stops: I show how, in our scenario, the diffusion

of the generated internal magnetic field can induce a new development of

the r-mode instability that in turn can influence the spin down of the fastest

spinning pulsars; our conclusions can be important to better understand the

claimed connection between LMXBs and Radio Millisecond Pulsars (MSPs).

The structure of the Thesis is the following: in Chapter 1 I give an overview of the

r-modes and of the related open problems; in Chapter 2 I discuss the interaction

between r-modes and magnetic fields and I obtain a new evolution equations

of r-modes, introducing a new term associates with the magnetic damping; in

Chapter 3 I make use of these new equations to investigate the generation of huge

magnetic fields in accreting millisecond pulsars, putting particular attention on

the stabilization of the r-mode instability by the new generated magnetic fields; in

Chapter 4 I investigate how the r-mode instability, driven by the diffusion of the

internal magnetic fields, can influence the spin frequency evolution of accreting

and of old, isolated millisecond pulsars. Finally, I will summarize the results and

discuss future extension of the work in the Conclusion and Outkook.
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Chapter 1

R-mode instability in rotating

neutron stars

R-modes are axial perturbations and represent large scale oscillating currents that

move approximately along the equipotential surfaces of the rotating star. The

restoring force for these oscillations is the Coriolis force. In neutron stars, the

r-modes play a very important role because they are unstable due to emission

of gravitational waves by the Chandrasekhar-Friedman-Schutz (CFS) mechanism

[2, 3].

In the following we give a general overview about the r-mode instability in neutron

stars, focusing on the damping effect due to the viscosity. In the end we rapidly

discuss how the presence of a rigid crust or hyperons and quarks in the nucleus

can influence the development of this instability.
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8 R-mode instability in rotating neutron stars

1.1 The CFS mechanism

The first proposal that rotating neutron stars are generically unstable due to the

emission of gravitational waves was advanced by Chandrasekhar considering the

Maclaurin spheroids to represent a rotating star [7]. Subsequently Friedman and

Schutz proved that the instability is generic and all rotating fluid neutron star

are unstable [8, 9, 10].

To understand the mechanism for gravitational-wave instability, it is possible

to represent the problem in the following way. In spherical stars, gravitational

radiation removes positive angular momentum from a mode moving in the same

direction of the star and negative angular momentum from a backward-moving

mode; it therefore damps all time-dependent nonaxisymmetric modes [3]. Once

the angular velocity of the star is sufficiently large, however, a mode that moves

backward relative to the star is dragged forward relative to an inertial observer.

Gravitational radiation will then remove positive angular momentum from the

mode. But a mode that moves backwards relative to the fluid has negative angular

momentum, because the perturbed fluid does not rotate as fast it did without

the perturbation. The radiation thus removes positive angular momentum from a

mode whose angular momentum is negative. By making the angular momentum

of the perturbation increasingly negative, gravitational radiation drives the mode.

This class of frame-dragging instabilities is usually refered to as Chandrasekhar-

Friedman-Schutz (CFS) instabilities.

The fact that the emission of gravitational radiation causes a growth in the mode

energy in the rotating frame Er, despite the decrease in the inertial frame energy

Ei, can be understood from the relation between the two energies: Er = Ei−ΩJ ,

where Ω is the angular velocity of the star and J is the total angular momentum
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of the star. From this we see that Er may increase even if both Ei and J are both

decreasing. In other words, when the mode radiates away angular momentum

the star can find a rotational state of lower angular momentum and lower energy.

Under these conditions the mode amplitude may grow.

Stability is governed by the sign of the canonical energy Ec, when expressed in

terms of canonical displacements ξ [8]. A star model is unstable to perturbations

with angular dependence eiσt when Ec(ξ) < 0. In a Newtonian star, the canonical

energy evaluated to order Ω2 has the form [3]

Ec = −
1

2

∫

dV ρ|ξ|2
[

(mΩ − σ)(mΩ + σ) −
2m

2m + 1
Ω2

]

(1.1)

where

σ =
2mΩ

l(l + 1)
− mΩ (1.2)

is the angular frequency of the mode in the inertial frame [1].

If Ec is negative and the system (the star) is coupled to another system (the

radiation) in such a way Ec must decrease with time, then the absolute value of

Ec will increase and the associated mode is unstable.

From the relation involving also the canonical angular momentum Jc [11]

Jc =
Ec

σ
(1.3)

which is a general property of linear waves, follows that the condition Ec < 0 is

equivalent to the simple notion of a retrograde mode being dragged forwards.

1.2 The r-mode instability

We will focus our discussion on the gravitational-wave driven instability of the

so-called r -modes.
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Since these modes are prograde in the inertial frame and retrograde in the co-

rotating frame, they satisfy the Newtonian criterion for the CFS instability.

Hence, one can easily deduce that the r-modes ought to be unstable. That this

instability is generic also in the relativistic case was first shown by Friedman and

Morsink [3]. In perfect fluid stars the r-modes are unstable at all rates of rotation.

For real stars the stability of the r-modes depends on the competing influences

of gravitational radiation reaction (that drives the mode), viscous and magnetic

damping.

The r-modes of rotating Newtonian stars are generally defined to be solutions of

the perturbed fluid equations having Eulerian velocity perturbations of the form

δ~v = RΩf(r/R)~Y B
lmeiσt (1.4)

where R and Ω are the radius and the angular velocity of the unperturbed star,

f(r/R) is an arbitrary dimensionless function and ~Y B
lm is the magnetic vector

spherical harmonic defined by

~Y B
lm = [l(l + 1)]−1/2r~∇× (r~∇Ylm) . (1.5)

For barotropic stellar models f(r/R) = α(r/R)l, where α is a dimensionless

coefficient that describes the amplitude of the perturbation. These modes exist

with velocity perturbation as given by Eq. (1.4) if and only if l = m [12]. The

frequency of these modes in the inertial frame can be obtained using Eq.(1.2)

σ = −
(l − 1)(l + 2)

l + 1
Ω . (1.6)

These expressions for δ~v and σ are the lowest order terms in an expansion in

terms of the angular velocity Ω. The exact expression contain additional terms

of order Ω3.
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The r -modes evolve with a time dependence eiσt−t/τ as a consequence of ordinary

hydrodynamics and the influence of the various dissipative processes. The imag-

inary part 1/τ of the frequency of these modes ω is determined by the effects of

gravitational radiation, viscosity, magnetic field, etc.

The time derivative of the energy of the mode Ẽ is related to the imaginary part

of the frequency 1/τ by
dẼ

dt
= −

2Ẽ

τ
. (1.7)

The lowest order expression for the energy of the mode Ẽ, as measured in the

corotating frame, reads [13]

Ẽ =
1

2
α2Ω2R−2l+2

∫ R

0

ρr2l+2dr . (1.8)

We will make use of Eqs. (1.7,1.8) to evaluate the stability of r-modes.

1.2.1 Gravitational radiation reaction

The gravitational radiation tends to increase the energy of r-modes making them

unstable at all rates of rotation. The lowest order contribution to the gravitational

radiation term in the energy dissipation comes from the current multipole moment

δJll that at lowest order in Ω is [13]

δJll =
2αΩ

cRl−1

√

l

l + 1

∫ R

0

ρr2l+2dr . (1.9)

Higher multipoles lead to significantly weaker instabilities and the l = m = 2

r-mode will be the most important.

The variation of the r-mode energy due to the gravitational radiation is
(

dẼ

dt

)

GR

≈ −ω2l+1Nl|δJlm|
2 (1.10)
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where Nl is the coupling constant between the gravitational radiation and the

evolution of the mode through the current multipole moment of the perturbed

fluid

Nl =
4πG

c2l+1

(l + 1)(l + 2)

l(l − 1)[(2l + 1)!!]2
. (1.11)

The gravitational radiation growth rate Fg ≡ −1/τg can be obtained using

Eq.(1.7)

Fg =
1

2Ẽ

(

dẼ

dt

)

GR

. (1.12)

It is possible to obtain an explicit expression for the gravitational radiation growth

rate by using Eqs. (1.8),(1.10) and (1.12)

Fg =
32πGΩ2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

(

l + 2

l + 1

)2l+2

×

∫ R

0

ρr2l+2dr (1.13)

In our numerical analysis we make use of the estimate given in Ref. [11] for the

gravitational radiation reaction rate due to the l = m = 2 current multipole

Fg =
1

47
M1.4R

4
10P

−6
−3 s−1 (1.14)

where we have used the notation M1.4 = M/1.4 M⊙, R10 = R/10 Km, P−3 = P/1

ms and T9 = T/109 K.

