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Thesis Abstract

Many crossbenchmarking results reported in the open literature raise op-

timistic expectations on the use of optical networks-on-chip (ONoCs) for

high-performance and low-power on-chip communications in future Many-

core Systems. However, these works ultimately fail to make a compelling

case for the viability of silicon-nanophotonic technology for two fundamental

reasons:

(1) Lack of aggressive electrical baselines (ENoCs).

(2) Inaccuracy in physical- and architecture-layer analysis of the

ONoC.

This thesis aims at providing the guidelines and minimum requirements so

that nanophotonic emerging technology may become of practical relevance.

The key enabler for this study is a cross-layer design methodology of the opti-

cal transport medium, ranging from the consideration of the predictability

gap between ONoC logic schemes and their physical implementations, up

to architecture-level design issues such as the network interface and its

co-design requirements with the memory hierarchy.

In order to increase the practical relevance of the study, we consider a consol-

idated electrical NoC counterpart with an optimized architecture from a per-

formance and power viewpoint. The quality metrics of this latter are derived

from synthesis and place&route on an industrial 40nm low-power technology

library. Building on this methodology, we are able to provide a realistic

energy efficiency comparison between ONoC and ENoC both at the level of

the system interconnect and of the system as a whole, pointing out the sen-

sitivity of the results to the maturity of the underlying silicon nanophotonic

technology, and at the same time paving the way towards compelling cases

for the viability of such technology in next generation many-cores systems.





Thesis Introduction

Optics could solve many physical problems of on-chip interconnect fabrics,

including precise clock distribution, system synchronization, bandwidth and

density of long interconnections, and reduction of power dissipation. It may

allow continued scaling of existing architectures and enable novel highly in-

terconnected or high-bandwidth architectures.

However, despite the arguments in favor of optics for interconnects, and the

promising monolithic integration routes with silicon, there is essentially no

practical use today. The high cost targets for introducing this emerging tech-

nology, and the low-maturity of basic optical components, do not fully justify

this scenario, since they only urge for more compelling cases where the ben-

efits of chip-level nanophotonic interconnection networks can justify the cost

barrier removal and a larger investment in technology development. It fol-

lows from this that such compelling cases cannot be directly derived from

the benchmarking frameworks between optical NoCs (ONoCs) and their elec-

tronic counterparts (ENoCs) reported so far in the open literature.

While making an excellent point for the new interconnect technology, they

lack of enough practical relevance to push it beyond the boundaries of an

elegant research concept. In practice, they tend to deliver overly optimistic

results for ONoCs for one or more of the following reasons.

First, logical topologies are not well specified, hence preventing in-depth ar-

chitecture review.

Second, the baseline electronic NoCs exhibit naive or unoptimized architec-

tures, hence overlooking that performance or power optimizations of ENoCs

are many times far more practical than adopting an emerging technology.

Third, specific instances of device parameters are currently meaningless for

a fast-developing technology such as ONoCs.
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Fourth, the fixed power overhead is typically underestimated, directly or

indirectly by assessing ONoC designs under high utilization regimes.

Fifth, complex designs increase risk in terms of reliability, fabrication cost,

and packaging issues. In addition to that, we would like to stress that

place&route constraints are typically overlooked in ONoC topology design

(hence underestimating layout-induced waveguide crossings and static power),

and that electronic network interfaces for ONoC injection/ejection are often

not considered in planning resource budgets.

This Thesis aims at a higher level of practical relevance in assessing the

potentials of ONoCs for future multi- and many-core systems. This is funda-

mentally achieved in two ways. On one hand, we make use of an aggressive

electrical baseline. We consider a realistic design point for the ENoC archi-

tecture in terms of complexity and power. Moreover, real synthesis runs of

the target ENoC on a 40nm industrial low-power technology will provide the

reference quality metrics the competing optical NoC solutions are contrasted

with. On the other hand, the ONoC is designed and accurately characterized

based on both accurate physical-layer and architecture-layer analysis. After

pursuing a wide topology exploration based on realistic design points (e.g

global connectivity and network partitioning) a wavelength-routed optical

Ring topology, whose simplicity can reduce the adoption risk of an emerging

technology, is selected to be the perfect antagonist to the electronic NoC.

At the physical layer, the increased accuracy in ONoC modeling is achieved

by drawing the Ring layout, especially its injection and ejection interfaces.

At the architecture layer, the design of the network interface architectures

needed to inject/eject electronic packets into/from the ONoC is made, thus

capturing typically overlooked sources of performance and power overhead,

such as flow control, clock resynchronization, or suitable FIFO sizing.

Another feature of this Thesis is that it carefully considers fixed-power over-

heads, which are a significant percentage of total ONoC power. Static power

is especially important in those application domains where the network does

not undergo high utilization, but it has to serve sporadic traffic peaks. This is

the case of shared memory multiprocessors with distributed last-level cache,

implementing hardware support for cache coherence. The use of an ONoC

makes sense in this domain only if it can significantly cut down on the to-
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tal application execution time, thus burning less static power. This Thesis

considers the case study of a directory-based implementation of the MOESI

protocol, and derives the requirements for both ENoC and ONoC design.

Therefore, the compared interconnect solutions are fine tuned for the kind of

messages they are supposed to route.

The enhanced level of accuracy pursued by this Thesis in crossbenchmark-

ing optical vs. electronic interconnect technology primarily aims at providing

guidelines of practical relevance to materialize the nanophotonic concept into

an affordable technological solution for the next generation multi- and many-

core systems.





Chapter 1

On-Chip Optical

Communications

1 Penetration of optical links into communi-

cations

In order to understand how the penetration of optical links into communi-

cations will be in the near future, it is useful to examine its history, and in

particular over the last 30 years. Figure1.1 shows an approximate perspective

of the rate of penetration of optics versus the link distance and the band-

width. The lower horizontal axis represents the first commercial introduction

of the optical link. The vertical axis represents the minimum range of the link,

and the upper horizontal axis represents the bandwidth per fiber connector.

The approximate trend suggests that over the last three decades, optical

links have achieved an order of-magnitude deeper penetration into the inter-

connection hierarchy ( from cross-country trans-oceanic applications down

to package /chip systems) every five years. Also, it worth observing that the

penetration rate is impressive, around 100 Gbit/s bandwidth improvement

per meter of reduction of the connection. Continuing this trend suggests that

during the next years, optical links not only can be expected to reach right to

the chip-scale package on a printed circuit board, but also to go into smaller

and smaller scale systems (e.g. multi-chip systems based on a silicon on inter-

poser technology, systems-on-chip), thus transforming the concept from
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Figure 1.1: Penetration of optical links into communications

penetration to integration of optical links into systems.

Although there are currently a lot of investments that make optical commu-

nication and switching more pervasive in data centers and multi-chip systems

based on a silicon on interposer technology, actually there is still an unan-

swered question: Will optical links be able to penetrate deeper into

smaller systems such as Systems-on-Chip?

In this context, for sure, optical links have to contrast the current on-chip

electrical wires which are by definition inexpensive and hard to beat within

certain link distances. However, we should not forget that long on-chip elec-

trical interconnects suffer from many physical effects such as crosstalk, reduc-

tion of timing skew in signal, impedance matching, which make the optical

on-chip link the ideal candidate to overcome such a limitations. In order to

answer the previous question, is it possible to learn something from the past?

The optical interconnect technology has historically penetrated systems based

on the following paradigms:

At first, there were superior point-to-point connections which have implied

higher cost to replace the traditional electrical wires. However, this was done

because electrical links were not able to cope with the impressive bandwidth
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Figure 1.2: Schematic of an Electronic Network-on-Chip (ENoC).

and power requirements. In opaque telecommunication networks, the optical

links were used for communication while the electrical counterpart for the

switching functionalities (e.g. SFP transceivers).

Only later, in transparent telecommunication networks, (e.g. OCS in data-

center networks), to improve the quality metrics and remove the higher cost

due to the electro/optical and opto/electrical conversions mainly localized

at the system boundaries, the optical technology was extended for switching

functionalities.

Presently, there is a growing interest in optical point-to-point off-chip links

and networks (smaller scale systems). Some examples on this topic are: the

oracle macrochip [17], hybrid electro-optical controllers for DRAM [30] and

also High bandwidth I/O systems [2]. The main driver for such a systems is

given by the bandwidth density.

For deeper chip integration, will we expect the same story? and how will

the feeling change as the off-chip links go over fiber ribbons?

Clearly, the phase transition will be only when the current electronic Networks-

on-Chip (depicted in Figure.1.2), built on electrical wires and routers, will

not be able to cope with the increased bandwidth demand and power costs
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needed for next generation multi-core systems. In this direction, all of de-

signers and engineers will be searching for compelling cases which

make silicon nanophotonic the viable technology for future inte-

grated systems.

2 On-Chip Optical Communication: Why?

Photonic Interconnect Technology is considered a promising way of relieving

power and bandwidth restrictions in next generation multi-and many-core in-

tegrated systems. Optics could solve many physical problems of on-chip inter-

connect fabrics, including precise clock distribution, system synchronization

(allowing larger synchronous zones, both on-chip and between chips), band-

width and density of long interconnections, and reduction of power dissipa-

tion. Optics may relieve a broad range of design problems, such as crosstalk,

voltage isolation, wave reflection, impedance matching, and pin in-

ductance [18]. It may allow continued scaling of existing architectures

and enable novel highly interconnected or high-bandwidth archi-

tectures.

Silicon photonics has advanced substantially in recent years and has demon-

strated many of the key components for the implementation of future optical

networks-on-chip (ONoCs) in an integrated CMOS process [13].

Such components include power-efficient laser sources, low-loss waveguides,

high-bandwidth modulators, broadband photonic switches, and high-sensitivity

photodetectors. The improvement of the quality metrics of these components,

as well as the integration route with CMOS manufacturing processes, are be-

ing relentlessly pursued.

3 Silicon Photonics as a Technology Enabler

Silicon is a well-known material used in microelectronic chips based on (CMOS)

Complementary Metal-Oxide-Semiconductor technology. Silicon photonics

offers the compatibility with standard CMOS fabrication processes, enabling

dense integration with advanced microelectronics. The capability of silicon

photonic devices to be integrated into complex platforms, coupled with decades
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of high-quality development driven by the microprocessor industry, allows

their low-cost and mass-volume production. Silicon photonics provides also

an excellent high index contrast between the refractive index of the core

(typically 3.5 for crystalline silicon) and the above cladding (typically 1.5

for silicon dioxide). This high index contrast generates higher optical modes

confinement, so that the optical signal can be easily guided by devices with

sub-wavelength dimensions. Hereafter an overview of all silicon photonic de-

vices of interest for optical NoC implementation are presented, starting from

optical links up to laser sources and photodetectors [14].

3.1 Optical Links

The optical link is the fundamental building block that must be used to guide

the high speed optical signals from the photonic source up to the receiver.

The optical link is commonly referred to as waveguide in the optical domain.

Recently, sub-micrometer crystalline silicon waveguides [1] have been an ex-

cellent option for optical links. Such a structure is able to propagate par-

allel wavelengths with terabit-per-second data rates throughout the whole

chip. Thanks to these appealing properties, it is possible to further build

straight, bend, and crossing waveguides, as well as couplers, thus providing

all the basic structures for optical communication channels. From experi-

mental characterization, it has been demonstrated that crystalline silicon

waveguides are able to deliver data rates up to 1.28 Terabit/s, including 32

wavelengths modulated at 40 Gbit/s each, through a communication link

of 5 cm [1]. Waveguide crossings (i.e., intersections of two waveguides) rep-

resent the major source of optical power degradation across optical paths

although they cannot be really avoided on a single plane chip. Non-negligible

attenuations are incurred across optical paths also in terms of propagation

loss (in straight waveguides), or bending loss (in bending waveguides). In

the open literature, two-dimensional tapers have been proposed in an at-

tempt to minimize the crossing loss across optical paths. Among the most

relevant ones, it is worth mentioning the standard elliptical taper [60] and

the MMI (Multi-Mode-Interference) taper [61]. In contrast to sub-micrometer

crystalline silicon waveguides, deposited silicon nitride waveguides offer many

advantages for integrated photonics. Unlike crystalline silicon, the antagonist
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silicon nitride can be deposited in multiple layers, similar to electronic wires.

The latter case has the capability of eliminating in-plane waveguide crossing

losses, once vertical optical couplers are in place [74]. Experimental results

show that the transmission of high-speed optical data through a deposited

silicon nitride waveguide can achieve 1.28 Terabit/s (as usual including 32

wavelengths modulated at 40Gbit/s each) throughout a 4.3 cm silicon nitride

waveguide [2].

3.2 Modulators

The silicon electro-optic modulator is an essential device for photonically-

enabled on-chip links, since it performs high-speed conversion of an electrical

signal into an optical one. It encodes data on a single-wavelength that can be

then combined with additional optical signals through wavelength-division-

multiplexing on the same physical medium, thus resulting in a cohesive wave-

length parallel optical signal. Crystalline silicon microring resonator electro-

optic modulators are the most recently used devices among those presented

in the open literature. They consist of a microring resonator configured as

p-doped-intrinsic-n-doped (PIN) carrier injection device. The standard oper-

ation of these devices relies on non-return-to-zero (NRZ) , and on on-off-keyed

(OOK) modulation signals. To achieve high modulation rates that are typ-

ically limited by carrier lifetimes, modulators are driven using a particular

mechanism called pre-emphasis method [3]. The electro-optic modulator has

also been proposed for polycrystalline silicon [4]. The grain boundaries in-

herent in the material result in increased optical loss due to scattering and

absorption, which end up reducing free-carrier lifetime, and may increase

the intrinsic speed of the modulator accordingly. Unlike crystalline silicon,

polycrystalline silicon can be also deposited and stacked with other silicon

photonic materials for multi-layer integration. Finally, modulators can be

also embedded across arrays (silicon electro-optic modulators arrays), so to

deliver a major bandwidth boost along the communication channel. Hence,

at the output stage of each array, the optical data stream contains mul-

tiple wavelengths ready to be transmitted throughout the interconnection

network, ending up at the receiver stage.
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SWITCHING ELEMENTS AND FILTERS 

4X4 OTAR 4X4 NON-BLOCKING SWITCH 

Figure 1.3: Switching Elements and Routers used to build Optical Networks-

on-Chip.

3.3 Photonic-Switching Elements and Optical Routers

for Optical Networks-on-Chip

Broadband PSEs (Photonic-Switching Elements) with 1 or 2 inputs and 2

outputs are the fundamental building blocks of an optical NoC. The former

case (one input and two outputs) consists of a microring resonator positioned

adjacent to a waveguide intersection. Alternatively, a parallel switching ele-

ment denoted as 1x2 comb switch has been also presented in the recent litera-

ture [15]. Simultaneous switching of 20 continuous-wave wavelength channels

with nanosecond transition times has been demonstrated by using the comb-

switching technique. 2x2 PSEs instead (two inputs and two outputs) consist

of a waveguide intersection and two ring resonators. The switching func-

tion is achieved through resonance modulation provided by carrier injection

into the micro ring or by designing ring resonators with different radious.

The fundamental switching elements introduced above (1x2-PSE, 2x2-PSE)

are typically composed to derive higher order switching structures. A 4x4

non-blocking nanophotonic switching node [60] is a clear example thereof.
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This optical router may include either 8 1x2 PSEs or a mixture of them,

so that each input port is capable of reaching all 3 output ports (because

self-communication is not allowed), thus enabling non-blocking functionality.

5x5 Cygnus [12] is another example of strictly non-blocking router for optical

NoCs. It consists of a switching fabric, and a control unit which uses electrical

signals to configure the switching fabric according to the routing requirement

of each packet. The switching fabric is built from the parallel and crossing

switching elements. Cygnus uses only 16 microresonators, 6 waveguides and 2

terminators. A 4x4 OTAR (Optical-Turnaround-Router) is an optical router,

as always non-blocking, which has been customized for FONoCs (Optical Fat-

tree NoC topologies [59]). It combines a mix of 1x2 and 2x2 PSEs, and is

conceived to implement the turnaround routing algorithm typically used by

Fat-Tree topologies. All the discussed optical components can be used to

build any Optical NoC, such as Mesh, Torus topologies, FONoCs, as well as

multi-stage NoCs and more. Figure.1.3 illustrates some of the aforementioned

switching elements and optical routers.

3.4 Photodetectors

At the destination front end, a Photodetector is necessary to convert the in-

coming optical signal into an electrical one. As usual, before sensing the op-

tical signal, a micro-ring-resonator is needed to filter the wavelength-parallel

signal, hence treating each component separately. Recently, developments

in integrating Germanium Photodetectors with crystalline silicon waveguide

have enabled to manufacture many high-performance and CMOS-compatible

devices [5, 6], aiming at high-bandwidth (40GHz), high-responsivity (1 A/W),

quantum efficiency above 90%, low capacitance (around 2fF), and finally a

dark current below 200nA. Another emerging methodology used in the de-

sign of photodetectors consists of adopting silicon with crystal defects as the

absorbing material. The latest efforts in this field have yielded silicon pho-

todetectors with bandwidth and responsivity higher than 35 GHz and 10

A/W respectively [7]. Similar to modulators, photodetectors can be struc-

tured into photodetector arrays. This strategy is very common when a paral-

lel data stream comprised by multiple wavelengths has to be received at the

destination stage of a given optical Network-on-Chip architecture.
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3.5 Laser Sources

For on-chip application, Laser sources can be implemented either on-chip or

off-chip, depending on the power and bandwidth requirements of the system

at hand, and their trade-offs. Recent emerging technologies continue to ma-

ture, and high-quality on-chip lasers compatible with CMOS processes start

to appear. Other solutions have been yielded more recently, such as Elec-

trically pumped hybrid silicon lasers and electrically pumped rate-earth-ion

lasers on silicon [8]. Alternative solutions leverage on III-V compound semi-

conductors to produce off-chip laser sources where the light is emitted by

the external source and then brought on-chip using couplers. For instance,

quantum dot lasers, based on III-V compound semiconductors are typically

used in WDM (Wavelength-Division-Multiplexing) applications since they

are able to deliver many narrow-spectrum peaks across the frequency range

of interest. Opportunely coupled with quantum dot semiconductor ampli-

fiers, these lasers are able to provide several wavelengths within a low RIN

(Relative-Intensity-Noise), so that light will be modulated, transmitted and

received with error free performance.

3.6 3D-Stacked integrated systems (3D-ICs)

Finally, it is worth observing that 3D-Stacked integrated systems (3D-ICs)

represent the most likely target for the exploitation of optical interconnect

technology. The key reason is that it is a cost-effective solution for the in-

tegration of layers manufactured with different technologies, that this way

do not need to be made compatible with one another, except for the obvi-

ous alignment and inter-layer communication requirements. Across the same

vertically-integrated environment we can accommodate processing, memory,

and optical layers, thus resulting in a successful strategy to provide low la-

tency, high bandwidth, and cross-layer communications [9, 10], in next gen-

eration high-performance multi- and many-core systems.
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4 Conclusion

However, despite the arguments in favor of optics for silicon chip communi-

cations and interconnects, and the success of technology platforms fostering

a fables silicon photonics ecosystem [19], ONoCs are fundamentally still at

the stage of a promising research concept. At least three reasons can be iden-

tified.

First, the adoption cost of this technology is still very high, far away from

that of the inexpensive on-chip electronic interconnects. This implies that

the new interconnect technology will become practically viable only when it

will be proven to deliver out-of-reach performance or power figures in the

context of compelling use cases. Second, technology maturity is currently

lagging behind actual industrial standards (e.g., due to thermal sensitivity

concerns), and again only compelling cases for silicon nanophotonic links can

foster a larger investment on technology development. Finally, the availabil-

ity of mature optical components is not currently supported by mature cross-

layer design methods and tools for system design. System designers should

be equipped with the needed methodologies and toolflows to do design with

the new interconnect technology.



Chapter 2

Optical Networks-on-Chip

1 Introduction

All devices presented in chapter.1 are key enablers to materialize Optical

Networks-on-Chip consisting of multiple optical routers (broadband active

switches or passive filters, depending on the routing methodology), that are

properly interconnected with each other using silicon waveguides, that in turn

may be straight, bent, or crossed depending on the topology requirements.

Ultimately, all devices necessary to build an entire on-chip optical communi-

cation infrastructure are viable for integration on a silicon chip, thus paving

the way for the assessment of the Optical NoC paradigm.

This chapter offers an overview of the most important optical NoC topologies

proposed so far in the open literature.

2 Optical Networks-on-Chip

The use of optical networks is currently being investigated as a potential

methodology to interconnect on- and off-chip components. Currently, opti-

cal NoCs are identified as either using wavelength-selective routing or ones

that leverage space routing. The main difference lies in the method used to

establish the source-to-destination path in the optical medium.

By adopting wavelength-selective routing, the switching functionality is

implemented with wavelength filters that are arranged throughout the whole

network. The optical filters are tuned to allow that each source is routed to
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(a): 4x4 Photonic Torus (b):  4x4 Non-Blocking Torus 

(c):  4x4 Torus NX (d):  4x4 Square Root 

Figure 2.1: Milestones regarding the Space Routed Optical Networks-on-

Chip.

each destination through the selection of specific wavelengths. This approach

can be described as source routing since the selection of the wavelength at

the transmission node determines the entire network path that is used to

reach the proper destination node. This routing method enables low-latency

communications leveraging on the contention-free property on which such

networks are based. However, due to the need of an increased amount of phys-

ical resources such routing method is not able to leverage the full throughput

that optics can provide.

In contrast, the Space routing method concentrates on the use of multi-

wavelength transmission to enable messages with high-aggregate bandwidth.

