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Introduction

In the last years great attention has been addressed to the study of light con-

trol with the purpose to realize all-optical signal processing. A lot of research

works have been focused on nonlinear effects in semiconductor materials and

on their exploitation to manipulate optical signals. One of the main key to

realize high performances optical devices by using nonlinearities, is essentially

that to obtain the best compromise between speed of processes and required

power consumption. Ultra-fast nonlinear dynamics with low employment of

power can be reached in nano-photonic structures by engineering material

and geometrical features. From this point of view, one of the most attractive

framework to achieve strong light-matter interactions and consecutively en-

hance optical nonlinearities are, of course, small volume resonant cavities. In

such systems a careful design can lead to maximize the efficiency and mini-

mize the required power to trigger a given nonlinear process.

Within the general overview of optical signal-processing, all-optical switching

is one of the most important target for photonics. Switching functionalities

can been achieved by exploiting the nonlinear modulation of the refractive

index induced by electromagnetic optical intensity. To this purpose, ultra-

small and high-quality factor (high-Q) cavities must be realized as switching

elements. In fact, by confining the light in a small volume and for a long time,

the field intensity inside the cavity is enhanced by a factor of Q/V, where

V is the modal volume. At the same time, the frequency shift required for

switching is decreased by a factor of Q, and a high switching contrast becomes

possible with very small frequency shift. As a result, high-Q, small volume

cavities exhibit switching power that generally decreases as V/Q2. Switching

resonators based on semiconductor materials such as GaAs [1] or Silicon [2],

[3] have been demonstrated to require very low power consumption. How-
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ever, the tread-off between small volume V and high quality factor Q with

conventional optical cavities did not lead to fulfill the envisaged achievements

and nowadays the research of new solutions is still a fascinating challenge.

Among the different investigated optical nano-structures, photonic crystals

(PhC) are, perhaps, one of the most interesting environment that allows for

the design of highly-efficient optical switching devices. High-Q, small vol-

ume cavities created by defects and coupled to line-defect waveguides allow

for implementing photonic functionalities with great flexibility [5]- [10]. Fur-

thermore, air-hole semiconductor membranes are very promising structures

where optical switching can be achieved by tuning the cavity through the

nonlinear response of the material. In this respect, III-V semiconductors and

in particular GaAs have been demonstrated to be viable candidates due to

their fast carrier dynamics, weak nonlinear losses, and low power require-

ments [7]-[11].

The aim of this thesis is to deeply analyze the more important nonlinear ef-

fects exhibited by semiconductor materials in order to understand how to ex-

ploit their functionalities for the design of all-optical devices. Insight into the

nonlinear semiconductor dynamics is obtained by both analytical approach

and numerical modeling. To this end, Coupled Mode Theory (CMT) models

[24] able to investigate the linear response of different topologies composed by

optical resonators and waveguides are developed, and nonlinear CMT mod-

els that account for the whole relevant semiconductor nonlinearities such as

the Kerr effect and two photon absorption (TPA) are used. Furthermore,

a two dimensional finite difference time domain (FDTD) code is set up in

order to numerically model the nonlinear behavior in semiconductor devices.

In particular, a 2D-FDTD code that incorporates all of the nonlinear effects

such as, precisely, Kerr and two photon absorption nonlinearities, as well as

free carriers dispersion (FCD) and free carriers absorption (FCA) induced

by TPA, is realized. Finally, in order to give an accurate description of the

carriers dynamics that takes place in semiconductors, a rate equation that

includes both bulk recombinations and diffusion effects is discretized in the

FDTD code.

Then, after discussing the tools of analysis, this thesis is primarily concerned

with the design of optical devices, in particular, in the framework of the pho-
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tonic crystal technology. Indeed, as explained, they are one the most promis-

ing environment to enhance nonlinear processes. Different PhC topologies

in various nonlinear optical regimes are analyzed and discussed by means of

nonlinear CMT and FDTD models with the purpose of building up a set of

tools aimed at designing these types of devices. Once such set of tools are fine

tuned, they are employed to investigate new PhC switching configurations.

In particular, at the end of this thesis, some optimized All-Optical-Gate

topologies are designed. These designs are the basis for one of the main

target pursued in the framework of the EU. Copernicus (Compact OTDM

/ WDM Optical Receivers based on Photonic Crystal Integrated Circuits )

project. The aim is to supply a starting point for future developments of

ultra-fast high-performances all-optical signal processing devices.

The thesis is organized as follows:

- In the first chapter a preliminary description of the most relevant nonlinear

effects in standard semiconductor materials is outlined. The mathematical

models of the nonlinear response including Kerr effect and two photon ab-

sorption are developed, and this formalism is then extended to the case of

polarized light in a two dimensional domain.

- In the second chapter photonic crystals are described with particular care

for two-dimensional periodic structures such as photonic crystal membranes

that, due to their feasibility in recent fabrication processes, are becoming

promising environments for phtonics.

- In the third chapter the Kerr effect is deeply analyzed. Bistable response

induced by Kerr nonlinearity in optical resonators is investigated by means

of CMT models and nonlinear 2D-FDTD codes. In the last sections of this

chapter some possible configurations of PhC devices that can be realized by

exploiting nonlinear Kerr bistability are presented. In particular, a simple

all-optical serial-to-parallel converter is designed.

- In the fourth chapter the two photon absorption in semiconductor mate-

rials is investigated. Free carriers dispersion is analyzed by means of CMT

equations, and bistable dynamics induced by FCD is demonstrated in optical

resonators. Moreover, it is shown that the FCD associated with TPA can

lead to the onset of spontaneous oscillations (self-pulsing) when the nonlin-

ear losses are not too high. The 2D-FDTD code is completed with all of the
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nonlinear governing equations. The correctness of the FDTD code is veri-

fied by comparison with experimental results. Finally, some optimized PhC

switching designs are presented and discussed.
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Chapter 1

Nonlinear effects in

semiconductor materials

1.1 Introduction

The purpose of this chapter is to acquire the basic knowledge addressed

to the set up of an useful tool for the design of high-performances optical

devices. To this end, the most relevant nonlinear effects in semiconductor

materials are studied. In particular, effects such as Kerr and two photon

absorption are both physically analyzed and mathematically described. The

analysis of nonlinearities in semiconductor materials is then extended to the

case of polarized light with the aim of modeling the nonlinear light behavior

in periodic structures by means of numerical methods.

1.2 Physic of Kerr and two photon absorp-

tion effects

Nonlinear optics is a wide field of study that involves a large number of phe-

nomena. A first distinction concerning the atomic quantum-mechanical state

can be made between parametric and nonparametric processes [14].

Parametric processes are those in which the initial and final energy states

of the system are the same. In a parametric process the population of the
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Figure 1.1: Two photon absorption scheme.

electrons can be removed from the ground state only for brief intervals of

time and resides in a virtual level for a time interval of the order of ~/δEv,

where δEv is the energy difference between the two energy levels. Moreover,

in parametric processes the photon energy is always conserved so that they

admit a purely real susceptibility.

In the nonparametric processes, on the contrary, the populations can be

transferred from a real state to an another real state. The photon energy is

not conserved because can be transferred to or from the material medium

then, unlike the parametric processes, nonparametric processes must be de-

scribed by a complex susceptibility.

Kerr effect is a third-order process which results in a change of the refractive

index that linearly depend on the optical intensity. The Kerr effect is a para-

metric process and then does not require real electronic transitions. Also, it

is considered as a instantaneous effect, because its speed is of the order of

electronics vibrations.

In two photon absorption (TPA) processes, two photons are simultaneously

absorbed by exciting an electron to transit from its ground state (valence

band) to an excited state (conduction band). This can only happen if the

total energy of the two photons exceeds the energy difference between the

valence and conduction band, i.e. if 2~ω > Eg, where Eg is the energy

gap (see Fig. 1.1). The result of two photon absorption is the creation of
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free carriers which in turn change the electrical and optical properties of the

medium giving rise to additional nonlinear effects. In fact, a free carrier

can absorb a photon and move to a higher energy state inside the band.

This is the free carriers absorption (FCA) phenomenon, also known as the

plasma effect induced by TPA. Free carriers absorption is then responsible

for both losses and change of the refractive index (also known as free carrier

dispersion (FCD)) in the medium. The modulation of the refractive index

induced by free carrier generations exhibits a characteristic speed limited by

the relaxation time of the carriers.

1.3 Mathematical formalism for Kerr and two

photon absorption

Formally the Kerr effect can be considered as a perturbation of the refractive

index that occurs in presence of an electromagnetic field. This perturbation

linearly depends on the light intensity, i.e.:

n = n0 + n2II (1.1)

where n0 is the linear refractive index of the material, n2I is the Kerr co-

efficient, and I is the optical intensity. Since the optical intensity can be

expressed in terms of the electric field as follows

I =
1

2
ǫ0c0n0|E|2 (1.2)

the Eq. (1.1) can be written as

n = n0 + n2|E|2 (1.3)

with ǫ0 = 8.854 × 10−12F/m the free space permittivity and c0 = 2.997 ×
108m/s the speed of light in the vacuum. The Eq. (1.2) leads to the following

relationships between the nonlinear coefficients

n2I =
2

ǫ0c0n0

n2

n2 =
ǫ0c0n0

2
n2I

(1.4)
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Equivalently, the absorption effect linearly depends on the intensity under

the following relationship

α = α0 + α2II (1.5)

that, by Eq. (1.2), can be written as

α = α0 + α2|E|2 (1.6)

where α0 is the linear lossy coefficient and α2I the two photon absorption

coefficient.

The origin of such effects can be related to a linear perturbation of the

material polarization due to the presence of light intensity. In particular, the

polarization can be expanded in a power series as

P(t) = P(1)(t) + P(2)(t) + P(3)(t)... (1.7)

where P(n) ∝ En. This proportionality relationship can be expressed by

means of the n − th order susceptibility:

P(t) = ǫ0

[

χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t)...
]

(1.8)

In the case of scalar susceptibility, taking into account a monochromatic wave

on the form

E(t) =
1

2
E(ω)eiωt +

1

2
E∗(ω)eiωt

P(t) =
1

2
P (ω)eiωt +

1

2
P ∗(ω)eiωt

(1.9)

and considering only the first and third order terms of the Eq. (1.8), one

obtains the following expression for the polarization

P (ω) = ǫ0

[

χ(1)(ω; ω) +
3

4
ǫ0χ

(3)(ω; ω,−ω, ω)|E(ω)|2
]

E(ω) (1.10)

where χ(1)(ω; ω) and χ(3)(ω; ω,−ω, ω) are responsible for the one photon

and three photon processes respectively. By this expression it is possible to

calculate the complex refractive index nc = n − iK, with n the refractive

index and K the extinction coefficient defined by [19]

P (ω) = ǫ0

[

n2
c(ω) − 1

]

E(ω) (1.11)
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For semiconductor materials in which n ≫ K, the approximation (n−iK)2 ≈
n(n − i2K) holds. The refractive index is then given by

n ≈
√

1 + Reχ(1)(ω; ω) +
3

4
Reχ(3)(ω; ω,−ω, ω)|E(ω)|2

≈
√

1 + Reχ(1)(ω; ω) +
3Reχ(3)(ω; ω,−ω, ω)

8
√

1 + Reχ(1)(ω; ω)|E(ω)|2

= n0 + n2|E(ω)|2

(1.12)

with

n0 =
√

1 + Reχ(1)(ω; ω)

n2 =
3Reχ(3)(ω; ω,−ω, ω)

8n0

(1.13)

that holds for small nonlinear effects (n0 ≫ n2|E(ω)|2). Equivalently, the

extinction coefficient can be expressed as

K ≈ −Imχ(1)(ω; ω)

2n0

− 3Imχ(3)(ω; ω,−ω, ω)

8n0

|E(ω)|2

= K0 + K2|E(ω)|2
(1.14)

where

K0 = −Imχ(1)(ω; ω)

2n0

K2 = −3Imχ(3)(ω; ω,−ω, ω)

8n0

(1.15)

Finally, the single and two photon absorption coefficients are defined by

means of the extinction coefficient K0 and K2 as

α = 2ωK0/c (1.16)

β = 2ωK2/c (1.17)

where β is in unit of m/W .

