
   

 Università degli Studi di Ferrara
 

 

DOTTORATO DI RICERCA IN  

SCIENZE DELL’ INGEGNERIA 
 

CICLO XXVI 

 

 

 

COORDINATORE Prof. Trillo 

 

 

 

 

 

 

 
 

Shear strengthening of RC beams using the  

Embedded Through-Section Technique 
 

 

 

 

Settore Scientifico Disciplinare ICAR/09 

 

 

 

 

 

 

 

 

 

 

 Dottorando  Tutore 

 Dott. Breveglieri Matteo  Prof. Aprile Alessandra 

 

_______________________________ _____________________________ 
   

 

 

                                                                                  Tutore 

Prof. Barros Joaquim António Oliveira 

 

 _____________________________ 
   

 

 

 

 

Anni 2010/2014 



	
  



iii 
 

 

ACKNOWLEDGEMENTS 

 

 

I would like to express my gratitude to Professor Alessandra Aprile for having given me the possibility 

to perform this research and to work in an international background, for supporting my work in several 

occasions, and motivating me to reach this final result. 

I would like to express my gratitude to Professor Joaquim Barros for having accepted the supervision of 

this doctoral thesis, for his important contribution in the development of this research project and for the 

passion for research he is able to transmit. 

I would like acknowledge Ing. Sergio Tralli, Ing. Roberto Lovisetto (Elletipi S.r.l. – Ferrara, Italy) for 

supporting the experimental program, Ing. Marcello Bolognesi, Prof.Alberto Pellegrinelli, Prof. Paolo 

Russo from the ENDIF Geomatic Group (University of Ferrara, Italy) for monitoring the experimental 

program, Ing. Giuseppe Cersosimo (Interbau S.r.l. – Milano, Italy) for applying the ETS strengthening, 

BASF company Italy for providing the CFRP rods and the Engineering Department of the University of 

Ferrara for the financial support. 

I would also like to express my gratitude to the persons, that I met during my doctoral studies. I would 

like to thank my parents and my sister for their unconditional support. 

  



iv 
 

 

The work reported in the present thesis was carried out at the Department Engineering of University 

Ferrara, Italy, and at the Civil Engineering Department of the University of Minho, Portugal, in 

accordance with the agreement for a joint research doctoral thesis approved by the University of Minho 

on February 2nd, 2014 and by the Academic Senate of the University of Ferrara on April 16th, 2014.  

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

 

Doctoral degree in Science of Engineering by the University of Ferrara 

Doctoral degree in Civil Engineering by the University of Minho 

 

 

 

 

THIS THESIS HAS BEEN EVALUATED BY THE FOLLOWING BOARD OF EXAMINERS 

 

Prof. Dr. Aprile Alessandra 

ENDIF, Department of Engineering, University of Ferrara, Italy 

Prof. Dr. Joaquim Antonio Oliveira de Barros 

ISISE, Department of Civil Engineering, University of Minho, Portugal  

Prof. Dr. Guido Camata 

 Department of Engineering and Geology, University “D'Annunzio" of Chieti-Pescara, Italy 

Prof. Dr. Thanasis Triantafillou  

Department of Civil Engineering, University of Patras, Greece 

 

THIS THESIS WAS PRESENTED AND DEFENDED 

BEFORE A BOARD OF EXAMINERS AND PUBLIC 

 

09 APRIL 2015 

AT UNIVERSITY OF FERRARA 

 

Reading Committee for the additional qualification of “Doctor Europeaus”:  

Prof. Dr. Antony Darby 

Department of Architecture and Civil Engineering at the University of Bath, UK 

Prof. Dr. Thanasis Triantafillou  

Department of Civil Engineering, University of Patras, Greece 

  



v 
 

ABSTRACT 

A new shear strengthening technique, designated as Embedded Through-Section (ETS), has been 

developed to retrofit existing reinforced concrete (RC) elements. This technique calls for holes to be 

drilled through the beam section; then bars of steel or FRP materials are introduced into these holes and 

bonded with adhesives to the surrounding concrete. When concrete cover has not the bond and strength 

requisites to guarantee a strengthening effectiveness for the Externally Bonded and Near Surface 

Mounted techniques, ETS strategy can be a competitive alternative since it mobilizes the beam’s concrete 

core which is, generally, free of damage. To explore the potentialities of the ETS technique for the shear 

strengthening of RC beams, an experimental program was carried out, composed of RC T-cross section 

beams strengthened in shear by using steel bars and ETS CFRP rods. The research was focused on the 

evaluation of the ETS efficiency on beams with different percentage of existing internal transverse 

reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%) and on the study of the interaction effect between 

ETS bars and existing steel stirrups. The influence of the inclination and shear strengthening ratio of ETS 

configurations on the shear strengthening efficiency was also evaluated. The good bond between the 

strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars 

and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase in shear 

capacity (up to 136%). The attained level of shear capacity was strongly influenced by the inclination of 

the ETS bars and the percentage of internal transverse: inclined ETS bars provided higher increase of 

shear resistance than vertical ones. 

The predictive performance of two analytical models to calculate the ETS strengthening contribution was 

assessed by using the experimental results. The first model follows an empirical approach (experimental-

based approach), while the second model takes into account the physical and mechanical principles of 

the technique (mechanical-based approach).  

The predictive performance of a numerical model is evaluated simulating the tested beams strengthened 

with ETS technique. The strategy to simulate the crack shear stress transfer in a fixed smeared crack 

based finite elements program is crucial to correctly predict the deformational and cracking behavior of 

RC elements that exhibit shear failure. An alternative strategy to shear retention function is presented in 

this work, based on the adoption of a bilinear softening diagram  cr cr
t t   for modeling the sliding 

component of the crack constitutive law. The parameters influencing the 
cr cr

t t   diagram are 

individually investigated and analyzed as a function of the mechanical and geometrical properties of the 

tested beams. A simple rule to estimate the values of the 
cr cr

t t   diagram is provided and its predictive 

performance is assessed. 
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SINTESI 

La tecnica Embedded Through-Section (ETS) è una nuova tecnica di rinforzo sviluppata per aumentare 

la resistenza a taglio di strutture esistenti in cemento armato. Questa tecnica consiste nel praticare fori 

all’interno della sezione dell’elemento da rinforzare, in cui vengono inserite barre di acciaio o FRP,  rese 

successivamente solidali al calcestruzzo circostante per mezzo di un materiale adesivo. Nel caso in cui la 

superficie esterna della sezione non sia in grado di fornire aderenza e resistenza sufficiente per garantire 

l’efficienza delle tecniche Externally Bonded Reinforcement (EBR) e Near Surface Mounted (NSM), la 

tecnica ETS può essere una valida alterativa, infatti quest’ ultima mobilita la resistenza del calcestruzzo 

nell’anima della trave che è in generale priva di danneggiamento. Un programma sperimentale composto 

da travi di sezione a T in c.a. rinforzate con barre di acciaio e CFRP è stato condotto al fine di esplorare 

le potenzialità della tecnica ETS per il rinforzo a taglio. La ricerca è focalizzata sullo studio dell'efficienza 

della tecnica ETS in travi con diversa percentuale di armatura trasversale interna  (ρsw = 0,0%, ρsw = 0,1% 

e ρsw = 0,17%), al fine di esaminare l'interazione tra le barre applicate secondo la tecnica ETS e staffe 

esistenti in acciaio. Gli altri parametri analizzati nel programma sperimentale sono il materiale, la 

percentuale e inclinazione del rinforzo. La buona aderenza tra le barre ETS e il calcestruzzo circostante 

ha permesso il raggiungimento della tensione di snervamento nelle barre di acciaio e di alti valori di 

tensioni di trazione nelle barre in CFPR, con conseguente notevole aumento della capacità di resistenza 

taglio (fino a 136%).  Il livello di efficienza è stato fortemente influenzato dall'inclinazione delle barre 

ETS e dalla percentuale di rinforzo trasversale interno. Le barre inclinate hanno fornito maggiore 

incremento di resistenza al taglio di quelli verticali. 

I risultati sperimentali sono stati utilizzati per valutare l’accuratezza due modelli analitici per calcolare il 

contributo a taglio fornito dal rinforzo ETS. Il primo modello è basato su un approccio empirico 

(approccio experimental-based), mentre il secondo modello si basa su principi fisici e meccanici che 

governano la trasmissione degli sforzi tra rinforzo e calcestruzzo nella tecnica ETS (approccio 

mechanical-based). 

Il comportamento delle travi rinforzate tramite la tecnica ETS è stato simulato utilizzando programma ad 

elementi finiti al fine di valutare le prestazioni del modello costitutivo implementato per simulare l’azione 

tagliante. L’approccio per simulare questa azione in modelli basati sul “fixed smeared crack model” è  

fondamentale per stimare correttamente la relazione carico spostamento  e stato fessurativo di elementi 

in c.a. che presentano rottura a taglio. Il tradizionale approccio basato sullo “shear retention factor” è 

stato sostituito da un’ approccio alternativo che si basa su un diagramma sforzo di taglio-deformazione a 

taglio,
cr cr

t t  , per la modellazione della energia di frattura a taglio. I parametri che influenzano il 

diagramma sono analizzati individualmente e in funzione delle proprietà meccaniche e geometriche delle 

travi. Una semplice regola per stimare tali valori del diagramma, 
cr cr

t t  ,  è stata fornita e le sue 

prestazioni sono state valutate. 
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,1
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tD  = crack shear modulus of the first linear softening branch = 
cr

IID  

,2

cr

tD  = Crack shear modulus of the second linear softening branch 

,3 4
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tD 
 = crack shear modulus of the unloading and reloading branches 

EC = embedded cable ( type of finite element) 

cE  = concrete Young’s modulus 
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1 
Introduction  

 

 

1.1   Background and motivation    

Strengthening and retrofitting of reinforced concrete (RC) structures are important topics for civil 

engineering, since their implication has historical, social and economic relevance nowadays. The need 

to preserve the built heritage does not regard exclusively the masonry buildings belonging to the 

historical heritage, but also includes an increasing number of relatively new reinforced concrete 

structures, most of them built after the Second World War. The “list” comprises a large number of 

strategic, public and residential buildings and infrastructures, which represent the biggest part of the 

reinforced concrete building stock. There is the need to strengthen the existing reinforced concrete 

structures such as bridges and buildings in order to meet the changing social needs, the design 

standard’s upgrade, the safety requirement’s increase and, finally, the deterioration of materials. 

The number of new constructions is progressively reducing and the number of strengthening 

interventions in civil construction is significantly increasing, indicating this field as a possible 

expansion of the construction market. Part of the European reinforced concrete buildings stock is 

obsolete and structurally inadequate with respect to modern building regulations. The problem of 

obsolete buildings particularly involves a large part of South Europe, where the seismic hazard is 

considerable (Portugal, Spain, Italy and Greece).  

The main problem related to existing RC structures, besides their inadequacy to the new design code, is 

the lack of structural ductility. In fact, brittle structural behavior can lead to collapse of the structure in 

extreme situations. The shear resistance of RC elements is an important aspect to assure adequate 

structural ductility and avoid brittle and unpredictable failures. Unlike the updated codes, which provide 

a high percentage of transverse steel reinforcement, the old codes did not include strict rules on 

construction details aiming to increase ductility. As a consequence, one of the main tasks in upgrading 
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the existing structures that require strengthening interventions is to increase the shear resistance of the 

beams, columns and joints. 

The shear strengthening requires special attention since, unlike the bending strengthening, a unified 

approach for the calculation of the shear strength of RC elements does not exist. Shear behavior and 

shear strengthening are challenging topics that have been faced by a considerable number of researchers 

in the last decades. A large number of beams with and without strengthening systems have been tested, 

and several analytical formulations have been proposed. Traditional strengthening techniques, such as 

concrete and steel jacketing or steel plating, have been replaced by innovative techniques based on the 

use of non-conventional materials for constructions that are presented in Chapter 2. Among these 

techniques, the shear strengthening using Fiber Reinforced Polymers (FRP) materials has received a 

considerable attention of the research community dedicated to the structural upgrade, and significant 

advances have been obtained. The benefits from using composite materials in this context are derived 

from their following attributes: high strength, lightness, immunity to corrosion, ease of application. 

However, also disadvantages are well known that mainly regards the	
  vulnerability to acts of vandalism, 

and the loss of efficiency in case of fire. One of the main drawbacks that limits the efficiency of the 

FRP strengthening system is related to the premature debonding; in this case, the composite material 

fails well below its ultimate strain. This means that the high potentialities of the FRP are, in general, not 

fully exploited.  

The Externally Bonded Reinforced (EBR) and the Near Surface Mounted (NSM are the main FRP-

based strengthening techniques that have been proposed for the upgrading of RC structures.  In the 

NSM technique the FRP is installed into narrow slits open in the concrete cover, while in the EBR 

technique the FRP is simply bonded to the external surface of the element to be strengthened. The NSM 

has been demonstrated to be more effective than the EBR technique since a larger bond strength can be 

mobilized, due to the higher confinement provided to the FRP by the surrounding concrete. 

An alternative approach for the shear strengthening of RC beams, denominated Embedded Through-

Section (ETS) technique, was recently proposed. This technique consists of opening holes across the 

depth of the beam’s cross-section, with the desired inclinations, introducing bars into these holes and 

bonding them to the concrete substrate with adhesives. By using this technique, the bond performance 

between the strengthening system and the surrounding concrete is improved with respect to the previous 

FRP-based strengthening techniques, since the strengthening element is deeply embedded in the 

concrete cross section. The strengthening bars can be made of composite material as well as of steel; the 

first experimental tests showed that a significant increase of shear strength can be obtained with both of 

them. Due to high effectiveness of this strengthening technique, the tested beams failed mainly in 

bending, which made impossible to determine the shear strength contribution provided by the adopted 
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ETS systems. A further advantage of the ETS is the protection provided by the surrounding concrete to 

the embedded bars against vandalism acts and ageing effects; in case of ETS steel bar, the corrosion is 

avoided by providing a small layer of covering material at its extremities. 

 

1.2 Scope and Aim of the Thesis 

The purpose of the research work presented in this thesis is to increase the existing knowledge on the 

structural behavior of RC members strengthened in shear using the ETS technique. For this purposes an 

experimental program was carried out aiming to analyze and discuss the aspects related to the ETS 

strengthening effectiveness, mobilized strengthening mechanisms and the types of failures of the ETS 

system. This work aims also to contribute to a deep understanding on the mutual interaction between 

the existing steel stirrups and the ETS strengthening, as well as the influence of percentage and 

inclination of the ETS bars, in the context of shear capacity of RC beams. The shear strengthening 

effectiveness of different ETS bar material is also investigated. New data are provided by the 

experimental programs carried out that can be used in the establishment of new design guidelines on the 

shear strengthening of RC beams using the ETS technique, or to improve those already present in 

literature. 

Another goal of the present work is to develop a simple analytical model for the calculation of the shear 

resistance contribution provided by steel ETS bars, since a limited research has been dedicated to this 

topic, and most of the available approaches consist of extremely simplified models based on the 

existing guidelines for EBR or NSM FRP-based strengthening techniques. 

In the context of finite element formulations, the present work also aims to investigate the potentialities 

of a constitutive model that adopts a shear softening stress-shear strain diagram for modelling the crack 

shear stress transfer in the framework of modeling the behavior of RC elements that fail in shear. The 

adopted constitutive model has exhibited a good capacity for predicting the relevant behavioral aspects 

of RC beams failing in shear, even those shear strengthened with EBR and NSM FRP-based systems, so 

its applicability to the ETS technique is explored in the present work.  For this purpose, the parameters 

that define this crack shear softening diagram are deeply investigated and discussed by comparing the 

results obtained experimentally and numerically, in order to contribute for the establishment of possible 

criteria for the selection of these parameters. 

It is expected that this thesis is of interest to structural engineers, composite material suppliers and 

testing institutions, as well as standardization organizations and technical committees with the charge of 

developing design codes in the areas of the strengthening of RC structures. 
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1.3   Thesis Structure 

The thesis is divided into six chapters.  

In Chapter 1, the principal aim of this research work and an overview of the thesis are presented. 

Chapter 2 gives fundamental background to understanding the shear mechanism in reinforced concrete 

beams. Thereafter literature review on shear strengthening techniques is presented. The main section is 

dedicated to FRP shear strengthening. In the last section, the previous experimental programs on 

reinforced concrete beams strengthened using the ETS technique are presented.  

In Chapter 3, the experimental program is outlined: specimens, materials and test set-up are described. 

The obtained results of the test carried out on T-cross section RC beams strengthened using the 

Embedded Through-Section technique are presented and analyzed in terms of their structural behavior, 

failure modes and strengthening effectiveness. The influence of the investigated parameter is discussed. 

The contents of this chapter were published in the following ISI Journals: 

- Breveglieri M, Aprile A, Barros J.A.O, 2014. Shear strengthening of reinforced concrete beams 

strengthened using embedded through section steel bars. Engineering Structures 2014;81:76–87. 

- Breveglieri M, Aprile A, Barros J,A,O., 2015. Embedded Through-Section shear strengthening 

technique using steel and CFRP bars In RC beams of different percentage of existing stirrups. 

Composite Structure 2015; 126; 101-113. 

Chapter 4 presents two analytical models to estimate the steel ETS system by contribution. The first 

model follows an empirical approach and is denominated “Empirical-based” model. Similarly, the 

second model follows a mechanical approach and is denominated “physic-mechanical “model. The 

content of this chapter was submitted for publication was submitted for publication to a ISI Journal with 

the following title: 

- RC concrete beams strengthened in shear using the Embedded Through-Section technique: 

experimental results and analytical formulation. Authors: Breveglieri M, Aprile A, Barros J,A,O. 

Chapter 5 deals with the numerical simulation of the tested beams, presenting and discussing the 

assessment of the shear softening diagram to simulate RC beams failing in shear. A parametric study 

has been performed to have a better understanding on the implemented constitutive model. Using the 

aforementioned numerical simulation, a simple rule to estimate the shear softening diagram’s 

parameters has been proposed. The content of this chapter was submitted for publication to a ISI 

Journal with the following title: 
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- Assessment of a shear - softening FEM-based model for the analysis of RC beams strengthened in 
shear using the ETS technique. Authors: Breveglieri M, Barros J,A,O, Aprile A..,	
  Ventura-Gouveia 
A. 

Chapter 6 provides the major concluding remarks and findings of the conducted research program, 

together with suggestions for future research.  

Finally, a complementary section with annexes is also presented. Annex C present the result of a 

preliminary numerical work developed to simulate the tests performed on ETS strengthened beams by 

Barros and Dalfré (2012). The obtained results have been published in the conference proceedings 

FraMCoS-8 Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain, with the 

following title 

- Model to simulate the behavior of RC beams shear strengthened with ETS bars. Authors: Barros 

JAO, Breveglieri M, Ventura-Gouveia A, Dalfré GM, Aprile A. (2013). 
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2 
Literature Review  
 

 

2.1   Introduction   

This chapter provides a general look on shear in reinforced concrete structures, paying special attention 

to the shear strengthening of RC elements. The first part of this chapter is dedicated to the 

understanding of the fundamental concept of shear and shear mechanisms in concrete structures; 

furthermore, the main parameters influencing the shear resistance are presented. A brief overview of the 

main theoretical models and the codes formulation to estimate the shear resistance of RC beams is 

presented. The second part of the chapter deals with the shear strengthening of RC structures by using 

non-conventional techniques. In order to avoid the occurrence of shear failures several alternative 

techniques have been proposed by researchers in the last decades. The previous research has focused on 

the use of Fiber Reinforced Polymers (FRP) material, but, also alternative techniques have been 

investigated and developed. Those techniques are shortly presented in this section giving particular 

attention to the Externally Bonded Reinforcement (EBR), Near Surface Mounted (NSM) and 

Embedded Through-Section (ETS) FRP-based techniques. Previous experimental programs on the ETS 

technique are summarized here, since the behavior of RC concrete beams using this latter technique is 

the object of the present research. Existing guidelines formulation for the estimation of the shear 

contribution of the FRP system are discussed. Finally, a short section is dedicated to the bond behavior 

of steel and composites bar cast-in place and post-installed into concrete. 

2.2   Fundamental concepts of shear 

The shear resistance and behavior of RC elements is a complicated problem due to the high number of 

parameters that can affect the shear resistance. The understanding of the behavior of reinforced concrete 

elements under shear load and the mechanisms governing the shear stress transfers have involved a 

large number of researchers and is still a vivid topic in the international research community. In the 

beginning of the XX century Hennebique (Ritter 1899) presented and patented a construction method to 
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increase the shear resistance of RC beams, this method consisted of introducing steel strips similar to 

the current stirrups in the concrete. Simple models were right away developed by Ritter (1899) and 

Mörsch that in his textbook: Der Eisenbetonbau, seine Theorie und Anwendung (1908), demonstrates 

that a reinforced concrete beam can be treated as a simple or multiple truss system where the 

compressive forces are carried out by diagonal struts and the tensile stresses by stirrups or bent-up bars. 

From the beginning of the XX century, although the “truss concept” proposed by Mörsch still supports 

most of the design approaches, a huge progress has been made in understanding the concepts on which 

shear transfer mechanisms and resistance of RC structures are based; the parameters influencing the 

shear resistance are nowadays clear and several models to take into account these parameters have been 

developed. Nevertheless, there is a lack of a unified theory for the calculation of the shear force 

resistance of RC concrete elements. 

2.2.1 Concept of shear stress 

The state of stress in cracked reinforced concrete member differs considerably from what is predicted 

by the theory of linear elasticity and the actual distribution of shear stresses over the cross section is not 

fully clarified. In case of un-cracked concrete, the shear stresses can be calculated from the equilibrium 

equation (Fig.2.1a) following Jourawsky’s formulation, where in case of rectangular beam (beam’s 

width, wb ) the shear stress, τ, describes a parabolic curve along the section’s axis. The shear stress along 

the beams height of a homogeneous, isotropic un-cracked beam, τ, can be derived from considerations 

of internal equilibrium of flexural stresses with the following equation: 

( )
( )y

w

VS y
b I

τ =  (2.1) 

Where S(y) and I are the first and the second moment of area of the section respectively. The shear 

stress so generated can be combined with the flexural stress parallel to the beam’s axis. In absence of 

cracking, the stress field is represented by a set of diagonal compressive and tensile stresses, inclined at 

an angle ϕ  with respect to the longitudinal axis. By considering the equilibrium of an infinitesimal 

element, the magnitude, 1σ , 2σ and the inclination ϕ   of the principal stresses, resulting from the 

simultaneous application of a tensile stress σ  and a shear stress illustrated τ in Fig. 2.1c can be 

obtained as follows:  

2 2
1 4
2
σ

σ σ τ= + + Principal tension 2 2
2 4

2
σ

σ σ τ= − + Principal compression (2.2) 
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The inclination of the tensile stress with respect to the beams’ axis is found using the Mohr-Coulomb 

circle 

2
tan 2

τ
ϕ
σ
=  or

1

tan
τ

ϕ
σ
=  (2.3) 

The  inclination  of  the  principal  stresses  is  illustrated  for  the  case  of  a  uniformly  loaded  simply 

supported  rectangular  beam  in  Fig. 2.1c.  The  stress trajectories  intersect  the  neutral  axis  at  45°. 

Concrete  can  withstand the pure  shear  stress  well; problems  arise  at  the  formation  of  shear  crack, 

caused  by  the  attainment  of  the  concrete  tensile  strength,  in fact, when  the  principal tensile  stress 

become higher than the tensile stress of the concrete, a crack will form perpendicular to the direction of 

principal  tensile  stress.  These  cracks  are  generically called  diagonal  or  shear  cracks. In  real practice, 

there  is  little  interest  in  the  shear  cracking  resistance  of  an un-cracked  section  of  ordinary  reinforced 

concrete, which is important in prestressed members (uncovered in this work) and member subjected to 

high axial compression. For ordinary reinforced concrete, there is bigger interest in the shear cracking 

resistance of a cracked section.  

The  concept  of  shear stress was  extended to  the  idealized  section  of  a  cracked  reinforced  concrete 

beams,  as  shown  in Fig.  2.1b, the  horizontal  force  to  be transferred across  the  cracked  zone  remains 

constant, as well as the shear stress τ (Park and Paulay 1975). It is assumed that the concrete below the 

neutral axis is in a state of constant pure shear. From the concepts presented in Fig.2.1a, the incremental 

tension force is wdT b dxτ= , it is possible to obtain the value of τ as indicated in Eq. (2.4): 

 

  
(a) (b) (c) 

Fig  2.1 Trajectories  of  principal  stresses  in  a  homogeneous  isotropic  beam.  Shear  force,  shear  stresses  in  a 
homogeneous isotropic beam (a) assumed shear stress in cracked beam. 

In  a  region  of  large  bending  moments,  the  stresses  are  greatest  at  the  extreme  tensile  fiber  of  the 

member and are responsible for the initiation of flexural cracks perpendicular to the axis of the member. 

In the region of high shear force, principal tensile stress generate inclined cracks at approximately 45° 

1 1

w w w

dT dM V

b dx dx b jd b jd
τ= =  =  (2.4) 
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to the axis of the member. Under this hypothesis, Eq. (2.4) has been used as a measure of the shear 

stress in the cracked tension zone of a reinforced concrete beam, regardless of the presence of flexural 

cracks, and is still used in many countries as a convenient index to measure shear intensity. However 

Eq. (2.4) cannot be considered as giving a shear stress at any particular locality in a cracked reinforced 

concrete beam. This stress called for many years as “nominal stress” has also been considered in the 

design to evaluate the ultimate load carrying capacity, a reinforced member with no shear 

reinforcement, assuming that the diagonal crack is governing the failure. ACI guidelines (ACI-318-08) 

for example adopted an index of shear intensity based on an average stress on the full effective cross 

section (omitting the reduction of the internal level arm 0.9d) as: 

w

V
b d

τ =  (2.5) 

2.2.2   Mechanisms of Shear resistance 

Shear transfers action and resisting mechanisms in concrete beams are influenced by many parameters 

which are difficult to clearly identify in fact, a complex stress redistribution occurs after cracking, that 

makes it impossible to determine which of the resisting mechanism will contribute the most. The 1973 

ASCE-ACI Committee 426 (1973) report identified the following four mechanisms of shear transfer: 1) 

shear stresses in un-cracked concrete-flexural compression zone, 2) interface shear transfer, 3) dowel 

action of the longitudinal reinforcing bars simulates the dowel effect, 4) arch action and 5) residual 

tensile stresses transmitted directly across cracks (mechanism identified after the report release) (See 

Fig.2.2). 

  
Fig. 2.2Shear Mechanisms/Actions Contributing to 
Shear Resistance 

Fig. 2.3Comparison of Walravens’ experimental 
results and prediction for crack interface-shear 
transfers (Walraven 1981) 

Researchers have in general assigned different importance to each of these mechanisms, resulting in 

different models, mainly for members without shear reinforcement. In fact in beams with the presence 
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of stirrups each of these mechanisms is participating but its contribution on the total shear resistance is 

usually smaller, since the truss action is activated by the steel reinforcement. 

Shear in the un-cracked concrete and flexural compression zone 

In the un-cracked regions of a member, the shear force is transferred by inclined principal tensile and 

compressive stresses, as visualized by the principal stress-trajectories in Fig. 2.1c. In a cracked sections, 

this state of stress is still valid in the un-cracked compression zone, which contributes to the shear 

resistance. The magnitude of the shear resistance is limited by the depth of the compression zone since 

the integration of the shear stresses over the depth of the compression zone gives the shear force 

component. Fenwick and Paulay (1968) suggested that shear resistance carried by the compression zone 

is about 25% of the total shear strength. This contribution has been in general assumed proportional to 

the concrete strength class. In a slender member without axial compression, the shear force in the 

compression zone does not contribute significantly to the shear capacity because the depth of the 

compression zone is relatively small (Taylor 1974; Reineck 1991b). 

Interface shear transfers 

The interface shear transfer mechanism is based on early works by Fenwick and Paulay (1968), 

Mattock and Hawkins (1972), and Taylor (1974). The physical explanation relies in the local roughness 

in the crack plane that provides resistance against slip and allows the shear transfers along the crack. 

This mechanism was usually referred as “aggregate interlock”, since in a normal concrete class strength 

the cracks opens in the concrete matrix, enclosing the aggregates, resulting in a highly irregular surface 

of the crack which provides surface resistance against slip. However, it seems more appropriate to use 

the terminology as “shear transfers” of “friction”, since this action was observed even if cracks 

propagation occurs through the aggregate as it does in high strength concrete where the matrix is of 

similar strength to the aggregates. Dedicated research on this mechanism have evidenced the influence 

of four parameters: crack interface shear stress, normal stress, crack width, and crack slip. Walraven 

(1981) developed a model which was able to describe the relationship between the stress and shear 

displacement at different crack opening Fig. 2.3, this work also assessed the influence of the 

compressive strength and the aggregate size (normal compressive strength were considered). Other 

relationships have been proposed based on Walraven’s experimental data (Kupfer et al. 1983; Vecchio 

and Collins 1986) although large differences may still occur between the constitutive laws of different 

researchers. This mechanism is now well known and is widely accepted as an important shear-transfer 

mechanism. The important role of interface shear transfer in the redistribution of diagonal compression 

fields in beams with stirrups was investigated by Collins 1978; Kupfer et al. 1983; Dei Poli et al. 1990. 



Chapter 2 
	
  
	
  

	
  
12	
  

	
  

The ability of diagonal cracks to transfer shear, explicitly controls the capacity of members without 

stirrups, otherwise, in presence of stirrups, these offer resistance to crack opening by bridging the crack 

and improving the interface shear transfer.  

 

Dowel action  

The works by Baumann and Rüsch (1970) Vintzeleou and Tassios (1986) and Chana (1987) has 

analyzed the dowel action of longitudinal reinforcement, showing that, when macro cracks forms across 

longitudinal bars, a resisting action due to the vertical force induced by the sliding between the surfaces 

of the crack, is provided by the steel longitudinal bars. The dowel action is mostly influenced by the 

geometry of the concrete elements, since, it depends on the amount of concrete cover beneath the 

longitudinal bar and by the concrete tensile strength, which has in general a small influence. Normally, 

the dowel action is not very significant in members without transverse reinforcement because the 

maximum shear in a dowel is limited by the tensile strength of the concrete cover supporting the dowel. 

Otherwise, this action may be significant in the presence of stirrups since the "dowel action" stiffness of 

the longitudinal bars is increased by the constrained action offered by the stirrups. Dowel action may be 

significant in members with large amounts of longitudinal reinforcement, particularly when the 

longitudinal reinforcement is distributed in more than one layer. 

 
Arch action  

The shear resistance of a concrete member can be divided into two separate “actions” (Park and Paulay 

1975), by decomposing the rate of change of bending moment along the beam in two contributes. The 

first contribute indicates the change of internal tensile force along the longitudinal reinforcement to 

balance the external moment. This is called beam action, and describes the behavior of slender 

unreinforced beams which are characterized by a tension zone that divide concrete into blocks. The 

mechanical model can be figured as “concrete cantilever” supported at the beams’ top and loaded by the 

horizontal shear from longitudinal bonded reinforcement (Fig. 2.4a). Regarding beam action, the 

physical models describing this action can be classified further into tooth models (Kani 1964), in which 

the resisting action is provided by the bending of the tooth, due to the variation of the tensile force in 

the longitudinal reinforcement. The second contribution that originates is the arch action Fenwick and 

Paulay (1968), which is characterized by the change of the internal lever arm (location of longitudinal 

compression stress resultant in concrete) changes, to balance the moment. The arch action implies, that 

shear can be sustained by inclined compression in the beam by forming an arch in which the tensile 

horizontal reaction is provided by the flexural reinforcement in case of simply supported beams (Fig. 

2.4b). Due to the high horizontal reaction, the arch action can only occur if an adequate anchorage of 
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the longitudinal reinforcement is provided. This action characterizes the failure of beams with a relative 

small shear span to depth ration (a/d) (Section 2.4). In this case, the most used method to analyze the 

arch action is the adoption of a strut and tie model. 

Residual tensile stresses across cracks 

In cracked concrete, residual tensile stresses after the formation of the first crack can be transmitted 

directly across the crack. Small pieces of concrete bridge the crack and continue to transmit tensile 

force up to crack widths in the range of 0.05 to 0.15 mm. The concept of the residual tensile stress can 

be compared with the softening branch after the peak tensile stress is reached, typical of the constitutive 

model describing the behavior concrete in tensions (fib 2013). The deformations are localized in a very 

small region (the fracture zone); therefore, the response should be expressed in this case in terms of a 

stress-crack opening relationship and not strain. Fig.2.5 (Gopalaratnam and Shah 1985) shows a typical 

response of concrete loaded in tension. Due to the presence of these tensile stresses, the cracked 

concrete, in the vicinity of the tips of inclined and flexural cracks can also carry shear stresses that add 

to the shear capacity of the concrete. 

 
a) 

 
b) 

 
 

 

Fig. 2.4 Kani’s tooth model for slender beam 
without shear reinforcement (a), Arch action (b) 

Fig. 2.5 Response of a plain concrete loaded in uniaxial 
tension (Gopalaratnam and Shah 1985) 

Reineck (1991a) indicates that the residual tensile stresses provide a significant portion of the shear 

resistance of very shallow members (that is, depths less than about 100 mm), in that case, the crack 

opening is small, and the resistance provided by the residual tensile stresses is significant. However, in 

a large member, the contribution of crack tip tensile stresses to shear resistance is less significant due to 

the large crack widths that occur before failure in such members.     
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Shear reinforcement 

In members with shear reinforcement, the largest portion of the shear forces is in general carried by the 

shear reinforcement after diagonal cracks are formed. The presence of the transversal reinforcement 

allows the formation of the “truss action” in which this carries out the tensile stresses after formation of 

cracks. Shear reinforcement so, provides a higher interface shear transfers, providing a certain level of 

restraint against the growth of inclined cracks by bridging the crack. The presence of stirrups also 

ensure a more ductile behavior. Finally, shear reinforcement provides dowelling resistance to shear 

displacements along the inclined crack. For these reasons, the presence of shear reinforcement changes 

the relative contributions of the different shear resisting mechanisms. Depending on the amount of the 

transverse reinforcement more inclined crack may develop until the stirrups yield. After the yielding of 

the stirrups, the load may also increase due to flatter inclined struts crossing the cracks. This latter 

mechanism is possible due to the interface shear of friction along the crack faces. The minimum amount 

of shear reinforcement required to affect such changes is of fundamental importance, this is taken as a 

function of the concrete strength in most major design codes.  

2.2.3 Parameters influencing shear Capacity and Shear Failure 

Depth of member or size effect 

The findings on small scale test beams were also applied to big reinforced concrete beams up to 1965, 

when several US Air Force warehouse beams collapsed under a shear force that was less than one half 

of the ACI code prediction. After investigation it was found that it was it was possible to explain the 

results in terms of size effect. Kani (1967) demonstrates that there is a significant size effect for which 

the shear strength of beams without shear reinforcement decrease, as the effective depth increase. 

Shioya et al. (1989) extended the available data to beam depths of 3000 mm, confirming Kani’s results. 

As shown in Fig. 2.6, the average shear stress to cause failure of the largest beam was about one-third 

the average shear stress to cause failure of the smallest beam. There is general agreement that the main 

reason for this size effect is the larger width of diagonal cracks in larger beams; however, there is 

disagreement on how best to model this phenomenon for which different formulas have been proposed 

as presented by Reineck 1991b. Bazant and Kim (1984) proposed a size-reduction factor based on 

nonlinear fracture mechanics and suggest that the large amount of energy that is released in the cracking 

of large members leads to the faster propagation of inclined cracks and lower shear failure stress. 

Others believe that the most important consequence of wider cracks is a reduced ability to transmit 

crack interface shear stresses, due to the larger cracks widths that occur in larger members. Tests have 

demonstrated that the size effect is not significant when beams without stirrups contain well distributed 

longitudinal reinforcement.  
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Fig. 2.6 Size effect in shear (Kuchma and Collins. 

1998) 

Fig. 2.7 “Kani’s shear valley” Influence of the shear-

span to depth ratio 

 
Shear Span to Depth Ratio 

Extensive research on the behavior of simply supported RC beams failing in shear evidence the 

influence of shear span to depth ratio (a/d). The shear span is the distance, a, between a support and a 

point of concentrated load. Kani (1964) conducted a large experimental study to assess the influence of 

the a/d ratio on the shear resistance of RC beams without shear reinforcement. The results are 

represented in the so-called “Kani’s Valley of Shear Failures” (Fig. 2.7), in this graph the beams have 

been classified into four types depending on their a/d ratio and depending on the failure that they 

exhibited. Beams with a/d ratios less than about 2.5 present in general high strength, because a 

significant portion of the shear may be transmitted directly to the support by an inclined strut. This 

mechanism is frequently referred to as arch action, for deep beams. The arch action is the dominant 

mechanism and failure occurs due to crushing or splitting of the concrete, which justifies the use of a 

strut-and-tie model, rather than a sectional design approach. In beams with a/d ratios between 2.5 and 7 

the arch effect is negligible since the arch mechanism is not capable of sustaining the cracking load, and 

the beam mechanisms commands. In beams without stirrups failure occurs as the diagonal cracking 

load is applied. It has been recognized that, as members become deep, the average stress at failure 

become progressively larger than in slender beams. Many empirical formulas for calculating shear 

strength include an a/d ratio to account for the influence of this parameter. The a/d relates the maximum 

moment and the maximum shear force for simple beams subject to point loads Mmax = Vmax× a and thus 

the moment to shear force ratio is Mmax/Vmax d = a/d. For distributed loading this term is also 

significant, as already pointed out by Kani (1964, 1967), and it gives Mmax /Vmax d = l / 4d, which means 
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that “a” is the distance to the resultant of the loads in one half of the span. Therefore, the a/d-ratio 

characterizes the slenderness of a simple beam and the value influences the relationships between the 

different shear transfer actions. 

 

 
 

 

Fig. 2.8 Increase in ultimate shear capacity 
(dimension less value) with increasing reinforcing 
ratio according to different proposals (Reineck 1991b) 

Fig. 2.9 Influence of axial load on shear strength of 
members without stirrups 

 
Longitudinal reinforcement 

The longitudinal reinforcement can affect the shear strength by bridging the cracks, in fact, for a 

constant amount of load, as the longitudinal reinforcement ratio decreases, flexural stresses and strains 

increase and the shear strength is lowered. The reduction in shear capacity can be explained by an 

increased crack width, resulting in lower interface shear transfer, correspondingly longer flexural cracks 

that reduce the size of the compression zone. Further, as the longitudinal reinforcement ratio decreases, 

dowel action decreases. It has also been reported that for members having longitudinal bars distributed 

over their height, crack spacing is smaller and that improves shear strength significantly (Collins and 

Kuchma, 1999). The design codes also usually require that additional longitudinal reinforcement be 

provided to resist the large tensile force due to shear in diagonally cracked members without stirrups. 

Fig. 2.8 compares the predicted influence of the quantity of longitudinal reinforcement from a number 

of empirical formulas. It was also observed that members with low amounts of longitudinal 

reinforcement may fail at very low shear stresses. The flexural capacity is also shown for different 

strengths of longitudinal reinforcement. 

