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Abstract

The idea to exploit the dispersive mechanism of surface waves as a probing tool
for investigating subsurface structure was introduced about 30 years ago, and after-
wards a very intense research field has developed. Currently many methods known
generally as Surface Wave Methods exist, and are well established, most of them as-
suming layered or depth dependent ground models. In most cases the parallel layer
assumption is correct because the soil structure is expected to negligibly depart from
a layered structure at a typical surface testing scale for engineering and geotechnical
purposes however to exploit the amount of information achievable, it is necessary
to extend the research, relaxing at least one of the underlying model assumptions.
Indeed in classical SWM’s, surface waves are assumed to be Rayleigh waves, this
means that a parallel layered model has been implicitly assumed. As a consequence
search for a soil model geometry other than the assumed one can only result in slight
perturbations. The only possible deduction is that overcoming limitations of layered
models requires to exploit P and S waves which are indeed general solutions of the
elastodynamic problem. Geometry can then be retrived by a complete waveform
inversion based on a forward model capable of successfully reproducing all of the
features of the displacement field in presence of complex scattering phenomena. In
this research effort an inversion approach has been introduced which exploits the
Boundary Element Method as forward model. Such approach is appealing from a
theoretical point of view and is computationally efficient. Although in the present
work a monochromatic signal traveling in a system constituted by a layer over an
half space was investigated, this method is suitable for any number of layers, and
multi-frequency environments. The boundary element approach can be easily gen-
eralized to three-dimensional modeling; moreover viscoelasticity can be introduced
by the elastic-viscoelastic principle of correspondence. Finally BEM can be easily
implemented for parallel computing architecture. Synthetic cases of high and low
impedance Jump were investigated for typical SWM setups and a first example of
application on real data was performed. Finally an elegant analytic form of the min-
imization flow named Adjoint Active Surfaces was obtained combining Computer
Vision technique of Active surfaces and the Adjoint Field method.
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Chapter 1

Introduction.

Recent attention concerning terrestrial events has highlighted the need to protect
populations against seismic hazard. Intuitively, it may appear that only seismo-
genic regions are prone to the damaging effects of earthquakes, but observations of
catastrophic damages far from earthquake epicenters or connected with relatively
low energetic earthquakes has focused the attention on site effect also for apparently
quiet regions. Consequently, seismic risk must be evaluated in order to prevent po-
tential loss. Seismic risk is in fact the evaluation of the expected damages produced
by a seismic event, in terms of structure, equipment, or business interruption.
One aspect of this rather complex process of evaluation is the subdivision of a po-
tential seismic or earthquake prone area into zones with respect to site effects, so
that seismic hazards at different locations within the area can correctly be identified.
This last process, known as seismic microzonation,is actually the final step of the
ground response analysis, whose primary goal is the prediction of the free field re-
sponse induced by catastrophic events originated by seismic energy being released in
the interior of the rigid Earth. The complexity of the problem requires contributions
from disciplines like Seismic Engineering, Structural Geology and Geophysics on a
joint pursuit to properly model the various aspects of the problem, from rupture
mechanism, seismic waves propagation, to local site effects.

Studying a site response requires a double approach. From one side, field investi-
gations are necessary to estimate the values of the key parameters of the subsurface
model. Experimental evidence shows that local effects are tightly bounded to jumps
in acoustic impedance of the soil. Structures where a soft material layer lies over
an hard bedrock as in the case of top soil over granite, have been recognized as a
classically dangerous configurations. Seismic waves traveling through these kinds of
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2 CHAPTER 1. INTRODUCTION.

structures meet a jump in soil properties, summarized by the acoustic impedance
Z = ρV . As it is well known from physics, waves facing a media discontinuity can
be both reflected or refracted. Coefficients of reflection and transmission can be ex-
pressed as functions of acoustic impedance. In the case of normal incidence, their de-
pendence on acoustic impedance contrast is quite simple and when VBedrock � VLayer
the reflection coefficient is close to one.
In this case, waves traveling in the upper layer toward the interface are almost com-
pletely back-reflected and seismic energy is trapped inside the layer. This leads to
specific frequencies, ωr, to constructive interference and a resonance phenomenon,
which results in amplification of particle displacement and acceleration at the surface.
Generally shear waves cause most of the damage because they propagate stresses able
to “ cut ” structures. For shear wave velocity, VS =

√
µ/ρ a two-layer model with

infinitely rigid bedrock, a well known relation holds (sec. 2.17):

fr =
VS
4H

(2n− 1) n = 1, 2, 3, . . . ∞ (1.1)

This clearly indicates the key role played by the shear wave velocity and, in its turn,
from the shear wave modulus. It is not surprising that perhaps the most used among
parameters to evaluate amplification and resonance of particle motion is the average
shear velocity of the first tens meters of depth. Many legislations, including the
Italian one, have adopted a depth of 30 m in order to estimate that average value
(VS30). Soil parameters have been evaluated from geotechnics with many methods,
direct probing, boreholes or ground penetrating cone are probably the most popular
approaches. Nevertheless recently non-invasive methods were developed to both ex-
tend the punctual geotechnical information and to get the subsurface response where
geotechnical methods can not be applied. Finally, non-invasive methods are gener-
ally much less expensive which makes them advantageous to employ for gathering
data. Among non-invasive testing, the most effective methods to recover information
on the shear wave velocity profile vs. depth are those based on the study of surface
waves (SWM). In fact SWM includes a whole family of different techniques which
share the dispersion of surface waves as the base mechanism.

SWM techniques were developed in the 1980s, but they didn’t become popular
until after 1990. Today they are widely exploited worldwide to estimate the site re-
sponse in areas prone to seismic hazard. In general they allow researchers to obtain
the 1D layered profile of shear wave velocity. Once the VS profile has been estimated
and the local structure at a site has been discerned in sufficient detail, the dynamic
response of the site can be simulated in order to obtain the amplification pattern for
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a “project earthquake”. This task is usually accomplished by means of numerical
simulations and popular software can be cited here, such as SHAKE, in its various
versions, EERA, NERA, Deepsoil and other. The collection of source programs by
R.B.Herrmann is also popular.

It must be emphasized that between field data and response simulations, the
recognition of subsoil properties plays a central role. Among the wide class of soft-
ware exploited in Geophysics and Geology, here the interest is focused on the class
of applications whose purpose is to extract structural information from field data,
i.e. to solve the inverse problem. In the modeling stage some different aspects are
worthy to be investigated. The first classification is based on the scale of involved
distances. A model can be built for long distances in order, for example, to inves-
tigate propagation of waves from an earthquake, aiming at the study of the Earth
structure. Estimating the structure of the lithosphere, by studying the features of
seismograms, belongs to this kind of modeling (Jeffreys & Bullen, 1940; Dziewonski
and Anderson, 1981; Kennett & Engdahl, 1991).
On the other hand, reduced scale models can be exploited to simulate regional effects,
as for example the scattering pattern in an alluvial valley (Aki, 1988; Bard, 1994)
and even more at Engineering/Geotechnical scale, to investigate vibration insulation,
soil-structure interactions, etc. (Manolis & Beskos, 1988). Soil can be conceptual-
ized exploiting various approaches. For example, in a geometric setting as a first
approximation it is relatively straightforward to model the ground as an half space
(Rayleigh explored this model in 1885). Then the need to take into account more
complicated, albeit more realistic, features, led researcher to consider piecewise lay-
ers or a functional variation of the involved parameters on an otherwise 1D layering
(Schnabel et al., 1972; Vucetic, 1986; Idriss et al., 1973; Lysmer et al., 1971), to ac-
count for different characteristics on different portions of the subsurface. For the sake
of simplicity and to obtain analytic solutions these variations are commonly applied
to an only 1D earth. By choosing to forgo methods to obtain an elegant analytic
solution, numerical methods such as Finite Element Method (FEM) or Boundary
Element Method (BEM) can be exploited, which mesh the soil surface/volume and
enable the problem to be solved numerically. As will be described in detail in the
subsequent sections, there are assumptions that affect how the model can mimic
the underlying physics. In fact, whenever soil constituting materials have to be de-
scribed, they can be modeled starting from their grained nature, which entails a
discrete mechanics approach, or, since wave motion is a phenomenon that usually
occurs at a greater scale than particle size, soil materials can be postulated to be
a continuum. This latter assumption, after Cauchy in 19Th, gave origin to modern
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solid mechanics. Finally, it can be stated that in continuum mechanics both Eulerian
and Lagrangian approaches are possible.

A consequence of the above considerations is that a wide range of models are
possible, each one with its own field of application. The modeling effort of this work
can in fact be located in the frame of continuum mechanics. Media are assumed to
be in regime of very small to small strain, as these terms are defined in sec. 2.2.
Isotropy and piecewise homogeneity are also assumed.

1.1 Research objectives

The idea to exploit the dispersive mechanism of surface waves as a probing tool for
subsurface structure was introduced about 30 years ago, an historical overview can
be found in Park and Ryden (2007), and afterwards a very intense research field has
developed. In fact, knowledge of surface waves was highly advanced several years
before (Aki and Richards, 1957), but only after 1990 it was intensively developed for
engineering and structural purposes. Currently many methods exist, most of them
assuming layered or depth dependent ground models, which employ information
contained in Rayleigh and Love surface waves to obtain shear wave velocity profiles.
General assumptions of these methods are:

• Small Strain Environment.

• Plane Surface.

• Plane Layered Geometry.

• Piecewise or functionally variation of soil elastic parameter with depth.

• Media Elasticity.

• Media Homogeneity.

• Media Isotropy.

Methods based on surface waves analysis are well established, as 1D layered earth and
waveguide behaviors are almost fully understood. However, an observation should be
made about SWM; these methods are stable and a Vs profile of the subsoil is always
obtained. Actually the obtained profile is the layered equivalent of the true situation.
In most cases the parallel layer assumption is correct because the soil structure is
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expected to negligibly depart from a layered structure at a typical surface testing
scale for engineering and geotechnical purposes (few tens of meters). The drawback
is that data processing doesn’t give any indications about the true subsurface struc-
ture, although very recently some progress has been made on this topic (Strobbia &
Foti, 2006). As a result, the parallel layer assumption can be very inaccurate when
locally complex structures are involved.

To exploit the amount of information achievable, it is necessary to extend the
research, relaxing at least one of the above assumptions. Most of reported evidence
arises from observation of earthquake damages. It could be objected that scales, at
which the geometry of the subsurface structure contributes to the strength of the
event, are several orders of magnitude larger than a typical SWM investigation and
that at local scale the subsoil can be safely approximated with parallel layer models.
Unfortunately the issue is not within scale range, since scattering effects occur at
every scale being the ratio λ/d of wavelength λ versus the scatterer dimension d, the
most important parameter.

Another issue that must be taken into account is that the assumption of the par-
allel layers model virtually forbids applications of SWM when the soil is evidently
non-planar.

In Conclusion, the goal proposed at the beginning of this research effort was to
investigate the possibility of exploiting surface waves recorded in some way at the soil
surface and relaxing the constraint of parallel layered structure. To this end an inver-
sion scheme was necessary to invert the data and to obtain the model characteristics,
which now were not only elastic media properties but also geometric properties. To
build an inversion algorithm requires minimization of an objective function. As a
“natural” choice, this coincides with the difference, in the least squares sense, be-
tween data and corresponding calculated quantities. It was intuitive to consider as
“data” seismograms, but a forward model was necessary to simulate displacements
at receivers. On this respect, Fourier space analysis seemed the most effective way
since time dependence factors out and complex scattering can be analyzed frequency
by frequency independently.

A first semi-analytic attempt has been made for horizontal shear waves which
started from the solution of the parallel layer problem at a fixed frequency. For sim-
plicity, the method was implemented for a layer over a half space. The 2D subsoil
model was then discretized along the horizontal direction and displacements were
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assumed to be a separable function of the coordinates. The depth dependent part
of the displacement at each horizontal position was expanded into a linear com-
bination of modal solutions of the local parallel model. The lateral variation was
then introduced matching all slices and exploiting an unknown horizontally varying
weighting function. This function was obtained semi-analytically by joining the el-
egant approach of Lagrangian minimization and the numeric spectral method. The
tentative model was able to reproduce results of parallel layered environment, and
was proved to be effective for interface slopes lower than 20 degrees. This result,
despite it generalizing previous work (Gjevic, 1973) by introducing features such as
back-reflections, multimodal nature of Love waves, and extending the slopes range
beyond the domain of small interface perturbations, was not suitable for inversion
and moreover its generalization to Rayleigh waves was too complicate. The method
is reported for sake of completeness in sec. 4.2.

A second forward model was then successfully built exploiting the BEM. Moti-
vations about this selection will be fully illustrated in section 4.3.

Finally both forward and inverse procedures were completed, successfully invert-
ing a real set of surface waves data and therefore a novel approach to surface waves
data interpretation can be introduced. Consider an initially layered soil structure
with piecewise elastic parameters and densities. Data on the surface are compared
with the numerical prediction of BEM in a least squares sense and the resulting
objective function is minimized allowing the shape of the layers to change. At this
stage, constitutive parameters ρi, VSi, VPi are assumed to be known at least in one
point of the profile, which means that this information comes from other data (e.g.
geotechnical tests). In future developments, a coupled inversion of both shapes of
layers and elastic parameters could be implemented, which will be independent on
this “a priori” information.

1.2 Dissertation outline

In the proceeding chapters, section 2 is devoted to recall the behavior of real mate-
rials and some phenomenological aspect of waves due to underlying geometry of a
site.
Section 3 outlines currently popular methods of investigation that exploit surface
waves as a main probing mechanism. The main and original part of the present
work will begin on chapter 4 where section 4.1 introduces some useful elastodynamic
concepts, sec 4.2 and sec. 4.3 introduce respectively the first attempt of forward



1.2. DISSERTATION OUTLINE 7

model and the final solution adopted to model the elastic wavefield.
Chapter 5 outlines inversion theory and introduces the concept of shape sensitivity.
When an inversion algorithm is built, sensitivities of the displacements calculated
at receivers due to a change in one point of the discretized buried interface must be
calculated and collected in a Jacobian matrix J . Simulated inversions of synthetic
data with numerically evaluated J matrix are presented in section 5.2.
Chapter 5.3 will describe a real data application.
Finally, chapter 6 proposes a new multidisciplinary approach. Computer vision con-
cepts introduced only during the last fifteen years are exploited to obtain an inversion
algorithm which speeds up computation dramatically.
Sec. 7 not only summarizes the obtained results, but also contains conclusive con-
siderations and a possible perspective of the research.
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Chapter 2

Phenomenological aspects.

2.1 Introduction

As it is well known, a modeling process involves simplifications of complex natural
phenomena in order to obtain the simplest framework that still retain the “ almost
intact” the major characteristics of the real environment. In this process of sim-
plifications some assumptions have to be made. In the proceeding sections, some
aspects of real soil systems will be considered. This chapter is intended to provide
the reader with an overview of some phenomenological aspects which will be useful
to understand limitations introduced in classical surface wave approach.

2.2 Dynamic behavior of material

As stated in the preceding section, modeling the soil response requires some assump-
tions on the constitutive model. The first aspect to be taken into account is how
to model the behavior of a material crossed by seismic waves. Investigations on the
factors affecting dynamic behavior of material have been conducted during the last
40 years both in the field and laboratory, and detailed classification of the effects of
different parameters are available (Vinale et al. 1996). A first classification divides
parameters influencing materials as intrinsic, proper of the material structure, as for
example, granulometry, plasticity, texture and cementation. The so-called state pa-
rameters belong in the second class, e.g. effective stress of confinement, stress/strain
ratio, stress/strain magnitude, and stress/strain history.

9
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2.2.1 External influence parameters

The second class is of particular interest here. Since cyclic deformations are in-
duced in materials perturbed by seismic wave motion, it is interesting to consider
the response of a sample volume in a controlled condition of cyclic strain. For a
process of charge-discharge-recharge, the tangential deformation with the aid of only
two parameters, i.e. shear modulus G and damping ratio D, can fully represent the
mechanical behavior of the sample. These parameters 1 will be indicated here with
arctgG0, arctgG

arctg G arctg Go

Tpp

Upp

A B C

Figure 2.1: Charge-discharge-recharge cycle:
A) Very small strain,
B) Small strain,
C) Intermediate strain.
WD = light gray., Ws = dark gray.

1Notation about shear modulus in literature is a little bit confusing. It is indicated with G in
Engineering and it coincides with µ Lamé’s constant in Physics and Geology
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G =
Tpp
Upp

(2.1)

D =
WD

4πWS

.

(2.2)

With reference to fig. 2.2.1, four contiguous classes of mechanical behavior can be
identified.

Very small strain
It is the region defined for values of strain smaller than the linear cyclic shear strain
threshold γl. It is characterized by a constant shear modulus G = G0. Within this
region the response of the material is linear. Despite the very low strain range,
the behavior is not really elastic and the area of the stress-strain loop is not null;
nonetheless the cyclic process occurs with dissipated energy close to zero and mate-
rial behavior is almost perfectly elastic. This weakly hysteric behavior is due to a
time lag between the driving strain and the consequent driven stress and is of elasto-
plastic type. Values of γl vary from material to material, and can range between
0.0001 and 0.01%

Small Strain
Limits γl γv , where γv is the volumetric shear strain threshold and is usually one or
two orders of magnitude greater; it encloses a region of deformations where behavior
is fairly non-linear and dissipative. The stress-strain curve changes as in figure 2.2.1
and dissipated energy can be determined with equations 2.1.

Despite this fact, the mechanic behavior still remains stable with only an initial
small degradation. The subsequent behavior remains independent on the history of
the material and on the number of cycles. This range is known as material hardening
(or softening).

Intermediate strain
Threshold γpf identifies the next class. Shear and volumetric strains couple and
at any cycle in the stress-strain curve a residual deformation always remains. The
sample degrades with the number of cycles and energy losses take place over finite
periods of time, due to irrecoverable damages to the internal microstructure.

Large strain
Whenγpf is exceeded, the sample enters the large strain domain and it is only matter
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of time to reach the material failure, which occurs at γf threshold.

It must be noted that mentioned thresholds are usually related to laboratory sam-
ples which are usually perturbed with respect to the undisturbed field soil; moreover
soil parameters are also dependent on the applied stress history, which implies that
by investigating samples with different histories, different values of G and D could
be obtained. Nonetheless thresholds still remains very useful concept to classify the
dynamic behavior of the material.

2.2.2 State parameters

Stiffness and damping ratio have been proved able to characterize the dynamic be-
havior of the material under investigation. As will be shown in section 2.5, during
wave propagation both very small and small strain can be formally described just
replacing the real wave speed with its complex analogous. Using these two main
parameters is expected to characterize soil behavior in modeling. This approach is
commonly accepted and soil parameters are usually assumed constant. However for
sake of completeness, it is noteworthy that both G and D are in general functions
of the physical characteristics of the media. Recalling fig. 2.2.1 and eq. 2.1, there
is an intimate relation between G, D parameters, strain thresholds and energy dissi-
pated. The physical phenomena affecting the former, will also affect the latter one.
Earlier descriptions of stiffness dependency were expressed as the following empirical
relations (Nardini, 1978):

G0

Pa
= Sf(e)

(
P
′

Pa

)n
OCRk , (2.3)

where S is the a-dimensional stiffness coefficient which accounts for the soil mi-
crostructure, fe is a decreasing function of void index and it depends on initial
consolidation conditions; n, k are empirical indexes accounting for sensitivity of the
stiffness with respect to effective stress of confinement and to the degree of consol-
idation; Pa is the reference pressure which makes eq.2.3 dimensional. Finally, Over
Consolidation Ratio (OCR) is defined as the highest stress experienced divided by
the current stress.
Eq. 2.3 was then expressible in simplified form depending on particles dimension.
This approach was based on subdivision of soils types into coarse and fine-grained
and to specialize eq. 2.3 for the two cases. Later works (Dobry & Vucetic, 1987;
Vucetic & Dobry, 1991; Jamilkowski et al., 1991; Vucetic, 1994) recognized this sub-
division as unnecessary and unified the phenomenological representation exploiting
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the plasticity index (PI). Figure 2.2 illustrates the behavior of thresholds with re-
spect to PI.
Finally, within this more recent description frame, the main state parameters and
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Figure 2.2: Strain thresholds as function of Plasticity Index, (Vucetic, 1994)

their effects on stiffness and Entropy density production can be summarized in tables
2.1 and table 2.2 (Lai, C.G., 1998)

This research effort is focused on the first of these four regions even if all algo-
rithms, treated in following chapters, can be extended to visco-elastic cases by means
of the elastic-viscoelastic principle of equivalence.

2.3 Surface waves

Seismic energy released during an earthquake propagates in soil by means of elastic
waves. From a mathematical point of view these can be described by Navier’s equa-
tion, whose general solutions are P waves, also called “Primary” or “Compressional”
where particle motion has the same direction of propagation and S, “Secondary
waves” or “Shear waves” where particle motion is perpendicular to the wave direc-
tion of propagation. Actually these waves propagate inside the media volume, and
for that reason are also called “Body waves”. During an earthquake seismograms
are recorded and P , S waves correspond respectively to the first and second arrival
observed. During propagation their amplitude decreases proportionally to r2 because
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Stiffness reduction
Parameter effect Refs.