This analysis explains the physics of third-order polarization, and how Kerr

and two photon absorption are related to the third-order susceptibility.
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1.4 The plasma effect

As previously explained, a secondary effect of TPA is the plasma effect in-

duced by carriers generation. The excess of charges modifies the optical

properties of the material causing absorption as well as change in the refrac-

tive index. These affects can be suitably described by means of the following

Drude model [20], [21]

ǫ′ = ǫ −
ω2

p

ω2
+ i

ω2
p

ω2τr

(1.18)

with ω the frequency of the incident light, ǫ the linear dielectric constant, τr

the carrier relaxation time, and ωp the plasma frequency defined as

ωp =

√

e2N

ǫ0m∗ (1.19)

where e is the elementary charge, N the carrier density, ǫ0 the dielectric

constant of the vacuum, and m∗ the effective mass of the charges. The

imaginary part of the Eq. (1.18) accounts for the losses with an absorption

coefficient given by

αf =
ω2

p

ω2τr

(1.20)

The real part of the Eq.(1.18) models the change index induced by free carrier

dispersion. In fact, from Eq. (1.18) the index modulation can be obtained

as follows

n′ =

√

ǫ −
ω2

p

ω2
≈ n0 −

ω2
p

2n0ω2
= n0 + ∆nplasma (1.21)

The Eq. (1.21) highlights that owing to the amount of generated charges,

the refractive index decreases linearly with respect to the carriers density.

The time scale of the effects inherent to the free carriers generation is related

to the recombinations and diffusion processes that, in turn, depend on the

material engineering and geometrical features of the structure.
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1.5 Thermal effects

The absorption of incident power from matter is always related to a gener-

ation of thermal energy. The carriers generated by two photon absorption,

when recombine, transfer energy to the material in the form of heat. Because

of the increasing of the temperature, the optical properties of the material

can be changed, manifesting as a modulation of the refractive index that can

increase or decrease according to the material type. Thereby, thermal effects

are responsible for strong nonlinearities that are often parasitic or unwanted.

The time scale of the thermal nonlinearity is very long, of the order of 100µs,

i.e. much larger than the characteristic temporal scale of the pulses involved

in optical signal processes.

The phenomenological dependence of the index from the temperature can be

expressed as

n = n0 +
∂n

∂T
T1 (1.22)

where ∂n/∂T is the modulation of the index with respect to the temperature

T , and T1 = T − T0 is the change of the temperature induced by a heat

source. The differential equation that governs the temperature evolution in

the time for a given source I(r) (measured in unit of W/m2) is the heat

transport equation:

ρ0C
∂T1

∂t
− k∇2T1 = αI(r) (1.23)

where ρ0C is the heat capacity per unit of volume and is measured in units

of J/m3K, ρ0 the material density, and C the heat capacity per unit mass.

k is the thermal conductivity measured in units of W/mK, and α the linear

absorption coefficient. By means of the Eq. (1.23) the change in the refractive

index can be evaluated in any point of the material. Importantly, due to the

fact that thermal effects lead to a degradation of the performances, they must

be avoided by lowering the power level of the used optical signals.
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1.6 Analytical investigation of Kerr and TPA

effects for TE polarized light

The majority of the devices that are analyzed and designed within this study

exploit the strong potential of nonlinear effects in semiconductor materials.

To enhance these effects, nanophotonic periodic structures are taken into

account. These structures, in fact, for strong light confinement, can exhibit

ultrafast all-optical signal processing with relatively low power consumption.

To model the nonlinear dynamics that occurs in structures interested by TE

polarized light such as, for example, photonic crystals in a membrane of high

index material, it is useful to extend the previous formalism to the case in

which the electric field has two components in the plane of the crystal. To

this end, the starting point is the wave equation

∇2E − 1

c2

∂2E
∂t2

= µ0
∂2P(3)

∂t2
(1.24)

with c = c0/n(r), c0 the speed of light in the vacuum, and n the linear

refractive index (note that semiconductors as Silicon or GaAs are linearly

isotropic). In the (x, z) plane of the crystal the Eq. (1.24) is separated in

the two following equations

∇2Ex −
1

c2

∂2Ex

∂t2
= µ0

∂2P(3)
x

∂t2
(1.25)

∇2Ez −
1

c2

∂2Ez

∂t2
= µ0

∂2P(3)
z

∂t2
(1.26)

In section 1.3, the nonlinear third-order effects have been described by an

isotropic susceptibility χ(3). However, semiconductor materials such as Sil-

icon or GaAs, have cubic symmetry and then their nonlinear susceptibility

is a tensor with three independent components [22]. Therefore, for a cubic

crystal the nonlinear third-order polarizations are given by

P(3)
x (t) =

3

8
ǫ0

(

χ
(3)
1 |Ex|2Ex + χ

(3)
2 E2

zE
∗
x + 2χ

(3)
3 |Ez|2Ex

)

e−iωt + cc.

P(3)
z (t) =

3

8
ǫ0

(

χ
(3)
1 |Ez|2Ez + χ

(3)
2 E2

xE
∗
z + 2χ

(3)
3 |Ex|2Ez

)

e−iωt + cc.
(1.27)
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with χ
(3)
1 = χ

(3)
xxxx = χ

(3)
zzzz, χ

(3)
2 = χ

(3)
xzxz = χ

(3)
zxzx, and χ

(3)
3 = χ

(3)
xxzz = χ

(3)
zzxx the

susceptibility values along the crystalline axes of the semiconductor. In Eq.

(1.27) the terms multiplied for χ
(3)
2 can be written in the following form:

E2
zE

∗
x = |Ez|2ei2φz

Ex

Ex

E∗
x = |Ez|2Exe

−i2φ

E2
xE

∗
z = |Ex|2ei2φx

Ez

Ez

E∗
z = |Ex|2Eze

i2φ

(1.28)

with φ(t) = φx(t) − φz(t) the phase difference. The Eqs. (1.28) yield

P(3)
x (t) =

3

8
ǫ0Ex

(

χ
(3)
1 |Ex|2 + χ

(3)
2 |Ez|2e−i2φ + 2χ

(3)
3 |Ez|2

)

e−iωt + cc.

P(3)
z (t) =

3

8
ǫ0Ez

(

χ
(3)
1 |Ez|2 + χ

(3)
2 |Ex|2ei2φ + 2χ

(3)
3 |Ex|2

)

e−iωt + cc.
(1.29)

By introducing the Eqs. (1.29) in the wave equations (1.25-1.26) and using

the paraxial approximation:
∣

∣

∣

∣

∂2Ex

∂t2

∣

∣

∣

∣

≪ 2ω

∣

∣

∣

∣

∂Ex

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∂2az

∂t2

∣

∣

∣

∣

≪ 2ω

∣

∣

∣

∣

∂Ez

∂t

∣

∣

∣

∣

(1.30)

one obtains

∂Ex

∂t
= iEx

(

χ1|Ex|2 + χ2|Ez|2e−i2φ + χ3|Ez|2
)

∂Ez

∂t
= iEz

(

χ1|Ez|2 + χ2|Ex|2ei2φ + χ3|Ex|2
)

(1.31)

where the coefficients χ1, χ2 and χ3 have been defined as follows

χ1 =
3ω

8nc0

χ
(3)
1 χ2 =

3ω

8nc0

χ
(3)
2 χ3 =

3ω

4nc0

χ
(3)
3 (1.32)

1.6.1 Analysis of the nonlinear system with Kerr effect

In the case of materials in which the Kerr effect is dominant, the third-order

susceptibility takes real values. From Eqs. (1.31) and the corresponding

conjugate equations one has

∂|Ex|2
∂t

= 2χ2|Ex|2|Ez|2 sin(2φ)

∂|Ez|2
∂t

= −2χ2|Ex|2|Ez|2 sin(2φ)

(1.33)
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from which it follows that Ie = |Ex|2 + |Ez|2 is a conserved quantity, i.e.

∂Ie/∂t = 0. With the ansatz

Ex = sx
√

ηxe
iφx Ez = sz

√
ηze

iφz (1.34)

by the changes ηx = η, ηz = Ie − η and φ = φx − φz, from the first of the

Eqs. (1.33) one obtains the equation of motion for η:

η̇ = 2χ2η(Ie − η) sin(2φ) (1.35)

with η̇ = ∂η/∂t. Furthermore, by replacing the relationships (1.34) into Eqs.

(1.33) and equaling real and imaginary part one has

φ̇x = χ1ηx + χ2 ηz cos(2φ) + χ3ηz

φ̇z = χ1ηz + χ2 ηx cos(2φ) + χ3ηx

(1.36)

from which it follows the equation of motion for the phase:

φ̇ = Ie(χ3 − χ1) + 2η(χ1 − χ3) + χ2(Ie − 2η) cos(2φ) (1.37)

The Hamiltonian Hr of the system (i.e. the conserved quantity so that

∂Hr/∂t = 0) results to be

Hr =
χ1

2
(2η2 − 2ηIe + I2

e ) + χ2η(Ie − η) cos(2φ) + χ3η(Ie − η) (1.38)

and the motion of the variables η and φ can be obtained as

η̇ = −∂Hr

∂φ
φ̇ =

∂Hr

∂η
(1.39)

In Figs. (1.2) and (1.3) the phase plane for different ratio χ1/χj, j = 2, 3 is

shown. When the values of χ2 and χ3 are some order of magnitude smaller

than χ1, the dynamical system has points of equilibrium at multiples of π/2.

The points at odd multiples of π/2 are centers, where the equilibrium is

stable. Conversely, the points at even multiples of π/2 are saddle ones (see

Fig. 1.2), and then they give rise to an instability of polarization. For χ2

and χ3 of the same order of magnitude than χ1 there are still the points of

equilibrium at multiples of π/2 but they are all points of stability (see Fig.

1.3).
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Figure 1.2: Phase plane corresponding to level curves of Eq. (1.39) when

χ2 = 0.1χ1 and χ3 = 0.01χ1. The system shows equilibrium points at integer

multiples of π/2 with η = Ie/2. The points at odd multiples of π/2 are

centers, whereas those at even multiples are saddle points.
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Figure 1.3: Phase plane corresponding to level curves of Eq. (1.39) when

χ2 = χ1 and χ3 = χ1. The system still has equilibrium points at multiples

of π/2 but they are all points of stable equilibrium.

In the framework of this thesis it is assumed to work within the polarization

stability regime described in Fig. 1.3, that means to consider materials where

the susceptibility values χ1, χ2 and χ3, are almost of the same order. In fact,

it is reasonable to assume that in photonic crystal cavities realized in semi-
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conductors, the condition of polarization stability is satisfied and then that

the electromagnetic field is locally linearly polarized (this assumption has

been verified by means of numerical simulations of the electric field polariza-

tion inside some kinds of cavities). In this case, the third-order polarization

induced by Kerr effect takes a trivial form, so that the Eqs. (1.29) are sig-

nificantly simplified neglecting the phase mismatch between the electric field

components and can be treated as equations with isotropic susceptibility.

1.6.2 Study in presence of dissipative third-order non-

linearities

When the dissipative effects inherent to third-order polarization are taken

into account, the values of the susceptibility are complex with an imagi-

nary part that represents the losses induced by two photon absorption, i.e.

χj = χjR + iχjI , j = 1, 2, 3. As explained in the previous section, when lo-

cally linearly polarized light is treated, the third-order susceptibility takes a

drastically simplified form and the Eqs. (1.29) become

P(3)
x =

3

8
ǫ0

(

χ
(3)
R + iχ

(3)
I

)

(

|Ex|2 + |Ez|2
)

Exe
−iωt + cc.

P(3)
z =

3

8
ǫ0

(

χ
(3)
R + iχ

(3)
I

)

(

|Ex|2 + |Ez|2
)

Eze
−iωt + cc.

(1.40)

Replacing these expressions in the Eqs. (1.25) and (1.26) gives

∂Ex

∂t
= i

3ω

8n

(

χ
(3)
R + iχ

(3)
I

)

IeEx

∂Ez

∂t
= i

3ω

8n

(

χ
(3)
R + iχ

(3)
I

)

IeEz

(1.41)

with Ie = |Ex|2 + |Ez|2. From the corresponding conjugate equations, it is

easy to obtain a rate equation that describes the losses as a function of the

time:
∂Ie

∂t
= −3ωχ

(3)
I

4n2
I2
e (1.42)

By properly defining I = ǫ0c0n/2Ie with I the optical intensity, the Eq.

(1.42) yields

∂I

∂t
= − 3ωχ

(3)
I

2ǫ0c0n3
I = −βtI

2 (1.43)
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where βt describes the strength of the nonlinear process and can be related

to the known two photon absorption coefficient β (accounting for the losses

per unit length) by βt = βc0/n. Free carriers absorption induced by TPA, in

turn, can be described by the following rate equation

∂N

∂t
= − 1

2~ωc0

∂I

∂t
− N

τr

(1.44)

where τr is the recovery time of the charges (typically of the order of few

picoseconds), and ~ = 6.626× 10−34Js is the Planck constant. Therefore, by

using the Eq. (1.43) one obtains

∂N

∂t
=

βt

2~c0ω
I2 − N

τr

(1.45)

From this analytical study for TE polarized light in nonlinear regime, it be-

comes quite feasible to obtain the governing equations that can be discretized

by means of time domain numerical methods.