 
Axial force 

When a RC element is subjected to that axial tension, its shear strength decreases, otherwise, if axial 

compression (for example, due to load or pre-stressing) is applied, the shear strength increases. Tensile 

forces make the crack angle steeper, and longitudinal reinforcement needs to be provided in both the 

top and bottom of the member. Members without shear reinforcement subjected to large axial 
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compression and shear, may fail in a very brittle manner at the instance of first diagonal cracking. As a 

result, a conservative approach should be used for such members. It is in fact not very well understood 

how much the shear capacity is influenced by the axial load and its influence on member’s ductility. 

Compressive forces on the other hand increase the depth of the compressed un-cracked compression 

zone, and decrease the shear crack width, resulting in a higher shear capacity. The effect of the axial 

force may be underestimated for member subjected to axial compression and shear as demonstrated by 

Gupta and Collins (1993) for the ACI 318 approach (Fig. 2.9). On the other hand, for members without 

shear reinforcement but containing appropriate longitudinal reinforcement, the ACI 318-08 procedure 

for members subjected to shear and tension can be very conservative. 

 

Concrete Strength 

The shear strength also increases with the increase of concrete strength. The concrete compressive 

strength in general, is used to estimate the tensile strength of the concrete, because, direct tensile tests 

are more difficult to perform and the results present in general a higher dispersion than the compression 

tests. The concrete contribution to shear is usually related to the formation of the shear diagonal 

cracking, and therefore dependent on the tensile strength of the concrete. The ACI 318-08 shear design 

approach in which the shear strength is taken as proportional to the square root of 'cf is also shown in 

the same Fig. 2.10. Other codes as the Eurocode 2 take this contribution portioned to 1 3'cf or 'cf 2 3'cf

depending on its version. The shear failure stresses of the beams tested by Moody et al. (1954) increase 

as the concrete compressive strength increases. ACI 318-08 is shown to provide a reasonable estimate 

of the influence of f’c for these beams which were small, heavily reinforced and cast with low-to-

medium-strength concrete. Similarly, the ACI provision is only slightly un-conservative for the 

moderately reinforced and mid-sized members that were tested by Yoon and Cook (1996). However, 

Collins and Kuchma (1999) Angelakos et al. (2001) did not find a similar increase in shear strength 

with concrete strength for their tests of larger, more lightly reinforced beams, and cast with high 

strength concretes with a small maximum aggregate size, as reported by Kuchma and Kim (2001) (Fig. 

2.10). The explanation offered by some researchers for why the shear stress at failure does not increase 

as greatly, or not at all, with increasing concrete compressive strength is that the smoother shear cracks 

in high-strength concrete members reduce the effectiveness of the interface shear transfer mechanism. 



Chapter 2 
	
  
	
  

	
  
18	
  

	
  

 

Fig. 2.10 Influence of concrete compressive strength on shear strength (from Kuchma and Kim 2001) 

 

Shear crack pattern and failure 

The development of the crack pattern is particularly relevant in case of shear behavior, in fact, for most 

members without shear reinforcement, the cracking formation is the cause of immediate failure. In case 

of beams with no transverse reinforcement the shear capacity is low due to the concrete inability to 

transmit tensile stress. In members with shear reinforcement, the formation of the shear crack do not 

compromise the shear strength, since stress redistribution and the formation of a “truss action” arise due 

to the presence of transversal reinforcement. The inclination of the cracks has the tendency to increase 

in highly reinforced beams. Depending on the amount of the transversal reinforcement, more inclined 

cracks may develop until the stirrups yield. After yielding of the stirrups, the load may increase due to 

interface shear transfers along the crack faces up to a stage where the crack width can no longer transfer 

shear stress and the beam fail. The presence of stirrups leads to a relative ductile failure in comparison 

to beams without shear reinforcement.  

Three types of inclined crack/failure are typical of reinforced concrete beams failing in shear: web-

shear cracks and flexure-shear cracks, web-crushing (Fig. 2.11).The web shear failure is common in 

small shear span ratio beams and beams with a narrow web of beams without shear reinforcement. In 

this case cracks are formed in sections of the beam’s web which are not influenced by flexural cracks. 

The crack width is relatively small compared to a flexural crack. The cracking process is characterized 

by the formation of crack initiation in the beam’s web and its propagation to the top and bottom of the 

beams. If shear reinforcement is introduced, diagonal cracks are initiated in a bending crack, initially 

developed in the tensile zone of the beam. This cracking process is called flexural-shear; the crack is 

usually larger in the tensile zone of the beam and decreases its width close to the compression area. In 

this case, the longitudinal reinforcement in tension is required to balance the longitudinal component of 

the diagonal compression, and the web reinforcement in tension is required to balance the transverse 
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component of the diagonal compression. Failure occurs after the stirrups have yielded. For large 

amounts of transverse reinforcement, the concrete in the inclined struts may fail, this “web-crushing” 

failure occurs when the concrete reaches its resistance in compression before the steel reinforcement 

reach the yield strain. This type of failure is characterized by an extremely brittle behavior and is very 

likely in thin webbed members such as I-beams. 

 

Fig. 2.11Typical cracks and failure modes 

 

2.3 Theories used to predict shear capacity 

An overview on the different theories used to predict the shear capacity of reinforced concrete beams 

are presented, focusing on models, developed to estimate the shear behavior of beams with shear 

reinforcement. Despite the variety of proposed methods, a unified approach for calculating the shear 

capacity has not yet been generally accepted. In this section are presented the theories on which most 

used design standards are based: truss model introduced by Ritter and Mӧrsch, the variable angle truss 

VAT with reference to the theory of the plasticity for RC introduced by Nielsen (1999). The more 

recent approaches recognized in international codes, as, for example the modified compression field 

approaches developed by Vecchio and Collins (1986) recently introduced in the Model Code 2010 (fib 

2013) are excluded from the discussion since these are conceptually distant to the work presented in this 

thesis. 

2.3.1 The 45° truss model 

The truss model to estimate the shear capacity of a cracked reinforced concrete beam under shear and 

bending loads after cracking was introduced by Ritter (1899) and developed by Mӧrsch in (1908). The 

model is based on simple equilibrium equations and considering the cracked beams as a truss where the 

compressive stressed in the beam’s web act as 45° inclined compressed struts and the stirrups are 

treated as vertical members; the longitudinal tension reinforcement and the flexural compressive zone 

of the beam act as the bottom and top chord of the truss, respectively. The main assumption of this 

simplified model lies in neglecting the tensile stresses in the diagonally cracked concrete. The 

difference between Ritter’s and Mӧrsch’s model exists in the assumption made by Mӧrsch where the 
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compression diagonals represent a continuous field of stress rather than a discrete diagonal compressive 

strut as it was initially pointed out by Ritter, assuming that the diagonal struts are extended across more 

than one stirrups. The equilibrium of the internal forces presented in Fig. 2.12 requires that tensile 

stresses in the stirrups and compressive strut in concrete to be equal. Assuming an angle of diagonal 

compression θ  =45° and considering that the shear stresses are uniformly distributed over an effective 

shear area wb jd⋅ , the diagonal compressive force is 2c wb jdσ . The external shear force V is 

assumed to be equal to the force in the longitudinal reinforcement resulting considering the equilibrium 

( )2 2 22c wb jd V Vσ = +  , 2σ can be written:  

2c wV b jdσ =  (2.6) 

 

The vertical component of the diagonal compressive force is balanced by the tensile force in the stirrup 

so the vertical force in the stirrups can be written as:  

jd
s sw s sV V A σ= =  (2.7) 

 

Fig 2.12 Equilibrium Conditions for 45° Truss Model. 

 

Eq. (2.7) is generally used to design the required amount of stirrups and Eq.(2.6) to check the 

compressive stresses in the concrete. This defines the upper limit of the shear force and is associated 

with the compressive web shear failure. Mӧrsch model provides conservative results because the choice 

of the 45° angle for the compressive strut, provide lower stress values in the stirrups compared to the 
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experimental tests (Richart 1927; Withey 1907, 1908). The conservative values of shear strength are 

also due to the fact of having neglected the tensile concrete resistance (Talbot 1909, Hognestad 1952). 

Several international codes are based on Mӧrsch theory as for example the US Standard (ACI-318-08). 

In this case, where this model has adopted a contribution related to the tensile concrete Vc based on 

empirical formulation is added to the shear resistance Vs as presented in the following section. 

Furthermore a minimum shear strengthening ratio is required by the code for the truss action activation 

2.3.2 Truss approaches with concrete contribution 

The large number of tests conducted between 1950 and 1960’s, allowed to have a better understanding 

of mechanisms and contributions due to: aggregate interlock and dowel action on shear resistance, and 

the compressive stress state above flexural cracks. On the basis of a large amount of research programs, 

the ACI-ASCE shear committee (1962) recommended the use of a semi-empirical expression for the 

estimation of the shear strength carried out by the concrete to overcome the inaccuracy by adopting the 

Mӧrsh approach. Following this approach the total shear capacity was calculated superimposing the two 

contribution Vc for the concrete and Vs for the steel stirrups calculated as Eq. (2.8). 

c sV V V= +  (2.8) 

Fig. 2.13 shows how by using this additive approach it is possible to obtain the required total shear 

strength with a lower percentage of vertical stirrups. The theories based on this approach considered in 

general one of both the following two mechanisms: 1) existence of tensile stresses in concrete 

transverse to the struts, 2) shear stresses that are transferred across the inclined crack by aggregate 

interlock or friction. Both mechanisms are interrelated and results in: 1) angle of the principal 

compression stress in the web being less than then the crack angle, 2) a vertical component of the force 

along the crack that contributes to shear strength of the member (ACI-ASCE Committee 445). 

  
Fig. 2.13 Truss approaches with concrete contribution 
concept 

Fig. 2.14 Eq. (11.3.2.1) form ACI 318-08 versions 
(unit psi) comparison with experimental results.  
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The first semi-empirical expression proposed by ACI-ASCE shear committee, appeared in the 1963 

ACI 318 and still present in the current version is:  

( )' '0.166 0.17 0.29c d
cd c w c

w

V V
f f MPa

b d M
τ ρ= = + ≤  (2.9) 

This equation (Fig 2.14) is based on the results of numerous test on RC without shear reinforcement and 

takes into account the major facts influencing the shear resistance, such as the tensile strength of the 

concrete in the parameter '
cf , longitudinal reinforcement wρ  and the shear span to depth ratio M dV . 

A simpler and more conservative expression is also accepted:  

'0.166c
c

w

V
f

b d
=  (MPa) (2.10) 

Eq. (2.9) and Eq. (2.10) represent the ultimate load at which the diagonal crack governing the failure of 

a beam without shear reinforcement is formed. The Vc contribution of the ACI shear design is in fact 

equal for beams with and without shear reinforcement. Other formulations for the estimation of the 

concrete contribution cV  have been proposed, in an attempt to also account other parameters, as for 

example the arch action (Zsutty 1968) or the possibility that forces are transferred across the cracks by 

shear friction. Bazant and Kim (1984) also included the maximum size of the aggregates in his formula 

that is based on fracture mechanics. Okamura and Higai (1980) and Niwa et al. (1986) proposed an 

empirical formula that tried to consider all the main parameters. Similar approaches has also been 

adopted in several version of European codes as for example the CEB-FIB Model Code 1990 the 

Eurocode 2 in its 1991 version. This latter norm presented the concrete contribution using an empirical 

Eq. (2.11) function of the beam’s internal arm, concrete compressive strength and percentage of 

longitudinal reinforcement (See for more information regarding Eq. (2.11) and (2.12) see Section 

2.4.2).  

( ) ( )2/3
1 0.0525 1.2 40Rd ck l wV k f b dβ ρ= +   (mm, MPa) 

 
(2.11) 

In the Eurocode 2 version 2005, the previous equations has been modified in 

( ) ( )1/3
, , 1 min 1100Rd c Rd c l ck cp w cp wV C k f k b d k b dρ σ ν σ⎡ ⎤= + ≤ +⎢ ⎥⎣ ⎦

  (mm, MPa) 

 
(2.12) 

A combination of the variable-angle truss (Section 2.3.3) and a concrete contribution has also been 

proposed. This procedure has been referred to as the modified truss model approach (CEB 1978; 
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Ramirez and Breen 1991). In this approach, in addition to a variable angle of inclination of the 

diagonals, the concrete contribution for non prestressed concrete members diminishes with the level of 

shear stress. This type of approaches abandoned in the Eurocode 2 in its actual version (2004) was 

reintroduced in the recent Model Code (2012). In this latter case, the approach to calculate contribution 

carried out by the concrete is based on the Modified compression field theory (Vecchio and Collins 

1986). 

2.3.3 The variable angle truss model (VAT)  

The 45 degree truss model proposed by Mӧrch often leads to very conservative results, to overcome this 

problem, an alternative to the truss approach with concrete contribution, is the variable angle truss 

model. This model adopt a lower angle for the shear crack which is justified by the experimental results 

that the evidenced an angle θ  typically lower than 45°. The previous equation describing the 45° truss 

model can be rewritten by assuming the angle θ  as a variable of the problem. The variable angle truss 

model (VAT) does not directly account for the components of aggregate interlock/friction, dowel forces 

in the cracks, and shear carried out by the un-cracked concrete, but a lower inclination for the 

compression diagonals allows a further mobilization of the stirrups in the reinforcement, resulting in a 

higher shear resistance. In order to fulfill the equilibrium of the section by assuming an angle θ  of the 

compressive strut the equilibrium conditions can be expressed as in Fig. 2.15. The external shear V is 

equal to the vertical resultant of principal diagonal compressive stress cosD c wF b jdσ θ= , therefore

sinDV F θ= . From this equality, the principal compressive stress cσ  can be determined using Eq. 

(2.13). From the equilibrium at the bottom chord the diagonal compressive force is divided into the 

longitudinal component of the tensile reinforcement as indicated in Eq. (2.14) and into the vertical 

component of the stirrups as indicated in Eq. (2.15). The vertical component of the principal diagonal is 

supposed to be acting in length, “s” equal to the stirrups spacing (Fig. 2-15c). The relationship between 

the force in the stirrup and the external shear force action on the beam is obtained in Eq. (2.16) by 

introducing Eq. (2.13) in Eq. (2.15). 

( )2cos tan cot
sinc w

w

V Vb jd
b jd

σ θ σ θ θ
θ

= ⇒ = +  
(2.13) 

0.5 cotLF V θ= ⋅  (2.14) 
2

2 sinw s ssb Aσ θ σ=  (2.15) 
  

( )
21 sin tan

sin cos w s s
w

V Vb s A
b jd jd

θ σ θ
θ θ

⋅ = ⇒  
 
(2.16) 
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The presented equations are not sufficient to solve the problem for variables (compressive stress, 2σ , 

tensile force in the longitudinal reinforcement, LF , stress in the stirrups, sσ , and inclination,θ , of the 

principal compressive stress).  

 

Fig. 2.15 Equilibrium Conditions for Variable-Angle Truss Model 

Mӧrsch (1922) discussed the inclination of the angle θ  affirming that “it is absolutely impossible to 

determine mathematically the slope of the secondary inclined crack according to which you can design 

the stirrups”. Several approaches have been proposed to solve the indeterminate system; however, for 

design purposes it is necessary to introduce assumption. Kupfer used minimum energy principles to 

determine the crack angle θ  assuming a linear elastic behavior of both steel and concrete. Collins and 

Vecchio (1986) in continuation of the work of Baumann (1972) assumed in their compression field 

theory, the yielding of the stirrups ( s yfσ = ). Solutions based on limit analysis and plasticity methods 

have been developed by Thürlimann and Grob (1976), and Nielsen (1999). These approaches (Section 

2.3.4) assume the yielding of the stirrups and the attainment of the maximum compressive stress in 

concrete. This approach leads to smaller values ofθ ; a smaller amount of stirrups is therefore required, 

but at the same time the tensile force in the longitudinal reinforcement increases.  

2.3.4 Limit Analysis and Concrete Plasticity 
 

In the late 70’s the theory of plasticity for concrete was developed in Denmark by Nielsen and 

Braestrup (1975) (see Nielsen (1999) for a complete discussion). For many years, the application of 

plastic theory in practical design was restricted to Denmark and Switzerland, but the growing interest in 
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plastic methods has led to the adoption of this approach by Eurocode 2. The theory of plasticity search 

for the values of carrying capacity, which are lower than or equal to yield load by creating stress fields, 

which fulfill the equilibrium condition and are safe according to the failure criterions for the materials. 

Those solutions are named lower bond solution. It is also possible to search the solutions which are 

greater than or equal to the yield load by creating failure mechanisms and using the work equation on 

the mechanisms. Those solutions are named upper bond solution. The exact solution of the problem can 

be found in between of the values provided by the lover-bond theorem and the upper bond theorem; in 

some cases it is possible to find coincident solutions, in that case the exact solution is obtained. In the 

plastic approach, concrete is assumed to be a rigid, perfectly plastic material, responding to a modified 

Coulomb failure criterion with the associated flow rule, the tensile strength is usually neglected. Steel 

reinforcement is as well assumed as a perfectly plastic material, with the yield strength fy. The initial 

approach does not differ from the VAT approach, the beam is considered to have a compressive stringer 

(compressive zone) taking a compressive force C and a tensile stringer (tensile zone) taking the tensile 

force T. In the shear zone the stress field can be considered as an idealized model of a cracked web, the 

cracks being parallel to the uniaxial stress direction. The theory of plasticity assumes that the capacity 

of the web is achieved by simultaneously reaching the yield of the shear reinforcement and the limiting 

stress 'cf in the inclined struts (web crushing). This assumption yields to a condition for the angle θ  of 

the inclined struts and a function for the capacity depending on the amount of shear reinforcement. The 

plastic approach for design purpose was developed as a lower bond approach. However in some cases 

the two approaches coincide (Nielsen 1999). The lower-bond and bond solution is here presented for 

simply supported beam symmetrically loaded by two concentrated forces (Fig.2.16). 

 
Fig. 2.16 Stress field in the lower bond approach 

The compression zone and the tensile zone are idealized as stringer carrying the forces C and T 

respectively and assumed strong enough to carry the compressive and tensile loads. In the web it is 
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considered a homogeneous stress field, consisting of a uniaxial compressive stress 'cf  in the concrete 

which forms a constant angle θ , this stress field can be expressed as: 

2cosx cσ σ θ= − 2siny cσ σ θ= − ' sin cosxz cfτ τ θ θ= =  (2.17) 

the relation between the constants stress and the shear for V is  

w

V
b jd

τ =  (2.18) 

Vertical stirrups are assumed as vertical forces distributed over the concrete area ( ws b⋅ ), and assuming 

that the stirrups stress equals to the yield stress (for vertical stirrups the x-direction and xyτ components 

are null).  

s y
y sw y

w

A f
f

b s
σ ρ= =  (2.19) 

Where swρ is the shear reinforcement ratio. The stresses carried out but the concrete and stirrups are 

presented in Eq. (2.20) 

2' cosx cfσ θ= −         2' siny c sw yf fσ θ ρ= − +         ' sin cosxz cfτ τ θ θ= =  (2.20) 

 

The stress field is statically admissible if the boundary conditions are satisfied. The boundary 

conditions along the stringers require the total stress to be zero 0yσ = . Under this condition the last 

two equations of Eq. (2.20) lead to: 

tansw yfρ τ θ=  (2.21) 

And the first and last equation of Eq. (2.20) to 

cotxσ τ θ= −  (2.22) 

Solving the last two equations for τ  and θ  it is possible to obtain: 

( )1
'cf
τ

ψ ψ= −  (2.23) 

1 2

tan
1
ψ

θ
ψ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (2.24) 

Where the mechanical degree of shear reinforcement is defined as 
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'
sw y

c

f
f

ρ
ψ =  (2.25) 

Eq. (2.23) represents a circle as show in Fig. 2.17. The maximum value of 0.5 is obtained when the 

degree of shear reinforcement is greater than 0.5, in this case, the shear sector of the beam is over-

reinforced. Eq. (2.24) expresses the inclination of the angle θ  as a function of the mechanical degree of 

shear reinforcement. The load-carrying capacity Eq. (2.23) is a correct lower bond solution, Nielsen 

(1999) demonstrated how the upper bond solution coincides with the lower bond solution apart from the 

region characterized by low degree of shear reinforcement where the solution is governed by the upper 

bond solution (See Fig. 2.17). When ψ ν is small, the angle θ must also be small before web crushing 

can take place. The cracked web region, therefore, may become unstable, resulting in sliding failure 

along cracks before concrete compressive strength is reached. The possibility of sliding in cracks will 

be further enhanced by the large stirrup distances normally used when dealing with small reinforcement 

degrees. In plastic models for shear design of reinforced concrete beams the distinction between two 

shear failure modes, namely web crushing and crack sliding is fundamental. The first mentioned mode 

is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non-shear 

reinforced beams as well as in lightly shear reinforced beams, in this case the shear strength will, for the 

reasons given above, be overestimated. This problem has been partly overcome in the “design codes” 

by introducing a minimum shear reinforcement requirement and by limiting the choice of cot θ, for 

instance to cot θ=2.5 for beams with constant longitudinal reinforcement (Fig. 2.18). 

  
Fig. 2.17 Upper bound solution for the maximum 
shear capacity of a beam loaded by concentrated 
forces 

Fig. 2.18 Upper bond solution with the restriction of 
maximum cotθ  and minimum ψ. 

 

If we assume the stringers to be sufficiently strong, the shear capacity of the beam will be exhausted in 

the following way: at a certain load level the stirrups will reach the yield stress yf (it is assumed that 

the beam is not over-reinforced with stirrups). Once the stirrups are yielding, increasing the shear force 

can only be carried by increasing the compression stress σc, which at the same time rotates to smaller 
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anglesθ. The concrete stress cσ may increase until it reaches the effective compression strength cfν and 

the beam finally fails by crushing of the web concrete. The web crushing criterion and the code 

restrictions are illustrated as well in Fig. 2.18. 

Concrete is not an ideal plastic material, which means that a reduced plastic strength should be used in 

order to obtain a fair theoretical estimation compared to the experimental results. The reduction factor 

ν  is called effectiveness factorν , and it is a measure of the effectiveness of the concrete at plastic 

design. The studies on the influence of this parameter show that the dominating parameter is the 

concrete strength. Concrete exhibits a decrease of ductility with the increase of strength. A safe value 

was proposed by Nielsen (1999) Eq. (2.26). In EC2 this effectiveness factor was reduced even further 

(Section 2.4)  

0.7
200
cfν = − , cf   in MPa. (2.26) 

Fig 2.19 show the comparison between the presented models based on the truss analogy. For a given 

amount of shear reinforcement, much larger capacity are predicted than those based on the traditional 

Mӧrsch model with or without introducing the concrete contribution. For comparison Fig. 2.19 shows 

the predictions using the standard method of EC2. The strut angle in the actual version of the Eurocode 

is limited to the angle of 21.8°, corresponding to cot cotθ  =2.5.  

 

 
Fig. 2.19 Calculated shear strength as function of ψ  and θ  for the different models 

 

2.4 Shear design models in standards 

2.4.1 ACI 318-08 (2008) 

The shear strength in the ACI 318-08 is based on a 45° truss model with concrete contribution. As 

previously discussed, the introduction of the concrete contribution was introduced since extremely 
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conservative results were obtained, also economical reason are at the basis of this choice, so that the 

percentage of steel could be reduced. The total shear strength is calculated as  

n c sV V V= +  (2.27) 

 

Where cV is the nominal shear strength of concrete calculated according to Eq. (2.28) or to the 

simplified version Eq. (2.29) and Vs is the nominal shear strength provided by the shear reinforcement 

according to Eq. (2.30).  

' 120 0.3 '
7

u w
c c w c w

u

V d b d
V f f b d

M
ρ

⎛ ⎞
= + ≤⎜ ⎟
⎝ ⎠

 (2.28) 

0.17 'c c wV f b dλ=  (2.29) 

 

where '
cf is the specified concrete compressive strength. λ  is a reduction factor of the compressive 

strength considering lightweight concrete, λ  = 1 for normal concrete. bw is the width of the web and d 

is the internal lever arm. 

sw sy
s

A f d
V

s
=  (2.30) 

 

Where Asw is the reinforcement area within the longitudinal stirrup spacing s, fy is the yield strength. To 

avoid diagonal crushing of the compression chords and to limit diagonal cracking, Vs should not be 

greater than 0.66 's c wV f b d= . The maximum longitudinal spacing for shear reinforcement 

perpendicular to the axis of the structure is max 2s d=   or 600mm. The ACI prediction gives in general 

unconservative results for large members and lightly reinforced members without shear reinforcement, 

and does not allow the use of concrete compressive strength higher than 69 MPa. 

2.4.2 Eurocode 2 Part 1 (1991) 

The first version of the Eurocode EC2, Part 1 (1991) is based partly on Plasticity Theory which is 

presented in section 2.3.4 assumes that the capacity of web is achieved by simultaneously reaching the 

yielding of the shear reinforcement and the limiting stress in the inclined concrete struts. 

The Eurocode 2 Part 1 version (1991) provides two methods, the standard method and the variable strut 

inclination method. The standard method is basically a combination of a concrete contribution term and 

a steel contribution term based on the 45° truss model. The method is applicable for concrete strengths 

ranging from 12 ≤ 'cf  ≤ 50 MPa. 
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45° truss or Standard Method 

The total shear resistance consists of the concrete contribution cdV  and the steel contribution wdV . Thus, 

the total shear resistance 3RdV  is: 

3 2,maxRd cd wd RdV V V V= + ≤  (2.31) 

 

Where  

cdV =concrete contribution taken as equal to 1RdV , see below 

wdV =
( )0.9sw ywdA f d
s

 = the steel contribution 

swA  = area of the shear reinforcement within spacing, s 

ywdf  = yield strength of shear reinforcement 

2,maxRdV = upper limit on shear resistance to prevent web crushing 

( )1 1.2 40Rd rd t wV k b dβτ ρ= +   (mm, MPa)  

or its simplified version 

( ) ( )2/3
1 0.0525 1.2 40Rd ck l wV k f b dβ ρ= +   (mm, MPa)  

 

Where  
2.5d
x

β = , ( )1.0 5.0β≤ ≤  is an enhancement factor that can be applied if the member is loaded by a 

concentrated load situated at distance, 2.5x d≤  , from the face of the support. Otherwise 1β =  

rdτ  =basic design strength ( 0.050.25 ctkf  ) 

0.05ctkf =lower 5% fractile characteristic tensile strength (=0.7 ctmf ) 

ctmf  =mean value of the concrete tensile strength (=0.30 ( )2 3ckf  

ckf  = characteristic cylinder compressive strength of concrete  

( )1.6 1000 1.0k d= − ≥  (mm unit) 

0.02sl
l

w

A
b d

ρ = ≤  

slA = area of longitudinal reinforcement in tension 

wb = effective wed width 
d =effective depth 
 

The shear strength 1RdV  increases as the amount of longitudinal reinforcement increase, and decreases as 

the depth of the member increases. The value rdτ  and consequently the shear strength 1RdV  could 
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provide unsafe values, which led country like Germany to reduce the value rdτ . The upper limit on the 

total shear resistance is determined by the resistance 2RdV  which is the web crushing shear force based 

on the Plasticity theory. The maximum value of 2RdV is expressed in terms of the effective stress in the 

compression strut: 

( )2,max 0.5 0.9Rd cd wV f b dυ=  (2.32) 

 

Where cdf  =the factored design strength, takes as 1.5cd ckf f=  and 0.7 0.5
200
ckfυ = − ≥  is the 

effectiveness factor. The minimum amount of shear reinforcement depends on the concrete compressive 

strength and the steel yield strength. 

 Variable strut inclination method 

The variable strut inclination method is based on a variable-angle truss. This method assumes that 

transverse reinforcement carries the entire shear. The concrete contribution to shear resistance is 

considered using flatter truss angles. The shear resistance of members with shear reinforcement is: 

( )
3

0.9
cotsw ywd

Rd
A f d

V
s

θ=  (2.33) 

Where 

0.4 2.5cotθ< < : For beams with constant longitudinal reinforcement, or 

0.5 2.0cotθ< < : For beams with curtailed longitudinal reinforcement 

The maximum shear resistance provided by a section, based on the crushing of struts, can be obtained 

from equilibrium at a section as: 

( )
2

0.9
cot tan
cd w

Rd
f b d

V
υ

θ θ
=

+
 (2.34) 

 

Eq. (2.33), shows that smaller the angle, the higher is the shear capacity provided by the shear 

reinforcement. However, the shear capacity given by Eq. (2.34) decreases as θ decreases below 45°. 

From the lower-bound theory of plasticity, therefore, a limitation on the effectiveness of the shear 

reinforcement is given as: 

0.5sw ywd
cd

w

A f
f

b s
υ≤  (2.35) 
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In design, the actual failure condition can be obtained by equating the applied shear force to the 

resistance 2RdV and finding the largest value of cotθ which requires the least amount of shear 

reinforcement. Once cotθ is found, the shear resistance, 3RdV , can be calculated from the Eq.(2.33). For 

analysis purpose, the angle θ can be found by equating 3RdV to 2RdV as follows: 

1tan

1cd

sw ywd

f
f

θ
υ

ρ

≥
⎛ ⎞

−⎜ ⎟
⎜ ⎟
⎝ ⎠

1cot

1cd

sw ywd

f
f

θ
υ

ρ

≤
⎛ ⎞

−⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(2.36) 

Where θ should be calculated using Eq. (2.36) and those conditions applied to Eq. (2.33). 

 

2.4.3 Eurocode EN 1992-1-1 (2004)  

In this version of the Eurocode, which consists a revision of the previous version, the “additive 

approach” has been eliminated and only the design method based on the truss model with variable 

angles are available. 

Members Not Requiring Shear Reinforcement 

The design value for the shear resistance ,Rd cV for member that does not require shear reinforcement (in 

N) is given by: 

( ) ( )1/3
, , 1 min 1100Rd c Rd c l ck cp w cp wV C k f k b d k b dρ σ ν σ⎡ ⎤= + ≤ +⎢ ⎥⎣ ⎦

  (mm, MPa) (2.37) 

Where, ckf is characteristic compressive strength. 

2001 2.0k
d

= + ≤  mm unit (2.38) 

0.02sl
l

w

A
b d

ρ = ≤  
(2.39) 

slA = area of longitudinal reinforcement in tension 

wb = smallest width of the cross section 

cpσ  = ed cN A 0.2 cdf<  

edN  = the axial force in the cross section due to loading or pre-stressing (N) 

cA  = the area of concrete cross section (mm2). 
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The value of .Rd cC , 1k , minν are indicated in the national annex the recommended value for .Rd cC and 1k

are 0.18 cγ and 0.15, respectively, the value minν is presented in Eq. (2.40)  

1 23 2
min 0.035 ckk fν =  (2.40) 

 

Members Requiring Shear Reinforcement 

The design of the members with shear reinforcement is based on a truss model, whereby the values for 

the angle θ of the inclined struts in the web are limited as follows: 1 cot 2.5θ≤ ≤ For members with 

vertical shear reinforcement, the shear resistance, RdV , is the smaller of 

, cotsw
Rd s ywd

A
V zf

s
θ=  (2.41) 

And 

( ),max 1 cot tanRd cw cd wV f b zα υ θ θ⎡ ⎤= +⎣ ⎦  (2.42) 

 
Where: swA  = the cross-sectional area of the shear reinforcement 
s = spacing of the stirrups 

ywdf  = the design yields strength of the shear reinforcement 

ywkf = the characteristic yield strength of the shear reinforcement 

1 0.6υ =  (Recommended values for 60ckf MPa≤ , different values for each country can be adopter (see 
National Annexes 

cwα  = a coefficient taking account of the interaction of the stress in the compression chord and any 
applied axial compressive stress ( cwα =1 is recommended for non-pre-stressed structures). 
θ = inclination of concrete struts 

wb  =the minimum width between tension and compression chords 
z =inner arm, for a member with constant depth. (approximate values z=0.9d may be used. 

The maximum spacing between shear stirrups should not exceed ( )max 0.75 1 cots d α= +  or 300 mm.  
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2.5 Shear strengthening of concrete structures with non-conventional techniques 

 

2.5.1 Introduction 

Reinforced concrete beams need to be strengthened when they are insufficiently reinforced in shear and 

become subjected to higher loads, or when their shear capacities fall below their flexural capacity after 

flexural strengthening. Shear failure should be avoided because of its brittle and unpredictable nature. 

The relatively recent approaches for shear strengthening of RC beams made use of composite materials. 

Structural strengthening have seen a constantly growing numbers of strengthening system, that are not 

necessarily based on the use of FRPs. Alternative strengthening methods based on the use, for example, 

of strain hardening cementitious materials, textile reinforced mortar and prestressed steel strips have 

been developed starting from traditional strengthening techniques, thanks to the scientific progress in 

material research and the possibility to adopt advanced technology. 

 

2.5.2 Traditional strengthening technique 

One of the simplest concepts of strengthening is based on the idea to increase the cross section of the 

element to be strengthened by adding traditional construction material as normal reinforced concrete to 

increase stiffness, shear and bending resistance. This type of intervention is known as concrete 

jacketing and consists of casting a new cross-section that incorporates the existing concrete elements 

(Fig. 2.20a). The lack of steel is simply filled up by adding new bars or stirrups on the outside of the 

structure before the new cast. The method is economical since it uses common construction material 

and the workers  do not require any particular skill beyond those used in normal constructions. In case 

of compressed elements, a higher confinement is provided by the new cast. The shear resistance is 

increased and load-bearing capacity similar to newly constructed beams or columns can be obtained. 

However, the addition of extra material to the structure adds extra load, and this rehabilitation method 

can be rather inefficient at increasing the structure’s global capacity. By using this technique it is also 

necessary to improve the bond between the old and the new material, which is a very complex problem 

that involve several uncertainties (Wittmann 1998; Li 1998). If applied in a big scale in case of seismic 

strengthening, this technique implies the change of the structure’s natural frequency due to the increase 

of self-weight and stiffness. Steel Jacketing is also adopted for strengthening of reinforced concrete 

elements, by assembling steel in L-shape profile and plates around the concrete element (Fig. 2.20b). 

The steel cage can provide a higher confinement and the shear resistance can significantly increase. 

Generally smaller increase of cross section can be obtained in comparison to concrete jacketing but the 

increase of self-weight can be significant as well. Nowadays, in case of concrete jacketing, it is possible 
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to reduce the thickness of the concrete jacket by using self-compacting concrete (SCC) characterized by 

higher flowability (Overview in section 2.5.3). Shotcrete can also be an alternative to the traditional 

casting. The most advantageous feature of shotcrete is that it can be applied to big area in a short time, 

the applied mortar can also contain fibers of steel or polymer materials.  

An alternative strengthening technique to the section jacketing is the steel plate bonding (Fig. 2.20c), 

this technique firstly applied by (Dussek 1974) in the mid ’60’s and developed in the early ’70’s by 

L’Heremite and Bresson (L’Hermite 1967; Bresson 1971). The strengthening approach is based on the 

application of steel plates to the tension side of the reinforced concrete element using the adhesive 

material; the bond performance can also be increased by using bolts. Due to the fact that concrete has a 

relatively low tensile strength the introduction of a high tensile and stiffness strength material functions 

as extra reinforcement. This technique exhibits several drawbacks since steel plates are heavy to mount 

and to transport on site. They are difficult to apply if placed in sagging region of the beams, as they 

might need extra pressure during the curing of the adhesive to withstand their self-weight. Since steel is 

applied the risk of corrosion is high, making this technique expensive to maintain. Furthermore, steel 

plates may be difficult to apply to curved surfaces. 

 
(a) (b) (c) 

Fig.2.20Traditional techniques (a) Concrete jacketing (b) steel jacketing (c) steel plate bonding - form (Dias 
2008), recommended dimension for steel plating by (Appleton and Gomes 1997) 

 

2.5.3 Non-conventional techniques -Overview 

Most of the proposed strengthening techniques relies their effectiveness on the ability to transfer the 

stress by bond between the concrete surface and the strengthening system, but there are also several 

experimental program dedicated to investigate unbonded-type of strengthening in which the 

strengthening effectiveness lies in internal stress-state change, induced by an external prestressed or 

post-tensioned system. However, it is also possible to combine the two “types” of strengthening 
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approaches which has been demonstrated for example in case of flexural strengthening using pre-

stressed CFRP laminates (Mostakhdemin Hosseini et al. 2014). 

Unbonded types of strengthening have been investigated mainly for flexural strengthening. The post-

tensioning by using metallic materials can be for example a possible solution in cases where the 

properties of the steel in tension has deteriorated (corroded), additional tensile forces need to be carried. 

In bending, this method works in the same way as prestressed or post-tensioned concrete elements. 

Strengthening of prestressed concrete beams by steel external post-tensioning systems was presented in 

(Ionel 1996); The great advantage of this technique is to increase not only the ultimate state resistance 

but as well as to improve the service limit state by limiting the crack width or in case of structure 

presenting large deformation by reducing or limiting the deflection, an example of strengthening 

intervention was executed on the cantilever terrace of the Fallingwater House designed by Frank L. 

Wright by Silman Associated (2001). The method requires that the tension forces are transferred to the 

concrete by use of anchoring system, which can represent  a problem in limited intervention spaces or 

small size structural element. This technique is limited by the compressive strength of the concrete. One 

important consideration is to prevent the corrosion of new strands, as well as in protecting the external 

cable from vandalism or accidents. Advantages can also be obtained by using FRPs (Nakai et al. 1994; 

Meier 1992).  

    
(a) (b) (c) 

Fig.2.21Prestressed technique for shear strengthening: (a) Tendons placed internally into drilled holes, (b) 
Externally prestressed wire (Kim et al. 2007; Yang et al. 2009), (c) Prestressed metal straps (Helal et al. 2014; 
Garcia et al. 2014) 

A limited number of post-tensioning (Shehata 1996) or pre-stressing application has been investigated 

to increase shear capacity. Tendons for shear strengthening can be placed externally or internally in 

drilled holes Fig. 2.21a. Teng et al. (1996) strengthened RC and prestressed beam by using steel 

clamping units (no stress applied), acting as external stirrups. External pre-tensioned wire  have been 

recently investigated for shear strengthening (Fig.2.21b) (Kim et al. 2007; Yang et al. 2009). Post-

tensioned metal straps (Fig. 2.21c) have been tested for strengthening of short splices (Helal et al. 

2014), and for the enhancement of seismic behavior of RC buildings, providing confinement to the 

beam-columns joint and increasing its shear resistance (Garcia et al. 2014). The advantages relies in a 
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light strengthening system and in the possibility to provide an active confinement provided by the 

pretensioning of the metal straps surrounding the concrete element. Prestressed CFRP straps has also 

been successfully employed for shear strengthening of RC concrete rectangular and T-beams (Hoult 

and Lees 2009; Lees et al. 2002). 