Increase in Mean Increase [59]
Confining pressure

Fabric: Decrease [55][75]
(Increase in voids)

Increase in γ < γl Low PI: No effect [31]
Strain-Rate High PI: Increase

γ > γl Increase [80]
Increase γ < γl Negligible effect for [123][79]

in Duration Dry Sand and Clayed soil

γ > γl Differences between [31]
drained and

undrained conditions

Table 2.1: Effects of intrinsic parameters on Stiffness

Entropy density production
Parameter effect Refs.

Increase in Mean Decrease (Particularly for low PI) [59]
Confining pressure

Fabric: Decrease [55][75]
(Increase in voids)

Increase in Independent on [123]
Strain-Rate frequency of

cyclic excitation

within seismic range

(0.001-100 Hz)

Increasie in γ < γl Negligible effect for [123][79]
Duration Dry Sand and Clayed soil

γ > γl Differences between [31]
drained and

undrained conditions

Table 2.2: Effects of intrinsic parameters on Entropy production
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the initial energy is spread on larger and larger spherical surfaces, while amplitude
is proportional to r. However the greatest amplitude coincides to the later arrival of
surface waves. Since they travel on surface, their amplitude and transmitted energy
decrease respectively like

√
r and r. For this reason, most damages produced during

an earthquake coincide with the passage of this latter kind of waves.

Surface waves have been classified as Rayleigh waves(named for Lord Rayleigh,
who predicted the phenomenon in 1885) and Love waves(predicted by the mathe-
matician A.E.H. Love in 1911). Indeed, Rayleigh waves arise from the construc-
tive interference of compressional waves and vertically polarized shear waves. Love
waves on the other hand arise from horizontally polarized shear wave self interac-
tion. Characteristics of Love and Rayleigh waves such as amplitude of displacements
and phase velocity depends on elastic properties of the propagating media. Rayleigh
waves, produces in almost any layered or depth-dependent system. On the contrary,
Love waves production requires either an increment or a positive jump with depth of
acoustic impedance. Despite this attribute, they actually share two interesting prop-
erties, namely, both Love and Rayleigh waves traveling in soil with depth-dependent
2 elastic properties are dispersive and multi-modal.

Latter characteristics are easily explained for Love waves (Aki & Richards, 1980).
Rayleigh waves propagation on the other hand, being originated by interference of
two different kind of waves is much more complex. The practical motivation to limit
the scope to Rayleigh waves is that they are widely exploited in most of the surface
wave methods discussed in chapter 3.

Basic properties of Rayleigh waves can be understood following the approach
introduced by Lord Rayleigh. Let’s consider an elastic, homogeneous and isotropic
half space; the wave equation

(λ+ µ)∇∇ · u + µ∇2u + ρf = ρü , (2.4)

can be solved introducing Helmholtz’s decomposition. Free surface boundary condi-
tions and radiative condition at infinity are introduced as well (Richart et al., 1970).
If the case of plain strain is assumed (sec. 4.1) the characteristic Rayleigh equation
2.5 is obtained

K6 − 8K4 +
(
24− 16γ2

)
K2 + 16

(
γ2 − 1

)
= 0 , (2.5)

2If an elastic, homogeneous, isotropic half-space is considered, Rayleigh waves with different
frequency travel with the same velocity and dispersion does not occur. Love waves, on the other
hand, cannot produce in such environment.
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Direction of Propagation 

Dilatations

Compressions
P wave

S wave

Love wave

Rayleigh wave

Wavelength

Undisturbed Medium

Figure 2.3: Example of P, S, Love and Rayleigh particle displacements (Bolt, 1976)
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where K = VR/VS and γ = VS/Vp are ratios involving shear, compressive and
Rayleigh wave velocities. The latter equation can be solved for K2 and its roots
are a function of the Poisson’s ratio. It can be shown that for real media only one
root exists and an approximate value is given by (Viktorov,1967)

K =
0.87 + 1.12 ν

1 + ν
. (2.6)

This leads for values of Poisson’s ratios 0 < ν < 0.5 to

0.87 < VR/VS < 0.96 . (2.7)

Assuming far field conditions, displacements can be evaluated and the solution takes
the form

uz ∝
bz√
r
e(ωt−kr−

π
4 ) (2.8)

ur ∝
br√
r
e(ωt−kr+

π
4 ) ,

here uz, ur are respectively vertical and radial displacements; bz, br are two functions
of mechanical parameters. Further, wavenumber is connected to the velocity by the
relation k = ω/VR. Displacements are depicted in fig 2.4

This simple model expresses some basic features of Rayleigh waves. First of all,
the unique root of the characteristic equation 2.5 depends only on ν and not on the
frequency; as a consequence, propagation in an elastic half-space is not dispersive.
Solution 2.8 shows that there is a π/2 phase shift between components which leads
to an elliptic retrograde motion of surface particles. Displacements are indeed a su-
perposition of a horizontal and a vertical component which propagate with the same
velocity, but with different exponential attenuation laws with depth. Consequently
motion affects only the shallow portion of material for a depth comparable to one
wavelength. Further the retrograde motion is reversed at a depth close to a quarter
wavelength.

Formulation become much more complex if mechanical properties of the media
are function of depth. In this situation Navier’s equation is expressed by

(λ+ µ)∇∇ · u + µ∇2u + ej
dλ

dz
∇ · u +

dµ

dz

(
ej ×∇× u + 2

∂u

∂z

)
= ρü . (2.9)

It can be shown that by assuming plain strain and an exponential form of dis-
placement, the elastodynamic problem constituted by eq. 2.9 and above mentioned
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Figure 2.4: Displacements of Rayleigh waves.(Richart et al.,1970)

boundary conditions, reduces to an eigenvalues problem. The generalized character-
istic equation is solved once the roots K(ω) are found. It is noteworthy that now
different modes of propagation exist and they travel with different speed. In general
Rayleigh propagation in vertically heterogeneous media can be solved once the law
of variation of elastic parameters is specified. Due to the impossibility of solving the
problem analytically, different numerical methods have been developed. Some numer-
ical methods of note are the Transfer-Matrix method introduced by Thomson (1950),
and successively improved by Haskell (1953); the Stiffness-Matrix method (Kausel
and Roesset, 1981) and alternative approaches (Kennett 1974, 1979; Kerry, 1981).
Rayleigh waves have been thoroughly investigated and general conclusions can be
summarized.

• The geometrical dispersion phenomenon can be seen as an effect of the depth-
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dependent heterogeneity. Given a packet of Rayleigh waves, since wavelength is
related to frequency f by the relation λR = VR/f , high frequency waves sample
the shallower soil portion. On the other hand, low frequency waves penetrates
deeper into the media and as a consequence their velocity is influenced by
both shallow and deep material’s mechanical properties. As a consequence
the velocity is a function of frequency. It is noteworthy that the shape of the
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Figure 2.5: Example of dispersion.(Sheriff and Geldart,1995)

dispersion curve, which expresses phase velocity as a function of frequency, is
strongly related to the stiffness depth variation. Technically speaking, soils
with stiffness increasing with depth are defined as normally dispersive, and the
opposite is referred to as inversely dispersive.



20 CHAPTER 2. PHENOMENOLOGICAL ASPECTS.

• At fixed frequency many modes of propagation exist with different velocities. It
is not possible “a priori” to deduce which mode carries the most part of energy
and usually for the same system setup this depends on the frequency (Gukunski
& Wood, 1992). However for normally dispersive soils the fundamental mode
is usually the most probable candidate.

• The elliptic path of particles is affected from mechanical parameters as well.
Elliptic shape is conserved, but in some cases it can be in a prograde sense. The
phase shift between components can be different from π/2 due to dispersive
phenomena resulting with axis of elliptic path not necessarily parallel to main
reference axis.

• Velocity of a wave packet (group velocity; Vg) is usually different with respect
to the phase velocity (velocity of a fixed frequency wave in the packet Vph).

Vg =
dω

dk(ω)
≈ Vph + f

dVph
df

. (2.10)

Figure 2.5 depicts a typical dispersive phenomenon, where

Vg =
∆x

∆tg

Vph =
∆x

∆tp
.

2.4 Topographic effects on wave propagation

It is well known that local topographic features can severely affect the pattern of
an incident wavefield. The most striking evidence of these characteristics of wave
propagation comes from the observation of damages produced during catastrophic
earthquakes. Observation of damage localization after an earthquake suggests that
the influence of superficial geometry is particularly strong at the top of reliefs. This
phenomenon is due to focalization of seismic waves by the free surface in proximity of
the relief edge and to constructive interference between direct and reflected wavefield
(Bard, 1982). Experimental investigations are usually limited to seismogram analy-
sis where it is difficult to discern between topographic effects and acoustic impedance
variations. On the contrary, model investigation has been a extensive field of research.

Analytical solutions exist (Trifunac, 1971; Wong and Trifunac, 1974), finite-
difference, finite-element, and boundary-element numerical methods ( Sánchez-Sesma
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and Esquivel, 1979; Bard and Bouchon, 1980a, b, 1985; Dravinski, 1983; Bravo et
al., 1988; Sánchez-Sesma et al., 1989, Geli et al., 1988; Sánchez-Sesma and Campillo,
1993; Bouchon et al., 1996) or approximate analytical methods (Hudson, 1967;
Sabina and Willis, 1975) have been used to model topographic effects.

Some more recent investigations have affirmed once again the importance of these
features (Raptakis et al., 2000; Bouckovalas and Kouretzis, 2001; Assimaki and
Kausel, 2007). The effort was focused mainly on two-dimensional problems since a
three-dimensional investigation involves a much more complicated mathematical and
computational effort. The “hill” problem has been extensively investigated especially
when it is semi-sine shaped. This configuration is particularly suitable for simulation
and widely present in nature. Results regarding hills are often indicated as a function
of geometrical parameters, namely height-length ratio or height-wavelength ratio.
For example, Nazari (2010) investigated a sine shaped hill under upward SH wave
propagation. The role of some key parameters, such as the shape ratio, defined as
the hill’s height (h) to its half width (b), the dimensionless frequency, defined as the
height-wavelength ratio and the wavelength was proved to affect amplification at the
surface. These results showed that topographic effects are negligible for shape ratios
less than 0.1 and for the wave lengths more than eight times larger than hill’s width.
An increase in shape ratio and dimensionless frequency caused an increase in number
of points of de-amplification along the hill’s flank with a decrease in de-amplification
values for horizontal components of movement. On the other hand an increase in
shape ratio and wave length, increased the amplification values at all points for the
vertical component of the particle’s displacement.

Similar results were published in 1981 by Bard, who investigated P , SV , SH am-
plification on mountains. The amplification amount was found to be much more
important for incident S-waves than for P-waves. This fact was actually consis-
tent with the precedent experimental observations (Davis & West, 1973; Griffiths &
Bollinger, 1979). Amplification was strongly dependent on characteristics of both the
incident waves and the topographic structure. Bard also made some general obser-
vations, he noticed that the amplitude spectrum exhibits a rather flat maximum for
wavelengths comparable with, or slightly shorter than, the mountain width. Ampli-
fication generally decreases with increasing incidence angle; in particular, SV waves
impinging at the critical angle cause a relevant de-amplification at the mountain top.
The focusing effect increases with mountain height, and presents a complex depen-
dence on the Poisson ratio. The amplification scheme seemed to be replaced by a
de-amplification phenomenon for concave topographies.
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Savage (2004) obtained numerical results for Rayleigh waves. He found that
for horizontally traveling Rayleigh waves, amplitudes generally increase along ridge
flanks up to a maximum at ridge crests. In his model the amplification factor reached
3.8 for an incoming signal of 1 Hz frequency.

Wong (1982) pointed out that the near-surface retrograde motion of Rayleigh
waves along the flanks can be addressed for landslide induction.

It must be emphasized that the above findings generally underestimated the real
topographic effects because of the three-dimensional nature of the real cases. In
spite of the extreme simplicity of the adopted model, these examples clearly show
the complex interrelation between kind, direction, frequency and geometric parame-
ters of the incoming wave. Therefore it is not possible to obtain general analytical
formulation to relate the factors involved but only a list of guidelines.
In conclusion:

• Seismic motion is amplified at the top of a hill, with respect to its base.

• Top hill amplification depends on the hill’s geometrical characteristics, as focal-
ization takes place when incident wavelength has the same order of magnitude
of half of the hill base (L).

• Amplification is proportional to H/L rate.

• Interaction between incident and diffracted waves at the hill flank produces fast
variations of motion in both amplitude and frequency content, with alternating
amplification and de-amplification phenomena.

• Two-dimensional numeric models qualitatively corresponded with data on oc-
currences of amplification at the top, and complex phenomena at flanks while
amplification rates are usually underestimated.

2.5 Alluvial valleys

Amplification effects have also been observed in alluvial valleys as during catas-
trophic earthquakes. The Mexico City disaster in 1985, for example, belongs to this
class. The seismic train produced by the source, roughly 400 km west of Mexico
City, produced little damage to the coast and attenuated while entering the inland.
Unexpectedly, once it approached the city it suddenly amplified. The Mexico City
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shake was severe and in some parts of the city the shaking lasted for several minutes
after the wave front passed. Another classic case is the famous seism of Loma Prieta
in the Oakland-San Francisco Bay area of northern California. Similar effects have
been reported in the Northridge earthquake of southern California. Experimental ev-
idence on alluvial basins elucidated the following phenomenology (Drawinski, 1987;
King and Tucker, 1984):

• The response to earthquake motion depends strongly upon the frequency and
position of the site within the valley and only weakly on the angle of incidence
of the input signal.

• The ratios between the Fourier spectra from soil and the spectra from nearby
rock sites, used as a reference, can reach values of apparent amplification up to
10. The behavior is strongly dependent on the frequency and distance of the
site from the valley edges.

• The response of a given site presents features which do not depend upon the
earthquake location or source characteristics.

• Ground motion varies much more over profiles that span large changes in sed-
iment thickness than over profiles where thickness is almost constant.

Early studies on alluvial valleys suggested that amplification effects are mainly due
to a jump in acoustic impedance of the involved media. Resonance effects occur
when the frequency of the incident earthquake matches with the natural frequency
of a shallow soft layer. By exploiting a simple 1D model this phenomenon can be
easily shown. For example, let’s consider a 1D wave propagation in a layer over
an infinitely rigid bedrock. The complete wave equation 2.11 can be uncoupled
exploiting separation of the variables to obtain the one-dimensional wave equation
for f(z).

ρ
∂2u

∂t2
= G

∂2u

∂z2
. (2.11)

Assuming displacement to be represented by

u(z, t) = f(z)eiωt , (2.12)

the general solution for the depth dependent part f(z) corresponds to a linear su-
perposition of opposite propagating waves

f(z) = Aei(
ω
Vs

)z +Be−i(
ω
Vs

)z . (2.13)
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Imposing the free surface condition, corresponding to a condition that the stress
tensor timed by unit normal at surface is zero τ ·N = G∂u

∂z
= 0; constants A, B are

found to be equal and the final particular solution for displacement is

u(z, t) = 2A cos(
ω

Vs
z)eiωt . (2.14)

Transfer function3 Hr(ω) of this simple model is obtained calculating the rate of
displacements at the top (z = 0) with displacements at the layer base (Z = H).

Hr(ω) =
2Aeiωt

2A cos( ω
Vs
H)eiωt

= 1/cos(F ) , (2.15)

where F = ωH
Vs

is called frequency factor.
The amplification factor corresponds to Hr(ω) magnitude, so in this case

Ar(ω) = 1/ |cos(F )| , (2.16)

which takes infinite values for periodic values of frequency

ωr =
Vs
H

(2n− 1)
π

2
n = 1, 2, 3, . . . ∞ (2.17)

fr =
Vs
4H

(2n− 1) .

(2.18)

Frequencies in eq. 2.17 are called natural , because they are an intrinsic property
of the system. Since Vs =

√
G/ρ they are affected by all intrinsic and external

parameters, discussed in sec. 2.2, which affects the dynamic behavior of the material
composing the layer. It is therefore clear how the amplification is tightly bounded
to the rise up of standing waves. The above model can be now generalized for the
case of a deformable half space. In this case part of the energy is transmitted to the
infinite half space and dissipated. It can be shown that the shape of the transfer
function is unchanged (Lanzo & Silvestri, 1999), but since now it assumes complex
values the amplification is expressed as:

Ad(ω) = 1/

√
cos2(F ) +

1

I2
sin2(F ) , (2.19)

3Note that this expression is valid both for displacements and accelerations and is a real function
(Roesset, 1970)
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which depends now also on the properties of the half space material and I =
ρLV L

s /ρ
HSV HS

s is the acoustic impedance ratio.

One last generalization can be introduced if the case of a viscoelastic layer is
considered. The viscoelasticity assumption introduces a velocity dependent term in
the wave equation 2.11, the shape of which changes to

ρ
∂2u

∂t2
= G

∂2u

∂z2
+ ηv

∂3u

∂t∂z2
, (2.20)

and ηv is the viscosity, related to the damping ratio of a cyclic excitation by

D =
ηv ω

2G
. (2.21)

Again, if the general solution has the form 2.12, f(z) must abide by the following
equation:

(G+ iωηv)
∂f(z)

∂z
+ ρω2f(z) . (2.22)

Now, it is noteworthy that equations 2.22 and 2.11 present the same functional de-
pendence provided that the complex shear modulus G∗ = G(1 + 2iD) is introduced.
Note that now all previous steps follow without any changes except for the substi-
tution of G with G∗. For the case of an infinite rigid half space, the amplification
function is shown in fig. 2.5. For the case of a deformable half space on the other
hand, the involved equations are much more complicated and amplification cannot
be expressed in a simple form

Ad(ω) = 1/
√

cos2(F ) + (DF )2 . (2.23)

Due to its simplicity, this classical 1D flat-layer approach has been used extensively
by researchers, and in many cases it yielded results in accordance with observations.
The informative power of such a simple configuration is incontrovertible, although
severe cases such as the Mexico City earthquake demonstrated that it can be se-
riously inadequate. The effect of replacing the homogeneous layer with a depth-
dependent heterogeneous one, is in fact that resonance frequencies are closer and
resonance peaks enhanced. In general, it has been achieved that substitution of a
depth-increasing stiffness layer with an averaged homogeneous one, entails a serious
underestimation of the seismic amplification. Further analysis has been made and
can be found in literature. All the modeling effort has been oriented to the direction
of numerical computation because of the complexity of the scattering patterns and
the basin-specific nature of the problem.
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Figure 2.6: Example of resonance:

A) Elastic layer over infinitely rigid half-space.

B1) Elastic layer over deformable half-space (Eq. 2.19), I = 9.

B2) Elastic layer over deformable half-space, I = 5.

C1) Viscoelastic layer over undeformable half-space(Eq. 2.23), D = 5%.

C2) Viscoelastic layer over undeformable half-space, D = 10%.
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2.6 Alluvial Valley Edges

Dangerous patterns have been individuated whenever a soft layer is situated over
a hard bedrock. As stated in the previous section, the displacement field at the
surface of an alluvial valley presents complicated features, which locally are strongly
dependent on a number of physical parameters, such as frequency and nature of the
incident wave, location of the observation point, observed component of the motion,
number and shape of the layers, and finally impedance contrast.

As the simple two layer model cannot fully explain the whole situation, many
numerical methods were adopted to study the alluvial valley response, in order to
investigate the wavefield features which cannot be explained by means of the cited
model. Two effects should be taken into consideration and are worthy to be cited.
The first one concerns seismic P , SV and SH wave focalization at the edge, due
to multiple reflections on the oblique interfaces between layer(s) and bedrock. The
second phenomenon which can occur, concerns surface wave generation resulting
in long lasting shaking. Both phenomena have been addressed to explain observed
damages at valley borders. Investigated models cover several different bedrock shapes
(Bard & Gabriel, 1986; Aki, 1988, Bard, 1994), nonetheless they are closely related to
section 2.4 and generally later numerical models included them as natural boundary
conditions.

2.7 Irregular interfaces

As stated above, modeling has been widely adopted, showing results which are
“basin-dependent” albeit successful. It has been noted that one of the key parame-
ters is the number of layers considered. Further attempts to improve accuracy lead
researchers to speculate also on interface shapes (Dravinski, 2009/07; YU, 2009).
Dravinski in particular, numerically investigated functionally corrugate and random
interface effects delineating some general characteristics.

• Presence of interface corrugation can produce significant reduction in shallow
motion on peaks.

• Reduction strongly depends on the nature of corrugation and on the mean in-
terface profile, namely, deterministic versus random, semielliptical versus semi-
circular. As a consequence, in case of a functionally described corrugation,
reduction can be correlated to the parameters describing its shape.
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• The overall effect is dependent on wave nature.

• There is dependence on the average depth of the basin, which is particularly
pronounced for SV incidence.

• The fundamental resonant frequency of a smooth basin is lowered if corrugation
is introduced.

This aspect of the problem is still an open area of research.