1.7 Summary

In this first chapter the main nonlinear effects in standard semiconductors

have been introduced. The purpose of such a study has been to mathemat-

ically describe Kerr and TPA nonlinearities in a general way and then to

extend the study to polarized light with the aim to implement numerical

tools able to model the nonlinear effects in photonic crystal devices.
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Chapter 2

Photonic crystals

2.1 Introduction

One purpose of this thesis is to extend the analysis of the third-order nonlin-

earities to periodic structures, where the interaction between light and matter

can be strongly improved and the nonlinear effects enhanced. To this end,

in this chapter a description of widespread periodic structures is developed.

In particular, photonic crystal structures are introduced and their relevant

properties era described. Furthermore, the most important components such

as photonic crystal slabs, waveguides and cavities are analyzed. Finally, to

highlight the operative contribution that such periodic structures can offer

in the manipulation of the optical signals, an example of photonic crystal

filtering process is demonstrate.

2.2 Properties of the periodic structures

Photonic crystals (PhC), studied for the first time by Yablonovitch [15] and

John [16], are periodic arrangements of materials with different refractive

index [17], [18]. This spatial distribution gives rise to a periodic dielectric

function that, as for the periodic potential generated by regular arrays of

atoms and molecules, produces an energy band structure in which band gaps

may occur. The presence of photonic band gaps forbids the propagation

for specific frequencies and in certain directions. This feature makes the
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Figure 2.1: Examples of 1D, 2D, 3D PhCs [17].

photonic crystals an excellent framework to engineer the materials for the

optical control and manipulation. Fig. 2.1 shows three different examples of

how two materials can be stacked to obtain 1D, 2D and 3D periodicity. The

spatial period is named lattice constant and it is chosen on the order of the

wavelength of the incident light involved in the optical process. The discrete

translational symmetry of a photonic crystal makes possible to classify the

electromagnetic modes with respect to their wavevectores k. The modes

can be expanded in Bloch form consisting of a plane wave modulated by a

periodical function that takes into account the periodicity of the crystal [17].

Therefore, for example, the magnetic field into a PhC can be written as

Hk(r) = eik·ru(r) = eik·ru(r + R) (2.1)

where R is the spatial vector that accounts for the lattice periodicity and it

is named lattice vector. Defining the reciprocal lattice vector G as the vector

that satisfies the relationship exp(iG ·R) = 1, from Eq. (2.1) it follows that

a mode with wavevector k and a mode with wavevector k + G are the same

mode. This means that it is convenient to restrict the attention to a finite

zone in reciprocal space (space of k) in which it is not possible to get from

one part to another of the lattice by adding any G; this zone is known as the

Brillouin zone. Fig 2.2 shows an example of triangular lattice (left), of its

reciprocal space (central), and of the corresponding Brillouin zone (right).
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Figure 2.2: The Real space (Left), the corresponding reciprocal space (cen-

ter), and the Brillouin zone (Right) of a triangular lattice [17].

2.3 Dielectric multilayers

In order to give an intuitive understanding of the photonic bands, band gaps,

and Bloch modes, it can be useful to examine a 1D crystal [18]. Fig. 2.3 shows

a dielectric multilayers where the single layer has size a. The electromagnetic

wave is considered linearly polarized in the y direction and propagating along

the x axis in the direction perpendicular to the surface of the dielectric layers.

The wave equation is then given by

c2

ǫ(x)

∂2E

∂x2
=

∂2E

∂t2
(2.2)

where c is the light speed in the vacuum, and ǫ(x) the relative dielectric

constant accounting for the spatial periodicity. Because ǫ(x) is a periodic

function of x, i.e.

ǫ(x + a) = ǫ(x) (2.3)

ǫ−1(x) is also periodic and then it can be expanded in Fourier series as follows

ǫ−1(x) =
∞
∑

m
−
∞

kmei 2πm

a
x (2.4)

where m is an integer and km are the Fourier coefficients. Since it is assumed

that ǫ(x) is real, k−m = k∗
m. The well-known Bloch’s theorem that holds for

the electronic eigenstates in a ordinary crystal, also holds for the description

of electromagnetic waves in periodic structures. Therefore, the eigenmodes
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Figure 2.3: Multilayered structure (a). Dispersion relation for the 1D PhC

(b) [18].

in the 1D photonic crystal can be characterized by a wavenumber k and

expressed as

E(x, t) = uk(x)ei(kx−ωkt) (2.5)

where ωk denote the eigen-angular frequency, and uk(x) is a periodic function

of x. The electric field can in turn be expanded as

Ek(x, t) =
∞
∑

m=−∞
Emei(k+ 2πm

a )x−iωkt (2.6)

with Em the Fourier coefficients. For a simple analysis, it can be assumed

that the components with m = 0,±1 are dominant in Eq. (2.4), so that

ǫ−1(x) can be approximated as follows

ǫ−1(x) ≈ k0 + k1e
i 2π

a
x + k−1e

−i 2π

a
x (2.7)

By replacing Eqs. (2.4) and (2.6) in the wave Eq. (2.2), the following relation

is obtained

k1

[

k +
2(m − 1)π

a

]2

Em−1 + k−1

[

k +
2(m + 1)π

a

]2

Em+1 ≈

≈
[

ω2
k

c2
− k0

(

k +
2mπ

a

)2
]

Em

(2.8)
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that evaluated for m = 0 gives

E0 ≈
c2

ω2
k − k0c2k2

[

k1

(

k − 2π

a

)2

E−1 + k−1

(

k +
2π

a

)2

E1

]

(2.9)

and fro m = −1

E−1 ≈
c2

ω2
k − k0c2(k − 2π/a)2

[

k1

(

k − 4π

a

)2

E−2 + k−1k
2E0

]

(2.10)

If k ≈ |k − 2π/a| (i.e. k ≈ π/a), and if ω2
k ≈ k0c

2k2, then E0 and E−1

are dominant in Eq. (2.6). In this case, by neglecting the other terms, the

following set of equations is obtained

(

ω2
k − k0c

2k2
)

E0 − k1c
2

(

k − 2π

a

)2

E−1 = 0

−k−1c
2E0 +

[

ω2
k − k0c

2

(

k − 2π

a

)2
]

E−1 = 0

(2.11)

This linear system has non-trivial solutions when the determinant of the

associated matrix vanishes. This request, by replacing h = k − π/a, yields

ωk ≈ πc

a

√

k0 ± |k1| ±
ac

π|k1|
√

k0

(

k2
0 −

|k1|2
4

)

h2 (2.12)

as far as |h| ≪ π/a. Therefore, Eq. (2.12) describes a dispersive relation (ω

versus k) in which, due to spatial modulation (accounted for the term k1), a

band gap is open for frequencies in the interval

πc

a

√

k0 − |k1| < ω <
πc

a

√

k0 + |k1| (2.13)

2.4 Photonic crystal slabs

In recent years a class of photonic crystals known as photonic crystals slabs

have been intensively investigated, in particular thanks to sophisticated tech-

nologies such as electron beam and lithography recently developed for their

fabrication. Photonic crystal slabs are two-dimensionally periodic dielectric

structures that have a band gap for propagation in a plane and that use index
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Figure 2.4: Examples of photonic crystal slabs. Square lattice of dielectric

rods in air (a). Triangular lattice of air holes in bulk dielectric material (b).

Rod slab (c) and hole slab (d) bands diagram. The blue shaded area is the

light cone. Below the light cone are the guided bands localized to the slab:

blue and red bands indicate the TM and TE modes respectively [17].

guiding to confine light in the third dimension. Examples of such structures

are shown in Fig. 2.4. Because of translational symmetry in two directions,

the in-plane wavevector k|| = (kx, ky) is conserved, whereas the vertical kz

wavevector is not conserved. Fig. 2.4 (c)-(d) shows the band diagram (ω

versus k) of a triangular lattice photonic cristal slab of air holes in dielectric

(Fig. 2.4 (c)), and of a square lattice photonic crystal slab of rods in air

(Fig. 2.4 (d)). The extended modes propagating in air form a light cone

when ω ≤ c|k|||. Below the light cone, due to higher index, the modes are

tight confined inside the slab, and they decay exponentially in vertical direc-

tion. Because of the symmetry of the structure, the modes can be classified

as TE-like (transverse electric) which have two electric components in the

plane of the crystal and one magnetic component in the vertical direction,
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and TM-like (transverse magnetic) which have two magnetic components in

the plane of the crystal and one electric component in the vertical direction.

As displayed in Fig. 2.4 (c)-(d), the rods slabs exhibit TM gaps (red lines),

and the hole slabs favor TE gaps (blue lines). The presence of gaps makes

possible to control the flow of light by means of defects. Defects can be intro-

duced in PhC membranes by removing, for example, rods in a square lattice

of dielectric rods, or holes in a triangular lattice of air holes. This breaks the

periodicity of the crystal giving rise to localized states inside the band gap.

Thereby, by means of defects, it become possible to trap or guide the light

as the field is tight confined inside the band gap and can not escape toward

the crystal.

2.5 Tuning the dispersion in photonic crystal

waveguides

In this study some different topologies of PhC slabs based devices able to

manipulate both TM and TE polarized light are developed. In each configu-

ration, light enters the structures by traveling toward waveguides realized by

line defect into the photonic crystal. In this respect, it is very important is to

ensure suitable features of light that travels in the waveguide such as group

velocity and vertical confinement. Furthermore, it is essential to provide a

specific coupling between waveguide and resonators to transfer the required

amount of energy into the cavities. These attainments can easily be pursued

by engineering the characteristics of the waveguides, with the advantage that

the high flexibility offered by photonic crystals allows to realize fine tuned

geometries.

Unlike conventional linear dielectric waveguides that operate by index con-

finement, waveguides realized in PhC slabs [4], by trapping the light into

the band gap and by using the index confinement in the vertical direction,

prohibit radiation losses. The dispersive features of the PhC waveguide can

be tuned by means of some perturbations of the slab. One possibility is to

create a decreased index waveguide by lowering the amount of high-index

material in a PhC air holes slab. Fig. 2.5 shows the projected bands of a
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Figure 2.5: Projected band diagram of the TE modes for a line defect waveg-

uide realized in a hole slab with thickness 200nm surrounded by air. The

holes radius of the nearest rows are increased by 0.32a (green line), 0.33a

(blue line), and 0.34a (red line) (a), resulting in a group velocity (group

index) that decreases (increases) with the holes size (b).

waveguide realized in a triangular lattice PhC slab of air holes, where the

hole radius of the two nearest rows in the waveguide is increased (plane wave

simulations are performed by using the tool described in [23]). As it can be

seen in Fig. 2.5 (a)-(b), an increase of the holes radius causes a shift of the

cut-off frequency of the waveguide toward higher frequency and, simultane-

ously, induces a decrease of the group velocity vg (or an equivalent increase

of the group index defined as ng = c/vg ) leading to the limit of slow light

regime.

2.6 Localized light in photonic crystal cavi-

ties

In an optical cavity light can be stored for a long time and in a small volume,

and the trapped field can reach very high levels of intensity. In particular,

photonic crystal cavities, by exhibiting high Q factors and tight confinement

of light in very small volumes, are an ideal environment to enhance light-

matter interactions. The Q factor is defined as the ratio between the resonant

frequency and the full width at half maximum (FWHM) of the cavity: Q =

ω0/∆ω. It represents the lifetime of the photons trapped inside the cavity
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(a) (b)

Figure 2.6: Profile of the modes in a monopole (a) and hexapole (b) cavity.

and then defines the time scale in which optical processes can work. The

modal volume defined as V =
∫

ǫ(r)E2(r)d3r/
[

ǫ(r)E2(r)
]

max
, accounts for

the spatial confinement of the energy stored inside the cavity. From this

definitions it is straightforward to understand how the ratio Q/V determines

the strength of the various cavity interactions. The cavity energy leaks out

according to the following equation

∂E(t)

∂t
= −ω0E(t)

Qtot

(2.14)

where E and ω0 are the energy and the resonant frequency of the cavity,

respectively. The total radiate power (1/Qtot) can be decomposed into a ver-

tical contribution (1/Qvert) and an in-plane contribution (1/Qhor) according

to the following relation

1

Qtot

=
1

Qvert

+
1

Qhor

(2.15)

The Qvert accounts for inherent optical losses of the energy, as the in-plane

losses can be reduced by increasing the number of PhC periods surrounding

the cavity. When a cavity is coupled to a waveguide, the in-plane quality

factor is mainly determined by the strength of the cavity to waveguide cou-

pling. In fact, the bulk of light leaves the cavity via the waveguide, whereas

the losses through the crystal remain very weak. In this case, the in-plain
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quality factor Qhor is referred as loaded quality factor QL. If the vertical qual-

ity factor is much higher than the loaded QL, from the Eq. (2.15) it results

that the cavity lifetime is dominated by the losses through the waveguide.