These networks are designed to use actively controlled broadband switches

to route the whole spectrum of wavelength channels from source to destina-

tion. Such optical NoCs rely on a 3D stacking where an electronic control

plane, mirroring the photonic network layout, is positioned at the bottom

of the optical plane (which lies in the top layer). In particular, the elec-
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tronic layer, which is typically realized by an electronic Network-on-Chip,

is used to control each broadband switch, and by using a circuit-switching

protocol the path setup reservation is accomplished. Once the path is con-

figured, a spatially routed optical network can fully exploit the whole opti-

cal spectrum (using WDM technique) to create extremely high-throughput

links. However, the required circuit-switching protocol provides an overhead

that creates longer latencies with respect to the wavelength selective routing

methodology.

3 Space-Routed Optical Networks-on-Chip

Figure.2.1 and Figure.2.2 show some of the most famous space-routed optical

NoCs (SP-ONoCs) recently proposed in the literature. The following sections

will present the main features of such optical NoCs.

3.1 4x4 Torus

Two previously proposed topologies are the Torus and a Non-Blocking Torus,

as shown in Figure2.1 (a) and (b), respectively. We define a node (green

box) as the logical switching point on the network, while an access point

(identified as G) is a gateway. The latter one represents the network user (e.g.,

a processor element) that can start or receive a certain transmission. The

nodes are implemented with the nonblocking 4x4 optical switch as described

in chapter.1. The primary folded-torus path in both networks is illustrated

with thick lines to represent two waveguides forming a bidirectional link.

The remaining thinner lines and blocks ( I,E and S) indicate the location of

additional waveguides and switches that compose the access network, which

is needed to enter and exit the tori.

The main difference between the two topologies is the way in which access

points are mapped to nodes. The Figure2.1 (a) shows the 4x4 Photonic Torus

with 16 access points. Switching and access points are green and G boxes

respectively. I and E instead represent the switches used to inject and eject

messages into and out of the network respectively.

Figure2.1 (b) shows the 4x4 Non-Blocking Torus with eight access points.
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S labels indicate combined injection-ejection switching points. Torus has an

access point mapped to every node, while the Non-Blocking Torus is limited

to two access points on each row and column of nodes in the Torus in order

to achieve a strictly nonblocking functionality. For example, an 8x8 Torus

would allow 64 access points in a normal configuration but would only allow

16 access points in a nonblocking configuration.

3.2 4x4 Torus NX

The Torus NX topology (see Figure2.1 (c)) is designed to preserve the connec-

tivity and scalability of the original Torus topologies with the main advantage

of minimizing the overall insertion loss. In contrast with the original Torus,

which required a complex access network to facilitate injection and ejection

from the network, Torus NX uses an optimized gateway design, which splits

the access point into two blocks for modulation and detection, and circum-

vents adding any additional crossings to the Torus through the use of the

parallel 1x2 PSE. The modulation block enables a message to be injected

north or south, while the detection block can collect signals coming from

the east or west direction. This scheme is well suited for dimension-ordered

routing which is the assumed routing for this topology.

3.3 4x4 Square Root

The Square Root topology is also designed with fewer waveguide crossings

and switches in mind by simplifying the entire network into only using 4x4

nonblocking switches. In addition to the axioms used to reduce insertion

loss in the physical layer, the Square Root leverages on an hierarchical or-

ganization to simplify routing and path multiplicity between units to in-

crease performance. The Square Root is constructed recursively beginning

with a 2x2 quad, which does not feature waveguide crossings outside the 4x4

switches. A 4x4 Square Root is composed of four sets of quads, and is shown

in Figure2.1 (d) , connecting quads through central switches and interquad

connections. Similarly, an 8x8 Square Root can be constructed from four

4x4 Square Roots. This recursive construction can be used to build any size

square topology with dimensions equal to any positive integer power of two.
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OPTICAL FAT-TREE NETWORK: FONoC 
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Figure 2.2: The Optical Fat-Tree: FONoC.

3.4 The Optical Fat-Tree: FONoC

Figure2.2 shows the optical Fat-Tree topology which is named FONoC. Dif-

ferent from other optical NoCs, FONoC transmits both payload and control

packets on the same optical network. This leads to a lower cost for build-

ing a separate electronic NoC for control packets. The hierarchical network

topology of FONoC makes it possible to connect the FONoCs of multiple

MPSoCs (Multi-processor Systems-on-Chip) and other chips, such as off-

chip memories, into an inter-chip optical network, and form a more efficient

multiprocessor system.

As shown in Figure.2.2 FONoC is based on Fat-Tree to connect OTARs

(previously described in chapter.1) and processor cores. It is a non-blocking

network, and provides path diversity to improve performance. Processors

are connected to OTARs by using optical-electronic and electronic-optical

interfaces (OE-EO), which are needed to convert signals between optical and

electronic domains. FONoC(n,m) connects m processors using an n-level
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Fat Tree. There are m processors at level 0 and m/2 OTARs at other levels.

To connect m processors, the number of network levels required is n=log2(m

+1). While connecting with other MPSoCs and off-chip memories, OTARs

at the topmost level route the packets from FONoC to an inter-chip optical

network. In this case, the number of OTARs required is m/2 log2(m). If

an inter-chip optical network is not used, OTARs at the topmost level can

be omitted. In this case, only m/2 log2(m-1) OTARs are needed. As can

be seen, in 2.2 each optical interconnect is bidirectional, and includes two

optical waveguides.

4 Wavelength-Routed Optical Networks-on-

Chip

Figure2.3 shows the most appealing Wavelength-Routed Optical Networks-

on-Chip recently suggested in the literature. A different approach is taken by

the 4x4 lambda router [41], the milestone switching fabric for Wavelength-

Routed Optical NoC topologies. Here, the network routing function is stati-

cally determined based on the wavelength of the optical signals. For a given

initiator, signal modulated on different wavelengths will be routed differently

in the network, and will reach different destinations. Topologies are designed

in such a way that signals with the same wavelength originating from different

initiators will never interfere with each other.

The appealing property of these topologies is that they enable contention free

communication, hence there is no path setup nor contention resolution phase

prior to optical packet transmission. This is achieved at the cost of penalizing

the bandwidth of each communication stream, although a limited amount of

wavelength parallelism is still feasible [38]. Alternatively, spatial division mul-

tiplexing can be used. In the lambda router case, with 6 2x2-optical-filters

tuned on 4 different wavelengths it is possible to realize 4 filtering stages,

resulting in a 4x4 Multi-Stage-Optical Network. Hence, increasing the total

number of wavelengths (and in turn the corresponding number of stages),

and replicating the number of the 2x2 optical filters, it is possible to derive

topologies of arbitrary size. Other switching structures have been proposed
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Figure 2.3: Milestones regarding the Wavelength Routed Optical Networks-

on-Chip.

that follow the wavelength routing paradigm, such as the 8x8 GWOR (Gen-

eralized Wavelength-Routed Optical Router) [28]. This optical structure is

capable of enabling 56 contention free optical paths (7 from each input port)

thanks to its 48 2x2-optical-filters and 7 wavelengths. It is more suitable to

connect initiators and targets distributed across the four cardinal points. The

switching fabric of an optical NoC can be also implemented by the traditional

fully-connected crossbar. In general, a nxn crossbar is composed of n2 micro

resonators and 2(n − 1) crossing waveguides on the critical path. Hence, a

4x4 fully-connected crossbar has four input ports and four output ports and

accommodates 16 micro resonators and 7 crossing waveguides on the critical

path. An optical Ring network is proposed in [66] by upgrading it to the Spi-

dergon topology for all-optical wavelength routing. The scalability limitations

have been overcome in [65], where a two dimensional hierarchical expansion
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of the Ring topology is developed. Le Beux et al [56] propose another optical

Ring design. By exploiting both techniques spatial and wavelength division

multiplexing it is possible to reuse the number of wavelength channels among

different physical waveguides, optimize losses, and finally reduce the overall

laser power.

5 Conclusion

This chapter has provided an overview of the most famous optical NoC

topologies both Wavelength-Routed and Space-Routed ones recently pro-

posed in the open literature. In particular, the Wavelength Routed NoCs

will be further detailed over the following chapters of the thesis.
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Towards Trustworthy

Crossbenchmarking Framework

between ONoC and ENoC: The

Golden Rules

1 Pathfinding Requirements

As depicted in figure 3.1 there are three fundamental groups of researchers

that are currently involved in the pathfinding effort from the elegant optical

NoC concept to an actual technology of practical relevance. The first group is

focused on the characterization and optimization of Silicon Photonic De-

vices, and on their monolithic integration with mainstream CMOS manufac-

turing processes. A relevant gap separates baseline silicon photonic devices

with On-chip Communication Architectures, that is the topic of the sec-

ond group of researches, which combine such devices together to materialize

higher-order switching structures, complete communication channels, net-

work topologies, routing and flow control methodologies, layout constraints

aware physical designs. The last group of researchers is instead involved in

the redesign of an entire system to take the maximum advantage of

the new interconnect technology. Complex and scalable optical interconnects

such as Torus, Square Roots [27], hierarchical Wavelength-Routed Optical
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Figure 3.1: The Pathfinding Requirement

Ring architectures [56], as well as Corona and Firefly frameworks [32], [33]

have been recently reported in this context. Although many valuable re-

search works have been reported in these emerging research fields, very few

structured and coherent methodologies have been proposed so far ([34] is a

nice example) to bridge the gap between the above abstraction layers for

designing ONoC architectures. Such a pathfinding effort should address two

relevant gaps. The first one exists between silicon photonic devices and on-

chip communication architectures, which could be referred to as the physi-

cal gap. A design methodology addressing this gap should for instance deal

with the deviation of physical topologies with respect to their logic schemes,

take placement and routing constraints into close account for topology as-

sessment and selection. The second gap separates on-chip communication

architectures with system level design frameworks, and could be referred to

as the systemability gap. The focus here is on the co-design of the optical

NoC architecture with the requirements dictated by the target system, and

on future generations of such systems.
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2 An Overview of the Golded Rules

Based on the above considerations, it worth noting that physics and design-

ers should define rules and/or design methodologies in order to be able to

bridge both gaps. This chapter in fact goes through a preliminary set of rules,

referred to as “the Golden Rules”, that should always be followed to ef-

fectively design an optical Network-on-Chip. Hereafter are summarized the

Golded Rules.

RULE#1: Specify a logical topology depending on connectivity requirements

requested by the system under test.

RULE#2: Account for the Place&Route constraints of a given system.

RULE#3: Explore the space of mapping options to nanophotonic devices.

RULE#4: Perform an accurate design of network interfaces architectures.

RULE#5: Consider an aggressive electronic baseline.

RULE#6: Assume a broad range of device parameters.

RULE#7: Carefully consider static power overhead.

RULE#8: Keep the optical NoC simple to minimize risk.

A brief discussion of them is reported below:

RULE#1: In general, any designer should select the type of ONoC log-

ical topology based on the specific application requested by the

system under test. For instance, the designer could opt for Wavelength-

Routed ONoCs (WR-ONoCs) as previously discussed in chapter.2, whether

the target system requires low-latency and contention-free full connectivity,

where no path-setup reservation is needed. Space-Route ONoCs (SP-ONoCs)

will be instead selected for those kinds of applications that require a large

transmission bandwidth between cores. As explained in chapter.2, SP-ONoCs

need of the path-setup reservation which is commonly accomplished by a dual

electronic NoC compared with the previous WR-ONoCs.

RULE#2: A fundamental decision in the early stage of ONoC design which

may greatly benefit from this approach consists of topology selection. In

fact, ONoC topologies are typically proposed in terms of their logic schemes,
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or are tied to specific floorplanning assumptions. Therefore, the expected

congruent multiples in communication performance or power savings may

not materialize in practice.

On one hand, there might be a profound difference between the logic topol-

ogy and its physical implementation, which raises the design predictability

concern for ONoCs as well. Insertion loss, crosstalk and power analysis are

important steps to tackle such a concern, and to assess the actual feasibility

of connectivity patterns from a physical-layer standpoint.

On the other hand, a realistic assessment of topology implementation ef-

ficiency is not feasible if placement and routing constraints on the target

system are not accounted for, which is a typically overlooked issue. This set

of constraints strictly depends on the ultimate integration strategy of the

optical interconnect with the electronic one.

Moreover, as reported in chapter.1, 3D integration today exhibits the capa-

bility to inexpensively integrate heterogeneous technologies while mitigating

the compound yield risks. Therefore, it is reasonable to expect an optical

layer stacked on top of an electronic one. However, the existence of interfaces

between electronic and photonic signals implies strong constraints on the lay-

out of the 3D architecture, that might break the regularity assumptions of

ONoC connectivity patterns, or the floorplanning assumptions they are tied

to. Ultimately, the impact of place&route constraints might be especially

severe for wavelength-routed ONoC topologies.

RULE#3: Once selected the set of logic topologies that satisfy the specific

requirements of the system under test, it will be then possible to assess such

a topologies based on a technology-aware description. In particular, for each

topology it will be possible to annotate the overall number of micro-ring

resonators (MRRs) and take into account the maximum number of crossing

waveguides on the critical path, thus providing an accurate exploration of

the space of mapping options to nanophotonic devices.

Now, by combining these three rules, the logic topologies should be mapped

on the optical layer satisfying the specific place&route constraints and in

turn transformed into their physical layouts. Afterwards, by leveraging on

the physical-layer properties (e.g. insertion loss critical path, total power
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viewpoint), the deviation between the logic topologies and their physical lay-

outs (i.e. the predicatbility gap) will be quantified.

RULE#4: In order to exploit the potentials of the optical medium in future

many-core systems, an accurate modeling, design, and simulation of network

interfaces architectures should be taken into account. As previously men-

tioned in rule number 2, any multi-and many-core system-on-chip (MPSoC)

accommodates both electronic and optical networks. In particular, at any

transmission stage of the electronic network there is need for interfaces. The

latter ones are necessary as the electrical signal incoming from a processor

element (PE), before being transmitted into the optical network has be con-

verted into an optical one by means of appropriate electro/optical converters.

Conversely, at the reception stage, such an optical signal will be back con-

verted into an electrical one (i.e. opto/electrical converters) to be correctly

received at the destination node, (another PE or a memory bank).

In light of this, any optical on-chip communication requires for hardware

support, not only characterized by the optical devices such as laser sources,

modulators and receivers, but also by all of electronic circuity for buffering,

flow control, and resynchronization functionalities.

In particular, all of electronic and optical devices comprising the network

interfaces architectures should be carefully designed and optimization tech-

niques should also be searched for.

RULE#5: In order to provide a trustworthy crossbenchmarking frameworks

between an electronic NoC and the optical counterpart, an aggressive elec-

tronic baseline should be considered.

RULE#6: Another feature that should be considered in crossbenchmarking

framework is the fixed-power overhead, which it has a significant percentage

of total ONoC power. Static power is especially important in those applica-

tion domains where the network does not undergo high utilization, but it has

to serve sporadic traffic peaks. This is the case of shared memory multipro-

cessors with distributed last-level cache, implementing hardware support for

cache coherence. Consequently, any designer should carefully account for the



44
Towards Trustworthy Crossbenchmarking Framework

between ONoC and ENoC: The Golden Rules

static power overhead of each component of both interconnection fabric and

network interfaces architectures by using a broad range of device parameters.

RULE#7: Last but not least, any designer should implement an optical

interconnection network with the following features: simple and with the

minimum risk.

3 Conclusion

By meeting the presented rules, first, it will be possible to build a trustwor-

thy crossbenchmarking framework between an optical NoC and its electrical

counterpart. Afterwards, it will be possible to identify the searched com-

pelling cases. Although, this chapter has only presented the golden rules and

their main motivations, the following chapters will give a detailed explo-

ration of them. In particular, chapter 4 will go through rules number 1, 2

and 3, quantifying the design predictability gap in optical NoC. The chapter

5 will discuss the rule number 4 examining the network interface architec-

ture. Finally, chapter 6 will focus on the crossbenchmarking framework, thus

satisfying rules number 5, 6 and 7.



Chapter 4

The Design Predictability Gap

in Optical Networks-on-Chip

Design

Optical networks-on-chip (ONoCs) are currently still in the concept stage,

and would benefit from explorative studies capable of bridging the gap be-

tween abstract analysis frameworks and the constraints and challenges posed

by the physical layer. This chapter aims to go beyond the traditional com-

parison of wavelength-routed ONoC topologies based only on their abstract

properties, and for the first time assesses their physical implementation effi-

ciency in an homogeneous experimental setting of practical relevance. As a

result, the chapter can demonstrate the significant and different deviation of

topology layouts from their logic schemes under the effect of placement con-

straints on the target system. This becomes then the preliminary step for the

accurate characterization of technology-specific metrics such as the insertion

loss critical path, and to derive the ultimate impact on power efficiency and

feasibility of each design.
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1 Introduction

One of the main drivers for considering optical interconnect technology for

on-chip communication is the expected reduction in power. However, despite

the arguments in favour of optical networks-on-chip (ONoCs) and the promis-

ing integration route, ONoCs are currently only at the stage of an appealing

research concept. Understanding the implications of the specific properties

of optical links across the upper layers of ONoC design is key to evolving

ONoCs to a mature interconnect technology with practical relevance. In par-

ticular, there might be a profound difference between the logic topology and

its physical implementation [35], which fundamentally raises the design pre-

dictability gap for ONoCs. The design predictability gap is more a concern

for wavelength-routed ONoC (WRONoC) topologies rather than for space-

routed ones. The wavelength parallelism of the latter ones directly matches

the bit parallelism of electronic NoCs, and this explains why topologies pro-

posed for space-routed ONoCs are essentially inspired by those of general

purpose ENoCs: meshes, tori, fat-trees, spidergon or recursively built topolo-

gies. Technology-specific adaptations of such networks have therefore a good

matching with the 2D layout surface from the ground up, facilitated by the

fact that link length is not a critical parameter for optical links. In contrast

WRONoCs are implemented using wavelength filters throughout the net-

work. These topologies have been mainly optimized to permanently provide

full connectivity while minimizing the number of wavelengths and of physical

resources. This has led to tightly optical technology-specific topologies rang-

ing from rings [56] to customized multi-stage networks [41, 52, 53], which

often make strong and irrealistic assumptions on master and slave placement

or total wirelength to achieve compact and efficient implementation.

This chapter targets the technology- and layout-aware characterization of

relevant WRONoC topologies, thus aiming at more trustworthy comparative

results than abstract comparison frameworks. For this purpose, the physical

implementation efficiency of topologies under test is assessed in an homo-

geneous experimental setting with practical relevance, namely a 3D-stacked

multicore processor with an optical layer targeting inter-cluster as well as

processor-memory communication. Topologies will be compared in their abil-
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ity to deliver the same communication bandwidth with the minimum power

consumption. In summary, the main contributions of this chapter are:

A. Due to the lack of automatic CAD tools for designing optical NoCs, a full

custom design (manual design) is performed for the place&route of multi-

ple WRONoC topologies, subject to the placement constraints of the target

system. This way, the gap between logic topologies and their physical imple-

mentations is quantified in comparative terms.

B. The ultimate implications of physical properties on insertion loss critical

path and total power consumption are derived for each topology.

C. Optical Ring networks will be compared with topologies relying on opti-

cal filters (i.e filter-based), thus assessing their actual need in the context of

WRONoC domain. The conclusion on this topic will be supported by pre-

liminary scalability results on the same target system.

D. In order to increase the level of confidence of this comparative frame-

work, the chapter does not consider naive implementations of topologies, but

optimization techniques of high practical relevance will be applied to them,

such as spatial division multiplexing (for the Ring), global connectivity, net-

work partitioning for wavelength reuse (across all of subnetworks), and slight

topology transformations for more flexible and/or efficient place&route (for

the optical crossbar and GWOR topologies).

2 3D-Target Architecture

The common experimental setting of practical interest to assess WRONoC

topologies is a 3D architecture for multicore processors (see Figure.4.1), con-

sisting of an electronic layer and of an optical one stacked on top of it. Sim-

ilar architectures are already available in the market, e.g. the Tilera family

of multi-core processors [42] which currently features arrays ranging from 16

up to 100 cores. The electronic layer that we assume in this study consists

of 32 cores that are linked with each other by means of an electronic NoC

with a 2D mesh topology. Also, we assume that cores are structured into 4

clusters of 8 cores each. Again, each cluster has a private gateway to access



48 The Design Predictability Gap in Optical Networks-on-Chip Design

T
S 
V 

T
S 
V 

T
S 
V 

T
S 
V 

Cluster C3 

Photonic Layer 

M1 

M4 

M2 

M3 

Network Interface of the 
Photonic Layer 

Network Interface of the 
Electronic Layer 

Array  of  off-chip CW Lasers  

1 

4 

2 

3 

Cluster C1 

Cluster C4 

Cluster C2 

Electronic Layer 

H1 

H3 

H2 

Fiber Ribbon 

H4 

CW CW CW CW 

PE  

λ1 λ2 λ3 λ4 Coupler  

Processor Element 

PE  

PE  

PE  PE  PE  

PE  

PE  

Figure 4.1: 3D-Target Architecture

the above optical layer. We assume an area footprint of 1.33 mm2 for each

core, and a die size of 8 mm x 8 mm.

The optical layer is designed to accommodate three kinds of communications:

(a) among clusters; (b) from a cluster to a memory controller of an off-chip

photonically integrated DRAM DIMM [30]; (c) from a memory controller to

a cluster. Also, it is characterized by precise placement constraints imposed

by the 3D-stacked architecture that topology layouts should satisfy. The first

one consists of the position of the hubs. The aggregation factor (i.e., number

of cores per cluster) and the total number of cores in the electronic plane

dictate the position of the gateways and consequently of the optical network

interfaces in the optical plane. As a consequence, we organize hubs along a

square in the middle of the optical layer (see H1, H2, H3 and H4 in Figure

4.1).

The optical power is provided by an array of off-chip continuous wave laser

sources (CW laser sources) and the multi-wavelength signals are coupled into

the chip and brought to the initiators for modulation. As will be proposed

later on, the network partitioning allows that the same array of CW lasers

can be shared by all the initiators. Therefore, 4 lasers will be needed since

every initiator modulates the same 4 wavelengths.