Traditional concrete jacketing adopts a layer of thickness usually greater than 60-70mm that can 

excessively increase the section geometry and the structure’s self-weight. Concrete technology 

development has allowed to reduce the layer thickness of RC jacketing system. By using of self-

compacting concrete (SCC), it is in fact possible to obtain an effective and thinner  layer of concrete to 

repair and strengthen the RC element. (Chalioris et al. 2013) repaired pre-damaged beams with a U-

configuration jacket of self-compacting concrete SCC and U-formed stirrups; the layer thickness of the 

self-compacting concrete was 25 mm, which was the minimum thickness to provide an adequate steel 

bar cover (Fig. 2.22a). The results illustrates that the thinner reinforced concrete jacket combines a 

higher performance than conventional RC jackets, with an increase of load in the range 35% - 50% 

improving as well the deflection ductility. New possibilities have been introduced also by application of 

a High Performance Fiber Reinforced Concrete HPFRC, which is characterized by high compressive 

strength and hardening behavior in tension (Naaman and Reinhardt 2006; Carpinteri et al. 2007). The 

latter properties allows to use this cementitious material in substitution of the traditional steel 

reinforcement. (Beschi et al. 2009; Martinola et al. 2007) demonstrated how for a thickness of 30-40 

mm of HPFRC jacket similar results to traditional RC jacketing can be obtained.  Researcher at the 

University of Minho developed a shear and flexural strengthening technique, which was called hybrid 

composite plate (HPC) (Esmaeeli et al. 2013). This technique combines the structural effectiveness of 

prefabricated strain hardening cementitious composite (SHCC) plates with carbon fiber polymer (CFRP 

sheets or laminates). (Esmaeeli et al. 2013) tested the performance of these panels on small deep beams 

failing in shear. They obtained significant increase of shear resistance, which was also attributed by the 

authors to the contribution of the SHCC plate to the resistance of the compressive strut, and not 

exclusively to the tensile properties of the HPC panel. Subsequently (Esmaeeli et al. 2014) showed that 

by testing a repaired beam with HCP panel in which CFRP laminates were installed (Fig.22), the 

maximum load carrying capacity increased of 99% in respect to the virgin un-strengthened beams (the 

testes beams had no stirrups). Failure occurred usually at the existing concrete-panel interface even in 

case of bolted connection (Fig 2.23c). Retrofitting of beam column-joint by using HPC panels 

(Esmaeeli et al. 2015) showed that a thin HPC panel conjugate the benefits of the ultra-high ductility of 

strain hardening cement composites (SHCC) with the high strength, elasticity modulus and durability of 

carbon fiber reinforced polymer (CFRP) reinforcement systems increasing the shear resistance of the 
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joint region and energy dissipation capacity which is a fundamental aspect in case of seismic 

retrofitting. 

 

 

 
                           Traditional            HPFRC 

 

 
(a) (b) 

Fig. 2.22 (a) Cross-sectional dimensions and steel reinforcement arrangement of the jacketed beam, Jacketing 
layer 25mm (Chalioris and Constantin, 2012) - dimensions are given in mm. (b) comparisons between traditional 
RC jacketing and HPFRC jacketing, casting of the HPFRC layer (Beschi et al. 2009; Martinola et al. 2007). 

 
 

(a) 

  
(b) (c) 

Fig.2.23 From: (Esmaeeli et al. 2014) (a) Details of repaired beam (there was no transverse steel reinforcement in 
the critical shear span of the beam; a combination of epoxy adhesive and through bolts were used to fix the HCP 
reinforced with 3 CFRP laminates. (b)Multiple cracking during tensile test for SHCC (c) lateral HCP detachment 
of the strengthened specimen. 

An alternative to the aforementioned techniques is the Fabric-reinforced cementitious matrix (FRCM) 

system. An FRCM is a composite material consisting of one or more layers of (inorganic) cement-based 

matrix reinforced with dry fibers in the form of open mesh or fabric; its development was possible 

thanks to the recent advances in textile engineering (ACI Committee 549 2013). FRCM has also been 
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identified as Textile-reinforced concrete (TRC) in RILEM Technical Committee 201 (2006), mineral-

based composite (MBC) in  Blanksvärd et al. (2009) and Textile Reinforced Mortar (TRM) in 

Triantafillou and Papanicolaou (2006). Different types of mortar were used to assure the bond between 

the existing concrete and the strengthening system; FRCM is a system where all constituents are 

developed and tested as a unique combination. The shear resistance of RC members strengthened with 

closed-type of textile reinforced mortar under monotonic or cyclic loading were tested by (Triantafillou 

and Papanicolaou 2006) demonstrating that TRM jacketing provides substantial gain in shear 

resistance. The effectiveness level, depending on the number of applied layers, It was shown that this 

technique is able to convert a shear-type failure into flexural failure.  

 

 
Fig. 2.24 From Triantafillou and Papanicolaou 2006 (a) Application of spirally strips of textile-reinforced mortar 
jackets in  (b)Architecture of bi-directional textile, (c) example of TRC, (d) Side bonded mineral-based composite 
(Blanksvärd et al. 2009), (d) Distributed cracking pattern in AR glass-FRCM (ACI Committee 549 2013). 
 

Test on RC rectangular beams side bonded with mineral based composites conducted by Blanksvärd et 

al. 2009 showed significant increase of shear strength without debonding failure between the base 

concrete and the cementitious bonding agent during the experimental program. The exploited failure 

comprise: shear failure in concrete, shear failure with rupture of CFRP, shear failure and debonding of 

CFRP, compression failure at the top of the concrete beam due to yielding of the tensile reinforcement. 

Complementary benefits of using this type of strengthening are: i) heat resistance, ii) compatibility with 

the substrate, ii) long-term durability.  
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2.5.4 Fiber Reinforced Polymers (FRP) shear strengthening 

Fiber Reinforced Polymers (FRP) strengthening follows the path opened by the steel plate bonding 

technique and eliminates most of the drawbacks related to the use of metallic material, like for example 

the high weight and corrosion problems; however, weak points as the fire resistance or occurrence of 

brittle failure with consequent lack of ductility in some strengthening cases are unsolved. The 

pioneering work done in the case of flexural strengthening (Meier 1987; Kaiser 1989; Meier et al. 1992; 

Triantafillou and Plevris 1992; Täljsten 1994; Van Gemert 1996) by replacing steel with FRP plates, 

made of FRP materials, an attractive solution for structural strengthening, which gained wide 

acceptance in the international research community. Competitive strengthening solutions using 

materials like carbon or glass fiber reinforced polymers (CFRP or GFRP) have been nowadays 

developed due to the high strength-to weight ratio, high durability (not corrodible), electromagnetic 

neutrality, ease of handling, rapid execution with low labor costs and low impact on architectural and 

aesthetic appearance (Bakis et al. 2002; Teng et al. 2003; De Lorenzis and Teng 2007; Choudhury et al. 

2013). FPRs are high strength materials with relatively high Young’s modulus, characterized by a linear 

elastic behavior up to failure, which occurs in a brittle manner. The most popular techniques based on 

the use of FRP reinforcements are the Externally Bonded Reinforcement (EBR) and the Near Surface 

Mounted (NSM). Experimental studies conducted worldwide on RC beams strengthened in shear with 

FRPs clearly demonstrate the reliability and effectiveness of such techniques for structural 

strengthening and retrofitting. According to the EBR technique, sheets or plate/laminates of carbon 

fiber reinforced polymers (CFRP) are bonded on the faces of the elements to be strengthened. In case of 

the NSM technique, CFRP laminates or bars are installed into slit/grooves sawed into the beams' 

concrete cover and bonded to the concrete substrate by an epoxy adhesive. Fig. 2.25 shows a laboratory 

application for shear strengthening using both techniques. The oldest known study on the shear 

strengthening with EBR FRP was carried out by (Berset 1992), that strengthened reinforced concrete 

beams of different percentage of internal stirrups beams using GFRP sheets inclined at 45°. The EBR 

technique for RC shear strengthening has been largely investigated (Triantafillou 1998; Khalifa 1999; 

Khalifa and Nanni 2000; Pellegrino and Modena 2002; Bousselham and Chaallal 2006; Chaallal et al. 

1998; Monti and Liotta 2007; Barros et al. 2007), and it was demonstrated that the shear strength can 

considerably increase by applying this technique. However, due to the premature debonding occurring 

to the externally bonded FRP strips or sheets, the maximum stress mobilized in the strenghtening 

material is quite lower than its ultimate strength. The common shear strengthening configurations for 

the EBR technique are presented in Fig. 2.26. The use of flexible fiber sheets allows to adopt several 
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strengthening configuration: Full wrapping of the cross section (O), U jacketing (U) and side bonding 

on the beam web (S). 

 

 
Fig. 2.25 Shear strengthening techniques with CFRP: (a) External bonded reinforcement (EBR), (b) Near surface 
mounted (NSM)(Dias and Barros 2010) 
 

 
(a) (b) (c) (d) (e) 

Fig.2 26. Common externally bonded FRP strengthening configurations: Full wrapping of the cross section, O (a), 
U jacketing (b) and side bonding on the beam web, S (c). Additional mechanical anchorage systems can be 
provided to enhance the effectiveness of U or S configurations when the available bond length is short (U+ and 
S+). 
 
It has been demonstrated that the highest increase of shear strength can be obtained when a close 

configuration of the FRP is provided (Jirsa et al. 2011), this is the only case where the composite is, in 

general, able to exploit its full tensile capacity by reaching its ultimate strain. The problem related to the 

full wrapping are technical, in fact for existing RC beams the presence of integrated slabs make this 

strengthening intervention high-priced and time demanding. By adopting a U and S strengthening 

configuration usually low increase of load carrying capacity are obtained since these two systems are 

more prone to debonding failure. Side bonding configuration has been recently removed from the latest 

version of the Italian guidelines (National Research Council CNR-DT 200-2012), since experimental 

programs that adopted this strengthening configuration have demonstrated that debonding occurred at 

low level of shear strength increment. In the U strengthening configuration a larger bond length is 

provided by bending the FRP around the bottom edge of the beam. (Khalifa 1999) showed that the 

increment of shear capacity for the tested beams (the tested beams were without shear reinforcement) 

was 35% and 80%, for S and U strengthening configuration, respectively. Fig 2.28a shows a typical 

failure of the EBR strengthening using the U configuration. The increment of shear strength in the 
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aforementioned experimental program increased more than 145 % when an anchorage system was 

provided to the U strengthening configuration, in this case the FRP was able to convert a shear-type 

failure into a flexural failure. It results, that a mechanical anchorage system is a fundamental 

requirement in case of small bond transfers length. The variety of proposed anchorage systems 

available in literature is wide, those can be made of metal or composite material; handmade anchors 

have also been proposed and investigated (Kim and Smith 2009). 

 
(a) (b) (c) (d) 

Fig. 2.27. Possible arrangements for externally bonded FRP strengthening systems including variations in the 
fiber orientation (a-b), the use of discrete strips or continuous sheets (a-d), and the overlay of sheets with different 
fiber orientations (d). 
 
Each of the aforementioned strengthening configurations may be set in several possible arrangements 

(Fig.2.27). The orientation of the fiber (usually between 90° and 45°), and different layer can be 

overlaid with a different fiber inclination, resulting in a mono-bi or multidirectional system. By using 

the EBR technique, it is possible to adopt a continuous or a discrete strengthening configuration. A 

higher increase of shear strength is generally achieved by bonding the FRP strengthening systems with 

the fibers orthogonal to the critical shear crack plane. An extensive database on EBR-FRP strengthened 

beams has been developed by the Structural Composites Research Group at the University of Minho 

(Lima and Barros 2011) with the purpose of collecting data, to be used for the appraisal of the 

predictive performance of the available analytical models (Section 2.8). An extension of the EBR 

technique was developed at the EMPA laboratory in partnership with SIKA by using prefabricated L-

shaped CFRP plates to limit the occurrence of debonding of the strengthening system in the lower part 

of the beam’s web (Czaderski 2002; Czaderski and Motavalli 2004).  

  
(a) (b) 

Fig. 2. 28 RC T-beams at failure (a) EBR technique and (b) NSM technique. 
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Maximum efficiency using composite materials is obtained when the strengthening system is able to 

exploit its full tensional strain. Both EBR and NSM technique rely on the stress transfer capacity 

between FRP and concrete substrate, however, this last one is usually the most damaged part of the RC 

elements. As previously reported, the main problem of FRP strengthening lies in the fact that the FRP 

fail mostly by debonding in a EBR strengthened element. Unlike the case of EBR simply glued on the 

concrete surface, a certain confinement provided in the NSM FRP strips due to the insertion into thin 

slits open in the concrete cover allows to develop higher bond stress (Sena-Cruz and Barros 2004; 

Barros et al. 2007; Bilotta et al. 2011; Seo et al. 2013). Oehlers et al. (2008), Costa and Barros (2012) 

and Barros and Dias (2013) demonstrated experimentally that by installing NSM strips into deeper 

grooves the bond performance can be improved. 

The available experimental research showed that the NSM technique is more effective than EBR for 

both the flexural (De Lorenzis et al. 2000; Carolin et al. 2001; Hassan and Rizkalla 2003; El-Hacha, 

Raafat, Rizkalla 2004; Barros et al. 2007) and shear strengthening (De Lorenzis and Nanni 2001; Dias 

and Barros 2008, 2010, 2011a, 2011b; 2012; Anwarul Islam 2009; Rahal and Rumaih 2011). 

When using NSM technique, the current failure modes are concrete fracture, followed by debonding of 

the FRP systems (Fig. 2. 28b). Haskett et al. (2008), reported that the interfacial fracture energy of 

externally bonded (EB) FRP plates is approximately 1 N/mm and increased up to approximately 5 

N/mm for near surface mounted (NSM) FRP laminates. FRP bars of circular, square and rectangular 

cross section have been used for the NSM shear strengthening of RC beams. Due to the largest bond 

area, CFRP laminates of rectangular cross section are proved as being the most effective strengthening 

elements for the NSM shear strengthening of RC beams. It also has been demonstrated that strips 

laminates of CFPR are preferable than CFRP bars due to their lower stiffness in the orthogonal 

direction to the element axis. By applying the NSM technique, the full tensile capacity of the CFRP 

reinforcements can only be attained when these reinforcements are surrounded by relatively high 

strength concrete and an adequate bond transference length is assured (Dias and Barros 2013). NSM 

does not require surface preparation work and after cutting the slit, requires minimal installation time 

compared to the EBR technique, the susceptibility to acts of vandalism is also reduced by using the 

NSM technique. 

The number of tests on reinforced concrete beams strengthened in shear using the NSM technique 

available in literature is smaller than the one for EBR strengthened beams, but the efficacy of this 

technique has been assessed by several research carried out in the last decade, (De Lorenzis and Nanni 

2001; Barros et al. 2007; Lee and Lim 2008; Rizzo and De Lorenzis 2009; Anwarul Islam 2009; Rahal 

and Rumaih 2011). These experimental programs show that the NSM technique can significantly 

increase the shear strength of RC beams up to 157% as demonstrated by Lee and Lim (2008) by  testing 
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a RC beam without stirrup and 45° inclined NSM FRP. For both EBR and NSM the maximum 

effectiveness is obtained when the fibers are oriented along the principal tensile direction, or rather for 

cracked elements in the orthogonal direction the potential cracks. As already shown for the EBR 

technique, when the bond is assured by an anchorage system, the shear strength increases significantly 

as well for the NSM technique. Higher increment of shear strength can be obtained using the NSM 

technique in comparison with unanchored EBR technique. Moreover the NSM technique exhibits a less 

brittle failure in comparison with the EBR technique. A comprehensive study on the shear 

strengthening of RC concrete beams was carried out by Dias and Barros (2008,  2010, 2011a; 2011b; 

2012; 2013). In this context, the influence of several parameters was investigated: concrete strength, 

percentage of existing stirrups, percentage and inclination of the CFRP, existence of cracks. The shear 

strength has increased by increasing the concrete compressive strength, due to the higher bond 

performance that could be achieved. Fig. 2.29a shows the influence of the concrete strength class as 

presented in Dias and Barros 2013, the average value of the NSM system contribution for the highest 

class of concrete strength ( 39.7cmf = ) is 2.7 times higher the one obtained with the lowest strength class 

( 18.6cmf = ). The tested beams evidenced a clear detrimental effect of the steel stirrups on the shear 

strengthening effectiveness of the NSM, as it is possible to observe in Fig. 2.29b for all the tested 

strengthening solution lower NSM system contribution has been provided with the highest percentage 

of transverse reinforcement, however, the level of the influence of the percentage of existing steel 

stirrups seems to be larger, as smaller the concrete strength. The influence of the existing stirrups on the 

strengthening effectiveness was already evidenced for EBR strengthening by (Khalifa and Nanni 2002; 

Grande et al. 2009, Triantafillou 1998; Pellegrino and Modena 2002) that observed reduction of 

effectiveness with the increase of the transverse reinforcement ratio and the stiffness of the FRP system.  

  
(a) (b) 

Fig. 2.29 Influence of the concrete strength (a) and percentage of existing stirrups (b) on the effectiveness of the 
shear strengthening technique using NSM CFRP laminates (Dias and Barros 2013). 
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When the percentage of strengthening NSM-reinforcement is relatively high, the concrete cover 

including the FRP reinforcement has the tendency to detach; this failure mode is even more visible in 

the case of low strength concrete beams. Even when a small  percentage of CFRP laminates is used, it 

was observed that the concrete had fractured around the CFRP strip, which indicated that failure did not 

occur exclusively by debonding. A subsequent experimental-analytical investigations (Bianco et al. 

2006, 2007) demonstrated, even by means of an analogy with adhesive anchors (Cook et al. 1993, 

1998), that the NSM failure mode can be ascribed to a semi conical tensile fracture surface of concrete 

surrounding each NSM strip (Fig. 2.30c). Depending on the relative mechanical and geometrical 

properties of the possible failure mode affecting the behavior, at ultimate, of NSM strip compromise: 

debonding, tensile rupture of the strip itself, concrete semi-conical tensile fracture and mixed shallow-

semi-cone-plus-debonding failure mode Fig.2.30 

A mechanical explanation of the interaction between the NSM strengthening was found by Bianco et al. 

(2009), that developed a complex three dimensional model for the estimation of the shear strength 

contribution of NSM shear strengthened beams. The model was also able to simulate the deeper 

embedment of the laminate into the beam’s web surface; the concrete fracture failure surface has in this 

case higher fracture area, resulting in a higher concrete fracture force. The detrimental effect induced by 

the interference of consecutive laminates  (group effect) observed in the experimental programs carried 

out by Dias and Barros (2012) and (Rizzo and De Lorenzis 2009) Fig. 2.31, was accounted by the 

model. This interaction results in a reduced strength when compared with the sum of the single 

bars/strip resistance (Bianco 2008). 

 

Fig. 2.30 Possible failure modes of an NSM strip: (a) debonding, (b) strip tensile rupture, (c) concrete semi-
conical fracture, (d) mixed shallow semi-cone plus debonding 

  
(a) (b) 

Fig. 2.31 “Group Effect “of failure mode due to the interaction of high percentage of strengthening (a) (Rizzo and 
De Lorenzis 2009) (b) (Dias and Barros 2011b) 
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Recently an alternative NSM technique using manually made FRP rods (MMFRPs) has been proposed 

(Jalali et al. 2012). This “handmade” CFRP strengthening bars was obtained by wrapping and 

impregnating a carbon fiber textile around a wooden core. In order to delay the occurrence of 

debonding the MM-NSM can be fabricated with end anchors as shown in Fig. 2.32. This anchor 

consists in extra dry carbon fibers at both ends of the bar that are wrapped and impregnated around a 

wooden core orthogonal (in vertical MM-NSM) to the bars axis. The proposed MMFRP rods and end 

anchorage enhanced the shear capacity of the beams between 25% and 48% over the control specimen. 

Furthermore the proposed end anchorage of MMFRP rods significantly enhanced the ductility of the 

test specimens. The main drawbacks regarding this application is the time that needs to be dedicated to 

prepare the MMFRP; moreover even if “ready to install” FRP with similar shape as the proposed 

MMFRP could be provided by companies, the labor to install the strengthening is time-consuming. 

 
(a) (b) 

Fig. 2.32 Manually made FPR rods (MMFRP) proposed by (Jalali et al. 2012): (a) MM-NSM (b) groove prepared 
for the FRP installation. 

 

2.5.5 Embedded through section technique for shear strengthening 

A new strengthening technique, designated as Embedded Through-Section (ETS), has recently been 

investigated for the shear strengthening of RC beams (Valerio et al. 2009; Chaallal et al. 2011; Barros 

and Dalfré 2012). According to this technique, steel or FRP bars are inserted into holes bored through 

the cross section and bonded with an epoxy adhesive (Fig. 2.33). Like any FRP-based strengthening 

technique, the ETS technique relies its efficiency on the bond between the concrete substrate and the 

strengthening element; furthermore, the bond effectiveness is influenced by the provided confinement 

(Bianco et al. 2009; Mohamed Ali et al. 2008; Yuan et al. 2004). This technique can be highly effective 

for the shear strengthening due to even higher confinement provided by the concrete surrounding the 

bars deep embedded into the core of the element to be strengthened, which entails advantages on the 

bond strength. Furthermore, a larger concrete fracture surface is mobilized during the pullout process 

applied to the ETS bars crossing the shear crack, when compared to the case of a EBR and NSM FRP 

strengthening system. When concrete cover has not the bond strength requisites to guarantee the aimed 

strengthening effectiveness for the EBR or NSM techniques, ETS strategy can be a technical and 
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economic alternative since it mobilizes the beam’s concrete core that is generally the less damaged 

zones of a beam. Moreover ETS strengthening provide a better protection from fire, environmental 

aggressive agents and vandalism acts than EBR and NSM techniques. The main steps of the ETS 

technique as presented in The main steps of the ETS technique as reported in (Barros and Dalfré 2012) 

are presented in Fig. 2.34 

   

(a) (b) (c) 

Fig. 2.33 Embedded Through-Section (ETS) technique (a) schematic concept and  bars position in (a) (Valerio et 
al. 2009) and (b) (Chaallal and Mofidi 2011) 

 
Fig. 2.34 Embedded Through-Section (ETS) strengthening technique as reported in (Barros and Dalfré 2012): (a) 

drilling of the holes, (b) cleaning of the holes with compressed air, (c) hole filled with adhesive and ETS 

strengthening bar. 

Significant increase of shear capacity has been pointed out by Valerio et al. (2007, 2009) who 

investigated the use of the ETS technique for the shear strengthening of RC existing bridges, performed 

pullout tests for assessing the strengthening effectiveness of adhesive materials, and different 

embedment lengths for the ETS bars. The shear stress transfer mechanisms developed in an ETS bar 

were studied by Barros et al. (2008) using similar specimens to the ones tested by Mattock and Hawkins 

(1972) for traditional embedded steel bars. In this context, direct shear tests were executed with the 

purpose of capturing the main features of FRP/steel ETS bars as they contribute to the shear resistance, 

and to provide data for a rational decision about the most effective bars and adhesives for this type of 

application. From the results, a significant increase in shear strength was obtained with a relatively low 

shear reinforcement ratio, and it was verified that steel bars were very effective for this purpose. 
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Chaallal et al. (2011) carried out tests to assess the effectiveness of the ETS technique using vertical 

CFRP bars by comparing the performance of the ETS, EBR and NSM techniques on beams with 

different percentages of internal steel stirrups. It was demonstrated that the ETS technique provided the 

highest efficiency and was able to convert shear failure into a flexural failure. In the continuation of a 

comprehensive research project initiated by Barros et al. (2008) on the ETS shear strengthening 

effectiveness, an experimental program was carried out by Barros and Dalfré (2012) with RC beams 

shear strengthened with ETS steel bars. The variables examined in this experimental program were the 

width of the beam’s web, the percentage and inclination of the ETS bars, the spacing of existing steel 

stirrups and their interaction with the strengthening bars. A significant increase of load carrying 

capacity was obtained (between 14% and 124%), proving that the use of ETS steel bars can be a very 

effective and cost-competitive shear strengthening technique. By analyzing the previous experimental 

tests it can be observed that the beams with the higher percentage of ETS bars failed in bending, despite 

the very high percentage of flexural reinforcement used, which evidence the feasible use of this 

technique, but makes it impossible to use the results of beams failing in bending for the assessment of 

an analytical model to calculate the ETS strengthening contribution.  

 
(a) 

 

  
(b) 

Fig. 2.35(a) Application of carbon fiber reinforced polymer for punching shear strengthening (Sissakis and Sheikh 
2007), (b) Post-installed shear reinforcement, typical cross section, detail of the strengthening bar, drilling of the 
inclined holes (Fernàndez Ruiz et al. 2010) 

 

The ETS technique concept can also be extended for the punching shear strengthening of concrete 

slabs. To increase the critical shear perimeter in the slab-column connections, steel bars bonded with 

adhesive can be introduced in drilled holes at 45-degree (Hassanzadeh and Sundqvist 1998; Fernàndez 
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Ruiz et al. 2010). Bolts to act as shear reinforcement (El-Salakawy et al. 2003), and carbon fiber 

reinforced polymer (Binici 2003; Sissakis and Sheikh 2007; Meisami et al. 2015) can also be used to 

increase resistance of this type of elements (Fig. 2.35). The experimental program on RC beams 

strengthened using the ETS technique are here briefly presented. 

 

Valerio et al. (2007, 2009) 

Valerio et al. (2007, 2009) performed a series of tests on RC and pre-stressed rectangular beam 

strengthened with the  ETS method. The experimental program comprises small-scale and large scale 

beams. The beams were designed to match a common typology of beam used for railway bridges in the 

UK. The small scale beams had a cross section of 110mm x 190 mm and a length of 3000 mm. Four 7 

mm diameter wires were adopted as longitudinal reinforcement; in some of the beams two wires were 

pre-tensioned to 45 kN. All the beams did not have stirrups with the only exception of beam SSB 

Rst3d-C6@0.7d, where two-leg 3mm diameter vertical stirrups spaced at 100 mm stirrups were used (

swρ =0.129 %). The large-scale beams had a cross section of 450mm x 340mm and a length of 4000 

mm. Fourteen 12.5 mm diameter tendon each of them pre-tensioned to 70 kN were adopted as 

longitudinal reinforcement, shear reinforcement was absent in this group of strengthened tested beams. 

The cube compression strength was 55-60 MPa. The beams were loaded under a four point bending 

systems at different shear span lengths ( a d  ratio equal to 3 and 4). The small beams were 

strengthened using vertical carbon or steel bars of 6, 7.5, 8mm diameter spaced at 0.35d, 0.d5, 0.7d and 

d (Fig. 2.36). The large scale pre-stressed beams were strengthened using vertical 7.5 mm carbon or 8 

mm steel bars spaced at length d. In general, one bar was placed in the cross section, with the exception 

of the large scale beams SLB P4d-2C7.5@0.5d and SLB P4d-2S8@d in which two bars were placed in each 

cross section. The thickness of the adhesive layer was 1 mm. One large-scale beam was strengthened 

with the NSM technique for comparison. Table 2.1 shows the specimens’ details and the test results for 

the strengthened beams where SSB stands for strengthened small beams and SLB for strengthened large 

beams, C and S indicates a Carbon and Steel bars respectively. Small pre-stressed beams with a 

strengthening ratio fwρ  between 0.17% and 0.38% exhibit flexural failure rather than shear failure 

demonstrating the potentialities of this technique; in this case the gap between the two types of failure 

for the un-strengthened beams was low, which justify the relatively low increase of shear strength 

provided by the strengthening. Higher increase of load carrying capacity (between 79% and 127%) 

have been obtained in non-prestressed reinforced beams (percentage of strengthening ranged between 

0.24% and 0.49%). All the large scale beams failed in shear with maximum increase of load carrying 
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capacity of 14.6% in the beam with higher percentage of strengthening ( fwρ =0.15%). Both materials 

used for the strengthening were effective and no significant differences in the used material have been 

noticed. Thus it was concluded by the authors that the proposed shear strengthening method is feasible 

and effective for both prestressed and RC beams, even in the presence of transverse steel reinforcement.  

Table 2.1Specimend detail and results of strengthened beams Valerio et al. 2009 
Specimen Type  a/d ϕ s ρfw [%] Capacity [kN] Vf  [kN] 

SSB P4d-C7.5@0.7d Prestr. 4 7.5 0.7d 0.38 41.1 (f) ≥ 4.3 (+10.4%) 
SSB P4d-S8@0.7d Prestr. 4 8 0.7d 0.44 43.8 (f) ≥5.9 (+15.7%) 
SSB P4d-C6@0.7d Prestr. 4 6 0.7d 0.24 43.2 (f) ≥ 5.3 (+14.7%) 
SSB P4d-S6@0.7d Prestr. 4 6 0.7d 0.24 41.9 (f) ≥ 4.0 (+10.5%) 
SSB P4d-C6@d Prestr. 4 6 d 0.17 43.3 (f) ≥ 5.4 (+14.3%) 
SSB P4d-S6@d Prestr. 4 6 d 0.17 42.7 (f) ≥ 4.8 (+12.8%) 
SSB R3d-C6@0.7d No-prestr 3 6 0.7d 0.24 46.4 (f) 22.9 (+97 %) 
SSB R3d-C6@0.5d No-prestr 3 6 0.5d 0.34 50.5 (s) 27 (+114%) 
SSB R3d-C6@0.35d No-prestr 3 6 0.35d 0.49 53.5 (f) ≥ 30.0 (+127%) 
SSB Rst3d-C6@0.7d No-prestr. 3 6 0.7d 0.24 56.5 (f) ≥ 25.0 (+79%) 
SLB P4d-2C7.5@0.5d Prestr. 4 7.5 0.5d 0.15 339.1 (s) 43.2 (+14.6%) 
SLB P4d-C7.5@0.5d Prestr. 4 7.5 0.5d 0.08 315.0 (s) 19.1 (+6.5%) 
SLB P4d-2S8@d Prestr. 4 8 d 0.09 349.1 (s) 53.2 (+18 %) 

(s) = shear failure, (f) = flexural failure 

 

Fig. 2.36 Test layout for strengthened beams Valerio et al. (2009) 

 

Barros et al. (2008)  

The shear stress transfer mechanisms developed in a ETS bar were studied by Barros et al. ( 2008), 

using similar specimens to the ones tested by Mattock and Hawkins (1972) for traditional embedded 

steel bars. The performed short beams test is presented in Fig. 2.37. In this context, direct shear tests 

were executed with the purpose of capturing the main features of FRP/steel ETS bars on the 

contribution for the shear resistance, and to provide data for a rational decision about the most effective 

bars and adhesives for this type of application. Different type of material (CFRP, GFRP, steel), 
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diameter of the bar (8 and 12mm) and type of adhesive (Epoxy and Grout) has been tested. A 

significant increase in shear strength was obtained with a relatively low shear reinforcement ratio, and it 

was verified that steel bars were very effective for this purpose. 

 
Fig. 2.37 Short beam shear test (Barros et al. 2008) 

 
Chaallal et al. (2011) 

Chaallal et al. (2011) carried out experimental test on T-cross section RC beams strengthened with 

vertical CFRP rods to investigate the effectiveness of this technique and to compare the results  with 

beam strengthened with the Externally Bonded (EBR) and Near Surfaces Mounted (NSM) techniques. 

One of the main investigated parameter was the percentage of transverse steel. The experimental 

program consisted of 12 beams divided in  three different series, each of them characterized by a 

different percentage of internal transverse reinforcement, equal to ρsw= 0.0%, ρsw= 0.38% (8mm@d/2 - 

175 mm) and ρsw= 0.25% (8mm@ 3/4d - 260 mm), for S0, S1, S3, respectively. The T-cross section 

had dimensions, 508mm (width of the flange) by 406mm (total depth). The T beams are 4520 mm long, 

the thickness of the web and the width of the flange are 152mm and 102mm, respectively, (Fig. 2.22 ). 

The longitudinal steel reinforcement consists of four bars with diameter of 25.2 mm laid in two layers at 

the bottom and six bars with diameter of 10.3 mm laid in one layer at the top. The total load was 

applied at a distance a=3d. The cylindrical compressive strength was 25 Mpa for S0 and S1 series and 

35 MPa for S3 Series. The diameter of the vertical holes for the ETS rods installation are 18mm. Sand 

coated CFRP rods with nominal diameters of 9.5 mm and 12.7 mm are used for NSM and ETS 

strengthening methods, respectively. The FRP bars presented average tensile strength and modulus of 

elasticity of 1870 MPa and 143.9 GPa, respectively. A commercially available epoxy paste was used for 

embedding the rods. The CFRP sheet used for EB series was a unidirectional carbon fiber fabric (Sika 

Wrap Hex 230C, ply thickness 0.381mm) and presented an ultimate stress and young´s modulus of 

3650 MPa and 231 GPa, respectively.  
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Fig. 2.38 Details of concrete beams: a) elevation; b) cross section with no transverse steel; and c) cross section 
with transverse steel. 
 
Table 2.2Specimend detail and results (Chaallal et al. 2011) 

Beam ID Tech. Series 
swρ  

[%] 

swρ  
[%] maxF  

[kN] 
tV  

[kN] fV[kN] 
max

Re ,maxf

F
F

Δ

[%] 

Failure 
mode 

 
S0-CON 

-- 

S0 0.00  122.7 81.3 0 0 Shear 
S1-CON S1 0.38  350.6 232.2 0 0 Shear 
S3-CON S3 0.25  294 194.7 0 0 Shear 
S0-EB 

EB 

S0 0.00  181.2 120 38.7 48 Shear 
S1-EB S1 0.38 0.50 378.5 250.7 18.5 8 Shear 
S3-EB S3 0.25  335.2 222 27.3 14 Shear 

S0-NSM 

NSM 

S0 0.00  198 131.1 49.8 61 Shear 
S1-NSM S1 0.38 0.72 365 241.7 9.5 4 Shear 
S3-NSM S3 0.25  380 251.6 56.9 29 Shear 
S0-ETS 

ETS 

S0 0.00  273 180.8 99.5 122 Shear 
S1-ETS S1 0.38 0.64 397 262.9 30.7 13 Flexure 
S3-ETS S3 0.25  425.5 281.8 87.1 45 Flexure 

 

Table 2.2 presents the main results. It is shown that EBR U-jacket sheet, NSM FRP rods, and ETS FRP 

rods have provided increase in shear capacity of 61%, 48% and 122%, respectively for specimens with 

no transverse steel. The presence of stirrups decreased the gain of load carrying capacity and shear 

strength; for the ETS beam with the highest percentage of stirrups (S1-ETS) this increment was limited 

to 13%. Additionally, the ETS technique was more efficient in terms of mobilizing the tensile capacity 

of the FRP systems, since the CFRP bars have failed due to the attainment of their tensile strength when 

applied according to the ETS technique, while the EBR systems failed by debonding, and the NSM rods 

by the separation of the concrete cover. At the failure of the FRP systems applied according to the EBR 

and NSM techniques, the maximum tensile strain was much lower than its ultimate tensile strain. It 

should be noted that the ETS contribution could have been higher if it was not for the concrete cross 
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section limitation, since beams with stirrups and ETS strengthening failed in bending rather than shear. 

The effect of transverse steel in inhibiting the effectiveness of FRP was less pronounced in the ETS 

method in comparison to EBR method and NSM method. In (Mofidi et al. 2012), the result of 

additional ETS strengthened beams were presented. The same cross section geometry and internal steel 

arrangement of (Chaallal 2011) was adopted; in this tests the influence of the spacing of the 

reinforcement and the type of CFRP coating were investigated. 

Barros and Dalfré (2011)  

Barros and Dalfré (2011) carried out experimental tests on rectangular cross section RC beams 

strengthened with vertical and inclined ETS steel bars to investigate the effectives of this technique and 

study the influence of the percentage of internal steel stirrups, inclination and spacing of the 

strengthening. The experimental program consisted of 2 series of beams with different cross section. 

Series A and Series B are characterized by concrete cross section 150x300mm2 and 300x300mm2, 

respectively, with a total length of 2450mm and shear span 900mm (ratio a/d=3.44). The longitudinal 

steel reinforcement consists of two and three steel bars of 25mm diameter (ϕ 25mm), respectively 

(ρsl=2.50% for Series A, ρsl=1.88% for Series B. Steel stirrups of two vertical arms and 6mm diameter 

were used. Each series is made up of a beam without any shear reinforcement and a beam for each of 

the following shear reinforcing systems: (i) steel stirrups of ϕ6 mm at a spacing of 300mm, (ii) ETS 

strengthening bars at 45° and 90° in relation to the beam’s axis, with a spacing of 300mm, (iii) steel 

stirrups of ϕ 6mm at a spacing of 300mm and ETS strengthening bars at 45° or 90° with a spacing of 

300mm. Additionally for the A series, two other shear reinforcing systems were also tested: (iv) steel 

stirrups of ϕ6 mm at spacing of 225mm and (v) steel stirrups of ϕ6 mm at a spacing of  225mm and 

ETS strengthening bars at 90° with a spacing of 225mm. For the series A and series B, ETS bar of ϕ10 

and ϕ8 were used. In case of B-Series two ETS bars were introduced in the cross section. The 

compressive strength of the tested beams rage between 28.81 and 30.78 MPa. The use of ETS bars for 

shear strengthening provided significant increase in the load-carrying capacity of RC beams, in 

particular with inclined strengthening. The deflection capacity was also improved. Table 2.3 shows the 

percentage of internal transverse steel and of the applied strengthening and the main results of the 

experimental program: maximum load, percentage of load increment and shear force (calculated as 

percentage increment compared toA1-Reference and B1-Reference) and the ETS strengthening system 

contribution to shear strengthening (Vf). For Series A, the strengthening percentage ranged between 

0.17% and 0.25%, these beams presented a Vf  in the interval between 31.15 and 57.97 kN. For Series B 

the strengthening percentage ranged were 0.11% and 0.16%, these beams presented a Vf  in the interval 
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between 21.31 kN and 98.52 kN. The effectiveness of the ETS strengthening depended on percentage 

of internal stirrups.  

 

Fig. 2.39 Test configuration of the beams tested by Barros and Dalfré (2012) 

 

Table 2.3 Specimend detail and results (Barros and Dalfré 2012) 

 

slρ  
 

swρ  
 

fwρ  
 

maxF  
 

max
Re ,maxf

F
F

Δ  fV  
 

 [%] [%] [%] [kN] [%] [kN] 
A.1 -Reference 2.5 -- -- 108.86 -- -- 
A.2-S300.90 2.5 0.13 -- 164.67 51 -- 
A.3-E300.90 2.5 -- 0.17 160.7 48 31.15 
A.4-E300.45 2.5 -- 0.25 203.98 87 57.07 
A.5-S300.90/E300.90 2.5 0.13 0.17 231.83 113 40.3 
A.6-S300.90/E300-45 2.5 0.13 0.25 244.41 125 47.85 
A.7-S225.90 2.5 0.17 -- 180.31 66 -- 
A.8-S225.90/E225.90 2.5 0.17 0.23 244.17 124 38.31 
B.1-Reference 1.88 -- -- 203.36 -- -- 
B.2-S300.90 1.88 0.06 -- 232.31 14 -- 
B.3-E300.90 1.88 -- 0.11 238.88 17 21.31 
B.4-E300.45 1.88 -- 0.16 326.19 65 79.69 
B.5-S300.90/E300.90 1.88 0.06 0.11 390.11 92 94.68 
B.6-S300.90/E300-45 1.88 0.06 0.16 396.51 95 98.52 
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2.6 Design guidelines for FRP shear strengthening 

 

The increasing interest by the research community in FRP strengthening and the continuous growth in 

field applications, led to several analytical formulations for the estimation of the shear strengthening 

contribution carried out by EBR (Triantafillou 1998; Monti and Liotta 2007; Chen and Teng 2003a, 

2003b), and NSN (De Lorenzis and Nanni 2001, 2002; Nanni et al. 2004; Bianco et al. 2009, 2011, 

2014, Dias and Barros 2013) systems. The parameters that influence the shear behavior of a 

strengthened RC element were already identified (Lima and Barros 2007; Bousselham and Chaallal 

2008; Belarbi et al. 2012). Several authors have evidenced that the stress in the FRPs is strongly 

influenced by the axial rigidity f fE ρ  of the FRP composite, (Carolin and Täljsten 2005; Chaallal et 

al. 1998; Khalifa et al. 1998; Triantafillou and Antonopoulos 2000; Dias and Barros 2013). 