Thereby, the cavity lifetime is entirely accounted for the cavity to waveguide

coupling coefficient Γ that, in this case, results to be related to the loaded

quality factor through the relation Γ =
√

ω0/2QL. The strength of coupling,

in turn, depends on the nearness between the resonator and the line defect

as well as on dispersive features of the waveguide. In this respect, the design

of high intrinsic quality factor Qvert as well as the achievement of a suitable

coupling Γ, become essential targets for the realization of optical structures.

The optimization of the PhC cavities in terms of both intrinsic quality factor

Q and modal volume V can be pursued by investigating different topologies.

In this perspective, various kinds of defects can be realized by molding the

geometrical features of the crystal [32], [33]. As examples of excellent flex-

ibility offered by engineering the PhC geometry, two field profiles stored in

isolated defects realized in a PhC triangular lattice slab of air holes are shown

in Fig. 2.6. The defects are obtained by removing a single hole (monopole

(a)) or by shifting the six nearest neighbor holes (hexapole (b)). By means

of numerical calculations it has been demonstrate that the monopole cavity

exhibits a Q factor of almost 10000, whereas the hexapole cavity reaches a

Q factor of almost 150000 and exhibits an effective volume V of the order of

cubic wavelength.

2.7 Design of photonic crystal structures

By composing PhC cavities and waveguides, and by tailoring the topologies

of the crystal, it is possible to efficiently manipulate light. As an example,

Fig. 2.7 shows a filter composed by a cavity and two waveguides in a 2D

triangular lattice of air holes. As depicts in Fig. 2.7 (b) the cavity, realized

by removing three adjacent holes, exhibits resonants modes inside the band

gap of the crystal. When the wavelength of incoming light lies inside the

linewidth of the resonator (determined by the loaded quality factor of the

cavity), it is partially dropped toward the output ports and partially back

reflected. The amount of energy that is guided through a given output port,
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Figure 2.7: Filter topology (a). Localized modes of the cavity inside the

PhC band gap (b). Snapshot of the H field obtained by means of FDTD

simulations.
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can be controlled by an artful design of the PhC topology. In this perspective,

as suggested in [34] the filtering performances are successfully improved by

modifying the radii of the edge holes in the waveguides. By exploiting the

fact that light below the cut-off frequency can not entering the waveguides

with largest holes, this design prevents light to travel toward ports 2 and 4,

and ensure high drop efficiency toward port 3. In fact, with a careful design

of the waveguides boundary barriers, the resonant tunneling filter has been

demonstrated to achieve maximum drop efficiency of almost 100%.

2.8 Summary

In this chapter the relevant features of periodic structures have been ana-

lyzed with the purpose to describe an excellent framework where the flow

of light can be controlled. An overview has been made about the descrip-

tion of different basic components such as photonic crystal slabs, cavities

and waveguides. Especially, two dimensional PhC slabs have been taken into

account because of the accessibility offered by current well-established stan-

dard fabrication processes. Tunability of the dispersion in PhC waveguides

has been studied, and optical characteristics such as the mode profile, the Q

factor and the modal volume of PhC cavities have been analyzed. Finally,

the high flexibility that these periodic structures exhibit for the design of

optical devices has been demonstrate.
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Chapter 3

Photonic crystal devices

working with Kerr

nonlinearities

3.1 Introduction

In this chapter the Kerr effect is deeply studied. In particular, the bistable

response typical of resonators based on Kerr materials is analyzed. Then it

is shown how this characteristic behavior can be properly exploited to design

optical devices. The main tool that is used to model and design these devices,

is the nonlinear 2D finite difference time domain (FDTD) method. The well

known linear FDTD scheme (described in appendix A) is developed to extract

the linear characteristics of the structures. Then, the discretized equations

are extended to simulate the Kerr nonlinearity. Finally, some photonic cystal

topologies implementing optical devices such as switches and serial to parallel

converters are modeled by means of the nonlinear code.

3.2 Optical bistability

Optical bistability is a behavior exhibited by resonant structures that have

two different stable steady transmission states depending on the history of

the input. Bistability occurs when the effects of nonlinear regime causes hys-
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teresis in the transmission and reflection of the resonant system. A possible

mechanism that gives rise to bistability is a strong dependence of the refrac-

tive index on the optical intensity, as it can occur in a high quality factor

cavity realized in Kerr materials.

By considering the driven-damped model of a cavity discussed in [8] in the

limit of dominant Kerr instantaneous response, the governing equation is

then of the form

du

dt
= i(ω0 − ωL)u − iχeff |u|2u − αu +

√

Γc

2
Pin (3.1)

where |u|2 is the cavity energy, α ≡ Γtot/2 is the loss coefficient, Γtot = ω0/Q

being the inverse cavity lifetime, Γc = ω0(1/Q − Q0) is the transmission or

coupling coefficient, and ω0, ωL are the cold resonance and the laser frequency

respectively. For theoretical analysis it is useful to rescale the model into

dimensionless units with minimum number of parameters with unit lossy

coefficient:
da

dτ
= iδa + iχ|a|2a − a + S(τ) (3.2)

One can simply convert back to dimensional quantities using the following

scaling

τ = αt, a =

√

|χeff |
α

u, δ =
ω0 − ωL

α
, S(τ) =

√

Γc

2α
Pin(τ) =

√

2Γc

Γ2
tot

Pin(τ)

(3.3)

To be more general, the sign of nonlinearity can be χ = ±1. The dynamics

discussed below occurs for both signs of nonlinearity with suitable change of

the detuning sign.

The steady state response a = A =constant from constant excitation Pi =

S2 can be easily found in terms of normalized intracavity energy P = |A|2 as

Pi = P
[

1 + (δ + χP )2
]

(3.4)

The response is bistable for

|δ| >
√

3 (3.5)
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Figure 3.1: Bistable behavior.

and have knee values of the bistable response (such that dPi/dP = 0) at

intracavity levels P = P±:

χ = 1 ⇒ δ < −
√

3 P± =
−2δ ±

√
δ2 − 3

3

χ = −1 ⇒ δ < −
√

3 P± =
2δ ±

√
δ2 − 3

3

(3.6)

If χ = 1, a high optical intensity can lower the resonance frequency, so that

when ωL < ω0 one has the tuning of the driving frequency. Two stationary

intensity values then became possible. Since α is related to the response time

of the cavity, the condition (3.5) implies that the frequency offset (i.e. the

frequency detuning δ) must be sufficiently large compared with the resonator

bandwidth. In Fig. 3.1 it is shown how the energy of the system evolves un-

der increasing input power Pin for different detuning values. For δ <
√

3 a

bistable behavior is not allowed, therefore the cavity energy grows with the

increasing of the input intensity. When δ >
√

3, at low intensity there is

only one possible value of the energy for a given input power, whereas for

sufficiently high input power there exist two different energy values corre-

sponding to the change of the resonator state. The lower and upper branch

of the response coincide with two different states in which the resonator can

reside depending on its previous state. For a low initial internal energy, as

one moves to higher input intensities, the normalized energy in the cavity

rises to a critical value and when the input power increases further, the en-

ergy jumps to a higher state and then continue to rise. On the other hand, if
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Figure 3.2: Bistable switching with relaxation oscillations on the leading

edge of the pulse. Top left: driving Gaussian pulse. Top right: output

transmitted pulse (blue curve) compared with input. Bottom right: internal

cavity energy. Bottom left: phase-space Re(a)− Im(a) reconstruction of the

dynamics. Here δ ≈ 7.

the cavity is in an initial high level energy, with decreasing input power the

internal energy decreases as well and then jumps to a lower value.

Linear stability analysis can be performed with the ansatz a(t) = A+δa(t),

which leads after linearization to the system for the unknown a = [δa δa∗]T :

da

dt
=

(

ib − 1 iχP

−iχP −(ib + 1)

)

a (3.7)

where has been set b = δ + 2χP . The dynamics of the perturbation is ruled

by the eigenvalues λ of the above matrix

λ = λ± = −1 ±
√

P 2 − (δ + 2χP )2 (3.8)

The eigenvalues are either real on the negative slope branch of the bistable

response and conjugate pairs on the positive slope branches. Clearly the

eigenvalues rule the temporal evolution of the perturbation when a small

deviation from the stationary state is imposed. In this case the cavity relaxes
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Figure 3.3: Same with relaxation oscillations on the trailing edge of the

driving pulse.
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Figure 3.4: Same with relaxation oscillations on the trailing edge of the

driving pulse.

to the stable branch of the stationary response with oscillations exhibiting a

period Tp = 2π|Im(λ)|. Simple simulations based on numerical integration of

34



Eq. (3.2) with Pi(t) being Gaussian pulse, shows that bistable jumps occurs

with relaxation oscillations which can be manifested either on the leading or

trailing edge of the pulse, depending on the peak value of the driving signal,

as shown in Fig. 3.2 and 3.3. These figures show both the transmitted

power Pout = |
√

Pi − a|2 and the internal energy |a|2, as well as a phase-

space representation of the dynamics. In order for the relaxation oscillations

to appear it seems rather crucial to have a driving pulse whose characteristic

time (duration) is somehow longer than the cavity time constant (normalized

to one in this scaling). As shown in Fig. 3.4 relaxation oscillations tend to

disappear for shorter pulses. This kind of dynamics is visible also by means

of finite difference time domain method (described in appendices A and B)

as it is analyzed in the next section.

3.3 FDTD modeling of Kerr-type photonic

crystal based devices

In order to model the bistable nonlinear behavior studied in the section 3.2,

2D finite difference time domain simulations involving nonlinear periodic

structures are performed.

The domain analyzed is a photonic crystal composed of a square lattice of

rods with index 3.4 in air [31]. The lattice constant is 600nm and the width

of the rods is 150nm. The crystal has a band gap for TM polarized modes

for wavelength between 1300nm and 1800nm (see Fig. 3.5). Moreover, the

material of the rods is considered to have a nonlinear behavior with a third

order susceptibility χ(3) arbitrarily chosen to be 0.08m2/V 2. For wavelengths

inside the band gap, a waveguide can be created by removing a line of rods.

Furthermore, as explained in chapter 2, when a defect is introduced into a

periodic structure, high transmission state with a sharp and narrow resonance

peak appears in the band gap of the crystal. Fig. 3.6 shows the structure

composed of a waveguide and a cavity realized by removing three rods (a).

In the same figure it is illustrated the corresponding resonant TM pattern of

the cavity mode evaluated by means of the discrete fourier transform (DFT)

at resonant frequency (b). In this topology the cavity is side-coupled to the
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Figure 3.5: Photonic band structure for a square lattice of rods with index

3.4 in air. The crystal shows a complete band gap for TM polarized modes

(blue curves), whereas the gap is closed for TE modes (red curves). The

frequency is expressed as dimensionless ratio fa/c, where a is the lattice

constant and c the speed of light. In the horizontal axis are reported the

in-plane wavevector values at the edges of the irreducible Brillouin zone form

Γ to X to M .

waveguide so, when the system is on resonance, the energy in the cavity

increases abruptly and the transmission through the waveguide goes to zero.

Specifically, the side-coupled cavity shows a resonance at λ0 = 1573nm with

a loaded quality factor Q = 297 that corresponds to a decay constant τ =

2Q/ω0 of almost 0.5ps. The nonlinear dynamics can be suitably described

by the following CMT model

da

dt
= i∆ωa − ω0

2Q
a − iω0χeff |a|2a +

√

ω0

2Q
S (3.9)

In order to compare the FDTD results with the predicted CMT dynamics

studied in the section 3.2, the effective value of the susceptibility in Eq. (3.9)

has been defined as

χeff =
3
∫

χ(3)|A(r)|4dr

8
[∫

ǫr(r)|A(r)|2dr
]2 (3.10)
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Figure 3.6: Left: photonic crystal topology of the domain simulated. Right:

DFT calcuated pattern of the resonant TM mode at λ0 = 1573nm.

The 2D-FDTD simulations are performed by discretizing, according to the

method described in appendices A and B, the following TM equations

µ0
∂Hz

∂t
=

∂Ey

∂x

µ0
∂Hx

∂t
= −∂Ey

∂z
∂
(

ǫ0ǫrEy + ǫ0χ
(3)|Ey|2Ey

)

∂t
=

∂Hz

∂x
− ∂Hx

∂z

(3.11)

For a sufficient accuracy, a number of 19 cells for period have been cho-

sen. The domain of simulation is surrounded by perfectly matched layer

(PML) boundary conditions. The structure is excited by injecting a 10ps

Gaussian pulse with optical carrier at λp = 1583nm in the waveguide so that

the normalized detuning results 2Q(λp − λ0)/λ0 = 3.75. According to Eqs.