The microarchitecture of memory controllers depends on the specific imple-
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Figure 4.2: Electronic Network Interface: Transmission Side

mentation of the memory sub-system. As an example, in [30] optical com-

mand, read and write busses connect the controller to the off-chip photoni-

cally integrated DRAM (PIDRAM) DIMMs via a fiber ribbon. In any case,

the memory controllers are typically placed all around the chip. Their specific

location depends on the position of the PIDRAM DIMMs on the board while

at the same time reducing contention (hot spots) in the on-chip interconnect

fabric. In this study, we assume 4 memory controllers (M1, M2, M3 and M4)

that are located pairwise at the opposite extremes of the chip, as proposed in

conventional chip multiprocessor architectures [42], thus avoiding centralized

communication bottlenecks for the on-chip network.

The above placement constraints radically question the practical feasibility of

topology logic schemes and make the design of their associated real topology

layout mandatory. In our system, we need to connect 8 initiators (4 hubs, 4

memory controllers) with 8 targets (the target interface of the same 4 hubs

and 4 controllers). For this purpose, we revert to wavelength-routed optical

NoCs, which allow contention-free communication. WRONoCs deliver per-

manent full connectivity, i.e., all masters can potentially communicate with

all slaves at the same time. The underlying principle is twofold: each master

uses a different wavelength for each slave, and each slave receives packets

from the different masters on different wavelengths. The interconnect fabric

should avoid any interference between packets sent by different initiators on

the same wavelengths.
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3 Electro/Optical & Opto/Electrical Network

Interfaces

Let us now focus on the electro-optical network interface (NI), which resides

partly in the electronic layer and partly in the optical one. The former sec-

tion, relative to the transmission part, is illustrated in Figure.4.2. Packets

coming from the cluster’s electronic NoC are buffered at the network inter-

face front-end. Based on their destination, they are stored in differentiated

buffers (in our target system, there are 7 buffers associated with the other

clusters and with the memory controllers). A serializer reads packets from

the buffers and feeds them to the drivers. We assume that drivers are di-

rectly connected to the through-silicon vias (TSVs) and through them to

the modulators on the optical layer. The latest technological developments

about 3D-integration enable TSVs with a pitch of 5µmx5µm and therefore

a large TSV integration density (up to 160K TSVs in a 10mmx10mm die).

Moreover, as reported in [43] [51], the TSVs can deliver high-speed transmis-

sion from 1 Gbit/s to 10 Gbit/s. This relevant performance motivates our

choice of using them to provide the biasing signal to the optical modulators

in the optical plane (see Figure.4.3). The rationale behind this choice is to

avoid integrating electronic devices in the optical layer and, therefore, enable

low-cost fabrication of this latter, a key requirement to make silicon photon-

ics affordable for the embedded multi-core computing domain. In line with

current technology, we assume modulation rates of 10 Gbit/s for each wave-



4.3 Electro/Optical & Opto/Electrical Network Interfaces 51

RECEPTION 

INPUT 

λ1 λ2 λ3 λ4 

Filter  Resonance at Filer Resonance at Filter Resonance at Filter Resonances at 

SIGNALS 
FROM 

NETWORK 

Detector Detector Detector Detector 

T 
S 
V 

T 
S 
V 

T 
S 
V 

T 
S 
V 

TO ELECTRONIC DOMAIN 

Figure 4.4: Array of filters and detectors in the optical layer
Q

M
 1

Q
M

 4

Q
M

 2

Q
M

 3

DE-SER DE-SER DE-SER DE-SER

C
O

M
P

C
O

M
P

C
O

M
P

C
O

M
P

COMPARATORS
WITH THRESHOLD

DE-SERIALIZERS

SELECTIVE
BUFFERING

EMISSION
DATA

P
A
C
K
E
T
S

TSVs

RECEPTION PART

TA TA TA TA TRANSIMPEDENCE
AMPLIFIER

MULTIPLEXING

Q
H

 4

Q
H

 2

Q
H

 3

DE-SER DE-SER DE-SER

C
O

M
P

C
O

M
P

C
O

M
P

TA TA TA

FROM THE OPTICAL LAYER

Figure 4.5: Electronic Network Interface: Reception Side

length. Therefore, the injection rate of every hub peaks at 40 Gbit/s. In the

optical layer we use WRONoCs, therefore every destination-specific buffer in

the electronic NI is associated with a different wavelength in the modulation

array. By complementing this with a network made up of add-drop filters,

contention-free optical communication is achieved with no latency overhead

for arbitration, routing or circuit setup.

The reception part is specular. As depicted in Figure.4.4, the optical layer

features an array of add-drop filters for each hub feeding photodiodes that

convert the optical signal back into the electrical one. The photodiode’s out-

puts are then conveyed to the transimpedance amplifiers in the electronic

layer by means of TSVs. Again, we opt for not placing the electronic devices

in the optical layer. As illustrated in Figure.4.5, digital comparators and
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de-serializers complete the domain conversion. Buffers are associated with

packet source and from here on the electronic network interfaces come into

play (e.g., association of memory responses with memory requests, packetiza-

tion for the electronic NoC). Although this section only has given an overview

of the NI architectures, in chapter.5 they will be further detailed.

4 Design Predictability Gap:

Logic Scheme vs. Physical Layout

There is still a significant gap between the optical Network-on-Chip con-

cept and a mature interconnect technology with practical relevance, which

consequently raises the design predictability gap in ONoCs domain. Hence,

insertion loss and total power are important steps to tackle such a concern

and to assess the actual feasibility of an optical NoC from a physical layer

point of view. Figure 4.6(a) shows the 8x8 λRouter logic scheme, (which

was proposed by Scandurra et al in [52]), while its corresponding physical

implementation is shown in Figure 4.6(b). The latter one is obtained with a

manual design [35]. As can be seen, there is a large deviation between the

native scheme and its physical layout mainly due to the physical constraints

(i.e fixed positioning of hubs and memory controllers). More precisely, the

optical path with the major number of waveguide crossings in the phyisical

layout results 9 times larger than the corresponding logic scheme. In fact,

it differs from 7 crossings in the logic scheme up to 64 in the physical lay-

out. Finally, it is reasonable to expect that the insertion loss critical path

and the laser power requirement too may degrade so much that an appeal-

ing logic topology could result not affordable, thus pointing out the design

predictability gap in optical NoC design.

5 Topology Exploration: Global Connectivity

As mentioned in section 2, the proposed optical layer accomodates 8 initiators

and 8 targets. The easy way to interconnect them consists of using one 8x8

wavelength-routed optical NoC, thus aiming at global connectivity scenario.
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Afterwards, the most relevant topology logic schemes that can address this

connectivity requirement are discussed, and then implemented in the target

system under the effect of layout constraints.

5.1 Relative Topology Comparison

Figure 4.6(a) shows the first topology under test: an 8x8 λrouter. In order to

interconnect 8 initiators with 8 targets, the network utilizes 8 stages of 4 and

3 add-drop filters (see gray boxes in figure 4.6(a)). The topology reflects the

connectivity pattern of unidirectional multi-stage network (MINs) commonly
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Figure 4.7: (a) 8x8 GWOR logic scheme, (b) 8x8 GWOR physical layout, (c)

8x8 Folded Crossbar logic scheme, (d) 8x8 Folded Crossbar physical layout

used in the electronic domain, with the difference that the inter-stage pattern

is closely related to the routing methodology of WRONoCs. Unfortunately,

the attractive logic scheme of this topology does not match the actual layout

constraints of most real-life systems, where indeed it is almost impossible to

find all initiators arranged on one side and all targets on the other side of

the chip. At the same time, hubs and memory controllers are both initia-

tors and targets of on-chip communication transactions, hence the physical

implementation of this topology implies some degree of folding (see Figure

4.6(b)).

In order to find the best solution for global connectivity, we compare the

previous topology with the 8x8 GWOR [28] and an optimized crossbar, here

referred to as 8x8 folded crossbar. According to the wavelength assignment
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proposed in [28], the 8x8 GWOR logic scheme (see Figure 4.7(a)) is con-

structed starting from its lower basic cell, the 4x4 GWOR. The latter one is

well suited for those cases where initiators and targets are distributed across

the cardinal points. In fact, the topology consists of 4 waveguides which in-

tersect each other, with micro ring resonators (MRRs) placed pairwise at

each intersection (see colored circles inside the black box of Figure 4.7(a)).

Unfortunately, the scaled pattern to an 8x8 network keeps making the same

physical placement assumptions, which is not realistic, since it is very unlikely

that all cores are placed around a centralized optical interconnect. Moreover,

it is worth recalling that, unlike the previous topology, this one is not capable

of self-communication.

The physical view of the 8x8 GWOR is illustrated in Figure 4.7(b), and con-

firms that the placement constraints of the target system are unnatural for

the GWOR connectivity pattern, which ends up in a circuitous wiring mak-

ing the original pattern hardly recognizable. Again, the waveguide crossings

arising as an effect of the 2D surface mapping are apparent.

Finally, an 8x8 optical crossbar is considered. This topology places MRRs at

each intersection of a point-matrix, thus establishing connections between a

given initiator and the desired target. Although considered quite inefficient in

abstract analysis frameworks, the topology lends itself to an interesting opti-

mization already in its logic scheme. In the original topology, every initiator

delivers optical signals to targets in a given order. By changing this order

for every initiator (see Figure 4.7(c)), then we apparently cause a waveguide

length overhead. However, this is only an apparent effect of the logic scheme,

since the actual layout is in contrast facilitated: every initiator can in fact

drive an optical waveguide that enters a Ring-like topology for dispatching

of optical packets to the possible destinations (Figure 4.7(d)). Clearly, the

handcrafted layout of the folded crossbar is much more regular than the

8x8 λRouter and the 8x8 GWOR, and MRRs are clearly positioned close

to communication targets for wavelength-selective ejection of optical signals.

In previous comparison frameworks, such physical-level details are typically

omitted, and considered quality metrics include mainly the number of MRRs

and the maximum number of waveguide crossings on the logic scheme. As

shown in table. 4.1, at logic scheme level the 8x8 Folded crossbar features
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Table 4.1: Layout-aware properties of topologies under test

Total Path Path Total Total

# of Max # of Max # of # of of#

Wavelenghts Crossings Crossings MRRs MRRs

L.Scheme Layout L.Scheme Layout

8X8 8 7 64 56 48

λ-Router

8X8 7 10 72 48 36

GWOR

8x8 7 14 22 64 44

Folded

Crossbar

the largest number of MRRs (64), as opposed to 56 for the 8x8 λRouter and

48 for the 8x8 GWOR.

It worth noting that, the 8x8 λRouter and GWOR accommodate 2x2 opti-

cal filters while the 8x8 Folded Crossbar is only based on the 1x2 ones. The

ranking is exactly the opposite when the number of waveguide crossings is

considered: the λRouter exhibits 7 crossings as opposed to the 10 ones of

GWOR and the 14 ones of the optical crossbar.

Unfortunately, this analysis methodology is only partially informative and

even misleading. Physical layer and layout analysis are required to assess the

actual trade-offs. This way, as self and memory-to-memory communications

are not allowed, redundant MRRs can be removed. In particular, 8 MRRs

were removed in the 8x8 λRouter and the 12 ones in GWOR.

The Folded crossbar benefits of this optimization much more than other

solutions (20 MRRs are removed). After applying the MRRs optimization,

GWOR continues to show the minimum number of MRRs, (36), followed

by the 44 ones of the Folded crossbar, while the 8x8 λRouter still shows

the maximum number of micro rings (48). Finally, in terms of number of

wavelengths, it is very important to keep in mind that optical crossbar and

GWOR utilize 7 distinct wavelengths (i.e., 7 Continuous-Wave Laser Sources)

by construction to deliver full and global connectivity vs. the 8 ones of an

8x8 λRouter. All these layout-aware properties are summarized in table.4.1
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Figure 4.8: Calculation of Insertion loss for a small Network Segment

5.2 Physical Layer Analysis

In this section the presented topologies will be compared in terms of insertion

loss and power consumption.

(a) Insertion loss Analysis

Figure 4.8 shows a simple example of a signal injected into a network segment

at 1 dBm and being received at -0.23 dBm. The optical signal experiences a

propagation distance of 1 mm, passing by 2 micro-ring resonators, and going

through 6 waveguide crossings. The overall insertion loss in this case is 1.23

dB. It worth noting that the insertion loss is the most important physical

metric that must be quantified to determine the laser power that guarantees

a predefined bit error rate at receivers. In fact, once ILmax is obtained (the

maximum insertion loss across all wavelengths and optical paths) and the

detector sensitivity is known (S), it is possible to evaluate the lower limit of

optical laser power (P) to reliably detect the corresponding photonic signal

at the receiver end. We firstly calculate the worst case ILmax across the en-

tire global network, and then we make the practical assumption that such a

worst case ILmax dictates the power required by all laser sources. Our study

assumes the loss parameters summarized in table.4.2. We rely on a Simulink
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simulation framework (see chapter.8) to assess physical metrics of optical

NoCs by modeling every single path of a given topology while accounting

for the above loss parameters. Finally, we obtain the corresponding insertion

loss as a sum of all components encountered in the path under test such

as straight, bend, crossing waveguides and drop-into ring loss. The topology

models assume die sizes of 8mmx8mm.

Figure 4.9 shows insertion loss deviations between logic and physical ONoCs

for all topologies considered in this comparison framework. We assume also

that the standard elliptical taper[60] is optimized at every waveguide cross-

ing. The insertion loss critical path is more than 6x worse in two physical

networks out of three compared with the corresponding logic schemes (see

blue and red bars in Figure 4.9). Especially GWOR suffers from 72 waveguide

crossings against the 10 expected ones. The λRouter reports 64 crossings vs.

7, thus preserving its superiority over GWOR in relative terms.

Surprisingly, the Folded crossbar maps more efficiently to the target place-

ment constraints, although it is frequently discarded in abstract analysis

frameworks, which only consider the logic schemes and the abstract proper-

ties. The physical implementation is so efficient (i.e., only very few additional

crossings (8) from layout constraints) to offset the inherently higher number

of waveguide crossings of the logic scheme.

More in details, propagation loss is a significant contribution in the folded

crossbar topology, indicating that the critical path now is both waveguide-

and crossing-dominated. Due to its long optical waveguide of 25.5 mm and

22 crossings, the Folded Crossbar achieves a critical path of 15.3 dB. On

the contrary, for the 8x8 λRouter (33.3 dB) and GWOR (37.5 dB) only

crossings have been computed since their contribution is dominant in the

breakdown. Obviously, if had we accounted for their propagation losses too,

their current huge gap with the crossbar would have become even worse,

without providing any significant novelty to the discussed results. Finally,

in terms of insertion loss critical path we saw a reverse trend between logic

topologies and their physical implementations. In fact, the worst logic scheme

topology (F. crossbar) becomes an interesting solution when placed into a

real scenario (7.28 dB vs. 15.3 dB). In contrast, the most promising logic

scheme topologies (λRouter (3.64 dB), GWOR (5.21 dB)) when placed into
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Table 4.2: Parameters used in this work
Parameters Value Devices Features

Propagation- CW( Continuous Wave)

Loss [27] 1.5dB/cm PLE=20%

Laser (Laser efficiency)

Bending-Loss[27] PCW=90%

0.005dB (Coupling Laser-Link)

Crossing-Loss Si Disk

β= 20%

Optimized by (Launch efficiency)

Elliptical Taper[84] 0.52dB Dyn. Dissipation=3fj/bit

Modulator Static Power=30µW

Optimized by Vdd=1V

MMI Taper[84] 0.18dB Modulator Power

depends on ILmax [63]

Drop-Loss CMOS(45nm)

hybrid silicon receiver

Optimized by Detector S=-17dBm,

Elliptical Taper[84] 0.013dB (BER=10−12 @10Gbit/s)

Power=3.95mW [62]

Optimized by Optical

MMI Taper[84] 0.0087dB Filter Thermal-Tuning:

20µW/ring [27]
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Figure 4.9: ILmax Contrasting: Physical Layout vs. Logic Scheme

their physical layouts are heavily penalized by the layout constraints, thus

resulting clearly inefficient with respect to the optimized crossbar.

(b) Power Analysis

By using the critical path insertion loss, it was then possible to derive the

needed laser power to get a bit error rate of 10−12 at optical receivers with a

sensitivity of -17dBm [62]. By also considering the contribution of modulator

and detector power and of thermal tuning that are listed in table.4.2, we

derived the total power results consumed across the maximum bandwidth of

440 Gbit/s (see Figure.4.10).

The total power of GWOR is larger than that of other topologies, even if the

λRouter features one laser source more than GWOR and the Folded Cross-

bar to provide the same (full) connectivity. More precisely, the total power

of the λRouter topology is 2.47x lower than the GWOR one. The Folded

crossbar turns out to be the most power efficient solution. It consumes only
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Figure 4.10: Total power Contrasting: Physical Layout vs. Logic Scheme

276 mW, almost 2 orders of magnitude lower than GWOR (16.6 W). Since

GWOR and λRouter feature higher insertion loss than Crossbar, their major

contributors in the power breakdown are laser sources (28%) and modula-

tors (72%). Moreover, it worth noting that the overall modulator power is

higher than laser power since their amount is larger than the laser one (44 vs

7/8). It should be recalled that the modulator power partly depends on the

input optical power[63] that in turn depends on ILmax. In constrast, the re-

ceiver power mostly contributes in the power breakdown (63%) of the Folded

Crossbar due to its lower insertion loss. In the end, these results indicate

that GWOR and λRouter are infeasible for the placement constraints of the

target 3D-System, while Folded Crossbar turns out to be the best topology.

5.3 Comparison with an Optical Ring Topology

The layout of the folded crossbar is very similar to a Ring topology. The latter

one is in fact the simplest connectivity solution among all network topolo-

gies presented in the open literature, and apparently the less sensitive one

to place&route constraints. The only one way to assess whether the Folded
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Crossbar is the most efficient solution for the target system consists of com-

paring it with an actual Ring topology. In order to correctly compare these

topologies, a Ring is designed assuming the same number of wavelengths uti-

lized in the crossbar, i.e., 7. The use of multiple ring waveguides (i.e., spatial

division multiplexing) and the reuse of wavelengths right across waveguides

it is the only way to meet this requirement [56]. Figure.4.11 depicts the real

layout of the Ring topology after manual placement of the 3D stacked optical

layer under test with the given physical constraints (i.e., hubs in the middle

and memory controllers positioned at the opposite extremes). Clearly, this

topology better fits the target constraints. Essentially, it works like a bus,

in which multiple waveguides are contained into it. In this case, 7 paral-

lel waveguides are needed to deliver full and contention-free communication

parallelism. Figure.4.13 illustrates the post-layout insertion loss critical path

comparison between the 7-way Ring and the 8x8 Folded Crossbar. The 7-way

Ring achieves 7.75 dB insertion loss against 15.3 dB of the Crossbar on the

critical path, thus resulting 50% more power efficient. The key reason lies in

the fact that the 7-way Ring provides less wiring length on the critical path

(2cm vs. 2.55 cm in the Crossbar). Moreover, the crossbar has 22 waveguide

crossings (localized in the optical network), while only 9 crossings are there

in the 7-way Ring. Even if in the Ring topology there are no intersections

in principle, they are actually needed at initiator interfaces to connect to
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Figure 4.12: Hub architecture of an Optical Ring with physical awareness

the parallel ring waveguides that are furthest away from the injection point

(see Figure.4.12). In contrast, such crossings may not appear at target in-

terfaces, since the output signal of photodetectors might directly leave the

optical plane by means of TSVs in the best case. However, MRRs are anyway

needed to inject wavelengths into and extract them out of the waveguides.

Notice that the logic scheme of any Ring topology is characterized by such

obstacles, which may degrade the insertion loss, and as a consequence the

total power. In this case, ILmax of the Ring logic scheme is about 4.7 dB,

while it gets almost doubled when post-layout results are considered. Here,

the wiring length contribution becomes dominant through its propagation

loss.

The total power consumption of the two topologies is shown in Figure.4.14.

Thanks to the lower insertion loss, the 7-way Ring topology results more ef-

ficient than the 8x8 Folded Crossbar by about 30%. The latter one is heavily

penalized by the larger number of crossings, and the higher wiring length. In

this case, the insertion loss gap of 50% is reduced to 30% in terms of total

power, due to the relevant contribution of optical receivers in the breakdown.

They contribute for 63% in the crossbar topology and for 89% in the Ring

one. Ultimately, the optical Ring is clearly an appealing solution for such a

small scale system. However, in highly integrated systems the picture is not

entirely clear, since the larger connectivity requirements cause the number
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Figure 4.14: Total power Contrasting: 7-way Ring vs. 8x8 Folded Crossbar

of ring waveguides to increase, hence worsening the crossing concerns at ini-

tiator interfaces. At the same time, in larger dies the critical path becomes

propagation-loss dominated, thus raising another concern for optical Ring

networks. Finally, the quality metrics of filter-based topologies will be effec-

tively scaled up in future systems as CAD tools for automatic place&route
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of ONoC topologies could become available.

6 Network Partitioning

In order to increase the level of confidence of this comparative framework,

optimization techniques well beyond global connectivity are worth exploring.

In this section in fact we propose Network Partitioning, an alternative design

methodology [53] to the global connectivity. Fundamentally, this new design

method is advantageous as :

(a) enables that wavelengths can be reused across subnetworks similar to

what done in telecommunication networks (e.g. laser sources are reused across

subnetworks), (b) simplifies connectivity patterns, and (c) allows that dis-

tinct traffic classes can be used across subnetworks. In our design each net-

work partition utilizes a specific traffic class, namely inter-cluster communi-

cations, memory access requests from clusters and memory responses from

memory controllers. A topology is mapped to each partition. However, this

strategy enables to cut down on the number of wavelengths from 8 (maximum

number for global connectivity) to just 4 due to their reuse.