Chapter 3

In situ testing and Surface waves
overview.

Methods available to investigate the elastic properties of a site can be classified into
two main families.

• Invasive Testing

• Non-Invasive Testing

The first category usually includes a direct sampling of the subsurface. Ground pen-
etrating cone, boreholes, seismic tomography for example, belongs to this category.
Surface wave testing belongs to the non-invasive tests class. They gained popularity
during the past twenty years as a low cost alternative to invasive geotechnical testing.
The main purpose of surface wave testing is to determine the shear wave velocity (Vs)
profile of the subsurface within the shallowest tens of meters. Propagating elastic
waves are recorded by means of an array of geophones placed on the ground surface.
The signal can be either naturally or artificially generated. In the former case the
test is said to be passive surface wave testing, in the latter case it is called active.
In passive testing the natural seismic tremors are recorded, which are due to many
different causes, both natural, like wind, sea wave motion vibrations from neighbor
structures like buildings, trees, etc, and man-made like seismic noise linked to car
traffic and trains. Active testing on the other hand focuses on artificial sources like
a sledge hammer, a weight drop, an explosion or a fixed frequency electromechanical
shaker.

Different methods exist today, and they can be classified according to source
employed, number of sensors and array geometry. The data acquired is further
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elaborated according to the assumption that the signal is constituted by Rayleigh
and Love (sec. 2.3) surface waves. The main characteristic of both kinds of surface
waves is that displacement amplitude of particles decreases quickly with depth, at
a rate depending on frequency (or wavelength). As a consequence, a wave samples
the subsurface to a depth comparable to its own wavelength. This phenomenon
of frequency dependence makes the wave train dispersive, because of the variation,
generally increasing, of seismic velocity with depth. The dispersion curve can be
calculated from wave-trains in the frequency-wavenumber domain by means of a two-
dimensional Fourier transform. In the current practice the dispersion curve is then
used to estimate a layered soil model where parameters of each layer are thickness
(h), density (ρ), shear wave velocity (Vs) and compressional wave velocity (Vp).
Steps necessary to accomplish the task can summarized with:

• Acquisition.

• Dispersion analysis.

• Layered-soil reconstruction.

Different methods were developed starting from early 1980s.

3.1 Active methods

3.1.1 SASW method

The simplest and earliest method of this family was developed at the University
of Texas (UT) at Austin and today is popular as spectral analysis of surface waves
(SASW), (Heisey et al., 1982; Nazarian & Stokoe, 1984). The field setup is comprised
of an impulsive source and two common velocity geophones placed at a distance
d. The impulsive source signal containing a broad spectrum in frequency, usually
from 1 to 100 Hz is produced by a sledgehammer drop, and seismograms φ1(t),
φ2(t) are recorded and analyzed by the Fast Fourier Transform algorithm (FFT).
Corresponding spectra,Φ1(ω), Φ2(ω) are then combined to form the cross-spectra.

Y12 = Φ∗1(ω)Φ2(ω) ,

where the asterisk indicates complex conjugation. Phase velocity is then obtained
calculating the arc tangent of the cross-spectrum

Θ12(ω) = arctg

(
I(Y12)

R(Y12)

)
,
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Figure 3.1: SASW field setup

which depends, frequency by frequency, on the lag time between the two geophones
placed at the known distance

t(ω) = Θ12(ω)/ω

VR(ω) =
d

t(ω)
. (3.1)

Once the velocity (3.1) has been obtained, the soil profile is reconstructed by an
inversion algorithm to produce a layered model, using the relation between the VR
and the above mentioned constitutive parameters of the layered sequence. The use
of cross-spectra is based on the implicit assumption that only one mode of propaga-
tion is present and therefore the described data processing hides the higher modes
This is actually the fundamental Rayleigh mode, therefore it is not surprising that
initially the method was focused on increasing its accuracy to isolate this feature.
Subsequently many studies examined the possibility of contamination from higher
modes (Roesset et al., 1990; Rix et al., 1991; Tokimatsu et al., 1992; Stokoe et al.,
1994), and in successive works the concept of apparent dispersion curve appeared
(Gucunski and Woods, 1992; Williams and Gucunski, 1995). Later evolutions at-
tempted to account for higher modes, unfortunately the two stations scheme is not
suitable to capture the complete information present in the wave-train. A compre-
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hensive list of the publications on SASW up to early 1990s can be found in the
Annotated Bibliography on SASW by Hiltunen and Gucunski (1994).

3.1.2 MASW method

As previously stated, surface wave nature is multimodal; so in order to collect the
complete information of dispersion curve, an array composed of many geophones is
necessary. The earliest documented applications of multi-channel acquisition pertain
to early 1990s. In the mid-90s at the Kansas Geological Survey the basis of a new
method, the Multistation Analysis of surface waves (MASW), was developed which
became popular especially in the field of geotechnical engineering after publications
by Park et al. (1999) who showed the effectiveness of the method. The successive

Source
Channels
#

Seismograph

1 2 3 4 5 6 7 8

Receivers

Figure 3.2: MASW field setup, from.......

advancements and developments utilizing this methodology confirmed the advantages
with respect to SASW (Foti, 2000) and brought about a deeper knowledge of the
complex structure of the surface wavefield. The previously reported higher modes
and leaky modes were studied and confirmed in a detailed manner (Ryden et al.,
2003; 2004; Ryden and Lowe, 2004).
MASW employs in its turn an impulsive artificial source, to be operated at one
end of the profile of geophones. The data collected exists in a two-dimensional
space,[R× t], where one dimension is the space and the second dimension is the time.



3.1. ACTIVE METHODS 33

The classic analysis is performed by transforming this space into the [frequency ×
wavenumber] domain by a double Fourier Transform (f -k Transform)(Tselentis &
Delis, 1988), but also the alternative approach of p-τ transform (Piwakowski et al.,
2004) has been proposed which seems promising. Once in the transformed space, the
dispersion curves are obtained by individuating the maxima of the 2D transformed
data distribution, this is called the peaking phase, see fig. 3.3 where the peaking
procedure is depicted both for MASW and for REMI (Sec. 3.2.1). These curves are
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Figure 3.3: Modes of propagation peaking, REMI(Top), MASW(Bottom)

then used as the objective functions for the inversion algorithm. The investigation
depth is about a half of the profile length.
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3.2 Passive methods

Passive methods exploits natural random seismic noise. It is a matter of fact that
the seismic noise (ground roll) was one of principal causes for loss in accuracy of
seismic reflection and seismic refraction methods. When the passive methods were
first introduced a noteworthy literature about ground roll suppression was already
available. It is curious to note how the same knowledge was then employed to study
the ground roll.
Passive methods present an advantage with respect to active methods in that they
need noise to be exploited and then they can be used in very noisy environments as
well. In fact to produce a signal strong enough to overcome the disturbance may
require strong sources; the problem increases with increasing planned investigation
depth.

3.2.1 REMI method

REfracted MIcrotremors (REMI), first introduced by Louie (2001), is from any point
of view quite similar to MASW. It employs the same array of geophones, and the data
elaboration is, with a few exceptions, the same. The first difference is that the source
is now the natural seismic noise, this implies that the signals impinge the profile
coming from random directions. The signal amplitude can be very low as compared to
an active test. In order to get a good statistics on the entire possible arrival directions
of noise wavetrains, recordings have to last for a longer time, typically 10 to 30 min.
The second difference is in the picking phase. The dispersion curves are not associated
to the maxima of the f -k transformed space as is for MASW, but to the lower edge
of them, in other words the dispersion curve must be willingly underestimated. This
is due to the fact that waves reach the array also from directions other than the array
orientation and the corresponding phase velocity results will be overestimated if the
maximum is considered.
As an example, assume a wave is reaching the array from a direction normal to the
array itself, if the far field assumption is made, the wave is plane and it reaches all
receivers simultaneously. In this limiting case the obviously wrong conclusion is that
the phase velocity is infinity. Figure 3.3 shows how the picking is performed. The
investigation depth is about a half of the profile length.

3.2.2 2D array method

This is another method based on microtremors. The field setup is an array of sensors
placed circularly, with or without a central receiver. For each couple of geophones
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coherence γ is calculated by averaging the normalized cross-spectra with respect to
the distance of the couple.
If the recorded noise is a stochastic process, it can be shown (Aki 1957) that the
coherence is a function of the frequency and of the distribution of wave velocity
under the array.

γω,Vs = J0(
ωr

Vs
) , (3.2)

where J0 is the order zero Bessel function. The stochastic process assumption is valid
for moderate levels of constant isotropic noise. Comparing calculated coherences with
theoretical ones obtained from a model with known density, elastic parameters and
thickness, the subsurface model can be deduced. The advantage of this approach
is the greater depth of investigation, compared with the MASW. The maximum
investigation depth can be evaluated as 2-3 times the radius of the array.

3.2.3 MOPA method

Multi-offset phase analysis of surface waves (MOPA)(Strobbia & Foti, 2006) has
been recently introduced as a novel method to assess the quality and reliability of
active source, linear spread, multichannel surface wave dispersion. The procedure is
based on the linear regression of phase vs. offset data using a statistical approach.
Despite the fact that it cannot be considered as an alternative method to conventional
SWM’s, it is worthy to mention because it allows the estimation of the uncertainties
in the dispersion curve, which can propagate through the inversion process to the
shear wave velocity profile. The most important advantage is its ability to assess
whether significant model errors are present.

3.2.4 Nakamura’s Spectral ratio method

Another technique of note is the horizontal to vertical component spectral ratio
method, currently called the Nakamura’s method (HVSR). The field setup is usually
comprised of by a 3D-components station. Microtremors are recorded and exploited
to obtain some structural information. Registration can last from 10 to 30 minutes
as was the case for MASW. Even if it does not produce shear waves velocity pro-
files, it is worthy to mention HVSR, because it is useful to estimate the local seismic
amplification. This method is focused on obtaining the resonance frequency of the
underground structure. This parameter is important for civil engineering to avoid
double resonance effects on new buildings or artifacts. Double resonance effect takes
place when the proper frequency of the artifact coincides with the proper frequency
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of the subsurface soil structure. Typical amplifying sites are comprised of a soft(low
shear wave velocity) layer over a more stiff basement (high shear wave velocity).
Explanation of Nakamura’s procedure is straightforward if the simplified model 3.4
is considered (Mucciarelli, 1998) along with the following assumption,
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s
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s

b

Figure 3.4: Nakamura’s simplification of underground structure

• Microtremors are generated by shallow local sources and deep sources are not
accounted for.

• Sources at the surface have no effect on the deep interface.

• The vertical component of motion is not influenced by local amplification phe-
nomenon (Castro et al., 1996).

and noting that this model involves four spectra; namely the transformed vertical
and horizontal components at the surface, V s(ω) Hs(ω) and corresponding spectra
at the bottom V b(ω), Hb(ω). Nakamura’s assumptions imply that the vertical com-
ponents ratio, contains only terms relative to local sources at the surface As(ω) and
at the bottom Ab(ω), while the ratio for horizontal components contains an extra
term due to amplification in situ at the surface S(ω).

Rv =
V s(ω)

V b(ω)
=
As(ω)

Ab(ω)

Rh =
Hs(ω)

Hb(ω)
=
AS(ω)

Ab(ω)
S(ω) .

Source terms can be simplified calculating the ratio Rh/Rv. Assuming now that
spectral amplitude of horizontal and vertical components are equal, the amplification
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factor at the surface can be directly obtained.

S(ω) =
Hs(ω)

V s(ω)
. (3.3)

This function presents peaks which position is well correlated with the proper fre-
quencies of vibration of the stratified structure both under SH waves propagation
and fundamental mode Rayleigh propagation. The amplitude of peaks on the other
hand , can be only considered as an indication on the order of magnitude of the real
amplification.
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Chapter 4

The forward model.

A key element in surface wave testing is the forward model that predicts the dis-
placement field induced by seismic waves, such as Love or Raleigh waves. To date,
such subsurface models are oversimplified; lateral variation and wave back scattering
are not taken into account and only a few higher modes of vibration are accounted
for. The spatial variation of the layers’ thickness is usually neglected and so is the
fraction of incidental energy of the fundamental mode that is reflected or converted
to higher modes which usually are neglected as well or in some cases, only a few are
considered. Although layered models have been thoroughly investigated, there are
not any practical applications which investigate structures other than horizontally
layered or depth varying ones.

One consideration that can be made about the layered model is that the plane
waves assumption and boundary conditions leads to systems of equations whose so-
lution is represented by surface waves. This still holds if the interfaces are slightly
perturbed away from flatness. Investigations on this aspect can be traced back for
fundamental mode of vibration and long waves, as in Gjevic (1973). He showed that
a perturbation in layer thickness reflects on horizontal wavenumbers which become
spatially varying. Further studies of Hador and Buchen (1999), applied a Lagrangian-
based method to both Love and Rayleigh waves and confirmed the observations. On
the other hand, methods that exploit coupling of different modes of vibration have
been also proposed; Maupin (1987) summarized this class, of so called “Matching
Mode Methods”.

Unfortunately application of analytical or semi analytical method presents many
difficulties when dealing with complex scattering patterns. The major problem, ex-
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pecially with steep interfaces is that they destroy the reflection pattern typical of
Love and Rayleigh wave generation. This is due to the fact that presence of a srong
lateral heterogeneity changes the boundary conditions of the elastodynamic problem
and the particular solution of the partial differential wave equation changes as well.
Obviously, surface motion still exists, but defining it as Love or Rayleigh surface
waves could be seriously imprecise.

In classical SWM’s, surface waves are assumed to be Rayleigh waves, this means
that a parallel layered model has been implicitly assumed. As a consequence search
for a soil model geometry other than the assumed one can only result in slight
perturbations. The only possible deduction is that overcoming limitations of layered
models requires to exploit P and S waves which are indeed general solutions of the
elastodynamic problem. Geometry can then be retrived by a complete waveform
inversion based on a forward model capable of successfully reproducing all of the
features of the displacement field in presence of complex scattering phenomena.

4.1 Elastodynamic Preliminaries

In the context of elastodynamics we can investigate the deformation of a body in
terms of displacement, defined as function u(x, t) of space and time, which denotes
the vector distance of the position of a particle at the time t, with its former position
at some reference time t0. This is assumed to be a continuous vector function across
all of the domains of reference and can be exploited as a tool to describe the elastic
behavior of a body. In fact, when considering displacements of neighboring particles,
the concept of strain can be mathematically written in terms of a local variation of
the displacement function.

The strain tensor ε, formalizes this concept when displacements are small with
respect to the size of the body, and local rotations can be neglected. In matrix
notation1

ε =
1

2

 2u1,1 u2,1 + u1,2 u3,1 + u1,3

u1,2 + u2,1 2u2,2 u3,2 + u2,3

u1,3 + u3,1 u2,3 + u3,2 2u3,3

 ,

or in component notation

εpq =
1

2
(up,q + uq,p) . (4.1)

1Commonly partial derivatives are indicated by means of a comma followed by a subscript which
identifies the quantity with respect to which the derivative is performed, as an example ui,j = ∂ui

∂xj
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It can be assumed that strain is produced by a set of forces applied to the body; the
tensor relation which connects these two vector fields is called constitutive relation,
it is a generalization of Hooke’s Law of the spring valid for three dimensions and can
be written introducing a 3× 3 constant tensor C

τij,j = Cijpqεpq . (4.2)

The most general form of Cijpq requires 81 independent quantities. For our purposes
we will restrict it to linear, isotropic and homogeneous bodies, where the tensor
constant assumes its simplest form. It was demonstrated by Harold Jeffreys in 1972
[76] that in this case C can be written in terms of two constants called Lamé modules

Cijpq = λδijδpq + µ(δipδjq + δiqδjq) . (4.3)

In its final form, the stress tensor is

τ =

 λ
∑

i ui, i+2µu1,1 µ(u1,2 + u2,1) µ(u1,3 + u3,1)
µ(u1,2 + u2,1) λ

∑
i ui, i+2µu2,2 µ(u2,3 + u3,2)

µ(u1,3 + u3,1) µ(u2,3 + u3,2) λ
∑

i ui, i+2µu3,3

 ,

with i ∈ {1, 2, 3}.
Introducing dilatational and shear wave velocities defined respectively as

C2
p = (λ+ 2µ)/ρ (4.4)

C2
s = µ/ρ ,

and exploiting Einstein’s notation on repeated indexes, it can be written in compact
notation as

τij = ρ
(
C2
p − 2C2

s

)
um,mδij + ρC2

s (ui,j + uj,i) . (4.5)

Consider an ideal surface inside a body, and a point p on that surfaceand that the
normal vector to the surface in p is directed toward the portion of material which
is exerting a force on the material on the other side of the surface, then the stress
vector at the point p is given by

t(N̂)i = τijNj . (4.6)

From the basic concepts of stress and strain, rewriting Newton’s second law, the
following equation of motion can be derived [4]

ρüi = fi + τij,j . (4.7)
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Cycling on index “i”, equation 4.7 describes three coupled equations whose solutions
represent the three-dimensional motion of particles.

ρü1 = f1 + (λ+ µ)(u1,11 + u2,21 + u3,31) + µ(u1,22 + u1,33)
ρü2 = f2 + (λ+ µ)(u1,12 + u2,22 + u3,32) + µ(u2,11 + u2,33)
ρü3 = f3 + (λ+ µ)(u1,13 + u2,23 + u3,33) + µ(u3,11 + u3,22)

.

which can be collected in a synthetic form.
Alternative notations for this equation found in literature are:

bj + (c2
p − c2

s)ui,ij + c2
suj,ii − üj = 0

b + (c2
p − c2

s)∇∇ · u (x, t) + c2
s∇2u (x, t)− ü (x, t) = 0 . (4.8)

where ∇ is Laplacian operator and b = f/ρ. If Helmholtz decomposition of vectors
and forces is assumed then

u = ∇φ+∇× ξ (4.9)

b = ∇β +∇×B , (4.10)

eq. 4.8 decouples into scalar and vector independent equations

C2
p∇2φ+ β = φ̈ (4.11)

C2
s∇2ξ +B = ξ̈ , (4.12)

and three different two-dimensional approximations can be derived.

• Anti-plane strain

definition:

{
u1 = u1 = 0
u3 = u3(x1, x2, t)

formulation:
ü3 = b3 + c2

2u3, ii

ti 3 = ρc2
2u3, i

(4.13)

(4.14)

• Plane Strain

definition:


u1 = u1(x1, x2, t)
u2 = u2(x1, x2, t)
u3 = 0

formulation:
üj = (c2

1 − c2
2)ui, ij + c2

2uj, ii + bj
tij = ρ(c2

1 − c2
2)uγ, γδij + ρc2

2

(
ui, j + uj, i

)
(4.15)

(4.16)
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• Plane Stress

definition:


tij = tij(x1, x2, t)
t3,j = 0
b3 = 0

formulation:
tij = λ′uγ, γδij + µ

(
ui, j + uj, i

)
ρüj = (λ′ + µ)ui, ij + µuj, ii + ρbj
ε33 = −λ′/2µ uγ, γ

(4.17)

(4.18)

with

λ′ = 2λµ/ (λ+ 2µ) .

4.2 A first attempt: Lagrangian Forward Model

The next model presented partially overcomes the limitations of layered systems. As
a first investigation, it focused on the dynamics of Love waves which is attractive
from a theoretical point of view and has been studied analytically by several authors
(De Noyer, 1961; Knopoff et al., 1967; Wolf, 1970; Lysmer, 1971; Gjevik, 1973),
and more recently (Maupin, 1987; Hador-Buchen, 1999). Studies on lateral variation
spans over 40 years in literature and many methods have been used. The Lagrangian
approach was introduced by Whitham (1967a, 1967b) in the context of water waves
investigation.

The present approach stems from a local-mode representation of monochromatic
Love waves which is then optimized by the Action Principle. Conservative systems
are considered, and the dynamic equations follow from a variational principle based
on the Lagrangian for Love waves . The particular case of an homogenous upper soft
layer with varying thickness η(x) lying over a semi-infinite hard layer, with x as the
propagation direction is considered.

The vertical profile of wave displacements at any horizontal position x is repre-
sented by a local-mode series involving the propagating eigenmodes allowed by the
dispersion relation which depends upon the local thickness η(x). The amplitudes of
the modes are unknown and assumed spatially varying in x.

Using the Action Principle, the optimal amplitudes satisfy the Euler-Lagrange
equations that lead to a coupled-mode system, i.e. a set of coupled second order
ordinary differential equations. The local-mode vertical expansion of waves accounts
for both the forward and backward propagating modes. Locally, such eigenmodes
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are exactly equal to those for a parallel layered media, but their wavelength is spa-
tially varying because of the local layer’s thickness variation. All the eigenmodes
satisfy the zero-stress condition at the free-surface, and the continuity of the vertical
stresses at the interface between the two layers. Such local-mode representation is
exact for a flat interface, and it is a good approximation for weakly varying sloping
interfaces. However, for very steep interfaces the wave field nearby the interface is
poorly represented and wave energy is not generally conserved, because each eigen-
mode in the wave expansion violates the normal stress continuity on the interface
between the two layers, and so does the wave field comprised of a linear superposition
of modes. The purpose is to test the applicability of a mode matching based on La-
grangian minimization formulation to Love-wave propagation through non-parallel
media, allowing for reflections.