(3.5) and (3.6) the frequency offset is sufficiently large to ensure a bistable

effect for input power above the threshold of bistability (Pi > P+). In high

power regime the intense energy stored in the cavity causes a local change

of the refractive index that decreases proportionally with the increasing of

the optical intensity leading to a red shift of the cavity resonance. When the

red shifted resonance becomes close to the driving frequency, the signal is

switched in the cavity causing a strong enhancement of the internal energy.

Further increasing of the intensity leads the resonance to exceed the signal

frequency so that the energy in the cavity tends to decrease. The system

is then self-balanced by this feedback mechanism. The bistability behav-
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Figure 3.7: From (a) to (d), top left: FDTD power dynamics in the waveg-

uide. Top right: FDTD energy dynamics in the cavity. Bottom left: FDTD

power envelope in the waveguide (solid blue curve) compared to the CMT

output power dynamics (dashed red curve). Bottom right: FDTD energy en-

velope in the cavity (solid blue curve) compared to the CMT energy dynamics

(dashed red curve). The input powers calculated by means of the CMT sim-

ulations are Pin = 0.335mW/µm (a), Pin = 0.337mw/µm (b), Pin = 1.36

mW /µm (c), Pin = 6.83mW/µm (d).

ior is evaluated for different excitation intensities and, as predicted by the

CMT model, relaxation oscillations appear in the leading or trailing pulse

edge depending on driving excitation intensity. Fig. 3.7 shows the results of

FDTD simulations. The signal has been captured in a point of the waveg-

uide and in the cavity; then the envelope has been calculated by means of a

low-pass filtering. The nonlinear FDTD dynamics are then compared to the

corresponding CMT model in which the parameters are in turn evaluated by

linear FDTD simulations.
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3.4 All-Optical switching in nonlinear pho-

tonic crystals

One of the simplest photonic crystal devices that can be realized by exploiting

the nonlinear effects is a switch based on a cavity side-coupled to two waveg-

uides. A waveguide (bus) is dedicated to transport signal data at frequency

out of the cavity linewidth, whereas the other waveguide (drop) extracts the

signal when the cavity is on resonance. To tune the cavity resonance close to

the signal frequency it is necessary to locally change the refractive index of

the medium inside the cavity by using the nonlinear properties of the mate-

rial excited via optical intensity. All-optical switching can be realized in two

different ways. In the first one, the switching is obtained by controlling the

intensity of the input signal so that, by means of a sort of self-switching, the

signal data triggers optical switching by itself. In the second one, the nonlin-

ear effects can be exploited by launching a control beam (pump) to trigger

optical switching for the signal (probe) which is maintained at relative low

intensity. The switching contrast (SC) in the drop waveguide of the probe

intensity evaluated as the ratio between the ”‘On”’ and the ”‘Off”’ states,

i.e. Pprobe(pump = On)/Pprobe(pump = Off), determines the efficiency of

the process. It is easy to understand how, in pump-probe operations, because

the optical switching is driven by the external pump light, the major proper-

ties of the process, which are the response speed and the switching contrast,

can be suitably controlled by the intensity and duration of the pump light.

Two examples of such switching devices are shown in Fig. (3.8) (b) and

(c), where the photonic crystal has the same properties (lattice constant,

size of square rods, refractive index and third order nonlinear susceptibility)

described in the previous section. Here the cavity is made by removing only

one rod. The corresponding TM polarized resonant mode is shown in Fig.

(3.8) (a) where the pattern of the mode has been calculated by means of

numerical DFT. The feasibility of pump-probe operations to switch signal

data by exploiting the potentiality of Kerr nonlinearity are investigated in

both topologies by performing nonlinear 2D-FDTD simulations.

In the first structure, where the two waveguides has been realized by re-

moving two parallel lines of rods, the probe is injected in the left waveguide
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(a) (b)

(c)

Figure 3.8: Resonant TM polarized mode of a cavity realized by removing

one rod in a square photonic crystal of rods in air (a). Example of different

switching topologies (b)-(c).

(bus), whereas the pump is launched in the right waveguide (drop). The

loaded cavity presents a resonant frequency at λ0 = 1535nm and a quality

factor Q = 86. The wavelength of the probe is λs = 1565nm, whereas the the

pump is at λp = 1595nm, so that the normalized detuning are δs = 3.36 and

δp = 6.72 respectively. Either, probe and pump, are 10ps Gaussian pulses.

When the optical intensity of the control signal is sufficiently high to lower

the cavity resonance close to probe frequency, the signal data is switched

from bus to drop. In Fig. (3.9) the results of FDTD simulations are shown.

The intensity of the signal is extracted in the bus, in the cavity, as well as in

the drop waveguide. When the pump power is increased of the 65% above

the bistability critical power, the probe signal is switched from the bus to

the drop with a switching contrasr of about SC= 2.

In the second configuration the drop waveguide is terminated next to the

cavity and is directed perpendicular with respect to the bus waveguide. The
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Figure 3.9: Top left: probe intensity in the bus waveguide. Top right: probe

intensity in the drop waveguide. Bottom center: energy in the cavity. In each

figures the state ”‘Off”’ (blue curve) and the state ”‘On”’ (red curve) that

correspond to low and high input power of the control signal respectively,

are shown. The ratio between the ”‘On”’ and the ”‘Off”’ state in the drop

defines the switching contrast.

probe is launched in the bus waveguide, whereas the pump propagates in

the drop. The loaded cavity resonates at λ0 = 1538nm with a quality factor

Q = 64. Pump and probe are two 10 ps Gaussian modulate pulses with

optical carrier λp = 1619nm and λs = 1578nm respectively, so that the

normalized detuning result to be δp = 6.74 and δs = 3.33. The nonlinear

dynamics obtained by 2D-FDTD simulations is shown in Fig. (3.10). For

a pump power above the 56% of the critical switching power, the contrast

of the probe intensity in the drop waveguide is SC = 1.5. It is interesting
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Figure 3.10: Top left: probe intensity in the bus waveguide. Top right:

probe intensity in the drop waveguide. Bottom center: energy in the cavity.

In each figures the state ”‘Off”’ (blue curve) and state ”‘On”’ (red curve) that

correspond to low and high input power of the control signal respectively, are

shown. The ratio between the ”‘On”’ and the ”‘Off”’ state in the drop defines

the switching contrast.

to emphasize that in this topology the critical power that gives rise to the

switching is about the 32% of the power needed in the first configuration. To

understand this fact it is useful to resort to a linear CMT description of the

two systems.

By defining k11 the coupling coefficient between the cavity and the uninter-

rupted waveguide [25], (note that k11 can be expressed in terms of the loaded

quality factor as |k11|2 = ω0/2Q), for the first configuration the maximum

power transferred to drop waveguide can be easily evaluated by means of the
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following CMT model:

∂a

∂t
= iω0a − 2|k11|2a + k11s (3.12)

In fact, in the first configuration where the structure is completely symmetric,

the linear losses (accounted for the terms 2|k11|2 in Eq. (3.12)) are the same

in the bus and drop waveguides (explaining the factor 2). The transmission

at the drop port is given by td = k∗
11a/s and results to be

td =
|k11|2

i(ω − ω0) + 2|k11|2
(3.13)

Therefore, on resonance the maximum drop efficiency is

Td = |td(ω0)|2 =
1

4
(3.14)

irrespective of the value of k11. Conversely, for the second configuration, by

defining k12 the coupling coefficient between the cavity and the interrupted

waveguide, the CMT model is written as

∂a

∂t
= iω0a − |k11|2a − |k12|2

2
a + k11s (3.15)

and the transmission in the drop waveguide is

td =
k∗

12k11

i(ω − ω0) + |k11|2 + |k12|2
2

(3.16)

This latter relation gives the following transmission efficiency when evaluated

at resonant frequency

Td = |td(ω0)|2 =
k2

12k11

|k11|2 + |k12|2
2

(3.17)

that results to be maximum when |k12| =
√

2|k11| leading to a 50% of power

transferred from bus to drop. Finally, in order to evaluate the effective drop

efficiency, the coupling strength between the cavity and the two different

(uninterrupted and interrupted) waveguides should be determined. This can

be easily obtained by comparing the values of the quality factor of the two

configurations. For the first topology Q1 = 86 that yields a total loss α1 ≡
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Figure 3.11: Photonic crystal structure for the serial to parallel converter.

ω01/2Q1. Equivalently, in the second structure Q2 = 64 that results in a

total loss α2 ≡ ω02/2Q2. The ratio α2/α1 is approximatively equal to 4/3

that gives a value of |k12| =
√

10/3|k11| with a drop efficiency for the second

topology of about 47%, i.e. very close to the ideal optimum value. This

analytical formalism explains the major switching efficiency of the second

structure with respect to the first one.

3.5 The serial to parallel converter

A more complex device that can be realized by using the switching pump-

probe method described in the previous sections is the all-optical serial to

parallel converter that processes a data stream composed by a sequence of

bits. The bits are at the same optical carrier so, the discrimination of the

informations is ensured by reserving a different time slot for each bit. This is

known as an optical time division multiplexer (OTDM) system. The function

of the serial to parallel converter is the simultaneous switching of the N serial
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bits from a common channel (bus) to N different channels (drop). Thereby,

the parallelism of the informations is obtained by spatial division of the bits

stream that travel synchronously in the output channels. To realize the serial

to parallel converter, a structure in square photonic crystal of rods in air has

been designed. The same features of previous models, i.e. a lattice constant

of 600nm, a width of 150nm for the square rods, a refractive linear index of

4.3, and a third-order susceptibility of 0.08m2/V 2 for the Kerr effect, have

been considered. The structure is shown in Fig. (3.11) and consists of a

bus waveguide that carries the serial data stream, two drop waveguides for

the parallel conversion, and two single-defect cavities to extract the signal

by injecting the pump control signals. The loaded Q-factor of the cavities

is Q = 64 and the resonant wavelength is λ0 = 1538nm. The bits are

two 10ps Gaussian pulses at λs = 1578nm that corresponds to a detuning

of δs = 3.33. The pump signals are also 10 ps Gaussian pulses but with

carrier wavelength λp = 1619nm giving a normalized detuning of δp = 6.74.

Thereby, the bistability effect induced by Kerr nonlinearity can be triggered

for the data stream as well as for the pump signals. To obtain a correct

synchronism, the two control signals are properly timed so that the first bit

is switched in the high drop waveguide and the second bit in the low drop

waveguide. Fig. (3.12) shows the nonlinear 2D-FDTD temporal dynamics of

the data stream outgoing from the drop waveguides for two different values

of the control power. When the power pumped into the system is below

the bistabilty threshold no appreciable switching contrast is detected in the

output channels (yellow curves in Fig. (3.12)), so that the two bits have the

same intensity in each channels and cannot been discriminated. This is what

happens for a pump power of about 2.7mW/µm, that is not able to excite the

cavities. Instead, when the drivers are brought above bistability threshold,

each of them carrying a power of about 4.2mW/µm, the bits are switched

into the corresponding output waveguides. In fact, as shown in bottom of

Fig. (3.12) the first bit is detected in the lower drop waveguide (green curve),

whereas as shown in top of Fig. (3.12) the second bit is detected in the higher

drop waveguide (blue curve).
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Figure 3.12: Temporal dynamics of signal data processed by the serial to par-

allel converter. Bottom: stream bit outgoing from the high drop waveguide

for a pump power below (yellow curve) and above (green curve) threshold,

that yields the detection of the first bit. Top: stream bit outgoing from the

low drop waveguide for a pump power below (yellow curve) and above (blue

curve) threshold, that yields the detection of the second bit.

3.6 Summary

In this chapter the Kerr effect has been studied in detail. The aim has been

to investigate the properties of high-Q cavities in photonic crystal based

devices realized in Kerr material and to exploit the bistable effect in order

to realize all-optical devices. In particular, the design method has provided

the realization of a nonlinear FDTD code that incorporates the governing

equations for Kerr nonlinearity. The obtained results have been compared

with those predicted by a theoretical CMT model, showing a good agreement.

Finally, switches and more sophisticated devices such as optical converters

have been demonstrated to work in nonlinear Kerr regime.
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Chapter 4

Modeling and design of PhC

based devices operating in the

two photon absorption limit

4.1 Introduction

The aim of this last chapter is to set up a code able to model the main non-

linear effects in semiconductor materials to be used as a tool for the design of

new optimized optical devices exploiting these effects. To this end, an anal-

ysis of the relevant nonlinear effects such as two photon absorption (TPA),

free carriers dispersion (FCD), free carriers absorption (FCA), and carriers

diffusion, is performed. The governing nonlinear equations are incorporated

in a 2D-FDTD code that accounts for all of these nonlinear effects. The real-

ized FDTD tool is tested by means of a theoretical CMT model and further

by comparing the numerical outcomes with experimental results. The good

agreement of the FDTD results with both theory and experiments allows

the use of the nonlinear code to design new optical topologies for all-optical

signal processing. In particular, in the last section of this chapter, two op-

timized configurations for a three-ports All Optical Gate (AOG) that show

better performances than those known in literature are developed.