6.1 Logic Topologies

This section illustrates the logic scheme of WRONoC topologies under test,

considering that each network partition will have to interconnect at most

4 masters with 4 slaves. We consider the most relevant schemes that have

been proposed so far in the open literature (the same ones used for global

connectivity, although scaled down), in addition to engineering an ad-hoc

topology for the 3D-stacked system at hand.

As mentioned in the previous section.5.1, the 8x8-GWOR is a scalable and

non-blocking wavelength-routed optical router. The basic cell of the former

solution is represented by the 4x4-GWOR that has 4 bidirectional ports

located on the cardinal points. Furthermore, two horizontal and two verti-

cal waveguides are used, which intersect each other to form a basic check

shape, and MRRs are placed pairwise on waveguide intersections. GWOR

does not support self-communication, hence its use for the memory request
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Figure 4.15: Logic schemes of WRONoC topologies under test

and response networks requires its extension to a 5x5 configuration. This

is possible, since the wavelength assignment in [28] enables any size of the

topology. Figure.4.15(a) shows 5x5-GWOR which it is constructed starting

from its lower basic cell (4x4-GWOR). With respect to the baseline scheme,

3 MRRs need to be inserted to work around the lack of self-communication

and enable each master to be connected with 4 slaves. At the same time, one

input is unused, therefore redundant MRRs are removed.

An alternative topology is illustrated in [41] and it is named 4x4 lambda

Router. In order to interconnect 4 masters with 4 slaves, the network makes

use of 4 stages of 2 and 1 add-drop optical filters (Figure.4.15(c)). This

network is obtained by scaling down the previously proposed 8x8 lambda

Router, or vice versa it could be seen as the preliminary cell to build any

size of the lambda router topology. With respect to the original scheme, we

replaced the native parallel 2x2 add-drop filters with 2x2 photonic switching
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elements, the only difference being an easier physical design thanks to the

orthogonally intersected waveguides.

Figure.4.15(b), shows the scaled-down version of the 8x8 Folded Cross-

bar, that is customized for connecting 4 initiators with 4 targets (here it is

referred to be the 4x4 Folded Crossbar).

Finally, a custom taylored solution for processor memory communication is

described, namely the Snake topology. The Snake’s pattern (Figure.4.15(d))

is also flexible, since a different number of initiators and targets can be eas-

ily accommodated. In the 4x4 Snake, six 2x2 optical filters are tuned to

different wavelengths and their number scales up from the rightmost side

to the leftmost one. 4 main optical links connect the slaves while enabling

some placement flexibility. This topology is conceived to map efficiently to

the placement constraints of the target system.

Ultimately, as it was done for global connectivity, an optical Ring topology

is designed to connect 4 masters and 4 slaves, and then it was added in the

comparative framework. In practice ring waveguides are devoted to specific

message classes in this instance (hereafter it is referred to as ORNoC).

For the sake of comparison, all topologies are constrained to use the same

number of wavelengths, and laser sources, to instantiate physical resources

accordingly. Therefore, all topologies deliver the same overall bandwidth of

440 Gbit/s, and the 4x4 GWOR is assumed to be the inter-cluster network

as its shape better fits the placement constraints of Hubs (positioned along

a square in the middle of the optical layer) than other filter-based optical

networks.

7 Snake vs. Lambda Router

With respect to the Lambda Router, the proposed Snake topology first breaks

the mono-dimensional assumption, and easily fits a planar distribution of

initiators and targets. Unlike the Lambda Router that grows horizontally,

Snake is developed vertically (see Figure.4.17). Also, as shown in Figure.4.16

Snake is easily capable of providing asymmetric solutions (e.g. 4x8, 8x4),

much more easily than Lambda Router, although this is in principle still

feasible with this topology as well. Finally, the Snake topology is engineered
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Table 4.3: Layout-aware properties of topologies under test

Total # Max # Max wire Total # of Type

of Wavelenghts of Crossings length (cm) MRRs of MRR

ORNoC 4 3 3.2 40 (8 IC) 4

4x4 4 6 2.4 32 (8 IC) 4

SNAKE

4x4 4 15 1.8 32 (8 IC) 4

λ-Router

4x4 4 21 2 40 (8 IC) 4

Folded

Crossbar

5x5 4 31 2.4 40 (8 IC) 4

GWOR

to efficiently meet the placement constraints of the target system. In fact it is

the custom-tailored solution for the system at hand, and it has the valuable

property that connections from the center of the chip to its upper or lower

side are much facilitated, thus providing more routing flexibility.

8 Physical Topologies

This section deals with the problem in assigning topologies to network par-

titions and to lay them out. For the inter-cluster ONoC, the choice is trivial:

4x4-GWOR delivers the needed connectivity in a scenario where its physical

placement assumptions are perfectly satisfied. At the same time, it features

the lowest number of MRRs. Therefore, we restrict the problem of identifying

the topologies that are better suited for processor-memory communication,

and lay them out twice: for the memory request network (from hubs to mem-

ory controllers) and the memory response one (from controllers to hubs).

The fundamental difference lies in the flipped position of masters and slaves,

which makes them asymmetric. Manually layouts have been drawn with sim-

ilar criteria to those adopted for global connectivity. The only approximation

lies in the lack of the network for the distribution of the optical power. It

is as the top-level clock tree the layout of an electronic NoC was neglected.
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Figure 4.16: Asymmetric 8x4 Snake

After place&route all topologies, the difference between the logic schemes

and their layouts is still apparent even if network partitioning mitigates this

effect to a significant extent. The methodology and the design rules adopted

for the physical implementation of each logic topology were inspired by those

used for multi-stage electronic networks like fat-trees [55]. First, each optical

filter is placed close to its attached node; Second, filters without any node

connection are homogeneously spread throughout the 2D floorplan in order

to balance length of waveguides, and above all to avoid waveguide crossings

as many as possible. Since these latter play a dominant role in determining

the minimum optical power that laser sources should provide to satisfy spe-

cific detector sensitivities, as made for global connectivity we consider the

elliptical taper, technique already implemented for global connectivity and

the aggressive optimization based on MMI tapers[61].

5x5-GWOR (Figure.4.18(a)) suffers from the different placement position of

network interfaces with respect to the logic scheme, to such an extent that

the critical path increases from 4 crossings to 31, whereas the total number

of MRRs achieves 40 (8 in the inter-cluster network,plus both 16 for the

memory request network and the response one). Despite a higher worst case

number of crossings in the logic scheme (6), the layout of the 4x4 Folded
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Figure 4.17: Snake Properties

Crossbar Figure.4.18(b) resulted only in 21 crossings, with the same number

of MRRs reported in GWOR (40). The layouts of the 4x4 Lambda Router

(Figure.4.18(c)), ORNoC (Figure.4.18(d)), and 4x4 Snake (Figure.4.18(e)).

are clearly less intricate than the previous ones, hence potentially resulting

in lower insertion loss critical paths. More precisely, Lambda Router reports

8 crossings while Snake only 6. By using the wavelength assignment in [56]

and a convenient ordering of nodes along waveguides, ORNoC turns out to

exhibit 3 crossings on the critical path, all of them are localized inside the

network interfaces (HUB) for the sake of waveguide reachability. The Key

properties of topologies under test, measured after their physical design, are

summarized in table.4.3. They are referred to the network as whole, inclusive

of the three partitions. While all topologies natively used 4 wavelengths, a

spatial division multiplexing over 4 waveguides has to be used for ORNoC to

achieve the same goal. Snake and Lambda Router solutions make use of 32

MRRs (24 in the request and response networks vs. 8 in the inter-cluster one)

against 40 of the Ring one. The key reason lies in the fact that each optical

network interface in the ring needs 4 MRRs to inject modulated wavelengths

into their waveguides, in addition to the 8 ones needed in the inter-cluster

network. All other topologies instead do not have any injection filters, since
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Figure 4.18: Layout of the Optical layer with network partitioning after man-

ual place&route. Requests networks are on the left while response ones on

the right of the layout.

they get a branch of the light distribution network which directly enters the

network. In the Ring topology, the injection waveguide needs to be bridged

to the ring waveguides. Extraction filters at receivers are common for all
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Figure 4.20: Total power comparison across topologies

topologies, hence are not considered in the count.

8.1 Power efficiency of topologies

As it was made for global connectivity, our study assumes loss parameters

reported in table.4.2. Then, we rely on a Simulink simulation framework to
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quantify physical metrics of optical networks. For the evaluation of both in-

sertion loss critical path and total power, we followed the same methodology

reported in section.5.2

Figure.4.19 shows the worst-case insertion loss across all topologies consid-

ered in this comparison, assuming two kinds of tapers for the optimization

of waveguide crossings: the standard elliptical taper (already implemented in

the global connectivity scenario) and the efficient Multi-Mode-Interference

one (MMI). However, the feasibility of the MMI taper should not be taken

for granted, since it depends on the maturity of the manufacturing process,

and on the device size. In fact, it has a larger area footprint with respect to

the elliptical taper, therefore it might be suitable for layout-induced waveg-

uide crossings, but might be unfeasible for the internal crossings of pho-

tonic switching elements, where ring resonators should be placed close to

the waveguides for the sake of efficient coupling. Loss parameters utilized

for this optimization were derived from 2D-FDTD (Finite-Different-Time-

Domain) simulations, and exhibit a crossing loss =0.18 dB while a drop loss

= 0.0087 dB. GWOR turns out to be the worst solution, since it suffers from

31 crossings and 24 mm of wiring length on the critical path, while ORNoC

(the best solution) has just 3 crossings but 32 mm of waveguides length as

always on the critical path. The Snake topology, with its 6 crossings and the

same maximum guide length of GWOR, becomes competitive, since propa-

gation losses are not very relevant at this chip size yet. With elliptical taper,

the overhead with respect to ORNoC is just 5%. 4x4 Lambda Router has

reasonable results in the comparison since it has 22 mm of wiring length

and 8 crossings, while the 4x4 Folded Crossbar is better than GWOR for

two reasons: lower number of crossings (21), and 4 mm shorter link length

on the insertion loss critical path. The effect of MMI is highly beneficial for

the Snake, since it minimizes the impact of its crossings over ILmax, while

benefits are not so relevant for the waveguide-dominated ORNoC. This lat-

ter ends up in a 13.2% higher insertion loss than Snake. This result is very

interesting, since it points out that there is actually a role also for non-ring

topologies in WRONoCs, in spite of their apparently higher complexity. In

turn, Snake results in a 2.5%, 32.6% and 49.5% lower insertion loss than

Lambda-Router, Folded Crossbar and GWOR respectively.
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Figure.4.20 shows the total power across all topologies when the energy

consumption of the detector is 395fj/bit (or 3.95mW). Power refers to the

scenario where the maximum aggregate bandwidth of the network is used

(440Gbit/sec with modulation rates of 10Gbit/sec). As can be seen, the to-

tal power of GWOR is higher than that of other topologies regardless of the

specific taper. With elliptical tapers, GWOR is clearly infeasible under the

given place&route constraints. The same holds, for the Folded Crossbar. The

capability of the Snake topology to track power efficiency of the optical ring

(the best solution) is remarkable at this system scale. The effect of MMI

tapers is to reduce the critical path differentiation across topologies, hence

significantly bridging the gap between the best and the worst one. Laser and

modulator power are closely related to the ILmax of the topologies, however

the total network power is dominated by receiver power with current technol-

ogy assumptions (average 75% with Elliptical taper as opposed to 90% with

MMI taper), therefore the remaining gap between topologies in Figure.4.19

maps to the total power gap of Figure.4.20 after going through an attenua-

tion factor: just 15mW of difference between Snake (the best) and GWOR

(the worst). Of course, different laser sources (e.g., wall-plug laser efficiency)

or receiver (e.g., energy) parameters may further widen the gap.

9 Global Connectivity vs. Partitioning

This section describes the comparison between the best topologies, both

ring-based and filter-based, implemented both for global connectivity and

network partitioning. Figure.4.21 shows the total power comparison between

the message-class specific optical Ring (from partitioning optimization) and

the global Ring. As can be seen, both implementations almost provide the

same total power, particularly, the partitioned Ring consumes 188mW, in-

stead the global one 195mW (roughly 3.6% more). This marginal deviation

is determined by the laser power. In particular, the global Ring topology

features more laser sources then the local Ring (7 vs. 4). Let us denote also

that the receiver power results to be the most important contributor in the

power breakdown.

In contrast, Figure.4.22 illustrates the total power comparison of the best
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filter-based topologies, both in the global connectivity and the network par-

titioning cases. Similar to ring-based topologies, the receiver power signifi-

cantly contributes to the total power. However, for the 8x8 Folded Crossbar

(the best filter-based global topology) such impact ends up being mitigated

by modulator power, that becomes relevant since the 8x8 Folded Crossbar

topology provides higher insertion loss than the 4x4 Snake (15.3 dB vs. 6.75

dB). It should be recalled that modulator power partly depends on the in-

put optical power. By including all contributions, the 4x4 Snake results to

be more efficient than the 8x8 Folded Crossbar by about 30% (189 mW vs.

276mW). From the proposed analysis, it is clear that filter-based topolo-

gies benefit the most from the network partitioning optimization, while ring

topologies are in any case global structures. Also, in small-scale systems

topology selection can be ultimately dictated by design simplicity consider-

ations, since it is not difficult to engineer both filter-based and ring-based

topologies with similar power figures. From this viewpoint, ring-based solu-

tions are clearly appealing.

10 Scalability Implications

As a next step, we want to characterize the impact of system scale and tech-

nology evolution on this trend. For this purpose, we sketch a future generation

of the target system. We now assume 128 cores in the tile-based electronic

plane, getting access to the optical layer through 8 gateways (and 8 cor-

responding hubs in the optical plane). The number of memory controllers

is kept the same, which might be possible due to the benefits of photonic

integration deeper into the DRAM DIMM [30]. Consequently, the die sizes

grow to 16 mm x 16 mm. We limit the comparison between ORNoC and the

best filter-based topology found so far, i.e., the Snake, and omit the inter-

cluster network. Therefore, we manually placed and routed two 4-waveguide

ORNoCs and two separate Snake topologies (an asymmetric 8x4 for memory

requests and a 4x8 to enable memory responses). We assume MMI tapers

to be mainstream in these topologies and that detector energy can be im-

proved up to 50fj/bit [27] while conservatively keeping the same sensitivity,

a projection which is supported by the physical considerations in [67] about
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silicon photonics in 3D-stacked systems and receiver circuitry.

Figure.4.23 shows the insertion loss critical path breakdown of each topology.

The 8 rings are in fact heavily penalized by the high wiring length over the

new die size (64 mm vs. 48 mm of Snake), which leads to a larger amount of

propagation loss regardless of the higher number of crossing losses in Snake

(1.75x higher than 8-Rings).

The total power consumption across the two topologies is shown in Fig-

ure.4.24. Thanks to the lower insertion-loss on the critical path and the higher

maturity of receiver technology, Snake results more efficient than ORNoC by

about 15%. This certainly confirms that optical rings are not the most power

efficient and least complex solution under all WRONoC scenarios, although

conclusions are tightly instance- and technolgoy-specific.

10.1 System-Level Implications

In section 8.1 we pointed out a significant power gap between GWOR and

ORNoC (or Snake) in the target system in the presence of crossings opti-

mized with elliptical tapers. In this section we show that the most power

efficient topologies might use this power budget (around 250mW) to increase

their wavelength parallelism. This would decrease the serialization ratio at

the electro-optical network interface and improve system performance. This
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Figure 4.24: Total Power under Scaled Assumptions: Snake vs. Rings

is typically referred to as broadband switching. We computed that a 250mW

gap would enable ORNoC/Snake a wavelength parallelism of 2 on every

master-slave optical channel, including the cost for the additional modulators

and receivers. This would mean around 80Gbit/sec of memory traffic from

each hub. Alternatively, the wavelength budget might be allocated heteroge-

neously across the channels, devoting more bandwidth to the most congested

ones. To quantify this benefit, we performed a system-level simulation where

we implemented these features.

Full system evaluation was obtained using the gem5 simulator [76], in which

we model the clustered 16-core architecture described in Table 4.4 and em-

ploying our WRONoC partitions for inter-cluster communication as well

as for communication towards and from main memory through four mem-

ory controllers. Simple local NoCs are used for intra-cluster communica-

tion. Cache parameters were derived from Cacti 6.0 [83]. Performance were

evaluated for the Parsec 2.1 multithreaded benchmark suite [77], which en-

compasses heterogeneous real-world applications for which we have used the

medium input set. Linux 2.6.27 operating system (OS) was booted on the

simulated architecture and we enforced core-affinity to reduce OS scheduling

effects in successive runs.

Figure 4.25 shows the performance improvements that can be achieved at sys-

tem level when different degrees of broadband switching are used and under
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Figure 4.25: System-level performance speedup (normalized).

the load of real-world complex benchmarks. We assume that the wavelength

budget is homogeneously spread across all optical channels. In particular,

2-bit parallelism (the case of interest) allows for more than 52% average im-

provement and up to 61% for bodytrack application, while 4-bit parallelism

reaches 68% average improvement with a peak of 80% for canneal.

Using more than 4-bit optical parallelism is useless as performance saturates

by construction. In fact, the proposed contention-free network topology al-

lows concurrent optical communications between each core pair without con-

tention and with the indicated parallelism. As each electronic link towards

the optical path feeds the electro/optical hub at 32 Gbps (32bit/flit @ 1GHz),

a 4-bit optical interface working at 40Gbps is able to drain the communica-

tion at full speed without inducing any queuing. Therefore, a wider optical

interface would be idle for most of its time and could not be able to improve

communication performance in any way. Removing such interface bottleneck

is outside the scope of this work.

These results highlight that part or all of the power saved by ORNoC or Snake

over GWOR can be fruitfully used to improve overall system performance

and still maintaining a power advantage over the baseline.
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Table 4.4: Parameters of the simulated architecture
Cores 4 clusters, 1 GHz cores

L1 caches 16 kB + 16 kB Instr./Data, 4-way, 1 cycle hit time

L2 cache 4 MB, 8-way, shared and distributed 16x256 kB banks,

2/5 cycles tag/tag+data (bank)

Coherency MOESI, distributed directory and one per cluster

memory controller

NoC Electronic mesh intra cluster, 32 bit, 1 GHz

WRONoC inter-cluster and processor-memory, 1/2/4 bit

Main memory 1 GByte, DDR2 DRAM, 80 cycles

11 Conclusion

This chapter argued a comparative analysis of WRONoC topologies by con-

sidering both the properties of optical links as well as placement constraints

on a target system of practical interest. First, there is a large deviation

of insertion loss between the logic scheme and the physical implementation

as an effect of placement constraints. Second, the most promising logic

schemes may turn out to be the worst physical topologies, so the design

predictability gap should be carefully quantified. Third, network partition-

ing is an effective way of reusing wavelengths and simplifying ONoC design.

Fourth, the best topologies for global connectivity are not necessarily the

best options for network partitioning. On one hand, for small scale systems,

a Spatial-Division-Multiplexed Ring topology is hard to beat. Even in this

context, should technology evolutions improve optical receiver energy, filter-

based networks could again have a role. In practice, an optical Ring is ideally

the best WRONoC topology, but its practical nonidealities (e.g., waveguide

reachability in the injection system, worse waveguide length scalability on the

critical path) make an actual comparative test with other filter-based topolo-

gies mandatory in the target system. On the other hand, for future larger

scale systems, where connectivity requirements and die size increase, Spatial-

Division-Multiplexing combined with the relevant role of propagation losses

seriously penalizes optical ring architectures, so that filter-based topologies

may become appealing. This trend will be further consolidated by the devel-
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opment of CAD tools for automatic place&route of filter-based topologies,

which will optimize their quality metrics in layout-intricate and/or highly-

integrated scenarios





Chapter 5

Network-Interface Architecture

for Wavelength-Routed Optical

NoC Topologies

1 Abstract

This chapter focuses on the description of the network interface architecture

for wavelength-routed optical network-on-chip. Figure 5.1 shows the detailed

scheme of the proposed network interface. Although the chapter 4 has intro-

duced the key role of the network interfaces for wavelength-routed ONoC, it

has not discussed important details and architectural considerations. In con-

trast, the objective of this chapter is not to present the best possible design

point, but rather to start considering the basic components, and indicating

which one deserves the most intensive optimization effort for prime time of

optical interconnect technology in industry. In addition, the optical NoCs

move most from their control logic to the network interfaces (NIs), which

should not be oversimplified with abstract models.
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Figure 5.1: Optical Network Interface Architecture.

2 Network Interface Architecture:

A More Detailed View

Here, we accurately describe the functionalities of most the important parts

comprising the proposed Network Interface Architecture.

2.1 Wavelength Routed NoC

As widely discussed in chapter.2, the Wavelength-routed optical NoCs rely

on the principle of wavelength selective routing. As illustrated in Figure.5.2,

conceptually, every initiator can communicate with every target at the same

time using different wavelengths. For instance, the first initiator uses wave-

lengths 1, 2, 3, and 4 to reach 4 different targets 1, 2, 3, and 4, respectively.

The topology connectivity pattern is chosen to ensure that wavelengths will

never interfere with each other on the network optical paths. This way, all

initiators can communicate with the same target by using differentiated wave-

lengths. WRONoCs support contention-free all-to-all communication with a

modulation speed of 10 Gbps/wavelength. The proposed Network Interface
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Figure 5.2: Principle of the Wavelength Selective Routing.

Architecture can work with any WRONoC topology.

2.2 Message Dependent Deadlock Avoidance

Message Dependent Deadlock (MDD) arises from the interactions and de-

pendencies created at network endpoints between different message types

[80, 70]. Figure.5.3 shows the dependence between a request and response

at the NI. In a complete system, the combination of these effects may lead

to cyclic dependencies. Message dependent deadlocks, once they occur, block

resources at both network endpoints and inside the network indefinitely, even

if an algorithm is used to avoid routing-dependent deadlocks in the network-

on-chip. This arises from the fact that network routers are unable to differen-

tiate between message-dependent deadlocks and normal network congestion.