Figure 4.1: Model set up and geometry.

4.2.1 The transmission problem

Consider a laterally heterogeneous media as shown in Figure 4.1 where x and z are,
respectively, a horizontal and a vertical coordinate. Let the upper and the lower
layers have densities ρ1 and ρ2, respectively. The upper layer has a free boundary
at z = 0 and the lower layer is assumed to be infinitely deep. The media is divided
into three different vertical zones I (x < −L), II (−L ≤ x ≤ L) and III (x > L),
respectively.

Further, the two layers are assumed to extend horizontally to infinity and in
the far field zones I and III the layers are parallel. In the intermediate zone II
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the upper and lower layer are separated by a varying interface z = η(x). Zone I
is excited by an incident monochromatic plane wave that generates a displacement
field vin(x, z, t) that propagates in the x-direction. As it passes through zone II, it
undergoes reflections and only part of its energy is transmitted to zone III where
the wave displacements v

III
(x, z, t) propagate undisturbed. The cumulated effect of

all the reflections in zone II yields a reflected back-propagating wave displacement
vR(x, z, t) through zone I, and the total wave field in zone I is v

I
= v

R
+ v

in
. The

displacements of these waves are normal to the plane through the axis x and z
(Jeffreys, 1962). The linear elastic equation of motion 4.19 is assumed to hold in all
regions.

−ρ∂
2vII
∂t2

+ µ∇2vII = 0. (4.19)

where ∇ = ∂x x̂ + ∂z ẑ, x̂, ẑ are the unit vectors of x and z, and ρ and µ are soil
parameters which are piecewise functions in both x and z given by

ρ(x, z) =


ρ1, 0 ≤ z ≤ η(x)

ρ2, z > η(x)
, µ(x, z) =


µ1, 0 ≤ z ≤ η(x)

µ2, z > η(x)
.

At the free-surface z = 0, the zero-stress boundary condition is imposed, as well as
zero stress at z →∞

µ
dv

II

dz

∣∣∣∣
z=0

= 0 µ
dv

II

dz

∣∣∣∣
z→∞

= 0. (4.20)

The continuity of both displacements and normal stresses to the interface z = η(x)

requires vanishing jumps

[v
II

]z=η = 0, [µ∇v
II
·N ]z=η = 0, (4.21)

where N is the unit vector normal to the interface η, that is

N =
1√

1 +
(
dη
dx

)2

(
−dη
dx
x̂+ ẑ

)
. (4.22)

and [f ]z=η = limε→0 (f(η + ε)− f(η − ε)) is the jump operator .
Continuity of stresses and displacements at the common boundaries of zones I-II

(x = −L) and zones II-III (x = L), respectively is also required, as follows:

(vII − vI)|x=−L = 0, µ

(
∂vII
∂x
− ∂v

I

∂x

)∣∣∣∣
x=−L

= 0, (4.23)

(vIII − vII)|x=L = 0, µ

(
∂vIII
∂x
− ∂v

II

∂x

)∣∣∣∣
x=L

= 0.
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4.2.2 Action Principle for Love waves

Consider the Lagrangian density

L = (T − K − B) , (4.24)

where T and K are the kinetic and potential energy densities, respectively, as follows:

T =
1

2

∫ ∞
0

ρ

(
∂v

II

∂t

)2

dz, (4.25)

K =
1

2

∫ ∞
0

µ |∇v
II
|2 dz,

and

B = [µ v
II

]z=η(x)

(
∂v

II

∂z
− ∂v

II

∂x

dη

dx

)∣∣∣∣
z=η(x)

(4.26)

−
∫ ∞

0

µ
∂vI
∂x

(
vII −

vI
2
− vin

)∣∣∣
x=−L

dz

+

∫ ∞
0

µ
∂vIII
∂x

(
vII +

vIII
2

)∣∣∣
x=L

dz,

In appendix A it is shown that the boundary value problem (4.19 - 4.20 - 4.21 - 4.23)
is the minimizer of Action, that is

δ

∫ t2

t1

∫ L

−L
(T − K − B) dx dt = 0 , (4.27)

where δ denotes variational differentiation.

4.2.3 Wave expansion and dynamics

Mode expansion for zones I and III

Assume the thickness of the upper layer is equal to d. The standard representation
of the wave field vp is given in the form

vp(x, z, t) =
∑
n

An fn(z; d) ei(knx−ωt) + c.c. (4.28)
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where the wave numbers kn satisfy the dispersion relation

tan (iν1d) = − µ2ν2

iµ1ν1

(4.29)

νi =

√
k2 − ρiω2

µi
=

√
k2 − ω2

β2
i

and fn(z; d) are the eigenfunctions of the Sturm-Liouville problem

d2fn
dz2
− ν2

i fn = 0, (4.30)

with the requirements of continuity for both displacements and vertical stresses at
z = d, as follows

[fn]z=d = 0,

[
µ
dfn
dz

]
z=d

= 0, (4.31)

and zero-stresses at the free-surface, as follows

dfn
dz

∣∣∣∣
z=0

= 0. (4.32)

From (4.28) the incident and reflected components of the displacements vI = vin+vR
in zone I can be defined respectively as

vIn =
∑
n

In e
iknI (x+L) fn(z; d1) e−iωt + c.c., (4.33)

vR =
∑
n

Rn e
−iknI (x+L) fn(z; d1) e−iωt + c.c.,

where d1 = η(−L), In and Rn are constant amplitudes. Further, in zone III we can
define vIII as

vIII =
∑
n

Tn e
iknIII (x−L)fn(z; d3) e−iωt + c.c., (4.34)

where d = d3 = η(L), and Tn is the amplitude of the transmitted wave.

Local-mode wave representation for zone II

Given the depth of the upper layer d = η(x) at x, the local wave numbers kn(x) and
the associated eigenmodes fn(z; η) can be computed from the dispersion relation
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(4.29) at every x. Thus, the wave field in zone II can be formally represented by the
eigenmode series (4.28) for parallel layers as

vII(x, z, t) =
∑
n

An(x) fn(z, η) ei(knII (x) x−ωt), (4.35)

where now both kn and fn are spatially varying because of the interface depth vari-
ation d = η(x). Consequently, the Sturm-Liouville problem (4.30) can be considered
as a continuous family of problems with parameter d = η(x). Hereafter, mode am-
plitudes An(x) are assumed to be an unknown function of x and their optimal values
are deduced via the Action Principle. Note that (4.35) satisfies the continuity of
displacements at the interface since [fn]z=η = 0 at any x, but the normal stresses are
not continuous. Indeed, from (4.35) and (4.31)

[µ∇v
II
·N ]z=η = −dη

dx

[
µ
∂v

II

∂x

]
z=η

. (4.36)

Consequently, the total energy density E = T + K is also not conserved in x and
from (4.25) one can show that

dE
dx
∝ dη

dx

[
µ
∂v

II

∂x

]
z=η

. (4.37)

Said that, the local-mode representation (4.35) can be optimized by exploiting the
Action Principle (4.27) to find the best mode amplitudes, An(x), that minimize the
residuals (4.36) and (4.37). For mild varying interfaces, i.e. dη/dx << 1, such
an approach yields good approximations for the wave solution. However, for steep
interfaces, i.e. dη/dx >> 1, the residual (4.36), and so (4.37), can be large since the
local-mode representation (4.28). To obtain the final shape of the problem, a linear
system of equations is built by plugging the wave representation ( 4.35) in the Action
formula (4.27).

4.2.4 Numerical solution via spectral methods

The final system of equations is arranged in matrix form

E1 D2ā + E2 Dā + E3 ā = p̄

where the matrices Ej contains the constants of the differential equation system,
for each mode and each discretization point xn; see appendix B.
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Matrix D represents the derivation operator and can be written by D1, D2 matrices
which are respectively the derivation and double derivation matrix for the system.
The structure is based on the derivation matrix Dc for Chebyshev-spaced grid points
[136].

D1 =

(
Dc 0
0 Dc

)
D2 =

(
D2

c 0
0 D2

c

)
Explicitly the final matrix structure has the form:

E1 D2 ā + E2 D2 ā + E3 ā = p̄

M ā = p̄

with solution
ā = M−1p̄

with

ā =



A1(−L)

A1(x2)
...
A1(xn−1)

A1(L)

A2(−L)

A2(x2)
...
A2(xn−1)

A2(L)

...



p̄ =



I1

0
...
0
0
I2

0
...
0
0
...


There is a function An for each mode in the expansion. Solutions are obtained via
the spectral method, and inserting boundary conditions directly in Ej matrices.

4.2.5 Applications

The mode was tested for the following set of parameters:

ρ1 = 1600 Kg/m3 β1 = 400 m/s (4.38)

ρ2 = 2400 Kg/m3 β2 = 1500 m/s (4.39)

Interface reference depth was fixed at H = 1.2 km and the spatial extension of the
model is 2L = 6 km.
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To assess reliability, the algorithm was tested on a parallel layer environment and
theoretical values were reproduced; then the varying interface was modeled by an
half sine-shaped buried hill (see Figure 4.2) with a change of depth equal to 10% H
and waves propagate at a given frequency ω = 8Hz. At such a frequency, besides
the fundamental mode, 5 higher modes are admissible.

In Figure 4.3, the phase velocity Cx(x) = ω/kn(x) of each mode was computed
from the analytical model (solid line) and is compared against their “parallel-layered”
counterpart (dash line) based on the local wavenumber kn computed from the dis-
persion relation 4.29 using the variable upper layer depth d = η(x).

Here the wavenumber

kn(x) = kn(x) + x
dkn
dx

+
dθn
dx

, (4.40)

where θn = tan−1 (Im(, An)/Re(An)) is the phase of the complex amplitude An. The
numerical phase velocity of each mode exhibits a slightly “ringing” phenomenon near
a 2kn wavenumber if compared to the smoother “parallel-layered” counterpart, this
is due to the fact that the latter does not account for back-reflections.

Note that the phase velocity of the fundamental mode does not vary laterally and
it is almost equal to the speed of SH waves in the upper layer. Indeed, its wavelength
(λ ≈ 320 m) is smaller than the interface depth and the fundamental mode is almost
insensitive to the presence of the interface. However, lateral inhomogeneity weakly
affects the lowermost higher modes which tend to increase their speed as they propa-
gate over shallower regions of the upper layer shortening their wavelengths. Further,
figure 4.4 reports the spatial variation of the magnitude of the weighting functions
An. Note that the amplification of higher modes in the region where the thickness
of the upper layer decreases as expected.

The magnitude of the total surface displacements vII in region II and the asso-
ciated normalized spectrum are plotted respectively in Fig. 4.5 and 4.6 respectively.

4.2.6 Conclusions on the model

This very simplified model presented accounts for many features not yet present in the
previous work of Gjevic (1973), namely back-reflections and higher mode coupling.
The wave-field was obtained by a matching mode procedure based on Lagrangian
minimization. Results of previous works were confirmed.

This method has been proved useful to extend the range of applicability from
“weak perturbation” of the interface to moderate slopes. The present model could
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be generalized for a greater number of layers and since limitations depend strongly
on assumed initial ansatz,the use of different functions could broaden the field of
applicability. Despite these results and the elegant approach utilized, the drawbacks
of the previously mentioned limitations and to difficulty of extending the approach to
Rayleigh waves as are the reason that a new model, based on the boundary element
method has been adopted.

4.3 The B.E.M. based forward Model.

As a second model for surface displacements calculation, the Boundary Element
Method was exploited. The theory of BEM is widely covered in the literature. Early
applications date back to 1960 for potential problems. Today, the use of integral
boundary equations connected with a boundary discretization is very popular and
applications can be found for general potential problems (Brebbia, 1992) as well as
for elastostatic (Katsikadelis, 2002) and elastodynamic (Beskos, 1985; Manolis &
Beskos ,1988; Dominguez, 1993).

BEM seemed to present the most attractive features to model ground displace-
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ment for many reasons. First of all, if we bear in mind that surface waves data are
acquired at the free surface and in general an active source is placed on the surface
as well, exploiting a method which only requires discretization of boundaries is very
appealing. Sources and receivers can be assumed to coincide with the nodes of the
discretized soil surface and the solution is directly obtained when nodal displace-
ments are evaluated. As a second point, alternative methods such as FEM or FDM2,
require the discretization of the whole domain. Infinite domains are approximated by
the truncation and insertion of an artificial adsorbing boundary. The mathematical
machinery of BEM, instead revolves around the Green’s function; this assures that
radiative conditions are satisfied without the need to deploy a mesh to approximate
it. This feature makes it extremely easy to deal with infinite or semi-infinite domains
where waves traveling to infinity must fade (Dominguez, 1991). A linear system of
equations can be written for each piecewise portion of the subsoil regardless of its
shape and different portions can be matched imposing suitable matching boundary
conditions (Beskos, Katsikadelis,2002).

As a conclusive consideration, although in the present work a monochromatic
signal traveling in a system constituted by a layer over an half space has been in-
vestigated, this method is suitable for any number of layers, and multi-frequency
environments. The boundary element approach can be easily generalized to three-
dimensional modeling; moreover viscoelasticity can be introduced by the elastic-
viscoelastic principle of correspondence. Finally BEM can be easily implemented for
parallel computing architecture.

4.3.1 The BEM framework

The key step of the BEM is to transform an elastodynamic problem from its differ-
ential formulation into an equivalent integral formulation. A differential formulation
can be defined more precisely as:

Definition 1 : Differential Elastodynamic problem
Consider an homogeneous, isotropic elastic body with volume Ω and bounded
by a regular surface Γ. The differential elastodynamic problem is defined
by the equation of motion 4.41, boundary conditions 4.42 and initial con-

2FEM: Finite Element Method; FDM: Finite Difference Method;
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ditions 4.43

üj = bj + (c2
p − c2

s)ui,ij + c2
suj,ii (4.41)

t(N̂)i(x, t) = pi(x, t); x ∈ Γt
ui(x, t) = qi(x, t); x ∈ Γu

(4.42)

ui(x, 0
+) = u0i(x); x ∈ Ω

u̇i(x, 0
+) = v0i(x); x ∈ Ω ,

(4.43)

where Γ = Γu ∪ Γt.

A fully analytical solution can be obtained only in few cases of simple geometry; for
complex situations the only feasible approach is numerical. The most effective way
to find numerical solution is to translate the differential equations system into an
equivalent integral form. The classic strategy is to exploit some form of an integral
theorem, in particular as it will be shown soon, for P-SV plain strain and 3D cases,
the Reciprocal theorem 3 is exploited. This is the dynamic version of the classical
reciprocal theorem of Betti-Rayleigh of elastostatics, it was established first by Graffi
in 1947 for bounded domains and thus sometimes it is also referred in literature
as Graffi’s Reciprocal Theorem(Graffi, 1946-47). Subsequently it was extended to
unbounded domains by Wheeler and Sternberg (1938).

Definition 2 : Elastodynamic State
Let Ω be a spatial region with boundary Γ, and ∆t a time interval.
If u and t are, respectively, a vector-valued and a symmetric second-order
tensor valued function defined on Ω ×∆t, the ordered pair S = [u, t] is
called elastodynamic state on Ω×∆t with the displacement fields u and
the stress field t, corresponding to a body force density4 f̃ , mass density
ρ, irrotational wave speed Cp and equivoluminal wave speed Cs, provided
that

• u ∈ C2,2 (Ω×∆t), u ∈ C1,1 (Γ×∆t),
t ∈ C0,0 (Ω×∆t), f̃ ∈ C0,0 (Ω×∆t).

3In principle this is not the only choice, each integral relation connecting two elastodynamic
states could be exploited as well (Manolis & Beskos, 1988).

4In definitions 2, 3 and theorem 1, the symbol f̃ refers to a density of force for unit of mass; do
not confuse with f = ρf̃ which indicates volume density force
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• Constants ρ, Cp, Cs are subject to

ρ > 0 , Cp >
2√
3
Cs > 0 .

• u,t and f̃ satisfy equations 4.8 and 4.5

The class of all elastodynamic states satisfying the above conditions is
denoted by

S ∈ E
(
f̃ , ρ, Cp, Cs; Ω×∆t

)
.

Definition 3 : Quiescent past State
we say that S is an elastodynamic state of quiescent past, and denote that

S ∈ E0

(
f̃ , ρ, Cp, Cs; Ω×∆t

)
,

when
∆t = ∆∞t and u = 0 on Ω×∆−t .

Theorem 1 : Graffi’s Reciprocal Theorem
Consider a regular region Ω with the boundary Γ, and two distinct elas-
todynamic states

S = [u , τ ]
S ′ = [u′, τ ′]

∈
∈

E
(
f̃ , ρ, Cp, Cs; Ω× t+

)
E
(
f̃ ′, ρ, Cp, Cs; Ω× t+

)
,

defined on the same region with initial conditions in Ω

u(x, 0) = u0(x) u̇(x, 0) = v0(x)
u′(x, 0) = u′0(x) u̇′(x, 0) = v′0(x) ,

then for t ≥ 0∫
Γ

[t(N̂) ∗ u′] (x, t) dΓ +

∫
Ω

ρ
{[
f̃ ∗ u′

]
(x, t) (4.44)

+v0(x) · u′(x, t) + u0(x) · u̇′(x, t)} dΩ

=

∫
Γ

[t′(N̂) ∗ u] (x, t) dΓ +

∫
Ω

ρ
{[
f̃ ′ ∗ u

]
(x, t)

+v′0(x) · u(x, t) + u′0(x) · u̇(x, t)
}
dΩ ,

where t(N̂) = τ N̂ , t′(N̂) = τ ′N̂ are tractions of states S, S ′ on the bound-
ary.
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Theorem 1 establishes a conservation of virtual work obtained multiplying tensions
of state S with displacements of state S ′ and its analogous with interchanged states.
Time domain boundary element method is built starting directly from 4.44, discretiz-
ing both space and time. The drawback of this approach is that discrete convolutions
are involved and the approach is usually stable only for very short times; conse-
quently, this approach is more suitable to investigate transients.
An alternative approach is to transform 4.44 by means of Laplace or Fourier transfor-
mation, reducing convolutions to simple multiplications. In both cases this is referred
as frequency domain boundary element method ; this last option will be considered.

4.3.2 Frequency domain boundary element method

Consider the general form of the Fourier transform

F̄ (x, ω) =

∫ ∞
−∞

F (x, t)e−iωtdt ,

equations 4.41 - 4.43 recasts5

−ω2 ūj = b̄j + (c2
p − c2

s)ūi,ij + c2
sūj,ii (4.45)

t̄(N̂)i(x, ω) = p̄i(x, ω); x ∈ Γt
ūi(x, ω) = q̄i(x, ω); x ∈ Γu .

(4.46)

(4.47)

Helmholtz decomposition of sec. 4.1 holds in frequency domain, thus two-dimensional
approximations can be considered. SH-waves and P-SV cases involves two separate
BEM.

In case of SH-Waves, in order to transform the anti-plane strain differential equa-
tion 4.13 into its integral counterpart it is sufficient to exploit the Green’s second
identity. SH waves are not of primary interest in this work, but integral equations
and fundamental solutions are introduced in appendix B for the sake of completeness.

The P-SV(2D plane strain) and the full 3D case share the same Integral formu-
lation. Recalling properties of convolution with respect to Fourier transforms and
imposing the condition of quiescent past for states S,S ′ , the Graffi equation 4.44 in

5bars indicates fourier transformed quantities.
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frequency domain is obtained.∫
Γ

[t̄(N̂) · ū′] (x, t) dΓ +

∫
Ω

[
f̄ · ū′

]
(x, t)Ω (4.48)

=

∫
Γ

[t̄′(N̂) · ū] (x, t) dΓ +

∫
Ω

[
f̄ ′ · ū

]
(x, t)dΩ ,

with

E0

(
f̃ , ρ, Cp, Cs; Ω× t+

)
(4.49)

E0

(
f̃ ′, ρ, Cp, Cs; Ω× t+

)
, (4.50)

where f̄ = ρ ¯̃f , f̄ ′ = ρ ¯̃f ′.
This equation relates two elastic states. S ′ is then assumed to be the state

produced by a localized unit force f̄ ′ = δ(x − s)ê applied at the point s. The
solution of eq. 4.45 satisfying this request is called Green’s function (or fundamental
function) of the system. Each orientation of the load can be expressed by a linear
composition of the Green’s functions calculated with the direction of the load ê
parallel to the main axes. Green’s functions can therefore be rearranged in a tensor
form. The fundamental tensor notation both for displacements and tensions is

U ji(x, s) , T ji(x, s) , (4.51)

which indicates the ith displacements/tensions component at location x produced
by the source located in s, with loading force directed as êj. Green’s functions are
available in literature both for 2D and 3D cases, unfortunately they were reported
incorrectly in different articles, therefore to avoid confusion they were re-derived. A
correct version is available in Dominguez (1984) or alternatively in appendix C.