1.2.2 Viscous damping

In our neutron star models we considered two kinds of viscosity, bulk and shear,

that are due to rather different physical mechanisms. We discuss them separately

below.
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Shear viscosity

The shear viscosity is related to the momentum transport due to particle scatter-

ing, and in a fluid star it is the main viscous dissipation mechanism at temperature

below few times 109 K. In a normal fluid star the most important contribution

derive from the neutron-neutron scattering. In a superfluid star the dominant

contribution is due to the electron-electron scattering but the estimate is more

complicate and uncertain, because it is necessary to take into account other ex-

otic effects, like the scattering of vortices in the superfluid.

The shear viscosity damping rate, Fsv ≡ 1/τsv, reads [13]

Fsv = (l − 1)(2l + 1)

∫ R

0

ηr2ldr

(
∫ R

0

ρr2l+2dr

)−1

(1.15)

where η is the shear viscosity.

We will make use of the numerical estimate given in Ref. [11] obtained for a star

that has cooled below the superfluid transition temperature of ∼ 109 K

Fsv ≈
1

2.2 × 107
M1.4R

−5
10 T−2

9 s−1 (1.16)

Bulk viscosity

The bulk viscosity is related to the departure from beta equilibrium due to the

variations of density and pressure associated with the mode oscillations. It cor-

responds to an estimate of the extent to which energy is dissipated from the fluid

motion as the weak interaction tries to re-establish equilibrium. The energy of

the mode is carried away by neutrinos. The bulk viscosity is the dominant viscous

mechanism at temperature above a few times 109 K.
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The bulk viscosity damping rate, Fbv ≡ 1/τbv, reads [13]

Fbv ≈
4R2l−2

(l + 1)2

∫

ς|
δρ

ρ
|d3x

(
∫ R

0

ρr2l+2dr

)−1

(1.17)

where ς is the bulk viscosity.

In our numerical calculation we make use of the numerical estimate given in

Ref. [14]

Fbv =
1

6.99 × 108

(

T

109K

)6(
Ω2

πGρ̄

)

(1.18)

which we can approximately rewrite as

Fbv =
1

2.5 × 109
M−1

1.4 R3
10P

−2
−3 T 6

9 s−1 . (1.19)

1.2.3 Temperature evolution

Viscosity depends critically on temperature. We include three factors in modeling

the temperature evolution: modified Urca cooling, shear viscosity reheating and

accretion heating. The cooling rate due to the modified Urca reactions, ǫ̇u, reads

[15]

ǫ̇u = 7.5 × 1039M
2/3
1.4 T 8

9 erg s−1 . (1.20)

It is important to remark that if direct Urca processes can take place they deeply

influence the cooling rate, which becomes significantly larger [16]. The bulk

viscosity is also enhanced at temperatures smaller than ∼ 2 × 109 K [17]. A

recent phenomenological analysis of the implications of the direct Urca processes

can be found e.g. in [18]. In our analysis we have assumed for simplicity that

only modified Urca processes can take place.

The neutron star will be heated by the action of shear viscosity on the r-mode
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oscillations. The heating rate due to shear viscosity, ǫ̇s, reads [11]

ǫ̇s = 2α2Ω2MR2J̃Fs

= 8.3 × 1037α2Ω2J̃M
9/4
1.4 R

−15/4
10 T−2

9 erg s−1 . (1.21)

where J̃ = 1.635 × 10−2.

Accretion heating has two components. We use the estimates given in [19]. The

first contribution arises when accreted matter undergoes nuclear burning at the

surface of the star

ǫ̇n =
Ṁ

mB
× 1.5 MeV = 4 × 1051Ṁ1.4 erg s−1 (1.22)

where mN is the mass of a nucleon and Ṁ1.4 = Ṁ/1.4M⊙ is measured in s−1.

The second contribution arises because the flow is assumed to be advection dom-

inated. The advected potential energy is used to generate neutrinos near the

surface of the star. Half of these neutrinos are radiated into the star, where they

scatter and interact with the stellar material. The heating rate is

ǫ̇h ∼
R

λ

GMṀ

R
= 8 × 1051M

13/6
1.4 Ṁ1.4 erg s−1 (1.23)

where λ is the mean free path of inelastic scattering of neutrinos [19]. Notice that

if the advection related contribution is negligible, the temperature at which the

star enters the instability region is lower and, as we show in the following, the

generated toroidal magnetic fields are larger.

Finally we use the estimate of the heat capacity Cv also given in [19]

Cv = 1.6 × 1039M
1/3
1.4 T9 erg K−1. (1.24)

The equation of thermal balance of the star reads therefore

d

dt

[

1

2
CvT

]

= ǫ̇s − ǫ̇u + ǫ̇n + ǫ̇h . (1.25)
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1.3 R-mode equations

In this section we obtain the evolution equations of r-modes by considering only

bulk and shear viscosity as damping mechanisms. In order to derive the equations

regulating the evolution of r-modes we start by considering the conservation of

angular momentum, following Ref. [20]. The total angular momentum J of a star

can be decomposed into an equilibrium angular momentum J∗ and a canonical

angular momentum Jc proportional to the r-mode perturbation:

J = J∗(M, Ω) + (1 − Kj)Jc, Jc = −Kcα
2J∗ (1.26)

where K(j,c) are dimensionless constants and J∗
∼= I∗Ω.

Following Ref. [9] the canonical angular momentum obeys the following equation:

dJc/dt = 2Jc{Fg(M, Ω) − [Fv(M, Ω, Tv) + Nother]} (1.27)

where Fg is the gravitational radiation growth rate, Fv = Fs+Fb is the sum of the

shear and bulk viscous damping rate, Tv(t) is a spatially averaged temperature

and Nother is the torque associated with other processes that can drive the mode.

The total angular momentum satisfies the equation:

dJ/dt = 2JcFg + J̇a(t) − I∗ΩFme
(1.28)

where J̇a is the rate of accretion of angular momentum (we have assumed it

to be J̇a = Ṁ(GMR)1/2, see Ref. [21]) and Fme
is the magnetic breaking rate

associated to the external poloidal magnetic field. Combining Eqs. (1.27) and

(1.28) we obtain the evolution equations of the r-mode amplitude α and of the
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angular velocity of the star Ω:

dα

dt
= α(Fg − Fv) + α[KjFg + (1 − Kj)Fv]Kcα

2

−
αṀ

2ĨΩ

(

G

MR3

)1/2

+
αFme

2
(1.29)

dΩ

dt
= −2KcΩα2[KjFg + (1 − Kj)Fv]

−
ṀΩ

M
+

Ṁ

Ĩ

(

G

MR3

)1/2

− ΩFme
(1.30)

where I∗ = ĨMR2 with Ĩ = 0.261 for an n=1 polytrope and Kc = 9.4 × 10−2,

see Ref. [14]. Our results turn out to be rather insensitive to the value of Kj ∼ 1

(see Ref. [20]).

When the star enters the instability region, at first an unstable r-mode grows

exponentially, but soon it may enter a regime where other inertial modes that

couple to r-mode become excited and nonlinear effects become important [22].

These nonlinear effects are crucial in determining the final saturation amplitude

αs of the r-mode.

In the following we solve numerically Eqs.(1.29,1.30) and in Cap. 3 we make use

of these results to put in evidence how this scenario changes by taking into ac-

count the internal magnetic field.

1.4 The r-mode instability window

In the simplest scenario of the r-mode instability, which is the one typically dis-

cussed in the literature, it is considered only the damping effects due to viscosity.

To have an instability it is necessary that the gravitational radiation growth rate
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Figure 1.1: R-mode instability region in the plane T − ν, obtained by using Eqs. (1.16,1.18).