When we apply these considerations to WRONoCs, the problem gets sim-

plified by the fact that there is no buffering inside the network. Therefore,

the ONoC automatically satisfies the consumption assumption, which is a

necessary (but not sufficient) condition for deadlock avoidance. To enforce

the sufficient condition, we must allocate a different buffer for each kind of

message in the NI. This has direct implications on the buffering architec-

ture of our target NI (that is, on the number of virtual channels), depending

on the communication protocol the WRONoC needs to support. To avoid

message-dependent deadlock, every network interface needs separate buffer-



86
Network-Interface Architecture for Wavelength-Routed Optical NoC

Topologies

REQUEST

RESPONSE

NI MEMORY CONTROLLER

WAIT-FOR

Figure 5.3: Dependence between a Request and Response at the NI.

ing resources for each one of the three message classes of the MESI protocol.

This should be combined with the requirements of wavelength routing: each

initiator needs an output for each possible target, and each target needs an

input for each possible source. As a result, in the baseline version of the NI,

each initiator comes with 3 FIFOs for each potential target, and each target

with 3 FIFOs for each potential initiator. In a more optimized version of the

NI (the one in Figure 5.1), all destinations share the same set of 3 FIFOs

and the flits are sent to different paths afterwards (all logic components after

1x15 demuxes are replicated for each destination).

2.3 Buffering Sources

All the FIFOs at both the transmission and the reception side must be dual-

clock FIFOs (DC FIFOs) to move data between the processor frequency

domain ( it is assumed to be 1.2 GHz) and the one used inside the NI. In this

work we utilize the DC FIFO architecture proposed in [79]. These devices

depend on the bit parallelism. The size of each DC FIFO is chosen based

on corresponding size of the packets that use each of the Virtual Channels

(VCs). Since control packets need 2 flits, while data packets 21 flits, assuming

a flit width of 32 bits, the minimum size to achieve the perfect throughput is

5-slots [79], hence all the VCs at the transmission side are size accordingly. In

order to avoid that communications are interrupted, at the reception side the

data VC are sized based on the round-trip latency. Hence, at the reception

side, the DC FIFOs for data packets are result 15-slots DC FIFOs. On the

contrary, for control packets we kept the minimum size (5-slots) since they

can already fit two complete packets.
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2.4 Serialization and Deserialization Procedure

The use of serializers and deserializers is mandatory since it is hardly feasible

(e.g. area, power consumption and floorplanning) to integrate as many lasers

as the number of bits to transmit per packet(32 bits)). For this reason, after

flits are forwarded to the appropriate path depending on their destination

they need to be converted at 10 GHz in order to be transmitted in the

optical NoC. Hence, serializers are used for translating the flit into a 10

GHz bit stream. The number of serializers is defined based on the optical bit

parallelism (e.g 3,4.etc). In fact 3-bit parallelism means 3 serializers of 11 bits

each that work in parallel to serialize 32 bits of a given flit, meaning an overall

bandwidth of 30 Gbps. The bit parallelism also determines the frequency

inside the optical NI. At 3-bit parallelism, 1.1ns (0.1ns∗11bits) are necessary

to serialize 11 bits while only 0.8 ns are needed with 4 bit-parallelism. The

reception side is specular: flits must follow the deserialization process and

another set of dual-clock FIFOs.

2.5 Resynchronisation:

Source Synchronous Communication

Another key issue to be considered in NIs concerns the resynchronization

of received optical pulses with the clock signal of the electronic receiver. In

this work we assume source-synchronous communication, which implies

that each point-to-point communication requires a strobe signal to be trans-

mitted along with the data on a separate wavelength, and used to correctly

sample received data. Optical transmission of clock signals is an active re-

search field: see for instance [81]. This strobe signal is generated starting

from the electrical clock of the transmitter, and removes the need for phase-

locked loops (PLLs) or delay-locked loops (DLLs). In particular, the source-

synchronous clock is utilized to drive the de-serializers, and after the clock

divider, the front-end of the DC FIFOs. In this work, we assume that a form

of clock gating is implemented, therefore when no data is transmitted, the

optical clock signal is gated.
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2.6 Backpressure Mechanism:

The case of the Credit-based Flow Control

Another typically overlooked issue consists of the backpressure mechanism.

In this work, we opt for the credit-based flow control because it does

not rely on timing assumptions, and credit tokens can reuse the existing

communication paths, thus avoiding any additional waveguide, and resulting

in a milder impact over static power.In addition, the low dynamic energy of

ONoC can easily tolerate the overhead of this flow control strategy. All credits

are generated at the reception side of the NI when a flit leaves the DC FIFO

( at the processor frequency), and forwarded to the transmission side, so that

they can be sent back to the source (at the NI frequency). In order to change

from one frequency domain to another, we opt for synchronizing the valid

bits with a brute force synchronizer. In order to avoid starvation between

VCs, when credits arrive to the transmission side, they have the priority

over the flits from the VCs. Moreover, when credits arrive at the reception

side of the source NI, they need to go though a mesochronous synchronizer to

adapt the frequency derived from the received clock to the local NI frequency.

Dedicated FIFOs for each source are needed at the reception side of the NIs

to support this credit-based flow control. This is a clear candidate for future

optimizations.

2.7 E/O and O/E Conversions

Once all flits are serialized into bits at 10 GHz such an electrical signal is

converted into the corresponding optical one by means of the couple driver-

modulator (typically a ring modulator see [30]). After modulation, (OOK

(On-Off Keying)), the signal can propagate into the optical NoC, and then

reaches the appropriate destination based on the value of the physical wave-

length. At the reception side, by means of the couple ring filter and photode-

tector [30], the optical signal is selected and back converted into the electrical

one. Finally, it will be collected by a private deserializer after going through

the TIA (Trans Impedance Amplifier) and the digital comparator.
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3 Evaluation

This section shows the most important network-quality metrics for the electro-

optical NI: latency, static power, energy-per-bit. Results for an ENoC con-

figured with typical parameters from [68] are also included. This aims to set

the bases for a future comprehensive crossbenchmarking study, which is out

of the scope of this chapter and it will be pursued in the next chapter6.

Table 5.1: Static Power and Dynamic Energy of Electronic and Optical De-

vices.

HARDWARE
3-bit parall 4-bit parall

COMPONENTS

count

per

NI

POWER

(mW)

ENERGY

(fJ/bit)

count

per

NI

POWER

(mW)

ENERGY

(fJ/bit)

DC FIFO 5slots (TX) 3 0.12 10.65 3 0.12 12.72

DC FIFO 5slots (RX) 30 0.12 8.54 30 0.12 10.2

DC FIFO 15-17 slots 15 0.12 26.50 15 0.12 31.65

DEMUX1x3 1 0.000725 0.92 1 0.000725 0.92

DEMUX1x15 3 0.0021 25.21 3 0.0021 25.21

DEMUX1x4 15 0.00056 6.72 15 0.00056 6.72

MUX4x1 + ARB 15 0.08 0.36 15 0.11 0.49

MUX45x1 + ARB 1 0.9 5.09 1 0.9 5.09

SER 45 0.0475 9.41 60 0.0417 2.63

DESER 45 0.0289 7.74 60 0.0281 6.12

MESO-SYNCH 45 0.041 8.00 45 0.0565 11.1

COUNTER 2bits 45 0.01482 1.014 45 0.01482 1.014

BRUTE FORCE SYNC 15 0.004234 1.4 15 0.00503 1.66

CLOCK DIVIDER 15 0.01172 0.6 15 0.0139 0.714

TSV 120 / 2.50 150 / 2.50

TRANSMITTER aggr 60 0.025 20 75 0.025 20

TRANSMITTER cons 60 0.100 50 75 0.100 50

RECEIVER aggr 60 0.050 10 75 0.050 10

RECEIVER cons 60 0.150 25 75 0.150 25

THERM-TUN /ring 180 0.020 / 225 0.020 /

LASER POWER aggr / 0.0421 / / 0.0525 /

LASER POWER real / 0.308 / / 0.385 /

E-SWITCH (3VCs) / 17.9 193 / 17.9 193
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Figure 5.4: Latency breakdown of the optical NI with 3-bit parallelism and

the optical Ring.

3.1 Methodology

To obtain accurate latency results, we implemented detailed RTL models of

the optical and electronic network interfaces and NoCs using SystemC. We

instantiated a 4x4 2D mesh for the electronic NoC, and a similar system

connected through the optical Ring. The network-wide focus, well beyond

the NI, aims at relating NI quality metrics with network ones. Delay values

for the optical Ring have been backannotated from physical-layer analysis in

[27], and have been differentiated on a per-path basis. For power modeling,

every electronic component has been synthesized, placed and routed using

a low power 40 nm industrial technology library. Power metrics have been

calculated by backannotating the switching activity of block internal nets,

and then importing waveforms in the Prime-Time tool. We have applied

clock gating to achieve realistic static power values. Energy-per-bit has been

computed by assuming 50% switching activity.

Table.5.1 lists the static power and energy-per-bit for all the electronic and

optical devices. For the fast developing optical technology, we consider a co-

herent set of both conservative and aggressive values (obtained from [30]).

These values are only realistic under the assumption of low network con-

tention, which rejects the typical operating condition of cache-coherent mul-

ticore processors.
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Figure 5.5: Latency of the most common communication patterns. For the

ENoC, we include minimum, maximum, and average paths.

3.2 Latency Breakdown

Figure.5.4 presents the latency breakdown for the NI components and the

ONoC with 3-bit parallelism, obtained from our accurate RTL-equivalent

simulations. As can be seen, the latency of the network is negligible (it reports

23 ps and 320 ps across best and worst case paths), but it requires support

from a time consuming NI. In fact, inside the NI, the DC FIFOs are the

components with the largest latency (see DC FIFOs at the transmission and

reception sides).

3.3 Transaction Latency

We simulate the most common traffic patterns generated by a MESI co-

herence protocol in our RTL models without any contention. The increased

accuracy of our analysis stems from the fact that our packet injectors and

ejectors model actual transactions of the protocol, as well as their interdepen-

dencies. Table.5.2 describes the analyzed compound transactions and Figure

5.5 presents the zero-load latency results.

The messages included in these patterns amount to an average 99.9% of the

total network traffic, as we observed from full-system simulations of realistic

parallel benchmarks from PARSEC and SPLASH2 and multiprogrammed

workloads built with SPEC applications (we only exclude communication
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Table 5.2: Messages generated by the coherence protocol.

id Event Sequence of messages

P1a L1 miss

1. Request from L1 to L2

2. Data reply from L2 to L1

3. ACK from L1 to L2

P1b/c

L1 write

miss, 1/2

sharers

1. Request from L1 to L2

2. L2 sends data reply and invalidates

1/2 sharers

3. Sharers sends ACK to L1 req.

4. ACK from L1 to L2

P2a

L1 needs

upgrade to

write

1. Request from L1 to L2

2. ACK reply from L2 to L1

3. ACK from L1 to L2

P2b/c

L1 needs

upgrade to

write, 1/2

sharers

1. Request from L1 to L2

2. ACK reply from L2 to L1 and inval-

idates 1/2 sharers

3. Sharers send ACK to L1 req.

4. ACK from L1 to L2

P3

L1 write

miss, another

owner

1. Request from L1 to L2

2. L2 forwards request to owner

3. Owner sends data to L1

4. ACK from L1 to L2

P4

L1 read miss,

another

owner

1. Request from L1 to L2

2. L2 forwards request to owner

3. Owner sends data to L1 and L2

4. ACK from L1 to L2

P5
L1

replacement

1. Writeback from L1 to L2

2. ACK from L2 to L1
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with the memory controllers). Therefore, they are a very good indicator of

the network latency improvements we can expect from the optical network,

including its (non-negligible) network interface overhead. We observe that in

all the patterns except the last one, the ONoCs either beat or obtain equal

results to the ENoC with all path lenghts. As opposed to the ENoC, most of

the latency of the ONoC is spent in the NI, which is needed to support the low

latency optical communication. The tendency changes in pattern 5 because

the replacement packet is using a VC designed for control to transmit data,

and the smaller FIFO cannot store enough fits to support the round-trip

latency. However, this messages are only 7.4% of the total network traffic.

3.4 Static Power & Energy-per-Bit

Figure5.6 depicts the static power and (dynamic) energy-per-bit for the

ENoC vs. the 3 and 4-bit parallelism ONoCs. We do not consider ONoCs

with less than 3-bit parallelism because the bandwidth of the optical paths

would be too low, or ONoCs with more than 4-bit parallelism, because the

static power becomes unacceptable (we can see a clear trend in Figure5.6).

We present a breakdown of the contributions of the NIs and NoCs. For the

NI, we also separate the electronic components from the optical (and ana-

logic) ones. The optical NoC is solely composed of laser power, so it has no

impact on dynamic energy. In computing total power figures, we consider

two sets of parameters for optical interconnect technology, corresponding to

its high maturity (named aggressive parameters) and to its low maturity

(conservative parameters). We observe that the electronic switches dominate

the static power, accounting for 95.8% of the total. However, this trend is

reversed in the ONoC, with a contribution of only 10.6% and 11.8% for the

aggressive technology with 3 and 4-bit parallelism, respectively. It is worth

highlighting that most of the static power of the electronic components in

the NI comes from the DC FIFOs.

For energy-per-bit we included minimum, maximum and average path lengths

for the ENoC and specific values for control and data packets for the ONoC

(which change due to the different size of the reception DC FIFOs). As can be

seen the ONoC has significantly lower energy-per-bit than the ENoC. Apart

from that, we still see how the main contributor for the ENoC energy is the
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Figure 5.6: Static power and Energy-per-Bit of the NIs and the electronic a

optical NoCs.

NoC, while for the ONoC, the complexity is all concentrated inside the NI.

4 Conclusion

This chapter presented an accurate design of NIs for WRONoCs and has

quantified the effect on the most important network-quality metrics and sets

the scene for further improvements of comparative ONoC analysis. Regard-

ing latency, the ONoC is always faster than its electronic counterpart even

considering the NI, thus preserving the primary goal of a WRONoC. The

behaviour under contention depends mainly on the available bandwidth of

the interconnect technologies under test. For the WRONoC, such bandwidth

can be modulated by tuning the bit parallelism.

When we consider power figures, we note that while switches are the main

contributors in ENoCs, the NI has the largest share in ONoCs. For static

power, this contribution is in the same order of magnitude than that from

laser sources, for conservative optical technology parameters. However, by

further improving the optical technology, the role of the NI becomes domi-

nant, thus making it the main target for future optimizations. Finally, the
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ONoC preserves its superior dynamic power properties over its ENoC coun-

terpart, even in the presence of its NI.

This chapter has shown that the NI architecture should not be overlooked for

realistic ONoC assessments, and comes up with new insights not provided

by earlier photonic network evaluations. The most important one is that

NI optimizations perhaps have higher priority over the relentless search for

ultra-low-loss optical devices. This chapter has also included contents that

are referred to a cooperative and interdisciplinary work where further details

are in [82].





Chapter 6

Crossbenchmarking Framework

between the Most Efficient

ONoC and its Aggressive

Electrical Baseline

1 Abstract

Many crossbenchmarking results reported in the open literature raise op-

timistic expectations on the use of optical networks-on-chip (ONoCs) for

high-performance and low-power on-chip communication. However, most of

those previous works ultimately fail to make a compelling case for chip-level

nanophotonic NoCs, especially for the lack of aggressive electronic baselines

(ENoC), and the poor accuracy in physical- and architecture-layer analysis of

the ONoC. This chapter aims at providing a crossbenchmarking framework

between an optical Network-on-Chip and its aggressive electrical counterpart

with realistic complexity, performance, and power figures, synthesized on an

industrial 40nm low-power technology. At the same time, key physical design

issues for the ONoC under test are carefully assessed, thus paving the way for

a well-grounded definition of the requirements for the emerging ONoC tech-

nology to potentailly achieve energy break-even point with respect to pure

electronic interconnect solutions in future multi- and many-core systems.
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2 Introduction

This chapter aims at a higher level of practical relevance in assessing the

potentials of ONoCs for future multi- and many-core systems. This is funda-

mentally achieved in two ways. On one hand, we make use of an aggressive

electrical baseline. In fact, realistic design point for the ENoC architecture in

terms of complexity, and power are considered. Moreover, real synthesis runs

of the target ENoC on a 40nm industrial low-power technology will provide

the reference quality metrics the competing optical NoC solutions are con-

trasted with. On the other hand, the ONoC is designed and accurately charac-

terized based on both accurate physical-layer and architecture-layer analysis.

The wavelength-routed Ring topology for the ONoC is selected, whose sim-

plicity can reduce the adoption risk of an emerging technology. At the phys-

ical layer, the increased accuracy in ONoC modeling is achieved by drawing

the Ring layout, especially its injection and ejection interfaces.

At the architecture layer, as previously discussed in chapter.5, the design of

the network interface architectures needed to inject/eject electronic packets

into/from the ONoC is made, thus capturing typically overlooked sources of

performance and power overhead, such as flow control, clock resynchroniza-

tion, or suitable FIFO sizing.

This work also carefully considers fixed-power overheads, which are a signifi-

cant percentage of total ONoC power. Static power is especially important in

those application domains where the network does not undergo high utiliza-

tion, but it has to serve sporadic traffic peaks. This is the case of shared mem-

ory multiprocessors with distributed last-level cache, implementing hardware

support for cache coherence. This scenario is becoming mainstream in many

application domains, but it is challenging both for the standalone ENoC

and for the ONoC. In fact, cache coherence protocols rely on a number of

different message types with chained dependencies, thus raising the message-

dependent deadlock concern, which is typically addressed by ENoC designers

by adding virtual channels. In any case, the use of an ONoC makes sense in

this domain only if it can significantly cut down on the total application

execution time, thus burning less static power. This chapter considers the

case study of a directory-based implementation of the MOESI protocol, and
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Figure 6.1: Tile 16 (from Tilera Corporation).

derives the requirements for both ENoC and ONoC design.

Finally, the crossbenchmarking effort is extended to the system level by back-

annotating the relevant physical and architectural metrics/effects into an

abstract system-level functional simulation framework, capable of projecting

the ultimate impact that optical interconnect technology may have on real-

istic execution scenarios. Moreover, realistic traffic patterns such as Parsec

2.1 are used for the estimation of performance and energy metrics for both

Electronic and Optical NoCs.

3 Target System

Similar to system Tile 16 (see Figure.6.1), our experimental setting consists

of a multi-core processor composed of 16 Tiles. Each of them operates as

both initiator and target for communications over the system interconnect.
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Tiles are disposed over the die area in a common 4x4 2D-Mesh structure (see

gray tiles in Figure.6.1). Each Tile is associated with its respective Network

Interface (a master or a slave one), performing protocol conversion and (de-

)packetization. In our study we assume that these may be omitted during

power analysis since they are equally required for both NoC implementa-

tions, and will not be cause of differentiation.Our analysis begins from the

point where the two architectures start to diverge, including for instance the

buffering architecture and frequency converters.

4 Baseline Electronic NoC

In this section we introduce the baseline Electronic Network-on-Chip (ENoC).

We implement as an aggressive low-power 2D mesh for our reference tech-

nology and chip multiprocessor architecture. We chose a 2D mesh topology

because it is a regular structure that maps well to the regularity of chip mul-

tiprocessor architectures and it is well suited for general-purpose multi-core

systems.

The switch architecture is inspired by the ×pipesLite architecture [68], which

represents an ultra-low complexity design point in the space of electronic

NoCs. ×pipesLite architecture is an input-buffered switch, implementing

logic-based distributed routing and wormhole switching. In this design, one

clock cycle is taken to traverse the switch and one clock cycle to traverse

the link connecting two switches. Buffer capacity is set to two slots for input

buffers and six slots for output buffers. The flit width is 32 bits, which rep-

resents a good trade-off between area occupancy and provided bandwidth.

Also, a directory-based implementation of the MOESI protocol is consid-

ered, which requires at least 3 virtual channels to avoid message-dependent

deadlock [70]. Virtual Channel flow control is implemented by replicating

the basic switch architecture without VC capabilities three times, based on

the approach presented in [71]. This technique results in higher maximum

operating speed, better performance and smaller area. In order to preserve

the generality of the design and support cores with different operating fre-

quencies that access a fixed-frequency NoC, dual-clock FIFOs are included

at the network interfaces.
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Figure 6.2: Principle of the designed Optical Ring Architecture.

Post-layout analysis are performed to assess performance and power metrics

of the Electronic NoC. For this, the switch architecture is synthesized, placed

and routed using Synopsys Design Compiler and IC Compiler tools. For the

physical implementation we leveraged on an Ultra-Low-Power Standard VTh

40nm industrial technology library. After layout generation, the maximum

operative frequency of our design is considered to be 1.2 GHz.

5 Wavelength-Routed Optical Ring Design

In this section we describe our Wavelength-Routed optical Ring topology,

relying on a rigorous design methodology, addressing waveguide crossing con-

cerns, and assessing laser power.



102
Crossbenchmarking Framework between the Most Efficient ONoC and its

Aggressive Electrical Baseline

5.1 Design Methodology

Simplicity and low implementation cost make the optical Ring topology one

of the most appealing interconnection networks proposed in the open litera-

ture to interconnect initiators and targets of a given multi-processor system-

on-chip (MPSoC). In a 3D-stacked scenario, and especially when the global

connectivity is required, the optical Ring is certaily the topology that effi-

ciently meets the place & route constraints unlike other solutions such as

multi-stage networks, and filter-based ones as widely discussed in chapter4.

For these reasons, we engineer a Wavelength-Routed Optical Ring Architec-

ture by following the principle illustrated in Figure 6.2. The key property is

that the same wavelengths can be reused on a single waveguide to establish

multiple communications.