By inserting Fundamental solutions in 4.48, neglecting internal forces for state S
and noting that∫

Ω

[
f̄ ′ · ū

]
(x, ω)dΩ =

∫
Ω

δ(x− s)êj · ū(x, ω)dΩ = ū(s, ω) · êj , (4.52)

the final integral form is obtained∫
Γ

U(x, s, ω)t̄(N̂)(x, ω) dΓ =

∫
Γ

T (x, s, ω)ū(x, ω) dΓ + %(s)ū(s, ω) . (4.53)

Equation 4.53 relates displacements of an internal point s of Ω with values of fields
at boundaries; for this case %(s) = I.
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The point can be conceptually directed towards the boundary; eventually it can
reach Γ leading to an expression which depends only on quantity evaluated at the
boundary. It is noteworthy that fundamental solutions 4.51, in appendix C depend
on the distance r = ‖x− s‖ and the latter goes to zero if s belongs to the boundary.
Integrals in eq. 4.53 then become singular and have to be evaluated in Cauchy’s
principal value sense. Recalling eq. 4.52 it can be shown (Dominguez, 1993) that for
smooth boundary

%(s) =


I s ∈ Ω
0 s /∈ Ω
[c] s ∈ Γ

,

where [c] is a 2× 2 matrix of coefficients that have to be calculated exploiting zero
stress rigid body translation considerations.

Approximated Solution

So far only the suitable integral equation was derived. In order to obtain numerical
solutions it is necessary to approximate integrals of eq. 4.53. The boundary is
approximated as small elements, each one defined by one or more points (nodes) and
spatial variation of fields on each element is obtained by polynomial interpolation of
the field nodal values. Higher degrees of the interpolating functions corresponds to
a higher number of nodes per element.
Since integration path is intended counter-clockwise, both elements and nodes are
numerated accordingly. Integrals in equation 4.53 are converted to sums on all of
the elements.

ne∑
k=1

∫
∆e

T (x, s, ω)ū(x) de + %(s)ū(s) =
ne∑
k=1

∫
∆e

U (x, s, ω)t̄(N̂)(x) de , (4.54)

where ne is the total number of elements and ∆e is the element surface6. The
complexity of the BEM depends now on the particular choice of collocation and in-
terpolation.

Element Technology

Elements can be classified according the kind of interpolation law exploited.

6Here we refer to surface element because so far the formulation is valid both for 2D and 3D
regions.
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Element Classification

Element Kind Fields Interpolating functions Number of Nodes

Constant No interpolation 1
Linear linear 2

Parabolic quadratic 3

Elements involving two or more nodes can be defined as continuous or discontinuous
depending on whether or not there are nodes placed at their extremes. The method
of discontinuous elements is widely exploited in cracks evaluation (Portela, 1992),
indeed, since this approach allows collocation of nodes inside the element, it avoids
numerical singularities at crack tips or at boundary edges, assuring the continuity of
interpolated fields.
The geometry of the element can be defined by nodal coordinate values interpolation
as well; in this way parabolic shaped elements (3 nodes) or splines (5 nodes) can be
exploited to better approximate curved portions of Γ.
General interpolations for boundary geometry and fields on each element takes the

(a) Linear Elements (b) Quadratic Elements.

Figure 4.7: Example of Domain Discretizations

form

x =
nn∑
n=1

P g
n(η)xn , F (x) =

nn∑
n=1

P f
n (η)F (xn) , (4.55)
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where η ranges between two values η ∈ [ηmin, ηmax], nn is the number of nodes on
the element; P g

n , P f
n are two sets of interpolating functions and F indicates a general

vector field. Let dg and df be respectively the degree of the interpolating functions
for the geometry P g

n and for the fields P f
n ; the element is said to be:

Subparametric if df > dg
Isoparametric if df = dg
Iperparametric if df < dg
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1

(a) P1(η)

−1 0 1

1
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Figure 4.8: Weighting functions for QCE
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Figure 4.9: Weighting functions for QDE

Here mainly isoparametric quadratic continuous elements (QCE), (Manolis & Beskos,
1983) will be exploited. Isoparamatric quadratic discontinuous elements (QDE),
(Portela, 1992) are introduced only as a valid solution in case of a non-flat soil
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surface. Interpolated quantities in both case have the same form, eq. 4.55 is then
written

xk(η) =
3∑

n=1

Pn(η)xkn (4.56)

ūk(η) =
3∑

n=1

Pn(η)ukn (4.57)

t̄k(η) =
3∑

n=1

Pn(η)tkn (4.58)

where −1 ≤ η ≤ 1, ukn = ū(xn) and tkn = t̄(xn) on the kth element.
Figures 4.3.2 - 4.3.2, depict interpolating functions (see table 4.1) vs local elements
coordinate η.

Int. Funct. QCE QDE

P1(η) −η
2

+
η2

2
−3

4
η +

9

8
η2

P2(η) 1− η2 1− 9

4
η2

P3(η)
η

2
+
η2

2

3

4
η +

9

8
η2

Table 4.1: Element weighting functions

The Linear system of equations

By introducing 4.56-4.58 into 4.54, nodal values of fields factors out. Due to the
change of reference, from the principal axes R = {e1, e2} to the element’s local
system of coordinate defined by Re = {η : η ∈ [−1, 1]}, it is necessary to introduce
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the Jacobian of the transformation J(η).

ne∑
k=1

3∑
n=1

(∫ 1

−1

T (xk(η), s, ω)Pn(η)J(η) dη

)
ukn + %(s)us = (4.59)

ne∑
k=1

3∑
n=1

(∫ 1

−1

U(xk(η), s, ω)Pn(η)J(η) dη

)
tkn ,

where us = ū(s) was defined.

Formula 4.59 is now specialized for 2D domains and represents two coupled equa-
tions. If now the source s is cycled to coincide each time with one node at the
boundary, a system of equations is obtained. In order to better describe this pro-
cedure lets drop dependencies from space and frequency and define the Influence
coefficients (4.60).

[U s
kn]ji =

∫ 1

−1

Uji(xk(η), s, ω)Pn(η)J(η)dη (4.60)

[T s
kn]ji =

∫ 1

−1

Tji(xk(η), s, ω)Pn(η)J(η)dη ,

where upper indexes are integer numbers. In particular k ∈ [1, ne] is the element
number, n ∈ {1, 2, 3} is the node on the element and s ∈ [1, nn] is the node where
the source is located.
Emphasizing components, equation 4.59 takes the form

ne∑
k=1

3∑
n=1

[T s
kn]ji ukni + %ijδijδ(x− s)usj =

ne∑
k=1

3∑
n=1

[U s
kn]ji tkni , (4.61)

explicitly, for each source location we have a couple of equations 4.62

ne∑
k=1

3∑
n=1

[
[T s
kn]11 [T s

kn]12

[T s
kn]21 [T s

kn]22

][
ukn1

ukn2

]
+

1

2

[
us1
us2

]
δ(x− s)

=
ne∑
k=1

3∑
n=1

[
[U s
kn]11 [U s

kn]12

[U s
kn]21 [U s

kn]22

][
tkn1

tkn2

]
, (4.62)

which depends only on source and element nodes positions. The set of equation can
be rearranged in an elegant matrix form

[H ] {u} = [G] {t} (4.63)
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where the matrix structure is sketched only for [H ], both for the QCE (4.64) case
and for QDE (4.65), being the same for [G] provided we change the T symbol to U .

[H ] =



[T 1
11][T 1

12][T 1
13+T 1

21][T 1
22]

[T 2
11][T 2

12][T 2
13+T 2

21][T 2
22] · · ·

[T 3
11][T 3

12][T 3
13+T 3

21][T 3
22]

[T 4
11][T 4

12][T 4
13+T 4

21][T 4
22]

...
. . .

[T nn
(ne−1)3

+T nn
ne1][T nn

ne2][T
nn
ne3]


, (4.64)

[H ] =



[T 1
11][T 1

12][T 1
13][T 1

21][T 1
22]

[T 2
11][T 2

12][T 2
13][T 2

21][T 2
22] · · ·

[T 3
11][T 3

12][T 3
13][T 3

21][T 3
22]

[T 4
11][T 4

12][T 4
13][T 4

21][T 4
22]

...
. . .

[T nn
(ne−1)3][T

nn
ne1][T

nn
ne2][T

nn
ne3]


, (4.65)

and

{u} =



u(n1)

u(n2)

u(n3)

...
u(nn−1)

u(nn)


, {t} =



t(n1)

t(n2)

t(n3)

...
t(nn−1)

t(nn)


, (4.66)

are displacements and tensions at the nodes.
All matrices in 4.63 are [2nn × 2nn] dense. The machinery of BEM for one domain is
completed when boundary conditions are imposed. Lets assume that displacements
(but not tensions) are known on Γu and tensions (but not displacements) are known
on Γt, with Γ = Γu∪Γt, so there are nn known nodal values to exploit. Then moving
on the right all products involving known nodal quantities and leaving unknown
nodal values on the left, eq. 4.63 recasts in form of linear system of equations

[A] {X} = {B} , (4.67)

which solution gives the unknown nodal values of the fields.

NOTE: Equation 4.62 and 4.66 actually are expressed by two different
notations. QCE adjacent elements always share a node, therefore there
is not one to one correspondence. Let Ek and Ek+1 be two consecutive
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Node numbering correspondences
u(node#) QCE ukn QDE ukn

u(n1) u11 u11

u(n2) u12 u12

u(n3) u13, u21 u13

u(n4) u22 u21

u(n5) u23, u31 u22

u(n6) u32 u23
...

...
...

u(n(n−2)) u(ne−1)2, une1 une1

u(n(n−1)) une2 une2

u(nn) une3 une3

Table 4.2: Correspondence between node numbering and equation 4.62

elements, then the contribution of the shared node will be evaluated twice,
the first time being node number 3 on Ek and the second time being node
number 1 on Ek+1. QCE elements instead have no shared nodes and
posses a one to one correspondence. The relationship between these two
notations are sketched in table 4.2.

Matching boundary conditions

In previous sections the BEM method for a single domain was developed. In order
now to investigate piecewise solids, boundary conditions have to be imposed to match
regions with different elastic properties. Continuity of displacements and normal
stresses at the shared boundary is required, then for each couple of domains Ωj,
Ωj+1 with interface Γj the following matching conditions will be imposed at each
shared node.

[u(ni)]Γj = 0

[t(ni) ]Γj = 0 , (4.68)

∀ ni ∈ Γj ,

where [a]Γ is the jump operator (sec. 4.2.1). An explicit procedure for general prob-
lems can be found in the book by Katsikadelis (2002) [61]; alternatively for layered
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media oriented problems, see Beskos, 1986[13].

Finally, source intensity, source orientation and zero surface stress were indicated
as boundary conditions to solve the BEM integral equation. Weight drop, sledge
hammer or a gun shot can be modeled in Fourier’s space as a nodal stress vector
of intensity f0(ω) and perpendicular to the soil surface. More complicate cases such
as, for example, an explosion, the portion of the surface corresponding to the source
can be modeled as a semicircle and radial nodal stresses must be imposed. For
massive sources such as, for example, an electro-mechanical shaker the corresponding
compatibility and equilibrium conditions are:

us =

{
0

∆y

}
(4.69)

F = −mω2∆y + ts (4.70)

where ts is the stress at the interface between the shaker and the ground, F is the
force produced by the shaker and m is the shaker’s mass. These extra equations
couple stress and strain at source’s location and the linear system for the first layer

[H] ū = [G] t̄ ,

changes to Hss Hs1 Hs2

H1s H11 H12

H2s H21 H22


∆
u1

u2

 =

 Gss Gs1 Gs2

G1s G11 G12

G2s G21 G22


ts(∆) = F +mω2∆

t1

t2

 ,

finally, [Hss +mω2Gss] Hs1 Hs2

[H1s +mω2G1s] H11 H12

[H2s +mω2G2s] H21 H22


∆
u1

u2

 =

 Gss Gs1 Gs2

G1s G11 G12

G2s G21 G22


F
t1

t2

 ,

here Hab (Gab ) is the interaction matrix of a node (cycling source) on the portion
a of the boundary, with the receiving node on portion b. Subscript s indicate that
the node is one in the source’s boundary portion (vibrating machine location), 1
indicates the free surface and 2 indicates interface with the half-space.
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4.3.3 The Final Framework

Commercial algorithms capable of performing Elastodynamic calculations already
exist; unfortunately however, their main drawback is that there are no source codes
available and therefore it is impossible to make modifications to suit the approach
followed in this dissertation. To test the ideas introduced so far a code was initially
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Figure 4.10: Displacements on Infinite cylinder surface under normal stress obtained
with 8 and 32 element discretization

written in Matlab. Unfortunately due to the “interpretive” nature of the Matlab
language this first routine turned out to be unexpectedly slow. To speed up the
computations the code was optimized to run in the parallel environment of Matlab,
and calculation of influence coefficients was implemented in a C-language MEX file,
this solution was able to reduce the computation time by two order of magnitude.
Further developments in full C-language are currently under consideration.
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Once implemented, the code was tested on a simple problem (example N. 4,
Dominguez, 1993) for which an analytical solution is available. Testing consisted
of evaluating radial displacements on an infinitely long cylinder surface assuming a
p = 100N/m2 normal Stress. Elastic characteristics of the cylinder were assumed:

Density ρ = 100kg/m3

Shear modulus µ = 106N/m2

Poisson’s Ratio ν = 0.25
Damping Ratio βr = 0.05

Displacements were calculated for different values of frequency 10 < ω < 150. Ana-
lytical solution (Kitahara, 1984) prescribes a resonance effect for ω1 = 59.733, ω2 =
85.6, . . . s−1. As can be seen in figure 4.10 the implemented code reproduced the
results.



Chapter 5

Numerical Inversion.

5.1 Inverse Methods Framework.

Physical theories allow a quantitative interpretation of the real world and permit the
interpretation of results obtained by experiments. A model is an ideal approximation
of a real system which still retains the main features of the original observed system.
Actually modelization is the tool by means of which the physical theory is applied
to predict the outcome of some measurements. Further comparison of model results
and experimental evidence allows us to determine whether to accept or discard the
theory. In this sense the process of starting from an initial model setup and exploiting
physical laws to make predictions is called either the “modelization problem”, the
“simulation problem” or the “forward problem”.

The approach is schematically described by

Model Parameters→ Forward problem→ Theoretical solution

Ideally if the set of all model parameters M is defined, the forward problem can
be symbolically described by an operator equation:

m→ d = A(m) , with m ∈M . (5.1)

The inverse problem on the other hand consist in exploiting the real observed
data to infer on plausible model parameters. Schematically:

Plausible Model Parameters→ Inverse Model→ Real Data

69
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Obviously this second approach demand the advanced presence of the forward
model. Actually every inverse problem is built based on the corresponding forward
model. It is noteworthy that in general inverse problems are much harder to solve.
The difficulty arises because they are usually ill-posed. The term “ill-posed” indicates
one or more of the following conditions:

• Noisy observed data.

• Insufficient data.

• Inconsistent data

• Inexact forward modeling

The cumulative effect of all these factors can leads to different issues regarding the
existence, uniqueness and stability of a solution.

Existence:
Obviously, a solution must exist for the inverse problem to be worthy of investigation,
and

M 6= ∅ , (5.2)

is required.

Uniqueness:
Let’s suppose that the same set of data d can be obtained from two different models,
namely

m0 → d = A(m0) (5.3)

m1 → d = A(m1) , (5.4)

In this situation the data available are not sufficient to define a unique solution.

Stability:
This concept pertains to the continuity of the solution with respect to the data. Let’s
suppose m0 and m1 are respectively solutions of the two inverse problems

m0 → d0 = A(m0) (5.5)

m1 → d1 = A(m1) , (5.6)

Then, if there is no continuity with respect to the data, it could occur that when
starting with two arbitrarily close sets of data, solution m0, m1 are completely
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different. This is obviously an undesiderable situation especially because observed
data are usually affected by some measurement error. The strategy to cope with
these difficulties is to exploit the Tikhonov regularization theory (Tikhonov, 1977).
This approach consists of searching the solution m in a subset C ⊂ M where the
problem is well posed according to the following definition:

Definition 4 The problem 5.1 is conditionally well-posed if the following
conditions are met:

• It is know a priori that the solution of 5.1 exists and belongs to a
specific set C ⊂M .

• The operator A is a one-to-one mapping of C onto AC and the
operator A−1 is continuous on AC.

Restricting the set M to C translates practically into adding some a priori informa-
tion to the system. In particular in the least squared approach, first described by
Gauss around 1794, the most probable set of parameters m is obtained by iterative
minimization of the objective function EM

1

EM = |A(m)− d|2 . (5.7)

It is standard to introduce some a priori information by adding a regularizer, i.e.
a function R which modifies the original objective function. This leads to a new
inverse problem to be minimized

E = |A(m)− d|2 + αR , (5.8)

where α is a weighting constant.
With this approach the original ill-posed problem is approximated by a family of

well-posed problems depending on the value of α. The strategy consists of iteratively
minimizing E until convergence occurs and then reducing the value of the weight.
The procedure is then repeated until the desired overall decrease is reached.

Relevant to the inversion of surface data, the chosen approach tries to minimize
the mismatch between the model generated surface displacement at receiver locations
and the actual ones. This approach can be seen as a complete waveform inversion,
accounting both for wave phase and amplitude. For simplicity the case of a layer
over an half-space has been considered. The problem is highly ill-posed, creating

1Objective function is sometime called “Data fidelity term” as well as “Misfit function”.
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discretization of the interface requires a number of nodes much greater of the sensor’s
number. In order to regularize the objective function and obtain at the same time a
smooth interface, a regularizer of the form

R =

∫
Γ

ds (5.9)

has been introduced. This is actually the integral of the arclength parameter. The
competing effects of misfit and regularizer leads to the shortest interface satisfying
the data.

In sec. 4.3 the frequency domain boundary element method was introduced
as an effective way to model surface displacement. Here BEM was exploited as
a forward model. What is obtained from the theoretical calculations are the surface
displacements, expressed in frequency domain, at sensor’s locations. In the following
sections synthetic and some real data will be analyzed. Obviously the synthetic data,
obtained from exploiting the forward model are in the correct form already. Real
data on the other hand, needs a pre-elaboration.
Usually receiver response is expressed in terms of velocity or acceleration, so basically
pre-elaboration consists of offset removal to remove the eventual DC component
and Fourier transform; to express data in term of frequency. Finally to obtain
displacements, integration by ω − arithmetic must be performed. The output of
these elaborations is then suitable to be compared with theoretical displacements.

5.2 Synthetic Data Inversion.

5.2.1 Self consistency of the inversion algorithm

In order to test the consistency and robustness of the inversion algorithm, a trial
model with a given geometry was implemented and the forward algorithm was ex-
ploited in order to obtain the synthetic displacements at the free surface.
The inversion algorithm was then expected to reconstruct the correct interface start-
ing from an initial guess. The objective interface (fig. 5.2.1) was chosen with a 50
degree average slope in order to simulate a strong non-flat situation. A small hill was
introduced to test the capacity to individuate details. The dimensions of the model
are at engineering-geotechnical scale and receivers’ locations were chosen analogous
to arrays for classic surface wave investigations. The distance of the source to the
closest receiver was 3 m (9.84 ft.) and distance between receivers was 4 m(13.12 ft.).
Elastic parameters, source intensity and frequency were chosen as follows:
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f0(ω)[N ] ω Vs[m/s] Vp[m/s] ρ[Kg/m3]
1000 1 400 500 1600

4000 4500 2400

As a first test, synthetic data were obtain exploiting the forward model and then
inverted. Fig. 5.2.1 shows that despite the drawbacks of using a numerical sensi-
tivity matrix, the algorithm can individuate rough characteristics quite easily (10 to
30 iterations), however it requires more effort to individuate details. The stopping
criterions were fixed respectively for the normalized misfit to be reduced to 10−2 and
10−3, however the algorithm was let to cycle beyond these thresholds. Figure 5.2.1
shows an intermediate result (iteration 15), and results corresponding respectively
to the misfit crossing the first and second thresholds (iteration 33 and 42). Finally
iteration 100 is shown; no improvement was found passed this number of iterations
in any of the test performed.

Since the forward algorithm produces displacements in frequency domain, the
disturbance was introduced directly on the data calculated in this representation
and designed to affect both the real and imaginary part. Effects of errors were
investigated at different levels, in particular amplitude and phase were perturbed
separately. (Fig. 5.2.1). It should be noted, as stated in section 5.1, that if real
experimental data were recorded as velocities or accelerations, then they must be
expressed in frequency domain. If they were originally affected by measurement
errors, this affects the corresponding Fourier transform as well.

The way in which time domain errors are distributed on the Fourier transformed
data strongly depends on the initial error distribution. The worst case scenario is
when the distribution is uniform so the percentage of noise remains the same after
transformation.

With Gaussian noise, the percentage of noise that passes to the Fourier trans-
formed data is expected to be smaller. For this reason, error levels of 5% in Fourier
transformed data can be considered a strong deviation. Inspecting figure 5.2.1 it is
apparent how the final result is much more sensitive to noise which affects the phase
relation between different receivers.