The solid line is the critical rotation rate of a neutron star and it has been obtained by solving

Eq. (1.31).

Fg exceeded the viscous damping rate Fv ≡ Fsv +Fbv. A critical rotation rate for

a star is obtained by solving the equation

Fg − Fv = 0 . (1.31)

The solutions of Eq.(1.31), using Eqs.(1.16,1.18), determine the r-mode instability

region in a T − ν plane, see Fig.(1.1). With reference to Fig (1.1), in the region

below the solid line the star is stabilized with respect to the r-modes by the viscous

damping. At lower temperature T . 109 K, the shear viscosity dominates and

stabilize the star at all spin frequencies for T . 106 K. Bulk viscosity instead
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dominates at higher temperature T & 1010 K, and stabilize the star at all spin

frequencies for T & 1011 K.

In the region above the solid line, the gravitational radiation growth rate exceeds

the viscous damping rate. When this condition is verified, the r-mode instability

is free to develop and the star spins down by emission of gravitational waves.

Therefore the r-mode instability region, showed in Fig (1.1), should be precluded

to rapidly rotating neutron stars.

Clearly these results must be combined with the condition that a stable star can

never spin faster than the rate at which matter is ejected from the equator. Fully

relativistic calculations for stellar models obtained using realistic equations of

state suggest a Keplerian limit [23, 24]

νK ≈ 0.12
√

πGρ̄ (1.32)

where G is the gravitational constant and ρ̄ is the average density of the corre-

sponding nonrotating star.

In the next section we analyze how the existence of the r-mode instability region

can influence the evolution of the spin frequency of rapidly rotating compact

stars.

1.5 The spin evolution of millisecond pulsars

In this Section we discuss the spin evolution of accreting and of newly born

neutron stars that enter the r-mode instability region, obtained by solving nu-

merically Eqs.(1.29,1.30). Here we assume that r-modes are damped only by the

viscous damping. We will make use of these results to emphasize in the following
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Figure 1.2: Trajectory of newly born neutron star in the Temperature vs Frequency plane.

We plot three different curves corresponding to three values of the saturation amplitude of the

r-modes: αs = 1 (dashed line), αs = 0.1 (dashed-dotted line) and αs = 0.01 (dotted line).

how this “canonical” scenario change substantially by taking into account the

internal magnetic fields.

Newly born neutron stars

A hot (T ∼ 1011 K) newly born compact star rotating at millisecond period, enters

the instability region, from the right side, few minutes after its formation. The

trajectory of the star in the instability region depends on the saturation value of

the r-mode amplitude αs, see Fig. 1.2. Once entered the r-mode instability region,

the star loses in few years much of its initial angular momentum by emission of

gravitational waves. It is clear that in this scenario it should be very difficult to

observe a newly born neutron star rotating at frequencies above few hundreds
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Figure 1.3: Trajectories followed by accreting neutron stars (solid lines) in the Temperature

vs Frequency plane. The three curves correspond to different values of accretion rate Ṁ =

(10−8, 10−9, 10−10)M⊙yr−1 . We plot also the temperature equilibrium curve (dotted line),

obtained taking into account the neutrino cooling and the reheating due to viscosity. Here we

have assumed αs = 1.

Hertz.

Accreting neutron stars

Accreting neutron stars reach the instability region from the bottom, at tempera-

tures in the range 108–109 K, see Fig. 1.3. When the r-modes develop, the star is

heated by the viscosity and spins down by emission of gravitational waves. In the

instability region the star follows the trajectories showed in Fig. 1.3. In a time

between a few years and a few hundreds of years, whose value strongly depends

on the value of the saturation amplitude αs, the star moves out of the instability
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region and it is again stabilized by viscosity. After that the star cools down by

neutrino emission in millions of years. This cycle could repeat several times until

mass accretion is active.

In this scenario it should be impossible to accelerate a initially slowly rotating

neutron star up to frequencies of about 200 Hz.

It is clear that in the absence of damping mechanisms other than viscosity, it

should be impossible to have neutron stars with spin frequencies above few hun-

dreds Hertz. This is in contrast with the observational data about the millisec-

ond pulsars in Low Mass X-Ray Binaries systems (LMXBs) with spin frequencies

above 600 Hz and temperature in the range 108–109 K. In the next section we

analyze this problem providing a short description of more complex models in-

volving the presence of a rigid crust or quark and hyperon in the core of compact

stars.

1.6 Open Problems

Accreting millisecond pulsars in LMXBs appear to have a sort of upper limit

corresponding to a spin frequency at ∼ 600 Hz. The r-mode instability has been

proposed as an explanation for the sub-breakup spin rates of both LMXBs and

of young, hot neutron stars [25]. The idea that gravitational radiation could

balance accretion was proposed independently by Bildsten [26] and Andersson

et al. [25]. It is evident that the scenario in which the viscosity of a pure fluid

neutron star is the only damping mechanism for the r-mode instability is too

simple and it is not adequate to explain the phenomenology of the millisecond
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Figure 1.4: We show the region occupied by millisecond neutron stars in LMXBs in the T –ν

plane (gray zone). It is evident that others damping mechanisms than viscosity are necessary

to stabilize the compact stars with respect to r-modes up to frequencies ν > 600 Hz.

pulsars. Indeed, accreting millisecond pulsars in LMXBs could not rotate at

frequency above ∼ 200 Hz because they would become unstable with respect to

r-modes, see Fig.1.4.

In the last years several authors [22, 27, 28, 29, 30, 31] analyzed how a rigid crust

or the presence of hyperons and quarks in the core of neutron star could modify

the r-mode instability region.

Anyway it is very difficult to give a precise estimate of these effects and in our

analysis we have not included them in order to study in more clear way the effects

of magnetic fields on r-mode instability. In the following we shortly discuss the

Ekman layer and hybrid and quark stars.
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Figure 1.5: We show how change the r-mode instability window in the presence of the Ekman

layer. We plot three curve corresponding to three values of the slippage factor (Ssn = 0.1, 0.5, 1).

Ekman Layer

A crust may form shortly after the neutron star birth, at temperatures below

T ∼ 1010 K. The effect of a crust is to increase significantly the friction with

respect to a purely fluid neutron star and therefore to reduce the instability region.

If the crust is assumed to be rigid, the fluid motion must essentially fall off to

zero at the base of the crust in order to satisfy a no-slip condition in the rotating

frame of reference. The region immediately beneath the crust corresponds to the

so-called Ekman layer. For typical parameters of rapidly rotating neutron stars,

this layer should have a thickness of few centimeters [11].

A precise estimate about the dissipation timescale due to the presence of the

Ekman layer is difficult to obtain because it is dependent on uncertain parameters,
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such as the thickness of the crust and the degree of pinning of the vortices in the

crust. Recent estimates [22] about this boundary layer viscosity, give a maximum

stable spin frequency for accreting neutron stars

νmax ≈ 800Hz [Sns/(M1.4R6)]
4/11T

−2/11
8 (1.33)

where Ssn is the slippage factor [20]

Sns =

(

2S2
n + S2

s

3

)1/2

. (1.34)

Ss is the fractional degree of pinning of the vortices in the crust while Sn is the

fractional difference in velocity of the normal fluid between the crust and the core.

In Fig. (1.5) we show how the r-mode instability window change by changing the

slippage factor Sns. It is clear that the stabilization of the faster millisecond

pulsars require a large boundary layer viscosity with Sns ∼ 1.

Hybrid and quark stars

As was pointed out in Ref. [32], the r-mode instability may provide the means for

distinguishing between strange stars and neutron stars. The main reason for this

is that the viscosity coefficients are rather different in the two cases. While the

shear viscosity in a strange star is comparable to that of a neutron star, the bulk

viscosity is many orders of magnitude stronger than its neutron star counterpart.

This has interesting effects on the r -mode instability.

The shear viscosity damping rate in a hybrid/quark star is [11]

Fsv =
1

7.4 × 107

(

0.1

αs

)5/3

M
5/9
1.4 R

−11/3
10 T

−5/3
9 (1.35)

where αs is the fine-structure constant for the strong interaction.