Here, we have an optical Ring network structured into 4 Hubs H0, H1, H2,

H3) which are both initiators and targets. In the proposed example, two dif-

ferent wavelengths (λ1, λ2 ) and two distinct waveguides (the blue and black

one) are sufficient to realize 12 contention-free optical paths. This is demon-

strated through the wavelengths assignment reported in the truth-table of

Figure 6.2. We denote that, no wavelength is listed along its diagonal as

self-communications are not allowed. Each wavelength may be also propa-

gated both on the blue and the black waveguides based on two conditions:

starting node and rotation. For the blue waveguide H0 is assumed to be the

starting node while rotation is considered clockwise. On the contrary, for the

black waveguide, H1 is assumed the starting node while rotation is coun-

terclockwise (see leftmost and rightmost side of the figure 6.2). Once all of

two wavelengths are utilized in the first waveguide to populate all of possible

contention free optical paths started from H0, another physical waveguide

should be added to populate remaining paths. For this purpose the black

waveguide is added. For example, based on above wavelength assignment,

the optical signal that resonates at λ1 is used to establish all short range

communications among actors (e.g H0-H1, H1-H2,.. etc) which correspond

to one-hop optical path. While, λ2 (H0-H2, H2-H0 ) are used to accom-

plish long range distance, with their two-hops optical path respectively.

By pursuing the presented principle we scaled our Ring architecture up to

16 Hubs.
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Figure 6.3: Floorplan of a 16x16 Wavelength-Routed Optical Ring Architec-

ture.

In the design of a 16x16 optical Ring, 13 wavelengths are reused and multi-

plexed on 16 different waveguides to enable 240 contention free optical paths.

Figure 6.3 shows the proposed floorplan of our Ring implementation which

basically works like a bus since includes multiple waveguides into it. The die

size is assumed to be 8mm x 8mm, while inter-hub distance and hub width

are assumed 2 and 1 mm respectively. Ultimately, as it was described here,

by leveraging on both SDM (Spatial-Division-Multiplexing) technique, based

on replicating physical waveguides, and the WDM (Wavelength-Division-

Multiplexing) one which enables several optical communications on a single

waveguide at the same time, and alternating also different rotations (clock-

wise and counterclockwise), it was possible to deliver multiple contention-free

optical paths, while minimizing the amount of physical resources and of op-

tical power losses.
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5.2 The Waveguide Crossings Concern

in Optical Ring Design

In principle in any optical Ring topology neither waveguide crossings nor

optical switching elements appear. For this reason, it certainly results an

appealing interconnection network. However, there are physical effects that

come into play when its actual implementation is pursued. As depicted in

Figure. 6.4,the light emitted by laser sources (assumed off-chip) is first mul-

tiplexed into a private waveguide (gray arrow line that enters each Hub) and

then spread to all optical modulators that are located inside each Hub. As a

consequence, the reachability of all waveguides from the injection to the ejec-

tion interfaces of optical packets has to pay the price of undesired crossings

(see yellow star). Furthermore, MRRs (Micro-Ring-Resonators) are needed

not only at the destination stage (Ring Filters) to selectively eject the optical

signal, but also to couple the optical same signal into the Ring network after

modulation (Ring Couplers).

It is reasonable to expect that such physical effects become even more im-

portant when the Ring topology is scaled up to 16 Hubs. In particular, the

worst case number of crossings inside the optical network interface is 15 and

the total number of MRRs is 2.16K, which means more insertion loss and

thermal tuning overhead .

5.3 Laser Power Assessment

The preliminary step to evaluate the efficiency of an optical network relies on

the estimation of the insertion loss across all wavelengths involved in the given

design. Such a metric is extremely important to quantify the total amount of

laser power needed to reliably detect the optical message at the destination

node. For this reason, we calculate the insertion loss (IL) as the sum of phys-

ical components which affect the optical signal along the path, starting from

modulator, coupling filter, propagation distance, bending waveguide, ring fil-

ter, photodetector without overlooking crossing waveguides. In the end, we

quantify the worst case ILmax on each wavelength and laser power is derived

accordingly. In our study, die size is assumed to be 8mmx8mm while loss

parameters are listed in table 6.1.
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For the sake of a more comprehensive analysis of nanophotonic devices, and

of their evolution over time, we distinguish two relevant cases: realistic and

aggressive ones. For the former one we consider a wall-plug laser efficiency of

8% while crossing waveguides are supposed to be optimized with the stan-

dard elliptical taper [60]. In the aggressive case, these quality metrics are

projected assuming a laser efficiency of 20% whereas crossings are improved

through MMI tapers [61]. In both cases, the detector sensitivity is considered

the same S= -20 dBm.

Figure 6.5 illustrates the laser power trend across wavelengths. This figure

highlights that laser sources (assumed to be Continuous Wave) must be

treated in a different way. In other words, as the insertion loss is not the

same for each path, CW lasers can be sized accordingly. Therefore, there will

be some laser sources that turn out to be more power hungry than others.

When the aggressive case comes into play, even if the absolute power gap is

strongly reduced (4x), there is still a relative gap across wavelengths, thus

confirming that laser sources should be treated separately.

Finally, had we ideally designed our ring topology without accounting for

crossings at each optical interface, the total laser power would have been

clearly lower than our accurate approach. More in details, there would have

been a reduction of 80%, and 41% in the realistic and aggressive scenarios

respectively.

6 Power Modeling

In this section we describe the power modeling assumptions on which our

crossbenchmarking framework is based. Every electronic component is syn-

thesized, placed and routed using a Low-Power 40nm industrial technology

library, in order to provide realistic power measurements (not derived from

optimistic or ideal estimations). Power metrics are calculated by backan-

notating the switching activity of block internal nets, and then importing

waveforms in the PrimeTime Tool. It is worth observing that clock gating

technique is applied for the sake of realistic measurement of static power.
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Figure 6.5: Laser power results across wavelengths: aggressive vs. realistic.

PHOTONIC COMPONENTS VALUE

AND DEVICE PARAMETERS

COUPLER LOSS 0.46dB

MODULATOR INSERTION LOSS 4.0dB

PHOTODETECTOR LOSS 1.0dB

FILTER DROP LOSS 1.0dB

THROUGH RING LOSS 10−3dB/ring

PROPAGATION LOSS 1.5dB/cm

BENDING LOSS 0.005dB

WAVEGUIDE CROSSING LOSS (@REALISTIC) 0.52dB

WAVEGUIDE CROSSING LOSS (@AGGRESSIVE) 0.18dB

RECEIVER SENSITIVITY -20dBm

LASER EFFICIENCY (@REALISTIC) 8%

LASER EFFICIENCY (@AGGRESSIVE) 20%

Table 6.1: Photonic Components and Device Parameters.
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Energy-per-Bit is computed by removing the Static Power by the Total power

on a component-basis, under 50% switching activity assumption.

Overall, the power consumption of the Electronic NoC is built upon repli-

cating the power contribution of its basic switch components.

As mentioned in section 4, we also considered the power consumption of both

electronic NI buffering and frequency converters (dual-clock FIFOs) which

contribute around 11.5 mW. The static power dissipated (Idle power) by the

entire electrical network (16 switches), is around 286 mW (only the top-

level clock tree is omitted). In addition, the energy required for transmitting

data over each hop of the ENoC is 193 fJ/bit.

Similarly, the power dissipation of Optical Network Interfaces is com-

puted by composing the power consumption of each of its sub-blocks such as

DC FIFOs at the transmission sides, Demultiplexers, SERs, Synchronizers,

DESERs, DC FIFOs at the reception sides, Multiplexers, and Credit coun-

ters, as widely explained in the previous chapter 5.

The static power contribution of all optical components is given by: Laser

sources, Thermal tuning, Transmitter (i.e., the driver-ring modulator couple),

Receiver (i.e., Photodetector, Trans-Impedance Amplifier, and Comparator)

and the source-synchronous clock. The latter addendum is internally com-

posed by further laser sources, Transmitters, Receivers, and MRRs as well.

For static and dynamic power parameters, as well as for their relative ratio,

we consistently assume values from the same literature source [30, 72].

In order to transmit each bit there is the need for: 13 CW laser sources, 240

TXs and RXs and 720 MRRs. These resources are replicated as many times

as the target bit parallelism, and also for the optical clock support. Power

metrics of all basic blocks of our architectures are summarized in Table 6.2.

The derived static and dynamic power values for electronic and optical com-

ponents are combined with system-level simulation results (see section 7) to

obtain comprehensive metrics under the effect of functional traffic.

7 Experimental results

In this section we propose our results in terms of performance and energy

consumption. We followed two fundamental analysis strategies, hereafter
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ELECTRONIC STATIC DYNAMIC

DEVICES POWER ENERGY

(// bit parallelism) (mWatts) (fJ/bit)

DC FIFO TX 5 //3 0.12 10.65

DC FIFO RX 5 //3 0.12 8.54

DC FIFO TX 22 //3 0.12 39.00

DC FIFO RX 15 //3 0.12 26.50

MUX4x1 ARB //3 0.08 0.36

MUX45x1 ARB //3 0.9 5.09

SERIALIZER //3 0.0475 9.41

DESERIALIZER //3 0.0289 7.74

MESO SYNCH //3 0.082 8.00

BRUTE FORCE //3 0.004234 1.4

DC FIFO TX 5 //4 0.12 12.72

DC FIFO RX 5 //4 0.12 10.2

DC FIFO TX 22 //4 0.12 46.41

DC FIFO RX 15 //4 0.12 31.65

MUX4x1 ARB //4 0.11 0.49

MUX45x1 ARB //4 0.9 5.09

SERIALIZER //4 0.0417 2.63

DESERIALIZER //4 0.0281 6.12

MESO SYNCH //4 0.113 11.1

BRUTE FORCE //4 0.00503 1.66

DEMUX1x3 0.000725 0.92

DEMUX1x15 0.0021 25.21

DEMUX1x4 0.00056 6.72

COUNTER@4bits 0.02964 1.014

TSV / 2.5

TRANSMITTER (aggressive) 0.025 20

TRANSMITTER (realistic) 0.100 50

RECEIVER (aggressive) 0.050 10

RECEIVER (realistic) 0.150 25

THERMAL TUNING /MRR @20
◦K 0.020 /

E-SWITCH (3VCs) 17.9 193

Table 6.2: Static and Dynamic Power of Electronic Devices.
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referred as: CMF (Common Modeling Framework) vs. AMF (Accu-

rate Modeling Framework). Their comparison is very instructive.

The first one reflects common modeling assumptions in the open literature,

which lead to an overly optimistic assessment of optical interconnect tech-

nology. In particular, network interfaces are typically oversimplified, and end

up being abstracted by simple input/output FIFOs of infinite length. Simi-

larly, the blocking effect of the backpressure mechanism is overlooked. As a

consequence, the ONoC easily proves much more performance-efficient than

the electronic counterpart. Moreover, the lack of a layout analysis in addition

to a physical-layer analysis in ONoC design is another important source of

optimism in previous evaluations.

In contrast, the key strength of this work (AMF methodology) consists of

a careful exploration of E/O and O/E interfaces, accounting for the contri-

butions and effects of every building block: routing, buffering, serialization

and deserialization processes, as well as optical transmitters and receivers,

clock domain synchronizer, backpressure cost. Last but not least: the propa-

gation of source-synchronous clocks in optical networks and their impact on

the overall system power consumption. It will be very interesting to compare

the design trade-offs with the two experimental methodologies. They will

be hereafter presented with both the conservative and the more aggressive

parameters of the optical technology.

7.1 Methodology

Experimental results are obtained through GEM5 full-system simulator [76]

where we modeled in details both the electronic baseline and the optical ar-

chitecture described in the previous sections. Modeling included functional

behavior, timing accuracy, and energy consumption. Performance and energy

are evaluated for the PARSEC 2.1 benchmark suite, a collection of hetero-

geneous multithreaded applications spanning different emerging application

domains [77]. These benchmarks, comprising artificial visions, media pro-

cessing, 3D and physical animation, search similarity and featuring parallel

algorithms, are representative not only of chip multiprocessor workloads, but

also of the current and near future usage of high-end embedded devices such

as smartphones and tablets [78]. We adopted the medium input-set to have a
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significant workload size and maintain a reasonable simulation time (within a

few days per benchmark). All benchmarks have run on a Linux 2.6 operating

system, which is booted on the simulated architecture, and they are instanti-

ated with a degree of parallelism 16. Benchmarks are modified to enforce core

affinity as to avoid non-determinism due to operating system scheduling.

As for performance metrics, we considered execution time of the entire par-

allel region of each benchmark as representative of the end-user perceived

performance, and the overall energy consumption of the considered networks.

Finally, the shared cache resources are coordinated by a state-of-the-art

MOESI coherence protocol.

Cores 16 cores, 1 GHz

L1 caches 16 kB (I) + 16 kB (D), 2-

way, 1 cycle hit time

L2 cache 4 MB, 8-way, shrd/dstrb

16x256kB banks, 3/12 cy-

cles tag/tag+data

Directory MOESI protocol, 16 slices, 3

cycles

eNoC 2D-mesh, 1 GHz, 1 cy-

cle/hop

ONoC 3D, 28 mm length, 16 I/O

ports, 10 GHz, 13 wave-

lengths, 16 waveguides, 430

ps full round

Main memory 4 GB, 300 cycles

Table 6.3: Parameters of the simulated architecture.

Table 6.3 summarizes some architectural details and parameters of the con-

sidered reference MPSoC. In the simulator, we implemented the buffering

structures of the E/O interface, as explained in the chapter.5. These are

needed to correctly support the photonic communications and to precisely

take into account the contention and flow-control effects towards a speci-

fied destination. We integrated 5-slot and 22-slot FIFOs on the transmitter

and receiver sides to model the adopted credit-based approach. The detailed
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Figure 6.6: Performance comparison of the ONoC with the electronic baseline.
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Figure 6.7: Energy comparison of the 3 bit (2nd bars) and 4 bit (3rd bars)

ONoC wth respect to ENoC baseline for the common aggressive.

power models of both the electronic and optical networks are integrated,

comprising all the details about the network interfaces.
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Figure 6.8: Energy comparison of the 3 bit (2nd bars) and 4 bit (3rd bars)

ONoC wth respect to ENoC baseline for the common realistic.

7.2 Result discussion

As shown in Figure 6.6, the optical solution, for both 3 and 4 bit paral-

lelism, is able to deliver performance speedups over the electronic baseline.

It achieves up to 23% improvement in case of the larger parallelism (4-bit),

with peaks of more than 30% for canneal and swaptions applications. This

speedup is indirectly useful to reduce the overall static energy consumption

of the optical network. The 3-bit parallelism scores slightly worse obtaining a

18% performance improvement. We consider ONoCs between 3-bit and 4-bit

parallelism, since the bandwidth of optical paths ends up being less than that

of electronic counterparts. More than 4 bits are equally not considered since

the corresponding static power of the ONoC became unacceptable.

From the energy consumption point of view, Figure 6.7 and Figure 6.8 show

the achieved results for the common optimization analysis. In this setup the

aggressive and the realistic case show a very different behavior. In the for-

mer case, the ONoC saves energy with respect to the electronic baseline by

almost 70% on average for the 3-bit case and 60% for the 4-bit one, (see

Figure.6.7) by exploiting its reduced static consumption. In the latter case,

ONoC also obtains a good energy improvement (avg. of 28% for 3-bit setup

and 13% for the 4-bit one) over the electronic baseline demonstrating that,
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Figure 6.9: Energy comparison of the 3 bit (2nd bars) and 4 bit (3rd bars)

ONoC wth respect to ENoC baseline for the accurate realistic.

even with the realistic setup, it is still able to get some benefits compared

with the ultra-low-power electronic baseline (see Figure.6.8). Although the

CMF raises expectations that are not justified in practice, it is already able

to point out a realistic effect: in the presence of a coherence traffic, the great

dynamic energy savings of the ONoC do not count a lot in the final energy

balance, since static power is the dominating factor, and it is mainly asso-

ciated with the amount of instantiated resources, as well as with technology

maturity.

Figure.6.9 and Figure.6.10 show the achieved results for the accurate model.

In this case the aggressive setup causes the ONoC to track closer (avg. over-

head of 11.6%) the break-even with the very low-power electronic baseline,

by exploiting the benefits derived by the execution time speedup of the op-

tical network (see Figure.6.10). The results achieved in the realistic case are

instead far from those of the electronic baseline, and this is due to the more

relaxed technology used in this setup, and to the more accurate modeling of

the optical structures needed. The energy overhead worsens by more than 2x

with respect to the electronic energy figures for the 3-bit configuration (see

Figure.6.9).

With respect to the AMF, the CMF points out a clear underestimation of
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Figure 6.10: Energy comparison of the 3 bit (2nd bars) and 4 bit (3rd bars)

ONoC wth respect to ENoC baseline for the accurate aggressive.

static power, which further emphasizes the dynamic power benefits, and es-

pecially that the actual complexity and overhead of network interfaces are

typically overlooked. Indeed, these results question the common conclusion

that ONoC prime time will depend only on the progress of technology ma-

turity. In contrast, such prime time will only come through an in-depth op-

timization of network interfaces, where the real complexity is hidden under

subtle issues such as buffer numbers and sizing, protocol-dependent dead-

lock, synchronization and flow control. The obtained performance benefits

are not able to reduce the static consumption to get results comparable with

the very low-power electronic baseline with the nowadays available technol-

ogy. The good performance results could be however a good starting point

in case of future enhancement, giving a hint to better explore and refine

the technology applied to these new optical solutions, trying to obtain the

maximum advantages from them. Especially, it will be mandatory to explore

static power gating solutions, similarly to what happened in the past with

electronic circuits.
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7.3 Systeml-Level Energy and Conclusion

When we extend the focus to the system as a whole, previous results paint

a less dismal picture. An interconnect fabric is in fact only a small portion

of the total system energy. As discussed in the previous section, the ONoC

is capable of speeding up the average execution time (from 18 to 23%, for

3-bit and 4-bit parallelism respectively), meaning that the system as a whole

can burn power for less time compared with the electrical counterpart. Fig-

ure 6.11, shows normalized the system-level energy contrasting between the

two systems, the first one with the ENoC and second one with the ONoC

assuming both technologies. In this comparative analysis it is assumed that

systems, without the interconnect, consume the same amount of power, (i.e.

15 Watts) which also includes the power spent by the processor elements. As

can be seen, ONoC makes the system more energy efficient than the ENoC

counterpart regardless the bit parallelism. In particular at 4-bit parallelism,

its energy saving results to be 21% assuming a conservative technology,

while with an aggressive optical technology it improves up to 24%. This
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meas that, when the superior performance properties of optical in-

terconnect technology are properly exploited at the architectural

level, certainly, the system will burn power for a lower amount of

time. In light of this, an aggressive technology should not necessar-

ily be adopted since energy savings are already there even with a

conservative optical technology. Finally, this chapter has included con-

tents that are referred to a cooperative and interdisciplinary work where

further details are in [36].





Chapter 7

CAD Support for Design and

Validation of Optical

Networks-on-Chip

1 Why an Automatic Place&Route Tool for

ONoC Design is needed?

Optical Networks-on-Chip (ONoCs) are considered a promising way of im-

proving power and bandwidth limitations in next generation multi- and

many-core integrated systems. Today, most related research acknowledges

the key role of the physical layer in assessing ONoC topologies (e.g., inser-

tion loss), but overlooks the placement and routing stage in the design pro-

cess, hence applying physical design considerations to topology logic schemes.

Such a mismatch is fundamentally due to the lack of mature CAD tools for

placement and routing of optical NoCs. The objective of this chapter is to

bridge this gap. We propose PROTON, a fast tool for automatic placement

and routing of ONoC topologies, which can support designers in quantifying

the degradation of design quality metrics when moving from topology logic

schemes to their physical implementation. This gap is especially relevant

for Wavelength-Routed ONoCs (WRONoCs), where logic schemes typically

make unrealistic assumptions about the placement of initiators and targets.

For this reason, we put PROTON to work with the most promising WRONoC
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topologies and explore their physical design space given the placement and

routing constraints of a 3D stacked system. This chapter addresses a com-

parative analysis between automatically generated layouts with handcrafted

ones for the same topologies and target system, and prove an insertion loss

improvement by up to 150x. With PROTON the exploration of the physi-

cal design space of ONoC topologies is possible as well as their scalability

analysis considering the layout.

2 Introduction

Today, for the first time the integration of a fully functional photonic system

on a VLSI electronic die can be realistically envisioned. However, despite

the arguments in favour of optics for interconnects on the silicon chip and

the promising integration route, there is essentially no practical use today.

This is in conflict with the vast amount of works in the literature address-

ing system level redesign around an optical interconnection network and the

associated power and performance benefits [32], [31], [29], [65]. In fact, these

contributions just foster the optical network-on-chip concept, but are not

capable of bridging the gap with an actual interconnect technology of practi-

cal relevance. Clearly, further research contributions are needed closer to the

physical layer. On one hand, there are still open challenges for the reliable

manufacturing and safe runtime behavior of optical components within in-

dustrial products. For instance, integrated sources should sustain the working

temperatures of a CMOS chip. The problem is also common to passive sili-

con structures, which in addition suffer from large sensitivity to dimensional

variations, calling for trimming or active tuning. Finally, it is worth men-

tioning the energy improvements that are still required in CMOS compatible

receiver circuit design to drastically reduce the energy/bit contribution of

the optoelectronic conversion [13],[27].

