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Genome-based multidisciplinary approaches to the reconstruction of human 

demographic history 

ABSTRACT INGLESE 

In my doctoral dissertation I summarize the scientific work leading to three papers in peer-

reviewed journal, two submitted manuscripts. These entire studies share a common focus on human 

evolutionary history, but each of them address different scientific questions by means of a different 

combination of molecular and statistical methods. 

Our cells contain a message from the past, written in their genomes; thus the study of 

genetic variation within and between populations can help us understand aspects of human 

demographic history over the past thousands of years, i.e. well beyond the time-limits of historical 

evidence.  

Recently, extensive human genome data are becoming available, both from genome wide 

SNP data, and from the rapidly-increasing number of complete genome sequences, offering novel 

means of reconstructing human population history with a detail that was, until very few years ago, 

unthinkable. This abundant, and ever-growing amount of genomic data is of enormous relevant for 

understanding how and why human are different. Paper I (Barbujani et al., 2013) represents a review 

of human genetic variation and their implications for human evolutionary inference 

Genetic data are indispensable to test hypothesis, generated in complementary discipline 

such as anthropology, linguistic and archaeology. Paper II (Tassi et al., submitted) and Paper III 

(Longobardi et al., submitted) provide examples of how it is possible to achieve a detailed picture of 

human history and evolution, taking advantage of archaeological and linguistic knowledge to 

interpret the genetic data. 

For many years, studies of human genetic diversity have been necessarily limited to modern 

populations, severely limiting our ability to investigate the detail of past processes. Conversely, 

today, thanks to the advent of methods for reliably typing ancient DNA, it has been possible to 

increase our power to reconstruct historical demographic processes, and to explicitly test 

evolutionary hypotheses. In Paper IV (Ghirotto et al., 2013) and Paper V (Tassi et al., 2013) we 

analyzed ancient Etruscans sample and,  within the ABC framework, we explicitly compared several 

models, differing for demographic and genealogical histories, to shed light on the origin and 

evolution of the Etruscans.  
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Un approccio multidisciplinare alla ricostruzione della storia demografica 

umana mediante lo studio di polimorfismi genomici 

ABSTRACT ITALIANO 

Questa tesi riassume l’attività di ricerca da me svolta durante i tre anni di dottorato che ha 

portato alla stesura di tre articoli pubblicati in riviste scientifiche e di due manoscritti in fase di 

revisione. I diversi studi sono accumunati dall’essere incentrati sullo studio della storia evolutiva 

umana, ma ciascuno di questi risponde a domande scientifiche diverse attraverso la combinazione di 

tecniche molecolari e metodologie di analisi differenti. 

All’interno delle nostre cellule, racchiuso nel genoma, è contenuto un messaggio dal passato; 

lo studio della variabilità genetica all’interno e tra le popolazioni può così essere una valida fonte di 

informazione per comprendere aspetti riguardanti le ultime migliaia di anni della storia demografica 

umana, quindi ben oltre le testimonianze storiche. 

Oggi disponiamo di una grande quantità di dati sulla variabilità genomica umana, sia grazie 

agli studi basati su molti marcatori a singolo nucleotide (SNP) diffusi lungo tutto il genoma, sia grazie 

al continuo aumento di nuove sequenze genomiche complete. Questi dati offrono nuovi mezzi per 

ricostruire la storia delle popolazioni umane ad un livello di accuratezza fino a poco tempo fa 

impensabile. In Paper I (Barbujani et al., 2013) passiamo in rassegna questi abbondanti dati genomici 

e analizziamo come possono essere studiati per capire come e perché gli uomini differiscono tra loro 

e per trarre conclusioni sulla storia evolutiva umana.   

I dati genetici, inoltre, sono indispensabili per testare ipotesi proposte da discipline 

complementari come l’antropologia, la linguistica e l’archeologia. Paper II (Tassi et al., submitted) e 

Paper III (Longobardi et al., submitted) rappresentano due esempi di come sia possibile ottenere un 

quadro dettagliato di alcuni aspetti della storia della nostra specie e della sua evoluzione, 

interpretando i dati genetici alla luce delle conoscenze archeologiche e linguistiche. 

Per molti anni, gli studi della variabilità genetica umana sono stati necessariamente limitati 

all’analisi delle popolazioni moderne, riducendo drasticamente la nostra abilità di indagare gli eventi 

del passato. Al contrario oggi, grazie all’avvento di nuove tecniche per ottenere in maniera affidabile 

il DNA da reperti antichi, è aumentato il nostro potere nel ricostruire i processi demografici del 

passato. In Paper IV (Ghirotto et al., 2013) e in Paper V (Tassi et al., 2013) sono stati analizzati 

campioni antichi di provenienza Etrusca e, grazie all’applicazione di metodi bayesiani approssimati 
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(ABC), sono stati confrontati in maniera esplicita diversi modelli genealogici, riuscendo a far fare luce 

su alcuni aspetti riguardanti l’origine e l’evoluzione del popolo Etrusco.  
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Chapter 1.INTRODUCTION 

Human genetic variation  

The nature of the genetic data from which we can infer past processes has changed 

radically over the past 40 years, thanks to the development of powerful new technologies. 

Until a few decades ago, our knowledge about human genetic diversity was extremely 

limited. The first studies on human genetic variation did not directly involve DNA but rather 

were based on detecting and assessing variation using the so called “classical markers”. 

Types of classical markers range from the different variants found in the blood groups 

systems (starting from the ABO blood group (Landsteiner, 1900)), the different forms of 

particular proteins found in blood, liver and muscle such as the haemoglobins and the many 

different Human Leukocyte Antigen (HLA) isoforms. Through the 1970s and 80s, vast 

amounts of data of this kind were assembled. In 1972, Richard Lewontin analyzed allele 

frequencies at 15 protein loci and found that variation among major geographic regions 

accounts for a small percentage of total genetic variation and most of the genetic variation 

observed was within local populations (Lewontin, 1972). Besides, it was clear that allele 

frequencies for many markers were not randomly or uniformly distribute in the geographic 

space, rather form clines (Sokal et al., 1989a). The much higher genetic variance within, 

rather than between, populations, and the existence of orderly pattern of variation in space 

are two basic features of human diversity which have been confirmed by all following 

studies. In (1994) Cavalli-Sforza and coauthors attempted to synthesize data by a 

compendium of protein variation. This pioneering work showed that quantifying the 

relationship between human populations on a large scale and the synthesis with historical, 

archaeological and linguistic information, can provide insights into the origins and migration 

of history of humans. Among the others aspects, these early works already pointed out how 

our species is characterized by a continuous variation over the whole world with no sharp 

boundaries and thus, the classically defined races do not emerge from an unprejudiced 

biological description of human variation.  

Although surveys of human polymorphism flourished in the second half of the last 

century, the main methodological breakthrough occurred when a host of methodological 
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advances enabled scientists to investigate human variation directly at the level of the DNA 

molecules and led to the development of “molecular markers”. There are many advantages 

to assaying human genetic diversity through this lens. First of all, the allelic variation of the 

classical markers is due to amino acid level differences, therefore the genetic variation 

detected is limited to the DNA regions involved in transcription or translation (only the 5% of 

the genome(ENCODE Project Consortium, 2012). In addition, because they encode 

polypeptides, classical loci are likely to be under the effect of natural selection. On the other 

hand, DNA markers can map anywhere the genome (nuclear or mitochondrial), and because 

most of the genome is noncoding and thus presumably not under natural selection, hence, 

DNA markers occurring in these regions can be considered to be “neutral” in their effects. 

These kinds of markers are extremely useful for assessing the demographic history of 

humans, since variation in neutral region is expected to reflect mainly population level 

effects, such as drift, expansions, admixture and migration. The first important technical 

advance was the Polymerase Chain Reaction (PCR,(Mullis and Faloona, 1987)), that allow for 

the production of a very large quantity of a target region of a genome from even very small 

amounts of starting DNA. Aside from the invention of PCR itself, the other key advance in 

human genetic diversity studies has been the determination of the human reference 

genome sequence (Lander et al., 2001; Venter et al., 2001). This was made possible by the 

automation of Sanger sequencing (named after its inventor Frederick Sanger, and often 

known as chain-termination, dideoxy, or capillary sequencing (Sanger et al., 1977). The 

release of the reference human genome sequence provided the first foundation for studies 

of the genetics of the human host, but provided little insight into the extent of naturally 

occurring genetic variation between different individuals and populations (Kidd et al., 2010).  

Later, the advent of new genomic technologies, such as DNA microarrays, has 

provided us with unprecedented opportunities to investigate human genetic variation at 

genome-wide scale.  For this purpose, the International HapMap Consortium was founded in 

2002 leading to a careful assessment  of the common patterns of DNA sequence variation in 

the human genome, by characterising sequence variants, mostly single-nucleotide 

polymorphisms (SNP), their frequencies, and correlations between them, in DNA samples 

from four geographically diverse populations of Africa, Asia and Europe (The International 

HapMap Consortium, 2003). One of the other specific aims of the HapMap Project was to 
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stimulate technology to make SNP genotyping faster, more reliable, and above all cheaper, 

catalyzing the development of affordable SNP arrays. This technology was primarily used in 

the biomedical human genetics community to map disease alleles in Genome-Wide 

Association Studies (GWAS) (Novembre and Di Rienzo, 2009; Price et al., 2010), but then it 

shifted its focus. Indeed, genome-wide SNP genotyping ushered in a new phase of human 

genetics in which the signatures of population-genetic forces could be studied on hundreds 

of thousands of markers, having a big impact on our understanding of human evolution. 

These data have provided important insight into the finescale structure of Linkage 

Disequilibrium (LD; i.e., the pattern of correlation between SNPs located close together on 

the chromosome) in the genome (Conrad et al., 2006), the distribution and causes of 

recombination hotspots (Myers et al., 2005), the identity of genes that have been targeted 

by different forms of natural selection in the human genome (Sabeti et al., 2007; Barreiro et 

al., 2008), and many aspects of modern human population history, as discussed in more 

detail below (Novembre and Ramachandran, 2011). 

The original sequencing technology was a breakthrough that helped scientists determine 

the human genetic code, but it would take years to sequence all of a person’s DNA. 

However, genetics is a fast-changing field and the Sanger method, regarded as a first-

generation technology, has been supplanted by a diverse set of novel technologies that have 

been developed more recently (beginning in 2005), collectively known as Next-Generation 

Sequencing (NGS). These approaches have sped up the process, taking only days to weeks to 

sequence a human genome, while reducing the cos. As a consequence, projects of 

unprecedented scales, such as the 1000 Genomes Project (1000 Genomes Project 

Consortium et al., 2010), are underway. The completion of 1000 Genomes Project’s pilot 

phase has provided the location, allele frequency and local haplotype structure of ~ 15 

million SNPs, 1 million indels and 20,000 structural variants, most of which being novel, 

creating an extensive population-scale view of human genetic variation (1000 Genomes 

Project Consortium et al., 2010). Since the initiation of 1000 Genomes Project the cost of 

sequencing an individual genome has been rapidly decreasing and will likely reach $1,000 

per person within a short period of time (von Bubnoff, 2008). Many other complete 

genomes of individuals from different populations have been generated, leading to the 

discovery of a large number of previously unidentified variants, and thus suggesting that a 
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considerable number of human genetic variants, particularly rare variants, remain to be 

discovered beyond those currently known. 

Thanks to this huge amount of data, we have now a very comprehensive picture of the 

levels and patterns of human genome diversity, from which we can draw a series of 

conclusions (Barbujani and Tassi, 2012). 