Nowadays, only the EBR technique has been completely implemented in design guidelines and 

standard around the world, providing the guidance for design, detailing, and installation of this FRP 

based strengthening systems. In most of the proposed analytical formulations and in all the design 

guidelines, the shear strength of a strengthened member is attained by the sum of the contributions from 

concrete, cV , steel reinforcement, sV , and FRP, fV , as follows: 

t c s fV V V V= + +  (2.43) 

where cV and sV  may be calculated according to the provisions existing in current design codes, 

independently of the adopted FRP strengthening system. The design guidelines are, in general restricted 

to the calculation of the shear strengthening contribution provided by the strengthening fV .The 

methodology to estimate the design value of the FRP contribution the shear fdV  requires the adoption of 

a safety factor generally directly applied to the value fV . Lima and Barros (2011) developed a web 

tool, designated DABASUM (DAtaBAse for FRP-based Shear strengthening of reinforced concrete 

beams- University of Minho, dabasum-civil.uminho.pt ) to collect data on experimental programs 

dealing with the shear strengthening of RC beams using the EBR technique and to assess the predictive 

performance of the fib Bulletin 14 ( fib 2001), ACI 440 (ACI Commitee 2008), HB 305-2008 (Standard 

Australian 2008, former CIDAR (2006), and CNR DT-200 (National Research Council 2012) design 

guidelines. At the time of the analysis (Lima and Barros 2011) the fib design model presented, in 

average, the lowest safety factor (1.198), while the safest predictions were obtained with the CNR-DT 

200 (average safety factor 2.108). The largest scattering was obtained from the CNR model 

(COV=0.73), while the model with lowest scattering was the fib (COV=0.55). The HB 305-2008 model 
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globally presented a good performance with an average value of 1.43 and COV = 0.58. A reliability 

analysis based on structural safety conducted by the authors demonstrated that the fib design model 

presented the weakest performance, while the best results were attained by the CNR-DT 200, which 

also provided the highest number of extremely conservative values (32%). Through the analysis of the 

database it was possible to observe that the aforementioned design models seemed to be not suited for 

application to low strength concrete beams. None of the design models explicitly consider the influence 

of the longitudinal reinforcement slρ in the prediction of Vf, nevertheless the experimental results 

evidenced that such parameter should not be neglected. A clear reduction of the model performance was 

observed with the increase of stirrups percentage, since the interaction between conventional steel 

reinforcement and FRP strengthening systems is not considered by the models for the calculation of Vf. 

This evidence indicates that the influence of the existing steel transverse reinforcement should be 

explicitly considered in the analytical formulations. 

 

2.7 Bond behavior of steel bar cast-in place and post-installed into concrete
 

The bond behavior of ETS installed bars is not deeply investigated since this is not a purpose of the 

presented work. However, it is possible to draw an analogy between the bond of ETS installed bars cast 

in steel bars / post installed steel bars / adhesive steel anchors, for which a large number of 

experimental programs have been carried out. The work done under the framework of FRP 

strengthening on the bond between concrete surface and FRP could be used for a better understanding 

the bond behavior of the ETS technique. 

The resistant mechanisms upon which steel bars-to-concrete bond is based are well known, due to the 

large number of test results that have been performed in the last forty-fifty years by analyzing a wide 

variety of specimens and testing techniques. Lutz and Gergely (1967) concluded that the load transfer 

between concrete and steel occurs through the action of three mechanisms: chemical adhesion, friction 

and mechanical interlock of the ribs on the surrounding concrete in case of deformed bars. The bond 

resistance of plain bars relies on the chemical adhesion between concrete and bar surface, in this case 

even low stress can cause a sufficient slip to break the adhesion at the materials interface. Once slip 

occurs, further bond can be developed only by means of friction. For deformed reinforcement, which 

are characterized by a higher bond capacity, adhesion is generally negligible and mechanical interaction 

based on the mechanical interlock of the ribs with the surrounding concrete is the dominant resisting 

mechanism. Experimental data have evidenced that the mechanical interlock results in a wedge action 

of the ribs. This wedging action generate radial components of bond forces balanced against tensile 

rings in concrete (Tepfers 1973). When the confinement is sufficient to prevent the splitting of the 
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concrete cover the slip of the deformed bars and the successive pull-out failure is caused by the 

formation of new sliding plane around the bar shearing off the concrete corbels and the force transfer 

mechanisms changes form rib bearing into friction.  

Different models describing the monotonic bond stress-slip behavior analytically were developed in the 

past, nevertheless most of them are similar to the bond model included in the Model Code 2010 (fib 

2013), which is characterized by: i) A total bond strength given by the superposition of mechanical 

bond and frictional bond which increases until the ultimate bond stress τ = τmax is reached at the slip s1. 

ii) a horizontal plateau between the slip value s1 and s2. iii) the ultimate frictional bond stress τ = τf. For 

monotonic loading, the bond stresses between concrete and reinforcing bar for pull-out and splitting 

failure can be calculated as a function of the relative displacements according to Eqs. (2.44) to (2.47) 

(see Fig. 2.40). 

( )0 max 1s s
ατ τ=  for 10 s s≤ ≤  (2.44) 

0 maxτ τ=  for 1 2s s s≤ ≤  (2.45) 

( ) ( ) ( )0 max max 2 3 2f s s s sτ τ τ τ= ⋅ − ⋅ − −  for 2 3s s s≤ ≤  (2.46) 

0 fτ τ=  for 3s s≤  (2.47) 

 

Fig 2.40 Model Code 2010 (fib 2013) bond model. 

The first curved part refers to the stage in which the ribs penetrate into the mortar matrix, characterized 

by local crushing and micro-cracking. The horizontal level occurs only for confined concrete, referring 

to advanced crushing and shearing off of the concrete between the ribs. This level represents a residual 

bond capacity, which is maintained by virtue of a large concrete cover or a minimum transverse 

reinforcement, keeping a certain degree of integrity intact. The decreasing branch refers to the reduction 

of bond resistance due to shearing of the concrete corbels between the ribs. In case of unconfined 

concrete, splitting failure occurs, which is reflected by a sudden drop of the bond strength before the 

horizontal level is reached. Depending on the failure mode, pull-out or splitting, different parameters is 
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applied. The bond stress-slip curve is considerably influenced by reinforcement yielding and by 

transverse pressure. 

 
Fig. 2.41 Potential embedment failure modes of bonded anchors, (Cook et al. 2007; Cook et al. 1998) 
 

Otherwise studies on bond of cast-in bars were a bond slip relationship is usually defined (e.g. 

Eligehausen et al. 1983) that allow the study of local and global behavior of the phenomenon, the study 

of epoxy adhesive anchors and post-installed rebars has been mostly focused on the calculation of the 

ultimate strength of the bonded system. Detailed information on the single adhesive anchor behavior is 

presented in Cook et al. (1998). Fig. 2.40 shows typical failure modes exhibited by bonded anchors and 

post installed bars. Due to the load-transfers and available bond strength, different failure modes can be 

observed. If bond strength is high enough to utilize the tension strength of the concrete, concrete failure 

will occur. This failure is characterized by cone-shaped concrete breakout originating at the base of the 

anchor (Fig. 2.41a). The slope of the cone envelope with the respect to the surface of the concrete 

member is approximately 25° to 35°. Normally, this failure mode can be observed at small embedment 

depth (hef ~ 3d-5d). For greater embedment depth, the failure mode shifts from a concrete cone to a 

mixed mode type of failure. A concrete cone with a depth of approximately 2d to 3d forms at the top 

end of the anchor, and bond failure occurs along the remaining length of the anchor. Bond failure 

occurs either at the boundary between threaded rod and mortar (Fig. 2.41c) or between the mortar and 

the sides of the drilled hole (Fig. 40b). Often a mixed interface failure can be observed (Fig. 2.41d). For 

large embedment depths steel failure can occur. The mechanism of load transfers is shown in Fig 2.42, 

a tension load is transferred by mechanical interlock from the threaded rod into the mortar and by 

adhesion and/or micro interlock (due to the roughness of the drilled hole) form the mortar into the 

concrete. 

 
Fig. 2.42 – Mechanism of load transfers of bonded anchor (Eligehausen et al. 2004) 
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The actual bond stress distribution along the embedment length at peak load is nonlinear with lower 

bond stresses at the concrete surface and higher bond stresses at the embedded end of the anchor.  In the 

elastic range, adhesive anchors which have been shown in Cook et al. (1993) exhibit a hyperbolic 

tangent stress distribution along the bonded anchor.  In the case of adhesive anchors and post-installed 

rebars a large number of parameters can influence the performance of the system material: mortar 

(epoxy, cement, hybrid), cracks in concrete, bar diameter, drilling diameter in relation to bar diameter, 

embedment depth. 

 
Fig. 2.43 Bond stress-displacement diagram for cast-in-place rebars and post installed rebars in monotonic 
loading. (Hofacker and Eligehausen 2001). 

 Hofacker and Eligenhausen (2001) showed that by using a proper adhesive, the post-installed rebars 

can exhibit a higher bond strength and more ductile behavior that cast-in-place bar (Fig.2.43). The bond 

stress-displacement curve of the cast in place rebars is similar to that of the post installed bar, which 

reached a 15% higher maximum bond stress (approximately 14MPa and slip 2.0 mm for post installed 

rebars) and the bond failure occurred in the interface between rebar and mortar. Also a second adhesive 

was tested and it exhibit a bond stress about 45% lower than for cast-in-rebars, and bond failure in the 

mortar /concrete interface.  

Annex A presents available data in literature regarding some experimental bond test on steel or FRP 

bars bonded to a concrete prism with adhesive material. Most of the presented test were conducted 

within a research on ETS strengthening (Valerio et al. 2009; Dalfré et al. 2011; Godat et al. 2012), 

instead the work conducted by Owa et al. (2012) and Mahrenholtz (2012) were dedicated to bond 

performance of post-installed bars for seismic application, only the data relevant for this research have 

been reported in Annex A. These pull-out tests have shown that the bond behavior between bars and 

concrete depends on the type of adopted adhesive. A ductile bond-slip response can be provided if the 

type of adhesive and bar are properly chosen. The bond strength seemed marginally affected by the 

thickness of the adhesive layer. The test also show that for the same type of adhesive the average bond 

stress developed by steel and CFRP bars provided in general similar results.  
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3 
Experimental tests on RC beams strengthened in shear using the 

Embedded Through-Section technique 

 

 

3.1 Introduction 

The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening 

of existing (RC) elements, as the experimental work presented in Chapter 2 have already evidenced 

(Valerio et al. 2009; Chaallal et al. 2011; Barros and Dalfré 2012). According to this technique, holes 

are drilled through the beam section, and bars of steel or FRP material are introduced into these holes 

and bonded to the concrete with adhesive materials. When concrete cover has not the bond and strength 

requisites to guarantee a strengthening effectiveness for the Externally Bonded and Near Surface 

Mounted techniques (see Chapter 2), ETS strategy can be a competitive alternative since it mobilizes 

the beam’s concrete core which is, generally, free of damage. The present work aims to contribute to a 

deep understanding of the ETS shear strengthening mechanisms, and the susceptibility of these 

mechanisms to the interaction between ETS bars and existing steel stirrups. The ultimate purpose of this 

work is to provide useful data for the establishment of design guidelines on the shear strengthening of 

RC beams using the ETS technique. To explore the potentialities of the ETS technique for the shear 

strengthening, an experimental program was carried out, composed of quasi-scale real RC T-cross 

section beams shear strengthened by using steel and CFRP bars. The experimental program was 

conceived for assessing the influence on the ETS shear strengthening effectiveness of the percentage, 

inclination and material type of the ETS systems. To study the interaction between ETS bars and 

existing steel stirrups, three series of RC T-cross section beams with different percentage of internal 

transverse reinforcement ( swρ =0.0%, swρ =0.1% and swρ =0.17%) were tested. The effectiveness of 

the ETS technique is finally compared with EBR and NSM techniques. The experimental program is 

described in detail and the relevant results are presented and discussed. This experimental and 



Chapter 3 
	
  
	
  

	
  
62 

	
  

analytical research is a step forward on the already existing information on the use of ETS technique for 

the shear strengthening of RC elements. 

3.2 Test program 

Fig 3.1 presents the geometry and the reinforcement arrangements of the nineteen T cross section 

beams of the experimental program. The reinforcement system was designed according to the Eurocode 

2 (European Committee for Standardization 2004), using an high percentage of longitudinal 

reinforcement ( slρ =2.79%) in order to force the occurrence of shear failure mode for all the beams of 

the experimental program. To localize shear failure in one of the beam’s shear spans, a three point load 

configuration was selected, with a different length of the beam shear spans.  

 

Fig. 3.1. Tested beams: geometry, steel reinforcements applied in all beams (dimensions in mm). 

The monitored beam span ( 1L =0.9 m) was 2.5 times the effective depth of the beam’s cross section (

1L d =2.5), since according to the available research (Collins and Mitchell 1997), beyond this limit the 

arch effect is negligible. To avoid shear failure in the 2L  beam span, steel stirrups ϕ8@90 mm were 

applied in this span. Different shear reinforcement systems were applied in the 1L  beam’s span of the 

tested beams. In fact, the experimental program consisted of the following three series of beams: 0S-

Series that did not have conventional steel stirrups; 2S-Series that had steel stirrups ϕ6@300 mm, 

corresponding to a shear reinforcement ratio ρ sw  =0.10%, 4S-Series that had steel stirrups ϕ6@180 

mm, corresponding to a shear reinforcement ratio swρ  =0.17%, where: 

sw
sw

w sw

A
b s

ρ =  (3.1) 

being swA  the cross sectional area of the two legs of a steel stirrup, sws  the spacing of the steel 

stirrups, and wb =180 mm the width of the beam’s web.  
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Each series had a reference beam without any strengthening system (Fig 3.1, Fig 3.2), and four beams 

with different ETS strengthening configurations (Fig 3.3). The investigated parameters are the shear 

strengthening ratio ( fwρ ) and the inclination (90°, 45°) of the ETS bars, as well as the influence of the 

percentage of existing steel stirrups. In particular, the shear strengthening ratio of the ETS steel bars and 

ETS CFRP rods was defined as follows: 

sin
fw

fw
w fw f

A
b s

ρ
β

=  (3.2) 

where fwA  is the cross sectional area of ETS bar, fws  and fβ  represent the spacing and inclination of 

this bar, respectively.  

 
(a) 

 
(b) 

Fig. 3.2. Reference Beams: (a) 2S-Ref (stirrups ϕ6@300), (b) 4S-REF(stirrups ϕ6@180). 

Table 3.1 ETS shear strengthening configurations of the tested beams. 

Number 
of bars 

Angle 
[θfw] 

ETS bar 
spacing 

[sfw] 

ETS 
Reinforcing 
ratio [ρfw] 0S-Ref c 2S-Ref d 

 
 

4S-Ref e 

dETS [°]a (mm) [%]b (ρsw=0.0%) 
ρsw+ρfw 

[%] (ρsw=0.10%) 
ρsw+ρfw 

[%] (ρsw=0.17%) 
ρsw+ρfw 

[%] 
3 90 300 0.15 0S-S300-90 0.15 2S-S300-90 0.25 4S-S300-90 0.32 
3 45 300 0.21 0S-S300-45 0.21 2S-S300-45 0.31 4S-S300-45 0.38 
5 90 180 0.24 0S-S180-90 0.24 2S-S180-90 0.35 4S-S180-90 0.42 
5 45 180 0.34 0S-S180-45 0.34 2S-S180-45 0.45 4S-S180-45 0.52 
5 90 180 0.16 -- -- 2S-C180-90 0.26 4S-C180-90 0.33 
5 90 180 0.22 -- -- 2S-C180-45 0.32 4S-C180-45 0.39 

a Angle between the ETS bar and the beam’s axis. 
b The ETS percentage was obtained from Eq. 3.2. 
c Series of beams without steel stirrups (0S-Series) (Fig. 3.1). 
d Series of beams with two stirrups (2S-Series) (Fig. 3.2a). 
e Series of beams with four stirrups (4S-Series) (Fig. 3.2b). 

The influence of the material type of the ETS bars used for the strengthening was also investigated, by 

having beams strengthened with CFRP and steel bars in both 2S and 4S series of beams. The diameter 
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of the ETS steel and CFRP bars was 10 and 8 mm, respectively. A smaller diameter for the CFRP bar 

was chosen in order that the estimated force at the debonding of this bar was similar to the force at yield 

initiation of the steel bar. Based on previous experiences (Valerio et al. 2009; Chaallal et al. 2011; 

Barros and Dalfré 2012), it was considered for the strain at debonding of this type of CFRP bars a value 

in the interval 0.55-0.6%. In the design of the steel ETS configuration it was assumed that the ETS bars 

work like steel stirrup, and perfect bond for the bars/adhesive/concrete was considered. Table 1 

indicates the designation adopted for each beam and the strengthening configurations, namely, the 

number of applied ETS bars, inclination, spacing, shear strengthening ratio ( fwρ ), as well as the 

percentage of steel stirrups ( swρ ) and total shear reinforcement ( sw fwρ ρ+ ) calculated from Eq. 3.1 and 

Eq. 3.2. Fig. 3.3 shows the strengthening configurations of the tested series. As previously 

demonstrated by Barros and Dalfré (2012), the effectiveness of the ETS bars is higher if they are placed 

in between existing stirrups. Following this approach, the strengthening arrangements indicated in 

Table 3.1 and Fig. 3.3 were adopted, leading to four different fwρ  values. The ETS strengthening ratio 

varied between 0.15% (ETS vertical bars spaced at 300 mm) and 0.34% (ETS bars at 45° and spaced at 

180 mm). Two strengthening ratio values were adopted in the beams strengthened with ETS CFRP 

bars, fwρ = 0.16 (vertical bars spaced at 180 mm), and fwρ =0.22 (bars at 45° spaced at 180 mm). 

 
(a) 

 
(b) 
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(c) 
Fig. 3.3. Strengthening configurations of series: (a) 0S, (b) 2S; (c) 4S (dimensions in mm). 

3.3 Material characterization 

The concrete average compressive strength (fcm) of the beams was evaluated at 28 days and at the age of 

the beams’ test, by carrying out direct compression tests on cylinder specimens of 150 mm diameter 

and 300 mm height according to EN 206-1 (2004) (European Committee for Standardization 2001). It 

was obtained an average compressive strength, fcm, equal to 24.7 and 29.7 MPa at 28 days and at the 

day of the test (approximately 255 days), respectively, for the first batch (0S-Series and 2S-Series) and 

27.6 and 32.3 MPa, at 28 days and at the day of the test (approximately 250 days) for the second batch 

(4S-Series and CFRP ETS strengthened beams), respectively. For the internal reinforcement of the 

beams, high bond steel bars of 6, 10, 8, 12, and 24 mm diameter were used. The steel class is B 450 C 

(fyk =450MPa) according to the Italian Construction Code. (C.S.L.P 2009). The yield stress and tensile 

strength were obtained by means of uniaxial tensile tests performed according to recommendations of 

UNI EN ISO 6892-1:2009 (European Committee for Standardization 2009). For the steel bars of 6, 8, 

10, 12 and 24 mm diameter it was obtained an average yield stress of 574 (εsy= 0.287%), 505 

(εsy=0.253%), 549 (εsy= 0.275%), 527 (εsy= 0.264%) and 598 (εsy= 0.299%) MPa, and an average tensile 

strength of 667, 594, 642, 617 and 708 MPa, respectively. The adopted ETS steel bars were of the same 

class of the bars used for the flexural reinforcement and steel stirrups applied in the beams. To bond the 

ETS steel bars to the concrete substrate the Sikadur 32 N epoxy based adhesive was used. The tensile 

behavior of this adhesive was characterized by carrying out direct tensile tests according to the ISO 

527-2 (European Committee for Standardization 2012), having been obtained an average tensile 

strength of 20.7 MPa and an elasticity modulus of 3.27 GPa. The pultruded carbon fiber sandblasted 

8mm rod, MasterBrace BAR 8 CFS (Basf -Technical sheet 2014), has an elasticity modulus of 160 GPa 

and an ultimate strain of 1.2 %. The material properties are summarized in Table 3.2 
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Table 3.2 Material properties of the tested beams. 
 

Concrete 
 

fcm (at 28 days) fcm( day of the tests) 

0S and 2S-Series 24.7 29.7 (255 days) 
4S-Series and CFRP strengthened beams  27.6 32.3 MPa (250 days) 

Steel 
Young modulus ( ≈  200 GPa) 

 
Yield stress fy [MPa] 

 
Tensile strength ft [MPa] 

6 573.94 666.67 
8 505.35 549.11 

10 549.35 641.83 
12 527.35 616.48 
24 597.88 708.07 

CFRP bars Young modulus Ultimate strain 
 160 GPa 1.2% 

Epoxy resin Young modulus  Tensile strength 
Ultimate strain>50(%) 3.1 GPa fepox = 20.1 [MPa] 

 

3.4. Strengthening technique 

To simplify the drilling process and to avoid intersecting the longitudinal bars, the ETS strengthening 

process was executed with the beam’s web turned upward. The main steps of the ETS strengthening 

technique are shown in Fig. 3.4. These steps are: (1) holes of 16 mm diameter for ETS steel bars, and 

holes of 14 mm of the ETS CFRP bars were drilled through the center of the beams’ web up to a depth 

of 20 mm from the top flange  in order to maintain intact the concrete cover and avoid adhesive to flow 

through the bottom part of the hole (Fig. 3.4a and 3.4b); during the drilling process, the concrete dust 

was aspirated using a vacuum system; (2) the holes were cleaned by using an helicoidal steel brush 

capable of removing the particles from the walls of the hole, which were not eliminated by the vacuum 

system (Fig. 3.4c). The cleaning procedure was repeated until the dust was completely removed; (3) the 

epoxy resin, which was prepared according to the recommendations of the supplier, was slowly poured 

into the holes; (4) the steel bars, which were previously cut in the desired length and cleaned with 

acetone, were slowly introduced into the holes removing the resin in excess (Fig. 3.4d). To guarantee a 

proper curing of the adhesive, the beams were tested at least two weeks after the ETS application. 

 

Fig.3.4. Strengthening procedures for the ETS technique. 
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3.5 Test setup and monitoring system 

Fig. 3.5 shows the position of the displacement transducers (LVDTs) and force transducers used for 

measuring the beam’s deflection and applied/reaction forces, respectively. The LVDTs were supported 

in a bar fixed at the beams supports’ sections in order to register displacements only caused by the 

deflection of the beam. The displacement transducer TR1 was used to control the tests at a displacement 

rate of 10 µm/s up to the failure of the beams. The beams were loaded under three-point bending 

configuration with a shear span of 900 mm. The applied load (F) was measured using a force transducer 

of ±750 kN capacity and accuracy of ±0.1%. A second force transducer of ±500 kN capacity and 0.1% 

accuracy was under the support corresponding to the longer span (L2) to complement the information 

for a full assessment of the shear force in each span of the beam. To obtain the strain variation in steel 

stirrups and ETS bars, electrical strain gauges (SGs) were bonded on selected cross sections of stirrups 

and ETS bars that have the highest probability of providing the largest contribution for the shear 

strengthening of the RC beam. Eight and five SGs for each beam of series without stirrups (0S-Series) 

and beam with stirrups (2S and 4S Series), respectively, were installed on ETS bars according to the 

configuration represented in Figs 3.6a and 3.6b. In ETS CFRP strengthened beams, six SGs were 

installed on a CFRP bar, and two SGs were applied on an internal steel stirrups. The monitoring SGs 

system in CFRP strengthened beams was slightly different of the one adopted in the steel strengthened 

beams, and the position of the SGs is indicated in Fig3.6c. In the present study a close-range 

photogrammetric technique was used to determine the displacement of a range of points on the beams 

surface at selected load levels up to and after failure. The aim of the photogrammetric measurements 

was to observe the crack crack pattern evolution. 

     

 
Fig. 3.5.Test set-up. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.6. Position of the strain gauges (dimensions in mm), (a) position of the SG on the ETS bars and stirrups, (b) 
monitored steel ETS strengthening bar (c) monitored CFRP strengthening bar. 

 

3.6 Steel ETS strengthened beams 

3.6.1 Load carrying capacity of the tested beams 

The load ( F )- deflection ( Lu ) diagrams are presented in Figs 3.7 to 3.9 for 0S Series, 2S Series and 4S 

Series strengthened with steel ETS bars. All the beams showed the same behavior up to the formation 

of the first diagonal crack, that has formed at an approximate load of 113 kN ( Lu =0.98mm), 100 kN ( 

Lu =0.91mm) and 135 kN ( Lu =1.37mm) in case of the reference beams 0S-Ref, 2S-Ref and 4S-Ref, 

respectively. Fig. 3.10 shows the failure crack patterns at maximum load obtained for all the tested 

beams. As already observed in beams that have been strengthened in shear with carbon fiber reinforced 

polymer (CFRP) laminates, installed according to the NSM technique (Dias and Barros 2010), the 

stiffness degradation of the ETS strengthened beams is generally smaller than that of the reference 

beams. The ETS steel bars offered resistance to crack opening and sliding by bridging the shear cracks 
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and enhancing concrete’s contribution to the shear resistance due to the aggregate interlock effect, 

which leads a higher load carrying capacity after shear crack initiation. The ETS strengthening 

technique increased significantly the maximum load carrying capacity and ultimate deflection 

capacities of the beams, whose performance level depends on the shear reinforcement/strengthening 

arrangement. All the beams exhibited a shear failure mode, since a quite high flexural reinforcement 

was adopted in order to avoid flexural failure mode.  

Table 3.3 Experimental results of 0S-Series, 2S-Series and 4S-Series strengthened with steel bars. 

  maxF  maxLu  RefF FΔ  maxV  exp
fV  CDCtang. CDCavg. 

  [kN] [mm]  [%] [kN]  [kN] [°] [°] 
0S-Ref 156.1 4.66 -- 93.6 -- 34 39 

0S-S300-90 217.8 4.37 39.5 130.7 37.0 48 42 
0S-S300-45 348.6 

 
123.4 209.2 115.5 58 47 

0S-S180-90 256.8 4.31 64.6 154.1 60.5 63 44 
0S-S180-45 368.8 6.56 136.3 221.3 127.7 35 43 

2S-Ref 242.1 4.70 -- 145.2 -- 45 39 
2S-S300-90 315.7 5.32 30.4 189.4 44.2 58 42 
2S-S300-45 407.1 7.03 68.2 244.3 99.0 48 39 
2S-S180-90 406.8 8.27 68.1 244.1 98.8 73 47 
2S-S180-45 504.7 8.37 108.5 302.8 157.6 70  49 

4S-Ref 353.8 7.35 -- 212.3 -- 48 40 
4S-S300-90 370.9 7.43 4.8 222.6 10.3 32 46 
4S-S300-45 552.4 12.03 56.1 331.5 119.2 61 54 
4S-S180-90 413.2 6.32 16.8 247.9 35.6 52 54 
4S-S180-45 566.4 11.01 60.1 339.8 127.6 53 40 

The main results of the experimental tests are presented in Table 3.3, where 
maxF   is the maximum load 

attained by the beams and maxLu  is the displacement in the loaded section at 
maxF . The strengthening 

efficiency of the ETS technique can be evaluated by considering the RefF FΔ  ratio, where RefF  is the 

maximum load of the reference beam, and max RefF F FΔ = −  is the increase of maximum load provided 

by each ETS arrangement. The Table 2 also includes the maximum shear force max max0.6V F= ⋅  applied 

in the L1 beam’s span (Fig. 1) and the resisting shear force provided by the ETS arrangement, exp
fV . This 

last term was determined by considering the shear resistance in the 0S-Ref, 2S-Ref and 4S-Ref 

reference beams, by assuming as valid the principle that the shear resistance of a beam reinforced with 

steel stirrups and strengthened with ETS bars is the addition of the contributions of the concrete, steel 

stirrups and ETS bars. The last two columns in this table include, respectively, the tangent (CDCtang) 

and the average (CDCavg) inclination of the failure shear crack (CDC), whose evaluation process is 

schematically represented in Fig. 3.10, for 0S-Ref beam. For the evaluation of the CDCtang, an auxiliary 
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horizontal line at half distance from the longitudinal reinforcement to the bottom surface of the beam’s 

flange (d1 represented in 0S-Ref beam in Fig. 3.10) was introduced; then the point of its interception with 

the CDC was determined. The CDCtang is the inclination of the CDC at this point of interception. The 

CDCavg is determined by connecting the points of the interception of the CDC with the bottom surface 

of the beam’s flange and the longitudinal reinforcement. According to the obtained results, the CDCtang 

was usually higher than(CDCavg. The values of CDCtan have ranged from 32° to 73°. By considering all 

the tested beams, an average value of CDCavg = 44° was obtained. It is possible to notice that the beams 

with the highest percentage of shear reinforcement (ρsw+ρfw) and the CFRP strengthened beams 

exhibited higher inclinations of the CDCavg. Beam 2S-S180-90 presented high inclinations of critical 

diagonal crack, probably due to the less evenly distributed of the shear reinforcements.  

Fig. 3.10 clearly shows that the number of diagonal cracks increased with the percentage of transverse 

steel reinforcement. The cracks started due to flexural effect achieved by crossing almost orthogonally 

the flexural reinforcement; however due to the tension stiffening effect the cracks’ width remained of 

minor dimension. During the loading process of the beams, some of these cracks propagated toward the 

bottom surface of the flange with the average and tangent inclinations reported previously; meanwhile a 

diffuse pattern of shear cracks of very small inclination formed due to this reinforcement’s high dowel 

resistance. 

The load vs. deflection relationship of the beams of 0S-Series is indicated in Fig. 3.7. This series is 

characterized by the absence of stirrups in the strengthened shear span ( swρ = 0.0%). The load-

displacement relationship of the reference beam (0S-Ref) presented two peaks. The first peak, 

corresponding to the load level of F =139.2 kN ( Lu  =1.92mm), occurred when the main shear crack in 

the beam’s web was formed; it was followed by a small decay. This shear crack then progressed at the 

interface web/flange of the beam and through the web, with an increase of the load carrying capacity up 

to maxF =156.1 kN ( maxLu =4.66 mm) before completely crossing the web, with an abrupt failure.  

Due to the detrimental interaction effect between existing steel stirrups and strengthened systems in the 

context of the shear strengthening effectiveness (Dias and Barros 2013), the beams of this series 

presented the highest strengthening efficiency amongst the tested series, with an increase of load 

carrying capacity that ranged from 40% to 136%. For the ETS vertical bars, the beams with the lowest 

percentage of ETS bars, fwρ = 0.15% (0S-S300-90), and with the highest ρfw= 0.24% (0S-S180-90) 

presented an increase of load carrying capacity of 39.5% ( maxF = 217.8 kN; maxLu  = 4.37 mm) and 

64.6% ( maxF = 256.8 kN; maxLu = 4.31 mm), respectively. The highest increase of load carrying 

capacity was obtained in the beams with ETS bars inclined at 45°. In fact the beam with the lowest fwρ
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= 0.24% (0S-S300-45) and with the highest fwρ = 0.34% (0S-S180-45) presented an increase of load 

carrying capacity of 123.4% ( maxF =348.6 kN) and of 136.3% ( maxF = 368.8 kN; maxLu  =6.56 mm), 

respectively. This indicates that the inclination of the ETS bars seems to have a higher contribution for 

the strengthening effectiveness that the spacing of these bars, as long as this distance assures that a 

CDC is crossed by an effective ETS bar (with an enough bond length to avoid premature debonding), 

which is in agreement with the tendency observed in the NSM technique (Dias and Barros 2013). 

Beam 0S-S300-45 exhibits slightly lower force-deflection stiffness than the other beams of 0S-Series. 

This beam was subjected to preliminary load cycles to overcome some test setup inaccuracies, which 

had partially pre-cracked this beam, leading to a reduction of initial stiffness of about 15%. 

  
Fig. 3.7 Force vs deflection at the loaded seciton for 0S-Series. 

The load vs. deflection relationship of the beams of 2S-Series is depicted in Fig. 3.8. This series is shear 

reinforced with 2-arms ϕ6mm steel stirrups @300 mm ( swρ  = 0.10%). For the ETS vertical bars, the 

beams with the lowest percentage of ETS bars, fwρ  = 0.15% (2S-S300-90), and with the highest 

percentage, fwρ = 0.24% (2S-S180-90), have presented an increase of load carrying capacity of 30.4% (

maxF = 315.7 kN; maxLu  =5.32 mm) and 68.1% ( maxF = 406.8 kN; maxLu =8.27 mm), respectively. Like 

already occurred in the beams of the 0S-Series, in the 2S-Series the highest strengthening effectiveness 

has occurred in the beams with ETS bars inclined at 45°. In fact, the beam with the lowest percentage, 

fwρ  = 0.24% (0S-S300-45), and with the highest percentage, fwρ = 0.34% (2S-S180-45), presented an 

increase of the load beam carrying capacity of 68.2% ( maxF  =407.1 kN; maxLu = 7.03 mm) and 108.5% 

( maxF = 504.7 kN; maxLu  =8.37 mm), respectively. 
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Fig. 3.8 Force vs deflection at the loaded seciton for 2S-Series. 

The load vs. deflection relationship of the beams of the 4S-Series is illustrated in Fig. 3.9. This series is 

shear reinforced with 2-arms ϕ6mm existing steel stirrups @180 mm ( swρ = 0.17%). For the ETS 

vertical bars, the beams with the lowest percentage of ETS bars, fwρ = 0.15% (4S-S300-90), and with 

the highest percentage, fwρ = 0.24% (4S-S180-90), presented an increase of load carrying capacity of 

4.8% ( maxF  = 370.9 kN; maxLu  = 7.43mm) and 16.8% ( maxF = 413.2 kN; maxLu  = 6.32mm), respectively. 

The decrease of the shear strengthening effectiveness with the increase of existing shear reinforcement 

is quite evident, and will be discussed in more detail in Section 3.7. Furthermore, for configuration 4S-

S300-90 a exp
fV  of 10.3 kN indicates that the contribution provided by the only ETS bar crossed by the 

shear crack was low, due to its small resisting bond length (Fig 3.10). The results of this beam showed 

the importance of the adopted strengthening geometry, revealing that strengthen elements should be 

placed in between stirrups (Barros and Dalfré 2012; Chaallal and Mofidi 2011). For the beams with 

ETS bar inclined at 45° a higher increase of load carrying capacity was obtained. In fact, the beams 

with the lowest percentage of ETS bars, fwρ  = 0.24% (4S-S300-45), and with the highest percentage, 

fwρ = 0.34% (4S-S180-45), presented an increase of load carrying capacity of 56.1% ( maxF =552.4 kN; 

maxLu  = 12.03 mm) and 60.1% ( maxF = 566.4kN; maxLu  =11.01mm), respectively. These results indicate 

that by increasing the percentage of existing steel stirrups, the influence of the inclination of the ETS 

bars in terms of shear strengthening effectiveness becomes larger, while the influence of the spacing of 

ETS bars becomes smaller.  
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Fig. 3.9 Force vs deflection at the loaded seciton for 4S-Series. 

 

 
Fig. 3.10 Crack Patterns at Maximum Load. 

Fig. 3.11a presents the influence of the inclination and percentage of ETS bars on strengthening 

efficacy. This is evaluated by considering the RefF FΔ  ratio. This figure clearly shows that the ETS 
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effectiveness is higher when inclined ETS bars are used. For series 0S, and in terms of RefF FΔ , the 

inclined ETS bars were 3.1 and 2.1 times more effective than vertical bars spaced at 300 and 180mm, 

respectively; this difference increased for 4S-Series up to 11.7 and 3.6 for bars spaced at 300 and 

180mm, respectively. This graph also demonstrates that the ETS strengthening efficacy increase by 

reducing the spacing of the ETS bars, but the effectiveness of using inclined bars is much higher than 

increasing the percentage of ETS vertical bars. Fig 3.11b represent the influence of the existing stirrups 

spacing on the ETS strengthening efficacy, showing the important role of the percentage of transverse 

reinforcement on the ETS effectiveness. A comprehensive discussion of the investigated parameter 

during the tests is presented in section 3.7 analyzing the strengthening effectiveness in terms of swρ  and 

fwρ , and taking into account the results obtained with CFRP strengthened beams (Section 3.6).  

  
(a) (b) 

Fig 3.11 Influence of the inclination and percentage of ETS bars (a) and influence of transverse reinforcement (b) 

 

3.6.2 Strains in the ETS bars/rod and steel stirrups 

The relationships between the force applied in the beams and the strains registered in the most 

representative SGs installed in the monitored ETS bars and stirrups are shown in Fig. 3.12, while in 

Table 3.4 are included the relevant results. In this table, maxFε  is the strain measured at maxF ; and maxε  is 

the maximum strain recorded in the ETS bars. For this last parameter the value of the maxL Lu u  ratio is 

also provided in order to indicate if maxε  occurred in the pre- ( maxL Lu u <1) or post-peak ( maxL Lu u >1) 

phase of the beam's response. The evaluation of the yield strain, syε  took into account the yield strain 

values determined experimentally in coupons of ϕ6 stirrups and ϕ10 steel ETS bars, respectively, syε
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=0.287% and syε  =0.275%. In Table 3.4 the designation attributed to the strain gauges (second 

column), and ETS bars and steel stirrups (third column, where St stands for stirrups and S for ETS steel 

bar) are represented in Figs. 3.6 and 3.12 in order to highlight the relative position between the SGs and 

the shear cracks, and to help a better interpretation of the obtained results. The yield initiation process 

was reflected in the propagation of the crack pattern; the recorded strain values are in fact quite 

dependent on the distance between the SG and the shear failure crack and on the available bond length 

of the element they are installed. This effect is quite visible in beams strengthened with vertical ETS 

bars, in which relatively high strain values have been measured in zones of the ETS bars crossed by a 

shear crack and sufficient bond length (Figs 3.12a,b,e and h). For instance, large strains at Fmax have 

been recorded in SG No.4 of the 0S-S180-90 beam (0.59% at Fmax) (Fig. 3.12b), SG No.7 for the 4S-

S180-90 (ε=88% at Fmax) (Fig. 3.12h). In the vertical ETS bars the yield strain was usually attained in 

the elements that crossed the CDC at half of the beam’s height (Beam 0S-S180-90, Fig.4) since in this 

case the available bond length was adequate. The largest strain value was recorded in the SG4 of the 

0S-S180-90 beam ( maxε =1.06%) because this SG was installed in a zone of the ETS bar crossed by the 

shear failure crack (Fig. 3.12b). If the available bond length is relatively small, the steel bars cannot 

attain the yield strain due to slip occurrence, as was the case of SG No.1 of the 0S-S180-90 (ε= 0.16% 

at Fmax). (Fig. 3.12a) and SG No.4 of the 4S-S180-90 beam (ε=0.04% at Fmax) (Fig 3.12h). 