The estimates for the bulk viscosity, which is now a result of the change in
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and a Low Temperature Instability Window (LTIW). As comparison we show also the r-mode

instability window for normal fluid stars (solid black line) and the r-mode instability window
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concentration of down and strange quarks in response to the mode oscillation,

are more complicated. The relevant viscosity coefficient takes the form [32]

ς =
αT 2

[(kΩ)2 + βT 4]
(1.36)

with the coefficient α and β given in [33]. From this relation we can deduce

that the bulk viscosity becomes less important at both very low and very high

temperature. For low temperature the bulk viscosity damping rate reads [11]

F low
bv ≈

1

7.9
M−2

1.4 R4
10P

−2
−3 T 2

9 m4
100 s−1 (1.37)

where m100 represents the mass of the strange quark in units of 100 MeV.

For high temperature the bulk viscosity damping rate reads [32]

F high
bv ≈

1

0.268

(

Ω2

πGρ̄

)2

T−2
9 m4

100 s−1 . (1.38)

In Fig. 1.6 we show how the r-mode instability window changes for quark and

hybrid stars. Due to the bulk viscosity, the instability window splits into two

parts: one which starts at temperatures larger than few times 109 K (HTIW)

and a lower temperature window at temperature smaller than 109 K (LTIW).

The HTIW does not affect significantly the angular velocity of the star because

the cooling of a newly born star is so fast that there is not enough time for

the r-mode instability to drag a significant fraction of the angular momentum.

Therefore, the star exits the HTIW with an angular velocity close to the initial

one [30]. When the temperature drops down to a few 108 K the star reaches the

LTIW and it starts to lose angular momentum due to r-mode instability.

All the models that we have discussed do not consider the interaction between
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r-modes and the internal magnetic field of the star. In the following we take into

account this effect for a normal neutron star without a crust and we investigate

how the generation of huge internal fields, due to the differential rotation induced

by r-modes, modify the condition for the development of the instability.



Chapter 2

R-mode instability and magnetic

field

R-mode instabilities are associated with kinematical secular effects which gen-

erate differential rotation in the star and large scale mass drifts, particularly in

the azimuthal direction. Differential rotation in turn can produce very strong

toroidal magnetic fields inside the star and these fields damp instabilities con-

verting the energy of the mode into magnetic energy. This mechanism has been

proposed in the case of rapidly rotating, isolated and newly born neutron stars

in Refs. [4, 5, 6, 34].

The high electrical conductivity in the core of neutron stars determines that the

magnetic field is predominantly advected with the fluid. When the electrical

conductivity is infinite (the ideal magnetohydrodynamical limit), magnetic field

lines are frozen in the fluid and move entirely with it. As pointed out in Ref. [34],

the generation of magnetic fields under these circumstance can be very efficient

and extremely intense magnetic fields can be created during the instability. Since

29
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the normal modes of the star are global in character, the effects of a magnetic

field cannot be fully analyzed by a local analysis, such as one done by making a

local comparison of forces [5, 6]. In the following we will consider a mode-energy

approach, that takes into account the global properties of the modes and of the

magnetic field.

If there is not enough energy in the mode to supply the magnetic energy increase

required to complete an oscillation, a “full” r-mode oscillation will not occur.

Stated differently, if the magnetic field exceeds a critical value, Bcrit,p, the mag-

netic stress that builds up during an oscillation will be so large that it will halt

the fluid motion involved in the oscillation. The condition that defines Bcrit,p is

therefore

δEM = Ẽ , (2.1)

where Ẽ is the energy of the mode in the corotating frame (see Eq. 1.8), that for

l = m = 2 reads

Ẽ =
1

2

α2Ω2

R2

∫ R

0

ρr6dr ≃ 8.2 × 10−3α2MΩ2R2 , (2.2)

and δEM is the change in magnetic energy density

δEM ≡
1

8π

∫

V∞

δB2d3x (2.3)

with δB2 = (δBp)2 + (δBφ)2.

In the following we will make use of Eqs. (2.2,2.3) to calculate both the value

of the toroidal field generated by r-modes and the magnetic damping rate, Fmi
,

that we will introduce for the first time in the equations regulating the evolution

of the r-modes. These new equations will be used in Chapter 3 to analyze the

evolution of accreting millisecond pulsars.
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2.1 Distorsion of the stellar magnetic field

While the star remains in the instability region, the r-modes generate a differ-

ential rotation which can greatly amplify a pre-existent magnetic field. More

specifically, if a poloidal magnetic field was originally present, a strong toroidal

field is generated inside the star. The energy of the modes is therefore transferred

to the magnetic field and the instability is damped.

For simplicity we assume that the stellar magnetic field B is initially dipolar and

aligned with the star’s spin axis

B0 = Bp(t = 0) = Bd
R3

r3
(2 cos θ er + sin θ eθ) (2.4)

where Bd is the strength of the equatorial magnetic field at the stellar surface.

The initial magnetic field is assumed to be described by Eq. (2.4) both inside and

outside. In order to avoid divergences we assume the previous radial dependence

of the dipolar field to hold only for r ≥ pR where 1 > p > 0. An example of

a magnetic field which is dipolar in the external region and not singular at the

origin is provided in [35]. Notice also that if the dipolar field remains roughly

constant in the inner region its contribution to the volume averaged final toroidal

field is negligible. Therefore in the following and in agreement with Ref. [6], radial

integrations extend from pR to R.

To estimate the magnetic field produced by r-modes we start by writing the

l = m = 2 contribution to the perturbation velocity (see Eq. (1.4)):

δv(r, θ, φ, t) = αΩR
( r

R

)2

YB
22e

iσt (2.5)

where YB
22 is the magnetic-type vector spherical harmonic and σ is the frequency

of the mode in the inertial frame, both defined in Chapter 1. Following Ref. [5]
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we get the total azimuthal displacement from the onset of the oscillation at t0 up

to time t, which reads:

∆x̃φ(r, t) ≡

∫ t

t0

δvφ(t′)dt′

=
2

3

( r

R

)

k2(θ)

∫ t

t0

α2(t′)Ω(t′)dt′ + O(α3) (2.6)

where k2(θ) ≡ (1/2)7(5!/π)(sin2θ − 2cos2θ). The relation between the new and

the original magnetic field inside the star in the Lagrangian approach reads [5]:

Bj

ρ
(x̃, t) =

Bk

ρ
(x, t0)

∂x̃j(t)

∂xk(t0)
. (2.7)

This equation implies that the radial dependence of the initial and final magnetic

field is the same. Integrating on time the induction equation in the Eulerian

approach one gets [6]:

δBθ ≃ δBr ≃ 0

δBφ ≃ Bθ
0

∫

φ̇(t′)dt′ ≃ Bθ
0

∫

δv(t′)

r
dt′ (2.8)

where Bφ is the toroidal component and we have set φ̇ ≃ δv/r.

The rate of production of magnetic energy can be obtaining using Eqs.(2.3,2.6,2.8)

and reads

dEm(t)

dt
=

[

4(1 − p)

9πp

]

B2
dR

3Λ′α2(t)Ω(t)

∫ t

0

α2(t′)Ω(t′)dt′ (2.9)

where Λ′ ≡
∫ 2π

0
dφ
∫ π

0
(κ2(θ))

2|YB
22(θ, φ)|Ψ(θ)sinθdθ is O(1).

Magnetic damping

A critical point in the balance between the energy spent in producing magnetic

field and the energy provided by the emission of gravitational waves is reached



2.2. New r-mode equations 33

when the two rates are equal

dEM

dt
=

(

dẼ

dt

)

GW

. (2.10)

We have defined (dẼ/dt)GW in Chapter 1. After the balance described in (2.10)

is reached, the two rates become different again, dEM/dt > (dẼ/dt)GW , because

the toroidal magnetic field, and hence dEM/dt, will continue to grow whereas

(dẼ/dt)GW decreases as the emission of gravitational waves causes the star to

spin down. The only source of energy to feed EM is the energy of the mode

which thus damps on a timescale

τM =
Ẽ

(dEM/dt)
. (2.11)

The explicit expression of the magnetic damping rate Fmi
(t) ≡ 1/τM can be

obtained using Eqs. (2.2,2.9):

Fmi
(t) ≃

4(1 − p)

9πp · (8.2 × 10−3)

B2
pRΛ′

∫ t

0
α2(t′)Ω(t′)dt′

MΩ
(2.12)

where the (1 − p)/p factor stems from the volume integral extended from pR to

R. In the following, when not otherwise indicated we have used p = 1/2. The

dependence of our results on p will be discussed later. The time integral over the

r-mode amplitude α takes contributions from the period during which the star is

inside the instability region.