I Humans are genetically very close to all other ape species. Comparing the human 

and chimpanzee genomes, more than 98% of the nucleotides result identical 

between the two species. Thirty-five million single-nucleotide changes have been 

identified, besides millions of chromosomal rearrangements (Chimpanzee 

Sequencing and Analysis Consortium, 2005). Over an estimated haploid genome 

length close to 3 billion nucleotides, that figure translates into a human-chimp 

difference equal to 1.23%. The majority of these changes, 1.06%, appear to be fixed, 

i.e., all members of each species have the same nucleotide. The main genetic 

differences between humans and other Primates do not seem to depend on point 

mutations, but on gain or loss of entire genes (Hahn et al., 2007), and especially on 

the activity of regulatory genes coordinating the expression of many other genes. 

These genomic regions are likely to be responsible for the key phenotypic changes in 

morphology, physiology, and behavioral complexity between humans and 

chimpanzees.   

II Humans are genetically less variable than any other ape species. Whereas large 

differences are observed between pairs of orangutans, gorillas, chimpanzees and 

bonobos, our closest evolutionary relatives (Kaessmann et al., 2001), in humans 

there is polymorphism only at slightly more than 0.1% of DNA sites (Wheeler et al., 

2008). Further studies will doubtless expand the list of polymorphic sites, but on 

average a pair of random humans is expected to share 999 out of 1000 nucleotides 

(Barbujani and Colonna, 2010). 

III Human populations are less genetically diverse than populations of any other ape 

species. Differences among populations are often summarized by the standardized 

genetic variance (FST), that is, the proportion of the global genetic diversity due to 
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allele-frequency differences among populations (Wright, 1950). FST ranges from 0 

(when allele frequencies are identical in the two populations) to 1 (when different 

alleles are fixed in the two populations) (for a review see (Holsinger and Weir, 2009)). 

Depending on the markers chosen, estimates of FST among major geographical 

human groups range from 0.05 to 0.13 (Lewontin, 1972; Barbujani et al., 1997). 

These figures mean that not only is the overall human genetic diversity the lowest in 

all primates but also the differences between human populations account for a 

smaller fraction of that diversity than in any other primate. The remaining 90% or so 

represents the average difference between members of the same population. 

Recent, extensive studies suggest that the human species’ FST could even be lower 

(1000 Genomes Project Consortium et al., 2010), about one-third of what is observed 

in gorilla (FST = 0.38; (Stone et al., 2002)) and chimpanzee (FST = 0.32 (Chimpanzee 

Sequencing and Analysis Consortium, 2005) despite humans occupying a much 

broader geographic area. In short, humans show the lowest individual diversity 

among Primates, and are subdivided in populations more closely related than in any 

other Primate species. The limited degree of differentiation among human 

populations does not suggest a history of long-term isolation and differentiation, but 

rather that genome variation was mostly shaped by gene flow and admixture 

between populations (Hunley et al., 2009). 

IV Each human population contains a large share of the global species diversity. One 

way to make sense of the above figures is to say that a random population contains 

on average 85% (or more) of the species’ global genetic diversity. Another is to say 

that the expected genetic difference between unrelated individuals from distant 

continents exceeds by 15% (or less) the expected difference between members of 

the same community (1000 Genomes Project Consortium et al., 2010). A good 

illustration of this concept comes from the comparison of complete genomes. Among 

the first individuals whose genome was sequenced are James Watson and Craig 

Venter, two of the leading geneticists of our time, both US citizens of European 

ancestry. Watson’s and Venter’s genome sequences share more polymorphisms with 

a Korean subject (569,912 and 481,770 DNA sites, respectively) than with each other 

(461,281) (Ahn et al., 2009), so that the Korean subject is genetically intermediate 
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between the two persons of European ancestry (Fig. 1.1). This does not mean that 

Europeans in general are genetically closer to random Koreans than to each other, 

but rather that, because each population is highly variable, members of the same 

group, might occasionally be very different from each other, and closer to people of 

very distant origin. Therefore, when it comes to predicting individual DNA features, 

labels such as “European”, “Asian” and the like may be misleading, because they add 

little to the label “Human”. 

 

 

 
Figure 1.1 - Venn diagram of SNP alleles in Seong-Jin Kim’s, Craig Venter’s and James 
Watson’s genomes.  
Figures within the intersections are numbers of shared alleles between individuals. Modified 
and redrawn from Ahn et al., 2009.  
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V Africa is genetically special, and harbors the highest levels of diversity. If we 

compare the main continents, we can see that African populations have the highest 

levels of genetic diversity at most (nearly all) loci (Fig. 1.2). This means that they have 

the largest number of unique alleles, i.e. alleles found only in one continent and not 

in the others (Jakobsson et al., 2008); that in many cases the alleles found out of 

Africa represent a subset of the African alleles; and that differences between Africans 

easily exceed the differences between any other pair of individuals (Schuster et al., 

2010). These findings are consistent with the Recent African Origin model for the 

origins of modern humans (for more details see Chapter 2). 

 

 

Figure 1.2 - A highly schematic view of the evolution of human biodiversity in the last 
100,000 years. Dots of different colors represent different genotypes, the distribution of 
which roughly corresponds to archaeological evidence on human occupation of different 
regions. Dots of new colors appear in the maps in the course of time (e.g. red and violet in 
Africa at 70,000 BP, Burgundy in India at 10,000 BP), representing the effect of mutation. 
Because only part of the African alleles (yellow, orange and light green dots) are carried into 
Eurasia by dispersing Africans from 60,000 years bp, diversity in modern Eurasian 
populations is largely a subset of African diversity.  
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VI Genetic diversity declines as a function of distance from Africa. Several measures of 

genetic diversity are patterned in space, with a maximum in Africa and decreasing 

values, respectively, in Eurasia, the Americas, and Oceania (Prugnolle et al., 2005; Li 

et al., 2008). On the contrary, LD is minimal in African populations, and increases at 

increasing distances from there (Jakobsson et al., 2008), and the average length of 

haplotype blocks has a minimum in Africa around 10 kb and is close to 50 kb in 

Eurasia (Thomas et al., 2012). All these findings are consistent with the expected 

consequences of an expansion of our species outside Africa (see Chapter 2), and with 

the existence of a rather small group of founders that then rapidly populated all the 

world (Ramachandran et al., 2005; Liu et al., 2006). In practice, we regard these 

results as showing that people have lived in Africa longer than anywhere else; in this 

way, the African populations accumulated a higher number of mutations than any 

other continental group. Because only part of the African population migrated out of 

Africa, only part of Africa’s genetic variation moved with them; and because the 

other continents were peopled at a relatively recent time, only few mutations are 

geographically restricted to these continents. 

VII There is no genetic support to the traditional idea that the human species is 

composed of biologically distinguishable races. In modern biology, a race is defined 

as a cluster of individuals who occupy a given territory, are genetically homogeneous, 

and differ from other clusters of individuals. The existence of such clusters has been 

traditionally assumed by classical anthropologists up to the twentieth century, and 

many catalogs of human races were proposed, starting in the 18th century with 

Linnaeus. However, for these catalogs to be of any use, they must be consistent with 

each other, whereas in fact they are not. On the contrary, different authors’ catalogs 

contained anything between 2 and 200 entries (Madrigal and Kelly, 2007), an 

incongruence that Charles Darwin had noticed, concluding that human races 

graduate into each other, and it is hardly possible to discover distinctive characters 

between them. Recent genetic studies have shown why. More than 80% of human 

alleles are cosmopolitan, i.e. present at different frequencies in all continents 

(Jakobsson et al., 2008); there are no sharp genetic discontinuities between 

populations or continents, and populations differ mostly for the different proportion, 

   8 
 



Introduction 
 

in each of them, of the same alleles. In addition, the different genetic polymorphisms 

are differently distributed in space and not correlated over the planet, and so we can 

cluster people based on any set of alleles, but there is no guarantee that the same 

clustering will be observed when considering other alleles in the same individuals 

(Hammer et al., 2004; Bowden et al., 2006; Cox, 2007). 

 

 

These data and their implications, are reviewed in detail PAPER I (Barbujani et al., 2013).   
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Ancient DNA 

For long, past demographic changes could only be roughly inferred from patterns of 

current genetic diversity. Such inferential process depends heavily on assumptions on 

factors such as demographic growth and migration rates, for which basically no empirical 

information is available. In addition, the levels and the patterns of genetic variation that we 

observed today are strongly influenced by the particular evolutionary history of the 

individual sampled and it is often difficult to distinguish between competing hypotheses. 

Besides, people who currently live in a given territory might not represent the people who 

inhabited the same territory in the past and dating their presence from the coalescence of 

their genetic profiles poses further problems (Barbujani et al., 1998). However, with recent 

advances in molecular sequencing technologies and sequence data analysis, we now have an 

unprecedented ability to recover genetic information from archaeological and 

paleontological remains, which allows us to go back in time and to address directly questions 

about human evolution.  

It is clear that, there are many practical difficulties with the analysis of ancient DNA 

(aDNA) in general, and of human samples in particular, caused by the nature of the studied 

biological material. In the cells of a living person, DNA is continually being monitored and 

repaired. After death, the systems that accomplish this function stop working, causing 

cellular degradation by endogenous nucleases and proteases with associated infiltrations of 

exogenous bacteria, fungi, or other organisms that further digest and non-specifically 

fragment the DNA (Paabo et al., 2004). The DNA survival in an ancient sample is influenced 

by the conditions under which it has existed since it was deposited: temperature, pH, 

humidity, and salt concentration affect the rates of the modifications that DNA undergoes 

post mortem (Smith et al., 2003). Cold, dry environments discourage the growth of 

microorganisms and minimize chemical damage. Remains that are quickly buried and, 

ideally, frozen tend to be best preserved (Hofreiter et al., 2001). The result is that the low 

quantities of DNA recovered from bones or other tissues of long-dead samples is severely 

damaged by cleavage of the sugar-phosphate backbone, resulting in short DNA fragments 

(usually below 70 bp (Green et al., 2008)); loss of bases; chemical modification of bases 

(particularly deamination that produce incorrect sequence reads, such as C to T and G to A 
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transitions (Fulton, 2012); and inter- or intramolecular cross-linking of sugar-phosphate 

backbones (Hebsgaard et al., 2005). 

Aside from molecular damage to aDNA, exogenous DNA contamination of sample 

may and does also occur. The extracted ancient DNA is always a mixture of organismal and 

environmental DNA, including DNA from bacteria, fungi, and other organisms that colonize 

the sample during burial. Separating endogenous and contaminating DNA from 

microorganisms is not extremely complicated: however, the most serious problem for aDNA 

researchers working on humans or their close evolutionary relatives is modern human DNA 

contamination. PCR amplification has made it possible to analyze genetic information from 

such material, but amplification of the degraded and modified DNA is not very efficient and 

sporadically contaminating intact modern DNA molecules can be preferentially amplified. 

Indeed, this contamination caused erroneous results and has led to extravagant reports, 

including claims of DNA sequences surviving for millions of years in plants (Soltis et al., 1992) 

and dinosaur bones (Woodward et al., 1994). It is now believed that most or all of these 

results were artefacts of modern DNA contamination (with bacterial, fungal, or human DNA), 

and that physicochemical processes set a probable upper limit of 100 thousand years (ky) to 

one million years (my) on the survival of DNA (Hebsgaard et al., 2005).To deal with this issue, 

researchers have agreed on a series of guidelines to ensure the quality of aDNA data and the 

reliability of consequent conclusions that are often recapitulated as “The nine gold criteria” 

by Cooper and Poinar (2000). These included replicability (if an aDNA sequence is genuine, it 

should be possible to reproduce it) and reliability (replicates of the same target sequence 

should be identical). 