5.2.2 Two components VS. one components

In order to invert P-SV waves the algorithm exploits both the vertical and horizontal
displacement to infer the shape of layer interface. In a second test with synthetic
data, the possibility of exploiting only the vertical component of the displacements
was investigated. There is a direct motivation to explore this possibility; in practical
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surface wave testing, measuring equipment that can record displacements in more
than one direction is much more expensive than its 1D counterpart (not only are
3D geophones necessary but also the seismograph must have double the number of
recording channels). From a computational point of view, restricting the scope to
one displacement component results in discarding half of the information available,
worsening the already ill-posed problem.

Figure 5.2.1 shows the results of inversion using only the vertical component of
displacements. As expected, the mathematical problem is more poorly conditioned
and this results in an increased number of iterations.

The influence of noise is more severe, as expected, and small details are harder to
individuate. Even if the inversion gives satisfactory results with one component only,
care is needed during inversion because of an augmented tendency of the algorithm
to lapse into local minima of the objective function.
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5.2.3 Non-flat surface

A common drawback of all surface waves testing is that the impossibility to handle
non-flat interfaces is accompanied by the impossibility to perform surface investi-
gations in the presence of non-flat surface. In the present development, since the
only condition related to the surface introduced by modeling was the free surface
condition; there is no restriction regarding the geometry. The application of the de-
veloped algorithm to a non-flat surface model is depicted in fig. 5.2.3. In the present
simulation the more challenging case of 10% noise was investigated as well. Further
the horizontal extent of the model was increased by four meters at each side allowing
for an increased number of nodes.

5.2.4 Reduced Acoustic Impedance

As final test on synthetic data model for the geometry in fig. 5.2.1 was tested in a
lower acoustic impedance jump case. Corresponding elastic parameters were chosen
as follows:
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f0(ω)[N ] ω Vs[m/s] Vp[m/s] ρ[Kg/m3]
1000 1 400 500 1600

800 900 2400

 

 Reduced

acoustic

impedance

jump

Target

Noise:0%
Z
(m
)

X(m)

−22

−18

−20

−12

−10

−8

-6

−14

−16

−30 −25 −20 −15 −10 −5 0

Misfit

vs

Iteration

0 30 60 100

−4

−3

−2

1

10
−1

10

10

10

Figure 5.5: Geometry of reference

5.3 Real Data inversion

5.3.1 First study on real data

In last section synthetic data were inverted with different noise levels to assure al-
gorithm stability. Since the final goal of processing is to extract information from
data, a real dataset was investigated. It should be noted that due to the fact that the
approach presented is completely new, it is very difficult to retrieve suitable datasets.

The main difficulty is that in classical surface wave testing the source is not
recorded because there is no interest in the signal amplitude, while in this approach
source amplitude is an important parameter.
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The second point of difficulty is that all available surface waves’ datasets are collected
with the assumption of a parallel-layered soil and non-parallel cases are usually in-
vestigated with other methods. Therefore it is almost impossible to find surface wave
data collected on a non-parallel layered soil and with a good knowledge of irregular
buried structure. Only chance to match completely the requirements of the present
method whould be to perform an ad-hoc field test.
Despite these difficulties some testing can still be performed.

Available information:
The exploited dataset, courtesy of Prof. Glenn J. Rix2, was collected in a region of
Alabama (USA). An APS 400 electromechanical shaker accessorized with a reacting
mass was operated as a harmonic source to provide signals ranging from about 3 to
100 Hz and vertical components of surface waves were monitored by a linear array
of 15 receivers located at distances ranging from 2.4 to 32 m (8 to 105 ft) from the
source.

Thanks to the testing performed by Prof. Rix, a shear wave velocity profile, ob-
tained by the principles of surface wave propagation in a layered medium is available
in table 5.1 and plotted in fig. 5.6.

The figure shows that some kind of major discontinuity in the shear wave is
present. Indeed the local soil is actually known to be compatible with a layer+half-
space model. Bedrock is known to lie between 61 to 70 meters deep, and after some
investigation it turned out that bedrock is actually constituted of sandstone.

It is interesting to perform a comparison between the available data and charac-
teristics of the inversion algorithm.

1. Source:
The inversion algorithm assumes the source amplitude is known for the fre-
quencies investigated.
Real Data: the source amplitude is not known. Nonetheless an estimation of
the force generated is still possible from data sheets of the source device and
the formula

FTot = Fg +
1

2
(md +mr)ω

2∆u , (5.10)

where Fg is the maximum force magnitude generable by the shaker, md is the
device mass mr is the reacting mass and ∆u is displacement induced at source
location.

2Georgia Institute of Technology
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Layer thickness Shear Velocity
1 326
1 288
2 257
2 384
2 412
1 320
3 270
4 516
5 401
5 333
5 265
10 548
10 913
10 1196
10 1385

Table 5.1: Model obtained with surface wave beamforming method

2. Recorded Data:
The inversion algorithm exploits two in-plane components, fortunately it was
shown in sec. 5.2.2 that also performing inversion with only one component
can lead to good results.
Real Data: only the vertical component is available.

3. Medias Characteristics:
At this stage of development the inversion algorithm assumes VS, VP and ρ to
be known both for the layer and half space.
Information available: the VS profile is known, as well as depth and material
of bedrock.

There is a serious lack of information.

Data Elaboration
As it is apparent, this lack of knowledge about the key parameters of the modeliza-
tion seems to make any sort of application useless. Fortunately the main goal of this
test is to reconstruct the interface shape between upper layer and bedrock which is
known to be almost flat in the real soil. Approximating the real case with just the
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Figure 5.6: Local shear wave velocity profile obtained by classic surface wave methods

simplest model leads to the “equivalent” soil model where the interface may not be
physical. Noneltheless, an error in VS, VP or ρ parameters is actually expected to
affect only the depth of the interface and not its shape.
For this reason, the test will be considered successful if the inverted shape still re-
mains flat.

In order to proceed, soil parameters must be chosen. Actually the parameters’
influence was first investigated by means of the following procedure: shear wave ve-
locity value of the layer and half space were chosen to be average velocityes according
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to eq. 5.11

V̄s =

∑nl
i=1 di∑nl
i=1

di
Vsi

; (5.11)

once VS was chosen, values of VP and density ρ were selected according to the prob-
able soil composition. Based on terrain characteristics in table 5.2, eight different

Nature of terrain VP (m/s) VS (m/s) ρ (g/cm3)

Top soil 300 - 700 100 - 300 1.7 - 2.4
Dry sand 400 - 1200 100 - 500 1.5 - 1.7
Wet sand 1500 - 2000 400 - 600 1.9 - 2.1
Saturated clays 1100 - 2500 200 - 800 12.0 - 2.4
Coal 2200 - 2700 1000 - 1400 1.3 - 1.8
Saturated sandy clay 1500 - 2200 500 - 750 2.1 - 2.4
formations
Porous and saturated 2000 - 3500 800 - 1800 2.1 - 2.4
Sandstone

Table 5.2: Model obtained with surface wave beamforming method

sets of parameters were selected and are detailed in table 5.3. The following criterion
were adopted: for the first group, namely setups 1 to 4; the VS30 and an estimation
of VS in the half-space were calculated by means of eq. 5.11 and values of table 5.1.
Then, keeping fixed values for VS, density ρ and shear modulus µ have been calulate
in order to obtain combinations with the lowest shear modulus (and lowest density)
and combinations with highest shear modulus (and highest density) in reasonable
accordance with the values on table 5.2, namely top-soil, dry sand and saturated
clays for which VS30 is consistent.
As final step for each ρ − µ combination,λ has been tuned in order to obtain its
maximum and minimum values. Combinations then represent the cases in table 5.3
and summarized as follows:

Setup 1: fixed Vs profile → Minimum ρ, µ and λ

Setup 2: fixed Vs profile → Maximum ρ, µ and minimum λ

Setup 3: fixed Vs profile → Minimum ρ, µ and maximum λ

Setup 4: fixed Vs profile → Maximum ρ, µ and maximum λ
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Setup Domain VS(m/s) VP (m/s) ρ(Kg/m3)

1 L. 355 615 1500
H.S. 1014 2002 2100

2 L. 355 615 2400
H.S. 1017 2002 2400

3 L. 355 1200 1500
H.S. 1014 3500 2100

4 L. 355 1200 2400
H.S. 1017 3500 2400

5 L. 604 1044 1500
H.S. 1504 2604 2100

6 L. 604 1046 2400
H.S. 1504 2605 2400

7 L. 604 1200 1500
H.S. 1504 3500 2100

8 L. 604 1200 2400
H.S. 1504 3500 2400

Table 5.3: Tested Setups



84 CHAPTER 5. NUMERICAL INVERSION.

The same holds true for setups from 5 to 8, the only difference being that Vs60 was
taken as a reference. It should be noted that the exploited inverse algorithm im-
plements a minimim interface length regularizer. The main effect of this choice is
that when the guessed starting model presents an interface which is far from the
minimum objective energy configuration, the data fidelity term causes the interface
to move, but the regularizer keep it flat. As a consequence, the task accomplished
by the algorithm during initial iterations is to find the parallel layer configuration
closest to the actual soil. On one hand forcing the interface to be flat could be an
interesting alternative method to perform classical inversions, this allows a predic-
tion of the most probable depth of the flat interface. This last characteristic of the
algorithm has been exploited to perform a parametric study. The misfit term has
been calculated by placing a flat surface at many different locations. Figures 5.7(a)
and 5.3.1 depict the calculated misfit term as a function of the depth. This show
that at least for parallel layered models the misfit presents a unique minimum.

The available data consted of 71 files, corresponding to 71 different values of
frequency. Since the sensors adopted were accelerometers, the elaboration required
both a Fourier transformation and a double integration, performed in frequency
domain by the ω− arithmetic. This method of integration requires the discarding of
small frequencies, so further elaborations involved only frequencies larger than 1 Hz.
After parameter investigation, the following two sets have been selected for inversion

Inversion parameters 1:


VP VS ρ λ µ

Layer 664 355 1500 2.83e8 1.89e8

Half-space 2001 1369 2400 6.126e8 4.5e9

Inversion parameters 2:


VP VS ρ λ µ

Layer 959 605 1500 2.83e8 5.48e8

Half-space 2180 1500 2400 6.126e8 5.4e9

and the inverted interface are respectively depicted in figure 5.3.1 and 5.3.1
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Figure 5.7:
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Figure 5.8: Setup 1 Inversion
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Figure 5.9: Setup 2 Inversion
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Chapter 6

Analytical Shape Derivative.

In chapter 5.1 a complete waveform inversion feasibility study was investigated.
The numerical calculation of a shape sensitivity matrix, which related change of
calculated displacements at sensor locations with a perturbation of the subsoil struc-
ture was demonstrated to be effective despite its low numerical accuracy. However
for discretization with a large number of nodes the computational time grows as
the square of the number of nodes. Moreover as the number of nodes exceeds the
number of available data measurements, the problem becomes ill-posed and the nu-
merical inversion inefficient. To overcome such limitations and improve the speed
and reliability of optimization, an alternative approach is necessary.

Unfortunately, shape optimization in the field of elastodynamics is a pretty recent
development and there is little literature on inverse model approaches related to this
topic. Some recent work attempted to introduce concepts of imaging (Guzina 2004,
2006). Attempts have been made calculating the first derivative of Graffi’s bound-
ary integral equation or extending the topological derivative concept introduced by
Novotny et al. (2003) to elastodynamic (Carretero, 2008; Bertsch, 2010).

In this chapter a novel analytic formulation for node displacements is introduced.
The formulation is valid for general surface topologies infinite non-parallel layers.
The presented approach exploits the geometric Calculus of Variations for curves and
surfaces.

6.1 Tools of the Calculus of Variations

The Calculus of Variations is a field of mathematics that deals with the maximization
or minimization of functionals .

89
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Functionals are mappings from a set of functions to real numbers. A functional is
sometime referred to as an energy E and is usually posed in integral form. The inte-
grand, referred to as the Lagrangian is usually expressed by a suitable combination
of a function f and its derivative.

E(f) =

∫ 1

0

L(f, f
′
, x)dx , (6.1)

where f
′
= df

dx
.

The extreme effectiveness of the Calculus of Variations has been exploited in
many fields of mathematics and physics. The framework operates within the infinite
dimensional space of functions. Functional minimization consists of moving through
this space by following the trajectory which minimizes the energy.

As a first step, a function must be generalized to the infinite dimensional space.
Conceptually f can be sampled for many values of the parameter x and a vector of
length n can be defined as

V = (f(x0), f(x1), . . . f(xn−1), f(xn)) , (6.2)

this simple operation leads to an n− dimensional representation of the function. In
this space a norm could be defined as

|f |2 =
n∑
i=0

f 2(xi) , (6.3)

unfortunately this definition is not intrinsic to the function. In fact if a half-spaced
sampling is considered, the new norm is equal to the old one plus a contribution from
the new points

|f |2 =
n∑
i=0

f 2(xi) +
∑

New points

f 2(xi) . (6.4)

Thus the norm is found to depend on the number of samples. A well defined norm
is then expressed by

|f |2 =
1

n

n∑
i=0

f 2(xi) . (6.5)

As n→∞, the space step ∆x goes to zero and the new definition of norm is written
as

lim
n→∞

∆x
n∑
i=0

f 2(i∆x)→
∫ 1

0

f 2(x)dx
.
= ‖f‖L2(0,1) , (6.6)
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where the integral is in the Riemann sense and L2(0, 1) is the space of squared
integrable functions with parameter1 on [0, 1]. The procedure outlined transforms
the finite vector space of samples of the function f into a related infinite dimensional
vector space.

It is worthwhile to investigate which concepts of finite dimensional concepts carry
over to infinite dimensional vector spaces. First of all, the norm has a different mean-
ing, taking the three-dimensional space as an example, two vectors V = (V1, V2, V3)
and W = (W1, W2, W3) are equal if and only if

V1 = W1

V2 = W2

V3 = W3 .

Indeed

V −W = 0 , (6.7)

is sufficient to state that V , W are the same.
The concepts of norm, distance and internal product are defined by

‖V ‖2 = V 2
1 + V 2

2 + V 2
3

‖V −W ‖ = (V1 −W1)2 + (V2 −W2)2 + (V3 −W3)2 (6.8)

V ·W = V1W1 + V2W2 + V2W2 .

It is straightforward to see that operations in 6.8 involve each coordinate and
holds for any finite number of dimensions.

The infinite dimensional counterpart is instead slightly different. Two vectors in
L2(0, 1) are the same if and only if

‖f − g‖L2(0,1) = 0 . (6.9)

Since Riemann integration is involved in 6.6 this means that f and g are allowed
to be different at some points, since isolated pointwise differences in the functions
do not contribute the L2 norm of their difference. It is evident that to extend the
concept of equality, it is necessary to relax 6.7 to 6.9 form, which is not valid for
all “coordinates” of the vector involved; in a sense, it is not point-wise true. The
meaning of distance instead follows with the same meaning. The form of the infinite

1Here any other domain for parameter can easily be reduced to the assumed one
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version resembles the form of the finite version where integration is used instead of
summation

‖f − g‖ =

∫ 1

0

(f(x1)− g(x1))2 dx .

The main concepts of infinite dimensional calculus such as the norm and inner prod-
uct are then respectively defined as∫ 1

0

f 2(x)dx
.
= 〈f, f〉 (6.10)∫ 1

0

f(x) g(x)dx
.
= 〈f, g〉 . (6.11)

(6.12)

The main advantage of generalizing a finite dimensional function to an infinite di-
mensional space is that an elegant formulation of the optimization problems exists.

In one-dimensional problems the necessary condition for a point to be stationary
is the null derivative. In higher, finite dimensions this coincides with the null gradi-
ent requirement.
In infinite dimensions a necessary condition exists as well and corresponds to request
that the variation of the functional E(f), with respect to any infinitesimal pertur-
bation of f is zero. Since the functional is expressed by f , a perturbation consists of
slightly changing the function. As it happens in every space, perturbing one element
of the space leads to another element of the same space; this can be pictured as
moving along a trajectory connecting different points of the space, every point being
a function. By superposition, perturbation of a point by ε corresponds to move from
point f to the point f + εg, and this can be interpreted as a movement along an
ε-dependent trajectory

f → f + εg . (6.13)

Assuming that E can be regarded as function of ε then the variation is defined as
the directional derivative of E along ε direction

∂E
∂ε

= lim
ε→0

E(f + εg)− E(f)

ε
. (6.14)

If the directional derivative is zero independently of the perturbation direction g, the
desired necessary condition has been found, in particular

∂E(f + εg)

∂ε

∣∣∣∣
ε=0

=
∂

∂ε

∫ 1

0

L(f + εg, f
′
+ εg

′
, x)dx . (6.15)
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Introducing h = f + εg,

∂E(h)

∂ε
|ε=0=

∫ 1

0

dL

dh
g +

dL

dh′
g
′
dx , (6.16)

separating integrals and integrating the second by parts

∂E(h)

∂ε
|ε=0=

∫ 1

0

dL

dh
gdx−

∫ 1

0

d

dx

(
dL

dh′

)
g dx+

dL

dh′
g

∣∣∣∣1
0

. (6.17)

If the case of fixed known end-points is considered such that the boundary term
vanishes, the remaining pieces can be collected to form

∂E(h)

∂ε
|ε=0=

∫ 1

0

(
dL

dh
− d

dx

(
dL

dh′

))
g dx . (6.18)

The only way for eq. 6.18 to be zero independently of the value of g is for the term
in parenthesis to equal zero. Finally

dL

df
− d

dx

(
dL

df ′

)
= 0 . (6.19)

The result obtained is that this Euler-Lagrange Equation 6.19 represents a necessary
condition to obtain a local maximum or minimum. To proceed further the formal
definition of gradient must be considered

Definition 5 Gradient
The Gradient of a scalar function f(x, y, z, . . . ) denoted as ∇f , where
∇ denotes the vector differential operator, is defined as the vector that
satisfies the relation

〈∇E , V 〉 =
∂E
∂V

(6.20)

It is worth noting that the definition of internal product 6.11, eq. 6.18 actually
possesses the structure ∫ 1

0

(
dL

df
− d

dx

dL

df ′

)
g dx ≡ 〈∇E , g〉 , (6.21)

it can be proven that the Euler-Lagrange equation is the infinite dimensional coun-
terpart of the finite dimensional gradient.

A classic example of the effectiveness of the Euler-Lagrange eq. isfound in curve
length minimization.
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Example 1 Starting from the energy 6.22, which is the arclength of the
curve C = (x, f(x))

E =

∫ 1

0

√
1 + (f ′)2 ds , (6.22)

then the corresponding Euler-Lagrange equation is

−
∂Lf ′

∂x
= 0

f
′′(

1 + f ′2
)3/2

= 0 ,

which simplifies to f ′′ = 0; exactly the equation of a straight line.

Following what has been stated so far, the procedure to infinitely sample the
function f and consider the obtained vector V as belonging to the L2(0, 1) space,
leads to a scheme where Calculus of Variations applies and Euler-Lagrange equations
can be interpreted as the gradient in this infinite dimensional space.

The machinery for functional minimization can be exploited, after some modi-
fications for optimization of geometric shapes. The classic procedure is to build a
suitable curve/shape-dependent Energy functional, to calculate the Euler-Lagrange
equation and then to introduce an artificial time dependence to allow the curve to
evolve. In particular if

C =

(
x
y

)
, (6.23)

then

C(t+ ∆t) =

(
x(t)

y(t)

)
−∆t∇E ; (6.24)

the following example shows the procedure for the energy 6.22 of ex. 1.

Example 2 In ex. 1 the form of Euler-Lagrange equation was obtained.
If time dependence is introduced, the evolution equation, also called min-
imization flow, assumes the form

ft = −∇E =
f
′′(

1 + f ′2
)3/2

, (6.25)
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and

f(t+ ∆t) = f(t)−∆t∇E = f(t) + ∆t
f
′′(

1 + f ′2
)3/2

. (6.26)

6.2 Basics of curves

In the former section the basics of variational calculus were introduced.
The motivation is to apply the machinery of Calculus of Variations to geometric

objects. Here the topic is focused on curves, but most of these arguments still hold
for surfaces. Unfortunately there exists a big difference between a function and a
curve. In fact the domain of a function doesn’t change and the integral of an energy
function on a fixed domain Ω (2D case for simplicity), is

E(f) =

∫∫
Ω

L(f, fx, fy, x, y) dx dy . (6.27)

In the machinery of infinite dimensional calculus all of the candidate functions are
defined on the same domain, this assumption permits elimination of boundary terms
from integration by parts, leading to Euler-Lagrange equations and subsequently to
the gradient descent.

The main difficulty with curves is that there is usually a parametrization involved.
For a curve length L parametrized by the arclength, for example on the interval [0, 1],
every value of the parameter identifies a point on the curve. If the curve evolves, the
parametrization and consequently the length changes. Let’s introduce some basic
concepts of curves:

Definition 6 The curve (planar) is the image of a continuous mapping

y : [0, 1]→ R2 , (6.28)

where [0, 1] is called “parameter space”.