2.2 New r-mode equations

In a magnetic star the canonical angular momentum obeys the following equation:

dJc/dt = 2Jc{Fg(M, Ω) − [Fv(M, Ω, Tv) + Fmi
(M, Ω, B)]} (2.13)
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where now we have also introduced the damping rate Fmi
, associated with the

generated internal magnetic field. The total angular momentum continue to

satisfy the Eq. (1.28). In the Thesis we are not considering further breaking

mechanisms as e.g. the interaction between the magnetic field and the accretion

disk. Combining Eqs. (2.13) and (1.28) we obtain the evolution equations of the

r-mode amplitude α and of the angular velocity of the star Ω:

dα

dt
= α(Fg − Fv − Fmi

) + α[KjFg + (1 − Kj)(Fv + Fmi
)]Kcα

2

−
αṀ

2ĨΩ

(

G

MR3

)1/2

+
αFme

2
(2.14)

dΩ

dt
= −2KcΩα2[KjFg + (1 − Kj)(Fv + Fmi

)]

−
ṀΩ

M
+

Ṁ

Ĩ

(

G

MR3

)1/2

− ΩFme
(2.15)

where we use again the notation I∗ = ĨMR2 with Ĩ = 0.261 for an n=1 polytrope

and Kc = 9.4 × 10−2, see Ref. [14]. Our results turn out to be rather insensitive

to the value of Kj ∼ 1 (see Ref. [20]).

In the next Chapter we analyze the evolution of the r-modes and of the generated

magnetic fields by solving numerically Eqs. (1.25,2.12,2.14,2.15).



Chapter 3

Evolution of the r-modes in

millisecond pulsars

In Chapter 1 we have shown how r-mode instability plays a very important role in

the evolution of the fastest spinning pulsars. In particular the rotation of recycled

pulsars may be limited by the emission of gravitational radiation induced by r-

modes.

In this Chapter we consider a scenario with a normal neutron star without a

crust and we take into account the interaction between internal magnetic fields

and r-modes by solving numerically the Eqs. (1.25,2.12,2.14,2.15).

In the following we investigate how the generation of huge internal magnetic fields

influence the development of the instability both in accreting and in hot, young

millisecond pulsars.

35
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Figure 3.1: Trajectories of hot, newly born neutron stars in the T −ν plane. We indicate with

asterisks the moment at which the generated toroidal magnetic fields damp the r-modes. We

consider an initial spin frequency ν = 1000 Hz and three different values of the initial dipolar

magnetic field Bd = (108, 1010, 1012) G. We have chosen an r-mode saturation amplitude αs = 1.

3.1 Newly born millisecond pulsars

In this Section we investigate the generation of internal magnetic fields in hot,

newly born neutron stars. When the star enters the instability region, the r-modes

grow exponentially and generate a differential rotation which greatly amplify a

pre-existent poloidal magnetic field, generating in such way a strong toroidal field.

Unlike the case of non-magnetic stars (see Chapter 1), the energy of the modes

is transferred to the magnetic field and the instability is damped before the star

loses most of its angular momentum.
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Figure 3.2: Upper panel: evolution of the r-mode amplitude for a hot, newly born neutron

star. In the cases Bd = (108, 1010) G, it reaches the saturation value αs = 1. Bottom panel:

evolution of the internal toroidal field generated by r-modes. In all the cases we have considered,

toroidal fields reach a value Btor & 1016 G.

In Fig. (3.1) we show the trajectory of a newly born magnetic star in the in-

stability window, obtained by solving numerically Eqs. (1.25,2.12,2.14,2.15). We

consider an initial spin frequency ν = 1000 Hz and we indicate with asterisks the

moment at which the generated fields damp r-modes. In Fig. (3.2) we show the

evolution of the internal magnetic fields and of the r-mode amplitude α. We have

assumed a saturation value αs = 1. We consider three initial values of dipolar

magnetic fields Bd = (108, 1010, 1012) G. In all the evaluated cases we have ob-

tained the generation of huge toroidal fields, Btor & 1016 G. These results are in

agreement with conclusion of Ref. [5, 6].
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If the generated internal fields exceed the critical value of the magnetic buoyancy,

that in an early stage of the formation of the neutron star is a percent or less

[36] of the final value Bbuoy ∼ 1017 G of a stable stratified star [37], it can float

to the surface. This happens because a strong field reduces the gas pressure and

density in it, so that loops of the azimuthal field tend to float upward against the

direction of gravity [36].

R-mode instability, therefore, can provide a valid mechanism to generate the

strong magnetic fields observed in high magnetized stars, B ∼ (1014–1015 G),

the so called “magnetar”, that several authors [38, 39, 40] in the last years have

indicated as a possible central engine of the Gamma Ray Bursts (GRBs).

3.2 Accreting millisecond pulsars in LMXBs

We consider a scenario in which the mass accretion spins an initially slowly ro-

tating neutron star up to millisecond period and we investigate the evolution

of internal toroidal magnetic fields when the star enters the r-modes instability

window.

We start by discussing the evolution of temperature and spin frequency obtained

without magnetic fields, already introduced in the Chapter 1. In Fig. 3.3 we

show that the star crosses the r-mode instability region in a regime of thermo-

gravitational runaway [22]. R-modes grow exponentially due to the decrease of

the shear viscosity with increasing temperature. As a consequence r-mode ampli-

tudes rapidly reach the saturation value (we chose αsat = 1 although, as we shall

see later, magnetic fields limit α ≪ αsat) and the viscosity heats significantly the

star. At this stage the star loses angular momentum by emission of gravitational
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Figure 3.3: Top panel: instability region in the Temperature vs Frequency plane obtained

using the shear viscosity damping rate Fν given in [11] and the bulk viscosity damping rate Fb

given in [14] (region above the dashed line). Also shown are the paths followed by accreting

neutron stars, without toroidal magnetic fields (solid lines). The four curves correspond to

different values of accretion rate Ṁ = (10−8, 10−9, 10−10, 10−11) M⊙ yr−1. We plot also the

temperature equilibrium curve [22] (dotted line), obtained taking into account the neutrino

cooling and the reheating due to viscosity. Bottom panels: new paths obtained taking into

account the new generated toroidal fields. Here Bd = 108 G. The moments at which toroidal

magnetic fields damp r-mode instabilities are indicated by asterisks.
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Figure 3.4: Top panel: temporal evolution of r-modes amplitude without toroidal fields.

Middle panel: temporal evolution of r-modes amplitude with toroidal fields for Bd = 108 G

(solid line) and Bd = 109 G (dotted line). Bottom panel: temporal evolution of volume averaged

toroidal magnetic fields. We consider Ṁ = (10−8, 10−9, 10−10, 10−11) M⊙ yr−1.

waves and goes out of the instability region in a time of hundred of years.

Taking into account magnetic fields, the evolutionary scenario for the star is

quite different. We discuss results obtained solving in a self-consistent way

Eqs. (1.25,2.12,2.14,2.15). From a practical viewpoint we proceed as follows:

we first solve Eqs. (1.25,2.14,2.15) and we get an estimate of Fmi
(t) inserting the

results in Eq. (2.12); we use this estimate to solve again Eqs. (2.14,2.15,1.25).

This procedure is iterated till numerical convergence is reached.

The exponential growth of r-modes induces extremely large secular effects and
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Figure 3.5: Volume averaged toroidal magnetic field generated by r-modes as a func-

tion of the temperature at which the star enters the instability window. For reference
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Ṁ = (10−8, 10−9, 10−10, 10−11) M⊙ yr−1. The various curves correspond to different values

of the initial poloidal magnetic field, in the range [108 − 109] G. Here p = 0.5.
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the toroidal magnetic field is either produced or amplified by the wrapping of

the poloidal field produced by the secular velocity field which is mostly toroidal.