The field of aDNA studies began thirty years ago (ya) with the extraction and 

sequencing of DNA material from the quagga, a South African equid (Equus quagga quagga) 

that went extinct in the 19th century (Higuchi et al., 1984) and from an Egyptian mummy 

(Paabo, 1985). These studies used bacterial cloning to amplify small sequences retrieved 

from skins of animal and human mummies, and revealed the genetic material surviving in 

ancient specimens was often principally microbial or fungal in origin, and that endogenous 

DNA was generally limited to very low concentrations of short and damaged. A few years 

later, with the development of PCR (Mullis and Faloona, 1987), it became possible to 
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routinely amplify and study surviving ancient DNA molecules even if only in a single copy, 

resulting in a rapid increase and diversification of ancient DNA research.  

Until recently, most of aDNA studies have been restricted to short fragments, mainly 

from the hypervariable region-1 (HVR-1) of the mitochondrial DNA (mtDNA). This is because, 

first of all, mtDNA is present in several hundreds copies per cell, in contrast to the single-

copy nuclear genome. Thus, integer sequences of mtDNA are more likely to be present in 

any single extract, and can be easily amplified, than nuclear sequences. Second, the 

generally higher mutation rate of vertebrate mtDNA ensures that more haplotype diversity 

will be seen in mtDNA than in comparable amounts of nuclear DNA. Third, because there is 

no recombination in mtDNA, the mutations are clonally transmitted across generations and 

gene genealogies of mtDNA haplotypes are readily inferred using standard phylogenetic 

methods. Thus, mtDNA has been successfully used to investigate the demographic history of 

human populations (Endicott et al., 2003; Vernesi et al., 2004; Ghirotto et al., 2010; Vai et 

al., 2015). In this context, I have analyzed datasets of modern and ancient genetic variation 

in order to understand the origins and evolution of the Etruscan population. The findings of 

this research are reported in this thesis (see Chapter 4, PAPER IV and PAPER V). 

In the last few years, with the advent of new sequencing technologies, NGS (Bentley 

et al., 2008), the field of ancient DNA is experiencing a new era wherein what was once 

impossible has become possible, moving to the analysis of genome sequences, sometimes 

complete ones, of extinct species and population. One of the major advances introduced by 

high-throughput sequencing technology is the ability to sequence millions of DNA molecules 

in parallel, thereby increasing the amount of sequence data generated and reducing the cost 

of sequencing. Most importantly, NGS does not rely on targeted PCR amplification of the 

aDNA molecules using primers. Therefore, this technology is able to obtain useful sequence 

information from shorter DNA fragments (Green et al., 2010) and thus, because the number 

of endogenous DNA increases exponentially with decreasing fragment lengths, it permits the 

access to a much larger fraction of endogenous aDNA. In addition, contaminating modern 

DNA tends to be longer, and consequently the ratio of endogenous to contaminating DNA 

shifts in favour of the former when using NGS compared to PCR (Kirsanow and Burger, 

2012). Another key advantage of NGS is that it allows the use of degradation patterns to 

   12 
 



Introduction 
 

discriminate between modern DNA contaminations and ancient degraded DNA (Briggs et al., 

2009). 

The first paleogenomic studies using NGS produced ~13Mb of nuclear DNA from a 

28,000 year old mammoth fossil (Poinar et al., 2006). After this milestone publication, many 

other sequencing projects of ancient DNA have been carried out based on high-throughput 

NGS and new perspectives to study evolution have opened up. As far as human evolution is 

concerned, in May 2006, the first nuclear DNA sequences from a Neandertal (Homo 

Neandertalensis) were reported, as part of the Neandertal Genome project that had started 

about two years earlier (Green et al., 2006). Within this project, later, a 1.3-fold coverage 

Neandertal genome was produced from bones from Vindija Cave in Croatia that contained 

only 1 to 5% endogenous DNA (Green et al., 2010). This was quickly followed by a 1.9-fold 

coverage genome from a morphologically uncharacterized hominin fossil from Denisova 

cave (Reich et al., 2010), by the genome of a 4,500 year old paleo-Eskimo at 20-fold coverage 

(Rasmussen et al., 2010), and an 11-fold coverage genome from an Australian aborigine 

(Rasmussen et al., 2011). The Denisova genome was later improved to 30-fold coverage 

(Meyer et al., 2012) thanks to very high (~80%) endogenous DNA content and a new, more 

efficient method to prepare sequencing libraries (Gansauge and Meyer, 2013). Recently, a 

~50-fold coverage Neandertal paleogenome was recovered from another extremely well 

preserved bone with a high (~75%) endogenous content, also from a cave in the Altai 

Mountains of Siberia (Prufer et al., 2014). Analysis of these hominin paleogenomes revealed 

patterns of resemblance with modern populations suggesting potential episodes of 

admixture between lineages during recent evolutionary history. Neandertal DNA shares 

more genetic variants with present-day humans from Eurasia and Melanesia than from sub-

Saharan Africa, potentially meaning that on average 2.5 % of the genome of people outside 

Africa derive from Neandertal ancestors. Instead, there is no evidence excess of allele 

sharing between Denisova and modern Europeans or East Asians, but the Denisova nuclear 

sequence shares around 5 to 7% of the polymorphism with modern Melanesian population, 

although they are far removed from the Denisova site.  Although these levels of genomic 

similarity are doubtless there, their interpretation is not obvious, and admixture is not the 

only possible explanation of the data. For example, an ancient population structure in 

African population ancestral to humans and other hominins has been proposed as an 
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alternative explanation (Eriksson and Manica, 2012). The history of humans is more complex 

than previously supposed and many aspects have to be resolved yet (see Chapter 2). 

More recently, the first nuclear sequences from an early modern human were 

determined by the capture of the chromosome 21 from an modern human male of a 

~40,000 year old from Tianyuan cave near Beijing (Fu et al., 2013a). In 2014 the genome of 

three early modern human individuals were published: the genome of a 13,000 years old 

Pleistocene individual from North America (Anzick-1) (Rasmussen et al., 2014), a 24,000 year 

old individual from the Lake Baikal region (MA1) (Raghavan et al., 2014), and a 45,000 year 

old individual from Ust’-Ishim near Omsk (Ust’Ishim1) (Fu et al., 2014). The last one 

represents the oldest full genome of a modern human published to date. This data revealed 

that Ust’-Ishim individual would represent an early modern human radiation into Europe and 

Central  Asia and that the early stages of Eurasian lineage were already complex. Anzick-1’s 

and MA1’s genomes provided indeed detailed insights into early human colonisation of the 

Americas, showing evidence that contemporary Native Americans and western Eurasians  

share ancestry through gene flow from a Siberia upper Palaeolithic population into First 

Americans.  

Methodological strategies for maximizing the retrieval, enrichment, and sequencing 

of short DNA fragments are dramatically improving the quality of ancient DNA studies in the 

area of human evolution. Most critically, the time-depth to which ancient DNA strategies are 

capable of reaching has significant applications to the study of the hominin lineage. No 

longer is it impossible to obtain authentic DNA sequences from 100,000 year old specimens, 

but recently the mtDNA genome of a 400,000 year old hominin from the Sima de los Huesos 

in Spain has been sequenced (Meyer et al., 2014), demonstrating the possibilities of 

exploring DNA survival in hominin species that have yet to be sequenced, such as Homo 

erectus and Homo heidelbergensis. Besides the experimental challenges, the aDNA research 

need to address computational and analytical challenges; once useable samples are 

obtained and sequenced, the dataset must be processed. Then, the research field requires 

bioinformatics expertise, data-processing power, and data-storage solutions necessary to 

handle the millions or even billions of sequences that are generated. But in particular, aDNA 

   14 
 



Introduction 
 

data require tailored bioinformatics tools for handling the short and degraded fragments 

(Kircher, 2012) and for evaluating the evidence of contamination (Skoglund et al., 2014).  

Despite its intrinsic limitations and the necessary caution, the study of aDNA 

represent a fundamental tool to reveal patterns of genetic variation in past populations, to 

detect evidence of natural selection, or to infer past demographic events, such as migration, 

range expansion, and changes in population size. We expect that the coming decade will 

bring even more important discoveries, including a better understanding of cultural and 

behaviour aspects as past diet, burial practices, and also about the evolution of 

pathogenicity.  
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Evolutionary forces 

The evolutionary dynamics of natural populations (be they human or not) are 

governed by a well-known set of evolutionary forces, causing departure from equilibrium. 

For long, it has only been possible to make educate guesses on the factors leading to the 

observed levels and patterns of within- and between-population diversity. Modern, 

computer-intensive methods are now permitting a much more detailed analysis of these 

factors and making it possible to quantitatively compare models differing for the relative 

weight given to mutation, selection, drift and gene flow. 

Mutation is, along with recombination, the main sole source of variation in the 

genome generating random changes in the DNA sequence. The results of this process is a 

heterogeneous category of changes in DNA that come about through myriad pathways and 

ultimately induce changes ranging from single base pair alterations to small insertions and 

deletions to large-scale structural rearrangements or even the addition or deletion of whole 

chromosomes. It provides the raw material on which evolution can act by means of selection 

or other forces. Although mutations are vital to evolution, mutation rate are low (around 0.2 

mutational events per million year per nucleotide for the human mitochondrial DNA (Henn 

et al., 2009) and around 0.001 mutational events per million year per nucleotide for a human 

noncoding region of autosomal DNA (Fagundes et al., 2007) and not lead, by themselves, to 

major changes in allele frequencies. 

The second key force shaping patterns of human genetic variation is genetic drift 

(Wright, 1931), that is the stochastic process resulting from the random sampling of gametes 

at reproduction, and determining random variation in allele frequencies over time. Genetic 

drift may cause allelic variants to disappear completely or to be fixed (reaching frequency of 

1), in both cases, reduces genetic variation within populations. On the other hand, because 

genetic drift is a random event occurring independently in different populations, the pattern 

of genetic drift will tend to be different on average in different population, and hence 

variation between populations will tend to increase under genetic drift. The magnitude of 

these effects depends on the size of the breeding population: the larger the population size, 

the smaller the change occurring from one generation to the next. Two main demographic 

   16 
 



Introduction 
 

processes associated to genetic drift have non-negligible consequences on the genetic 

diversity of populations that experience them, namely bottlenecks and founder effects. The 

former refers to the temporary shrinking of a single, previously larger, population, and the 

latter to the process of range expansion and colonization of new territories, often 

accompanied by the sampling of a subset of the genetic diversity present within the source 

population, and both resulting in a loss of genetic diversity. Both those processes played an 

important role in human history, and their effect is still detectable in the genetic diversity 

pattern of modern humans. 

Opposite to those of genetic drift are the effects of migration, that is the movement 

of individuals from an occupied area to another one. Migrants from other populations enter 

and contribute to the gene pool, changing the allele frequencies in the population, as well as 

introducing new genetic variation. This results in decreased the genetic differentiation 

between connected populations and in increased variation within a population. 