Higher strains have been recorded in inclined ETS steel bars, thanks to the adopted strengthening 

configuration that provided longer force transfer length and favorable orientation of the ETS bars in 

respect to the crack’s inclination, leading consequently to a better mobilization of the bars' 

reinforcement capacity. It was verified that steel ETS bars have reached the yield strain in the sections 

where they were crossed by the critical shear crack and also by a secondary diagonal crack, as occurred 

in the beams 0S-S300-45, 0S-S180-45, 2S-S300-45, 2S-S180-45, 4S-S300-45, and 4S-S180-45. In 

some of the tested beams, the excellent bond conditions provided by the concrete core allowed the steel 

yield strain to be exceeded in more than one section of the same ETS bar crossing shear cracks, such 

was the case, for instance, 4S-S300-45 beam (Fig.3.12i) with ε=0.91% in SG No.6 at 0.75 uL/uLmax and 

ε=0.90% in SG No.8 at 0.82 uL/uLmax). By using inclined bars, strain values higher than 0.8% have been 

usually recorded in at least one of the ETS steel bars after the maximum load reached its peak. The 

higher number of cracks is a consequence of the higher percentage of the ETS strengthening ratio and 

the larger effective bond length (in case of inclined ETS bars) that can mobilizes simultaneously bond 

and concrete resisting fracture mechanisms (Bianco et al. 2010). The maximum strain of ε=0.66% at 

maxF  for inclined steel ETS bars was measured in the SG No.5 of beam 2S-S180-45. I can also be 
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observed that the using inclined ETS bars steel yielding occurred in general at a lower force F  

compared with vertical ETS installed bars.  

Steel stirrups showed a trend in terms of strain variation similar to the ETS bars, attaining relatively 

high strains in the sections crossed by a diagonal crack, as was the case of SG No.3 in beam 4S-S300-

45 (ε=0.89% at 0.68 uL/uLmax), or SG No.3 for beam in 2S-S180-90 where a maximum strain of 1% was 

obtained because this SG was quite close to the section of the steel stirrup crossed by a shear crack (Fig. 

3.12e). Moreover, the excellent anchorage conditions provided by the closed configuration of the 

stirrups, as well as its smaller diameter (when compared to the ETS steel bars diameter), have assured 

the attainment of the yield strain in several sections monitored with SG, also in stirrups crossed by 

secondary shear crack as for example beam 2S-S180-90 (Fig 3.12e). In some of the beams, the steel 

stirrups have even attained its rupture (2S-S300-45, 4S-S180-90). 

Table 3.4 Relevant data in terms of strains measured in 0S-2S and 4S-Series, strengthened with steel ETS bars  
 

Beam ID | SG Elem. 
maxFε[%] 
 

maxε  [%] 
( maxL Lu u ) 

Beam ID | SG Elem. maxFε   
[%] 

 

maxε  [%] 
( maxL Lu u ) 

0S-S300-90 1 S1 0.06   0.08 (0.72) 2S-S180-90 3 St1 -- 1.00 (0.83) 
 5 S2 0.22 0.27 (2.06)  5 S2 0.13 0.14 (1.32) 
 6 S2 -- 0.29 (0.66)  8 S3 0.20 0.20  (1.00) 
 8 S3 0.01 0.27 (2.07) 2S-S180-45 2 St1 0.42 0.56 (1.13) 
0S-S300-45 2 S1 0.26 0.29 (1.18)  4 S2 0.13 0.15 (0.78) 
 3 S2 -- 0.92 (0.62)  5 S2 0.30 0.31 (1.07) 
   6 S2 0.27  0.27 (1.00)  7 S3 0.21 0.22 (1.00) 
 8 S3 -- 0.87  (0.99)  8 S3 0.29 0.31 (1.11) 
0S-S180-90 1 S2 0.16 0.17 (1.03) 4S-Ref 1 St1 0.47 0.47 (1.00) 
 4 S3 0.59 1.06 (2.23)  2 St2 0.75 0.86 (0.50) 
 5 S3 0.28 0.29 (0.99) 4S-S300-90 6 S2 0.16 0.16 (1.00) 
 8 S4 0.05 0.05 (1.00) 4S-S300-45 1 St1 0.25 0.31 (1.10) 
0S-S180-45 2 S2 0.18 0.19 (0.59)  3 St2 -- 0.89 (0.69) 
 3 S3 0.46 0.48 (1.03)  4 S1 -- 0.38 (0.82) 
 5 S3 -- 0.26 (0.81)  6 S2 -- 0.91 (0.75) 
 7 S4 -- 0.64 (0.89)  8 S2 -- 0.90 (0.82) 
 8 S4 0.27 0.36 (1.29) 4S-S180-90 2 St2 0.26 0.38 (1.06) 
2S-Ref 1 St1 0.17 0.21 (1.49)  4 S2 0.04 0.05 (1.05) 
2S-300-90 1 St1 0.14 0.19 (1.26)  7 S3 0.88 1.00 (1.02) 
2S-S300-45 3 St1 0.30 0.95 (1.07) 4S-S180-45 1 St1 0.41 0.48 (1.18) 
 4 S1 0.15 0.18 (1.24)  3 St2 -- 0.96 (0.92) 
 5 S1 0.16 0.73 (1.14)  5 S2 0.66 0.82 (1.20) 
 6 S2 0.59 0.84 (0.63)  8 S3 0.26 0.27(1.20) 
 8 S2 0.30 0.92 (1.06)      
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 
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(g) (h) 

 

 

(i) (j) 
Fig. 3.12 Load versus strains recorded in strain gauges applied in ETS bars and steel stirrups. 

 

3.6.3 Failure modes  

After the strengthened beams were tested, inspections on the failure modes of the ETS steel revealed 

the tendency of debonding at the bar/adhesive interface (Figs. 13a and b). Due to the higher 

confinement provided to the ETS bars by the web-flange surrounding concrete under compression, 

debonding which was the governing failure mode occurred in the bond length of ETS bars localized in 

the bottom part of the beam’s cross section (apart 0S-S300-90, see Fig. 3.7), and generally in the shorter 

embedded length of the two parts in which the crack divides the ETS bar. This type of failure has been 

observed either in vertical (Fig 3.13a) as well in inclined bars (Fig. 3.13b). It was possible to observe 

that the stiff steel ribs of the ETS bars scratched the surrounding epoxy adhesive, Fig. 3.13c. Despite 

this observed behavior, the bond performance was capable to mobilize the yield stress of the steel bars 
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as reported in the previous section. This type of failure mode might justify the relatively low maximum 

strains recorded in the vertical ETS bars, and consequently the lower shear strengthening effectiveness 

when compared to the same strengthening configuration but using inclined steel bars (Table 3.4). These 

strain values are lower compared the ones obtained using composites material applied according to the 

NSM technique. (Dias and Barros 2011b; Chaallal et al. 2011). 

The average direction of the shear failure crack varied between 39° and 54° with regards to the beam’s 

axis (Table 3.4); so during the opening and sliding process of this type of cracks, the vertical and 

inclined ETS bars crossing the cracks underwent axial and transversal force components. As already 

observed in a previous study (Mazaheripour et al. 2013), due to this latter component, the axial force 

transferred from the bar to the surrounding material increases, leading the ETS bars to scratch the 

surrounding epoxy adhesive. 

The type of failure characterized by the loss of bond between the steel end epoxy adhesive was also 

found in the bond test conducted by (Valerio et al. 2009), and (Dalfré et al. 2011).  

The types of failures reported by (Bianco et al. 2011), namely, concrete fracture, and mixed concrete-

fracture-debonding were not observed in the present experimental program. The concrete fracture was 

not observed due to the relatively high confinement of the core concrete surrounding the ETS bars when 

using the ETS technique. It is also possible to observe that the group effect, i.e. the tendency for the 

detachment of the concrete cover with the increase of the shear strengthening percentage, observed 

when using the NSM technique (Rizzo and De Lorenzis 2009; Dias and Barros 2010, 2011b), did not 

occur in the ETS technique, neither by using the highest percentage of strengthening. Due to the 

scratching of the epoxy adhesive, the maximum strain recorded in the ETS bars never attained the steel 

ultimate strain, and therefore the rupture of the steel ETS bars have never occurred. However, in case of 

the steel stirrups, due to the excellent anchorage conditions provided by its closed shape, the steel 

rupture of this reinforcements was observed in some beams like for example 2S-S-300-45 (Fig. 3.13d).  

  

(a) (b) 
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(c) (d) 

Fig. 3.13. Typical failure modes in the transversal reinforcement: (a-b) debond of ETS bars; (c) adhesive 
scratching due to the action of ETS’s ribs; (c) rupture of steel stirrups. 

 

3.7 CFRP ETS strengthened beams   

3.7.1 Load carrying capacity of the tested beams 

The shear strengthening effectiveness of CFRP bars was also investigated, by strengthening and testing 

two beams of both 2S-Series and 4S-Series. The tested beams were strengthened with the vertical and 

inclined configurations that provided highest fwρ , which corresponded to vertical and inclined ETS bars 

spaced at 180mm. The resulting strengthening ratios fwρ were 0.16 and 0.22 for beams 2S-C180-90/4S-

C180-90 and 2S-C180-45/4S-C180-45, respectively, as already presented in Table 3.1. Due to the 

adopted CFRP ETS bar diameter, smaller than in case of steel bars (8mm among 10mm), the percentage 

of fwρ for the same strengthening configuration were slightly different between steel and CFRP 

strengthened beams (Table 3.1). The load vs. deflection relationship of the beams strengthened with 

ETS CFRP bars is indicated in Figs. 3.14a and in Fig. 3.14b for 2S and 4S-Series respectively; this 

figures also present the beams strengthened by using steel bars that adopt the same ETS strengthening 

configuration. ETS CFRP strengthened beams showed, in general, similar behavior, load carrying 

capacity and ultimate deflection capacities to the beams that have been strengthened with steel ETS 

bars.  

As for ETS steel bars the higher load carrying capacity and higher stiffness after the formation of the 

shear diagonal cracks is attributable to the ETS bars that bridged the shear cracks surfaces and offered 

resistance to crack opening and sliding. The exhibited failure mode was in general a shear failure, even 

if the beam with the highest load carrying capacity (4S-C180-45) has presented a mixed-mode shear-

flexural failure. Its crack pattern was characterized by the opening of two large diagonal cracks, 

followed by the crushing of the concrete at the loaded section at failure (Fig. 3.15). 
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(a) 

 
(b) 

Fig. 3.14 Force vs. deflection at the loaded section for ETS CFRP strengthened beams in (a) 2S- and (b) 4S-Series 

Fig. 3.15 shows the failure crack patterns obtained for the CFRP strengthened beams. The main results 

are presented in Table 3.5 and the same nomenclature as Table 3.3 (Section 3.5.1) is used. In this case 

the values of (CDCtan) have ranged from 42° to 62°. By considering all the tested beams, an average 

value of CDCavg = 50° was obtained. It is possible to notice that the beams with vertical CFRP 

strengthening exhibited higher inclinations of the of both CDCtan and CDCavg. Beam 2S-C180-90 as has 

happen with beam 2S-S180-90 presented high inclination of critical diagonal crack. From Figs 3.14 and 

3.15 it is possible to notice that a high increment of load carrying capacity seems to be related to a 

diffuse crack pattern, which indicates that a good bond performance of the CFRP ETS bars was attained 

and the strengthening was effective in transferring the stress to the surrounding concrete. For the CFRP 
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vertical bars, ρfw= 0.16% (CFRP180-90), the beams presented an increase of load carrying capacity of 

53.1% (Fmax= 370.49 kN; uLmax = 6.89 mm) and 6.5% (Fmax= 376.88 kN; uLmax = 6.2 mm) for 2S- and 

4S-Series, respectively. For the ETS CFRP bars inclined at 45°, ρfw= 0.22% (CFRP180-45), the beams 

presented an increase of load carrying capacity of 120.9% (Fmax= 534.69 kN; uLmax = 9.53 mm) and 

74.4% (Fmax= 616.86 kN; uLmax = 12.03 mm) for 2S- and 4S-Series, respectively.  

Table 3.5 Experimental results of 2S-Series and 4S-Series strengthened with CFRP bars. 

  Fmax  uLmax ΔF/FRef Vmax  
exp
fV  CDCtang. CDCavg. 

  [kN] [mm]  [%] [kN]  [kN] [°] [°] 
2S-C180-90 370.485 5.89 53.1 222.3 77.1 62 60 
2S-C180-45 534.69 9.53 120.9 320.8 175.6 48 46 
4S-C180-90 376.875 6.20 6.5 226.1 13.9 49 52 
4S-C180-45 616.86 12.03 74.4 370.1 157.8 42 40 

A lower strengthening performance was observed for the vertical CFRP bars when compared to the 

vertical steel bars due the strengthening configuration. In fact, the available bond length of the CFRP 

bar crossed by the CDC was not sufficient to develop high tensile strains in this type of bars. However, 

when the strengthening configuration provided an adequate bond length, as was the case of inclined 

bars, a higher load carrying capacity was obtained by using CFRP bars instead of steel bars. The results 

obtained in the beams strengthened with ETS CFRP bars demonstrate that the decrease of the shear 

strengthening effectiveness with the increase of the reinforcement ratio of existing steel stirrups occurs 

regardless of the type of material adopted for the ETS bars. 

 
Fig. 3.15 Crack Pattern for ETS CFRP strengthened beams. 

3.7.2 Strains in the CFRP ETS rod and steel stirrups  

The relationship between the force applied in the beams and the strains in the most representative SGs 

installed in the monitored CFRP ETS bars are shown in Fig. 3.16, while in Table 3.6 are included the 

relevant results (same nomenclature as for steel strengthened bars in section 3.5.2 are used). Similar 
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considerations to the one obtained for the steel strengthened beams can be obtained. The strain values 

are quite susceptible to the relative distance between the SG and the shear failure crack, and depended 

on the bond length provided by the strengthening configuration. In case of vertical ETS the significant 

strain in the CFRP bars can be obtained as shown for SG No 8 ( maxFε =0.67%) for beam 2S-C180-90 

(Fig 3.16a) if an adequate bond length is provided, otherwise the strains in the strengthening bar 

remained low since slip occurs at the bar/adhesive interface and a modest strengthening effectiveness is 

obtained (beam 4S-C180-90 Fig. 3.16b). Nevertheless CFRP bars can record low strain even if the bars 

are crossed by the critical shear crack, as was the case of SG No.4 of the 2S-C180-90 beam (ε=0.27% at 

Fmax) due to slip occurrence.	
  

In all the monitored elements of the strengthened beams with inclined CFRP bars, as is the case of 

beams 2S-C180-45 and 4S-C180-45, higher strains were recorded due to the formation of diffuse crack 

patterns and a higher available bond length (Figs. 3.16c and 3.16d). For instance, in the ETS bars S4 

and S3 of beams 2S-C180-45 and 4S-C180-45, relatively high average strains of ε=0.9% ware obtained. 

The maximum strain of ε=1% at 0.83 uL/uLmax was measured in the SG No.7 of beam 2S-C180-45. 

Considerable strains were also attained in case of a reduced bond length (ε=0.61% at 0.63 uL/uLmax in 

SG No.4 of beam 2S-C180-45). Higher strains were generally recorded in CFRP bars than in steel bars, 

due to the smaller diameter and lower elasticity modulus of the CFRP. The geometrical closed 

configuration of the stirrups allowed the steel to yield at lower load than the Fmax. Yield strain was 

reached in the monitored stirrups at a percentage of maximum load ( maxF ) that ranged between 0.60% 

and 0.74% in SG No.3 for beam 4S-C180-45 and SG No.2 for beam 2S-C180-45. As occurred in steel 

ETS strengthened beams some of the beams steel stirrups have even attained its rupture in 2S-C180-45, 

4S-C180-45). 

Table 3.6 Significant strains measured for CFRP strengthened beams in 2S- 4S-Series. 

Beam ID | SG Element 
maxFε   

[%] 

εmax 
[%] 

(uL/uLmax) 

Beam ID | SG Element 
maxFε   

[%] 

εmax 
[%] 

(uL/uLmax) 
2S-C180-90 2 St1 -- 0.87 (0.79) 4S-C180-90 4 C2 0.15 0.16 (1.05) 

 1* C2 0.40 0.46 (1.31)  6 C3 0.13 0.15 (0.60) 
 4 C3 0.27 0.38 (0.82) 4S-C180-45 3 St2 -- 0.79 (0.78) 
 8 C4 0.67 0.67 (1.00)  5 C2 0.77 0.86 (1.18) 

2S-C180-45 2 St1 0.66 0.76 (1.20)  8 C3 0.62 0.89 (1.18) 
 1* C2 0.46 0.56 (0.70)  2* C4 0.86 0.86 (1.00) 
 4 C3 0.24 0.61 (0.63)      
 6 C4 -- 0.97 (0.92)      
 7 C4 -- 1.00 (0.83)      
 8 C4 0.86 0.86 (1.00)      
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(a) (b) 

  
(c) (d) 

Fig. 3.16 Load vs. strains recorded in strain gauges applied in CFRP bars and steel stirrups. 

3.7.3 Failure modes  

As for steel bars, the CFRP ETS strengthening system failed by the debond at the bar/adhesive (Fig 

3.17a). The scratching effect between bars surface and epoxy adhesive, due to combined tensile and 

transversal forces along the crack was also observed in the face of the CFRP bars, due to the relatively 

low shear resistance of the external layer of these bars, in most of cases, the peeling-off of the external 

layer of the CFRP bars was observed (Fig. 3.17b). This failure is similar to the interlaminar shear 

failure (i.e. the separation between the bar core and the sanded/coated surface) described in the bond 

stress carried out by Valerio et al. (2009), which was the dominant failure in case the CFRP bars. The 

post-test inspection of the failure modes in 2S-C180-45 has revealed that the bars have ruptured, 

probably not because the ultimate strain was attained, but as a consequence of the combined tensile-

shear forces applied in the bar at crack section. Due to the scratching of the epoxy adhesive, the 

relatively small bond transfer length, and the inexistence of anchorage mechanisms, the maximum 

strain recorded in the ETS bars never attained the CFRP ultimate strain, and therefore the rupture of the 
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steel ETS bars has never occurred. Despite this observed behavior, the bond performance was capable 

to assured relatively high tensile strains in inclined CFRP bars, as reported in the previous section. The 

reported type of failure mode might justify the relatively low maximum strains recorded in the vertical 

CFRP ETS bars, and consequently the lower shear strengthening effectiveness when compared to the 

same strengthening configuration but using steel bars. The bond test presented in Annex A showed that 

the average bond stress developed by steel and CFRP bars provided in general similar results, but the 

bond-slip relationship of both steel and CFRP bars should be further investigated. 

 

 

(a) (b) 

  
(c) (d) 

Fig. 3.17 Failure (a) loss of bond CFRP roads, (b) peeling-off of the external layer of the CFRP rod, (c) 
failure due to combined axial/transversal forced on a CFRP bar (observed in beam 4S-C180-45 (d) 
stirrup rupture. 

Previous research on EBR and NSM techniques revealed that a crack pattern with smaller crack spacing 

can accelerate the FRP debonding and lead to a premature failure, since the bond length is decreased by 

the formation of several cracks (Carolin and Täljsten 2005; Mofidi and Chaallal 2011); ETS 

strengthening is generally characterized by crack spacing larger than EBR and NSM techniques, 

therefore the CFRP bars embedded in a less cracked concrete core seems less prone to FRP debonding 

failure than EBR and NSM methods. The types of failures reported by Bianco et al. (2012) for NSM 

CFRP strengthened beams: (i) concrete fracture, (ii) and mixed-concrete-fracture-debonding were not 

observed neither in case of CFRP ETS strengthening. Group effects, or interaction effects caused by the 

mutual interaction, due to the reduced spacing between the strengthening, typical of strengthened 

elements characterized by high percentage of FRP, when using the NSM technique (Rizzo and De 
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Lorenzis 2009; Dias and Barros 2010, 2011b), were not observed neither by using the CFRP ETS bars. 

The stirrups rupture was observed also for the highest percentage of strengthening in beams 2S-C180-

45 and 4S-C180-45 (Fig 3.17d). 

3.8 Influence of the investigated parameter 

3.8.1 Influence of the percentage and inclination of the ETS strengthening 

General remarks on the influence of percentage and inclination for beams of 0S, 2S and 4S-Series 

strengthened with steel ETS bars were reported in section 3.5.1. Taking into account the measured 

strains and the failure modes a comprehensive discussion of the investigated parameters can be 

presented also including the results obtained from beams strengthened with CFRP bars (section 3.5.1). 

The relationship between the strengthening effectiveness ratio provided by the ETS strengthening 

arrangement (ΔF/FRef) is plotted versus the total percentage of transverse reinforcement ( sw fwρ ρ+ ) in 

Fig. 3.18 (see also Tables 3.1 3.3 and 3.5 ). The sw fwρ ρ+  percentage is in the range of 0.15% to 0.52 

%, while the fwρ  is in the interval of 0.15% to 0.34%. Fig. 3.18 clearly shows that the shear 

strengthening effectiveness decreases with the increase of sw fwρ ρ+ . It is also visible that most effective 

configurations are obtained by adopting inclined ETS bars for both tested strengthening materials. As 

example it is possible to observe that, in all the tested series the beams adopting the strengthening 

configurations with vertical ETS bars spaced at 180 mm ( fwρ  =0.24) exhibited lower effectiveness than 

beams with inclined ETS bars spaced at 300 mm ( fwρ  =0.21), even if characterized by a larger 

percentage of strengthening. From this figure it is also possible to observe that and a marginal shear 

strengthening effectiveness for both steel and CFRP is obtained when vertical ETS bars are applied in 

RC beams with a reinforcement ratio of steel stirrups higher than of about swρ =  0.17%. Indeed beams 

4S-S300-90, 4S-180-90 and 4S-C180-90 exhibit a low strengthening effectiveness of 4.8, 16.8 and 

6.5%, respectively. The dashed lines identify the tendency lines of beams with the same strengthening 

solution and different reinforcement ratio, pointing out the importance of the internal shear ratio on the 

evaluation of the strengthening effectiveness (see section 3.7.2). The higher shear effectiveness showed 

by the ETS inclined bars can be justified by the orientation of the diagonal cracks that tends to be 

almost orthogonal to the ETS bars (see also Figs 3.8 and 3.15). Furthermore, for inclined ETS bars, the 

total resisting bond length of the ETS system is higher than the one for the vertical bars. In was shown 

in Section 3.5.2 that some inclined ETS bars were crossed by more than one diagonal shear crack; at 

these intersection points maximum strain levels that exceed the yield strain were recorded (for instance 
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2S-S300-45 beam, ETS2, SG6 and SG8, Table 3 and Fig. 3.12e), which is also a demonstration of the 

strengthening effectiveness. As demonstrated in (Bianco et al. 2010, 2011), in the case of shear 

strengthening elements of non-closed geometric configuration, such is the case of EBR and NSM 

reinforcements, the effective bond length has a decisive and governing importance on the shear 

strengthening effectiveness, since a bond length less than the critical one limits the strengthening 

effectiveness of the system. If the inclination of the dashed line in Fig 3.18 is compared, it is possible to 

observe that the effectiveness of the inclination on ETS bars effectiveness was even more important 

when CFRP rods were used. 

 
Fig 3.18 Influence of the ρsw+ ρfw on the ETS effectiveness. 

To have a comprehensive understanding on the influence of the investigated parameters, the 

information available in previous works (Valerio et al. 2009; Chaallal et al. 2011; Barros and Dalfré 

2012) have been considered. From this latter tests only the data regarding beams that failed in shear was 

considered, which is presented in Table 3.7. The swρ  of the analyzed beams is in the range of 0.0 to 

0.17 % and fwρ  in the interval of 0.04 to 0.64%. Fig. 3.19a shows the influence of swρ  and fwρ  on 

the shear strengthening effectiveness of RC beams strengthened with vertical and inclined ETS bars. It 

is visible the higher strengthening effectiveness of inclined ETS bars, and a tendency for an increase of 

this effectiveness with ρfw, while the opposite happens with the increase of swρ . By projecting the 

results presented in Fig 3.19a on a ΔF/FRef - ρfw plane, and attributing to the marker a size diameter 

proportional to the ρsw of the beam it represents, the previous conclusions can be also extracted. A 

relatively high shear strengthening effectiveness with vertical CFRP bars was obtained by Chaallal et 
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al. (2011), but using an abnormal high shear strengthening ratio ( fwρ =0.64%). Valerio et al. (2009) 

have also obtained similar high shear strengthening effectiveness with smaller strengthening ratio 

(ρfw=0.24% to 0.34%), but using higher concrete strength class (fcm,cube= 55 to 60 MPa - cube strength -, 

instead of fcm=25 MPa (Chaallal et al. 2011)), which reveals the favorable effect of concrete strength on 

the shear strengthening performance.  

Table 3.7 Experimental results of previous experimental tests on beams strengthened with ETS technique. 

Valerio et al (2009) 
Angle 
[θfw] Material 

fcm,cube/fcm 
[MPa] 

ρsw 
[%] 

ρfw 
[%] 

ρsw+ ρfw 
[%] 

ΔF/FRef 
[%] 

Vf 
[kN] 

SLB P4d-2S8@d 90° S [55-60]a 0.00 0.09 0.09 18.0 53.2 
SSB R3d-C6@0·7d 90° C [55-60]a 0.00 0.24 0.24 97.0 22.9 
SSB R3d-C6@0·5d 90° C [55-60]a 0.00 0.34 0.34 114.0 27.0 
SLB P4d-2C7·5@d 90° C [55-60]a 0.00 0.08 0.08 14.6 43.2 
SLB P4d-C7·5@d 90° C [55-60]a 0.00 0.04 0.04 6.5 19.1 

Chaallal et al (2011) 
        S0-ETS 90° C 25.00b 0.00 0.64 0.64 112.40 99.50 

Dalfré and Barros (2013)  
        A.3 E300.90 90° S 30.78 b 0.00 0.17 0.17 47.7 31.2 

A.4 E300.45 45° S 28.81 b 0.00 0.25 0.25 47.7 57.1 
A.5 S300.90/E300.90 90° S 30.78 b 0.13 0.17 0.30 40.8 40.3 

B.3 E300.90 90° S 30.78 b 0.00 0.11 0.11 17.5 21.3 
B.4 E300.45 45° S 28.81 b 0.00 0.16 0.16 65.3 98.5 

B.5 S300.90/E300.90 90° S 30.78 b 0.06 0.11 0.17 67.9 94.7 
a fcm,cube. Average concrete cube compressive strength 
b fcm.. Average concrete cylindrical compressive strength 

However, the results also indicate that when the shear strengthening ratio is relatively small, the 

influence of the concrete strength on the shear strengthening effectiveness is marginal due to the 

inexistence of interaction between ETS bars and smaller stress field applied by ETS bars to the 

surrounding concrete. The trend lines of the results corresponding to the inclined and vertical ETS bars 

(dotted and dashed line, respectively) evidence the higher effectiveness of the former bars. The 

inclination of the trend line is higher for vertical ETS bars, which might be justified by a high number 

of beams tested without shear reinforcement for this strengthening arrangement. From the results in 

Figs 3.18 and 3.19, the inclined ETS CFRP bars provided higher effectiveness than inclined steel bars 

of similar ρfw and ρsw, but a comprehensive cost competitiveness evaluation of these strengthening 

solutions should be made for a sustainable decision of the most appropriate one.  
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3.8.2 Influence of the existing shear reinforcement on the ETS strengthening effectiveness 

As already demonstrated in beams strengthened with the ETS (Chaallal et al. 2011; Barros and Dalfré 

2012), EBR and NSM techniques (Pellegrino and Modena 2002; Bousselham and Chaallal 2006; 

Grande et al. 2009; Dias and Barros 2011a, 2011b), the effectiveness of the ETS strengthening system 

decrease with the increase of the swρ . Fig. 3.18 and Fig. 3.19 show this clear tendency for the ETS 

strengthened beams. This detrimental effect was more pronounced in case of vertical ETS bars; for 

instance in the case of the presented work, in ETS steel bars, spaced at 180mm, the ΔF/FRef can decrease 

up to 74% (by comparing the results of 0S-Series and 4S-Series). 

 

(a) 

 
(b) 

Fig. 3.19. ETS effectiveness (a) influence of ρsw and ρfw, (b) projection on the plane ΔF/FRef - ρfw.
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When CFPR ETS bars were used the Re fF FΔ  decreased of 88% and 38% in vertical and inclined bars 

respectively, by increasing swρ from 0.1% to 0.17%. Fig. 3.19 show that in two beams characterized by 

low percentage of transverse reinforcement (2S-S180-90 - Table 3.3 and B.5 S300.90/E300.90 - Table 

3.7) the detrimental effect induced by the presence of existing stirrups did not occur, and an higher 

effectiveness when compared to the same strengthening configuration but in the beams without stirrups 

(0S-S180-90 and B.3 E300.90) was observed (Fig.3.19). The latter results can be considered an 

exception since the general behavior contradict these isolated results. The results presented in Fig 3.19 

clearly show that the shear strengthening effectiveness is influenced by the shear reinforcement ratio of 

existing steel stirrups. The detrimental effect induced by the presence of stirrups was recently discussed 

and a parameter was proposed to simulate this effect (Chen et al. 2013; Pellegrino and Modena 2006). 

In the present work it was verified that the stirrups have yielded, even in the beams with the highest ρsw 

and ρfw. This indicates that ETS technique using steel bars can mobilize integrally the strength capacity 

of both shear reinforcements, and consequently, the above parameter can be neglected in this technique. 

In shallow RC beams shear strengthened with ETS steel bars, the resisting bond length of those bars 

crossed by the critical shear crack may be not enough to mobilize its yield strain. In this case the 

applicability of a reduction parameter can be justified. However, no sufficient experimental data is 

actually available to propose a recommendation for this parameter.  

3.9 Comparison with EBR and NSM techniques 

An higher strengthening effectiveness than other FRP-based strengthening techniques was expected for 

the ETS technique. A comparison between EBR, NSM, ETS techniques was presented by Chaallal et al. 

(2011) for a limited number of beams. The results showed that this latter technique was able to obtain 

the highest increase of shear strength. In two of the three specimen strengthened with CFRP bars the 

ETS technique was able to transform a brittle shear failure into flexural failure, as also occurred in 

several ETS strengthened beams tested by Valerio et al. (2009).  

The beams tested in the presented experimental program are characterized by a similar design to the 

beams tested by Dias and Barros (2008,2010, 2011a, 2011b). This fact allows to compare the obtained 

results with some of the beams of the above-mentioned experimental programs, which were 

characterized by similar concrete compressive strength (Dias and Barros 2011a). The data regarding the 

experimental tests carried out by Dias and Barros are reported in Table 3.8. Fig. 3.20 compares the 

Re fF FΔ  obtained when using ETS, NSM and EBR techniques. The beams tested by Dias and Barros 

(2011a) had swρ =0.1 and swρ  =0.17%, which is the same shear reinforcement ratio used for the beams 

tested in the present work. In Fig. 3.20 it is possible to observe that the highest strengthening efficiency 
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of the ETS technique is clearly visible, mainly when using inclined ETS bars. When comparing the 

results of beams 2S-10LV (Table 3.8) and 2S-C180-90 in Table 3.5, which are characterized by same 

percentage of internal stirrup are strengthened with similar percentage fwρ of CFRP at 90° the 

effectiveness of using the ETS technique is 1.7 times higher than the one using the NSM technique. By 

considering the level of strengthening effectiveness and the flexural capacity of the tested beams 

possible to obtain with the ETS technique, it can be concluded that by using the presented technique a 

much higher increase of shear strength can be obtained when compared with other FRP-based shear 

strengthening thechnique. This evidence makes of the ETS technique an optimum solution in structural 

element where the geometry allows the drilling of the concrete core.  

Table 3.8 Strengthening efficacy ( ( )Re %fF FΔ ) versus CFRP percentage ( fwρ ) (from - Dias and Barros 2011a) 
NSM  strengthening at 90° 0.10%swρ =  NSM  strengthening at 90° 0.17%swρ =  

 fwρ  ( )Re %fF FΔ   fwρ  ( )Re %fF FΔ  
2S-4LV 0.08 16.4 4S-4LV 0.08 14.3 
2S-7LV 0.13 23.1 2S-7LV 0.13 15.1 

2S-10LV 0.18 30.8 NSM  strengthening at 60° 0.17%swρ =  

NSM  strengthening at 60° 0.10%swρ =   fwρ  ( )Re %fF FΔ  

 fwρ  ( )Re %fF FΔ  4S-4LI60 0.07 19.5 
2S-4LI60 0.07 27.2 4S-6LI45 0.11 23.2 

2S-6LI60 0.11 29.8 NSM  strengthening at 45° 0.17%swρ =  

2S-9LI60 0.16 35.8  fwρ  ( )Re %fF FΔ  

NSM  strengthening at 45° 0.1%swρ =  4S-4LI45 0.08 19.1 
 fwρ  ( )Re %fF FΔ     

2S-4LI45 0.08 29.3 4S-7LI45 0.13 28.7 
2S-7LI45 0.13 38.8    

2S-10LI45 0.19 47.0    

 
Fig. 3.20. Comparison of shear strengthening efficiency between ETS, NSM and EBR techniques (Dias and 

Barros 2011a). 
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3.10 Conclusion  

An experimental program on reinforced concrete (RC) T cross section beams shear strengthened with a 

recent technique denominated Embedded Through-Section (ETS) was described, and the relevant 

results are presented and discussed. The influence of the percentage of existing steel stirrups ( swρ ) on 

the ETS shear strengthening effectiveness when using ETS steel or carbon fiber reinforced polymer was 

investigated. The inclination of these bars (90° and 45°) on this effectiveness was also analyzed. For 

this purpose three series of beams with different swρ  (0.0, 0.10, and 0.17%) were tested.  

From the obtained results it can be concluded that in general, a significant increase of load carrying 

capacity was obtained by using the proposed technique, regardless the material type of ETS bars. 

Vertical ETS bars provided an increase of load carrying capacity in the interval of 5% to 68%. The 

inclined ETS bars have assured a higher strengthening effectiveness, since an increase of load carrying 

capacity from 53% to 136% was obtained. The inclined ETS bars were also more effective in assuring 

larger deflection capacity at the failure of the beams. The higher effectiveness of inclined ETS bars is 

attributable to the larger available resisting bond length, and their better orientation regarding the 

inclination of the shear failure crack, since the average inclination of the shear failure crack of the 

strengthened beams was 45° (varying between 39° and 60°) with the beam’s axis, therefore the ETS 

bars were almost orthogonal to this crack.	
  	
  

When comparing the results from the series of beams with different swρ  it was verified that the 

strengthening effectiveness has decreased with the increase of swρ , and this tendency was more prone in 

the series with vertical ETS bars. Information in this respect was collected from available bibliography, 

which has confirmed the aforementioned tendency.	
  	
  

By comparing the shear strengthening effectiveness obtained with the ETS technique proposed in the 

present work and the one assured by using the externally bonded reinforcement (EBR) and the near 

surface mounted (NSM) techniques it was verified that the former one is more effective.	
  In fact, due to 

the good bond conditions of ETS bars assured by the concrete core of the beams, which also introduced 

some favorable confinement to these bars, those made of steel have yielded, and the CFRP bars have 

attained a relatively high maximum tensile strain, mainly the inclined ones. For similar shear 

strengthening ratio, the CFRP bars provided higher shear strengthening effectiveness than steel bars, 

due to the larger ultimate force capable to be mobilized in inclined bars. It was also verified that the 

steel stirrups have exceeded its yield strain, even in the beams with the highest percentage of steel 

stirrups.  
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4 
Analytical models for the estimation of the ETS strengthening 
system contribution 

 

 

4.1   Introduction 

Considering the experimental results presented in Chapter 3 and previous experimental works (Valerio 

et al. 2009; Barros and Dalfré 2012), two different analytical formulations are assessed and presented 

herein in order to predict the contribution of the steel ETS bars for the shear strengthening of RC 

beams. The first approach, named experimental-based, is supported by the concept of effective strain, 

like the most of the existing approaches. The calculation of the effective strain can be performed using 

empirical equations (Triantafillou 1998; Triantafillou and Antonopoulos 2000; Chaallal et al. 1998; 

Dias and Barros 2013) or using a bond model (Khalifa et al. 1998). The second approach, named 

mechanical-based, is derived by modifying the simplified formulation proposed by Bianco et al. (2014), 

originally developed for CFRP strips applied according to the NSM technique. This latest is a	
  

comprehensive three-dimensional model developed fulfilling equilibrium, kinematic compatibility and 

constitutive laws of the materials involved, as well as the local bond between the involved materials. 

(Bianco et al. 2009a, 2009b, 2010). 

4.2  Strategy for the development of the analytical formulation  

Two models are proposed for the prediction of the contribution of ETS bars for the shear strengthening 

of RC beams. For the assessment of the predictive performance of these models, the strengthening 

contribution of the ETS bars, ana
fV , is determined by applying the following (Eq.4.1): 

ana
f t RefV V V= −  (4.1) 
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Where RefV
 is the shear resistance of the reference beam, and tV  is the shear resistance of the ETS 

strengthened beam. Following this approach, it is assumed that the steel stirrups offer the same 

contribution in the strengthened and in the corresponding reference beams. 

 In Fig. 4.1a the influence of fwρ  on the contribution of the ETS strengthening system, exp
fV  (see 

Chapter 3) is represented. It was observed in Chapter 3 that for a given value of fwρ , the ETS 

strengthening effectiveness increased with the decrease of swρ , being this tendency attenuated when 

inclined ETS bars were used. However, the influence of the shear reinforcement results less relevant on 

the contribution of the ETS strengthening exp
fV (Fig. 4.1b) 

  
(a) (b) 

Fig. 4.1. (a) Influence of fwρ  and swρ  on exp
fV , (b) Influence of the of the stirrups spacing and the adopted 

strengthening configuration on exp
fV   

One model, herein designated as experimental-based approach (Section 4.3), is based on the evaluation 

of the effective strain feε , which is estimated through an empirical approach that takes into account the 

total stiffness of the shear reinforcement and strengthening ( )fw fw sw swE Eρ ρ+  and the concrete strength, 

cmf . Similar approaches have been used to evaluate the shear resistance of NSM and EBR systems (Dias 

and Barros 2013; Triantafillou 1998; Triantafillou and Antonopoulos 2000; Chaallal et al. 1998), and 

have also been adopted by international codes (fib 2001; CAN/CSA-S806-02 2002). The other model, 

herein designated as mechanical-based model (Section 4.4), follows the modeling strategy described by 

Bianco et al. (2014). This latter is a simplified version of a more sophisticated three-dimensional 

mechanical model developed to predict the NSM-FRP shear strengthening contribution for RC beams, 

by considering different physical phenomena, such as debonding and progressive concrete fracture 
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process (Bianco 2008; Bianco et al. 2009a, 2009b, 2011). The mechanical-based model is based on the 

evaluation of an equivalent average bond length that takes into account the concrete fracture as a 

reduction effect of the average resisting bond length. This model also adopts a simplified bilinear rigid-

softening bond-slip diagram. This formulation, presented in Section 4.4, will be modified herein in 

order to be applicable for the ETS technique.  Both approaches have been developed adopting the 

variable angle truss model (Paulay 1971). As reported by Bianco et al. (2014), the CDC inclination is a 

function of the shear span-depth ratio ( 1L d ) (Bousselham and Chaallal 2004; Cao et al. 2005), of the 

shear reinforcement ratio 
swρ , and of the percentage of shear strengthening ratio fwρ . As shown in 

Table 3.3, the average inclination of the CDC of the tested beams was 44°. Therefore, the critical 

diagonal crack inclination,θ = 45° is adopted for both approaches, like typically assumed in the current 

design guidelines (Chapter 2). 