In the bottom panel of Fig. 3.3 we show the new trajectory of the star in the

Temperature-Frequency plane obtained taking into account the generated toroidal

fields, and we indicate with asterisks the moments at which magnetic fields damp

r-modes. It is important to remark that this happens when the star is still in the

region which was unstable taking into account only the viscous damping.

In Fig. 3.4 we show the evolution of the r-mode amplitude α, without magnetic

field (top panel) and with magnetic field (middle panel). Four different values

of accretion rate Ṁ and two values of the initial poloidal magnetic field Bd are

considered. In the scenario with magnetic fields, the maximum values of α are

in the range αmax ∼ [10−6 − 10−1] and the generated toroidal fields are in the

range Btor ∼ [1011 − 1015] G (Fig. 3.4 bottom panel). Here and in the following

we display magnetic fields averaged on a volume which corresponds to the inte-

gration region. In this analysis we have considered values of accretion rate Ṁ

and magnetic field Bd typical of accreting Low Mass X-Ray binaries (LMXBs).

As indicated in Table 1 of Ref. [41] the values of Ṁ for LMXBs are in the range

(10−8 – 10−11)M⊙yr−1.

In Fig. 3.5 we show the generated toroidal magnetic field as a function of the

temperature at which the star enters the instability window. We display the

volume averaged field obtained at the moment in which the field itself has com-

pletely damped r-modes. The value of the magnetic field is the asymptotic one

displayed in the bottom panel of Fig. 3.4. Results of Fig. 3.5 are obtained using

Eqs. (1.22,1.23) to describe the connection between accretion rate Ṁ and tem-

perature T . To better understand the dependence of our results on the relation
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Figure 3.6: Same as Fig. 3.5. Here the solid lines are obtained taking into account also the

reheating term ǫ̇h (Eq. (1.23)), while the dashed lines are obtained neglecting that contribution.

between mass accretion rate and temperature, in Fig. 3.6 we compare the final

toroidal fields obtained taking into account both contributions to accretion heat-

ing described in Eqs. (1.22,1.23) with the fields obtained neglecting the second

contribution i.e. ǫ̇h. If ǫ̇h is neglected then temperature is lower for a same value

of Ṁ and a general outcome of our analysis is that the toroidal fields are larger.

Finally, our results depend on the extension of the region of integration in Eq. 2.12,

which also corresponds to the region inside the star where the initial magnetic

field and the r-modes are both sizable. The dependence of the generated toroidal

fields on p is shown in Fig. 3.7. It is clear that the scenario we are obtaining is

not too dependent on p.
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3.3 Instability and evolution of magnetic fields

Several issues remain open concerning how the new generated magnetic fields are

affected by possible instabilities. In the stably stratified environment of a stellar

interior there are two types of instabilities: the Parker (or magnetic buoyancy)

and the Tayler instabilities (or pinch-type), both driven by the magnetic field

energy in the toroidal field. The buoyancy instability is negligible for Btor .

1017 G [37], so we focus on Tayler instabilities because they set in at a lower field

strength [42]. It is important to remark that in a stable and stratified neutron

star the condition for the Tayler instability reads [43]:

ωA

Ω
>

(

Nµ

Ω

)1/2
( η

r2Ω

)1/4

(3.1)

where ωA = B/(4πρ)1/2r is the Alfvén frequency, Nµ ≃ 5 × 104 s−1 is the com-

positional contribution to the buoyancy frequency and η ∼ 10−9 cm2 s−1 is the
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magnetic diffusivity which can be obtained from the electrical conductivity σ

(given in [44]) by using the relation η = 1/(µ0σ). From Eq. (3.1) we can conclude

that in the stably stratified core of a neutron star, the Tayler instability sets in

for Bcr
tor & 1012 G.

After the development of the Tayler instability, the toroidal component of the

field produces, as a result of its decay, a new poloidal component which can then

be wound up itself, closing the dynamo loop. Both components then grow, more

slowly, until the saturation level is reached, when the field is being destroyed by

the instability at the same rate at which it is being amplified by the differential

rotation [45]. When the differential rotation stops the field can evolve into a

stable configuration of a mixed poloidal-toroidal twisted-torus shape embedded

inside the star with an approximately dipolar field connected to it outside the

star [46, 47, 48, 49].

Once the field is stabilized it should evolve as a result of diffusive processes as

Ohmic dissipation, ambipolar diffusion, and Hall drift [50], whose typical time-

scales are:

tohmic ∼ 2 × 1011 L2
5

T 2
8

(

ρ

ρnuc

)3

yr (3.2)

tambip ∼ 3 × 109 T 2
8 L2

5

B2
12

yr (3.3)

tHall ∼ 5 × 108 L2
5

B12

(

ρ

ρnuc

)

yr (3.4)

where L5 = L/105 cm is the size of the region embedding the magnetic field.
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Figure 3.8: New r-modes instability regions for neutron stars with stable configurations of

mixed poloidal-toroidal fields in the inner core (no magnetic field - solid line; Btor,pol = 1012 G -

dashed line; Btor,pol = 1013 G - dotted-dashed line; Btor,pol = 1014 G - dotted line). We assume

that poloidal and toroidal components have similar strengths.

3.4 Internal magnetic fields and new r-mode in-

stability windows

We have shown how r-modes can generate strong toroidal fields in the core of

accreting millisecond neutron stars, and how these fields influence the growth rate

of r-mode instabilities. Tayler instability sets in for strengths of the generated

fields of the order of 1012 G and stabilizes the toroidal component by producing

a new poloidal field of similar strength. This stable configuration evolves on a

time-scale, regulated by diffusive processes. Our results imply that in the core of

accreting neutron stars in LMXBs, rotating at frequencies ν & 200 Hz, there are
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strong magnetic fields with strengths B & 1012 G.

Finally, it is tempting to try to investigate how the new stable configuration of

magnetic fields modifies the instability window of r-modes. More explicitly the

scenario we have in mind is the following:

• the compact star inside the LMXB initially enters the instability window

and it follows the trajectories that are displayed in the bottom panel of

Fig. 3.3 and in Fig. 3.4. When the toroidal field reaches the critical value

dictated by the Tayler instability, the poloidal field suddenly increases and

we assume it reaches a value of the same order of Bcr
tor. The new magnetic

configuration, in which the poloidal and the toroidal field are of the same

order of magnitude, is stable. In the new configuration the internal poloidal

field is a few orders of magnitude larger than the initial poloidal field. R-

modes try again to deform the poloidal field generating a new toroidal

component but the magnetic damping rate given by Eq. (2.12) is now much

larger and the star is stable with respect to r-modes up to frequencies of

the order of 200 Hz.

• the star continues accreting and increasing its frequency and it enters again

the instability region generating again a new toroidal field. When the

new toroidal component becomes much larger than the poloidal component

Tayler instability sets in again increasing the value of the poloidal field. In

Fig. 3.8 we show how the instability window changes in dependence of the

internal magnetic configuration, assuming that the toroidal and poloidal

components are equal.

• to determine the actual maximum value of the limiting frequency we take
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into account also the time-scale associated with the diffusive processes de-

scribed by Eqs.(3.2–3.4). If the magnetic fields exceed a few 1014 G the

diffusion time-scale becomes shorter than 106 yr and the star cannot accel-

erate further even for very large values of Ṁ .

It is clear that even in the absence of the Ekman layer the new internal

magnetic fields can stabilize stars with frequencies up to several hundreds Hertz.

The possible presence of a superconducting shell would screen these internal fields

so that they would not affect the dynamics of the external region.

3.5 Open problems

In our work we have not discussed the possible existence of Ekman layer. As

discussed in Chapter 1, if this layer is present it can stabilize the star up to fre-

quencies of a few hundred Hertz. The scenario discussed above does not change

qualitatively, but since the star enters the instability region at higher frequencies,

the growth rate of magnetic fields is larger.