All the above processes are expected to affect equally all loci in the genome (Cavalli-

Sforza, 1966; Sokal et al., 1989b).The fourth force which contributes to the distribution of 

human genomic variation is natural selection, acts specifically upon single genes. During the 

process of evolution, some individuals with a certain trait or phenotype may tend to be more 

successful to reproduce than others in a certain environment. In other words, some 

individuals fit the environment better and have a major ability of transmit his or her 

genotype to the next generation. The individual’s expected reproductive success is 

measured by her/his fitness (ω) and the relative fitness of a genotype is obtained from a 

comparison of this genotype with all other genotypes competing for the same resources. 

Natural selection can act in a population only if mutation has generated heritable 

polymorphisms among individuals. Selection therefore works to increase the frequency of 

variants that increase the fitness of an individual in its environment (positive selection) and 

to decrease the frequency of deleterious allele (purifying selection). In some cases, natural 

selection acts to maintain the polymorphism, preserving two or more alleles at a locus in a 

population, and tends to favour intermediate-frequency alleles (balancing selection). In 

human populations, it appears that most genetic variation is neutral and selection is a 

weaker force than genetic drift in shaping global pattern of genomic variation (Balaresque et 
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al., 2007) , but opinions differ in this area (for reviews, see (Scheinfeldt and Tishkoff, 2013) 

(Jeong and Di Rienzo, 2014)). 

As previously mentioned, demographic processes, such as changes in population size 

or migration, are expected to affect the entire genome in the same way, whereas natural 

selection affects specific functionally important sites in the genome. However, similar 

patterns of genetic variation can be produced both by events in demographic history or by 

specific selection regimes (for example a rapid expansion in population size or positive 

selection can produce a similar excess of low-frequency variants: (Harpending, 1994; 

Braverman et al., 1995). One way to disentangle the confounding effect of population 

history from the effect of selection is a comparison of the pattern of variation at a candidate 

locus with the genome-wide pattern estimated from a set of neutral markers that have been 

typed in the same individual or population (Bamshad et al., 2002). 

The evolution of genetic diversity under these forces is expected to behave in certain 

ways, defining assumptions that are used to build a set of predictions. Theoretical 

population genetics, using these predictions, develops mathematical models and compares 

genetic patterns observed in actual population with expected pattern, to elucidate how 

allele frequencies change in time and space.  
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Chapter 2.TRACING MODERN HUMAN ORIGINS 

As late as 3 million ya, it is believed that all ancestors of living humans were found in 

the African continent. Starting ca 2.3 million ya, hominin migrations out of Africa resulted in 

the appearance of several population lineages in all major continents except the New World 

and Antarctica, succeeding in adapting to a vast diversity of environments from the frigid 

Siberian tundra to the lush rainforests of Southeast Asia. Over the course of 2 my, they 

evolved into biologically diverse groups, from the 1 meter tall Homo Floresiensis (Brown et 

al., 2004) to the remarkably robust Neandertals (Hublin, 2009), and the group known only 

from DNA information that is designated as Denisovans (Krause et al., 2010). However, there 

is today scientific consensus that most of these ancient human populations did not give rise 

to the human populations living outside of Africa today. Instead, at least 90% of the ancestry 

of all modern humans today can be traced to Anatomically Modern Human populations 

(AMH) living in Africa about 100 kya (Meyer et al., 2012). 

The appearance of anatomically modern humans in Africa 

Between 300 kya and 150 kya, the first evidence of what is referred to as anatomical 

modernity began to appear in Africa (Stringer, 2002; Tattersall, 2009). These skeletal remains 

are found both in eastern and southern Africa, and their absence from other parts of Africa 

does not necessarily mean they were not elsewhere; it could be attributed to less intense 

excavations or poor preservation conditions. Thus, the exact geographical point of origin of 

these anatomical features in Africa is not known, but they markedly predate any such 

evidence from outside Africa. The earliest AMHs fossils were those found in the Klasies River 

Mouth Caves in South Africa which date to ~130 kya and those from the Levant, at Qafzeh 

and Skhul which date to ~130-90 kya (Stringer, 2002). However, recent fossil evidence from 

Ethiopia indicates the presence of early AMHS there between ~195-154 kya (Clark et al., 

2003). After the initial appearance of AMHS in the Levant, the fossil evidence suggests that 

they do not reappear in that region or in Europe until ~60-40 kya (Trinkaus, 2005; Mellars, 

2006b). The earliest evidence of AMHS presence outside of Africa were surprisingly found in 

Lake Mungo in Australia and are about 45,000 years old, thus thousands of years older than 

fossils attributed to modern humans found in Europe and Asia (Bowler et al., 2003). 
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However, recent archaeological evidence from pre-Toba and post Toba (74-77 kya) artefacts 

from the Indian subcontinent show closer affinities to African Middle Stone Age traditions 

(such as Howieson‟s Poort), and may indicate modern humans might have reached the 

Indian sub-continent by 70 kya (Petraglia et al., 2007). 

Models of modern human origins  

One of the most heavily debated topics in paleoanthropology was for long the 

population history behind the appearance of anatomical modernity in Africa and Eurasia 

(Stringer, 2002). Many models have been proposed attempt to explain how AMHs became 

distributed throughout the globe within the last 100 kya, and how all AMHs are related to 

the other hominins species.  

The extreme alternative scenarios are sometimes referred to as the Out of Africa 

model (OAA) (or, more precisely stated the Recent African Origin model), and the model of 

Multiregional evolution (Fig. 2.1). The OOA model posits that present-day human 

populations across the world trace their ancestry to Africa within the past ~200 kya, and thus 

that the populations with archaic morphology (such as Homo erectus and Neandertals) 

would have been replaced by these newcomers without contributing significantly to their 

ancestry (Stringer and Andrews, 1988; Stringer, 2002). By contrast, the Multiregional model 

proposes that anatomical modernity have emerged gradually and simultaneously from 

archaic forms in different continents, with natural selection acting to raise the frequency of 

traits associated with anatomical modernity. Although differences between geographic 

regions evolved over time, all human forms documented in the fossil record and modern 

humans would represent a single species because the archaic human groups of Africa, Asia 

and Europe were not reproductively isolated, but connected by gene flow occurred in the 

past ~ 1-2 my (Wolpoff et al., 2000). 
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Figure 2.1 - Out of Africa (A) and Multiregional (B) model of human evolution. 
 

For decades, the debate on the relative merits of these models, and of the many 

variants proposed, revolved around the interpretation of anatomical features. Now their 

predictions in terms of genetic variation can be tested against DNA data. At the end of the 

1980s, the first available genetic evidence taken to support the OAA hypothesis came from 

the sequencing of mitochondrial DNA variation from worldwide populations (Cann et al., 

1987). When a genealogical tree was reconstructed the sequences appeared to come in two 

clusters, one of them only including Africans, and the other containing people of different 

ancestries, both African and non-African. This pattern was later confirmed, and indicates 

that, at the mitochondrial level, non-African variation is but a subset of the variation found 

in Africa (Cann et al., 1987; Ingman et al., 2000). By taking mutation rate into account in the 

gene tree analysis, the date when the most recent common ancestor lived can be estimated, 

and for mtDNA analyses this date falls around 200 kya (Penny et al., 1995). These findings 

have often been interpreted as supporting the OAA, which predicts a common African 

ancestor at about the same time. Meanwhile, results from the non-recombining portion of 

the Y chromosome (NRY) were also consistent with an African origin of AMHs (Thomson et 

al., 2000; Underhill et al., 2000). In addition, ancient mtDNA was isolated and sequenced 

from a range of geographically disparate Neanderthal fossils (Krings et al., 1997; Krings et al., 

2000; Ovchinnikov et al., 2000; Schmitz et al., 2002; Serre et al., 2004; Caramelli et al., 2006) 
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and in a paper to which I contributed was shown to be genealogically distinct from known 

extant mtDNA sequences (Ghirotto et al., 2011b).  

Further studies of worldwide modern human variation using autosomal markers 

(mainly SNPs and STRs) have shown that the extant genetic pattern is remarkably consistent 

with a continuous decrease of genetic diversity with geographic distance from Africa 

(Rosenberg et al., 2002; Ramachandran et al., 2005; Li et al., 2008). These studies have 

shown three trends in summary statistics as a function of increasing geographic distance 

from Africa: a decrease in heterozygosity (Li et al., 2008), an increase in linkage 

disequilibrium or LD (Jakobsson et al., 2008), and a decrease in the slope of the ancestral 

allele frequency spectrum (indicating that derived alleles tend to be more frequent in 

populations at a greater distance away from Africa (Li et al., 2008). This pattern can be 

explained by positing a serial founder effect where populations expanding out of Africa into 

the rest of the world experienced the cumulative effect of genetic drift (DeGiorgio et al., 

2009). On these grounds the OOA model has been widely adopted by the human population 

genetics community. However, this model was disputed by some archaeologists for whom 

there is evidence of the appearance of similar traits (i.e. flatness of the frontal bone and the 

constriction of the skull behind the orbital area) within the same geographic region over 

time. This evidence could be better explained by genetic continuity (according to the 

Multiregional model), rather than according to the complete replacement for which the 

traits would be eliminated and then, would have to appear independently (Wolpoff, 1989). 

On the other hand, morphological studies by Lahr and Foley (1994) found that the majority 

of traits analysed did not really show a specific regional continuity, and suggested that to 

account for them the Multiregional model is unnecessary.  

More complex scenarios 

Although paleontological and genetic data strongly suggest that Africa is the most 

likely geographical origin for a modern human dispersal, there is still disagreement on the 

extent of population replacement taking place as AMH expanded over the planet, ultimately 

occupying all suitable territories. In particular, open questions concern the possibility of 

admixture with pre-existing human forms, on the details of the dispersal process and on the 

exact nature of the migration events. 
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In the recent Neandertal genome survey (Green et al., 2010), the authors found that 

Neandertals are slightly but consistently closer to present-day non-Africans than to present-

day Africans. Although alternative scenarios could not be ruled out on the basis of the 

available genomic evidence, this asymmetry was been interpreted, as evidence for 

hybridization between Neandertals and anatomically modern humans during the latter’s exit 

from Africa (Green et al., 2010). Given that there is no difference between Europeans and 

Asians/Melanesians in their similarity to Neandertals (in fact, Asians seem, once again, 

slightly but consistently closer to Neandertals than Europeans, despite the latter’s much 

longer proximity to Neandertals), it has been argued that such hybridization would have had 

to happen at the very beginning of the OOA expansion, in the Levant, before the split 

between Europeans and Asians/Melanesians (Green et al., 2010). The high-quality 

Neandertal genome recently characterized refined this estimate to ~2%. Because, as already 

mentioned, Neandertals appear to have contributed more DNA to modern East Asians than 

to modern Europeans (Meyer et al., 2012; Wall et al., 2013), simple population models 

where Neandertals and AMHs admixed just once when they cohabited in the Levant before 

the latter colonized Asia, Oceania and Europe, should probably be dismissed and more 

complex models preferred, where additional gene flow from Neandertals into East Asians 

took place after they diverged from Europeans (Vernot and Akey, 2014). Contrary to 

Neandertals, the genome from a newly discovered hominin from the Denisova caves in 

Siberia has no evidence of admixture with most present-day Eurasian populations, with the 

exception of unusual polymorphisms shared with Australians and Melanesians (Reich et al., 

2010; Reich et al., 2011; Prufer et al., 2014), again suggesting hybridization. However, our 

lack of knowledge of both the geographic range of Denisovans, and of their exact taxonomic 

affinity to modern humans, makes it difficult to identify the exact scenario. To explain these 

spatially heterogeneous patterns of similarity between any ancient hominin and modern 

human populations, recent admixture is not the only hypothesis that has been put forward. 