4.3 Experimental-based model  

The experimental-based model estimates the contribution of the ETS strengthening system for the shear 

resistance of a RC element by determining the effective strain in the ETS bars feε , which corresponds 

to the average strain in steel when the strengthened RC beam reaches its shear capacity. This empirical 

approach follows the procedure proposed by Dias and Barros (2013) for the NSM technique. The force 

resulting from the tensile stress in the ETS bars crossing the shear failure crack, fF , is given by the 

following (Eq. 4.2): 

Ff = n f ⋅ Afw ⋅ f fe   (4.2) 

where fef  is the effective stress in the ETS bar, which is obtained multiplying the Young’s modulus of 

the bars, fwE  by the effective strain, ε fe  and fwA  is the cross sectional area of the shear 

reinforcement, given by Eq. (4.3): 

2

4
f

fwA n
π φ⋅

=   
(4.3) 

where fφ  is the ETS bar diameter and n  is the number of bars installed in the considered cross section. 

The number of ETS bars crossed by the shear failure crack ( n f ), is given by Eq. (4.4): 

( )w f
f

fw

h cot cot
n

s

β θ⋅ +
=  (4.4) 
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where wh  (Fig. 4.2) is the depth of the cross section, θ  is the orientation of the shear failure crack 

(CDC), fβ  is the inclination of the ETS bar with respect to the beam’s axis, and s fw  is the spacing of 

ETS bars. 

The vertical projection of the force, fF , is the contribution of the ETS bars for the shear resistance of 

the beam, I
fV :  

sin sinI
f f f fw fe fV F n A fβ β= ⋅ = ⋅ ⋅ ⋅  (4.5) 

Introducing Eq. (4.4) into Eq. (4.5) and considering the constitutive law for the ETS bars 

f fe = E fw ⋅ε fe( )  it results: 

( ) sinfvI
f w fe fw f f

fw

A
V h E cot cot

s
ε θ β β= ⋅ ⋅ ⋅ ⋅ + ⋅  (4.6) 

By considering for I
fV  the values obtained experimentally, ( I

fV = exp
fV ) the previous equation can be 

used for determining the effective strain: 

( )exp sinfv
fe w fw ff

fw

A
V h E cot cot

s
ε θ β β

⎛ ⎞
= ⋅ ⋅ ⋅ + ⋅⎜ ⎟

⎜ ⎟
⎝ ⎠

 (4.7) 

 

Fig. 4.2 Data for the analytical definition of the effective strain of the ETS system. 

The concept of effective strain to evaluate the shear contribution of the strengthening is usually applied 

to FRP strengthened elements (Dias and Barros 2013; Triantafillou 1998; Triantafillou and 

Antonopoulos 2000; Chaallal et al. 1998), in which the strengthening material exhibits a linear elastic 

behavior up to failure. In the case of steel ETS bars, the strengthening material exhibit an elastic-plastic 

behavior and the effective stress, fe fw fef E ε= ⋅ , is limited by the yield stress 
yf . In section 4.1 the 
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effective strain ( )Ifeε  to be used for the evaluation of the shear strengthening contribution of the ETS 

system, I
fV , will be obtained by best fitting the experimental feε  recorded values.  

4.4 Mechanical based model  

The mechanical-based approach herein proposed follows the main simplifications proposed by Bianco 

et al. (2014) to their original model (Bianco et al. 2010). The CDC can be modeled as an inclined plane 

dividing the beam in two parts, joined together by the ETS bars crossing the plane. For the presented 

approach it is assumed that the inclined critical diagonal crack (CDC) at each load step assumes a 

constant opening along its entire length (Mohamed Ali et al. 2006), unlike what adopted by (Monti and 

Liotta 2007; Bianco 2008). At each load step the two parts moves apart and the opening of the crack, 

i.e. distance between these parts, increases. The ETS bars oppose to the crack opening by anchoring to 

the surrounding concrete and transferring the bond force originated by the imposed slip Liδ . The 

capacity of an ETS bar depends on its available bond length 
fiL  that is the shorter between the two parts 

into which the crack divides its actual length 
fL  (Fig. 4.3a). The local bond stress-slip is represented by 

a simplified bi-linear curve (Fig. 4.3b), in which it is possible to identify the “rigid”, “softening 

friction”, “free-slipping” phases (Bianco 2008; Bianco et al. 2014). The rigid branch ( )00 τ−  represents 

the initial shear strength, for which the value 0τ  expresses and average strength of the physical 

properties of the steel-adhesive-concrete interface. For an imposed slip, it is assumed that the stresses 

are transferred by friction and micromechanical interlock. These shear reinforcement mechanisms 

decrease with the increase of the slip (softening friction) up to the point 1Liδ δ=  in which the friction 

resisting mechanism is exhausted, leading to a free-slipping phase with the evolution of the crack 

opening. The constitutive bond law ( ),bd
fi Rfi LiV L δ  is determined by simulating the behavior of a simple 

ETS bar within a concrete prism (Fig. 4.3c and d), whose dimensions are limited by the spacing 

between adjacent bars and half of the web cross section width, 2wb . With this assumption, the 

interaction effect between ETS bars in the beam’s axis direction is neglected due to its low contribution 

for this type of technique and high complexity of the phenomenon for an engineer-design framework. If 

more than one ETS bars are installed in the cross section, it is possible to have an interaction effect in 

the orthogonal direction to the beams’ axis, and the value 2wb  should be reduced taking into account 

the geometry of the cross section. However, this is expected to be a non-current situation for the 

majority of RC beams requiring shear strengthening intervention.  
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Fig. 4.3 Main mechanical features on the theoretical model and calculation procedure: (a) average-
available-bond-length ETS bar and concrete cone of influence, (b) adopted bond stress-slip relationship, 
(c) ETS confined to the corresponding concrete prism of influence and conical surface fracture surface 
and area of the concrete cone at the CDC intersection, (d) Failure modes. 

The interaction with existing stirrups is neglected, due to the complexity of the phenomenon (this topic 

requires additional dedicated research). The steel embedded bar-concrete prism system can exhibit the 

failure modes represented in Fig. 4.3d: debonding, bar yielding, concrete conical fracture and mixed 

shallow conical-plus-debonding. The fracture occurs when the stress in the concrete surrounding the bar 

attains the tensile strength. The shape of this surface can be conventionally assumed as a cone with the 

principal generatrices inclined of an angle α  with respect to the bar longitudinal axis (Bianco 2008; 

Bianco et al. 2014). The cracking propagation increases with the imposed slip, and the resisting bond 

length decreases progressively. In this simplified approach the concrete fracture process is accounted by 

reducing the bar resisting bond length RfiL  by using the factor η  0 ≤η ≤1( ) . The factor η  is a function 

of the average tensile strength *
ctmf  that is calculated imposing the equality between the maximum 

force that can be transferred through bond stress, and the force corresponding to the concrete conical 

fracture. For values of *
ctm ctmf f≥  concrete does not fracture, and 1η = . The effective capacity max

,fi effV  
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of a single ETS bar is obtained adopting the minimum value between the yield strength and the bond 

strength and using the equivalent value of the average bond length, eq
RfiRfiL Lη=  (Bianco et al. 2014).  

 

4.4.1 Proposed design formula 

The input parameters include the following geometrical and mechanical data: i) the beam cross-section 

web’s height wh  and width wb ; ii) inclination angle of both CDC and ETS bars with respect to the 

beam’s longitudinal axis, θ  and fβ , respectively; iii) bars spacing measured along the beam’s axis, 

fws ; iv) diameter fφ  of the ETS bar; v) concrete average compressive strength cmf , vi) steel yield 

strength yf  and Young’s modulus fwE . Other parameters strictly related to the proposed model are: the 

angle α  ETS bar’s axis and principal generatrices of the semi-conical fracture surface (Fig. 4.3c-d), 

bond stress 0τ  and slip 1δ  defining the adopted local bond stress-slip relationship (Fig. 4.3b). The 

algorithm of this model is described in Fig. 4.4, which will be detailed in the following sections.  

Input parameters 
hw; bw; α; fcm; s fw; n; β f ; f y ; E f ; φ f ; τ0; δ1; θ  

 

Evaluation of the average available resisting bond length and the 
minimum integer number of ETS bars effectively crossing the CDC  

LRfi = f hw; θ; β f ; s fw( ); N f ,intl  
 

Evaluation of constants 

Lp; Ac; Vf
y ; Vf 1

bd ; J1; λ  
 

Evaluation of the average available resisting bond length reduction 
factor, and the equivalent average resisting bond length 

η = s fw; bw; fctm; LRfi( ); LRfieq  
 

Evaluation of the maximum effective capacity for one ETS bar  

Vfi,eff
max =min Vf

bd ; Vf
y( )  

 

Evaluation of the ETS bars contribution 

Vfd
II =

Vf
II

γ f
=
1
γ f

⋅ n ⋅N f ,int
l ⋅Vfi,eff

max ⋅sinβ f( )
 
 

Fig. 4.4 Calculation procedure of the mechanical-based approach. 
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4.4.2 Average value of the available resisting bond length RfiL  and minimum number of bars 

,int
l
fN  effectively crossing the CDC 

The average value of the available bond length LRfi( ) , and the minimum integer number of bars 

effectively crossing the CDC N f ,intl( )  are determined according to the recommendations of Bianco et al. 

(2011). The ,int
l
fN  is obtained by rounding off the real number to the lowest integer as follows: 

( )
,int

cot cot
round off

fl
f w

fw
N h

s

θ β⎡ ⎤+
⎢ ⎥= ⋅
⎢ ⎥
⎣ ⎦

 (4.8) 

while RfiL  is determined from: 

,int

,int 1

1
l
fN

Rfi fil
f i

L L
N =

= ⋅ ∑  (4.9) 

where (Fig. 4.3a): 

( )

( )

sin cot cot
sin( ) 2

sin cot cot
2sin( )

w
fw fi f

f
fi

w
f fw fi f

f

hi s for x

L
hL i s for x

θ
θ β

θ β

θ
θ β

θ β

⎧ ⋅ ⋅ < ⋅ +⎪ +⎪
= ⎨
⎪ − ⋅ ⋅ ≥ ⋅ +
⎪ +⎩

 (4.10) 

and: 

fi fwx i s= ⋅   (4.11) 

If f ws h≥ , the calculation of the average value of the available bond length gives a null length (Eq. 

4.9); in these cases ( )( ) ( )( )sin cot cot 4 sin sinRfi w f fL h θ θ β θ β= ⋅ ⋅ + ⋅ +  is adopted (Bianco et al. 2014).  

4.4.3 Evaluation of Constants 

The geometrical and integration constants characterizing the bond transfer mechanism are obtained 

from Eq. (4.12) to Eq. (4.19). 

The perimeter of the bar cross section: 

p fL φ π=   (4.12) 

The cross section area of the relevant prism of surrounding concrete: 

2
w

c f
b

A s= ⋅   (4.13) 
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sin
w

d
hL
θ

=   (4.14) 

The ETS bar yield force: 

2

4
fy

yfV f
π φ⋅

=   (4.15) 

Concrete’s mean tensile strength: 

( )( )
2
31.4 8 10ctm cmf f= ⋅ −    (4.16) 

Concrete’s Young’s modulus: 

( )
1
32.15 10000 10c cmE f= ⋅ ⋅   (4.17) 

where both cE  and ctmf  are herein evaluated by means of the CEB-FIP Model Code 1990 formulation 

(CEB-FIB 1990), with ctmf  in MPa. 

The bond-modeling constants are obtained from the following Eqs. 4.18 and 4.19. 

Integration constants regarding the bond transfer mechanism J1, 21 λ : 

1
1p f

fw fw c c

L A
J

A E A E
⎡ ⎤

= ⋅ +⎢ ⎥
⋅⎣ ⎦

; 1
λ2

=
δ1

τ0 ⋅ J1
  (4.18) 

 

The effective resisting bond length RfeL , and the corresponding maximum bond force 1
bd
fV : 

2RfeL π
λ

=
⋅

; 1
1

1

pbd
f

L
V

J
λ δ⋅ ⋅

=  (4.19) 

 

More details on the evaluation of these model’s constants are reported in Annex B. 

 

4.4.4 Shear strength contribution provided by a system of ETS steel bars 

The reduction factor can be evaluated as follows: 

η s f ; bw; fcm; LRfi( ) =
fctm fctm

*( )
0.5

if fctm < fctm
*

1 if fctm ≥ fctm
*

"

#
$

%
$

  (4.20) 
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where, (see Annex B):

( )

{ } ( )
( ) ( ) ( ) ( )

1*

1

sin
sin sin sin sin sin

min tan ; min ; min ;
4 2 2 sin sin 2 sin sin

p Rfi
ctm

f fw f Rfi fw f Rfiw
Rfi

f f f f

L L
f

s L s LbJ L

λ δ λ

θ β β α β α
π α

θ β β θ α θ β β θ α

⋅ ⋅ ⋅ ⋅
=

⎛ ⎧ ⎫ ⎧ ⎫⎞+ ⋅ ⋅ ⋅ ⋅⎪ ⎪ ⎪ ⎪
⋅ ⋅ ⋅ ⋅ ⋅ +⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟⋅ + + + ⋅ + + −⎪ ⎪ ⎪ ⎪⎝ ⎩ ⎭ ⎩ ⎭⎠

 

(4.21) 

in which RfiL  is set equal to: 

Rfi Rfi Rfe
Rfi

Rfe Rfi Rfe

L if L L
L

L if L L

≤⎧⎪
= ⎨

>⎪⎩
  (4.22) 

The function that defines the reduced embedded length, η , has relevant influence on the results of the 

model. In the present approach, η  is assumed to be a square root function of *
ctm ctmf f  when *

ctm ctmf f<  

(Eq. 4.20), while a linear function was adopted by Bianco et al. (2014). This option provides higher 

value for 
eq
RfiL , which is in agreement with the experimental results, where a visible concrete cone 

failure was never observed. The equivalent value of the average resisting bond length is given by Eq. 

(4.23): 

( ); ; ;eq
Rfi fw w cm RfiRfiL L s b f Lη= ⋅  (4.23) 

 

4.4.5 Shear strength contribution provided by a system of ETS steel bars 

Once the equivalent value of average resisting bond length is calculated, the effective capacity of the 

ETS bar max
,fi effV  can be evaluated, as the minimum between the resisting bond force, bd

fV , and the yield 

force, y
fV , of the ETS bar: 

( )max
, min ;bd y
fi eff f fV V V=  (4.24) 

where y
fV  is obtained from Eq. (4.15) and db

fV  is determined according to the simplified the bond-

based constitutive law (Annex B):  

( ) ( ){ }1
1

1 sinbd eq eq
f Rfi p RfiV L L L

J
λ δ λ= ⋅ ⋅ ⋅ ⋅ ⋅  (4.25) 

Finally, the ETS shear strength contribution can be obtained as follows: 
max

,int , sinII l
f f fi eff fV n N V β= ⋅ ⋅ ⋅  (4.26) 

where n  is the number of installed bars in the cross section. 
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4.5 Models appraisal 

The proposed formulations were used to calculate the ETS contribution of the tested beams presented in 

section 2, as well as the RC beams tested by Valerio	
  et al (2009) and Barros and Dalfré (2012). Those 

two experimental programs were characterized by different test set-up, amount of longitudinal and 

transversal reinforcement, percentage and inclination of the strengthening system, and concrete 

compressive strength. Only the specimens failed in shear were considered in this study, and beams with 

unexpected behavior (for example 4S-S300-90- see Chapter 3) were also not considered. Valerio et al. 

(2009) tested RC beams with a cross section 350x450mm2, a steel flexural reinforcement ratio of slρ  

=0.93% and a 1L d  ratio of 4. Barros and Dalfré (2012) tested two series of RC beams: A Series 

(150x300mm2) and B series (300x300mm2), with a slρ  of 2.5% and 1.88%, respectively, and a constant 

1L d  ratio of 3.44. The main data of these experimental programs are reported in Table 4.1. 

Table 4.1 Experimental results of previous experimental tests on beams strengthened with ETS technique. 

 

 
fβ

 Compressive 
strength 

 
swρ  fwρ  

 
sw fwρ ρ+  sφ

 
sws

 
 
fφ  

 
fws  

 [°] [MPa] [%] [%] [%] [mm]	
   [mm] [mm] [mm] 

Valerio et al 2009  

SLB P4d-2S8@d 90° [55-60]a 0.00 0.09 0.09 -- -- 2φ8 260 

Dalfré and Barros 2012 

A.3 E300.90 90° 30.78 b 0.00 0.17 0.17 -- -- φ10 300 

A.4 E300.45 45° 28.81 b 0.00 0.25 0.25 -- -- φ10 300 

A.5 S300.90/E300.90 90° 30.78 b 0.13 0.17 0.30 2φ6 300 φ10 300 

B.3 E300.90 90° 30.78 b 0.00 0.11 0.11 -- -- 2φ8 300 

B.4 E300.45 45° 28.81 b 0.00 0.16 0.16 -- -- 2φ8 300 
a cubical compressive strength 
b cylindrical compressive strength 
 

4.5.1 Validation of the Experimental based model  

 

The values of feε  calculated with Eq. (4.7) are plotted in Fig. 4.5 as a function of 

( ) ( )2 3/fw fw sw sw cmE E fρ ρ+ , and for the two considered inclinations of the ETS bars (
fβ
). The term 

( )fw fw sw swE Eρ ρ+  expresses the stiffness of the internal shear reinforcement and the shear 

strengthening; ( )2 3
cmf  reflects the influence of the concrete tensile strength. The equation for the 

evaluation of efε  that best fits the experimental results is the following one: 



Chapter 4 
	
  
	
  

	
  
104 

	
  

( ) ( ){ }2 3/0.099 0.003 0.456fw fw sw sw cm
I
fe fE E fρ ρε β+= − ⋅ − ⋅ +  (4.27) 

The values of efε  (Eq. 4.7) and the analytical values of the steel effective strain I
feε  (Eq.4.27) are 

calculated for all of the beams presented in Table 3.3 and Table 4.1; the obtained results are collected in 

Table 4.2. Fig 4.5 shows the comparison between the experimental effective strain, feε , and the 

analytical effective strain, Eq. 4.27 provides a different I
feε - ( ) ( )2 3/fw fw sw sw cmE E fρ ρ+  relationship for 

different 
fβ
 values, with larger I

feε  values for the 
fβ
=45°, as was observed experimentally.  

Table 4.2  Experiemental-based model assessemnt. 

aAverage kI ( 1fγ = ):1.08 
bAverage kI( 1.3fγ = ):1.30 

The available data is relatively small for this type of approach, and the dispersion of results is high; a 

larger number of specimens is required for a better model assessment. The feε  for inclined ETS bars 

exceeded the yield strain, having reached 0.40%. In general, vertical ETS bars present average effective 
strain lower than the yield strain. The values of I

feε  exhibited a tendency to slightly decrease with the 

increase of ( ) ( )2 3
fw fw sw sw cmE E fρ ρ+ .  

Beam ID exp
fV  

( )
2 3

fw fw sw sw

cm

E E

f

ρ ρ+
 feε

 I
fV  

 

fe
fd

f

ε
ε

γ
=  

 
I
fdV  

Ik  
γf=1a 

(γf=1.3b) 

 [kN] -- [%] [kN] [%] [kN]  
Vertical        

0S-S300-90 37.017 0.030 0.18 39.60 0.14 30.46 0.93 (1.22) 
0S-S180-90 60.453 0.051 0.17 65.30 0.13 50.23 0.93 (1.20) 
2S-S300-90 44.199 0.052 0.21 39.14 0.13 30.11 1.13 (1.47) 
2S-S180-90 98.847 0.072 0.28 64.54 0.13 49.65 1.53 (1.99) 
4S-180-90 35.64 0.087 0.10 64.04 0.12 49.26 0.56 (0.72) 

A-3 E300.90 31.15 0.036 0.19 30.37 0.14 23.36 1.03 (1.33) 
A.5 S300.90/E300.90 40.3 0.063 0.25 29.94 0.13 23.03 1.35 (1.75) 

B.3 E300.90 21.31 0.024 0.10 40.49 0.14 31.15 0.53 (0.68) 
SLB P4d-2S8@d 53.2 0.030 0.20 51.63 0.14 39.72 1.03 (1.75) 

Inclined        
0S-S300-45 115.53 0.043 0.39 81.5 0.25 72.9 1.42 (1.58) 
0S-S180-45 127.66 0.071 0.26 135.8 0.24 120.5 0.94 (1.06) 
2S-S300-45 99.036 0.065 0.33 81.5 0.25 72.4 1.22 (1.37) 
2S-S180-45 157.6 0.093 0.32 135.8 0.24 119.6 1.16 (1.32) 
4S-S300-45 119.18 0.079 0.40 81.5 0.24 72.1 1.46 (1.65) 
4S-S180-45 127.58 0.108 0.26 135.8 0.23 119.1 0.94 (1.07) 
A.4 S300.45 57.07 0.054 0.25 60.2 0.25 55.9 0.95 (1.02) 
B.4 E300.45 98.52 0.036 0.33 80.3 0.25 74.5 1.23 (1.32) 
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Fig. 4.5 Effective strain versus ( ) ( )2 3/fw fw sw sw cmE E fρ ρ+  from experimental data and obtained analitically. 

The higher shear strengthening effectiveness of inclined ETS is captured by the model as is clearly 

shown in Fig. 4.5. The decay of the effective strain with the increase of ( ) ( )2 3
fw fw sw sw cmE E fρ ρ+  is 

much smaller than in FRP-based techniques (Triantafillou 1998; Dias and Barros 2013).  

In Fig. 4.5 the dotted line indicates the yield strain of the ETS bars, that limits the steel stress. The 

following equation is introduced for the calculation of the ETS contribution: 

I I
f f f sy

fe I
y f sy

E if
f

f if

ε ε ε

ε ε

⎧ ⋅ ≤⎪
= ⎨

>⎪⎩
 (4.28) 

In the evaluation of I
fV  according to Eq. (4.5), the effective stress installed in the ETS bars is 

calculated respecting Eq. (4.28). The analytical values, I
fV , and the corresponding experimental values, 

exp
fV , are included in Table 4.2. The graphical comparison between I

fV  and exp
fV  is presented in Fig. 

4.6. Two lines limiting the deviation of the predicted values from the experimental ones at ± 30% are 

also depicted in Fig 4.6. It is easy to recognize that almost all of the results fall within these bounds. By 

determining the value of the expI I
ffk V V=  ratio for all considered beams, also included in Table 4.2, an 

average value of 1.08 with a standard deviation of 0.28 were obtained. 
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The design value I
fdV  can be calculated introducing the partial safety factor fγ  to the I

feε , resulting a 

design effective strain /Ifd fe fε ε γ= , whose values are also indicated in Table 4.2. A value 1.3fγ =  is 

adopted in order to obtain design values for the ETS shear strengthening contribution, I
fdV , lower than 

the experimental ones for the 90% of the analyzed beams, assuring a proper design safety format for 

this model. The I
fdV  vs exp

fV  is also represented in Fig. 4.6, and the values of I
fdV  are presented in Table 

4.2, resulting an average value of 1.30 for the exp I
fdfV V  ratio, which seems acceptable for a technique 

where the strengthening reinforcements are protected from the aggressiveness of environment agents 

and vandalism acts.  

 
Fig. 4.6 I

fV  and I
fdV  vs exp

fV  according to the experimental-based approach. 

4.5.2 Validation of the Mechanical based model  

According to Bianco et al. (Bianco 2008), the angle α  defining the opening of the concrete fractured 

cone is set equal to 28.5°, but an interval between 20° and 30° was found in the literature (Teng et al. 

2006; Bianco et al. 2006). The simplified bond model is characterized by 0τ =16 MPa and 1δ =6 mm. 

The value of bond strength 0τ  and free-end slip 1δ  are selected taking into account the bond 

constitutive model for cast-in ribbed bars presented in the Model Code 2010 (fib 2013), and the 

experimental tests of embedded bars glued to concrete with epoxy adhesive available in literature 
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(Mahrenholtz 2012; Valerio et al. 2009; Dalfré et al. 2011; Owa et al. 2012; Godat et al. 2012) and 

reported in Annex A. 

Regarding the present model, a sensitivity analysis to study the influence of each input parameter has 

been carried out by Bianco et al. (2014), demonstrating that using the proposed simplified bond model 

the results are not significantly affected by changing the values of 0τ  and 1δ , but they are significantly 

affected by the values attributed to θ  and α . 

The predicted values II
fV  obtained by the formulation proposed in section 4.4 are presented in Table 

4.3. Where II
fV  is the minimum between ,II bd

fV , and ,II y
fV , the strengthening contribution of the ETS 

system corresponding to the debonding and steel yielding of the ETS bars, respectively. 

Table 4.3 Mechanical-based model assessemnt. 

Beam ID 
exp
fV  
 

,II bd
fV  

 
,II y

fV  
 

Failurea II
fdV  

IIk  γf=1b 
(γf=1.3c) 

 [kN] [kN] [kN]  [kN]  
Vertical       0S-S300-90 37.017  43.2 D 27.54 1.03 (1.34) 

2S-S300-90 44.199 35.8 1.23 (1.60) 
0S-S180-90 60.453 

76.9 86.4 D 59.15 
0.79 (1.02) 

2S-S180-90 98.847 1.29 (1.67) 
4S-S180-90 35.64 0.46 (0.60) 

A-3 S300.90 31.15 24.9 42.5 D 19.18 1.25 (1.62) 
A.5 S300.90/300.90 40.3     1.62 (2.1) 

B.3 E300.90 21.31 46.5 56.9 D 35.73 0.46 (0.60) 

SLB P4d-2S8@d 53.2 71.73 53.28 Y 40.99 1.00 (1.3) 
Inclined       

0S-S300-45 115.53  
61.1 Y 47.00 

1.89 (2.46) 
2S-S300-45 99.036 94.6 1.62 (2.11) 
4S-S300-45 119.18 

 
1.95 (2.54) 

0S-S180-45 127.66 
147.6 122.2 Y 94.00 

1.04 (1.36) 
2S-S180-45 157.6 1.29 (1.68) 
4S-S180-45 127.58 1.04 (1.36) 

A.4 E300.45 57.07 40.7 60.1 D 31.31 1.40 (1.82) 
B.4 E300.45 98.52 89.99 80.5 Y 61.89 1.22 (1.59) 

a Failure type based on the analytical results: D, debonding, Y, yielding 
bAverage kII ( 1fγ = ):1.21 

cAverage kII( 1.3fγ = ):1.57 
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The design values II
fdV  are also presented in Table 4.3, where a fγ  partial safety factor equal to 1.3 is 

assumed, in order to obtain design values lower than the experimental values for the 90% of the 

analyzed beams. The analytical predictions, II
fV , their corresponding design values, II

fdV , and the 

experimental results, exp
fV , are compared in Fig.4.7. The two lines limiting the deviation of the 

predicted values from the experimental values to ± 30% are also represented in Fig 4.7. Almost all of 

the results fall within these bounds. The values of the ratio expII II
ffk V V= , included in Table 4.3, have 

an average value of 1.21 and a standard deviation of 0.42, while when using the design values II
fdV , an 

average value of 1.57 was obtained for the IIk  ratio (values within round brackets in Table 4.3). 

In the cases where more than one ETS bar is installed in a cross section, a detrimental interaction effect 

on the strengthening capacity of each bar should be considered. For the analyzed beams the present 

model can simulate this interaction by limiting the width of the concrete prims to 2wb ; this assumption 

can be generalized by limiting the width of the concrete prism to the space between the bars in the same 

section of the beam, and checking for geometric compatibility.	
  	
  

 
Fig. 4.7. II

fV and II
fdV vs  according to the mechanical-based approach. 

 

Since this mechanical model neglects the influence of the existing steel stirrups on the ETS 

strengthening contribution, for each ETS strengthening solution there is a single II
fV , independent 

from the percentage of existing stirrups, which is not supported by the experimental results (Fig 4.1). A 

exp
fV
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reduction factor, function of the internal transverse steel reinforcement, could be introduced, as 

proposed for EBR and NSM strengthening (Chen et al. 2013; Chen et al. 2010; Chaallal and Mofidi 

2011; Li and Delmas 2001; Pellegrino and Modena 2006). Like the experimental-based model, the 

mechanical-based model is able to differentiate between yield and debonding failure, as proved by the 

results reported in Table 4.3.  

4.6 Conclusion     

This Chapter presents the results of an experimental program on RC beams strengthened in shear using 

the ETS technique. The effectiveness of this technique was evaluated by studying the influence of three 

shear reinforcement ratio of existing steel stirrups ( swρ = 0%, 0.10%, 0.17%), spacing (300mm and 

180mm) and inclination (90° and 45°) of steel ETS bars. The data obtained in the experimental program 

carried out, together with the experimental results available in literature dealing with the ETS technique 

were used to assess the predictive performance of two analytical approaches, denominated as 

experimental-based and mechanical based that were herein proposed for the estimation of the shear 

strengthening contribution assured by steel ETS bars. 

The tested strengthened ETS beams exhibited a significant increase of load carrying capacity and 

deflection capacity for both vertical and inclined bars. However, the configuration with inclined bars 

has assured a much higher effectiveness, which is justified by the fact that for this latter configuration a 

higher available bond length was assured. Inclined bars were able to mobilize integrally the strength 

capacity of the ETS shear reinforcement, while in vertical ETS bars the resisting bond length of the bars 

crossed by the critical shear crack may have been not enough to mobilize its yield strain. As expected, 

the effectiveness of the ETS technique has decreased with the percentage of existing steel stirrups, 

especially for vertical ETS bars. The obtained results demonstrate that the ETS shear strengthening 

technique is an effective and competitive solution.  

In terms of analytical models, the so called “experimental-based approach” is based on the concept of 

effective strain ε fe
I( ) , and an equation was proposed to obtain I

feε . This equation is dependent of the 

ETS orientation β  and of the parameter ( ) ( )2 3
fw fw sw sw cmE E fρ ρ+  that includes the percentage of 

ETS ( )fwρ , the percentage of steel stirrups ( )swρ  and the concrete compressive strength ( )cmf . The 

analytical ( )IfV  and the experimental ( )exp
fV  results of the ETS shear contribution were compared 

considering the ratio k ( )expI I
ffk V V= , whose average value was 1.08. This formulation provided 
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satisfactory results, and evidenced the clearly different behavior between vertical and inclined 

strengthening, by detecting the steel yielding only in 45° installed bars. 

The so-called “mechanical-based approach” is derived from a previous analytical model developed for 

NSM shear strengthened beams. This model is conceptually more reliable since it considers a bond 

constitutive law to evaluate the contribution of a single ETS bar, as well as the concrete fracture by 

reducing the available resisting bond length with the progress of the concrete fracture. The formulation 

provided satisfactory results, and the analytical ( )IIfV  and the experimental ( )exp
fV  results of the ETS 

shear contribution were compared, and an average value of 1.21 for the expII II
ffk V V=  ratio was 

obtained. 

The two conceptually different approaches have predicted values with similar level of accuracy, 

however the experimental-based approach has provided a dispersion of results lower than the 

mechanical-based model. Nevertheless, in terms of structural safety, by adopting for both approaches a 

partial safety factor of 
fγ =1.3, the shear strengthening contribution of 90% of the analyzed beams is 

less than the one recorded experimentally. 



	
  
111 

	
  

5 
Assessment of the behavior of ETS strengthened beams by FEM-

based material nonlinear analysis 

 

 

5.1 Introduction  

The evaluation of the predictive performance through the finite element method (FEM) of reinforced 

concrete (RC) elements failing in shear requires a material nonlinear constitutive model able to simulate 

the progressive shear stiffness degradation of the cracked concrete. In case of a smeared crack FE 

model that adopt a fix-crack model (Rots et al. 1985; de Borst and Nauta 1985) a reasonable approach 

to simulate the shear stress sliding along the crack is a fundamental factor (Maekawa et al. 2003; Rots 

2002). The load-deflection response up to ultimate load as well as the failure mode could be accurately 

simulated if the assumption on the crack stiffness is properly chosen.  

A widely used procedure to simulate the shear stiffness degradation in RC concrete structures consists 

in the introduction of a cracked shear modulus by the adoption of a “shear retention factor”  In the past, 

the shear retention factor was assumed as a constant value (Kwak and Filippou 1990; Hu and 

Schnobrich 1990; ASCE 1982), nevertheless this involved possible “stress locking” and uncertainty on 

the parameter to be chosen. Afterwards, the shear retention was often assumed as a function that 

reduces the shear stress transfer between the crack planes as the normal crack strain increases (Cedolin 

and Dei Poli 1977; Kolmar and Mehlhorn 1984; Rots 1988; Barros 1995; Sena-Cruz 2004;). This model 

takes into account the fact that friction (aggregate interlock) between the two surfaces of a crack 

diminishes with the increase of the crack opening. Kolmar and Mehlhorn (1984) suggested several 

expressions for the shear retention factor function concluding that a sharp drop followed by a 

continuous shear stiffness reduction is the most appropriate. Shear retention factor model can  also 

implemented by using different function based on shear stress-strain or shear stress-slip relationship, 

taking into account parameters as compressive strength, crack width, crack slip and maximum 
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aggregate  size  as  presented  in (Teng  et  al.  2013). (Kolmar  1986) proposed also  to  express  the  shear 

retention function taking into account the percentage of steel reinforcement crossing the shear plane.  

This adoption of a shear retention function leads to accurate results with the exception of structures that 

fail by the formation of a critical shear crack; in fact in this case the response results too stiff, a too high 

load  carrying  capacity  is  usually  obtained and the  occurrence  of    a  shear  failure  is not is  correctly 

predicted. 

A shear softening diagram was also introduced to simulate the shear fracture process (Rots and de Borst 

1987) as an alternative to the shear-retention function. This Chapter is dedicated to the assessment of 

the shear-crack diagram (cr cr
t tτ γ− ) proposed to model the sliding component of the crack constitutive 

law  implemented  into  a  multi-directional  fixed  smeared  crack  model (Ventura-Gouveia 2008, 2011). 

The constitutive model is briefly described in this work. A deep investigation on the parameters influencing 

the  proposed  model  is  carried  out by simulating the experimental  tests performed on  RC  beams 

strengthened for shear according to the Embedded Through-Section (ETS) technique.  

5.2   Numerical Model  

5.2.1 Introduction  

In  a  previous  work (Barros  et  al.  2011) implemented a  total  crack  shear  stress-shear  strain  approach 

with  the  aim  to  reproduce  numerically  the  decrease  of  shear  stress  transfers  with  the  increase  of  the 

crack sliding and crack opening in order to obtain better simulation of the strengthened beams failing in 

shear  and  in  flexural/shear.  Although,  for stress states where  pronounced  shear  is  present,  a  more 

sophisticated approach must be used.  

 

Fig. 5.1 Fracture mode I, II and III, adapted form (ACI Committee 446 1992). 

(Ventura-Gouveia et al. 2008) introduced in the previous model an important aspect in the treatment of 

the  concrete  fracture  mode  II  (Fig.  5.1),  by adopting a  softening  diagram  to  simulate  the  crack  shear 
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stress vs. crack shear strain (Rots and de Borst 1987). This model, presented in section 5.2, is capable of 

simulating with high accuracy RC beams failing in shear (Barros, et al. 2013a, 2013b). This 

enhancement on the constitutive model allows capturing the maximum carrying capacity, deformational 

response, and crack pattern of RC beams failing in shear. A preliminary assessment of the potentials of 

the model was performed and the result are reported in Annex C.  

In the following sections, a briefly description of the formulation of the multi-directional fixed smeared 

crack model is presented and the crack shear stress vs. crack shear strain softening diagram developed 

by Ventura-Gouveia (2011) is described. The model is implemented in FEMIX, a FEM-based computer 

program (Sena-Cruz et al. 2007). 

5.2.2. Multi-directional fixed smeared crack model  

At the domain of an integration point (IP) of a plane stress finite element and for the case of cracked 

concrete, the constitutive law is defined by the following equation: 

crcoDσ εΔ = Δ  (5.1) 

being σΔ  and εΔ  the vectors of the incremental stress and incremental strain components. In Eq. 5.1, 

crcoD  is the cracked concrete constitutive matrix, obtained by the following equation (Sena-Cruz 

2004): 

( )
1T Tco co cr cr cr co cr cr cocrcoD D D T D T D T T D
−

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  (5.2) 

where coD   is the constitutive matrix for concrete between cracks, assumed with a linear elastic 

behaviour,  crT  is the matrix that transforms the stress components from the coordinate system of the 

finite element to the local crack coordinate system, and crD  is the crack constitutive matrix: 

0
0

cr
cr I

cr
II

D
D

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5.3) 

Where cr
ID  and cr

IID  are the constitutive softening/hardening modulus corresponding to crack opening 

mode I (tensile) and crack sliding mode II (shear), respectively. The behaviour of non-completely 

closed cracks formed in an IP is governed by the following relationship:  

cr cr crDσ εΔ = Δl l  (5.4) 
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being crσΔ l  and crεΔ l
, respectively, the local vector of the incremental crack stress components and the 

local vector of the correspondent incremental crack strain components in the coordinate system of the 

crack.  

 
Fig. 5.2 Trilinear stress-strain diagram to simulate the fracture mode I crack propagation ( cr cr

n,2 1 n,1σ α σ= ,
cr cr
n,3 2 n,1σ α σ= ,

,2 1 ,
cr cr
n n uε ξ ε= ,

,3 2 ,
cr cr
n n uε ξ ε= ). 