Another important open point concerns the possible formation of superconduc-

tivity in the core of neutron stars. A fraction of the core, whose temperature is

below the critical value Tc ∼ 109 K, is expected to be either a Type I [52, 53] or a

Type II superconductor [51, 54]. The exact nature of the possible superconduct-

ing layer is still uncertain as well as the precise value of the superconducting gap.

Microscopically, the only gap associated with protons which has been evaluated

is the 1S0 [55, 56, 51]. The fundamental quantity in our analysis is the size of the

superconducting region which we show in Fig. 3.9 using the results obtained in

[51], which are compatible with previous estimates: the thickness of the super-
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Figure 3.9: Energy density of r-modes as a function of the star radius. Also indicated is the

region where superconductivity can form. The estimates about the size of the superconducting

region are quite uncertain. The solid arrow indicates the external border of the superconducting

region, the dashed and the dotted arrows indicate two possible locations of the internal border

obtained from [51].

conducting shell is about (1–3) km.

The 3PF2 pairing of neutrons and protons is still affected by many theoretical

uncertainties. The 3PF2 pairing of neutrons has been evaluated in [57, 55] and,

together with 1S0 gap it contributes to the neutron superfluidity. In our analysis

we have taken into account the effect of superfluidity on viscosity, see Eq. (1.16).

In the same figure we also display the energy density of the r-modes. It is clear

that a large fraction of the volume where r-modes can develop remains not su-

perconducting and in that region our analysis can still be applied: r-modes are

damped by the magnetic field and therefore the perturbation velocity drops to

zero. In Fig. 3.10 we show that in the not superconducting region large mag-

netic fields will form and they are large enough to damp r-mode oscillations. The

integration region extends from pR to p1R, where p1R corresponds to the inner
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Figure 3.10: Same as Fig. 3.5. Here the integration region extends from pR to p1R, and we

assume p = 0.2.

border of the superconducting region. R-modes can develop in the superconduct-

ing layer, but their amplitude is strongly suppressed because the perturbation

velocity has to vanish at the interface between the superconducting and the not

superconducting region. Moreover, if the superconductivity is of Type II, the

magnetic flux of the original poloidal field organizes into quantized flux tubes.

R-modes will stretch these flux tubes, increasing their length and thus changing

their magnetic energy content. As in the case of the normal core, this process can

generate very intense magnetic fields which lead to the damping of the r-mode

oscillations even in the superconducting layer [6].



Chapter 4

Astrophysical scenarios

In this Chapter we analyze the astrophysical implications of our results. As we

have shown previously, r-mode instability can generate huge magnetic fields in

the core of millisecond neutron stars. In turn, the so-generated magnetic fields

can stabilize the millisecond pulsars at high spin frequencies.

In the next section we first consider the case of LMXBs and we try to understand

whether and under which conditions, in our scenario, the emission of gravitational

waves limits the spin frequencies of the rapidly rotating neutron stars. We then

follow the spin frequency evolution of millisecond pulsars when mass accretion

stops, in order to understand whether the emission of gravitational waves plays

also a role in the spin down of these objects.

4.1 Spin frequencies evolution of LMXBs

In the scenario we are analyzing, the evolution of the internal magnetic field

drives the evolution of the spin frequency of the star when the star is in the region

51
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which was unstable taking into account only the viscous damping. Internal mag-

netic fields evolve due the diffusive processes discussed previously (Ohmic dissipa-

tion, ambipolar diffusion and Hall drift) on timescales given by Eqs. (3.2,3.3,3.4).

When the magnetic field decreases, the instability region changes (see Fig. 3.8)

and the star becomes again unstable with respect to r-modes and it spins down

by emission of gravitational waves. At the same time, the development of the

instability generates a new toroidal field that stabilizes again the star.

This scenario can take place through two different paths:

• the spin down of the star is discontinuous: the diffusion of the internal

magnetic field makes the star unstable with respect to r-modes; the star

loses angular momentum by emission of gravitational waves; the instability

generates a new toroidal field that stabilizes again the star; the generated

field is again dissipated and the star is newly unstable, and so on.

• the star is constantly in the instability region with a tiny value of the r-

mode amplitude α; the dissipation of the internal magnetic fields is slowed

due to the continuous formation of “new” fields.

In both scenarios, the partial regeneration of the magnetic field when the star

becomes unstable with respect to r-modes, slightly reduces the diffusion of the

internal field on the long time scale. However this effect is difficult to estimate

and in the following we neglect it.

In the following, in addition to mass accretion and internal magnetic field, we

take into account also of the magnetic dipole emission of the star, and we neglect

other spin down mechanisms, e.g. the interaction between the accretion disk and

the external magnetic field, in order to better understand the effect of the emis-
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Figure 4.1: The solid red line identify the absolute value of the spin frequency derivative

|ν̇GW | associated with the emission of gravitational wave. Blue solid lines identify the absolute

value of the spin frequency derivative |ν̇B| associated with the dipole emission; we consider two

values of external magnetic field B = (108, 109) G. The dashed lines identify the absolute value

of the spin frequency derivative |ν̇MA| associated with the mass accretion; we consider four

values of mass accretion rate Ṁ = (10−8, 10−9, 10−10, 10−11)M⊙yr−1.

sion of gravitational waves on the spin frequency evolution of millisecond pulsars.

In Fig. 4.1 we show the absolute values of the possible spin frequency derivative

|ν̇| due to: the mass accretion (dashed lines, ν̇MA > 0); the emission of grav-

itational waves (red line, ν̇GW < 0) and the dipole emission (blue solid lines,

ν̇B < 0). Results are plotted in a ν–ν̇ plane. The spin frequency derivative ν̇GW

is obtained by taking into account the emission of gravitational waves due to the

dissipation of the internal magnetic fields. Due to the dependence of the dissipa-

tion timescales on the temperature, this curve changes by changing the value of

the mass accretion rate Ṁ . Clearly the emission of gravitational waves and the



54 Astrophysical scenarios

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
0

500

1000

1500

log
10

 T  (K)

ν  
(H

z)

B
(tor,pol)

 = 1013 G

B
(tor,pol)

 = 1014 G

B
(tor,pol)

 = 1012 G

Figure 4.2: The solid line is obtained by the condition |ν̇MA| = |ν̇GW |. It represents the

maximum spin frequency at which it is possible to accelerate a star at fixed Ṁ . We make use

of Eqs.(1.22,1.23) for the relation between the temperature T and the mass accretion rate Ṁ .

dipole emission spin down the star, so ν̇GW e ν̇B are negative quantities; on the

contrary the mass accretion increases the spin frequency of the star, so ν̇MA is a

positive quantity.

With reference to Fig. 4.1, at fixed Ṁ , the condition |ν̇MA| = |ν̇GW | or |ν̇MA| =

|ν̇B| returns the maximum spin frequency at which it is possible to accelerate a

star for that value of mass accretion. For magnetic fields in the range (108–109) G,

which are typical values for LMXBs, above ν ∼ 900 Hz the millisecond accreting

pulsars are limited by the emission of gravitational waves because |ν̇GW | > |ν̇B|.

Below ν ∼ 900 Hz the dipole emission is relevant only for values of the external

magnetic field B & 5 × 108 G. If |ν̇B| > |ν̇GW | the star departs from the edge of

the instability region and it spins down by dipole emission.
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In Fig. 4.2 we make use of the results of Fig. 4.1 and we show how r-modes limit the

spin frequencies of the accreting millisecond pulsars in the T–ν plane. Stable ac-

creting neutron stars can be accelerate up to the solid line, where |ν̇MA| = |ν̇GW |.

In the same figure we plot also the values of the internal fields as a function of the

spin frequency (see also Fig. 3.8), and the region that was unstable taking into

account only the viscosity. In the scenario we are considering, a star can reach

frequencies ν & 1000 Hz only if it accretes a mass & 0.1 M⊙ at a stable accretion

rate Ṁ ∼ 10−8 M⊙ yr−1. In the other cases the emission of gravitational waves

should limit the spin frequency of accreting neutron stars at ν . 1000 Hz.