The persistence of population substructure in early hominin populations in Africa, which has 

been inferred from the human paleontological record (Gunz et al., 2009; Harvati et al., 2011) 

and is concordant with climate fluctuations in the continent (Scholz et al., 2007; Blome et al., 

2012), could produce the same pattern (Durand et al., 2011). This alternative model of 

population history posit that there were two or more subpopulations of hominins in Africa 
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with limited gene flow, with Neandertals the and ancestors of present-day non-Africans 

dispersing, at different times,  from the same population background. Consequently, non-

Africans would be slightly more genetically similar to Neanderthals than would Africans 

because of their more recent common ancestry. If this were the case, incomplete lineage 

sorting and not introgression could explain some genetic similarities between modern non-

African humans and Neanderthals (Eriksson and Manica, 2012). These findings do not imply 

that dispersing modern people from Africa did not interbreed with other hominin 

populations but suggest that, at present, other hypotheses also seem to be compatible with 

the biological evidence. 

Given the overwhelming genetic evidence for a recent origin of modern humans in 

Africa, an unresolved, and very relevant, question is whether there has been a single exit 

from Africa or more. Indeed the tempo and mode of dispersal in Eurasia and Oceania is 

however still controversial with different models competing. This debate has no minor 

implications for the issue of the possible hybridisation with Neandertals. The single dispersal 

model (SD) supports a unique dispersion into Eurasia about 50 kya followed (The HUGO Pan-

Asian SNP Consortium, 2009) by a series of founder events and separate migrations into Asia 

(55-40 kya) and Europe (40-25 kya) (Liu and Zhao, 2006; Fu et al., 2013b). According to this 

model, a further expansion from Asia into Australia would have given rise to the ancestors of 

Aboriginal Australians, as early as 50-40 kya (O'Connell and Allen, 2004). In contrast to the 

single dispersal model, the multiple dispersal hypothesis (MD) assumes separate successive 

migrations from Africa to the rest of the world, an early “southern” route through the Arab 

peninsula and the Indian subcontinent towards Australia and Melanesia ~100-60 kya and a 

later “northern” route through North Africa/Middle East towards Eurasia ~70-40 kya (Cavalli-

Sforza et al., 1994). According to this hypothesis, Asian populations descended from this 

early expansion were then largely replaced by subsequent dispersal from Africa, or 

underwent extensive admixture (Karafet et al., 2001; Martinez-Cruz et al., 2011), except 

perhaps for certain relic populations such as Andamanese Islanders, Malaysian and 

Philippine ‘Negrito’ groups, or aboriginal Australians and New Guineans (Mellars, 2006a) 

(Fig. 2.2).  

   24 
 



Tracing modern human origins 
 

The Southern-route hypothesis was initially proposed to account for observations of 

temporal and spatial patterns of cranial diversity (Lahr and Foley, 1994), and of shared 

phenotype (short stature, dark skin color, and tufted hair) between populations of Africa and 

isolated, indigenous populations of Southeast Asia (Lahr, 1996). Besides, this scenario is 

strengthened by mtDNA research which suggests a rapid eastward migration along the 

northern rim of the Indian Ocean (Macaulay et al., 2005; Thangaraj et al., 2005). The 

hypothesis of an early southern route also receives strong support from a different analysis 

of genome-wide SNPs data (Wollstein et al., 2010) which used an Approximate Bayesian 

Computation (ABC) framework to test various models of population history and estimate 

associated demographic parameters, as well as from a recent study that used both genome-

wide SNP and craniometrics data to analyse the spatiotemporal predictions of various 

models (Reyes-Centeno et al., 2014). 

If this really happened, in their dispersal from Africa, the ancestors of current 

Papuans would have missed by thousands of miles the nearest documented Neandertal 

population (Fig. 2.2), and so the similarity between Neandertals and Papuans (who have the 

same level of apparent Neandertal admixture as all other Eurasians tested so far (Green et 

al., 2010)) would call for a different explanation. 
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Figure 2.2 – Multiple dispersal model. According to multiple dispersal model, green arrows 
indicate initial colonization events along the Southern route after the origin of anatomically 
modern humans (AMHs) in Africa. The red arrows show the more recent expansion into 
Eurasian along the Northern route. The light yellow and light blue shadows, represent 
possible range of Neandertals and Denisovans, respectively. 
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Early modern human dispersal from Africa: Genomic evidence for multiple waves of 

migration 

To obtain insight into the historical and geographical context of the emergence and 

dispersal of our species out of Africa, we combined different approaches, including (i) the 

analysis of population structure, (ii) a LD-based approach to trace the population’s changes 

in the effective population size (Ne) through time and to estimate the respective divergence 

time (T) from Africa, and (iii) a comparison of genetic distances between populations with 

the expectations of different dispersal models. 

We analysed genome-wide SNPs in 1,130 individuals belonging to 71 worldwide 

populations selected from several suitable public different dataset (Lopez Herraez et al., 

2009; Reich et al., 2009; Xing et al., 2009; Xing et al., 2010; Reich et al., 2011; Pugach et al., 

2013). We devised a careful strategy to combine the seven datasets genotyped with 

different platforms according to different protocols developing a pipeline built on Perl, and, 

after cleaning and integration, we obtained a database of more than 96,000 autosomal 

SNPs. We identified cryptic relatedness amongst samples computing identity-by-descent 

(IBD) statistic for all pairs of individuals, as unmodeled excess of genetic sharing would 

violate the sample independence assumptions of downstream analyses. We did not apply 

this screening procedure for the South-East Asia and Oceania samples, since they come from 

populations with extremely low effective sizes, where a certain degree of random inbreeding 

is inevitable (Relethford, 1985). In addition, individuals identified as population outliers were 

removed, evaluating their dissimilarity in terms of identity by state (IBS). The final dataset 

contained 1,130 individuals, and we grouped them into 24 ethnolinguistically and 

geographically related meta-populations. 

Preliminary analyses (Principal Component Analysis (PCA), ADMIXTURE (Alexander et 

al., 2009), Discriminant Analysis Principal Component (DAPC) (Jombart et al., 2010)) allowed 

us to quantify the extent and the pattern of admixture and gene flow in our data, to select 

the appropriate populations for informative comparisons and to identify a subset of far 

eastern populations, which may safely be regarded as deriving from oldest expansion (under 

the MD model). Remarkably, some populations showed more than 99% contribution from 

the same ancestral population (e.g. West Africa, Europe, and New Guinea), whereas other 

   27 
 



Tracing modern human origins 
 

populations include several individuals with an apparently admixed genomic background, 

possibly resulting from successive gene flow (e.g. back migration from Europe to Northeast 

Africa).  

We moved then to consider the patterns of LD, in order to reconstruct two key 

parameters of human evolution (the effective population size, Ne, and the population 

divergence time, T. Under neutrality, genetic differences between populations accumulate 

because of genetic drift, and so their extent (measured by FST) depends on two quantities; it 

is inversely proportional to Ne and directly proportional to T. This means that, to estimate T 

from FST, one needs independent estimates of Ne. Therefore, to estimate T from genetic 

difference between populations, independent estimate of Ne are needed, for this purpose 

we considered the relationship between Ne and the level of LD within each population. The 

levels of LD depend on both Ne and on the recombination rate between the SNPs considered 

(Tenesa et al., 2007). However, LD between SNPs separated by large distances along the 

chromosome reflects relatively recent Ne whereas LD over short recombination distances 

depends on relatively ancient Ne (Hayes et al., 2003). Thus, we estimated LD independently 

in each population using all polymorphic markers available for that population (from a 

minimum of ~ 90,000 to a maximum of ~ 370,000 markers), then we calculated the 

populations’ Nes through time using the equation proposed by McEvoy et al. (2011). The 

obtained estimates agree well with previous studies (Yu et al., 2004; Conrad et al., 2006; 

McEvoy et al., 2011), suggesting that the procedure followed is accurate. 

This way, from the pairwise FST values estimated over all loci as described by Weir 

and Cockeram (1984), and based on the independently-estimated values of Ne, we could 

infer the divergence times between populations as in Holsinger and Weir (2009). We found 

that the populations at the extremes of the geographical range considered differ 

substantially in the timing of their separation from the Eastern African populations, i.e. those 

located in the most plausible site of departure of AMH expansions (Ramachandran et al., 

2005). Extreme divergence values were observed for Europe and the Caucasus on the one 

hand, and for Australia or New Guinea on the other, respectively at the lower and the upper 

tails of the distribution. Even considering the full range of uncertainty around these 

estimates (95% of the confidence interval) we observed no overlap, with Europe having an 
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upper confidence limit 77 kya and Australia having a lower confidence limit 88 kya. In 

addition, we showed by simulation approach based on the neutral coalescent model of the 

software ms (Hudson, 2002), that the different times of separation from East Africa 

estimated for Europe and Australia/New Guinea cannot be reconciled with a model 

assuming a single, major dispersal of all non-Africans through the classical “northern” route. 

Taking into account the recent results on the genetic relationship between modern 

human and Denisovan (Meyer et al., 2012), we also considered the possibility that the 

apparent difference in African divergence times for Europe and Australia/New Guinea may 

somewhat reflect Denisovan admixture. Therefore, we removed from the analysis the SNPs 

that were identified as representing the Denisovan contribution to the latter’s genome and 

reestimated the divergence times from Africa, finding they are still very close to those 

previously estimated. 

Other Far Eastern populations, besides Australia and New Guineans, may have taken 

part in an early exit from Africa through a “southern” route; however, recent admixture 

events could have obscured the genomic signatures of the first migration out of Africa in 

these Southeast Asian populations, ultimately biasing downwards the estimates of their 

divergence times from Africans. To understand whether that could have actually been the 

case, we used a method, TreeMix (Pickrell and Pritchard, 2012) to estimate from genome-

wide data a maximum-likelihood tree of populations, and then to infer events of gene flow 

after the split by identifying populations that poorly fit the tree. We selected from our 

dataset just the populations showing at least 30% of the ancestral genetic component to 

which all Australian and New Guinean genotypes could be associated in the previous 

ADMIXTURE analysis. Evidence for extensive genetic exchanges after population splits was 

apparent from East Asia toward populations putatively involved in the early African dispersal 

(i.e. Fijians, East Indonesians, Moluccans and Polynesians).  

At the end, to test which model of African expansion can better explain the observed 

pattern of genomic variation, we compared the genomic differences between populations 

with alternative geographic distance matrices calculated respectively one according to  (1) a 

SD model; (2) a MD model assuming that all Asian populations are descended from 

ancestors who left Africa through the Arab Peninsula and the Indian Subcontinent, all the 
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way to Melanesia and Australia (based on skull morphology (Lahr and Foley, 1994); (3) a MD 

model assuming that only the populations of Southeast Asia and Oceania derive from the 

earlier expansion, whereas Central Asian populations are attributed to the later African 

dispersal (Ghirotto et al., 2011a). Conversely under the SD scenario, anatomically modern 

humans left Africa through Palestine and dispersed into all of Eurasia (Stringer, 2002).  

In all cases, migration routes were constrained by 5 obligatory waypoints. To obtain a 

realistic representation of migrational distances between populations, we did not estimate 

the shortest (great-circle) distances between sampling localities, but we modeled resistance 

to gene flow, based on the landscape features (mountain ranges, arms of sea, rivers) known 

to influence human dispersal.  