47



4.2 Theoretical and numerical methods

In this section, the theoretical Coupled Mode Theory (CMT) method and

the numerical Finite Difference Time Domain (FDTD) scheme are developed

with the purpose to investigate the nonlinear dynamics emerging in the two

photon absorption regime. As demonstrated, the two methods are very ef-

ficient tools for the analysis of the nonlinear response in optical structures,

each of them providing different advantages with respect their use and dif-

ferent insights into the nonlinear behavior.

4.2.1 The nonlinear CMT model

Dispersion induced by free carriers causes a reduction of the refractive index

and, similarly to the Kerr effect, it is also capable to give rise to a bistable

response for feedback mechanism. To understand this effect, it is useful

to model the nonlinear dynamics that occurs inside a single mode cavity

resonants at frequency ω0 and pumped via a waveguide by a pulse at laser

frequency ωL. In such a structure, the set of coupled equations that govern

the nonlinear behavior for the internal cavity energy are the following [8]:

∂a

∂t
= i(ω0 + ∆ωNL − ωL)a − Γtot

2
a +

√

Γc

2
Pin (4.1)

where Γtot is the inverse cavity lifetime and Γc = ω0 (1/Q − 1/Q0) is the

cavity to waveguide coupling coefficient that depends on the intrinsic quality

factor Q0 and on the loaded quality factor Q. ∆ωNL is the nonlinear change

of the frequency and it is given by

∆ωNL = −ω0

n0

∆n = −ω0

n0

(

n2Ic

n0VKerr

|a|2 +
dn

dN
N(t)

)

(4.2)

with c the light speed in the vacuum, n0 the linear refractive index of the bulk

material, n2I the Kerr coefficient and VKerr the Kerr nonlinear volume [35],

[36]. N is the free carriers density that induces the change in the refractive

index according to the following equation

dn

dN
= −

ω2
p

2n0ω2
0N

(4.3)
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where ω2
p = e2N/ǫ0m

∗ is the plasma frequency, with e the electron charge

and m∗ the effective electron mass. In tush model the total losses are Γtot =

ω0/Q+ΓTPA+ΓFCA, with ω0/Q representing the inverse linear cavity lifetime.

ΓTPA is the nonlinear coefficient that accounts for the losses due to two-

photon absorption and it is given by

ΓTPA =
β2c

2

n2
0VTPA

|a|2 (4.4)

being β2 the TPA coefficient and VTPA = VKerr the nonlinear TPA volume.

The nonlinear losses due to free carriers absorption are taken into account

by the ΓFCA coefficient proportional to the carriers density as follows

ΓFCA = c(σc + σh)
N(t)

n0

(4.5)

where σc and σh are the cross sections for free-electron absorption and for free-

hole absorption, respectively. The rate equation which governs the evolution

of the carriers density is the following

∂N

∂t
=

c2β2

2~ω0n2
0VTPAVcar

|a|4 − N(t)

τr

(4.6)

with τr the effective carriers lifetime and Vcar the relevant volume in which

the carriers spread and recombine [35].

4.2.2 2D-FDTD modeling

As analyzed in the chapter 1, the equations that govern the Kerr and the

two photon absorption dynamics in two-dimensional structures can be easily

written for TE polarized light. This allows to model the nonlinear dynamics

by means of a FDTD code that fully accounts for the nonlinear response

of the material. By following the method used in [12] for the 1D-FDTD

implementation, the set of the equations that models the nonlinear dynamics

can be extended to two dimensional domain for TE polarized light. The

starting point are the Maxwell’s equations:

∇× E = −µ0
∂H

∂t

∇× H =
∂D

∂t

(4.7)
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where the electric field has two in-plane polarized components, whereas the

magnetic field has only one component polarized in the perpendicular direc-

tion with respect to the PhC plane. The electric displacement D is given by

the constitutive equation

D = ǫ0E + P (4.8)

with P that accounts for the third-order nonlinear polarizations:

P = PKerr + PTPA + PFCA + Pplasma (4.9)

where PKerr = ǫ0χKerrE is the Kerr polarization with Kerr susceptibility

given by

χKerr = cn2
0n2I |E|2 (4.10)

with c the light speed in the vacuum, n0 the linear refraction index, and

n2I the Kerr nonlinear coefficient. PTPA = ǫ0χTPAE is the polarization that

accounts for the losses induced by two photon absorption. The susceptibility

χTPA is modeled by the following partial differential equation

∂χTPA

∂t
= c2ǫ0n

2
0β|E|2 (4.11)

in which the term β is the TPA nonlinear coefficient. The free carriers absorp-

tion polarization PFCA that describes the losses induced by TPA generated

carriers, is expressed as a partial differential equation in the form

∂PFCA

∂t
= cǫ0n0σFCANE (4.12)

where σFCA is the cross section for free-electrons and free-holes absorption,

and N is the free carriers density. Free carriers, in turn, cause a refractive

index change ∆nplasma(N) related to the plasma polarization as follows

Pplasma = 2ǫ0n0∆nplasmaE (4.13)

in which the nonlinear index change depends on the free carriers density

according to the equation

∆nplasma = − e2N

2ǫ0m∗n0

(4.14)
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The free carriers density dynamics can be modeled by means of the following

rate equation
∂N

∂t
=

c2ǫ2
0n

2
0β

8~ω0

|E|4 − N

τr

+ D∇2N (4.15)

Nevertheless the CMT equations, here the carriers transport is governed not

only by optical intensity and carriers recombination but also by the diffusion

effect that, as described in the section 4.5, in nonlinear regime heavily affects

the carriers lifetime inside the nanostructures, and then can not throughly

ignored. Therefore, the diffusion effect has been incorporated into the FDTD

code by means of the last terms of the Eq. (4.15).

All of these equations are incorporated in a 2D-FDTD code by means of

time domain discretization (a detailed description of the discretized nonlin-

ear equations is reported in appendix B). The FDTD code is tested in the

following sections by means CMT models and experimental data.

4.3 Self-pulsing induced in two photon ab-

sorption regime

The bistabilty effect induced by free carriers dispersion can be analyzed by

means of the set of Eqs. (4.1)-(4.6) that describe a structure where an optical

cavity is coupled to a waveguide in a nonlinear medium. The effects that are

considered are TPA induced pump depletion, absorption by TPA generated

free carriers, and free carriers dispersion. In order to derive the relevant

conditions that carry out the nonlinear frequency tuning of the cavity, the

coupled mode governing equations are written as follows

∂a

∂t
= i(δ + N)a − a − α|a|2a − γNa +

√
P

∂N

∂t
= |a|4 − N

τ

(4.16)

where a, N , and P are time-dependent variables opportunely normalized

that represent the cavity energy, the carriers density induced by TPA, and

the incoming optical intensity, respectively, and where t is a dimensionless

temporal variable. Here, the two dimensionless coefficients δ and τ has been
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defined as

δ =
ω0 − ω

Γ0

τ = Γ0τr =
τr

τ0

(4.17)

where Γ0 = ω0/2Q = 1/τ0 is the cavity lifetime, whit ω0 the cavity resonance

and Q the quality factor, whereas τr is the effective carrier lifetime. The

system (4.16) is deduced starting from the conventional coupled equations

outlined in [8] by normalizing the u (cavity energy), Nf (carriers density)

and Pin (input intensity) variables as follows

a = u 4

√

σβ N =
σNf

Γ0

P =

√
σβPin

Γ0

(4.18)

The dimensionless coefficients α and γ, and the coefficients σ in units of m3

and β in units of J−2 m−3, are given by

σ =
e2

Γ02ǫ0n2
0ω0m∗ β =

c2β2

Γ02~ω0n2
0VTPAVcar

α =
cω0

e

√

~ǫ0β2m∗
√

Vcar

VTPA

γ =
c(σe + σh)ǫ0n0m

∗ω0

e2

(4.19)

where c is the light speed in the vacuum, n0 the linear refractive index, ~ the

Planck constant, e the electron charge, m∗ the electron effective mass, β2 the

TPA coefficient, σe and σh the cross sections for free-electron absorption and

free-hole absorption, respectively, VTPA the nonlinear TPA volume, and Vcar

the volume in which the charges spread and recombine.

4.3.1 Analytical study of bistability in low lossy regime

In order to investigate analytically the nonlinear response, as first approxi-

mation, the system (4.16) is studied by neglecting the nonlinear losses. When

the lossy coefficients α and γ are set to zero the system (4.16) becomes

∂a

∂t
= i(δ + N)a − a +

√
P

∂N

∂t
= |a|4 − N

τ

(4.20)

The stationary solution of Eqs. (4.20) yields to a bistable response described

by the relation

P̄ = E
[

1 + (δ + τE2)2
]

(4.21)
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Figure 4.1: Bistable behavior ruled by the Eq. (4.20) when δ = −3.

written with respect to the time-independent cavity energy E = |A|2, inci-

dent optical intensity P̄ and carriers density N̄ . From Eq. (4.21) it is possible

to find that the normalized detuning needed to give rise to bistability must

satisfy the condition δ < −
√

5/2. Fig. 4.1 shows the relationship E =f(P )

according to Eq. (4.21) for different detuning δ. For δ < −
√

5/2 the response

is a threefold function of P exhibiting knee values at internal cavity energy

En± =

√

−3δ ±
√

4δ2 − 5

5τ
(4.22)

As pointed out in [37], it is expected that the nonlinearity ruled by the rate

equation in the system (4.20), gives rise to instability owing to the presence of

a characteristic recovery time (accounted for the therm τ) that is comparable

to that in which the system evolves. In order to verify this, it is useful to

resort to the linearized system by rewriting the cavity energy and the carriers

density in (4.20) as their steady-state values with a linear perturbation in

the form a(t) = A + ǫ(t) and N(t) = N̄ + δn. These simple ansatz yield

ǫ̇ =
[

i(δ + τ |A|4) − 1
]

ǫ + iAδn

ǫ̇∗ =
[

−i(δ + τ |A|4) − 1
]

ǫ∗ − iA∗δn

˙δn = 2|A|2(ǫA∗ + ǫ∗A) − δn

τ

(4.23)

The linearized system has two complex conjugate eigenvalues and a purely
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Figure 4.2: Real (green lines) and imaginary (red lines) part of the eigenvalues

of the system for δ = −3 and τ = 0.15(a), τ = 1 (b), and τ = 3 (c).

real one. In Fig. 4.2 are shown the real (green lines) and imaginary (red

lines) part of the eigenvalues when δ = −3 for different values of τ . When

the eigenvalues have negative real part the dynamics shows stable damped

oscillations that occur with normalized frequency Ω = |Im(λ)|, whereas the

presence of a eigenvalue with a positive real part gives rise to instability. The

latter occurs always in the negative slope branch of the bistable response

and causes the jump from low (high) energy to high (low) energy states.

A more detailed analysis reveals that in the upper branch the system can

experience Anrdonov-Hopf bifurcation yielding an unstable solution. The

bifurcation results to be supercritical emerging in a limit cycle oscillating

with period 2π/Ω. The Hopf bifurcation happens for energy values that

satisfy the following relation

E±
b =

√

√

√

√

√

δ(τ − 1) ±
√

δ2(τ − 1)2 + (2τ − τ 2)
(

δ2 +
(

1 + 1
τ

)2
)

2τ − τ 2
(4.24)
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b , and E±

n values as a function of τ for δ = −3.

From this latter, it follows that the Hopf bifurcation exists only for values of

the detuning δ that satisfy

δ2 ≥ τ 2 − 2/τ − 3. (4.25)

Furthermore, when τ ≥ 2 the Eq. (4.24) admits the two solutions with

different sign. This means that the system can start from a stable regime,

undergoes bifurcation and finally returns to a stable regime. Fig. 4.3 shows

the values E±
b as a function of τ . The point of bifurcation denoted by E−

b ex-

ists for τ > 0 (red curve). As expected, E−
b moves toward increasingly higher

energy values when τ approaches to zero becoming undefined for τ = 0. This

is consistent with the fact that the characteristic time of the nonlinearity

becomes negligible with respect to the cavity lifetime, and the system ex-

periences the dynamics typical of the systems subjected to instantaneous

nonlinearities. The E+
b solutions (blue curve) appears for τ ≥ 2, and leads

to an instability behavior that does not fall into chaotic regime. When the

relation in Eq. (3.7) is satisfied for a given critical value τc, the two energy

point E±
b disappear because of the presence of their imaginary part. More-

over, as shown in Fig. 4.3, the bifurcation point always lies above the point

E−
n (green curve) corresponding to the jump in the bistable response. This

means that the unstable response always occurs.