A simple Rankine criterion is used to detect crack initiation. When the maximum principal tensile stress 

exceeds the tensile strength at an IP of a finite element, the material contained in its influence volume 

changes from uncracked to cracked state. The crack propagation is mainly controlled by the shape of 

the tensile-softening diagram represented in Fig. 5.2 and the material fracture energy (Mode I) . The 

trilinear diagram is defined by the normalized stress, iα , and strain, iξ , parameters that represent the 

transitions points between the linear segments of this diagram. The ultimate crack strain, ,
cr
n uε , is 

defined as a function of the parameters iα  and iξ , fracture energy, I
fG , tensile strength, 

,1
cr

ct nf σ= , and 

crack band width, bl , as follows (Bazant and Oh 1983; Sena-Cruz 2004); 

I
fcr

n,u
1 1 2 2 1 2 ct b

G2
f l

ε
ξ α ξ α ξ α

=
+ − +

 (5.5) 

The fracture Mode II modulus, cr
IID , is obtained from: 

1
cr
II cD Gβ

β
=

−
 (5.6) 

where β  is the shear retention factor and cG  the concrete elastic shear modulus. The parameter β  is 

defined as a constant value or as a function of the actual crack normal strain, cr
nε  and of the ultimate 

crack normal strain, ,
cr
n uε  as follows, 

GI

f

lb

n,uε cr
nε cr

σ cr
n

σ cr
n,1

DI,sec
cr

DI,1
cr

DI,2
cr

DI,3
cr

n,3ε cr
n,2ε cr

σ cr
n,2

σ cr
n,3

n,maxε cr

σ cr
n,max



Chapter 5 
	
  
	
  

	
  
115 

 

1

,

1
p

cr
n
cr
n u

ε
β

ε

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.7) 

When a linear decrease of β  with the increase of cr
nε  is assumed, then 1 1p = . Values of the exponent 

1p   larger than the unit correspond to a faster decrease of the parameter (Sena-Cruz 2004).  

Although, the description of the model is made using the formation of one crack in an IP, the multi-

directional fixed smeared crack model implemented in FEMIX computer program is capable of 

simulating the formation of multi-cracks in each IP (Sena-Cruz 2004; Ventura-Gouveia 2011). 

5.2.3 Shear-Softening diagram  

The use of softening diagrams to reproduce the fracture mode I process is common in smeared and 

discrete crack models, but the use of softening diagrams to model the shear stress transfer across the 

crack is less usual. As described in the previous section, to simulate the fracture mode II process a shear 

retention factor is currently used (Rots and de Borst 1987). According to this approach, the shear stress 

transfer between the crack planes decreases with the increase of the normal crack strain (see Eq. 5.7). In 

most structures assumed to be in a state of plane stress, this strategy leads to simulations with 

reasonable accuracy. Exceptions occur in structures that fail by the formation of a critical shear crack. 

For these cases the simulation of the structural softening with high accuracy requires the adoption of a 

softening crack shear stress vs. crack shear strain relationship (Rots and de Borst 1987). 

 
Fig. 5.3: Diagram to simulate the relationship between the crack shear stress and crack shear strain component, 

and possible shear crack statuses. 

In this section a softening diagram to simulate the crack shear stress strain behaviour is described. The 

proposed crack shear diagram is represented in Fig. 5.3. The shear softening diagram starts at the origin 

because, according to the crack initiation criterion, when a crack initiates the crack shear stress is null. 
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As a consequence of the rotation of the directions of principal stresses, shear stresses can develop 

across the surfaces of the crack  (Rots and de Borst 1987). The crack shear stress increases linearly until 

the crack shear strength is reached (first branch of the shear crack diagram), followed by a decrease in 

the shear residual strength (softening branch). 

The diagram represented in Fig. 5.3 is defined by the following expressions. The positive part of the 

diagram is explained here, being the treatment of the negative part straightforward. 

( ) ( ) ( )

,1 ,

,
, , , ,

, ,

,

0

0

cr cr cr
t t t t p

cr
t pcr cr cr cr cr cr cr cr

t t t p t t p t p t t ucr cr
t u t p

cr cr
t t u

D γ γ γ

τ
τ γ τ γ γ γ γ γ

γ γ

γ γ

⎧ < ≤
⎪
⎪

= − − < ≤⎨
−⎪

⎪ >⎩

 
(5.8) 

The shear fracture modulus, ,1
cr
tD  is defined by Eq. 5.6, being cr

IID  replaced by ,1
cr
tD , with the shear 

retention factor, β  assuming a constant value in the range ]0,1[. The peak crack shear strain, ,
cr
t pγ  is 

obtained by the following equation:  

,
,

,1

cr
t pcr

t p cr
tD

τ
γ =  (5.9) 

being, ,
cr
t pτ , the crack shear strength acquired from the input data. 

The ultimate crack shear strain, ,
cr
t uγ  is obtained by Eq. 5.9) and depends on the crack shear strength, ,

cr
t pτ , 

on the shear fracture energy (mode II fracture energy), ,f sG  and on the crack bandwidth, bl  as follows: 

,
,

,

2 f scr
t u cr

t p b

G
l

γ
τ

=  (5.10) 

It is assumed in the present approach that the crack bandwidth, used to assure that the results are 

independent of the mesh refinement, can also be used to define the dissipated energy in the mode II 

fracture process. As a consequence of the formation of other cracks in the neighbourhood of existing 

cracks, these existing cracks can close or reopen. The model must take into account this change of crack 

status. For the opening mode I the model takes this into account (Sena-Cruz 2004) and for the crack 

shear component a similar approach is used. So, five shear crack statuses are proposed and their 

meaning is schematically represented in Fig. 5.3. As shown in Fig. 5.3 the evaluation of the fracture 

mode II softening modulus cr
IID  of Eq. 5.3, depends on the branches defining the diagram. The crack 
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mode II modulus of the first linear branch of the diagram is defined by Eq. 5.6, the second linear 

softening branch is defined by 

,
,2

, ,

cr
t pcr cr

II t cr cr
t u t p

D D
τ

γ γ
= = −

−
 (5.11) 

and the crack shear modulus of the unloading and reloading branches is obtained from 

,max
,3 4

,max

cr
tcr cr

II t cr
t

D D
τ

γ−= =  (5.12) 

being ,max
cr
tγ  and ,max

cr
tτ  the maximum crack shear strain already attained and the corresponding crack shear 

stress determined from the softening linear branch. Both components are stored to define the 

unloading/reloading branch (see Fig 5. 3). 

In free-sliding status, ,
cr cr
t t uγ γ>  the crack mode II stiffness modulus, ,5

cr cr
II tD D=  is null. To avoid 

numerical instabilities in the calculation of the stiffness matrix, when the crack shear status is 

free-sliding a residual crack shear stress value is assumed for this phase of sliding. A free-sliding status 

is also assigned to the shear crack status when ,
cr cr
n n uε ε> . The details about how the shear crack statuses 

are treated can be found elsewhere (Ventura-Gouveia 2011). The crack shear stress vs. shear strain 

diagram represented in Fig. 5.3 was adopted in the simulations performed in the present work, but other 

more sophisticated diagrams were also implemented in FEMIX computer program, and their 

corresponding formulations can be found elsewhere (Ventura-Gouveia 2011). The accuracy of the 

model was already  demonstrated for NSM CFRP shear strengthened beams (Barros et al. 2013b). 

5.3 Predictive performance of the numerical model  

5.3.1 Finite element mesh, integration schemes and constitutive laws for the materials 

The predictive performance of the presented model is assessed using the experimental tests presented in 

Chapter 3 on T-cross section reinforced concrete (RC) beams shear strengthened according to the 

Embedded Through-Section (ETS) technique using steel bars. For modeling the concrete part of the RC 

beams 8-noded serendipity plane stress (PSTE) finite elements of average size of 25x25mm were used 

in all the numerical simulations. The longitudinal steel bars, stirrups and the ETS strengthening bars 

were modeled with 3-nodes embedded cable (EC) type element (one degree-of freedom per each node) 

that were assumed perfectly bonded to the surrounding concrete. A Gauss-Legendre integration scheme 
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was adopted for both PSTE and EC elements, of 2x2 integration points (IP) in case of PSTE, and 2 IP 

for ECs. Two sets of smeared cracks were allowed to be formed at each integration point, according to a 

threshold angle of 30° for crack opening criterion (Sena-Cruz and Barros 2004). A modified version of 

the Newton Rapson method was adopted, i.e. the stiffness matrix of the structure in the iterations of a 

load increment is the one evaluated in the first iteration, 0i
T TK K= . The loading process was controlled by 

the arch length technique (Ventura-Gouveia et al. 2006) by imposing an increment of vertical 

displacement in point P (Fig. 5.4) that varied between 0.1 and 0.3 mm, and an energy convergence 

criteria of 1.0 ‰ was adopted. An example of a finite element mesh used for the simulation of 4S-S180-

45 beam is represented in Fig. 5.4. The values that define the concrete constitutive model discussed in 

section 5.2 are indicated in Table 5.1. The trilinear tension-softening diagram represented in Fig. 5.2 

was adopted to simulate the concrete fracture mode I process. The value of the concrete tensile strength 

and fracture energy were obtained according to the Model Code recommendations (CEB-FIB 1990).  

	
  

Fig. 5.4 Finite element mesh for beam 4S-S180-45 (dimensions are in mm) 
	
  

Table 5.1: Values of the parameters of the concrete constitutive model 
Poisson’s ratio (νc) 0.15 
Initial Young’s modulus (Ec) 30.7 N/mm2 
Compressive strength (fc) 29.7 N/mm2 
Trilinear tension-softening diagram ctf = 1.9N/mm2, fG = 0.07 N/mm 

1ξ = 0.004, 1α =0.3,  2ξ = 0.05, 2α =0.2  
Parameter defining the mode I fracture energy available 
to the new crack [Sena-Cruz 2004] 

p2 = 2 

Crack bandwidth (lb) Square root of the area of Gauss integration point 
Threshold angle  αth=30° 
Maximum number of cracks per integration point  
[Sena-Cruz 2004] 

2 

Ultimate crack shear sliding MAXIMUM_CRACKWIDTH 
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For modeling the crack shear behavior, the cr cr
t tτ γ−  diagram represented in Fig. 5.3 was used, and the 

influence on the beam’s response of the parameters that define this diagram was investigated, since the 

load carrying and deflection capacity, as well as the crack pattern of this type of beams are quite 

dependent on the values adopted for this crack shear softening diagram. Furthermore, and according to 

the knowledge of the author of the present work, this type of analysis is not available in the literature, 

therefore valuable contribution can be done in this respect. For assessing the values for the cr cr
t tτ γ−  of 

the concrete model of the tested beams ( β , ,
cr
t pτ , ,f sG ), an inverse analysis was executed by fitting as 

much as possible, not only the load versus deflection and the load versus strain relationships registered 

experimentally, but also the crack pattern observed in the failure stage of the beams. From this inverse 

analysis, it was obtained the interval of values obtained for β , ,
cr
t pτ  and ,f sG  that assured simulations of 

acceptable accuracy under the compromise of the deflection response and crack pattern. These values 

are indicated in Table 5.2, was well as the values that best fit (in bold) the behavior of the tested beams. 

It is observed that ,
cr
t pτ  can be assumed equal to 1.0 MPa ( , 0.2cr

t p cmfτ ≈ ), which is in agreement with 

the values adopted in Barros et al (2013a, 2013b).  

 
Fig. 5.5 Uniaxial constitutive model for the internal reinforcement and ETS bars 

 

For modeling the behavior of the longitudinal steel bars, stirrups and ETS bars, both in tension and in 

compression, a trilinear stress-strain diagram was adopted (Fig 5.5) (Sena-Cruz 2004). This diagram is 

defined by the points PT1= ( ,sy syε σ ), PT2= ( ,sh shε σ ) and PT3= ( ,su suε σ ), and a parameter p that 

defines the shape of the last branch of the diagram (Fig 5.5). Unloading and reloading linear branches 

with slope ( )s sy syE σ ε=  are assumed in the present approach. The values for defining this diagram were 

obtained from tensile tests, and the obtained values are those indicated in Table 5.3.  
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Table 5.2. Values of the performed numerical simulation, minimum and maximum used value. 

 β  
,
cr
t pτ  ,f sG  

0S-REF 0.175 1.00 0.07 
min 0.150 0.85 0.07 
max 0.22 1.00 0.1 
0S-S300-90 0.15 1.00 0.08 
Min 0.141 0.85 0.07 
Max 0.150 1 0.14 
0S-S180-90 0.144 1.00 0.1 
Min 0.1 1.00 0.1 
Max 0.150 1.1 0.2 
0S-S300-45 0.10 1.00 0.50 
Min 0.03 0.85 0.14 
Max 0.15 1 1.3 
0S-S180-45 0.10 1.00 0.2 
Min 0.064 1 0.1 
max 0.15 1 0.768 
2-REF 0.15 1.00 0.08 
min 0.05 0.85 0.08 
max 0.15 1.00 0.15 
2S-S300-90 0.12 1.00 0.12 
Min 0.10 1 0.12 
Max 0.15 1 0.182 
2S-S180-90 0.1 1.00 0.18 
Min 0.10 1 0.14 
Max 0.15 1.25 0.45 
2S-S300-45 0.075 1.00 0.6 
Min 0.03 0.85 0.14 
Max 0.15 1.00 1.3 
2S-S180-45 0.017 1.00 1.00 
Min 0.017 1 0.89 
Max 0.2 1.25 1.75 
4S-REF 0.1 1.00 0.22 
Min 0.05 1.00 0.1 
max 0.15 1.25 0.25 
4S-S300-90 0.09 1.00 0.14 
Min 0.09 1.00 0.14 
Max 1.15 1.0 0.213 
4S-S180-90 0.075 1.00 0.45 
Min 0.075 1.00 0.14 
Max 0.15 1.50 0.50 
4S-S300-45 0.02 1.00 0.9 
Min 0.01 0.85 0.51 
Max 0.07 1.75 2.0 
4S-S180-45 0.030 1.00 1.5 
Min 0.012 1 0.3 
Max 0.200 3 2.5 
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Table 5.3: Values of the parameters of the steel constitutive model (Sena 1994) 
Steel bar diameter 

(mm) 
PT1 

[ ]syε −       ( )sy MPaσ  
PT2 

[ ]shε −       ( )sh MPaσ  
PT3 

[ ]suε −       ( )su MPaσ  
p
 

6 2.870×10-3      573.94 2.870×10-3      573.94 6.925×10-2       666.67 1 
8 2.530×10-3      505.35 2.759×10-2      505.35 1.28×10-1      594.11 1 

10 2.747×10-3      549.35 2.750×10-2      549.35 1.125×10-1      641.83 1 
12 2.637×10-3      527.30 2.830×10-2       527.30 1.000×10-2      616.48 1 
24 2.989×10-3      597.88 2.989×10-3      597.88 6.000×10-2      708.07 1 

 

5.3.2 Simulation and discussion 

The load-deflection relationships obtained experimentally and numerically are compared in Fig. 5.6. 

The curves at red color and including circle markers were obtained by using for the cr cr
t tτ γ−  diagram 

the values in bold in Table 5.2. A shadow region is also indicated in this figure for each beam, which 

corresponds to the analysis where the minimum and the maximum values for the cr cr
t tτ γ−  parameters, 

indicated in Table 5.2, were used. Fig.5.6 shows that the numerical model is able to capture with good 

accuracy the load-deflection response of the beams. However, for some beams strengthened with 

vertical ETS bars, even the best simulations (using the bold values in Table 5.2) have predicted an 

ultimate load higher than the load registered experimentally, which may indicate that for this 

strengthening arrangement some further improvements should be adopted in the cr cr
t tτ γ−  diagram. 

Above a deflection of about 1.4 mm, the 4S-S300-90 beam exhibited an abnormal high decrease of 

stiffness during the experimental test, when the 4S-Ref reference beam is taken for comparison 

purposes, and therefore the model was not capable of matching with the same accuracy the behavior of 

this beam in this loading stage.  

 

   
(a) 0S-REF (b) 0S-S300-90 (c) 0S-S180-90 
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(d) 0S-S300-45 (e) 0S-S180-45 (f) 2S-Ref 

   
(g) 2S-S300-90 (h) 2S-S180-90 (i) 2S-S300-45 

   
(j) 2S-S180-45 (k) 4S-REF (l) 4S-S300-90 

   
(m) 4S-S180-90 (n) 4S-S300-45 (o) 4S-S180-45 

Fig. 5.6 Comparison between experimental and numerical Load vs. deflection at the loaded section relationships. 

In Fig. 5.7 the crack patterns obtained from the numerical simulations are superimposed with the crack 

patterns registered experimentally at peak load (only macro-cracks are indicated). The experimental 

crack patterns were captured using a close-range photogrammetric technique. The localizations and 

inclinations of the shear failure crack and secondary cracks are captured with good accuracy. 

Furthermore, the shear failure mode registered experimentally in all the tested beams was successfully 

predicted, as it is possible to notice by observing the localization and profile of the cracks of “fully open 

crack status” (Sena-Cruz 2004) , those with no capacity of transferring any type of crack stress 
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component. The model was able of simulating the relevant aspects of the crack formation and 

propagation during the loading process. In fact, the first cracks were of flexural nature by crossing almost 

orthogonally the flexural reinforcement; however, due to the tension stiffening effect the width of these 

cracks remained relatively small. During the loading process of the beams, some of these cracks propagated 

towards the bottom surface of the flange with an average inclination of 45°; meanwhile a diffuse pattern of 

shear cracks of very small inclination formed and propagated just above the longitudinal reinforcement due 

to its  high dowel resistance. (Chapter  3). The model was also able to catch the formation of higher number 

of shear cracks with the increase of reinforcing ratio of steel stirrups. By taking the results on the 4S-S180-

45 beam, as representative, Fig. 5.8 evidences that the model is also capable of predicting the strain 

evolution in the ETS bars and steel stirrups with acceptable accuracy, since it should be taken into account 

the local character of the strain measurements and the perfect bond assumption considered for these 

reinforcements. 

Based on the obtained results it seems acceptable to assume perfect bond between strengthening 

material and surrounding concrete, mainly if high rigor on the crack width evaluation is not of 

paramount relevance, such is the case. In fact, when steel shear reinforcements are crossed by a shear 

crack, due to their excellent bond conditions to the surrounding concrete, a gradient of strain in these 

reinforcements occur in the cracked section, and the yield stress is attained with a relatively small 

sliding and debonding length.  However, the numerical simulations of RC beams shear strengthened 

with FRP-systems evidence the relevance of modeling the debond between FRPs and surrounding 

medium, due to the lower bond performance of FRP systems to the concrete substrate (Yuan et al. 

2004; Bianco et al. 2009; Seracino et al. 2007; Mohamed Ali et al. 2008). This is assured by using a 

tau-slip constitutive model with interface finite elements, and is especially relevant when using the 

Externally Bonded Reinforcement (EBR) technique (Sayed et al. 2014; Zhang and Teng 2014; Teng et 

al. 2013; Manos et al. 2014; Godat et al. 2007; Hu et al. 2004). When NSM technique is used, due to 

the higher ratio between contact surface and cross section area of the currently used FRP laminates, as 

well as the confinement provided by surrounding concrete to the laminates that are installed into 

grooves open on the concrete cover of the beam’s lateral faces, good predictive simulations were also 

obtained assuming perfect bond for these FRP or ETS systems (Barros et al. 2013a, 2013b). 

 

   
(a) 0S-REF (b) 0S-S300-90 (c) 0S-S180-90 
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(d) 0S-S300-45 (e) 0S-S180-45 (f) 2S-Ref 

   
(g) 2S-S300-90 (h) 2S-S180-90 (i) 2S-S300-45 

   
(j) 2S-S180-45 (k) 4S-REF (l) 4S-S300-90 

   
(m) 4S-S180-90 (n) 4S-S300-45 (o) 4S-S180-45 

Fig. 5.7 Comparison between the experimental an numerical crack patterns 

 

 

Fig. 5.8 Comparison between numerical and experimental strain measurement for beam 4S-S180-45. 
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5.4  Sensitivity analysis of the numerical model  

5.4.1 Influence of the parameters of the crack shear softening diagram  

The numerical simulations presented in the previous section have indicated that the force-deflection and 

the crack pattern are susceptible to the values adopted for the parameters that define the crack shear 

softening diagram, namely, ,
cr
t pτ , β  and ,f sG  (Fig. 5.3). To have a better understanding on how these 

parameters influence the predictive behavior of the type of beams analyzed in the present work, a 

parametric study was executed by considering the 2S-REF beam. For each selected parameter a set of 

values are considered, while maintaining constant all the values adopted for the remaining parameters 

of the multi-directional fixed smeared crack. It is necessary to highlight that difficulties on the 

convergence procedure were observed in the simulation of beam 2S-REF (red curve indicated by arrow) 

obtained by using for the cr cr
t tτ γ−  diagram the values in bold in Table 5.2.  

Influence of fracture energy mode II, ,f sG  

Fig. 5.9 compares the load vs. deflection at loaded section obtained for three different values of the 

fracture energy mode II ( ,f sG ): 0.01, 0.08 and 1.5 N/mm (all the remaining parameters were maintained 

the same).  

 
(a)  

 
(b) ,f sG =0.01 [N/mm] 

(c) ,f sG =1.5 [N/mm] 

Fig. 5.9 Influence of ,f sG 	
  on the: (a) relationship between the force and the deflection at the loaded section and 

(b–d) crack pattern corresponding to the assumed ,f sG . 

This figure also compares the crack patterns obtained in the simulations corresponding to the ,f sG  of 

0.01 and 1.5 N/mm. As expected, by decreasing ,f sG  the stiffness of the beam’s response also decrease, 

since more cracks enter in the shear softening stage at smaller deflection. In terms of load carrying 

capacity, a tendency to a small decrease with the decrease of ,f sG seems exist, since the analysis 
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corresponding to the ,f sG =0.08 N/mm was interrupted due to difficulties on the convergence procedure. 

By using a low value of ,f sG  wider cracks are formed, with a tendency to be localized just above the 

longitudinal reinforcement (Figs 5.9c-d) 

Influence of Crack shear strength, ,
cr
t pτ  

Fig. 5.10 compares the load vs. deflection at loaded section obtained for three different values of the 

crack shear strength ,
cr
t pτ  =0.5, 1.0 and 3.0 MPa (all the remaining parameters were maintained the 

same). The stiffness of the force-deflection response just after the formation of the critical shear crack is 

as higher as larger is the ,
cr
t pτ , since the entrance of the cracks in the shear softening stage is postponed, 

but after the cracks have entered in this stage the stiffness degradation is higher as larger is ,
cr
t pτ  due to 

the more abrupt shear stress decay. Since in these analysis the ,f sG  is maintained constant, the softening 

response for this diagram is as brittle as higher is ,
cr
t pτ , due to the decrease of the ultimate crack shear 

strain, ,
cr
t uγ  (Fig 5.10b). The ,

cr
t pτ  seems do not have relevant influence on the maximum load carrying 

capacity of this type of RC beams. The crack patterns for the analysis with ,
cr
t pτ  of 0.5 and 3.0 MPa also 

support these conclusions, since for the smaller ,
cr
t pτ  (0.5 MPa) a few number of  well-defined shear 

failure cracks (completely open) were formed compared to the crack pattern of the larger ,
cr
t pτ  (3.0 

MPa), Fig. 5.10d. Furthermore, for the ,
cr
t pτ =0.5 MPa the shear failure crack has the tendency of 

propagating just above the longitudinal reinforcement. 

 

 
(a) 

 
(b) 
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,
cr
t pτ =0.5 (MPa) 

(c) 

 
,
cr
t pτ =3.0 (MPa) 

(d) 
Fig. 5.10 Influence of ,

cr
t pτ  on the: (a) relationship between the force and the deflection at the loaded section, (b) 

representation of the crack shear stress-shear strain diagram for the adopted ,
cr
t pτ , (c–d) crack pattern 

corresponding to the assumed ,
cr
t pτ . 

Influence of beta β  parameter   

Fig. 5.11 compares the load vs. deflection at loaded section obtained for three different values of the 

shear retention parameter that influences the inclination of the first branch the cr cr
t tτ γ−  diagram: β  

=0.015, 0.15 and 0.6 (all the remaining parameters were maintained the same).  

 
(a) 

 
(b) 

 
β =0.015 

(c) 

 
β =0.6 

(d) 
Fig 5.11 Influence of β  on the: (a) relationship between the force and the deflection at the loaded section, (b) 

representation of the crack shear stress-shear strain diagram for the adopted β , (c–d) crack pattern corresponding 

to the assumed β . 

The inclination of this first branch, ,
cr
t ID , is defined by the value adopted for the β  parameter according 

to Eq. (6), by obtaining the peak crack shear strain, cr
tγ , from Eq. (9). Fig. 5.11b shows that the gradient 

of crack shear stress in this first branch decreases with β  (smaller inclination of this branch with the 
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lower values of β  ). In consequence, the stiffness of the force-deflection just after the formation of the 

critical shear crack also decreases with β . However, since the peak crack shear strain, 
,
cr
t pγ , is as larger 

as smaller is β  (Fig. 5.11), the entrance of the cracks in their softening stage is postponed, resulting a 

larger stiffness of the force-deflection response for smaller β  values in the final stage of the response 

of the beams. Fig. 5.11 shows how the values of β  can significantly affect the stiffness and load 

carrying capacity of the beam. The crack patterns for β  =0.015 and β  =0.6 are presented in Figs 

5.11c-d, where the formation of wider cracks is visible for β  =0.6 due to the larger deflection of the 

beam at its failure.  

 

5.4.2 Comparison between the shear retention factor and the shear softening approach  

Fig. 5.12 compares the force-deflection relationship at loaded section for beam 2S-Ref when using the 

shear retention function  (Eq. 5.6 with p1 = 3) and adopting the cr cr
t tτ γ−  diagram presented in Section 

5.3. Up to a deflection of about 1 mm (that corresponds to the formation of the diagonal shear crack) 

the responses are quite similar; up to this stage, the curve is governed by the tensile behavior of the 

concrete. For higher values of deflection, the two approaches differ significantly. The shear retention 

factor approach, implemented with an incremental model, is not able to simulate the stiffness 

degradation induced by the shear deformation, i.e. cannot simulate a decrease of the crack shear stress 

transfer ( )cr
tτ with the increase of the crack shear ( )cr

tγ As Fig. 5.12 clearly shows, this approach 

predicts a load carrying capacity much higher than the experimental one, while the proposed cr cr
t tτ γ−  

diagram allows predicting correctly the expected results. 

 
(a) 

 
(b) 

Fig. 5.12 Comparison between shear softening diagram and shear retention factor-based numerical models (a) 

force-deflection relationship at the loaded section	
   for beam 2S-Ref, (b) crack pattern using the shear-retention 

factor. 
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5.5 Analytical evaluation of the beta parameter and shear fracture energy  

 

5.5.1 β  factor and shear fracture energy ,f sG as a function of the total shear reinforcement 

stiffness and concrete compressive strength 

In order to simulate the tested beams, different values of the parameters β and ,f sG  have been used. It 

has been observed that these parameters play a relevant role in the softening behavior, affecting the 

final structural response. Through the parametric study has demonstrated that the ,
cr
t pτ  also influences 

the numerical response, this value was assumed to be constant ( ,
cr
t pτ =1.0 MPa) in the simulations 

presented and discussed in section 5.3. The use of a different cr cr
t tτ γ− diagram for each beam can be 

explained by considering the fact that the constitutive model adopted for the concrete describes the 

behavior of plain concrete, and the model adopted for the reinforcement (stirrups and bars are modeled 

as embedded cable – section 5.3.1), can exclude some minor concrete contribution to shear strength. 

Along a shear diagonal crack (Fig. 5.13), the effects of the aggregate interlock, dowel action and crack 

sliding are sensible to the percentage of transverse steel (ASCE-ACI Committee 445, 1999). It was 

demonstrated that the aggregate interlock increases with a normal compressive force opposing to the 

crack opening (Walraven 1981), and the effect induced by the dowel action is higher when a small 

spacing between the stirrups is adopted. The adoption of embedded cables to simulate the steel bars 

neglects the crack sliding resistance offered by the bars crossing the cracks. Kolmar (1986) developed a 

shear retention factor model to take into account the percentage of reinforcement crossing the crack 

plane. The values of β and ,f sG  used for the numerical simulation in section 5.3 (Table 5.2) are plotted 

versus the ( ) ( )2 3
fw fw sw sw cmE E fρ ρ+ in Fig. 5.14. ( ) ( )2 3

fw fw sw sw cmE E fρ ρ+  depicts the total stiffness of the 

shear reinforcement divided by the 2 3
cmf which represent the influence of the concrete tensile strength as 

indicated in Dias and Barros (2013). By means of a statistical linear regression analysis, two equations 

were determined for each investigated parameter (β and ,f sG ). Since a significant difference of 

behavior was found experimentally between 90° and 45° ETS installed bars, different equations were 

adopted for vertical (90°) and inclined (45°) strengthening. The coefficient of determination R2 shows a 

dispersion of data in the range of 0.46 and 0.94.The regression lines corresponding to Eq. 5.13 to 5.16 

are reported in Fig.5.13. For Eq. 5.16 the constant term (Y-intercept) was imposed equal to ,f sG = 0.07: 

value of the shear fracture energy for the beam without any shear reinforcement (0S-Ref). The inclined 
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and vertical ETS bars are indicated with continuous and dotter line, respectively. Fig. 5.14a presents the 

regression corresponding to the parameter β : it is possible to notice that this parameter decrease with 

the increase of ( ) ( )2 3
fw fw sw sw cmE E fρ ρ+ . Similar inclinations were obtained for vertical and inclined 

ETS bars; nevertheless, higher values were provided by Eqs. 5.13 and 5.14 for vertical (90°) ETS bars. 

Fig 5.14b presents the regression corresponding to the parameter , ,f sG : it is possible to notice that this 

parameter increase with the increase of ( ) ( )2 3
fw fw sw sw cmE E fρ ρ+ . Higher values of ,f sG and higher slope 

of the linear regression were obtained for inclined (45°) ETS bars. 

 

( ) ( )2 31.137 0.176fw fw sw sw cmE E fβ ρ ρ⎡ ⎤= − ⋅ + +⎣ ⎦
          R2=0.46          for 90° ETS (5.13) 

( ) ( )2 31.36 0.161fw fw sw sw cmE E fβ ρ ρ⎡ ⎤= − ⋅ + +⎣ ⎦
          R2= 0.53           for 45° ETS (5.14) 

( ) ( )2 3
, 2.15 0.07f s fw fw sw sw cmG E E fρ ρ⎡ ⎤= ⋅ + +⎣ ⎦

          R2=0.94            for 90° ETS (5.15) 

( ) ( )2 3
, 9.77 0.07f s fw fw sw sw cmG E E fρ ρ⎡ ⎤= ⋅ + +⎣ ⎦

          R2=0.62           for 45° ETS (5.16) 

  

 

Fig 5.13 Forces acting along the crack (a); Crack stresses, relative displacements and local coordinate system of 
the crack (b); stress acting on the single finite element (c) 
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(a) (b) 

Fig. 5.14 β  (a) and shear fracture energy ,f sG (b) as a function of the total shear reinforcement stiffness and 
concrete compressive strength. 
 
 
5.5.2 Accuracy of the simulation with the calculated values 

The parameter values obtained with Eq. 5.13 to 5.16 were used to assess the accuracy of the presented 

equations on the estimation of the values β - ,f sG . These values are reported in Table 5.4 and are 

compared with the values obtained with the best fit of the experimental results (Table 5.2).  

Table 5.4 Comparison between the values β and ,f sG obtained by using Eq. 5.13 to 5.15 and obtained by inverse 
analysis (Table 5.2). 

 β  
Table 5.2 

 

β  
Eq. (5.13) 
Eq. (5.14) 

,f sG  
Table 5.2 

,f sG  
Eq (5.15) 
Eq. (5.16) 

0S-REF 0.175 0.176 0.07 0.070 
0S-S300-90 0.15 0.141 0.08 0.135 
0S-S180-90 0.144 0.118 0.1 0.178 
0S-S300-45 0.175 0.103 0.50 0.489 
0S-E180-45 0.1 0.064 0.20 0.768 

2-REF 0.15 0.151 0.08 0.117 
2S-S300-90 0.12 0.116 0.12 0.182 
2S-S180-90 0.1 0.093 0.18 0.225 
2S-S300-45 0.075 0.073 0.6 0.702 
2S-S180-45 0.017 0.034 1.00 0.981 

4S-REF 0.1 0.134 0.22 0.148 
4S-E300-90 0.09 0.100 0.14 0.213 
4S-S180-90 0.075 0.077 0.45 0.256 
4S-S300-45 0.02 0.053 0.9 0.844 
4S-S180-45 0.030 0.014 1.5 1.124 

 

The obtained load-deflection relationship and crack patterns are presented in Figs 5.15 and 5.16, 

respectively. As in section 5.3, the red color curves, including circle full markers, were obtained by 

using the parameter values in bold in Table 5.2, while the blue color curves, including square empty 
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markers, were obtained by using the parameter values calculated with Eq. 5.13 to 5.16. It is possible 

notice that, in most of the cases, these latter curves are very similar to the ones presented in section 5.3 

as well as to the experimental results. Some of these simulations overestimate (for example beam 0S-

S180-45 or 2S-S180-90) or underestimate (for example beam 2S-S300-45) the load carrying capacity of 

the beams, mainly when a meaningful difference between the values β  and ,f sG  in Table 5.4 occurs. 

Nevertheless, it is possible to notice that in general, even with significant difference between the values 

β  and ,f sG  in Table 5.4 for some of the beams, the predicted results provide satisfactory results. In 

some of the numerical simulations an underestimation of the maximum load carrying capacity can be 

attributed to numerical instabilities (e.g. 4S-S180-45). The crack patterns reported in Fig. 5.16 indicate 

a good agreement between numerical and experimental results. Moreover it was evidenced the 

possibility to increase the valued of ,f sG  and decrease the value of β with the increase of the total 

stiffness of the shear reinforcement. ( )fw fw sw swE Eρ ρ+ . The presented equations (Eq. 5.13 to 5.15) 

intend to be a suitable tool to obtain a first estimation of the investigated parameters, for similar 

geometry of un-strengthened and ETS strengthened RC beams.  

   
(a) 0S-REF (b) 0S-S300-90 (c) 0S-S180-90 

   
(d) 0S-S300-45 (e) 0S-S180-45 (f) 2S-Ref 
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Fig 5.15 Load-deflection of the numerical simulation obtained using the values provided by Eq. 5.13 to 5.16; 
comparison with experimental a values that best fit the experimental results 

 

   
(a) 0S-REF  (b) 0S-E300-90  (c) 0S-E180-90  

   
(d) 0S-E300-45  (e) 0S-E180-45  (f) 2S-Ref  

   
(g) 2S-E300-90  (h) 2S-E180-90  (i) 2S-E300-45  

   
(g) 2S-S300-90 (h) 2S-S180-90 (i) 2S-S300-45 

   
(j) 2S-S180-45 (k) 4S-REF (l) 4S-S300-90 

   
(m) 4S-S180-90 (n) 4S-S300-45 (o) 4S-S180-45 
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(j) 2S-E180-45  (k) 4S-REF  (l) 4S-E300-90  

   
(m) 4S-E180-90  (n) 4S-E300-45  (o) 4S-E180-45  

Fig 5.16 Crack-Patterns of the numerical simulation obtained using the values provided by Eq. 5.13 to 5.16 

 
5.6 Conclusion  
 

This Chapter presents the relevant results of the numerical simulation performed on RC beams 

strengthened using steel ETS bars. The analysis capability of a multi-directional fixed smeared crack 

model FE program (FEMIX) to estimate the behavior of this type of elements up to failure was 

assessed. To simulate the degradation of the crack shear stress transfer after crack initiation, a shear 

crack softening diagram ( )cr cr
t tτ γ− , was adopted and investigated as an alternative to the shear 

retention factor function. It was observed that the force-deflection relationship is sensible to the adopted 

values of the cr cr
t tτ γ− . The parameters that define the shear crack softening diagram β , ,f sG , ,

cr
t pτ  were 

identified by using an inverse analysis, since there is a lack of specific experimental tests dedicated to 

the assessment of those parameters. For each tested beam a different shear crack softening diagram was 

identified. It was  in fact observed that the value of β  and ,f sG  are influenced by the shear strengthening 

ratio (nevertheless a constant value of ,
cr
t pτ =1 MPa was used). The numerical simulations evidenced that 

by adopting a proper shear crack softening diagram a good prediction of the deformational behavior, 

load carrying capacity, crack pattern and reinforcement strain field of the tested beam can be obtained. 

It was also demonstrated that, due to the good bond performance between ETS bars and concrete during 

the experimental tests, the assumption of perfect bond between materials is reasonable and good results 

can be obtained. A parametric study to evaluate the influence of the parameters that define the shear-

softening diagram cr cr
t tτ γ− , in RC beams was carried out. This study evidenced that the parameter β ,

,f sG , ,
cr
t pτ  significantly affect the cracked stiffness of the tested beams. It was observed that the second 

branch (softening-branch) of the cr cr
t tτ γ− diagram has a relevant role in the numerical model. The peak 

crack shear strain, ,
cr
t pγ , which is as larger as smaller is β , is an important point in the diagram since it 

defines the entrance in the softening phase. A larger stiffness of the force-deflection response was 
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observed when the entrance in the softening phase is postponed (small value of β ). It was also 

observed that the stiffness of the beams decreases by decreasing the values of ,f sG . A smaller value of 

β  provided as well higher carrying capacity in the analyzed beam, nevertheless the values of ,
cr
t pτ  and 

,f sG seemed to have small influence on the estimation of the maximum load carrying capacity. The 

parametric study also showed that for the highest value of ,
cr
t pτ  (at constant values of ,f sG ) an abrupt 

decay of the softening branch led to a brittle behavior of the deflectional response; on the other side the 

lowest value of ,
cr
t pτ  (at constant values of ,f sG ) led to a very ductile behavior. The crack pattern was 

also influenced by different values of β , ,f sG , ,
cr
t pτ . It was also observed that by using the concept of 

shear retention factor, the numerical model is not able to simulate the stiffness degradation induced by 

the shear deformation, and an abnormal high load carrying capacity is estimated, while adopting a 
cr cr
t tτ γ− softening diagram, the response of the beam, the failure mode and also the crack pattern are 

correctly estimated.  

Finally, a linear regression model using the data of the presented numerical simulation was used to 

estimate the parameter β , ,f sG  of the cr cr
t tτ γ−  diagram. It was observed that the numerical simulation 

performed using the values obtained by linear regression showed a structural response similar to the 

experimental results in terms of both load-deflection relationship and crack pattern. The results would 

allow to use the introduced equations for a first estimation of the β , ,f sG  parameters for similar section 

geometries and material properties of beams strengthened using the ETS technique. Moreover and more 

important is was demonstrated the possibility to evaluate the β , ,f sG  as a function of the total transverse 

reinforcement stiffness and the concrete compressive strength. Nevertheless, more investigation is 

needed to provide a general rule for the estimation of the cr cr
t tτ γ−  diagram for RC un-strengthened and 

strengthened elements. 

It is possible to conclude that by adopting the shear softening diagram in the multidirectional fixed 

smeared crack model, available in the FEMIX computer program, the numerical analysis was able to 

predict with higher accuracy the behavior of structures failing in shear and the numerical capability was 

improved. 



	
  



	
  
137 

	
  

6 
Conclusions and future developments  

 

 

6.1   Conclusions 

The present thesis deals with the shear strengthening of RC beams using the Embedded Through-

Section (ETS) technique. This technique consists in drilling holes through the beam cross section and 

introducing steel or carbon fiber reinforced polymer (CFRP) bars into these holes, and then bonded to 

the surrounding concrete with adhesive material. The objectives of the present work were to contribute 

to a better understanding of ETS shear strengthening system, its mechanical behavior and the 

parameters affecting its effectiveness, as well as to develop an analytical model to predict the 

contribution of ETS steel bars for the shear strengthening of RC beams. Moreover, a reliable FEM-

based numerical strategy for RC beams failing in shear is provided by investigating the influence of the 

governing parameters of the crack shear softening diagram on the behavior of this type of elements. 