Definition 7 A “ Parametrized curve” is a continuous mapping

C(p) =

(
x(p)
y(p)

)
, (6.29)

from a unit interval to R2.
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The curve is the geometric object and does not depend on the parametrization. The
parametrized curve is the mapping, and there are many ways to parametrize the
curve.

6.2.1 Geometric properties of curves.

Definition 8 Every quantity that can be calculated and that does not
depend on a curve’s parameterization is defined as “ Geometric”.

As a first step, derivatives must be ensured independent on the parametrization; to
fulfill this requirement, some constraints on the curve itself have to be made. For
functions, differentiability is a well defined concept. For curves, arbitrarily choosing a
differentiable representation is not sufficient because the goal is to obtain derivatives
of the object itself and not just of the representation. In this scope, regular curves
must be considered.

Definition 9 A curve is called Regular when given a parametric repre-
sentation C(p), its derivative ∂C(p)/∂p never vanishes for any p in the
domain of the parameter [a, b].

It is then not sufficient to have a differentiable mapping, the derivative must never
vanish; in fact points where the derivative is zero correspond to cusps of the curve;
the condition of regularity is set up to avoid this kind of situation, where even if the
related parametrization formula is differentiable, the curve is not.

• Speed of a parametrized curve

| Cp |=
√
x2
p + y2

p , (6.30)

where the subscript indicates derivative, is the norm of the derivative with
respect to the parameter.

• Velocity of a parametrized curve

Cp =

(
xp
yp

)
. (6.31)

• Unit tangent vector

T =
Cp

| Cp |
. (6.32)



6.2. BASICS OF CURVES 97

The unit tangent vector is a Geometric Property, the only non-geometric part
being its sign, which indicates whether the curve is parameterized to be traced
backward or forward depending on p.

It is worth noting that at the cusps there is no way to define a unique value
for the unit tangent. This leads to the consideration of the unit tangent as the
geometric counterpart for curves of the first derivative for functions. In this
sense, condition ∂C(p)/∂p 6= 0 turns to be a regularity condition for curves.

• Unit normal vector

N = J T = J
Cp

| Cp |
=

(
0 1
−1 0

)
Cp

| Cp |
. (6.33)

The Unit normal is still a geometric property of the curve.

Definition 10 Reparametrization
Reparametrization of a curve φ : [0, 1] → [0, 1] is a “diffeomorphism”
such that φ(0) = 0, φ(1) = 1

The interval is mapped on the same interval, and the derivative is strictly
greater than zero2, φp > 0 for all p ∈ (0, 1).

Diffeomorphism
Is called a differentiable function with a differentiable inverse. Given a
parametrization C(p) of a curve and a diffeomorfism φ(p), then C(φ(p))
is a reparametrization of C(p).

• The Arclength parameter
Is a parametrization that ranges from zero to the length of the curve and has
the following interpretation: assuming the curve starts from 0, and is traced
to s, then the length of the curve between the two points is s. This obviously
is another geometric property and the arclength is independent of any other
parametrization.

• Curvature
This is the inverse of the radius of the “osculating circle”; the osculating circle
being the circle that locally best approximates the curve at point p.

2Technically the only necessary feature is φp 6= 0. Cause of the φp > 0 property, this is called
a “Positive Reparametrization” and the > preserve the direction of the point identified by p along
the curve. A “Negative Reparametrization” (φp < 0 )traces the curve backward.
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A clearer interpretation for k can readily be obtained investigating its mathe-
matical expression

k =
1

r
=
Cpp · J Cp

| Cp |3
, (6.34)

where J represents a π/2 rotation.
The term, Cpp is the acceleration of the trajectory C(p) = (x(p), y(p))T ; being
a vector it has two components and can be decomposed along the tangent and
the normal to the curve

Cpp = (Cpp · T )T + (Cpp ·N )N . (6.35)

The tangent term changes in speed along the curve, it depends only on the
parametrization and is not geometric. Indeed, translating points of an in-
finitesimal distance along the tangent does not change the curve; on the other
hand, the normal part term which really carries a geometric meaning is the
term responsible for a change of the curve. Note that if the second derivative
with respect to arclength is considered, then the expression 3

Css =

Cpp

|Cp| −
Cp

|Cp|2
CpCpp

|Cp|

| Cp |
=
Cpp − (Cpp · T )T

| Cp |2

=
(Cpp ·N )

| Cp |2
N

=
(Cpp · J Cp)

| Cp |3
N

= kN ,

is called the geometric second derivative, and shows that curvature is the geo-
metric version of a second derivative for functions.

6.2.2 Calculus of Variations for curves.

To introduce features of Calculus of Variation for curves, let’s first consider a very
simple energy 6.36, which measures how unsmooth the curve is, the parameter is
assumed to run from zero to one .

Example 3 The scheme for function based minimization, namely

Energy→ Lagrangian→ gradient descent

3The use of the planar rotation J makes this relation valid in 2D environments only.
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does not work because of the intermediate passage of parametrization,
nevertheless heedlessly applying this old fashion calculus leads to

E =
1

2

∫ 1

0

| Cp |2 dp =

∫ 1

0

Cp ·Cpdp (6.36)

xt = −1

2

(
Lx −

d

dp
Lxp

)
=

d

dp
(xp) = xpp

yt = −1

2

(
Ly −

d

dp
Lyp

)
=

d

dp
(yp) = ypp ,

finally (
xt
yt

)
=

(
xpp
ypp

)
Ct = Cpp . (6.37)

Note that this last expression 4 is parametrization-dependent, which means
that evolutions started with different parametrizations (differing in speed)
give completely different results. It is clear that parametrization is an ar-
bitrary choice and is supposed to be a tool to describe the geometric object
without affecting it. The problem lies in the fact that from the beginning
the Energy (eq. 6.36) was not geometric.

In order to obtain a variational scheme capable to bypass the parametrization
problem, it is necessary to change the approach: let’s consider the energy depending
upon the curve; recalling the definition of L2(0, 1) product, eq 6.11, and relation

Ev = 〈∇E ,v〉 , (6.38)

here function f and perturbation g are replaced by curve representations.
If energy depends on a curve, calculating the variation of the energy with respect

to a variation of that curve means calculating the directional derivative of the en-
ergy with respect to the direction connecting the original and the perturbed curve.
Exploiting the L2(0, 1) product definition

dE

dt
=

dE
dCt

·Ct . (6.39)

4Eq. 6.37 is commonly known as heat equation cause of the similarity with the equation for heat
propagation in physics. It is exploited in image processing to smooth images.
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translates into

dE

dt
= 〈∇E , Ct〉 =

∫ 1

0

Ct · ∇E dp . (6.40)

The meaning of eq. 6.40 is quite subtle. Imagine that the curve is a function of
time, then a time-dependent energy can be written. The derivative of energy with
respect to time must be calculated and manipulated until the term Ct is isolated
and finally, the expression multiplying Ct corresponds to the directional derivative
∇E . The final step is once again the equation

Ct = −∇E
C(t+ ∆t) = C(t)−∆t∇E .

This new approach can then be summarized as:

Energy(t)→ ∂E
∂t

= 〈∇E , Ct〉 → gradient descent

Example 4 In example 3 the classic variational calculation result was
obtained. Here the evolution flow is obtained for the same energy follow-
ing the approach for curves.

dE

dt
=

1

2

d

dt

∫ 1

0

Cp(t) ·Cp(t) dp (6.41)

=

∫ 1

0

Ctp ·Cp dp (6.42)

= −
∫ 1

0

Ct ·Cpp dp (6.43)

= 〈Ct, −Cpp〉L2 . (6.44)

In eq. 6.41 t, p are independent and time derivatives were moved inside

In eq. 6.42 t, p were switched

In eq. 6.43 integration by parts was performed assuming a fixed boundary

finally the gradient descent is deliberately set as

Ct = Cpp , (6.45)

which corresponds to the previous result (eq. 6.37).
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The last example shows how the second approach reproduces the classic result; ob-
viously since one of the key ingredients is the energy, it must be built to be geometric.

It should be noted that the second ingredient, the L2(0, 1) inner product, is
defined by an integration on the curve. Unlike the first approach, where integration
was on a fixed domain, here the integral is on the evolving curve which is not fixed.
Consequently many of basic theorems that can be found in a classic Calculus of
Variation book are no longer valid. The inner product has to be expressed in a
geometric way, which is accomplished by exploiting the arclength as a parameter,
and the geometric inner product assumes the form

〈f, g〉 =

∫ L

0

f(s)g(s)ds . (6.46)

Summary of the Gradient descent computation method for geometric
energies:

• Propose curve-dependent energy that is geometric.

E(C) =

∫
C

Lds . (6.47)

• Compute the time derivative dE
dt

rewriting the energy with a dummy arbitrary
parameter which is time independent.

• Manipulate dE
dt

until something with the form

dE

dt
=

∫
C

Ct · (G) ds (6.48)

is obtained.

• Set the gradient descent flow as Ct = −G

6.3 Adjoint Active Curves Inversion

In the former section concepts of flow minimization were introduced. The field
of application is mainly related to computer vision technology; in particular the
minimization technique outlined is the basic concept of what is referred to as active
contours.
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This technique has been introduced in the last fifteen years, and today is one of the
most effective techniques for image segmentation. A nice feature of this machinery
is that it can be specialized following two main approaches:

• Boundary-based active contours
The Energy is written in terms of a curve and then minimized. It can be proven
that starting from an energy of the form

E =

∫
C

φ ds , (6.49)

and once the energy derivative with respect to time has been calculated

d

dt
E =

∫
C(t)

(KφN − (∇φ ·N )N )Ctds , (6.50)

the resulting gradient takes the form

∇E = KφN − (∇φ ·N )N . (6.51)

• Region-based active contours
The Energy is written in terms of domain quantities. The domain integral is
then transformed into a boundary integral and minimized. The initial energy

E =

∫∫
insideC

F (C(t)) dA , (6.52)

leads to the gradient
∇E = F (C(t))N . (6.53)

Equations 6.51 6.53 were exploited in conjunction with the Adjoint Method to obtain
a minimizing inversion algorithm.

6.3.1 Problem definition

Consider a distribution of nf sources located at coordinates xf on the soil surface
(Γ0). Given a distribution of ns sensors on the soil surface, located at coordinates
xk, displacements produced are recorded and indicated with ũ(ω, xk), where k ∈
{1, 2, ..., ns}.

The subsoil structure is assumed to be piecewise layered with generally non-flat
boundaries. Let Ωi be the general layer between Γi−1 and Γi interfaces. The whole
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Symbol Meaning

Γ Union of all boundaries
Γ0 Soil surface
Γi Boundary between layers
Ωi Layer Internal area
Ω ∪Ωi

k Number of receivers
(∪xf ) Sources locations
(∪xk) Receivers locations
u(ω,x) Particle Displacements
ũ(ω, xk) Particle displacements (Data)
Lv = 0 Navier’s wave equation Tij,j + ρω2vi = 0

Table 6.1: Notations for Analytic Shape Derivative

set of layers is indicated as Ω = ∪∞i=1 Ωi and the whole set of boundaries is indicated
as Γ = ∪∞i=0 Γi.

The materials constituting the layers are assumed to be linear, isotropic, elastic,
homogeneous and particles motion is assumed to obey to Navier’s equation of motion.
Function u describing particle displacements is assumed to exist and belonging to
C2 class. For the sake of clarity, the notations are summarized in table 6.1.
FIGURE

6.3.2 Energy Definition

Setting up the variational minimization approach requires building an objective func-
tion. It is a natural choice to require the vector distance between the model calculated
values of displacements and the given data to be a minimum value; this results in a
misfit term EM which expresses mathematically the request in a least squared sense.
Next, the final energy form can be obtained by a suitable choice of regularizer. A
feature which must be included is the physics law of wave motion. In chapter 5 this
feature was implicitly included by the numerical Jacobian J . Indeed, its calculation
was performed by perturbing the interface, running the forward model and then ap-
plying finite difference approximation. Wave motion law was then directly inherited
by the inverse algorithm.
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Conditions on u Scope

Lu = T
(u)
ij, j + ρω2ui = 0 In Ω

T(u) · N̂ = 0 On Γ0/ (∪xf )

T(u) · N̂ = F On (∪xf )

[u]Γi = 0 At Γi

[
T(u) · N̂

]
Γi

= 0 At Γi

Conditions on w Scope

Lw = T
(w)
ij, j + ρω2wi = 0 In Ω

ut · T (w,1)N 0 + c.c = −
{

2
(
u[r] − ũk[r]

)
u[r]t + 2

(
u[i] − ũk[i]

)
u[i]t

}
so

T (w)N 0 = −
(
u[r] − ũk[r]

)
+ i
(
u[i] − ũk[i]

) On Γ0/xk

T(w) · N̂ = 0 On Γ0/ (∪xf ,∪xk)

w = 0 On (∪xf )

[w]Γj = 0 At Γj

[
T(w) · N̂

]
Γj

= 0 At Γj

Table 6.2: Wave-Fields conditions for analytic shape derivative.
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In this new approach Navier’s equation is introduced as the regularizer. Let’s
suppose that the wave equation is introduced for each point in Ω by the Lagrange
multiplicator method. This can be regarded as a sum on the infinite number of
particles. Now, this sum turns into an integral because continuum mechanics was
assumed and the Lagrangian multiplicators are substituted by the vector function
w. What is remaining is the integral term R(u, w) which now depends both on u
and w fields.

E = EM +R(u, w) (6.54)

=
n∑
k=1

1

2
‖(u(ω, xk)− ũ(ω, xk))‖2 +

∫
Ω

w · (Lu) dΩ + c. c.

=

∫
Γ

g dΓ +
∑
j

∫
Ωj

wj ·
(
Ljuj

)
dΩ + c. c. , (6.55)

with

g =
1

2
(u(ω, x)− ũk) (u(ω, x)− ũk)

∗ δ (x− xk) . (6.56)

6.3.3 Strategy outline

Considering Energy 6.54 the artificial time dependence must be introduced to allow
interfaces to evolve. The evolution of geometry then reflects in the displacement field
u and the adjoint field w which now both depend on the artificial time. Eq. 6.54
must be derived with respect to time and manipulated into the form

d

dt
E =

∫
Γ

(∇E)ΓtdΓ (6.57)

as stated in sec. 6.2.2.

Note that 6.54 is composed of a boundary term and a domain term on which
respectively 6.51 and 6.53 will be applied. To follow the approach outlined in sec.
6.2.2, requires extra care, in fact this environment hides an extra time dependence.
Comparing 6.51 with EM

E =
∫
C
φ(C(t)) ds

EM =
∫

Γ(t,u(t))
g ds ,

it is apparent that the integrand possesses a time dependence inherited from the
evolving curve and a time dependence inherited from the displacement field, this
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gives rise to an extra term and 6.51 becomes

d

dt
EM =

∫
Γ(t)

(KgN − (∇g ·N )N ) Γtds−
∫

Γ(t)

gtds , (6.58)

the same fact occurs for the region term R, which takes the form

d

dt
R =

∫
Γ(t)

(w · (Lu))N · Γtds+

∫
Ω

(w · (Lu))t dΩ , (6.59)

The extra terms in eq. 6.58 and 6.59 are times derivatives of involved quantities.
They are not geometric; fortunately the adjoint field w represent an extra degree of
freedom. By imposing suitable conditions (see table 6.2) on w, any residual time
dependent (non-geometric) term disappears and the final gradient flow is obtained.

6.3.4 Integration by parts of R

Before manipulating the whole energy function, it is useful to simplify the regularizer
term5.

Explicit introduction of T tensor components leads to

R(u, w) =

∫
Ω

w · (Lu) dΩ

=

∫
Ω

[(
T

(u)
11,1 + T

(u)
12,2 + γu1

)
w1 +

(
T

(u)
21,1 + T

(u)
22,2 + γu2

)
w2

]
dΩ

= −
∞∑
j=1

∫
Γj−1

[(
T

(u,j)
11 N j−1

x + T
(u,j)
12 N j−1

y

)
wj1 +

(
T

(u,j)
21 N j−1

x + T
(u,j)
22 N j−1

y

)
wj2

]
dΓj−1

+
∞∑
j=1

∫
Γj

[(
T

(u,j)
11 N j

x + T
(u,j)
12 N j

y

)
wj1 +

(
T

(u,j)
21 N j

x + T
(u,j)
22 N j

y

)
wj2

]
dΓj

−
∞∑
j=1

∫
Ωj

[
T

(u,j)
11 wj1,1 + T

(u,j)
12 wj1,2 + T

(u,j)
21 wj2,1 + T

(u,j)
22 wj2,2 − γjwj · uj

]
dΩj

+c. c. .

5For sake of simplicity, dependencies of u will be dropped.
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By reordering surfaces and regrouping, the following expression is obtained,

R(u, w) = −
∫

Γ0

w0 · T (u,0)N 0dΓ0

+
∞∑
j=1

∫
Γj

{
wj · T (u,j)N j −wj+1 · T (u,j+1)N j

}
dΓj

−
∞∑
j=1

∫
Ωj

[
T

(u,j)
11 wj1,1 + T

(u,j)
12 wj1,2+

T
(u,j)
21 wj2,1 + T

(u,j)
22 wj2,2 − γjwj · uj

]
dΩj

+c. c. ,

which simplifies to eq. 6.60 once conditions in table 6.2 are inserted.

R(u, w) = −
∞∑
j=1

∫
Ωj

[
T

(u,j)
11 wj1,1 + T

(u,j)
12 wj1,2+ (6.60)

T
(u,j)
21 wj2,1 + T

(u,j)
22 wj2,2 − γjwj · uj

]
dΩj

+c. c. .

Let’s define function F j(uj,wj) to be the term in squared parenthesis, the contri-
bution of the regularizer to the total energy converts the equation to

R(u, w) = −
∞∑
j=1

∫
Ωj

F j(uj,wj) dΩj + c. c. . (6.61)

.

6.3.5 Time dependence of g function.

The data fidelity term is a complex function and its derivation with respect to time
requires a special procedure. Its time dependence is inherited from the u field which
is in general a complex quantity. To derive this quantity with respect to time by
the chain rule means deriving a complex function respect to a complex function.
This kind of derivation is equivalent to requiring that the derivative exists and it
is unique at every point in the complex plane. It can be recalled that, contrary to
what happens for real domain R; C possesses no ordering. If a point zp is considered,
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the complex derivative evaluated at zp must exist and be unique, approaching the
point from any direction. Unfortunately terms like z z∗ do not belong to the set of
functions satisfying this feature, so the simple chain rule cannot be applied.

The key observation is that there is no interest in ∂g
∂u

, so its calculation is not
necessary; on the other hand gt can still be calculated by separating the real and
imaginary parts of u and performing time derivation by chain rule on the two parts
separately. The final form of gt is obtained in a few passages,

dg

dt
= 2

(
u[r] − ũk[r]

)
u[r]t + 2

(
u[i] − ũk[i]

)
u[i]t , (6.62)

where [r] , [i] subscripts indicate real and imaginary parts respectively.

6.3.6 Energy time derivative

Exploiting 6.61 and 6.62 the derivative of energy with respect to time takes the form

dE
dt

=

∫
Γ0

{
2
(
u[r] − ũk[r]

)
u[r]t + 2

(
u[i] − ũk[i]

)
u[i]t

}
dΓ

−
∞∑
j=1

∫
∂Ωj

F j(uj,wj) (N · Γt) dΓ + c. c.

−
∞∑
j=1

∫
Ωj

[
T

(ut,j)
11 wj1,1 + T

(ut,j)
12 wj1,2+

T
(ut,j)
21 wj2,1 + T

(ut,j)
22 wj2,2 − γjwj · ujt

]
dΩj + c. c.

−
∞∑
j=1

∫
Ωj

[
T

(u,j)
11 wjt1,1 + T

(u,j)
12 wjt1,2 + T

(u,j)
21 wjt2,1+

T
(u,j)
22 wjt2,2 − γjw

j
t · uj

]
dΩj + c. c. ,
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note that this takes a much simpler form once integration by parts is performed a
second time(D.1; D.2)

dE
dt

=

∫
Γ0

{
2
(
u[r] − ũk[r]

)
u[r]t + 2

(
u[i] − ũk[i]

)
u[i]t

}
dΓ

−
∞∑
j=1

∫
∂Ωj

F j(uj,wj) (N · Γt) dΓ + c. c.

−
∞∑
j=1

[∫
∂Ωj

ujt · T (w,j)NdΓ−
∫

Ωj

ujt · LwjdΩ

]

−
∞∑
j=1

[∫
∂Ωj

wj
tT

(u,j)NdΓ−
∫

Ωj

wj
t ·LujdΩj

]
.

Summations on layer boundaries can be grouped with respect to the interface where
they are calculated. The relation D.3 is then introduced to obtain eq. 6.63.

dE
dt

=

∫
Γ0

{
2
(
u[r] − ũk[r]

)
u[r]t + 2

(
u[i] − ũk[i]

)
u[i]t

}
dΓ (6.63)

+

∫
Γ0

u1
t · T (w,1)N 0dΓ0 +

∫
Γ0

w1
t · T (u,1)N 0dΓ0 + c. c.