As it can be seen, the energy pulse experiences stable periodic oscillations
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resulting in a limit cycle (see Fig. 4.4 (c)) as it falls into a state of the upper

bistable branch. Interestingly, it is found that the existence of the bifurcation

does not require the bistable regime. Fig. 4.5 shows, for δ = 4 and τ = 1,

self-pulsing behavior of the cavity energy (a), eigenvalues of the system (b),

and limit cycle (c).
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Figure 4.5: Self-pulsing behavior in the absence of bistable response: δ = 4

and τ = 1. Cavity energy evolution (a), system of eigenvalues (b), and limit

cycle (c).
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Finally, it is investigated how the critical switching power depends on the

quality factor Q and modal volume V of the cavity. By simple manipulations

of the Eqs. (4.21)-(4.22), the power threshold that triggers the jump from the

lower to the upper bistable branch results to be P c ∝
√

|δ|/τ . From the defi-

nition of the coefficients in Eq. (4.22), the minimum required switching power

in dimensionless units (evaluated for δ = −
√

5/2) results to be P c ∝ √
τ ,

consequently the dimensional power turns out to be P c
in ∝ V/Q

√
Q. This

demonstrates that a system in delayed nonlinear regime, provides lower effi-

ciency than systems affected by instantaneous nonlinearities.

4.3.2 Bistability in regime of TPA and FCA losses

In this section, it is investigated how TPA and FCA losses affect the results

previously outlined. Before proceeding, it is useful to recall that in TPA

regime, two photons are absorbed to generate a free carrier, and then it is not

correct to thoroughly ignore the lossy coefficient α in Eq. (4.16). However,

as defined in Eq. (4.22), α depends on ratio between the carrier volume and

the TPA volume. The carrier volume in turn, is related to the carriers length

diffusion and size of the cavity, therefore it can be opportunely reduced by

material and geometry engineering. Analogous considerations hold for the

losses induced by free carriers absorption. In particular, it is expected that in

high-Q small volume cavities, the nonlinear losses can drastically be reduced.

Therefore, the previous approximate analysis becomes an useful study to fully

understand the dynamics in what follows.

The stationary regime of Eq. (4.16) in which are present TPA and FCA

losses is given by

P = E
[

(1 + αE + γτE2)2 + (δ + τE2)2
]

(4.26)

Fig. (4.6) compares the bistable response without losses (black dashed line)

seen in the previous section with the bistable behavior when TPA (red line)

and FCA (blue line) losses are introduced. To take into account realistic

parameters, here it is used VTPA = 1.7 (λ0/n0)
3, Vcar = 0.6 (λ0/n0)

3 (where
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regimes: lossless system (dark dashed line), system affected by TPA induced

losses (red line), and system affected by TPA and FCA losses (blue line).

Here δ = −3, τ = 0.5, α = 0.1 and γ = 0.1

λ0 = 2πc/ω0 is the resonant wavelength of the cavity), σe = 6 × 10−22 m2,

and σh = 9 × 10−22 m2. These values yield α = 0.1 and γ = 0.1. Obviously,

as shown in Fig. 4.6, losses affect the bistable response by lowering the

efficiency in the frequency tuning of the cavity. It is worth noting that,

unlike the lossless system, in this case it is not possible to obtain a condition

that triggers the bistable response depending on the detuning δ value alone.

This can be seen in Fig. 4.7 where the maps of P (in logarithmic units) as

a function of τ and E (in logarithmic units) for fixed δ = −3, are compared

for the two regimes: with nonlinear losses (a) and without nonlinear losses

(b). It is found that, despite the lossless case in which for δ < −
√

5/2 and

irrespective of τ P is a threefold function of E, in presence of losses, for

small values of τ the bistability does not occur. This consideration is further

highlighted in Fig. 4.8, where the P values are reported as a function of δ

and E by fixing τ = 0.1. As it can be seen from Fig. 4.8, when nonlinear

losses are neglected, the bistable behavior takes place for δ < −
√

5/2 (Fig.

4.8(b)), whereas in presence of nonlinear losses the detuning needed to trigger

bistability must be decreased until δ = −2.27 (Fig. 4.8(b)).
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Figure 4.7: Map of input power in logarithmic units (log(P )) as a function

of τ and log(E) for δ = −3 for the lossy regime (a) and lossless regime (b).

Figure 4.8: Map of input power in logarithmic units (log(P )) as a function

of δ and log(E) for τ = 0.1 for the loss regime (a) and lossless regime (b).
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Figure 4.9: Real (green lines) and imaginary (red lines) part of the eigenvalues

of the system for δ = −3 and τ = 0.03(a), τ = 0.5 (b), and τ = 2 (c).

The stability of the system (4.16) is investigate by considering the follow-

ing set of linearized equations:

ǫ̇ =
[

i(δ + τE2) − 1 − 2αE − γτE2
]

ǫ − αA2ǫ∗ − (γ − i)Aδn

ǫ̇∗ =
[

−i(δ + τE2) − 1 − 2αE − γτE2
]

ǫ − αA∗2ǫ − (γ + i)A∗δn

˙δn = 2|A|2(ǫA∗ + ǫ∗A) − δn

τ

(4.27)

The eigenvalues of the system (4.27) are shown in Fig. 4.9 when δ = −3 for

τ = 0.03 (a), τ = 0.5 (b), and τ = 2 (c). Depending on δ, for sufficiently

small values of τ , it is still found the bifurcation point (see Fig. 4.9 (a) and

(b)). Moreover, by solving numerically the eigenvalue problem, it is observed

that always exists a second point in which the real part of the eigenvalue that

gives rise to Hopf bifurcation becomes zero. This means that the unstable

dynamics never undergoes a chaotic regime. In order to understand the de-

pendence of the bifurcation on the normalized time τ , in Fig. 4.10 are shown

the two energy values E−
b (red curve) and E+

b (blue curve) accounting for the

bifurcation point and the further transition through zero of the eigenvalue,

respectively. The points E−
b and E+

b become undefined as τ approaches to
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Figure 4.11: Self-pulsing dynamics of the lossy system when δ = −3 and

τ = 0.5. Intra-cavity energy (a), Carriers density (b), and limit cycle (c).

zero. Additionally, as in the lossless regime, a critical value τc is found, so

that when τ ≥ τc the two points collapse and then vanish.

Finally, the self-pulsing dynamics by perturbing the system that evolves

from an unstable initial condition beyond the bifurcation point is investi-

gated. Results are shown in Fig. 4.11, where periodic oscillations of the

intra-cavity energy (a) as well as of the carriers density (b), and the occur-

rence of the limit cycle (c) confirm the supercritical nature of the bifurcation.

Moreover, it must be noted that again, the bifurcation can appear regardless

of the bistable regime.
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Figure 4.12: Time evolution of the carriers density with respect to the pulse

time scale (blue dashed curve). Energy in the cavity for input power below

the critical threshold (red dash-dotted curve) and for input power above the

critical threshold (red solid curve).

4.4 Spectral broadening induced by free car-

riers

To understand the spectral modulation of an optical pulse involved in non-

linear dynamics where the free carriers dispersion dominate, it is useful to

resort to a numerical implementation Eqs. (4.1)-(4.6) in which Kerr effect

and nonlinear losses are neglected. Fig. 4.12 depicts the qualitative evolution

of the free carriers density on the time scale of the optical pulse [36]. The

relevant normalized time τ = 40 is chosen, so that the recombination time is

much larger than the cavity lifetime. With a normalized detuning δ = −3,

when the input power is below of the critical threshold, no appreciable self-

switching happens (red dash-dotted). Conversely, for pumped power above

the critical threshold, the pulse is fast switched in the cavity exhibiting weak

relaxation oscillations due to the feedback mechanism (red solid curve). The

shift induced in the optical phase is proportional to the number of generated

carriers for unit of volume. Since the free carriers density follows the integral

of the pulse shape, the trailing edge of the pulse sees a higher phase shift

than the leading edge. This causes an asymmetric spectral broadening. As
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for the pulse in Fig. 4.12.

it is shown in Fig. 4.13 the spectrum of the pulse results blue-shifted and

broadened as result of the index change.

4.5 Carriers diffusion in semiconductor pho-

tonic crystals

Another relevant effect that must be considered in the limit of two photon

absorption dynamics, is the diffusion of free carriers, that can become one

of the main causes that affects carriers recombination in periodic nanostruc-

tures. This section is focused on the analysis of photogeneration caused by

TPA, in particular, the purpose is to investigate how the carriers lifetime is

affected by the PhC geometrical features.

The rate equation that rules the dynamics of carriers generated by illumina-

tion with an optical source of intensity I2 is given by

∂N

∂t
=

βI2

2~ω
− N

τb

+ D∇2N (4.28)

where τb is the recovery time of the bulk semiconductor material, β is the

nonlinear TPA coefficient, and 2~ω is the two photon energy, with ~ the
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Planck constant and ω the frequency. The SRH term in the Eq. (4.28)

describes the diffusion of the charges weighed by the diffusion coefficient D (in

unit of cm2/s). The diffusion effect is the mechanism according to which the

carriers spread proportionally to the gradient of their concentration, and gives

a significant contribution to the carriers lifetime and then to the switching

recovery time. In fact, surface recombinations are related to diffusion effects

according to the following Neumann boundary condition

D∇n|S = vsn|S (4.29)

with S the surface where charges recombine, and vs the surface velocity of

the recombinations. Surface recombinations in semiconductors describe the

annihilation of charges at discontinuities or defects of the crystal and play

a critical role as the device dimensions become small. The effective carriers

lifetime is then given by
1

τeff

=
1

τb

+
1

τs

(4.30)

where τr arises from recombinations in the bulk semiconductor, and τs is

determined by recombinations which occur at the surfaces of the sample. Al-

though it is still under investigation, by following the dissertation in [38], [39],

here an expression of τs is obtain by evaluating the steady state (∂N/∂t = 0)

of the rate equation Eq. (4.28). In two dimensions the continuity equation

becomes
∫

S

(

G − n

τr

)

dS =

∫

S

∇2n dS (4.31)

where G = βI2/2~ω is the generation term and S is a 2D surface. In a PhC

triangular lattice with period a and holes radius r = δa (with 0 < δ < 0.5),

Eq. (4.31) can be evaluated by considering the integral over the hexagonal

unit cell of area S =
√

3/2a2. By the divergence theorem, the SRH of Eq.

(4.31) can be expressed as the one dimensional integral around the curve γS

that bounds the S surface:
∫

S

D∇2n dS =

∫

S

∇ · (D∇n)dS =

∫

γS

D∇n · l dl (4.32)

where l is the unit vector perpendicular to the path of integration, and γS

is composed by both the hexagonal perimeter of the unit cell and the hole
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boundary. By considering the boundary condition in Eq. (4.29) with vs = 0

on the external cell edge and vs 6= 0 on the hole edge, the Eq. (4.32) becomes

∫

S

(

G − n

τb

)

dS =

∫

γS

nvs · l dl (4.33)

The integration can be easily performed in polar coordinates (ρ, θ and l = ρ̄)

by considering the optical intensity I2 spatially uniform in the domain and

a surface velocity direct along the radial coordinate. The result is

(

G − n

τb

)

(√
3

2
a2 − πr2

)

= 2πrnvs (4.34)

The effective recombination time τeff = G/n is then given by

1

τeff

=
1

τb

+
2πδvs√

3
2

a − πδ2a
(4.35)

from which follows the expression for the time of surface recombinations τs:

τs = a

(√
3

2
− πδ2

)

2πδvs

(4.36)

The latter expression highlights as the recovery time induced by surface re-

combinations can be tailored by means of the geometrical features of the

crystal. The ratio δ between the holes radius and the lattice constant a

seems to be a critical parameter. As an example, when the recombination

velocity is vs = 104m/s in a PhC with period a = 430nm and δ = 0.20, τs

is about 25ps. An increasing of δ up to 0.30 leads τs to be almost 13ps, and

with a further increasing until δ = 0.40, τs decreases to approximately 6ps

becoming comparable to the temporal duration of the signals processed in

the devices.
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4.6 Testing the 2D-FDTD FCD modeling by

comparison with the CMT theory
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Figure 4.14: Photonic band structure for a triangular lattice of air holes in

bulk material with n = 2.73. The crystal shows a complete band gap for TE

modes (red curves), whereas the gap is close for TM modes (blue curves).

The frequency is expressed as dimensionless ratio fa/c where a is the lattice

constant and c the speed of light. In the horizontal axis are reported the

in-plane wavevector values at the edges of the irreducible Brillouin zone from

Γ to M to K.