To minimize the effects of recent gene flow unrelated with the first human dispersals, 

which was clearly not negligible (see previous section) we selected populations with at least 

80% of a single ancestral component in the ADMIXTURE results (i.e. Australia, the Caucasus, 

East Africa, East Asia, Europe, New Guinea, South Africa, South India, West Africa) and we 

evaluated by partial Mantel tests (Mantel, 1967) the correlation between genomic (FST) and 

geographic distances, while holding diverge times (T) constant. This way we could control for 

the drift effects, due to the fact that populations separated at distinct points in time and 

space. The correlation between genetic and geographic distances was higher under the MD 

than under the SD model, but this difference was not statistically significant. This may be 

due, at least in part, to the fact that the three models being compared share several 

features, such as the same set of geographic/genetic distances for the European 

populations, which reduces the power of any test. However, the separation times previously 

estimated made us confident that the SD model is not inconsistent with the data, and so 

what was really important at this stage was the comparison between the two MD models. 

The better fit of MD2 than MD1 implies that the MD model works better if only part of the 

Asian genomic diversity is attributed to the earliest dispersal.  

In short, analyses of genomic data based on different sets of assumptions and 

different methods agreed in indicating: (i) that a model with a single early dispersal from 

Africa fails to account for one crucial aspect of human genome diversity, the distribution of 

divergence times from Africa, and (ii) that within the model of multiple dispersal, 
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geographical patterns of genome diversity are more accurately predicted assuming that not 

all Asian and New Guinea/Australian populations have had the same evolutionary history. In 

the light of these results, we proposed that at least two major dispersal phenomena from 

Africa led to the peopling of Eurasia and Western Oceania. These phenomena seem clearly 

distinct both in their timing and in their geographical scope, with some populations of 

Southern Asia evolved largely independently from those of Northeast Asia retaining the 

signal of an early dispersal.  

Conclusion 

The processes of human expansion into new territories, population split, isolation, 

divergence and admixture are notoriously complex, and often overlap in time or place. It 

comes as no surprise that, despite fast progress in paleoanthropology and genetics, 

disentangling and identifying them has remained problematic. Our results, which look at 

divergence times from Africa in several worldwide populations taking into account large 

amount of genomic data, point to a more complex OOA scenario. They are unambiguous in 

their support of multiple dispersal into Eurasia, with Australians and New Guineans retaining 

the signal of “southern” route dispersal. 

These results might call into question the genetic relationships between AMH and 

Neandertals. If dispersal through a “southern” route was substantial, most ancestors of 

Melanesians would have missed by 2,000 km or so the nearest documented Neandertals 

with whom they could have intercrossed. Thus, it may be that the 1 to 4% of apparent 

Neandertal contribution to non-African genomes (Green et al., 2010) reflects phenomena 

that did not occur after the first exit of AMH from Africa but instead date back to an earlier 

time. Another possibility is that an ancient structuring of populations might contribute to 

explaining the observed pattern of resemblance between modern humans and Neandertals. 

In these ways, some of contemporary humans may still be carrying in their genome traces of 

a closer genetic relationship with the Neandertals’ ancestors, without this necessarily 

meaning that any admixture took place after anatomically archaic and modern human forms 

separated.  
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Continued field work, alongside rapid advances in modern and ancient genome 

sequencing, will allow for greater resolution in modelling the spatial and temporal dimension 

of modern human origin and dispersal.  

 

The results of this research are now in the form of a manuscript submitted for publication 

(see PAPER II). 
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Chapter 3.TOWARD A GLOBAL TREE OF HUMAN LANGUAGES AND GENES 

The evolution of human languages has probably proceeded in parallel with the 

evolution of human populations, although certainly not in a mechanical manner. Indeed, 

both are subjected to similar patterns of transmission of traits, in cultural and biological 

terms, and their development is influenced by the same demographic changes. Thus, studies 

of language phylogenies and their correlations with genetic phylogenies can enrich our 

understanding of human prehistory and provide insights into the processes that shaped both 

genetic and linguistic diversity (Pakendorf, 2014). The first intuition about this parallel can be 

found in the Origin of Species (1859), when Darwin suggests that biological and linguistic 

data could describe similar genealogies:  

 

"If we possessed a perfect pedigree of mankind, a genealogical arrangement of the 

races of man would afford the best classification of the various languages now spoken 

throughout the world; and if all extinct languages, and all intermediate and slowly changing 

dialects, were to be included, such an arrangement would be the only possible one" 

 

Coevolution of gene and languages 

The parallel study of processes of linguistic and genetic evolution was first 

undertaken in the late 1980s and early 1990s, when sufficient allele frequency data for a 

large number of human populations had been collected to make such research feasible. 

Some geneticists (Cavalli-Sforza et al., 1988; Sokal, 1988) advocated a large-scale 

correspondence between the distribution of classical genetic markers (blood groups, serum 

proteins, etc.) and certain long-range language classifications found in the linguistic 

literature (Fig. 3.1). However, their work has been received with much scepticism and has 

remained controversial among linguists: for virtually no professional historical linguist 

unconditionally subscribes to the reliability of the linguistic genealogies used as matches in 

such experiments. Indeed, most linguists have denied the very possibility of a reliable global 

or long-range classification of languages, advocating methodological reasons which brought 
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the interdisciplinary debate on large-scale population-language congruence close to a dead 

end, and which perhaps we are now in a position to overcome.  

 

 

Figure 3.1 - Comparison of genetic tree and linguistic phyla. Figure reproduced from Cavalli-

Sforza et al., (1988) 

 

Indeed, recent genetic work showed that, in a large number of case studies, patterns 

of genetic and linguistic diversity do appear locally well correlated, implying that language 

can represent a barrier to gene flow (Barbujani and Sokal, 1991; Belle and Barbujani, 2007; 

Tishkoff et al., 2009). However, the methods adopted in these works were mostly based on 

the comparison of vocabulary items, hence generally lacking resolution when comparing 

across linguistic families, and making impossible to verify the congruence hypothesis at a 

general, worldwide rather than regional, scale (Nichols, 1996; Longobardi, 2003; Heggarty, 
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2004). A major limitation of these methods concerns the time depth that we can reach, since 

most linguists agree that language families cannot be traced back after an estimated age of 

10 kya: beyond that time limit, there will be no detectable similarities between pairs of 

languages (Gray, 2005). Put in a simpler perspective, languages evolve faster than genes 

(Cavalli-Sforza et al., 1994), and language phylogenies coalesce to the common root (proto-

language) within a narrow prehistorical depth. Besides, accidental similarities tend to 

emerge due to the limited constraints on possible phonological systems; accordingly, a 

general congruence between patterns of genetic and linguistic diversity appears to be 

difficult to demonstrate, as long as the latter are assessed by means of vocabulary 

comparisons.  

New linguistic tools 

Any linguistic taxonomic method with some global ambition should be able to identify sets 

of correspondence characters both safe from chance (i.e. probabilistically reliable) and 

universally applicable. Therefore, we chose to approach this goal in a radically different way 

focusing on structural linguistic features such as the order of subject, verb, and object or the 

presence/ absence of definite or indefinite articles. In contrast to lexical features, structural 

features of languages change at a slower rate, thus being more suitable for the investigation 

of genealogical relationships at deeper time depth (Dediu and Levinson, 2012; Sicoli and 

Holton, 2014). We took advantage of a new tool developed for language comparison focused 

on the syntactic features: that is the Parametric Comparison Method (PCM, see TableA in 

Appendix (Longobardi and Guardiano, 2009). This approach describes the core grammar of 

any language as a string of binary symbols, each encoding the value of a syntactic parameter 

(Chomsky, 1981; Baker, 2001). Since this method assumes that these parameters are part of 

the innate Universal Grammar, they should be found, and hence comparable, across all 

languages irrespective of their degree of genealogical relationship making them perfectly 

comparable to genetic data and avoiding the problems inherent in the use of lexical data 

mentioned above. 
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DNA diversity mirrors grammar within Europe 

The study described below is part of a European Research Council project (ERC-2011-

AdG_295733 grant) LanGeLin (Language and Genetic Lineages), in which the group of 

Population genetics of the University of Ferrara collaborates with the Linguistic group of 

York and the Molecular anthropology group of Bologna. Through the use of shared statistical 

and computational tools, LanGeLin aims to build up comparable phylogenetic trees of 

strategically chosen languages and populations, and therefore to test in the strongest 

possible way Darwin’s expectation about their eventual congruity, both on local and global 

scales. 

The first step of the LanGeLin project is a comparative analysis of genome-wide 

information and language structure at a cross-language families scale in Europe. For this 

purpose, the choice of populations was conditioned on the overlap between the languages 

so far analysed by the PCM method (Longobardi and Guardiano, 2009) and the publicly 

available genome-wide datasets. In the end, we could collect linguistic and genetic 

information about 15 populations belonging to three different linguistic families (i.e 12 Indo-

European (hereafter: IE), two Finno-Ugric and the Basque). The final genetic dataset 

comprises 177,149 markers that passed the quality filters in 805 individuals. 

We first checked that PCM correctly reproduces the known historical relationships of 

the Indo-European languages of Europe. For the our 12 languages belonging to IE, we 

calculated and compared distances and phylogenies both from the list of lexical cognates 

developed by Bouckaert et al. (2012) and through PCM. A good correlation (r= 0.82) was 

found between syntactic and lexical distances in the subset, showing that the well-

established set of relationships among European IE languages can actually be reconstructed 

with good statistical confidence from syntactic comparisons. We then moved to analyse the 

complete linguistic dataset, including also the non-IE languages of Europe, with the aim to 

evaluate the PCM’s ability to compare languages even from different families. Different 

standard methods of evolutionary biology (i.e UPGMA trees, PCA, DAPC) showed that the 

main families and subfamilies of Europe were discriminated through just 56 abstract 

syntactic characters, without resorting to methodologically disputable lexical comparisons. 

At this point, we wanted to test whether genetic and linguistic diversity are 

correlated in Europe, and what is the role of geographical distances in that correlation. We 
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observed significant correlation between genomic and linguistic diversity (r=0.577), meaning 

that populations speaking similar languages also tend to resemble each other at the genomic 

level, suggesting that cultural change and biological divergence have proceeded in parallel in 

Europe. This correlation remained significant after removing the effects of geography by a 

partial Mantel test (Mantel, 1967) and after Bonferroni correction for multiple tests. 

Confirming what had been observed in studies in which lexical differences had been used 

(Sokal, 1988; Belle and Barbujani, 2007), we found that populations speaking similar 

languages also tend to be genetically closer than expected on the sheer basis of their 

geographic location. . Contrary to previous studies, however, here geographic distances 

appeared to be poorer predictors of genomic differences than linguistic distances in Europe 

(r=0.228). 

The comparison of more detailed analysis of syntactic and genetic diversity pointed 

out some exceptions to the conclusion above. When the relationships were summarized by 

trees and by PCA, some divergences between linguistic and genetic phylogenies emerged. 

The main elements of disagreement were represented by the positions of Hungarians and 

Rumanians, which clustered genetically with speakers of Serbo-Croatian despite being highly 

different syntactically. Because all these populations dwell in Central Europe, these apparent 

violations of the biological relationships expected from linguistic history can be plausibly 

accounted for by the gene flow between neighbouring countries. Thus, we further 

investigated the evolutionary relationships between populations by a method (i.e. TreeMix, 

(Pickrell and Pritchard, 2012)) designed to identify relatively recent gene flow episodes after 

the main population splits. We found evidence of contacts between speakers of IE-

subfamilies from Russia and Greece into Romania. These episodes of gene flow are in 

intriguing correspondence with the eccentric position of Rumanian in the language tree and 

with the observation that Rumanian forms a cluster distinct from that of the other Romance 

languages in a cluster membership analysis (Jombart et al., 2010). Similarly, a Southern 

European origin of a fraction of the Hungarians corresponds to a closer resemblance of the 

IE languages of our sample with Hungarian than with Finnish. Therefore, processes of 

relatively recent gene flow seem to nicely explain at least a fraction of the linguistic variation 

unaccounted for by the classical classification of languages into families. Besides, the PCM 

method allows one to identify some elusive aspects of population history providing insight 
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into processes of gene flow and cultural contacts, which would likely escape detection if only 

studied at the genomic level only.  