−
∞∑
j=1

∫
Γj

[
F j(uj,wj)−F j+1(uj+1,wj+1)

] (
N j · Γj

t

)
dΓj + c. c.

−
∞∑
j=1

∫
Γj

[
ujt · T (w,j)N j− · · · (6.64)

(
ujt +

(
D
(
uj
)
−D

(
uj+1

))
Γt

)
· T (w,j+1)N j

]
dΓj + c. c.

−
∞∑
j=1

∫
Γj

[
wj
t · T (u,j)N j− · · · (6.65)

(
wj
t +
(
D
(
wj
)
−D

(
wj+1

))
Γt

)
· T (u,j+1)N j

]
dΓj + c. c.

+
∞∑
j=1

∫
Ωj

ujt ·LwjdΩ +
∞∑
j=1

∫
Ωj

wj
t ·LujdΩj + c. c. .
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Simplification of residual time dependent terms is obtained by imposing the restric-
tions summarized in table 6.2 on vector function w. After a few passages,

dE
dt

= −
∞∑
j=1

∫
Γj

[
F j(uj,wj)−F j+1(uj+1,wj+1)

] (
N j · Γj

t

)
dΓj

−
∞∑
j=1

∫
Γj

[
Γt ·

(
D
(
uj
)
−D

(
uj+1

))T]
T (w,j+1)N jdΓj

−
∞∑
j=1

∫
Γj

[
Γt ·

(
D
(
wj
)
−D

(
wj+1

))T]
T (u,j+1)N jdΓj

+c. c. .

which now can be written by projecting along the normal and tangential directions,
obtaining the final form 6.66. By exploiting eq. D.3 and noticing that interface
boundary conditions imply (D (u)T = 0) and (D (w)T = 0)

dE
dt

= −
∞∑
j=1

∫
Γj

[
F j(uj,wj)−F j+1(uj+1,wj+1)

] (
N j · Γj

t

)
dΓj

−
∞∑
j=1

∫
Γj

([(
D
(
uj
)
−D

(
uj+1

))T
T (w,j+1)N j

]
·N j

) (
N j · Γt

)
dΓj

−
∞∑
j=1

∫
Γj

([(
D
(
uj
)
−D

(
uj+1

))T
T (w,j+1)N j

]
·Tj

) (
Tj · Γt

)
dΓj

−
∞∑
j=1

∫
Γj

([(
D
(
wj
)
−D

(
wj+1

))T
T (u,j+1)N j

]
·N j

) (
N j · Γt

)
dΓj

−
∞∑
j=1

∫
Γj

([(
D
(
wj
)
−D

(
wj+1

))T
T (u,j+1)N j

]
·Tj

) (
Tj · Γt

)
dΓj .

Finally

Et =
∞∑
j=1

∫
Γj

F
(
N j · Γt

)
dΓj , (6.66)
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where

F =
{ [

T
(u,j+1)
11 wj+1

1,1 + T
(u,j+1)
12 wj+1

1,2 + T
(u,j+1)
21 wj+1

2,1

+T
(u,j+1)
22 wj+1

2,2 − γj+1wj+1 · uj+1
]

−
[
T

(u,j)
11 wj1,1 + T

(u,j)
12 wj1,2 + T

(u,j)
21 wj2,1 + T

(u,j)
22 wj2,2 − γjwj · uj

]
−
([(

D
(
uj
)
−D

(
uj+1

))T
T (w,j+1)N j

]
·N j

)
−
([(

D
(
wj
)
−D

(
wj+1

))T
T (u,j+1)N j

]
·N j

)}
. (6.67)

6.3.7 Curve Update:

Equation 6.66 is now in a suitable form and it leads to the update formula

Γt = −F ·N , (6.68)

which rules the evolution of all the points on the curve.
Actually, since interfaces in the forward model are sets of elements and actual points
on each element are obtained by interpolating nodal coordinates6 according to eq.
4.56-4.58, it is necessary to customize 6.66. In this scope, a parameters vector V (t)
is defined as the vector containing all nodal coordinates:

V (t) = (x1(t), y1(t)x2(t), y2(t) . . . xn(t), yn(t))T , (6.69)

as a consequence the updated formula can be written as

V̇ (t) = −∇EV (t)) , (6.70)

where

∇E =



∂E
∂x1
∂E
∂y1
...
...
∂E
∂xn
∂E
∂yn


. (6.71)

6Note that assumption of continuity for u field forbids use of QDE on interface elements. This,
in fact would introduce discontinuity to element extremes
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Each term in 6.71 is finally calculated by

∂E
∂αi

=
ne∑
1

∫ 1

−1

[F (Γαi ·N ) ‖Γη‖](η) dη

=
ne∑
1

∫ 1

−1

[F (Γαi · J Γη)](η) dη ,

where ne is the number of elements and αi is one of the parameters in V (t).
It is straightforward that only elements depending upon the node with respect to
which derivative is performed will contribute to displacing the respective node. Fi-
nally, time step ∆t is chosen and displaced nodes at each iteration are obtained
evolving nodes at earlier time.

xi(t+ ∆t) = xi(t)−
∂E
∂xi

∆t (6.72)

yi(t+ ∆t) = yi(t)−
∂E
∂yi

∆t . (6.73)

6.3.8 Adding the Curvature regularizer.

The formulation presented in the former section introduced a regularizer which forces
the system to obey to a certain physical law such as Navier’s Equation of motion.

Even if satisfactory, the desired behavior of the algorithm is to start with a set
of guessed simple interfaces, namely parallel planes, and obtain a non-layered model
which fits the data. It is then necessary to introduce a second regularizer for which
its purpose is to evolve interfaces shrinking the length, and resulting in a smoothing
effect. Computation of this term starts from the geometric energy formula

El =

∫
Γ

ds , (6.74)

where ds is the arclength measure, and follows the same steps used to obtain 6.72,
6.73. Collecting all of the parts together

αi(t+ ∆t) = αi(t)−
∂Ek
∂αi

∆t ,

with
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∂Ek
∂αi

=
ne∑
1

{∫ 1

−1

[F (Γαi ·N ) ‖Γη‖](η) dη

+β

(∫ 1

−1

[K (Γαi ·N ) ‖Γη‖](η) dη + (Γαi · T )|1−1

)}
, (6.75)

and β is simply an arbitrary weight.
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Chapter 7

Conclusions.

In this research effort, an overview of SWM was given. It is understood that layered
models classically exploited to investigate surface waves are seriously inadequate for
cases in which the real soil structure presents an non-flat surface, steep lithological
interfaces or voids, expecially because they usually correspond to acoustic impedance
discontinuities.

Introduction of such features seriously compromises the reflection/diffraction pat-
tern which gave rise to Love and Rayleigh waves. As a result, layer modelization
is inadequate and unfortunately, the classic SWM elaboration process gives no in-
dication of the real soil structure. To overcome such limitations, a novel approach
has been proposed coupling the mathematically advanced boundary element method
and inversion theory to investigate the possibility of a full wavefield inversion.

This method has been tested against synthetic data and partially on real data
and it has been proven robust.

Moreover synthetic simulation shows that in “in plane” problems can in general
be investigated exploiting just the vertical component of the wave-motion.

Finally a coupling between active curves, introduced only fifteen years ago in the
field of computer vision and imaging, and the adjoint field method was exploited
to build the theoretical basis of a new class of shape optimization solver for subsoil
structure determination. This proposed method can be fully generalized to soils
of any degree of complexity, to three-dimensional domains, and to non-flat surface
environments.

Viscoelasticity can be taken into account as well.
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Appendix A

Detaills of Lagrangian Model.

A.0.9 Proof of the Action principle

Starting with formulation for Lagrangian (4.24) we expand the variation and inte-
grate on space and time domain. Wrote explicitly Lagrangian reads

L = 1/2

∫ η(x)

0

ρ1

(∂v1II

∂t

)2

− µ1

[(∂v1II

∂x

)2

+
(∂v1II

∂z

)2]
dz

+ 1/2

∫ ∞
η(x)

ρ2

(∂v2II

∂t

)2

− µ2

[(∂v2II

∂x

)2

+
(∂v2II

∂z

)2]
dz

− µ2(
∂v2II

∂z
− ∂v2II

∂x

∂η(x)

∂x
)(v2II − v1II ) |z=η(x)

+

∫ ∞
0

µ
∂vI
∂x

(
vII − 1/2vI − vi

)
|x=−L dz

−
∫ ∞

0

µ
∂vIII
∂x

(
vII + 1/2vIII) |x=L dz

Romans subscript (I, II, III) indicates the region, numeric subscript (1, 2) indicates
respectively the upper and lower media.
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δ

∫ t2

t1

∫
Ω

L dΩ dt =

+

∫ t2

t1

∫ x2

x1

∫ η(x)

0

ρ1
∂v1II

∂t

∂

∂t
δv1II − µ1(

∂v1II

∂x

∂

∂x
δv1II +

∂v1II

∂z

∂

∂z
δv1II ) dz dx dt

+

∫ t2

t1

∫ x2

x1

∫ ∞
η(x)

ρ2
∂v2II

∂t

∂

∂t
δv2II − µ2(

∂v2II

∂x

∂

∂x
δv2II +

∂v2II

∂z

∂

∂z
δv2II ) dz dx dt

−
∫ t2

t1

∫ x2

x1

µ2(
∂

∂z
δv2II −

∂

∂x
δv2II

∂η(x)

∂x
)(v2II − v1II ) |z=η(x) dx dt

−
∫ t2

t1

∫ x2

x1

µ2(
∂v2II

∂z
− ∂v2II

∂x

∂η(x)

∂x
)(δv2II − δv1II ) |z=η(x) dx dt

+

∫ t2

t1

∫ ∞
0

µ
∂vI
∂x

(
δvII − 1/2δvI − δvi

)
|x=−L dz

+

∫ t2

t1

∫ ∞
0

µ
∂δvI
∂x

(
vII − 1/2vI − vi

)
|x=−L dz

+

∫ t2

t1

∫ ∞
0

µ
∂vIII
∂x

(
δvII − 1/2δvIII) |x=L dz

−
∫ t2

t1

∫ ∞
0

µ
∂δvIII
∂x

(
vII + 1/2vIII) |x=L dz

In order to expose relevant features we must perform integration by parts, then lets
switch to a compact notation for integrations, We will write integration variables as
subscripts, so for example let be∫ t2

t1

∫ x2

x1

∫ ∞
0

dz dt→
〈 〉

x,z,t
(A.1)

vI = vi + vr = In e
ikn(x+L) +Rn e

−ikn(x+L)

δvI = δRn e
−ikn(x+L)

∂ δvI
∂x

= −iknδRn e
−ikn(x+L) = −iknδvI

vIII = Tn e
ikn(x−L) (A.2)

δvIII = δTn e
ikn(x−L)

∂ δvIII
∂x

= iknδTn e
ikn(x−L) = iknδvIII
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Expanding surface integrals, after some simplifications, reordering and exploiting the
properties of the wave ansatz (4.33 - 4.34 - A.2), δA reads.

δA =
〈
(−ρ∂

2vII
∂t2

+ µ
∂2vII
∂x2

+ µ
∂2vII
∂z2

)δvII
〉
x,z,t

(A.3)

+

[〈
ρ
∂vII
∂t

δvII
〉
x,z

]t2
t1

(A.4)

−
〈
µ1(

∂v1II

∂z
)δv1II |z=0

〉
x,t

(A.5)

+
〈
µ2(

∂v2II

∂z
)δv2II |z→∞

〉
x,t

(A.6)

+
〈[
µ2(

∂v2II

∂x
nx +

∂v2II

∂z
nz)− µ1(

∂v1II

∂x
nx +

∂v1II

∂z
nz)
]
δv1II |z=η(x)

〉
x,t
(A.7)

−
〈
µ2(

∂δv2II

∂x
nx +

∂δv2II

∂z
nz)(v2II − v2II ) |z=η(x)

〉
x,t

(A.8)

+
〈[
µ
∂vI
∂x
− µ(

∂vII
∂x

)
]
δvII |x=x1

〉
z,t

(A.9)

+
〈[
µ(
∂vII
∂x

)− µ(
∂vIII
∂x

)
]
δvII |x=x2

〉
z,t

(A.10)

−iµkn(−L)

〈
δvI(vI − vII) |x=x1

〉
z,t

(A.11)

−iµkn(L)

〈
δvIII(vIII − vII) |x=x2

〉
z,t

(A.12)

In this form many features can be easily recognized. Due to the fact that δvI , δv1II ,
δv2II , δvIII are arbitrary, the only way for δA to be zero is other quantities in inte-
grands goes to zero. This leads to the following interpretations:

• (A.3) Wave Equation.

• (A.4) Conservation law.

• (A.5) Zero stress condition at free surface.

• (A.6) Zero amplitude condition at z →∞.

• (A.7) Continuity of stress at interface.

• (A.8) Continuity of displacements at interface.
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• (A.9) Continuity of stress between I-II region separation.

• (A.10) Continuity of stress between II-III region separation.

• (A.11) Continuity of wavefunctions between I-II region separation.

• (A.12) Continuity of wavefunctions between II-III region separation.

A.0.10 Lagrangian minimization

By introducing ansatz 4.35 in 4.24 we obtain a second order differential equations
system. Constants here are presented in synthetic form even if they are valid for
every x-point of the discretization.

E1ij = −(1/2)ei(ki−kj)x(β1i,jµ1 + β2i,jµ2)

E2ij = 1/2ei(ki−kj)x(µ1(β1i,jx − β1ix,j −
∂β1i,j

∂x
+ 2β1i,j Ψ)

+µ2(β2i,jx − β2ix,j −
∂β2i,j

∂x
+ 2β2i,j Ψ))

E3ij = 1/2ei(ki−kj)x(−ω2(β1i,jρ1 + β2i,jρ2)

+µ1(β1ix,jx + β1iz ,jz −
∂β1ix,j

∂x
+ (β1ix,j +

∂β1i,j

∂x
− β1i,jx) Ψ + β1i,jΦ)

+µ2(β2ix,jx + β2iz ,jz −
∂β2ix,j

∂x
+ (β2ix,j +

∂β2i,j

∂x
− β2i,jx) Ψ + β2i,jΦ))

With:

Ψ = −i(ki +
∂ki
∂x

x)

Φ = k2
i − i

∂ki
∂x
− i∂

2ki
∂x2

x+ 2ki
∂ki
∂x

x+
(∂ki
∂x

)2

x2

βΩn,m =

∫ η(x)

0

fΩmfΩndz

βΩn,mx =

∫ η(x)

0

fΩn

∂fΩm

∂x
dz

βΩnx,m =

∫ η(x)

0

fΩm

∂fΩn

∂x
dz

βΩnx,mx =

∫ η(x)

0

∂fΩm

∂x

∂fΩn

∂x
dz

βΩnz ,mz =

∫ η(x)

0

∂fΩm

∂z

∂fΩn

∂z
dz
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Appendix B

Integral reppresentation for SH
Waves.

Fourier transform of eq. 4.13, leads to the Helmholtz’s equation, here reported with
the corresponding and fundamental solution

c2
2ū3,αα + b̄3 = −ω2ū3

ū∗33 =
ib̄3(ω)

4ρc2
2

H
(1)
0

(
ωr

c2

)
Where H

(1)
0 is the Hankel function of the first kind and order zero.

Integral formulation for antiplane case (eq. 4.13) in frequency domain is obtained
exloiting Green’s second identity.

ε(ξ)ū3(ξ) =

∫
s

[
ū3(x)

∂

∂n̂

(
ū∗33/b̄3(ω)

)
− ∂ū3(x)

∂n̂

(
ū∗33/b̄3(ω)

)]
ds(x)

where ε(ξ) = 1/2 for smooth boundaryes.
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Appendix C

Green functions for P-SV/3D
elastodynamic.

Fundamental solution of elastodynamics in frequency domain and unbounded space
are listed below. Both cases, displacements and tractions can be collectively written
as

U ji(x, s) =
1

απ ρC2
s

(ψ δij − χ r, i r, j) (C.1)

T ji(x, s) =
1

απ

[(
dψ

dr
− 1

r
χ

)(
∂r

∂N
δij + r, iNj

)
(C.2)

−2

r
χ

(
r, j Ni − 2r, i r, j

∂r

∂N

)
− 2

dχ

dr
r, i r, j

∂r

∂N

+

(
C2
p

C2
s

− 2

)(
dψ

dr
− dχ

dr
− α

2r

)
r, j Ni

]
(C.3)

• 2D: P-SV(plane strain)

α = 2

ψ = K0 (ks r) +
1

ks r

[
K1 (ks r)−

Cs
Cp
K1 (kp r)

]

χ = K2 (ks r)−
C2
s

C2
p

K2 (kp r)

−C
2
s

C2
p

(
3

k2
p r

2
+

3

kp r
+ 1

)
exp (−kp r)

r
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where K0,K1,K2 are Bessel’s functions respectively of zeroth, first, second order
and ks = iω/Cs, kp = iω/Cp

• 3D:

α = 4

ψ =

(
1

k2
s r

2
+

1

ks r
+ 1

)
exp (−ks r)

r

−C
2
s

C2
p

(
1

k2
p r

2
+

1

kp r

)
exp (−kp r)

r

χ =

(
3

k2
s r

2
+

3

ks r
+ 1

)
exp (−ks r)

r

−C
2
s

C2
p

(
3

k2
p r

2
+

3

kp r
+ 1

)
exp (−kp r)

r



Appendix D

Details of Analytical Shape
Derivative.

Details of integration by parts∫
Ωj

[
T

(ut,j)
11 wj1,1 + T

(ut,j)
12 wj1,2 + T

(ut,j)
21 wj2,1 + T

(ut,j)
22 wj2,2 − γjwj · ujt

]
dΩj

=

∫
∂Ωj

(
λj
(
ujt1Nx + ujt2Ny

)
+ 2µjujt1Nx

)
wj1,1 + µj

(
ujt1Ny + ujt2Nx

) (
wj1,2 + wj2,1

)
+
(
λj
(
ujt1Nx + ujt2Ny

)
+ 2µjujt2Ny

)
wj2,2

−
∫

Ωj

{
λj
(
ujt1w

j
1,11 + ujt2w

j
1,12

)
+ 2µjujt1w

j
1,11 + ujt1µ

j
(
wj1,22 + wj2,12

)
+ujt2µ

j
(
wj1,21 + wj2,11

)
+ λj

(
ujt1w

j
2,21 + ujt2w

j
2,22

)
+ 2µjujt2w

j
2,22 + γjwj · ujt

}
dΩ

=

∫
∂Ωj

{
ujt1
[(
λj
(
wj1,1 + wj2,2

)
+ 2µjwj1,1

)
Nx + µj

(
wj1,2 + wj2,1

)
Ny

]
+ujt2

[
µj
(
wj1,2 + wj2,1

)
Nx +

(
λj
(
wj1,1 + wj2,2

)
+ 2µjwj2,2

)
Ny

]}
dΓ

−
∫

Ωj

{
ujt1

[
∂

∂x

(
λj
(
wj1,1 + wj2,2

)
+ 2µjwj1,1

)
+

∂

∂y
µj
(
wj1,2 + wj2,1

)]
+ujt2

[
∂

∂y

(
λj
(
wj1,1 + λjwj2,2

)
+ 2µjwj2,2

)
+

∂

∂x
µj
(
wj1,2 + wj2,1

)]
+γjwj · ujt

}
dΩ

=

∫
∂Ωj

ujt · T (w,j)NdΓ−
∫

Ωj

ujt · LwjdΩ (D.1)
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∫
Ωj

[
T

(u,j)
11 wjt1,1 + T

(u,j)
12 wjt1,2 + T

(u,j)
21 wjt2,1 + T

(u,j)
22 wjt2,2 − γjw

j
t · uj

]
dΩj

=

∫
∂Ωj

[
T

(u,j)
11 wjt1Nx + T

(u,j)
12 wjt1Ny + T

(u,j)
21 wjt2Nx + T

(u,j)
22 wjt2Ny

]
dΓ

−
∫

Ωj

[
T

(u,j)
11,1 w

j
t1 + T

(u,j)
12,2 w

j
t1 + T

(u,j)
21,1 w

j
t2 + T

(u,j)
22,2 w

j
t2 − γjw

j
t · uj

]
dΩj

=

∫
∂Ωj

wj
tT

(u,j)NdΓ−
∫

Ωj

wj
t ·LujdΩj (D.2)

Time derivative of displacements

d

dt
v(j)(Γ(t), t) = vjt +D

(
vj
)

Γt,

vj+1
t = vjt +

(
D
(
vj
)
−D

(
vj+1

))
Γt

where v represents both u, w.

Matrix Manipulations((
D
(
wj
)
−D

(
wj+1

))T
T (uj+1)N j

)
· T j = (D.3)(

N j
)T (

T (uj+1)
)T (

D
(
wj
)
−D

(
wj+1

))
T j((

D
(
uj
)
−D

(
uj+1

))T
T (wj+1)N j

)
· T j =(

N j
)T (

T (wj+1)
)T (

D
(
uj
)
−D

(
uj+1

))
T j
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