On the other hand, even assuming industry-standard technology maturity

of ONoC building blocks such as laser sources, modulators, detectors and

switching elements, the key for the success of optical networks-on-chip con-

sists of a suitable support to exploit the new interconnect technology for

system-level design [62], [63]. In this respect, there is today a relevant gap in
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terms of design technology, which currently prevents any realistic roadmap

for industrial uptake. In this domain, and similarly to digital electronic de-

sign in nanoscale technologies, the key concern for the design of an optical

interconnection network consists of its predictability. This can be defined as

the deviation between the topology logic scheme and its physical implemen-

tation in terms of physical parameters such as number of crossings, and the

waveguide length. Such parameters are associated with the losses that opti-

cal signals experience across the physical paths of the topology. If we define

the critical path of an optical network as the physical path with the largest

optical loss, then we derive that such critical path determines the minimum

power requirement on the laser source, given a specific detector sensitivity. It

is therefore of the utmost importance to preserve the predictability of optical

losses across design layers to avoid ONoC topologies that map inefficiently

to the physical layer. The main source of deviation of real topology layouts

from the associated logic schemes consists of an hardly predictable increase of

waveguide crossings. There are three main reasons for this. On one hand, logic

schemes often make unrealistic assumptions on the positions of initiators and

targets on the actual floorplan [52]. Alternatively, some logic schemes are op-

timized for hardwired positions of the network interfaces, which might not be

verified in the system at hand [28]. On the other hand, multilayer photonics

is still far from becoming a mainstream solution due to its many fold manu-

facturing challenges [74] (e.g., sensitivity to process variations in physical gap

design). Therefore, single layer photonics might be the reference solution for

some time, which increases the risk of additional crossings when routing intri-

cate connectivity patterns. In order to cope with these challenges, designers

today have no other choice than placing and routing ONoCs manually, thus

basing the insertion loss minimization goal entirely on their intuition and ex-

perience. This is due to the lack of automatic placement and routing tools for

ONoC design. This chapter takes on this challenge and proposes PROTON,

a CAD tool for the automatic placement and routing of optical switching el-

ements and waveguides respectively. Thanks to the flexibility of its objective

function, PROTON paves the way for the automatic physical design space

exploration of optical NoC topologies. Similar to electronic NoCs [73], auto-

matic placement and routing are need-to-have features for the physical design
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of those topologies that show a clear discrepancy between the logic design and

the physical layout. This concern is especially critical for wavelength-routed

ONoCs, which fundamentally consist of add-drop optical filters, and there-

fore end up in multistage interconnection networks that map inefficiently to a

2D surface. Without lack of generality, this chapter will address these topolo-

gies, in that they represent the most challenging benchmark for an automatic

placement and routing too. The rest of this chapater is structured as follows:

Section.3 presents the properties of PROTON starting from of the topology

specification format until the PROTON’s placement and routing algorithm.

Experimental results are discussed in Section.5 before concluding the chapter

in 6.

3 PROTON’s properties

This section goes through the key properties of PROTON.

3.1 Topology Specification Format

In order to process any optical NoC topology, PROTON uses a Topology

Specification Format, which defines the physical path that is taken by

each optical signal at a specific wavelength. Let us consider the 8x8 λRouter

as a case study. As illustrated in Figure.7.1 each initiator uses 8 distinct

wavelengths to reach all 8 destinations, each one following a different routing

path. The 8x8 λRouter is broken down into those 64 routing paths. As shown

in Figure.7.2, each of them connects one Initiator (I) and one Target (T) by

passing several optical filters. In the following, optical filters are called pho-

tonic switching elements (PSEs). The topology specification format is being

implemented into C++ language to cope with the inherent limitations of a

manual description of a given topology logic scheme. In particular, the mile-

stone λRouter topology was completely implemented into C++ language,

and the proposed code is able to automatically generate a routing path de-

scription. All of informations of the ongoing path such as number of the PSE,

its specific order as well as its functionality (cross or drop) are taken into ac-

count. This is clearly one of the preliminary steps that should be pursued
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Figure 7.1: 8x8 λRouter logic scheme.

to develop automatic synthesis tools for optical NoC. Moreover PROTON

needs of additional entry levels such as dimensions and positions of all op-

tical devices comprising the Initiators and Targets (e.g Hubs and Memory

controllers as widely explained in previous chapters), width and height of

PSEs as well as the dimensions of the optical layer. By combining topology

specification format (also called routing-path information) and entry levels

PROTON can generate a valid physical layout of any WRONoC topology,

e.g. all PSEs are placed overlap-free inside the die area and are connected by

waveguides.

3.2 Placement & Routing Algorithm

One optical path consists of the connection between one Initiator (I) and one

Target (T). As shown in Figure.7.2 one path consists of several nets (from

n0 up to nk), which are defined as two-pin connections between one Initiator

(I1) and one PSE, one Target (T4) and one PSE or two PSEs. Since insertion

loss is the most important quality metric in optical NoCs an optimal physical

layout of the optical layer minimizes maximum insertion loss (ILmax) over

all paths. Thus, the objective function is given as:
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Figure 7.2: An example of optical paths.

minimize ILmax (x;r) = max pεP ILp(x;r) (1)

with P, x and r describing the set of all paths, positions of all PSEs and

positions of all waveguides respectively. The insertion loss of path p mainly

depends on propagation loss plp(x;r) and crossing loss clp(x;r). By decreas-

ing the crossing loss can result in an increase of propagation loss and vice

versa. An example is given in Figure.7.3.

More in details, the PSE0 is connected to PSE1 and PSE2 is connected

to PSE3. Figure.7.3 (left) propagation loss is minimized, e.g. the length of

waveguides is minimal, and one crossing appears. Figure.7.3 (right) mini-

mizes crossing loss, and crossings are avoided as far as possible. The length

of the waveguides increases compared to the routing solution shown in Fig-

ure.7.3 (left). Ultimately, minimizing propagation and minimizing crossing

loss mostly are contradictory objectives. Our algorithm aims at finding a

trade-off by minimizing a weighted sum.

ILmax (x;r)= α · plp(x;r) + β · clp(x;r) (2)

with α,β real numbers and α+β=1.

Due to the complexity of the placement and routing problem our algorithm
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Figure 7.3: Propagation and Crossing Loss are tightly interrelated.

is structured into two steps: During the first step suitable positions for PSEs

are found considering the distances between two PSEs and the (approxi-

mated) number of waveguide crossings. After this the waveguides are routed

by minimizing the length of the waveguides and/or the number of crossings.

Additional details about PROTON’s placement and routing algorithm are

reported in [39].

4 Maximum Insertion Loss

After routing PROTON counts the number of crossings as well as drops

and determines the length of waveguides for each path. By using the loss

parameters reported in chapter.4 it is possible to derive ILmax (sum of all

loss contributions which are closely related to their amount ) across all paths

of the ONoC under test. By improving the optical technology in the future,

only loss parameters have to be adapted. Consequently, PROTON results to

be a flexible and technology independent tool for the design of ONoCs.
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Figure 7.4: ILmax (dB) Contrasting: Manual vs. PROTON.

5 PROTON at work

The algorithms are implemented in C++ and all experiments are executed

on an Intel Core 2 Quad CPU with 8GB RAM running at 2.33GHz. For

solving the optimization problem we use the IPOPT library [75] which is one

of the leading libraries in nonlinear optimization. This section shows: the

comparison between PROTON and a manually created layout. In section.??

a study about the calibration of PROTON and the best topology selection

is given. In section.5.3 the scalability of PROTON is proven.

5.1 Manual Design vs. PROTON

In this section, as a case study, we implement the 8x8 λRouter and the

8x8 GWOR using two relevant methodologies: Manual design (as widely ad-

dressed in chapter 4) vs. CAD tool. As insertion loss is the most important

physical metric that must be quantified to determine the laser power that
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Figure 7.5: Laser Power (Watts) Contrasting: Manual vs. PROTON.

guarantees a predefined bit error rate at receivers, we assess the worst case

ILmax for each topology. Our study therefore assumes the loss parameters

mentioned in chapter 4. Crossing loss and drop loss were obtained by 2D

Finite-Difference-Time-Domain (FDTD) method. Since every path meets at

most one drop and drop loss is very small compared to crossing- and prop-

agation loss it is considered to be negligible. Similarly, we do not consider

bending loss in our calculations. Moreover, in both methods, we optimize the

number of crossings so that the only one objective function being optimized is

the crossing loss. We also optimize every crossing with the standard elliptical

taper [60]. We also take for granted the same architecture, hypothesis, and

assumptions already followed in the chapter 4. Figure.7.4 shows the insertion

loss deviations between manual layout and the automatically generated for

both topologies.

As can be seen manual design and CAD tool feature the same trend. In

particular, λRouter provides lower insertion loss than GWOR in both cases,
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40.73 dB vs. 47.58 dB in the manual layout, while 22.62 dB vs. 25.84 dB in

the CAD tool. This also optimizes the insertion loss by 65x over the manual

layout for λRouter topology, while by 150x for the GWOR one. The benefit

of this effect can be seen when quantifying the laser power requirements.

In fact, once the maximum insertion loss across all wavelengths and optical

paths is obtained and the detector sensitivity (S) is known, we finally evaluate

the lower limit of optical laser power (P) to reliably detect the corresponding

photonic signal at the receiver end. In our evaluation we make the practical

assumption that such a worst case ILmax dictates the power needed by all

laser sources. For laser sources we assume a laser efficiency (PLE) of 20%

and a coupling laser-link (PCW) of 90%, while for detectors we consider a

sensitivity (S) of -17dBm with a BER=10−12. As shown in Figure.7.5 in both

cases λRouter is clearly most efficient than GWOR due to the lower insertion

loss. We note 10.49 Watts vs. 44.44 Watts in the manual layout, while 0.162

Watts vs. 0.298 Watts in the CAD tool. Thanks to the lower insertion loss

that CAD tool exhibits with respect to the manual layout, the lasers power

requirements are optimized by 98.5% in the λRouter topology and by 99.3%

in the GWOR one. Because the topology is too complex to determine an

optimal physical layout manually we obtain much better results using CAD

tools. Furthermore PROTON needed only a few seconds while creating the

manual design took approximately one week per topology.

5.2 Best Topology Selection

PROTON minimizes the weighted sum of propagation loss and crossing loss

as can be seen in equation (2). Thus, the tool can be calibrated by choosing

different values for α and β. Table I shows the results for 8x8 λRouter,

8x8 GWOR when varying those weights. In this study, also the Standard

crossbar is considered. All topologies are placed on a die area of 8mm x

8mm. Elliptical tapers are assumed for all crossings. The first two columns

contain the varied weights α and β. The column ILmax gives the maximum

insertion loss. The number of crossings and the waveguide length in µm of

path p with ILp = ILmax can be seen in column CR and WL respectively. At

last CPU time in seconds is presented. As can be seen in the table, maximum

insertion loss is high when the number of crossings is high. Thus, insertion loss
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Figure 7.6: Table I: Results for variation of propagation and crossing weights.

mainly depends on the number of crossings. Comparing all three topologies

λRouter is the one with lowest ILmax, followed by GWOR and Standard-

Crossbar. Hence, 8x8 λRouter is the optimal topology to be chosen in terms

of maximum insertion loss. PROTON acts very fast on all three topologies

with a maximum runtime of 6.3 min. CPU time mainly depends on the

number of PSEs and nets. Since number of nets for 8x8 GWOR is lower than

for 8x8 λRouter and 8x8 Standard- Crossbar PROTON needs lowest run

time for 8x8 GWOR.
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Figure 7.7: 16x16 λRouter under scalability assumptions.

5.3 Scalability

In this section we characterize the impact of system scale and we show that

PROTON can handle large topologies. As a case study we test the 16x16

λRouter as the best topology of our exploration. We sketch a future gener-

ation of our target system, which now consists of 96 cores in the tiled-based

electronic layer, while preserving 8 cores for each cluster. For this purpose

12 gateways (or 12 hubs) are needed in the optical plane to directly con-

nect to the corresponding cluster of the electronic plane. Moreover thanks

to the benefits of photonic integration deeper into the DRAM DIMM [30]

we kept the same number of memory controllers. Note the new die size of

12 mm x 16 mm. Results are shown in Figure.7.8. The objective function

includes all kinds of loss optimization: propagation loss ,crossing loss and fi-

nally their combination. The first three bars show the ILmax across different

optimizations, while second and third ones show the number of crossings and

the waveguide length of path p with ILp = ILmax respectively. CPU time

can be seen in the last three bars. All lengths are measured in cm and the
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Figure 7.8: Results under scalability assumptions.

times in minutes. Although the number of paths is 5.2x higher compared

to 8x8 λRouter maximum insertion loss increases less than 2.6x. Figure7.7

shows the layout of 16x16 λRouter when minimizing propagation or crossing

loss. The blue rectangles are Hubs while the red ones are the Memory con-

trollers. Optical filters are small rectangles that are connected by waveguides

illustrated with green lines. PROTON places and routes fast with a worst

case execution time of at most 272.9 minutes. For larger sizes such topolo-

gies would become unusable due to an insertion loss exceeding 91dB on the

critical path.

6 Conclusion

This chapter introduced the first automatic tool for placement and routing

of optical NoCs. PROTON iteratively places all optical filters overlap-free

inside the chip area and routes the waveguides both while minimizing prop-
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agation and/or crossing loss. Compared to a handcrafted layout PROTON

reduces maximum insertion loss up to 150x while standard topologies are

placed and routed in less than 7 minutes.

Therefore, PROTON minimizes the design predictability gap even more than

manual design, thus resulting the right methodology for the place&route of

filter-based topologies. However, for the ring-based counterpart the manual

design still remains the affordable technique.

In the future, PROTON will be improved by post-layout optimization, (e.g.

by rotating optical filters to minimize additional crossings), and definition of

side fences to avoid undesired crossings at the chip boundaries. Such phys-

ical effects are mainly due to the unavoidable intersection between on-chip

waveguides and in-out connections needed to enable chip-to-chip communi-

cations. Furthermore, the implementation of multimode interference (MMI)

tapers will be also considered at every crossing as well as the use of network

partitioning. Finally, this chapter has included contents that are referred to

a cooperative and interdisciplinary work where further details are in [39].



Chapter 8

Network-Level Simulation

Frameworks for Optical

Networks-on-Chip

1 Abstract

This chapter presents a bottom up-abstraction procedure based on the design-

flow FDTD + SystemC suitable for the modeling of optical networks-on-chip.

In this procedure, a complex network is decomposed into elementary switch-

ing elements whose input-output behavior is described by means of scattering

parameters models. The parameters of each elementary block are then de-

termined through 2D-FDTD simulation and the resulting analytical models

are exported within functional blocks in SystemC environment. The inher-

ent modularity and scalability of the s-matrix formalism is preserved inside

SystemC, thus allowing the incremental composition and successive char-

acterization of complex topologies, typically out-of-reach for full-vectorial

electromagnetic simulators. The consistency of the outlined approach is ver-

ified, in the first instance, by performing a SystemC analysis of a four input

and four output ports switch, and making a comparison with the results of

2D-FDTD simulations of the same device. Finally, a further complex net-

work encompassing 160 micro resonators is investigated, the losses over each

routing path are calculated and the minimum amount of power needed to

guarantee an assigned BER is determined. This chapter lays the basis for
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an automatic Technology-Aware Network-Level simulation framework, capa-

ble of assembling complex optical switching fabrics, while at the same time

assessing the practical feasibility and effectiveness at physical/technological

level.

2 Background & Motivations

Chip Multicore Architectures currently represent the state of the art in the

design of high performance Very Large Scale Integration (VLSI) systems.

In accordance with this architectural paradigm, several processing units are

physically realized on the same silicon die, and share the execution of the

instructions with an high degree of parallelism. For the next generation of

digital systems, the International Technology Roadmap for Semiconductors

(ITRS) expects the integration on the same substrate of hundreds of com-

putational cores [44]. To assure a fast and reliable communication over a

network with such a complexity, a traditional bus-based solution is no more

conceivable. From a technological point of view, a straightforward and alter-

native way to implement the communication among the cores is to create,

at the chip level, a network-based link system (Network-on-Chip, NoC) [45].

However in a NoC implemented with electrical links (Electronic Networks

on Chip-ENoC), as the number of interconnected cores increases, the con-

straints in terms of power dissipation and required bandwidth grow exponen-

tially, thus imposing soon unrealistic conditions for practical achievements.

To overcome these problems, the realization of optical-based interconnections

among cores (Optical Network on Chip-ONoC) appears as a promising so-

lution, both for power consumption and allowable bandwidth, as previously

mentioned in chapter.1. By following the last trends of 3D integration in digi-

tal systems, it is possible to conceive a vertical stack with a top layer reserved

to the optical communication network, superposed to silicon layers incorpo-

rating memory and processing units. As discussed in the previous chapters of

this thesis, a complex ONoC can be considered as the composition of several

elementary building-blocks named Photonic Switching Elements (PSEs).

For the design and the optimization of such a complex optical networks, the

availability of efficient and reliable tools is fundamental. These tools should
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combine the flexibility and the versatility needed to analyze the high level

architecture layers, with the capability to represent accurately the basic com-

munication parameters such as, for example, attenuation and bandwidth,

which are strictly linked with the physics of these devices. Indeed, taking

into account these parameters also at higher level of abstraction (by means

of what we identify here as technological-annotation) is fundamental to ex-

plore how constraints imposed by the technological aspects can affect the im-

plementation of an optical interconnection network for chip-level integrated

systems.

Among the available tools, PhoenixSim[46] is certainly a relevant simulation

environment structured in OMNET++. This tool is capable of assessing the

performance of multi-processor hybrid systems, integrating electronic and

optical networks on the same platform. The key feature of PhoenixSim lies

in the modeling parameters, such as: propagation delay, insertion-loss, occu-

pation area on the chip and energy consumption. All these figures of merit

are obtained from hardwired pre-characterized values for given wavelengths.

For this purpose, PhoenixSim does not use any analytical model for insertion

loss analysis.

Although with PhoenixSim it is possible to explore optical on chip net-

works using a physical layer analysis, it lacks of compliance with industry-

standard hardware modeling languages and methodologies. For this reason,

PhoenixSim was recently augmented with a SystemC wrapper. On the other

hand this procedure is onerous in terms of computation time. In contrast

with PhoenixSim, we aim at modeling optical NoCs leveraging on a plain

SystemC modeling style. SystemC is an open-source System Level Design

Language based on C++, which extends the modeling capabilities of tradi-

tional hardware description languages (HDLs) to higher levels of abstraction.

SystemC is particularly suitable for the analysis of electronic NoCs and, with

some appropriate extensions, can be used also for optical NoCs.

The first example of modeling framework in SystemC is presented in [47].

Here, separate channels are used to model wavelength and power information

of optical signals. In [48], a new SystemC class is created to manage analog

signals transmitted between modules, which access communication channels

through the typical constructs of abstract simulation (e.g. fifo constructs of
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untimed functional simulation). Above all, the key issue of technology aware-

ness is solved by invoking the Matlab Symbolic Toolbox for elaborating S-

Matrices. In particular, the computation time of all the S-Matrices of each

slice of a typical wavelength routed 4x4 optical crossbar is about 30 seconds

on a 2.4GHz Pentium 4. With respect to this work, the presented simulation

framework aims to reuse the existing port-interface-channel constructs of Sys-

temC, thus making the top-level view of an optical NoC look like the same of

an electronic NoC. The difference lies just in module implementations and in

the data types exchanged through the pre-defined SystemC channels. More-

over, we leverage on the RTL (Register-Transfer-Level) modeling style for

the sake of accuracy. We do not build a new SystemC class to manage analog

signals in the network but, in contrast, we exploit the user-defined data type

and then we describe the optical information on three different fields such

as: logic value, wavelength and signal amplitude. The key challenge of our

SystemC modeling framework lies in the integrating technology-annotations

in the abstract model to preserve a valuable degree of technology awareness

while limiting repercussion in simulation time. Unlike [48], our methodol-

ogy provides validation results of developed analytical models with respect

to FDTD simulations. By doing so, in the first instance, the photonic el-

ements composing the optical links are described at the phenomenological

level through a set of analytical models of black-box type, whose parameters

are determined through measurements or simulations. Basic optical switch-

ing components are then modeled in SystemC through a module that embeds

both the functional behavior of the component as well as its non-functional

information (i.e.technology-annotations). This allows the exploration of dif-

ferent topologies for the ONoCs, without losing the awareness of the funda-

mental physical constraints imposed by the optical devices used to compose

the optical layer of the network. The basics of the proposed approach are

described in next sections; then, this technique is applied to analyze a 4x4

Switch. Comparisons of SystemC results with the ones obtained through elec-

tromagnetic simulation of the overall device by Finite Difference in the Time

Domain (FDTD) [49] are used to validate the implemented model. A more

complex structure (the 4x4 Square Root topology described in chapter.2),

realized by compositions of these 4x4 Switches, is therefore investigated and
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its insertion-loss and the optical power required by the laser source to meet

a fixed detector sensitivity are quantified.

3 Technology-Aware SystemC Simulation for

Optical Networks-on-Chip

As previously stated, the architectural design of an Optical Network-on-Chip

must be performed with a simulation tool able to meet multiple requirements

such as efficient network-level simulation, support for technology annotations

in compliance with the industrial standards for the design of electronic parts.

The SystemC environment offers the necessary features to become the of the

art” simulation tool in the system level design of Optical Networks-on-Chip.

More specifically the key reasons that make SystemC the most effeective

choice are:

(1) SystemC is an Object Oriented C++ class library, that offers a high

level of modularity and flexibility. In particular, the base constructs can be

custom-tailored to fulfill specific modelling requirements.

(2) The communication semantics inside SystemC are based on a very flex-

ible set of interface method calls. Consequently, the peculiar and distinctive

features of optical links can be captured by leveraging on the preexisting

communication constructs of SystemC.

(3) SystemC can easily span over a wide range of abstractions layers, from

Register-Transfer-Level (RTL) up to Untimed Functional (UF), thus allowing

both high level of accuracy or reduction of the computation time. Therefore,

SystemC may serve as an unified description language able to overcome the

limitations of co-simulation approaches. It can provide local and global opti-

mizations, allowing an easier exploration of the whole design space of ONoCs.

The bottom-up abstraction procedure leading from the physical models up to

their corresponding SystemC modules, can be summarized in the following

steps:

(α) Description of the input-output relations of each functional component

of the optical network (waveguides, bendings, ring resonators) in analytical
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form, by means of the scattering parameters formalism.