4.2 Connection between LMXBs and millisec-

ond radio pulsars

Millisecond pulsars are commonly believed to be descendants of normal neutron

stars that have been spun-up and recycled back as radio pulsars by acquiring

angular momentum from their companion during the Low-mass X-ray binary

phase. Towards the end of the secular LMXB evolution, as accretion rate fall

below a critical value, above which the radio emission may be hampered due

to absorption or dispersion [58], the neutron star can re-appear as a MSRP. In

the standard spin-down model, the MSRP evolution is driven by pure magnetic

dipole radiation. Alternative energy loss mechanisms such as multipole radiation

or gravitational wave emission, especially during the initial phases of the reborn

millisecond pulsars, have been suggested by several authors [26, 59]. A recent

statistical analysis [60] tries to obtain the spin frequency distribution of MSRPs

starting by the spin frequency distribution of MSXPs. However it is able to re-
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Figure 4.3: As Fig. 4.1. The solid red line is related to the emission of gravitational waves

for stars whose temperature is T = 107 K; the dashed red line is obtained for T = 108 K.

For comparison we plot also the spin frequency derivative due only to the dipole emission:

B = 108 G (dashed blue line), B = 109 G (solid blue line).

produce only the general demography of older MSRPs, while it fails to predict

the younger and fastest MSRP sub-population. A possible explanation proposed

in Ref. [60] is that the standard evolutionary model fails because the MSRPs,

during some portion of their evolution, lose energy through a dominant mecha-

nism other than magnetic dipole radiation.

In order to understand if the emission of gravitational waves can play a role in

the evolution of the fastest MSRPs, we investigate how, in our scenario, the spin

frequency evolves when mass accretion stops (ν̇MA = 0).

In Fig. 4.3 we plot the absolute values of the derivative of the spin frequency,

obtained by considering the emission of gravitational waves (red lines, ν̇GW ) for

two values of temperature T = (107, 108) K. For comparison we plot also the

spin frequency derivative of the dipole emission for two values of magnetic field
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Figure 4.4: Spin frequency evolution for a neutron star accelerated at spin frequencies ν ∼

1200 Hz. We take into account the cooling rate due to the neutrino emission, the emission of

gravitational waves and the dipole emission. We consider two values of the external magnetic

fields, B = (108, 109) G. For comparison we plot also the spin frequencies evolution obtained

considering only the dipole emission (blue lines).

B = (108, 109) G (blue solid lines, ν̇B). Results are plotted in a ν–ν̇ plane.

Fig. 4.3 can be interpreted as follows: if |ν̇GW | is greater than |ν̇B|, the star loses

most of its angular momentum by emission of gravitational waves. Contrary, if

|ν̇B| > |ν̇GW | the star spins down only by dipolar emission and it moves away

from the edge of the r-mode instability window.

In Fig. 4.4 we plot the spin frequency evolution for a neutron star accelerated at

frequencies ν ∼ 1200 Hz. We follow the spin frequency evolution by taking into

account the variation of temperature due to the neutrino emission, the emission

of gravitational waves and the dipole emission. We consider two values of the

external magnetic field, B = (108, 109) G. For comparison we plot also the spin

frequency evolution obtained considering only the dipole emission (blue line). It
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is evident that for frequencies ν & 500 Hz, the star loses most of its angular mo-

mentum by emission of gravitational waves. At lower frequencies the spin down

can be influenced by the dipole emission.

In conclusion, the emission of gravitational waves can play a very important role

in the spin down of the fastest MSRPs. Our analysis shows that the r-mode

instability condition depends on the frequency, the temperature and the external

magnetic field of the star (see Fig. 4.3).



Conclusions and Outlook

In this Thesis we have studied the interaction between magnetic fields and r-

mode instability in millisecond pulsars. The aim of the work was to investigate

this interaction in accreting stars that are spun up to millisecond period by the

mass accretion. The main results obtained are the following:

• We have obtained new evolution equations for the r-mode instability by

introducing for the first time the magnetic damping rate Fmi
;

• The differential rotation induced by the r-mode instability generates huge

toroidal magnetic fields both in a hot, newly born star and in old accreting

stars;

• In accreting millisecond pulsars, the generated toroidal fields are stabilized

by the Tayler instability. The presence of stable magnetic fields in the core

of accreting stars stabilizes the star with respect to r-modes;

• given a constant value for the mass accretion rate, the maximum spin fre-

quency is related to the value of the internal magnetic field;

• a new spin down mechanism for millisecond pulsars has been found, asso-

ciated with the slow diffusion of the internal magnetic field. The dacay of

59
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the internal magnetic field makes the star unstable again with respect to

r-modes.

Finally, the work discussed in this Thesis can be extended in several directions:

• a new evolutionary path connecting LMXBs and MSRPs can be investi-

gated, based on the existence of two mechanisms for spin down;

• the extremely large magnetic fields generated by a rapidly-rotating newly-

born compact star can be relevant in the discussion of certain features of

Gamma Ray Bursts, which can be explained if a magnetar is formed in the

early stage of the life of the compact star.
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[18] T. Klähn et al., Phys. Rev. C74, 035802 (2006).

[19] A. L. Watts and N. Andersson, Mon. Not. Roy. Astron. Soc. 333, 943 (2002).

[20] R. V. Wagoner, Astrophys. J. 578, L63 (2002).

[21] N. Andersson, D. I. Jones, and K. D. Kokkotas, Mon. Not. Roy. Astron.

Soc. 337, 1224 (2002).

[22] R. Bondarescu, S. A. Teukolsky, and I. Wasserman, Phys. Rev. D76, 064019

(2007).

[23] J. L. Friedman, L. Parker, and J. R. Ipser, Phys. Rev. Lett. 62, 3015 (1989).

[24] P. Haensel and J. L. Zdunik, Nature 340, 617 (1989).

[25] N. Andersson, K. D. Kokkotas, and N. Stergioulas, Astrophys. J. 516, 307

(1999).



Bibliography 63

[26] L. Bildsten, Astrophys. J. 501, L89 (1998).

[27] K. Glampedakis and N. Andersson, Mon. Not. Roy. Astron. Soc. 371, 1311

(2006).

[28] M. L. E. Rieutord, Astrophys. J. 550, 443 (2001).

[29] P. Jaikumar, G. Rupak, and A. W. Steiner, Phys. Rev. D78, 123007 (2008).

[30] A. Drago, G. Pagliara, and I. Parenti, Astrophys. J. 678, L117 (2008).

[31] D. Chatterjee and D. Bandyopadhyay, Phys. Rev. D74, 023003 (2006).

[32] J. Madsen, Phys. Rev. Lett. 85, 4687 (2000).

[33] J. Madsen, Phys. Rev. D46, 3290 (1992).

[34] H. C. Spruit, (1998).

[35] V. C. A. Ferraro, Astrophys. J. 119, 407 (1954).

[36] H. C. Spruit, AIP Conf. Proc. 983, 391 (2008).

[37] W. Kluzniak and M. Ruderman, Astrophys. J. 505, L113 (1997).

[38] A. Corsi and P. Meszaros, Astrophys. J. 702, 1171 (2009), 0907.2290.

[39] Y.-H. Fan and D. Xu, Mon. Not. Roy. Astron. Soc. 372, L19 (2006).

[40] K. Toma, K. Ioka, T. Sakamoto, and T. Nakamura, Astrophys. J. 659, 1420

(2007).



64 Bibliography

[41] D. Galloway, Accreting neutron star spins and the equation of state, in

40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, edited by

C. Bassa, Z. Wang, A. Cumming, & V. M. Kaspi, , American Institute of

Physics Conference Series Vol. 983, pp. 510–518, 2008.

[42] H. C. Spruit, Astron. Astrophys. 349, 189 (1999).

[43] H. C. Spruit, Astron. Astrophys. 381, 923 (2002).

[44] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, New York, USA: Springer

(2007) 619 p.

[45] J. Braithwaite, Astron. Astrophys. 449, 451 (2006).

[46] A. Reisenegger, (2008).

[47] J. Braithwaite and H. C. Spruit, Astron. Astrophys. 450, 1097 (2006).

[48] J. Braithwaite and H. C. Spruit, Nature. 431, 819 (2004).
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