Conclusion 

In summary, our study proved that an effective comparison of genetic and syntactic 

distances at a wide scale across different linguistic families can be successfully achieved by 

pairing high-resolution genomic markers with the syntactic parameters underlying the PMC. 

In the light of our results, the PCM seems to be a powerful method to explore the 

relationship between distant related languages and populations, and this work represents a 

first step towards this direction. 

The task to improve our understanding of the history and evolution of our species is 

hampered by the fact that human groups behave in ways that frequently make it impossible 

the attempt to fit the biological data to simple models of population history. Using data from 

several research fields, one can try to look for areas of congruence and ultimately obtain 

important insight about otherwise elusive past populations events (Renfrew, 2010). 

So far, it is clear that the comparison of genetic and linguistic data can elucidate and 

complement both human population prehistory and the dynamics underlying language 

evolution (Cavalli-Sforza, 1997). The history of languages may, or may not, parallel the 

genetic history of their speakers. Thus, linguistic (as well as archaeological and historical) 

data are of crucial importance for generating hypotheses that can be tested at the molecular 

level,  casting further light on the complex processes at play in the demographic history of 

modern humans. 

 

 

The results of this study led to the publications of one paper (see PAPER III). 
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Chapter 4.GENEALOGICAL INFERENCES FROM MODERN AND ANCIENT DNA 

DATA 

The use of genetic data can help inferring evolutionary and biological relationships of 

human populations. Even though genetic analysis will not answer questions about ethnic or 

cultural identity, it represents an essential tool to integrate archaeological data by providing 

information about migration dynamics, population structure, and relationships among 

culturally differentiated groups of individuals. The genetic data so far produced highlight the 

fact that the human genome is a mosaic of fragments of different origins (Henn et al., 2012), 

indicating a complex network of interactions between populations, a result of multiple 

origins, large-scale population movements and subsequent extensive gene flow (Novembre 

et al., 2008). For many years, studies of human genetic diversity have been necessarily 

limited to modern populations and the evolutionary dynamics or the genetic structure of 

past population were usually inferred from model-based analyses of the modern genetic 

diversity. However, even when inferred from large collections of data (Ralph and Coop, 

2013), patterns of modern genomic variation provide ample but noisy signals that can only 

seldom be safely connected with specific historical events. Thus, to investigate the detail of 

these past processes, we necessarily need to include genetic information coming from past 

populations (Ramakrishnan et al., 2005) (see Chapter 1).  

Ancient DNA data offered the possibility to test the common (and often inevitable) 

assumption that the unknown allelic distribution in past populations is approximated by the 

contemporary allelic distribution in the same area, showing that modern populations may 

not be in direct genetic continuity with local ancestors. Indeed, a pioneering work showed 

that, in Sardinia, modern populations separated by only tens of kilometers could differ 

sharply in their genealogical relationships with ancient populations (Ghirotto et al., 2010). In 

this research, carried out in our lab, for the first time an Approximate Bayesian Computation 

(ABC) inferential framework was applied to datasets of ancient and modern human 

variation, to compare several demographic models and choose the one which best accounts 

for the observed variation.  
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Once the potentiality of this approach have been demonstrated, we applied this 

method to address several anthropological questions, such as the interaction of anatomically 

modern humans with archaic forms (i.e. Neandertals in Europe) (Ghirotto et al., 2011b), the 

origins and evolution of the Etruscan population (PAPER IV AND PAPER V) and, more 

recently, the nature of the Longobard migrations into the Roman world (Vai et al., 2015). 

Approximate Bayesian Computation  

Past demographic and evolutionary dynamics influence the distribution of the genetic 

diversity at any given moment in time, and so, in principle one can retrospectively infer 

episodes in population history from genetic diversity data. In practice, though, many 

different combinations of evolutionary processes may lead to any observed distribution of 

genetic variables. One of the most powerful statistical approaches available to reconstruct 

populations’ historical dynamics, when calculation of likelihoods is too complicated, involves 

the use of genealogical simulations through ABC (Beaumont et al., 2002; for a review see e.g. 

Bertorelle et al., 2010). The ABC machinery combines the analysis of abundant genetic data 

and realistic modelling, allowing the probabilistic comparison among different models of 

evolution, the simultaneous estimation of demographic and evolutionary parameters, and 

the quantitative evaluation of the results’ credibility. Moreover, the Bayesian philosophy 

allows one to incorporate in the analysis the prior information about model parameters, 

such as mutation rate, effective population sizes for both modern and ancient populations, 

separation time (for models involving more than one population) and migration rate. This 

increases considerably the power to draw inference about the populations’ evolutionary 

histories.  

In short, the ABC method is based on comparison between statistics calculated on 

the observed dataset of genetic variation, and the same set of statistics recalculated on 

datasets resulting from large numbers (often millions) of simulations across a wide range of 

parameter values within different demographic models. Simulations producing genetic data 

(i.e. statistics) closest to those observed are used to identify the model best accounting for 

the observed data (Pritchard et al., 1999; Beaumont, 2008), as well as  to estimate the 

posterior distributions of its parameters (Beaumont et al., 2002; Leuenberger and 

Wegmann, 2010). One of the recent extensions of ABC studies involves the possibility of 
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considering populations of different time-periods at the genomic level, thus meaning that 

we have more power to detect changes in the dynamics of a population, rendering the 

analysis more informative.  

 

A scheme of a complete ABC analysis is outlined in Fig. 4.1. 
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Figure 4.1 - ABC in nine steps. From Bertorelle et al., 2010.
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Origin and evolution of the Etruscans’ DNA 

In this section of my thesis I present the results about the genealogical relationships 

between Etruscans and modern Tuscans. In particular, I tried to address two questions: 

I whether an analysis at the small geographical scale can provide evidence of a 

genealogical continuity between the Etruscans and some current inhabitants of historical 

Etruria, 

II whether the observed degree of genetic resemblance between modern inhabitants of 

Tuscany and Western Anatolia contains information relevant to the debated question of 

the Etruscans’ origins.  

The long-standing debate about Etruscan origin 

The first urban settlements in Tuscany (Italy) date back to the Iron-Age, eighth century 

BC, and are associated with the onset of the Etruscan culture. Modern Tuscany broadly 

corresponds to the core of the Etruscan territory, or Etruria, and indeed the word ‘Tuscany’ 

itself is derived from ‘Etruscan’. The Etruscan communities shared a non-Indoeuropean 

language, a religion and a material culture, but they never formed a political unit. According 

to ancient historians, the resemblances between Etruscans and other Iron-Age populations 

were extremely low, since they did not share language, lifestyle or customs (Barker and 

Rasmussen, 1998). Between the seventh and the fifth centuries, leagues of Etruscan cities 

exerted a crucial cultural and political role in the Mediterranean area. In the first century BC, 

the Etruscans obtained Roman citizenship, and their language and culture vanished from the 

archaeological record (Pallottino, 1975; Barker and Rasmussen, 1998). There is a long lasting 

controversy about the origin of the Etruscan population, whether local or Anatolian. To date, 

there is consensus among modern archaeologists that the Etruscan culture developed 

locally, with some features suggesting an Eastern influence; this hypothesis was also shared 

by the ancient historian Dionysius of Halicarnassus (Barker and Rasmussen, 1998). However, 

other ancient historians like Herodotus and Livy regarded the Etruscans as immigrants, 

respectively, from Lydia (modern Western Anatolia) or from North of the Alps. Modern 

experts definitely support the former view, but affinities between the Lydian and the 

Etruscan languages seem to exist (Beekes, 2002). Unfortunately, no historical documents are 
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available to help address this question. In fact, even if we understand reasonably well the 

Etruscan language, the surviving Etruscan texts are almost exclusively funerary or religious 

inscriptions, containing basically no historical information. However, a language or a culture 

can rapidly get extinct, but that is certainly not the case for the DNA of its speakers. 

Genetic studies about the Etruscans without Etruscans 

In the last years, in the absence of any ancient genetic information, it was generally 

assumed that modern Tuscans are descended from Etruscans. The Etruscans’ origins were 

thus studied comparing Tuscans and other modern populations (Piazza et al., 1988; Achilli et 

al., 2007; Brisighelli et al., 2009). In the first such study, in pre-DNA times, Piazza et al. (1988) 

analysed 34 blood group and HLA (human leukocyte antigen) allele frequencies at 7 loci, 

collected in 28 Italian locations. The allele frequencies were turned into a series of synthetic 

variables by PCA. The main principal components were then interpolated and projected on 

the geographic map, obtaining a graphical representation of genetic diversity in space. A 

high heterogeneity was evident among Italian regions and different geographical patterns 

emerged, which roughly resembled the distribution of some ancient Italic cultures. The first 

principal component appeared distributed in a North–South gradient, which was interpreted 

as reflecting the Northwards dispersal of people of Greek origin. The map representing the 

second principal component showed a peak in an area of Central Italy not far from ancient 

Etruria, and a similar peak in North–Western Italy. This map was interpreted as evidence of 

the persistence of Etruscan genetic features in Tuscany and neighbouring regions.  

Ten years later two DNA studies tried to address the relationships between Etruscans 

and contemporary Tuscans. Achilli et al. (2007) analysed the mtDNA of 322 samples from 

three areas where archaeology suggests a possible persistence of the Etruscans’ biological 

inheritance. These were Murlo, an isolated hill village, Volterra, a former major Etruscan city, 

and the Casentino valley. Achilli et al. (2007) compared Tuscany sequence variation with that 

of 55 Eurasian populations. Eleven haplotypes were shared between Tuscans and near 

Eastern populations (3-fold higher than that observed in neighbouring regions) and were 

absent in all other European samples. The authors concluded that these haplotypes 

represent the Etruscan’s genetic legacy and that their Eastern features support the historical 

validity of Herodotus’ narrative. This view was further supported by Brisighelli et al.(2009), 
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who analysed Tuscan samples combining information from broader regions of the mtDNA 

chromosome. They showed that around 10% of Tuscans (26 individuals out of 258) carry 

haplotypes that are typically from the Near East. This observed similarity might be due to a 

common origin at any time in the past, but the authors viewed their data as supporting a 

recent historical connection with Anatolia due to migratory contacts leading to the 

development of the Etruscan culture. This interpretation depends strictly on the assumption 

that modern Tuscans are the Etruscans’ descendants. However, studies of ancient DNA 

showed that that is not the case. 

Genetic studies about the Etruscans with the Etruscans 

In 2004, for the first time, Vernesi and collaborators analyzed Etruscans’ mtDNA 

obtained from 27 different individuals from 10 necropoleis, covering Etruria in terms of both 

chronology and geography. The study of ancient samples highlighted the genetic similarities 

between the Etruscans and the current population of Turkey, but not with Italian 

populations other than Tuscans (even though they shared only two haplotypes). Further 

information on the relationships between Ironage and current inhabitants of Tuscany was 

sought by investigating the time window separating them. Guimaraes et al. (2009) obtained 

the mtDNA sequences of 27 from Medieval Tuscan individuals, clear similarities were 

observed between Middle-Age and contemporary Tuscans, but not with the Etruscans, thus 

suggesting that a substantial demographic change had taken place before AD 1,000. The 

claim that systematic, although unspecified, errors in the ancient DNA sequences had led to 

flawed genealogical inference (Bandelt and Kivisild, 2006; Achilli et al., 2007) was not 

supported by careful reanalysis of the Etruscan data (Mateiu and Rannala, 2008).  