(β) Electromagnetic simulation (or experimental characterization) of the el-

ementary functional components, to derive the input-output re- sponses to

be reproduced by the analytical models.

(γ) Back-annotation of the analytical models in SystemC, and validation

with respect to the numerical or experimental data across the entire optical

spectrum.

(δ) Modular composition and modelling, inside the SystemC environment,

of higher-order routing structures.

(η) Insertion-loss assessment of optical network topologies, and then evalua-

tion of the minimum optical power that the laser sources should provide to

enable correct detection of the optical data stream at the photodetectors.

To demonstrate the effectiveness of the proposed approach, a complex 4x4

Square Root topology will be investigated. The analytical model of this net-

work will be obtained by composition of the scattering matrices (s-matrices)

of the different elementary building blocks, whose parameters will be deduced

through FDTD simulations. This procedure is detailed in next sections.

4 S-parameters modelling of a 1x2 PSE

As mentioned above, the most simple PSE is a structure with one input and

two possible output ports (1x2 PSE). Without lack of generality, we refer

to microring-based 1x2 PSE. In the case of ring-based ONoCs, the 1x2 PSE

can be implemented via a microring resonator cascaded to a crossing be-

tween two orthogonal waveguides (see Figure.8.1). The device is active, if

the resonances of the microring can be dynamically adjusted via some ther-

mal or charge-injection-based effects; otherwise the device is passive, and the

microring resonances are fixed and defined a-priori. In the passive configura-

tion, however, a slow thermal mechanism can be envisaged for fine tuning of

the resonances in the final set-up of the device.

A microring resonator and a crossing between two waveguides (network α

and β in Figure.8.1) can be both represented as four-ports devices; conse-

quently, the relations between the input and output signals at their ports can
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Figure 8.1: (A-left) Sketch of a microring resonator with orthogonal access

waveguides. (A-right) Sketch of an orthogonal planar crossing.(B) The 1x2

PSE can be considered as the cascading of the microring the crossing. If the

wavelength of the optical carrier signal is resonant with the microring, the

data stream on the Port 1’ is routed toward Port 2’; if the optical signal is

not resonant, the data stream is routed to Port 3’. Dually, a signal coming

from Port 4’ is routed to Port 3’ if resonant, while continuing to Port 2’ if

out of resonance. The device is bidirectional, i.e. each of the ports can act

as input or output, but not simultaneously. (C) Representation of the PSE

as it appears when discretized inside the 2D-FDTD code; in this case the

transmission at the intersection between the waveguides is optimized using

a MMI-based crossing.

be modeled by means of 4x4 scattering matrices, whose coefficients depend on

a finite set of parameters (optical lengths, coupling coefficients, transmission

efficiency). The resulting s-matrices are symmetrical because the networks
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under consideration are reciprocal. Without lack of generality, the gaps be-

tween the two waveguides and the ring are supposed equal, and represented

with the same power coupling coefficient K. Moreover, microring and waveg-

uides are assumed dispersionless, thus the effective index and the group index

coincide. The propagation losses are also neglected. Dispersion effects, losses,

or a coupling asymmetry between the waveguides and the ring can be easily

taken into account in the model [50].

Details about s-matrices along with the analytical model are well described in

[40]. Simulation approach has been used, and the 1x2 PSE has been charac-

terized through 2D-FDTD. A wide band excitation signal in the wavelength

range of 1500nm-1600nm has been applied to Port 1’ (see Figure8.1) to eval-

uate the on-resonance (1’2’) and off-resonance (1’3’) spectral responses of the

device.

Figures.8.2 compares the results of the FDTD simulation (solid lines) with

the ones of the s-parameters based analytical model (dashed lines), once

applied the optimized fitting procedure. The blue lines refer to the path

between the Port 1’ and 3’ (Through), whereas red lines refer to the path

between Port 1’ and 2’ (Drop). The physical and geometrical parameters

of the tested PSE are: internal radius of the ring R = 10 um, ring and

waveguides width w = 450nm, effective index of ring and waveguides neff

= 2,3561, physical gap g = 300nm corresponding to a coupling coeffcient

K = 0,0838. The MMI-based crossing considered in this PSE provides a

transmission effciency η = 0,975.

5 SystemC Modelling of a 4x4 Optical Switch

The integration inside SystemC of the s-parameters model for the elementary

1x2 PSE allows the modular composition and characterization of higher or-

der routing structures. The first composite device under test, whose scheme

is illustrated in Figure.8.3, is an optical switch with four input and four out-

put ports, located along the cardinal points: North, East, South and West.

Such a structure is realized with eight elementary 1x2 PSEs, arranged in a

matrix layout. This switch contains a limited number of waveguide crossings

which make propagation losses to be within an acceptable level for a practical



8.5 SystemC Modelling of a 4x4 Optical Switch 141

Figure 8.2: Comparisons between the spectral response of the Through

(Drop) path [Port 1’ to Port 3’] ([Port 1’ to Port 2’]) of the passive 1x2

PSE, calculated via 2D-FDTD and by means of the s-matrix mode

realization. In order to verify the correctness of the proposed compositional

approach, the 4x4 Optical Switch (4x4 SW) has been first simulated with

2D-FDTD. Afterwards, the spectral response obtained from the numerical

data has been compared with the one calculated with the SystemC analysis.

By considering the 4x4 SW realized with eight 1x2 PSEs with ring radius of

10µm, the whole footprint of the structure is about 140x140. Consequently,

the FDTD simulation takes more than 72 hours on a parallel cluster of 10

processors. Due to the burden of the computational domain, the 4x4 SW

is, on the available cluster, the upper bound for an FDTD electromagnetic

simulation, and represents the top benchmark for testing the reliability of the

compositional abstraction procedure. On the contrary, the SystemC modeling
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Figure 8.3: Topological scheme of the 4x4 Optical Switch showing the inter-

connections between the eighth PSEs. (B) FDTD representation of the real

device. Down, Simulated (solid line) and modeled (dashed line) transmission

curves for the paths linking the I-WEST port with the O-NORTH port and

I-WEST port with the O-SOUTH port of the 4x4 Optical Switch.

requires only 0.001 seconds per wavelength to perform the analysis of a single

considered optical path.

As illustrated in the panel (A) of Figure.8.3, each 1x2 PSE is connected with

other ones by means of specific physical links. However, depending on the

wavelength of the signal respect to the resonance of each router, different

logical paths must be considered for each connection between the input and

the output ports. To describe the overall behavior of the network, SystemC

should then model all these logical paths, taking into account all their rele-

vant features. To enable this functionality, we utilize a predefined standard

communication channel of SystemC (i.e., sc-signal) with a new user-defined
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data type. This allows to replicate the relevant features of an optical link

such as logic value (transmission of logical value 0 or 1), optical wavelength

and signal amplitude. The optical wavelength is used by the router model

to implement the routing functionality. The signal amplitude, on the con-

trary, is considered to take into account the technological awareness (such as

insertion-loss on the direct path and crosstalk determined by spurious power

addressed to other ports). To allow the computation of the optical power

budget of each link, back annotation from FDTD to SystemC of losses in

waveguides, bending and crossing is therefore mandatory.

The leftmost lower side of Figure.8.3 shows the transmission characteristic

of the 4x4 Optical Switch, when a signal is injected in the I-WEST port

and collected at the O-NORTH port (Through Path). The PSEs involved in

this communication are PSE-1, PSE-2, PSE-4 and PSE-5; the data stream is

routed through this path if the wavelength of the carrier is not in resonance

with the microrings. The solid blue line refers to the result of the FDTD sim-

ulation, while the black dotted line is the SystemC modelling. As illustrated

by the figure, the SystemC approach fits perfectly the resonances and the

global level of losses for the considered path. In a similar way, the transmis-

sion characteristic between the I-WEST port and the O-SOUTH port (Drop

Path) is shown at the rightmost lower side of Figure.8.3.

Here the signal is routed for wavelengths corresponding to the resonances

of PSE-1. It must be noted that, since this topology is symmetrical under

step rotations of 90 degrees, the transmission curves are the same injecting

the signal from all other inputs (South, East, North). Thanks to the accu-

racy of the technology-annotations in SystemC, our framework gains control

over both the resonant wavelengths of switching components and the signal

amplitudes in optical paths. As a consequence, the comparative analysis of

wavelength-routed vs. space-routed optical NoCs, or the assessment of Signal

to Noise Ratio (SNR) at optical receivers become feasible. In fact, such tasks

require the knowledge of both network behavior and of key implementation

details and physical insights. The accuracy of the SystemC-based modeling

has been further analytically tested by evaluating two different quantities:

the average error on the entire spectrum of the signal (SE) and the error on

the peaks (PE) (details are in [40]). The former (SE) measures the Mean-
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Squared-Error between the FDTD and SystemC spectral responses, and has

been calculated across the wavelength range from 1500nm to 1600nm. The

mismatch parameter SE achieves 2.45% when is calculated in the case of a

Drop Path (for example from I-WEST to O-SOUTH), whereas in the case

of a Through Path (as the one from I-WEST to O-NORTH) the SE value is

1.05%. For what concerns PE on the optical spectrum we obtain 0.0063%,

stable error for all ports has been calculated. Finally, PE (on the peak values)

is around 3,451%. This demonstrates the accuracy of the approach based on

FDTD + SystemC for the simulation of complex ONoCs. To further assess

the performance of an ONoC, it is fundamental to evaluate the insertion-loss

on the critical path (ILmax), which is the path between the input and the

output presenting the maximum value of losses. This parameter has been

calculated in two different cases, with standard elliptical-tapered crossings

and with the MMI-based crossings, in order to evaluate the impact of the

technological choice in the realization of the crossings inside the network. In

the first case ILmax is around 2dB, while it is reduced to 0.56dB in the sec-

ond one, thus confirming the better properties of the MMI-based approach

to the design of crossings. It is worth noting that the selection between the

two possible optimized solutions could also depend on the available space in

the physical region around the crossing.

6 SystemC Modelling of a 4x4 Square Root

Topology

One of the most important examples of optical network topologies proposed

in the literature so far, is represented by the 4x4 Square Root as previously

described in chapter 2. As illustrated in Figure.8.4, this interconnection net-

work embeds 16 gateways. Each Gateway (Gi) can work as the initiator or

the target of the communication, and may send and reach optical data from

the others. Therefore, a parallel communication is possible. This optical ar-

chitecture is constructed recursively starting from a 2x2 quad, which in turn

consists of four 4x4 switches structured in a 2x2 mesh. In this specific case,

the four internal rings of each 4x4 switch have different radius with respect to
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Figure 8.4: 4x4 Square Root Topology.

the four external ones. This choice produces two interleaved resonance spec-

tra, allowing the routing from any input of the 4x4 switch to three possible

outputs (i.e. routing from West to South if the signal is resonant with the

four external rings, routing from West to East if the signal is resonant with

the four internal ones, and from West to North if the signal is not resonant

with anyone). Notice that every 4x4 switch is connected to another one by

utilizing intra-quad lines which do not present intersections. A 4x4 Square

Root accommodates four 2x2 quads (the blocks from A to D in Figure.8.4)

and one central switch (the block indicated by E in the same Figure). Inter-

quad express lanes are used for connecting each quad. Connections among

them can be realized directly or through the central 2x2 quad. The inter-

quad express lanes are affected by additional crossings which our modeling

framework takes into account. Following the compositional approach, even

a 8x8 Square Root topology can be obtained from four interconnected 4x4
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Figure 8.5: Insertion-Loss comparison for the 4x4 Square Root topology, by

considering injection from G4 and with (right) and without (left) accounting

for the inter-express lanes loss-contributions. Every intersection is optimized

with standard elliptical tapers.

Square Roots. By using the previously obtained SystemC models of the dif-

ferent blocks, the insertion-loss analysis was accomplished. For brevity, only

the case study with injection from Gateway G4 is reported.

Figure.8.5 (left) shows the insertion-loss from G4 to all other Gateways, with-

out accounting for the inter-express lanes loss-contributions. The paths inside

the Square Root topology are indicated by means of conventional acronyms.

The abbreviation GNA stands for a communications between the Gateway

G4 and the North-Eastern Gateway of quad A (G1), GED stands for the

link between G4 and the South-Eastern Gateway of quad D (G14), and so

on. In Figure.8.5 (right), on the contrary, these insertion losses have been

taken into account, thus leading to a very accurate evaluation of the overall

attenuation of each path and highlighting the importance of the losses for the

overall performance of the network. Obviously, by changing from the first to
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the second scenario, increasing of insertion-loss from 0.1 dB up to 2.6dB is

observed. Our technology-annotated systemC models clearly enables to as-

sess the physical properties of optical paths (i.e., a physical design issue), in

addition to the traditional functional simulation capability. For the presented

structure, the insertion-loss critical path (i.e. the path with the maximum

amount of losses) is established from G4 to G14, and it reports 10dB when

each crossing waveguide was designed by using the standard Elliptical Taper.

By optimizing every crossing with the MMI-based solution, the insertion-loss

is reduced to 4.85dB. Once determined the maximum insertion loss of the full

network (which corresponds to the worst case optical path), it is possible to

assess the minimum optical power that laser sources should provide to enable

correct detection of the optical data stream at the photodetectors with the

desired bit-error-rate (BER). By assuming for example that:

(1) For a given bit-error-rate (BER) of 10−9the corresponding detector sen-

sitivity is -20dBm;

(2) Elliptically-tapered crossings are used at every intersection;

(3) The data stream is carried over 30 different optical wavelengths;

The laser power injected in the network must be more than 3mW. This

amount of power can be reduced by a factor of about 70% by optimizing

each crossing with MMI-based structures, thus achieving 0.92mW. With the

proposed approach based on the FDTD characterization of the fundamen-

tal blocks and a compositional approach in SystemC to form the complex

network, the overall simulation times remain very low (fraction of seconds)

and investigation of very complex network is certainly possible. In fact, long

computation time is only required to characterize through FDTD the basic

building blocks of the network, but this must be done only once for each

block, when the corresponding s-parameters matrix should be determined,

and does not need to be repeated each time the corresponding block is repli-

cated inside the network.



148 Network-Level Simulation Frameworks for Optical Networks-on-Chip

INSERTION LOSS CALCULATION OF A SPECIFIC PATH 

Figure 8.6: Insertion-Loss calculation of an optical path of a given optical

NoC.

7 Simulink Simulation Framework for Opti-

cal NoCs

Simulink was also exploited to assess the insertion loss and latency results

of any optical NoC examined in this thesis. In particular, all of physical pa-

rameters (loss and latency values) were imported into functional blocks such

as straight, bend, crossing waveguides and also switching elements. By con-

sequently compounding blocks among them, it was possible to model every

path of the optical NoC under test, and finally assess all paths in terms of

insertion loss and latency viewpoints. As illustrated in Figure.8.6, by sum-

ming up all of losses that the optical signal accrues along the communication

path, the corresponding IL (Insertion Loss) of the ongoing path is obtained.

In a similar way this methodology can be applied for latency evaluations.

We opted for Simulink simulation framework because it offers high-level flex-

ibility and high-speed simulation time, especially when high-complex ONoC



8.8 Conclusion 149

layouts comes into play. Although SystemC simulation framework is certainly

an accurate network-level simulator, the higher complexity of physical lay-

outs of ONoCs needs of a more flexible and practical tool able to cope with

this limitation. Therefore, we leveraged on simulink simulation framework for

the evaluation of the quality metrics of optical NoC physical layouts studied

in this thesis.

8 Conclusion

This chapter has presented the modelling strategy based on the design-flow

FDTD + SystemC, in order to explore and simulate optical network-on-chip

topologies at system level. The procedure relays on the abstraction of the

analytical models for the relevant components of an ONoCs (rings, waveg-

uide crossings), toward the SystemC environment. The optical responses of

the elementary photonic switching elements are first obtained via 2D-FDTD,

then back-annotated in the SystemC modules. The modular and incremental

composition of the basic switching elements allows the simulation of arbi-

trary complex topologies. A good trade-off between accuracy in the modeling

of the investigated dynamics and simulation times has been demonstrated.

Furthermore, the error parameters introduced to quantitatively validate the

performance of the design-flow are largely satisfactory. As a case study, the

SystemC modeling of one of the most famous optical network topologies,

the 4x4-Square Root, is proposed and its insertion-loss assessment for differ-

ent paths are quantified. Simulation results demonstrate that in the worst

case insertion-loss is 10 dB using standard crossing optimization, while it

is reduced at 4.85 dB using MMI-based intersections. Although SystemC

simulation framework is certainly an accurate network-level simulator, the

higher complexity of physical layouts of ONoCs needs of a more flexible and

practical tool able to cope with this limitation. Therefore, Simulink simula-

tion framework was adopted for the evaluation of quality metrics of optical

NoC physical layouts studied in this thesis. Finally, this chapter has included

contents that are referred to a cooperative and interdisciplinary work where

further details are in [40].





Thesis Conclusions

The presented Thesis aimed at searching for compelling cases that make

silicon nanophotonic technology affordable in next generation many-cores

systems. This was pursued by means of a trustworthy crossbenchmarking

framework between an optical NoC and an aggressive electronic counterpart.

The optimistic assessments of many previous works are put in discussion.

Nonetheless, the experimental results do not paint a dismal picture on optical

interconnect technology. In fact, it is proven to achieve relevant performance

speedups even with bursty communication workloads (as opposed to the high

utilization rates typically assumed), which are common in shared memory

multiprocessors.

With conservative projections for optical component parameters, the major

role played by static power is apparent. This calls for new power gating

techniques. With more aggressive projections, the network interface turns

out to be the clear bottleneck to achieve the break-even point with low-

power ENoCs, hence it should be thoroughly analyzed for optimization.

When we extend the focus to the system as a whole, previous results paint

a less dismal picture. By recalling that an interconnect fabric is in fact only

a small portion of the total system energy, the ONoC is capable of speeding

up the execution time meaning that the system as a whole can burn power

for less time compared with the electrical counterpart. In light of this, an

aggressive technology should not necessarily be adopted since energy savings

are already there even with a conservative optical technology.
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Italy), the Prof. Giovanna Calò (Politecnico of Bari, Italy), as well as the

Prof. Sandro Bartolini (University of Siena, Italy).

One special thanks goes to the Professor Luca Carloni (Columbia University,

NYC, USA) who kindly hosted me for six months at Columbia University,

during the first year of my Ph.D. I will never forget all of friends and col-

leagues that I had the pleasure to work with them over these unforgettable

years. Thank you nonno for giving me the strengths of living this experience

with love and passion as you made in your life.


	Thesis Abstract
	Thesis Introduction
	On-Chip Optical Communications
	Penetration of optical links into communications
	On-Chip Optical Communication: Why?
	Silicon Photonics as a Technology Enabler
	Optical Links
	Modulators
	Photonic-Switching Elements and Optical Routers for Optical Networks-on-Chip
	Photodetectors
	Laser Sources
	3D-Stacked integrated systems (3D-ICs)

	Conclusion

	Optical Networks-on-Chip
	Introduction
	Optical Networks-on-Chip
	Space-Routed Optical Networks-on-Chip
	4x4 Torus
	4x4 Torus NX
	4x4 Square Root
	 The Optical Fat-Tree: FONoC

	Wavelength-Routed Optical Networks-on-Chip
	Conclusion

	Towards Trustworthy Crossbenchmarking Framework  between ONoC and ENoC: The Golden Rules
	Pathfinding Requirements
	An Overview of the Golded Rules
	Conclusion

	The Design Predictability Gap in Optical Networks-on-Chip Design
	Introduction
	3D-Target Architecture
	Electro/Optical & Opto/Electrical Network Interfaces
	Design Predictability Gap: Logic Scheme vs. Physical Layout
	Topology Exploration: Global Connectivity
	Relative Topology Comparison
	Physical Layer Analysis
	(a) Insertion loss Analysis
	(b) Power Analysis

	Comparison with an Optical Ring Topology

	Network Partitioning
	Logic Topologies

	Snake vs. Lambda Router
	Physical Topologies
	Power efficiency of topologies

	Global Connectivity vs. Partitioning
	Scalability Implications
	System-Level Implications

	Conclusion

	Network-Interface Architecture for Wavelength-Routed Optical NoC Topologies
	Abstract
	Network Interface Architecture: A More Detailed View
	Wavelength Routed NoC
	 Message Dependent Deadlock Avoidance
	Buffering Sources
	Serialization and Deserialization Procedure
	Resynchronisation:  Source Synchronous Communication
	Backpressure Mechanism:  The case of the Credit-based Flow Control
	E/O and O/E Conversions

	Evaluation
	Methodology
	Latency Breakdown
	Transaction Latency
	Static Power & Energy-per-Bit

	Conclusion

	Crossbenchmarking Framework between the Most Efficient ONoC and its Aggressive Electrical Baseline
	Abstract
	Introduction
	Target System
	Baseline Electronic NoC
	Wavelength-Routed Optical Ring Design
	Design Methodology
	The Waveguide Crossings Concern  in Optical Ring Design
	Laser Power Assessment 

	Power Modeling
	Experimental results
	Methodology
	Result discussion
	Systeml-Level Energy and Conclusion


	CAD Support for Design and Validation of Optical Networks-on-Chip
	Why an Automatic Place&Route Tool for ONoC Design is needed?
	Introduction
	PROTON's properties
	Topology Specification Format
	Placement & Routing Algorithm

	Maximum Insertion Loss
	PROTON at work
	Manual Design vs. PROTON
	Best Topology Selection
	Scalability

	Conclusion

	Network-Level Simulation Frameworks for Optical Networks-on-Chip
	Abstract
	Background & Motivations
	Technology-Aware SystemC Simulation for Optical Networks-on-Chip
	S-parameters modelling of a 1x2 PSE
	SystemC Modelling of a 4x4 Optical Switch
	SystemC Modelling of a 4x4 Square Root Topology
	Simulink Simulation Framework for Optical NoCs
	Conclusion

	Thesis Conclusions
	References
	Publications
	Acknowledgements