This shear-softening diagram is part of the constitutive law that simulates the crack shear stress transfer, 

already implemented in the multidirectional fixed smeared crack model available in the FEMIX 

computer program, which is based on the finite element method (FEM). 

To accomplish those purposes, an experimental program was carried on RC T-cross section beams 

strengthened using steel and CFRP bars according to the ETS technique. The investigated parameter in 

the experimental program were the percentage of existing steel stirrups  ( swρ ), the percentage and 

inclination (90° and 45°) of ETS strengthening, as well as the material type used for ETS bars (steel and 

CFRP). 

The obtained results demonstrated that this technique is able to increase significantly the load carrying 

capacity of RC beams failing in shear, as well as their ultimate deflection performance. The highest 

increase of load carrying capacity and shear strength were obtained by using inclined ETS bars (45° 

with respect to the longitudinal axis of the beams). By using this strengthening configuration, an 

increase of shear strength between 53% and 136% compared to the reference beam was obtained. For 
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vertical installed ETS bars the strengthening efficiency was lower and ranged between 5% and 68%. 

For both the inclinations, the level of effectiveness depended on the internal shear reinforcement 

arrangement, percentage and adopted material for ETS strengthening. As expected, from a technique 

that relies it efficiency on the adhesion between strengthening material and concrete, the bond played a 

relevant role. This evidence can justify the higher effectiveness of inclined ETS bars, since this 

strengthening configuration presented larger available bond length than the one offered by using 

vertical ETS bars; moreover 45° ETS bars presented favorable inclination, since they were almost 

orthogonal to the shear failure crack.  

The experimental tests highlighted that the existing shear reinforcement ratio has a significant influence 

on the ETS effectiveness, which has decreased with the increase of swρ . This was mainly notable in 

vertical ETS bars. As expected, the shear strength increased with the percentage of ETS bars ( fwρ ). It 

was also proved that the ETS technique assures higher effectiveness than the externally bonded 

reinforcement (EBR) and the near surface mounted (NSM) techniques. The deep embedment of the 

ETS bars into the concrete core is better confined by the surrounding concrete, resulting in a higher 

bond performance when compared to the aforementioned techniques. This enhanced bond allowed the 

steel yield strain to be exceeded, and the development of high tensile strains in CFRP bars,  mainly in 

the inclined ETS bars. However, slip occurred for both type of strengthening material, especially in 

CFRP vertical bars. 

Despite the high percentage of internal transverse strengthening, the stirrups have exceeded the steel 

yield strain. Regarding the strengthening material, it was possible to observe that for similar shear 

strengthening ratio, the inclined CFRP bars provided higher shear strengthening effectiveness than 

inclined steel bars, but lower increase of shear strength was obtained in the vertical strengthening 

configuration. However, in order to assess the most sustainable type of material for ETS strengthening, 

a cost-benefit analysis should be carried out.  

 

Two analytical models were developed to estimate the steel ETS bars contribution for the shear strength 

of RC beams. The first model, denoted as “Empirical-based”, followed an empirical approach based on 

the concept of effective strain, supported on a function that depends of the total shear reinforcement 

stiffness and concrete compressive strength. The second model, denoted as “mechanical-based”, 

followed a mechanical approach supported on the physical laws governing the bond interface and stress 

transfer in concrete. When compared with the experimental values, the analytical values showed an 

average ratio ( )exp ana
ffV V  of 1.08 and 1.21 for the experimental-based and mechanical based models, 
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respectively. It was observed that the two approaches provided similar results in term of level of 

accuracy, indeed in terms of structural safety both of them indicated safe design for 90% of the 

analyzed beam by using a partial safety factor of fγ =1.3. It is possible to observe that both models 

provided satisfactory results, and were able to evidence the different shear strengthening effectiveness 

between vertical and inclined ETS strengthening. Steel yielding was correctly detected in 45° installed 

bars by both of the models, and they were also capable of predicting a bond failure in case of vertical 

ETS bars. The experimental-based approach, which has the advantage to consider in his formulation the 

existing shear reinforcement ratio, provided a dispersion of results lower than the mechanical-based 

model. However, the mechanical model is conceptually more reliable since it considers a bond 

constitutive law to evaluate the contribution of a single ETS bar, as well as the concrete fracture by 

reducing the available resisting bond length with the progress of the concrete fracture. The main 

drawback of the latter model resides in neglecting the existing stirrups, and further research should be 

carried out in this regards. For a better assessment of the predictive performance of both models, more 

experimental data is also required.  

 

The main effort in the numerical work was dedicated to investigate the shear softening constitutive 

model based on a bilinear shear crack-shear stress diagram ( )cr cr
t tτ γ−  to simulate the degradation of the 

crack shear stress transfer after crack initiation. The performed inverse analysis for the identification of 

the values of β , ,f sG  and ,
cr
t sτ  that define the cr cr

t tτ γ−  diagram evidenced that those values varied by 

changing the percentage of transverse reinforcement. The values adopted to define the shear-softening 

diagram had main influence in the prediction of the deformational response of the simulated beams, by 

affecting the beam’s stiffness at cracked stage, as well as the crack pattern at failure conditions. Smaller 

influence of the values adopted for these parameters was in general found in the estimation of 

maximum load carrying capacity of the beams. It is possible to affirm that a fundamental aspect of the 
cr cr
t tτ γ−  is the characterization of its softening branch; in fact, the numerical simulations evidenced the 

importance of the transaction point in which the element enters in the softening phase, and its ultimate 

crack shear strain. The performed numerical simulations have reproduced with high accuracy the 

deformational behavior of the experimental tests, as well as the crack pattern and strains in stirrups and 

ETS bars. In general, a fairly good prediction of the load carrying capacity was found. The study also 

compared the results obtained by adopting a cr cr
t tτ γ−  relationship and a shear retention factor whose 

value decreases with the increase of the strain normal to the crack according to a selected function. It 

was observed that by adopting a shear retention factor function the level of stiffness degradation 
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registered in the tested beam is not correctly simulated, and much higher ultimate load is estimated. 

Very good predictions are, however, capable of being assured if proper cr cr
t tτ γ−  is adopted.  For 

deriving the values that define this diagram (mainly β , ,f sG ), a linear regression model using the data of 

the presented numerical simulations was adopted. It was shown that numerical simulations performed 

using the values of β , ,f sG  obtained according to this strategy presented similar structural response in 

terms of load-deflection relationship and crack pattern to the ones obtained by using calibrated values, 

as well as to the experimental results. This evidence confirms the potential of evaluating with sufficient 

accuracy the β , ,f sG as a function of the total transverse reinforcement stiffness and the concrete 

compressive strength. It is possible to conclude that the adoption of a shear softening diagram can 

significantly improve the capability of the multidirectional fixed smeared crack model for the analysis 

of RC elements failing in shear.  

 

This thesis demonstrates the high effectiveness of the ETS technique. Taking into account the high level 

of shear strengthening obtained in this experimental program, it can be concluded that ETS can assure 

ductile flexural failure mode in RC beams susceptible to brittle shear rupture, even in beams of quite 

high flexural reinforcement ratio. The ETS technique is more competitive than EBR and NSM 

techniques. Moreover, the ETS technique based on the use of steel bars is a cost competitive and 

sustainable solution for the shear strengthening of RC elements. Steel bars are much less susceptible 

than FRP bars to the detrimental effect of high temperature. It should also be remarked that corrosion 

can be avoided in ETS steel bars by providing a cement based cover at the bars’ extremities, and these 

reinforcements are much better protected in case of fire. 

 

6.2   Future developments  

There is still few number of experimental tests dedicated to investigate the ETS technique for the shear 

strengthening of RC beams. Therefore, more experimental data are needed to contribute for a better 

understanding of the ETS technique, as well as to the assessment of the predictive performance of the 

proposed analytical models. Due to lack of time and financial support, the present work was not able to 

investigate the influence of the concrete compressive strength on the ETS effectiveness. All the 

strengthening techniques that rely their effectiveness on the bond between strengthening material and 

concrete evidenced the influence of the concrete compressive strength on the strengthening 

effectiveness. For this reason, experimental programs on RC elements with different compressive 
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strength should be carried out. However, it is expected that the higher is the compressive strength, the 

greater is the ETS effectiveness. The application of the ETS strengthening technique and its 

effectiveness on or pre-cracked or deteriorated RC elements due to corrosion or environmental aging 

should be also investigated, since these configurations represent possible scenarios for a strengthening 

application in civil construction. The influence of the bar diameter, surface treatment, and adhesive 

layer thickness, should be also investigated. The influence of the relative position between ETS bars 

and existing steel stirrups should be also studied, since the detrimental interaction effects seems to be 

dependent on this condition. The application of more than one ETS bar per cross section requires also 

further investigation due to an expected detrimental group effect.  

The future developments of this work can also be oriented towards exploring the possibility offered by 

different materials. Different types of adhesive materials should be tested: the epoxy based material can 

be replaced by an inorganic mortar that would decrease the susceptibility of failure in case of fire. The 

bond of similar type of materials has already been assessed for Fabric-reinforced cementitious matrix	
  

FRCM (or Textile Reinforced Mortars-TRM), and due to the high confinement offered by the 

surrounding concrete to the bars installed following the ETS technique, a cement based adhesive can 

offer a possible sustainable and economic alternative to the epoxy based adhesive. A hybrid cement-

based material with a percentage of epoxy adhesive can also be developed and tested. Pre-stressed steel 

or FRP ETS bars can also be applied to increase the service limit state conditions of existing RC beams. 

Hybrid GFRP-Steel bars (Seo, Park, You, & Kim, 2003), designed to obtain a pseudo ductile failure 

and to overcome the low elastic modulus of glass fibers can be considered as ETS strengthening 

solutions, after an economic evaluation. The hybridization process consists in adding steel as a high 

modulus material to enhance the Young’s modulus to the GFRP. Since vertical CFRP bars evidenced 

low effectiveness, due to a lack of the available bond transfers length, an anchorage system can be 

developed to avoid a premature debonding in this type of application (anchorage system can be 

developed as well for steel ETS bars). By analogy with Manually Made-Near Surface Mounted (MM-

NSM), (Jalali et al. 2012 - Chapter 1) it is possible to develop an ETS bar impregnated with resin only 

for the necessary length of embedment and characterized by a terminal part made of dry fibers, which 

can be fanned out over the concrete surface with the purpose of improving the resistance of the system. 

The available braiding technology can be used to develop this type of bars, or manually made solution 

by wrapping fiber sheets around a rigid core can be utilized. By adopting this type of solution, Hybrid 

EBR/ETS strengthening system can be developed for upgrade flexure and shear capacity of RC 

elements by analogy with Smith et al. (2011) where simple carbon fiber anchors were used to improve 

the bond of the flexural EBR strengthening.  
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Additional investigations are needed concerning the analytical models. In fact, the first model 

(experimental-based) presented in this work is based on a regression analysis of the experimental data 

and more data are needed for a better assessment of this type of approach. The second model 

(mechanical-based) adopts a simplified bond model initially developed for NSM strips. A proper 

constitutive law for steel and CFRP embedded bars in concrete should be developed and used in this 

model. As already evidenced in the previous paragraph, the influence of the internal shear 

reinforcement ratio should be taken into account in the model.  

In regards to the numerical work carried out, a larger number of simulation on RC structural elements 

with different types of cross geometry and internal reinforcement should be carried out, mainly using 

the 3D version of this model, in order to identify a possible general criteria for the characterization of 

the shear-softening constitutive diagram.  
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Annex A 
Annex A: Literature Review- Bond Test  

Specimen ID 
(Experimental Program) 

Mat φ  cmf  bl
φ
 

bl  t 
pullF  avgτ

 
 

F.T. Adh. 

Dalfè et al. (2011) 
S_L5_E2(1) S 8 28.4 6.25 50 2 21.8 17.3  Sikadur 32N 
S_L5_E5(1) S 8 28.4 6 48 5 20.2 16.7  Sikadur 32N 
E_L5_E2(1) S 8 28.4 6.25 50 2 15.9 12.6  S&P - Resin 50 

E_L5_E5(1)* S 8 28.4 3.5 28 5 9.4 13.4  S&P - Resin 50 
S_L5_E2(1) S 12 28.4 4 48 2 29.8 16.5  Sikadur 32N 
S_L5_E2(2) S 12 28.4 4.33 52  24.2 12.3  Sikadur 32N 
S_L5_E4(1) S 12 28.4 4.17 50 4 23.7 12.6  Sikadur 32N 
S_L5_E4(2) S 12 28.4 4.25 51  19.6 10.2  Sikadur 32N 
S_L5_E6(1) S 12 28.4 4.25 51 6 30.2 15.7  Sikadur 32N 
S_L5_E6(2) S 12 28.4 4.33 52  27.4 14.0  Sikadur 32N 

S_L7.5_E2(1) S 12 28.4 6.25 75 2 46.4 16.4  Sikadur 32N 
S_L7.5_E2(2) S 12 28.4 6.33 76  35.8 12.5  Sikadur 32N 
S_L7.5_E4(1) S 12 28.4 6.08 73 4 42.0 15.3  Sikadur 32N 
S_L7.5_E4(2) S 12 28.4 6.33 76  41.2 14.4  Sikadur 32N 
S_L7.5_E2(1) S 12 28.4 6.33 76 6 39.9 13.9  Sikadur 32N 
S_L7.5_E2(2) S 12 28.4 6.25 75  41.5 14.7  Sikadur 32N 
E_L5_E2(1) S 12 28.4 4.42 53 2 19.3 9.7  S&P - Resin 50 
E_L5_E2(2) S 12 28.4 4.17 50  30.9 16.4  S&P - Resin 50 
E_L5_E4(1) S 12 28.4 4.42 53 4 26.1 13.0  S&P - Resin 50 
E_L5_E4(2) S 12 28.4 4.67 56  25.6 12.1  S&P - Resin 50 
E_L5_E6(1) S 12 28.4 4.67 56 6 28.6 13.5  S&P - Resin 50 
E_L5_E6(2) S 12 28.4 5 60  30.0 13.3  S&P - Resin 50 

E_L7.5_E2(1) S 12 28.4 6 72 2 28.6 10.5  S&P - Resin 50 
E_L7.5_E2(2) S 12 28.4 6.42 77  34.3 11.8  S&P - Resin 50 
E_L7.5_E4(1) S 12 28.4 6.25 75 4 37.8 13.4  S&P - Resin 50 
E_L7.5_E4(2) S 12 28.4 6.83 82  37.5 12.1  S&P - Resin 50 
E_L7.5_E2(1) S 12 28.4 6.33 76 6 40.5 14.1  S&P - Resin 50 
E_L7.5_E2(2) S 12 28.4 6.5 78  37.6 12.8  S&P - Resin 50 

Godat et al. (2012)a 

C1-1.50d-9.5B-15d C-SC 9.5 20.7 15.1 143 15 35.7 8.4 C-S  
C1-1.50d-12.7B-15d C-SC 12.

7 
20.7 11.3 143 15 57.0 7.5 C-S  

C2-1.25d-5S-15d C-S 9.5 42.7 15.1 143 12 80.4 18.8 P-O  
C2-1.50d-5S-15d C-S 9.5 42.7 15.1 143 15 91.2 22.3 P-O  
C2-2.00d-5S-15d C-S 9.5 42.7 15.1 143 19 78.5 18.4 P-O  

C2-1.50d-9.5S-5.0d C-S 9.5 42.7 5.05 48 15 42.8 29.9 P-O  
C2-1.50d-9.5S-7.5d C-S 9.5 42.7 7.47 71 15 57.4 26.9 P-O  

C2-1.50d-9.5S-10.0d C-S 9.5 42.7 10 95 15 63.4 22.3 P-O  
C2-1.50d-9.5S-12.5d C-S 9.5 42.7 12.5 119 15 71.0 20.1 P-O  
C2-1.50d-9.5S-17.5d C-S 9.5 42.7 17.5 166 15 100.7 20.3 P-O  
C2-1.50d-9.5S-20.0d C-S 9.5 42.7 20 190 15 102.4 18.1 P-O  
C2-1.50d-9.5S-25.0d C-S 9.5 42.7 25.1 238 15 114.7 16.1 R-Y  
C2-1.50d-9.5S-30.0d C-S 9.5 42.7 30 285 15 128.3 15.1 R-Y  
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Specimen ID 
(Experimental Program 

Mat φ  ,cm cubef
 

bl
φ
 

bl  t 
pullF  avgτ

 
 

F.T. Adh. 

Valerio et al. (2009)  Note – for this experimental program the the cube compressive strenth is indicated 
Steel 8 S 8 55-60 1.9 15 1  37.0 SH Hilti 500 
Steel 8 S 8 55-60 3.8 30 1  36.0 R-Y Hilti 500 
Steel 8 S 8 55-60 5.6 45 1  27.0 R-Y Hilti 500 
Steel 8 S 8 55-60 7.5 60 1  20.0 R-Y Hilti 500 
Steel 8 S 8 55-60 9.4 75 1  16.0 R-Y Hilti 500 
Steel 8 S 8 55-60 1.9 15 1  37.0 SR Araldite 
Steel 8 S 8 55-60 3.8 30 1  27.0 SR Araldite 
Steel 8 S 8 55-60 5.6 45 1  26.0 R-Y Araldite 
Steel 8 S 8 55-60 7.5 60 1  21.0 R-Y Araldite 
Steel 8 S 8 55-60 9.4 75 1  16.0 R-Y Araldite 
Steel 8 S 8 55-60 1.9 15 1  10.0 SR Hilti 150 
Steel 8 S 8 55-60 3.8 30 1  17.0 SR Hilti 150 
Steel 8 S 8 55-60 5.6 45 1  26.0 R-Y Hilti 150 
Steel 8 S 8 55-60 7.5 60 1  21.0 R-Y Hilti 150 
Steel 8 S 8 55-60 9.4 75 1  16.0 R-Y Hilti 150 

Carbon 7.5 C 7.5 55-60 2.0 15 1  36.0 IS Hilti 500 
Carbon 7.5 C 7.5 55-60 4.0 30 1  32.0 IS Hilti 500 
Carbon 7.5 C 7.5 55-60 6.0 45 1  28.0 IS Hilti 500 
Carbon 7.5 C 7.5 55-60 8.0 60 1  24.0 IS Hilti 500 
Carbon 7.5 C 7.5 55-60 10.0 75 1  25.0 IS Hilti 500 
Carbon 7.5 C 7.5 55-60 2.0 15 1  33.0 IS Araldite 
Carbon 7.5 C 7.5 55-60 4.0 30 1  22.0 IS Araldite 
Carbon 7.5 C 7.5 55-60 6.0 45 1  28.0 IS Araldite 
Carbon 7.5 C 7.5 55-60 8.0 60 1  30.0 IS Araldite 
Carbon 7.5 C 7.5 55-60 10.0 75 1  31.0 IS Araldite 
Carbon 7.5 C 7.5 55-60 2.0 15 1  17.0 IS Hilti 150 
Carbon 7.5 C 7.5 55-60 4.0 30 1  17.0 IS Hilti 150 
Carbon 7.5 C 7.5 55-60 6.0 45 1  16.0 IS Hilti 150 
Carbon 7.5 C 7.5 55-60 8.0 60 1  19.0 IS Hilti 150 
Carbon 7.5 C 7.5 55-60 10.0 75 1  19.0 IS Hilti 150 
Carbon 6 C 6 55-60 2.5 15 1  33.0 IS Hilti 500 
Carbon 6 C 6 55-60 5.0 30 1  30.0 IS Hilti 500 
Carbon 6 C 6 55-60 7.5 45 1  37.0 IS Hilti 500 
Carbon 6 C 6 55-60 10.0 60 1  23.0 IS Hilti 500 
Carbon 6 C 6 55-60 12.5 75 1  21.0 IS Hilti 500 
Glass 9 G 9 55-60 1.7 15 1  25.0 IS Hilti 500 
Glass 9 G 9 55-60 3.3 30 1  27.0 IS Hilti 500 
Glass 9 G 9 55-60 5.0 45 1  24.0 IS Hilti 500 
Glass 9 G 9 55-60 6.7 60 1  20.0 IS Hilti 500 
Glass 9 G 9 55-60 8.3 75 1  16.0 R-Y Hilti 500 
Glass 9 G 9 55-60 1.7 15 1  36.0 IS Araldite 
Glass 9 G 9 55-60 3.3 30 1  4.0 IS Araldite 
Glass 9 G 9 55-60 5.0 45 1  27.0 IS Araldite 
Glass 9 G 9 55-60 6.7 60 1  22.0 R-Y Araldite 
Glass 9 G 9 55-60 8.3 75 1  25.0 IS Araldite 
Glass 9 G 9 55-60 1.7 15 1  16.0 IS Hilti 150 
Glass 9 G 9 55-60 3.3 30 1  16.0 IS Hilti 150 
Glass 9 G 9 55-60 5.0 45 1  17.0 IS Hilti 150 
Glass 9 G 9 55-60 6.7 60 1  17.0 IS Hilti 150 
Glass 9 G 9 55-60 8.3 75 1  17.0 IS Hilti 150 

Aramind 9 A 9 55-60 1.7 15 1  17.0 IS Hilti 500 
Aramind 9 A 9 55-60 3.3 30 1  14.0 IS Hilti 500 
Aramind 9 A 9 55-60 5.0 45 1  10.0 IS Hilti 500 
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Specimen ID 
(Experimental Program 

Mat φ  cmf  bl
φ
 

bl  t	
  
pullF  avgτ

 
 

F.T. Adh. 

Aramind 9 A 9 55-60 6.7 60 1  7.0 IS Hilti 500 
Aramind 9 A 9 55-60 8.3 75 1  7.0 IS Hilti 500 
Aramind 9 A 9 55-60 1.7 15 1  26.0 IS Araldite 
Aramind 9 A 9 55-60 3.3 30 1  20.0 IS Araldite 
Aramind 9 A 9 55-60 5.0 45 1  18.0 IS Araldite 
Aramind 9 A 9 55-60 6.7 60 1  17.0 IS Araldite 
Aramind 9 A 9 55-60 8.3 75 1  13.0 IS Araldite 
Aramind 9 A 9 55-60 1.7 15 1  7.0 IS Hilti 150 
Aramind 9 A 9 3.3 3.33 30 1  6.0 IS Hilti 150 
Aramind 9 A 9 5.0 5 45 1  8.0 IS Hilti 150 
Aramind 9 A 9 6.7 6.67 60 1  8.0 IS Hilti 150 
Aramind 9 A 9 8.3 8.33 75 1  5.0 IS Hilti 150 

Owa et al. (2012)a 
1 S 19 16.5 10 190 25 150.5 13.3 R-Y Hilti gen 

2 S 19 16.5 10 190 25 152.9 13.5 R-Y Hilti gen 
3 S 19 16.5 10 190 25 153.1 13.5 R-Y Hilti gen 
4 S 19 16.5 7 133 25 128.7 16.2 C-C Hilti gen 
5 S 19 16.5 7 133 25 117.5 14.8 C-C Hilti gen 
6 S 19 16.5 7 133 25 123.2 15.5 C-C Hilti gen 
7 S 19 35.5 7 133 25 152.4 19.2 R-Y Hilti gen 
8 S 19 35.5 7 133 25 144.3 18.2 R-Y Hilti gen 
9 S 19 35.5 7 133 25 138.4 17.4 R-Y Hilti gen 

Mahrenholtz (2012)a 

Post-installed           
expPI20-w0.0-d16ucr-1 S 16 20.2 5 80 20  30.1   
expPI20-w0.0-d16ucr-2 S 16 20.2 5 80 20  26.2   
expPI20-w0.4-d16-cr-1 S 16 24.1 5 80 20  22.0   
expPI20-w0.4-d16-cr-2 S 16 24.1 5 80 20  24.4   

expPI20-w0.4-d16-s0.25-con-1 S 16 18.7 5 80 20  15.9   
expPI20-w0.4-d16-s0.25-cyc-1 S 16 18.7 5 80 20  14.5   

Cast in place           
expPI20-w0.0-d16ucr-1 S 16 19.2 5 80  --  7.7   
expPI20-w0.0-d16ucr-2 S 16 19.2 5 80 --  7.8   

Notation: 
Table heading: Mat - material, φ - ETS bar diameter, fcm - average compressive strength, bl φ  - ratio between the 

embedded length and the bar diameter, t - adhesive thickness, Fpull: Pullout force, avgτ - average stress, F.T. - Type of  

Failure, Adh - Type of Adhesive. 
Bar material: S – steel, C – CFRP, G – GFRP, A – AFRP, C-SC – sand coated CFRP, C-S – smooth CFRP.  
Type Failure: C-S - concrete splitting, P-O - pull out, R-Y - rupture of yielding, SR - shearing in resin,  IS  - interlaminar 
shear, CC - concrete corn. 
 
a For Godat et al. (2012), Owa et al. (2012), Mahrenholtz (2012) the hole diameter was indicated instead of the 
thickness of the adhesive layer.  
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Annex B 
Annex B:  Bond-based constitutive law and Calculation of *

ctmf   

 

B.1 Bond-based constitutive law 

For a generic, transfer length Rfi RfeL L≤ , the relevant bond-based constitutive law ( ),bd
fi Rfi LiV L δ is 

considered as in Bianco et al. (2011) neglecting the post-peak branch, and it is valid for values of 

1
bd bd
fi fV V≤ :  

( ) ( )( ) ( )( ){ }3 1 2, cos 1 sinbd
fi Rfi Li p Rfi Li Rfi LiV L L J C L C Lδ λ λ δ λ δ⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅⎣ ⎦  (A.1) 

With the bond transfers length function of the Liδ as follows: 

( )
2

0 1

1 os 1Rfi Li LiL arc
J

λ
δ δ

λ τ
⎛ ⎞

= ⋅ − ⋅⎜ ⎟
⋅⎝ ⎠

 (A.2) 

For the resisting bond length ( )Rfi RfeL L≤ , the imposed end slip defining the extremities of the bond 

based law is defined by the equation:   

( ) ( ) ( ) ( )21 2 0 1sin cos /Li Rfi Rfi RfiL C L C L Jδ λ λ τ λ= ⋅ ⋅ + ⋅ ⋅ + ⋅  (A.3) 

With  bond modelling constants (Bianco 2009; Bianco et al. 2009; Bianco et al. 2012) for a ETS bar 

embedded in a concrete prism:   

1
2

0 1

1 ;
J

δ
τλ

=
⋅ 1

1 ;p fw

fw fw c c

L A
J

A E A E
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= +⎢ ⎥
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2
fw c c

c c fw fw

E E A
J

E A E A
⋅ ⋅
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⋅ + ⋅

 
( )3 ;fw fw c c

p c c fw fw

E A E A
J

L A E A E

⋅ ⋅ ⋅
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⋅ + ⋅
 

0 1
1 1 2 ;
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V J
C

L λ

⋅
=
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(A.4) 
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B.2 Calculation of *
ctmf  

The simplified model described in considered and equivalent bond length to account the concrete 

fracture by means of η and *
ctmf . The concrete mean tensile strength, *

ctmf  is the value, beyond which 

concrete is not fractured and the average available resisting bond length is not reduced ( )1η = . The 

value of *
ctmf  can be determinate by imposing the equality bd cf

fi fiV V= between the concrete fracture 

capacity cf
fiV  and the corresponding maximum value of the bond transferred force bd

fiV . This latter will 

be attained for a transfer length that is equal to RfiL (Eq. A.2). In general it can be written:  

( ) ( )cf bd
Rfi fi RfifiV L V L=  (A.5) 

 

The concrete fracture capacity can be calculated by spreading ctmf thorough the semi-conical surface 

with o the cone, orthogonally to it in each point and integrating, as demonstrated by (Bianco 2009) the 

calculation can be reduced to the evaluation of the area of the ellipse intersection of the cone with the 

crack plane. Since in the present work the interaction between the ETS bars along the axis is not 

evaluated the cone opening was limited by the spacing of the ETS bars along the longitudinal axis 

( ) ( )( )sin sinfw f fs β θ β⋅ + and by 4wb in the orthogonal direction.  

{ } ( ) ( ) ( )

( ) ( )

sin sin
min ;

2 sin sinsin
min tan ;

4 2 sin sin
min ;

2 sin sin

fw f Rfi

f ffcf w
ctm Rfifi

fw f Rfi

f f

s L

bV f L
s L

β α

θ β β θ αθ β
π α

β α

θ β β θ α

⎛ ⎧ ⎫ ⎞⋅ ⋅⎪ ⎪
⎜ ⎟⎨ ⎬

⋅ + + ++ ⎪ ⎪⎜ ⎟⎩ ⎭
= ⋅ ⋅ ⋅ ⋅ ⋅ ⎜ ⎟

⎧ ⎫⋅ ⋅⎪ ⎪⎜ ⎟+ ⎨ ⎬⎜ ⎟⋅ + + −⎪ ⎪⎝ ⎩ ⎭⎠

  (A.6) 

 

The bond transferred force is given by Eq. A.1, adopting simplification in Eq. (A.4). Since 3 11J J= , 3J

will be eliminated and substituted, whenever it appears, by 11 J ;since 1
2

0 1

1
J

δ
τλ

=
⋅

, 1C vanishes and 2C

can be written as 2 1C δ= − , it results:  

( ) ( )1
1

1 sinbd
fi Rfi p RfiV L L L

J
λ δ λ= ⋅ ⋅ ⋅ ⋅ ⋅  (A.7) 

Substituting this latter in Eq. A.5 the *
ctmf  in Eq. 4.21 is obtained. 
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Fig.B.1 Determination of the major semi-axis 
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Annex C 
Annex C: Preliminary numerical study on rectangular RC beams 

strengthened with ETS steel bars  

C.1 Introduction 
The performance of the proposed model presented in Chapter 5 was assessed in a preliminary study by 

simulating the experimental tests carried out by Barros and Dalfé (2012). The main aspect of this 

experimental program was presented in Chapter 2. The experimental program was formed by a series of 

beams with a cross section of 150x300 mm2, with a total length of 2450 mm and a shear span length of 

900 mm. The longitudinal tensile steel reinforcement consist of two steel bars of 25 mm diameter. The 

internal shear reinforcement and the ETS strengthening arrangement are represented in Fig. C.1. The 

values for the characterization of the main properties of the materials used in the present work were 

obtained from experimental tests and can be found in Barros and Dalfré (2012). 

 
ID 

Shear  
strengthening 

system 
Shear strengthening arrangements 

R
ef

er
en

ce
 

----------- 

 

S3
00

.9
0 

Stirrups  (2ϕ6 mm, 2 arms, 300 mm spacing) 

 

E3
00

.9
0 

ETS strengthening bars at 90° (3ϕ10 mm, 
300 mm spacing) 

 

F

F300 300 300

F150 300 150300
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E3
00

.4
5 

ETS strengthening bars at 45° (3ϕ10 mm, 
300 mm spacing) 

 

S3
00

.9
0/

 
E3

00
.9

0 Stirrups (2ϕ6 mm, 2 arms, 300 mm 
spacing) ETS strengthening bars at 90° 
(3ϕ10 mm, 300 mm spacing) 

 

S3
00

.9
0/

 
E3

00
.4

5 Stirrups  (2ϕ6 mm, 2 arms, 300 mm 
spacing) ETS  strengthening bars at 45° 

(3ϕ10 mm, 300 mm spacing) 

 

S2
25

.9
0 

Stirrups at 90° (3ϕ6 mm, 2 arms, 225 
mm spacing) 

 

S2
25

.9
0/

 
E2

25
.9

0 Stirrups at 90° (3ϕ6 mm, 2 arms, 225 
mm spacing) ETS strengthening bars 
at 90° (4ϕ10 mm, 225 mm spacing) 

 
Fig. C.1 Shear reinforcement and strengthening arrangement. 

C.2 Finite element mesh, integration schemes and constitutive laws for the materials 

To simulate the crack initiation and the fracture mode I propagation of reinforced concrete, the trilinear 

tension-softening diagram represented in Fig. 5.2 was adopted. To distinguish concrete elements in 

tension softening and in tension stiffening, distinct values were considered for the concrete of the 

elements in the first two rows of finite element mesh (elements considered in tension stiffening). The 

values that define these diagrams are indicated in Table C.1. In this table is also included the data 

necessary to define the shear-softening diagram represented in Fig. 5.3, adopted to simulate the 

degradation of crack shear stress transfer after crack initiation. The adopted values were obtained by 

inverse analysis by fitting the experimental results as best as possible. An example of a finite element 

mesh used for the simulation of the S225.90/E225.90 beam is represented in Fig. C.2. The beams are 

modelled with a mesh of 8-noded serendipity plane stress finite elements. A Gauss-Legendre 

integration scheme with 3×3 IP is used in all concrete elements. The longitudinal steel bars, stirrups and 

the ETS strengthening bars are modelled with 3-noded perfect bonded embedded cables (one degree-of-

freedom per each node) and a Gauss-Legendre integration scheme with 3 IP (integration point) is used. 
Table C.1 Values of the parameters of the concrete constitutive model 

F300 300 300

F150 300 300 150

F300 300 300

F225 225 225225

F225 225112,5 112,5225
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Poisson’s ratio ( cν ) 0.15 

Initial Young’s modulus ( cE ) 31100 N/mm2 (Batch 1) 
30590 N/mm2 (Batch 2) 

Compressive strength ( cf ) 30.78 N/mm2 (Batch 1) 
28.81 N/mm2 (Batch 2) 

Trilinear tension-stiffening diagram (1) fct = 2.0 N/mm2 ; Gf = 0.06 N/mm 
ξ1 = 0.01; α1 = 0.5; ξ2 = 0.5; α2 = 0.2 

Trilinear tension-softening diagram (1)  fct = 1.8 N/mm2 ; Gf = 0.05 N/mm 
ξ1 = 0.01; α1 = 0.4; ξ2 = 0.5; α2 = 0.2 

Parameter defining the mode I fracture energy  
available to the new crack [4] n = 2 

Parameters for defining the softening crack shear  
stress-shear strain diagram of concrete in the tension-
stiffening  

,τ
cr
t p= 1.38 N/mm2; 

,f sG =0.5 N/mm; β =0.2 

Parameters for defining the softening crack shear  
stress-shear strain diagram of concrete in the tension-
softening 

,τ
cr
t p= 1.38 N/mm2; 

,f sG =0.7 N/mm; β =0.2 

Crack bandwidth, lb 
Square root of the area of Gauss integration 
point 

Threshold angle [4] αth = 30º 

Maximum number of cracks per integration point 2 
(1)

 ,1
cr

ct nf σ= ; 1 ,2 ,/cr cr
n n uξ ε ε= ; cr cr

1 n,2 n,1/α σ σ= ; 2 ,3 ,/cr cr
n n uξ ε ε= ; 2 ,3 ,1/cr cr

n nα σ σ=  (see Fig. 5.2) 

 

 
Fig. C.2 Finite element mesh (dimensions are in mm) 

	
  

For modeling the behavior of the longitudinal steel bars, stirrups and ETS bars, the stress-strain 

relationship represented in Fig. 5.5 was adopted. The curve (under compressive or tensile loading) is 

defined by the points PT1=( ,ε σsy sy), PT2=( ,ε σsh sh ) and PT3=( ,ε σsu su ), and a parameter p that 

defines the shape of the last branch of the curve. Unloading and reloading linear branches with slope 

( )σ ε=s sy syE  are assumed in the present approach. The values of the parameters of the constitutive 

model for the steel are indicated in Table C.2. 

 
 

Table C.2 Values of the parameters of the steel constitutive model. 
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Steel bar diameter 
(mm) 

PT1
[ ]

( )

ε

σ

−sy

sy MPa

 
PT2
[ ]
( )
ε

σ

−sh

sh MPa
 

PT3
[ ]
( )
su

su MPa
ε

σ

−  p  

6 2.750×10-3 

559.14 
2.000×10-2 

708.14  
5.000×10-2 

708.93 1 

10 2.660×10-3 

541.60 
2.405×10-2 

643.23  
5.000×10-2 

643.23 1 

12 2.350×10-3 

484.68 
2.302×10-2 

655.00  
5.000×10-2 

655.53 1 

25  2.270×10-3 

507.68 
3.450×10-3 

608.75  
2.052×10-2 

743.41 1 

C.3 Simulations and discussion 

The experimental and the numerical relationships between the applied load and the deflection at the 

loaded section for the tested beams are compared in Fig. C.3. In these figures a horizontal line 

corresponding to the maximum experimental load (in dash) is also included. The crack patterns of these 

beams at the end of the analysis (at the end of the last converged load increment) are represented in 

Fig.C.4. These figures show that the numerical model is able to capture with good accuracy the 

deformational response of the beams and captured with good precision the localization and profile of 

the shear failure crack. Fig. C.5 also shows that the numerical simulations fit with good accuracy the 

strains measured in the steel stirrups and ETS strengthening bars, which means that the assumption of 

perfect bond between composite materials and surrounding concrete is acceptable, at least in the design 

point of view for the serviceability and ultimate limit states. Similar level of accuracy was obtained in 

the simulations of the other beams. At the moment of the shear failure, the longitudinal steel bars have 

already yielded in some of the beams, which is quite well predicted by the numerical models, since 

vertical completely open cracks were formed (flexural cracks) 
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(c) E300.90 (d) E300.45 

  
(e) S300.90/E300.90 (f) S300.90/E300.45 

  
(g) S225.90 (h) S225.90/E225.90 

Fig. C.3 Comparison between experimetal and numerical results 
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Fig. C.4 Experimental and numerical crack pattern 
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(a) (b) 

Fig. C.5  Load vs. strains in the shear reinforcement of the beams: (a) S225.90, and (b) E300.45. 

0 1000 2000 3000 4000 5000 6000 7000
0
30
60
90
120
150
180
210
240
270

A7	
  -­‐	
  S 225.90
E xp.	
   	
   	
  F emix

	
  	
   	
   	
  S 1	
  	
   	
   	
   	
   	
   	
  
	
   	
   	
   	
  S 2

	
  m.d.	
   	
   	
   	
  S 3

Lo
ad

,	
  F
	
  (
kN

)
	
  

	
  

S tra in	
  (µm/m)

S train	
  gauge 	
  was 	
  mechanically	
  damaged

F

S3 S2
S1S1

S2S3

0 1000 2000 3000 4000 5000 6000 7000
0
30
60
90
120
150
180
210
240
270

F
5
6
3
4
1
2

5
6
3
4
1
2

A4	
  -­‐	
  E 300.45
E xp.	
  F emix 	
  	
   	
   	
   	
   	
  E xp.	
  F emix 	
  	
   	
   	
  E xp.	
  F emix

	
   	
   	
  1 	
  	
   	
   	
   	
  3 	
   	
   	
   	
   	
  5
	
   	
   	
  2 	
  	
   	
   	
   	
  4 	
   	
   	
   	
   	
  6

	
   	
  

Lo
ad

,	
  F
	
  (
kN

)

	
  

	
  

	
  

S tra in	
  (µm/m)