Inferring demographic history by Approximate Bayesian Computation analysis 

Simple, eyeball comparisons of DNA data can give us a general idea of the relationships 

between past and present populations, but by using more complex biostatistical approaches 

it is possible to formally test hypotheses. My study represents the first effort to shed light on 

the origin and evolution of the Etruscans’ DNA considering ancient DNA data and explicitly 

testing demographic models of evolution within the ABC framework. Besides, previous 

studies did not consider the potential effects of genetic divergence when populations are 
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structured or subdivided. If most Etruscans’ descendants lived in isolated communities in the 

last 2,000 years, their DNAs may still persist in some localities, but will escape detection 

unless they are sought at the appropriate (i.e., smaller) geographical scale.  

To investigate in greater geographical detail the biological relationships between 

contemporary and ancient populations, we explicitly tested alternative demographic models 

by ABC. We typed an additional set of ancient DNA sequences, and compared the levels of 

genetic diversity in the mtDNAs of the enlarged Etruscan sample with Medieval Tuscans 

(Guimaraes et al., 2009), and four modern Tuscans population; three in historical Etruria, 

namely Casentino, Murlo and Volterra (Achilli et al., 2007), and one from Florence (Turchi et 

al., 2008), representing the general Tuscan population. The results were compatible with a 

genealogical continuity between the Etruscans and two Tuscan isolates (Volterra and 

Casentino). By contrast, another population of the former Etruscan homeland, Murlo, and a 

forensic sample from the main city in the area, Florence, showed no special relationships 

with the Etruscans. These findings mean the that Etruscans cannot be regarded as the global 

ancestors of the people now living in what once was their territory (see PAPER IV), but that 

their genetic legacy is still present, and detectable, when modern populations are separately 

considered (as opposed to clumping them together). 

We then asked whether genetic similarities between current Tuscans and Anatolians 

(Achilli et al., 2007; Brisighelli et al., 2009) provide some evidence for an Etruscan homeland 

in Anatolia. Because previous inhabitants of Etruria, associated with the Villanovian culture, 

cremated their dead, empirical genetic comparisons going further back in time are 

unfeasible. We exploited the algorithm of the IM methods to estimate the most probable 

separation time between Anatolians (from Di Benedetto et al., 2001) and the Tuscans 

populations showing genealogical continuity with the Etruscans. Our basic hypothesis was 

that if the genetic resemblance between Turks and Tuscans reflects a common origin just 

before the onset of the Etruscan culture, (meaning that the Etruscan population came from 

Anatolia as hypothesized by Herodotous) we would expect that the two ancestral 

populations separated around 3,000 ya. Assuming an average generation time of 25 years, a 

plausible mutation rate, and complete isolation after the split from the common ancestors, 
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the estimates of the separation time between Tuscany and Anatolia was around 7,600 ya, 

with a 95% credible interval between 5,000 and 10,000 (see PAPER IV). 

We then compared the observed genetic data with the results of millions of 

simulations of modern and ancient mtDNAs, generated under demographic models differing 

for the homelands of the Etruscan people, namely, Western Anatolia or Central Italy. This 

way, we could test whether or not the genetic links between modern Anatolians and 

Tuscans may have been established through a process of gene flow occurring approximately 

between the tenth and eight centuries BC, and thus possibly associated with the onset of the 

Etruscan civilization in Italy. The results, confirming the previous analysis based on modern 

data only, indicated that the genetic links between Tuscany and Anatolia date back to at 

least 5,000 ya, suggesting that this genetic link is too old to be due to a migration occurring 

just before the appearance of the first archaeological evidence of the Etruscan culture. 

Therefore, it is safe to conclude that the Etruscan culture developed locally and not as an 

immediate consequence of immigration from the Eastern Mediterranean shores (see PAPER 

V). 

Conclusion 

For many years, studies of human genetic diversity have been necessarily limited to 

modern populations, severely limiting our ability to investigate the detail of past processes. 

With the advent of methods for reliably typing ancient DNA, it has been possible to increase 

the power in reconstructing historical demographic processes, and in explicitly testing 

evolutionary hypotheses. Combining this advance and the statistical power provided by 

model-based methods such as ABC, it is now possible to clarify other long-standing 

evolutionary questions, and to highlight aspects of human history at an unprecedented 

resolution. 

 

 

The result of this research led to the publications of two papers (see PAPER IV and PAPER V).  
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Appendix 

APPENDIX 

Table A 

Table A: 56 nominal parameters and their settings in 15 European languages. Each 

parameters is identified by a progressive number (in the first column) and by a combination 

of three capital letters (in the third column).  The alternative parameter states are encoded 

as ‘+’ o ‘-’. The symbol ‘0’ encodes the neutralizing effect of implicational dependencies 

across parameters. The conditions which must hold for each parameter to be relevant are 

indicated after the name of the parameter itself. They are expressed in a Boolean form, 

either as simple values of other parameters, or as conjunctions (written ‘,’), disjunction (‘or’), 

or negation (‘≈’) thereof. The following columns represent 26 contemporary Indo-European 

languages belonging to the following subfamilies: 

- Romance: Sicilian (Sic), Northern Calabrese (Cal; data from Verbicaro, Cosenza), 

Italian (It), Salentino (Sal; data from Cellino S.Marco, Brindisi), Spanish (Sp), French 

(Fr), Portuguese (Ptg), Rumanian (Rm); 

- Greek: Bovese Greek (BoG; data from the area of Bova, Reggio Calabria), Salentino 

Greek (Gri; data from Calimera, Lecce), standard Modern Greek (Grk); 

- Germanic: English (E), German (D), Danish (Da), Icelandic (Ice), Norwegian (Nor); 

- Slavic: Bulgarian (Blg), Serbo-Croat (SC), Slovenian (Slo), Polish (Po), Russian (Rus); 

- Celtic: Irish (Ir), Welsh (Wel); 

- Indo-Iranian: Farsi (Far), Marathi (Ma), Hindi (Hi); 
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PAPER I: Nine things to remember about human genome diversity. 
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PAPER II: Early modern human dispersal from Africa: genomic evidence for multiple waves 

of migration. 
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Figure 1 | Geographic location of the 24 metapopulations analyzed (A) and geographical 
models of African dispersal (B, C, D). Metapopulations, each derived from the merging of 
genomic data from several geographically or linguistically-related populations, are South, 
East and West Africa, Europe, the Caucasus, South, East, West and Central Asia, North and 
South India, plus three Negrito (Onge, Jehai and Mamanwa) and ten Oceanian populations; 
the final dataset comprised 1,130 individuals. Under model 1, a SD model (B), all non-African 
populations are descended from ancestors who left Africa through the same, Northern route 
(Stringer 2002). Model 2 (C) and Model 3 (D) are MD models assuming, prior to dispersal 
across Palestine, another exit through the Arab Peninsula and the Indian Subcontinent; 
under Model 2 all Asian and Western Oceanian populations derive from this earlier 
expansion (Lahr and Foley 1994), whereas under Model 3 only the populations of Southeast 
Asia and Western Oceania derive from the earlier expansion (Ghirotto et al. 2011). 
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Figure 2 |Results of the Principal Component Analysis. Each symbol corresponds to an 
individual genotype; the first two principal components account for 12.7% of the global 
variation in the data. Here and in all figures, different colours represent different 
geographical regions. 
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Figure 3 | Admixture analysis of 1130 individuals in 24 populations from Africa, Eurasia 
and Western Oceania. Each individual genotype is represented by a vertical column, the 
colors of which correspond to the inferred genetic contributions from k putative ancestral 
populations. The analysis was run for 2 ≤ k ≤ 7 
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Figure 4 | Comparison of three observed divergence times with the distribution of 24,000 
divergence times between African and non-African populations generated by simulation of 
a SD model. Data generated for 24 combinations of effective population sizes (3,000 ≤ Ne ≤ 
8,000) and divergence times (40 k years ago ≤ T ≤ 70 k years ago), 1,000 independent 
datasets for each such combination. At every iteration, genetic variation at 1Mb was 
considered in 100 chromosomes per population, thus analyzing 200,000 Mb for each 
parameter combination (for a total of 4,800 Gb in 24,000 iterations, see Supplemental 
Methods for details). 
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Figure 5 | Distribution of the SNPs considered in functionally different genome regions. 
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Supplemental Fig. 1 Geographic location of all the 71 populations analyzed, the different 
dataset we use are represented by different colors and are detailed in Supplemental Table 
S1. 

Supplemental Fig. 2 Estimation of the most likely number of clusters in the data (X-axis) as a 
function of the cross-validation error observed in the attempted assignments (Y-axis). 
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Supplemental Fig. 3 Inference of the most likely number of clusters in the DAPC. A K value of 
6 (the lowest BIC value) represents the best summary of the data. 
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Supplemenftal Ftig. 4 Dtiscrtimtinanft Analystis of Prtinctipal Componenfts, DAPC. (A) classtification 
of tindtivtidual genoftypes; for each row (each population) fthe figures refer fto fthe numbers of 
tindtivtiduals asstigned fto of fthe K=6 clusfters, each clusfter assoctiafted wtifth a dtifferenft colour; (B) 
scafterploft along fthe firsft ftwo axes; each symbol corresponds fto an tindtivtidual genoftypes; tin 
fthe tinsefts, fthe fraction of Prtinctipal Componenfts reftatined tin fthe analystis (left) and fthe 
fraction of fthe overall vartiance aftrtibufted fto fthe firsft five etigenvalues, wtifth fthe firsft ftwo 
columns, tin grey, representing fthe firsft ftwo Dtiscrtimtinanft Functions (rtighft). 
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Supplemental Fig. 5 Estimates of Ne from measures of linkage disequilibrium, using the (A) r2 

and(B) σ2 statistics as estimator of LD level. Time is on the X-axis and is expressed in 
generations from the present. Very recent estimates have been omitted because not reliably 
estimated (see McVean (2002)). 
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Supplemental Fig. 6 Harmonic means of the estimated population effective sizes (Ne), using 
the (A) r2 and (B) σ2 statistics as estimator of LD level. Vertical bars represent empirical 90% 
confidence estimates 
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Supplemental Fig. 7 Representation of the human demographic model tested by ms. The 
past is at the top, the present is at the bottom. 

Supplemental Fig. 8 Fractions of the total variance explained by the model at increasing 
numbers of migrations superimposed to the bifurcating tree in the TreeMix analysis. 

129 



Papers 

Supplemental Fig. 9 Population relationships inferred by TreeMix. The Maximum-likelihood 
tree is in black; branch lengths are proportional to the impact of genetic drift, which may or 
may not faithfully represent separation times between populations. The inferred migration 
events are represented by arrows pointing from the putative source to the putative target 
populations, with colours of the arrows representing the relative weight of the genetic 
exchanges, according to the heat scale on the left. 
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PAPER III: Across language families: Genome diversity mirrors linguistic variation within 

Europe. 
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PAPER IV: Origins and Evolution of the Etruscans’ mtDNA. 
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PAPER V: Genetic Evidence Does Not Support an Etruscan Origin in Anatolia 
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