Free carriers dispersion has been deeply analyzed in section 4.3. In

this section the 2D-FDTD results obtained by numerical implementation of

the nonlinear equations previously described, are compared with the CMT

model. The structure studied is a 2D PhC of air holes in a triangular lattice

with period a = 430nm, holes radius 0.22a and linear refractive index of the

bulk material n = 2.73. As shown in Fig. 4.14, the structure exhibits a

complete band gap for TE polarized light. A high-Q H0 cavity is realized

by shifting of 0.16a two nearest holes [40]. The cavity is side-coupled to a

waveguide obtained by removing a row of holes in the ΓK direction (see Fig.

4.15). In the side-coupled configuration, the transmission at the end of the

waveguide is ”‘Off”’ when the cavity is on resonance. This can be obtained
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Figure 4.15: 2D PhC domain. The structure consists of a H0 cavity obtained

by shifting two nearest holes and a linear defect realized by removing a line

of holes. The cavity is side-coupled to the waveguide resulting in a deep of

the transmission when the cavity is on resonance.

by the following linear CMT model:

∂a

∂t
= iω0a − |k1|2a + k1sin

sout = 1 − k∗
1a

(4.37)

where ω0 is the cavity resonance, k1 the coupling coefficient between the

cavity and the waveguide, and sin and sout are the intensities in the input

and output waveguides, respectively. The output transmission, shown in Fig.

4.16, is then given by

Tout = 1 − |k1|2
i(ω − ω0) + |k1|2

(4.38)

To investigate the nonlinear frequency blue-shift induced by free carriers dis-

persion, FDTD simulations are performed by means of the set of equations

described in the section 4.2.2 without the implementation of the Kerr effect

and nonlinear polarization responsible of losses, namely PTPA and PFCA.

The TPA coefficient used is β = 10.2cm/GW , while the carrier lifetime has

been fixed at τr = 8 ps. For the diffusion effect, a value of the diffusion
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Figure 4.16: Linear transmission of a cavity side-coupled to waveguide. The

transmission is ”‘Off”’ (blue curve) when the cavity is on resonance (red

curve).

coefficient comparable to that is measured in Silicon, i.e. D = 35cm3/s, has

been used. The structure is pumped via a 10ps Gaussian pulse lunched into

the waveguide with a detunign of 4nm with respect the cavity resonant wave-

length. The cavity resonates at λ0 = 1718nm and exhibits a loaded quality

factor Q of about 250 corresponding to a loaded cavity lifetime of about

0.46ps. Therefore the driving pulse detuned by 4nm results in a normalized

detuning δ = 1.16, just sufficient to trigger self-switching. The energy stored

in the cavity is extracted by numerical calculation of the following surface

integral

En =
1

2

∫

S

ǫ0ǫr|E|2dS (4.39)

where S is restricted to an area around the cavity. The result is shown in

Fig. 4.17. Subsequently, the envelope is evaluated by low-pass filtering of the

energy waveform. Fig 4.18 shows the energy envelopes for two different values

of the pumped power. In the first case, the optical intensity injected in the

waveguide is not sufficient high to trigger the switching, and the energy level

in the cavity remains low. In the second case, when the input intensity is large

enough, the signal is fast switched in the cavity by the bistable effect. In Fig.
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Figure 4.17: Nonlinear 2D-FDTD time evolution of the energy stored in the

cavity when bistable switching is achieved.

4.18 the red dashed curve is referred to the below critical threshold case and

the red solid curve to the above critical threshold case. The time evolution

displayed by the blue thin curve, is the result obtained by a CMT simulation,

where the relevant coefficients are extrapolated by linear FDTD calculations.

The qualitatively bistable behavior evaluated by the CMT model is in good

agreement with respect to that obtained by the nonlinear FDTD simulations.

However, the CMT curves can not perfectly overlap with the FDTD ones,

due to the FDTD implementation that takes into account the additional

contribution of diffusion effects in the carriers temporal evolution. Fig. 4.19

shows the spectral shapes in the case in which the signal is not switched

(dashed blue curve) and in the case in which the signal is switched in the

cavity (solid blue curve). Moreover, when the bistable effect is achieved, the

spectrum is broadened and shifted towards lower wavelength.
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Figure 4.18: Nonlinear 2D-FDTD time evolution of the cavity energy enve-

lope when switching is not achieved (red dashed curve) and when the bistable

switching is triggered above threshold (red solid curve). The FDTD dynam-

ics is qualitatively compared with a CMT simulation (thin blue curve).
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Figure 4.19: Spectral shape of the energy waveform in the two cases of Fig.

4.18: when the switching is not triggered the spectrum is undistorted (dashed

blue curve) whereas, when the input power is high enough to give rise to a

bistable effect, the spectrum is broadened and blue shifted (solid blue curve).
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Figure 4.20: CMT modeling of bistable switching triggered by free carriers

dispersion in the case in which nonlinear losses are neglected (red curve) and

in the case in which nonlinear losses are taken into account (blue curve).

4.7 The effect of nonlinear losses

An issue of great interest is to investigate how the nonlinear losses due to

two photon absorption and absorption for free carriers generated by TPA

can degrade the switching performances.

The structure modeled is still the PhC cavity side-coupled to the waveguide

analyzed in the previous section. Fig. 4.20 compares the CMT dynamics for

the two cases: bistable switching induced by free carriers dispersion with-

out nonlinear losses (red curve) and bistable switching when TPA nonlinear

losses are accounted for (blue curve). By analyzing the temporal evolution

displayed in figure, it is clear that the effect of losses induced by two photon

and free carriers absorption, produces a smoothing effect of the energy wave-

form during the bistable dynamics. The same qualitative evolution can be

observed by comparing the temporal dynamics obtained by nonlinear FDTD

simulations. To this end, all nonlinear third order polarizations have been

included into the 2D-FTDT code. For the cross-section that accounts for the

losses induced by free carriers absorption, a coefficient σFCA = 9.3(λ0/µm)2.3

has been used. This coefficient is comparable to that known by measures in

semiconductor materials such as Silicon or GaAs. Fig 4.21 shows the results
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Figure 4.21: 2D-FDTD modeling of bistable switching induced by free car-

riers dispersion when TPA losses are not incorporated into the code (red

curve), and when nonlinear losses are included (blue curve). The energy is

plotted in (pJ/µm) units. Comparison between the intensity peaks shows

that owing to the nonlinear losses, a degradation of 1.59dB is observed in

the switched energy.

for the two different modeling: bistable dynamics induced by free carriers

dispersion when losses are not included (red curve), and bistable dynamics

when losses are incorporated into the code (blue curve). As predicted by

the CMT simulations, the temporal evolution of the cavity energy results to

be smoothed by the nonlinear losses. Furthermore, by comparing the peak

values in the two cases shown in Fig. 4.21, a degradation of about 1.59dB in

the switched energy caused by the nonlinear losses is observed.

4.8 Switching by pump-probe operations

The required operating energy for a cavity based switch scales as V/Q2 or

V/Q
√

Q by exploiting Kerr or TPA nonlinearity, respectively, where Q is the

cavity quality factor and V the modal volume. Small volume and high-Q

photonic crystal cavities can therefore realize optical switching with a large

reduction in operating power due to their strong light confinement.

As discussed for the switching in Kerr photonic crystal, the pump-probe op-
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erations, where the excitation of the cavity for the signal processing is driven

by a pump signal, can be very interesting due to their potential with respect

to the control of speed and switching efficiency.

In this section pump-probe operations are studied in a PhC H0 cavity coupled

to two waveguides in an in-line configuration. The PhC has the same prop-

erties as those analyzed above. In detail, it is a triangular lattice of air holes

in high contrast bulk material with refractive index n = 2.73. The period of

the crystal is a = 430nm and the holes radius is r = 0.22a. To enhance the

coupling between the cavity and the two waveguides, the holes radius of the

first two rows in the waveguides has been increased of rwg = 0.34a. Thereby,

the cavity exhibits a resonance at λ0 = 1583nm with a loaded quality factor

Q = 980. The structure is depicted in Fig. 4.22. In the in-line configuration

the cavity is coupled to two separated waveguides, so that the transmission

in the output port is in the ”‘On”’ state when the cavity is on resonance.

This can be suitably predicted by the following linear CMT model:

∂a

∂t
= iω0a − |k1|2a + k1sin

sout = −k∗
1a

(4.40)

with ω0 the cavity resonance, k1 the cavity to waveguide coupling coefficient,

sin the input and sout the output signal, respectively. The system gives the

following output transmission

Tout =
|k1|2

i(ω − ω0) + |k1|2
(4.41)

that exhibits ”‘On”’ output transmission at the cavity resonance.

Pump-probe operations have been analyzed with the nonlinear 2D-FDTD

code. In order to investigate the bistable switching induced by free carri-

ers dispersion, Kerr effect and nonlinear losses have been neglected. The

nonlinear parameters of the material are the same as those used in previ-

ous section, i.e. β = 10.2cm/GW for the TPA coefficient, τr = 8ps for the

carriers recovery time, and D = 35cm3/s for the diffusion coefficient. For

this configuration it is of particular interest the analysis of the tuning and

detuning performances by switching ”‘On”’ and ”‘Off”’ the probe signal by

means of the control signal. In the first case, both, pump and probe are 6ps
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Figure 4.22: 2D PhC domain. The structure is composed by a H0 cavity

coupled to an input and an output waveguide in an in-line configuration.

Gaussian pulses detuned of ∆λ = λ−λ0 = −10nm with respect to the cavity

resonance. This means that the driving signal switches ”‘On”’ itself and, at

the same time, switches ”‘On”’ the probe signal, resulting in an enhancement

of the probe output transmission that follows the cavity dynamics. Fig. 4.23

shows the cavity energy for different values of the control signal. The energy

has been normalized with respect to its value when Ppump = Off so that the

switching contrast is emphasized. As it can be seen, the contrast is increased

according to the level of the driving intensity.

In the second case, pump and probe are two 6ps Gaussian pulses. The pump

has a negative detuning ∆λ = λ−λ0 = −10nm, whereas the probe has been

setup to have a positive detuning ∆λ = λ − λ0 = 5nm. Thereby, when the

pump self-switches by increasing the optical energy inside the cavity, owing

to the blue-shift of the frequency induced by free carriers dispersion, the

probe is switched ”‘Off”’, resulting in a decrease of the output transmission.

Fig. 4.24 shows the results of the simulations for different values of the peak

power of the control signal. As expected, by increasing the driving intensity,

the cavity energy is switched ”‘Off”’ with deeper contrast.
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Figure 4.23: Tuning of the cavity by pump-probe operation. The en-

ergy curve are shown for different values of the input driving power:

Pin = 109mW/µm (dark curve), Pin = 246mW/µm (green curve), Pin =

438mW/µm (blue curve) and Pin = 685mW/µm (red curve). The energy

curves show an enhancement in the switching contrast as a result of the

increased optical control intensity.
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Figure 4.24: Detuning of the cavity by pump-probe operation. The en-

ergy curve are shown for different values of the input driving power:

Pin = 109mW/µm (dark curve), Pin = 246mW/µm (green curve), Pin =

438mW/µm (blue curve) and Pin = 685mW/µm (red curve). The energy

inside the cavity is decreased when the input control intensity is increased.
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4.9 Comparison between 2D-FDTD nonlin-

ear results and experimental data

Up to now the 2D-FDTD nonlinear code has been checked by comparison

with CMT models and by testing qualitatively the correctness of the results

concerning to the tuning and detuning operations in PhC cavities. The goal

was to demonstrate the potential switching features of such structures in

nonlinear regime induced by two photon absorption, as well as to check the

right code operations. Nevertheless, to keep down the computational cost,

simulations have been performed by modeling a PhC domain of about 15×15

periods, that does not corresponds to the realistic dimensions of structures

employed in experimental frameworks. In particular, the small size of the

simulated domain was responsible for the low quality factor of the cavities

seen so far. Hence, while the small PhC domain allowed us to perform impor-

tant tests with very low computational cost, it did not give any knowledge

about the realistic performances of the devices. Moreover, the nonlinear pa-

rameters employed so far do not correspond to the realistic parameters of

the semiconductor materials used to build the signal processing devices. In

this section, in order to set up a simulation tool aimed at investigating the

dynamics of PhC switching, the correct operations of the code are validated

by comparing the numerical results with experimental data.

Measurements are performed over a GaAs PhC slab sample, involving a

single H0 nano-cavity coupled to two (input and output) sections of a line-

defect waveguide, in an arrangement equivalent (topologically) to the one

reported in [9]. The cavity, whose spectral response is shown in Fig. 4.25

(top) resonates at λ0 = 1551.84nm with a loaded quality factor Q = 1800,

which corresponds to a spectral FWHM ∆λ = 0.56nm. In order to investi-

gate the nonlinear behavior of the sample, non-degenerate pump-probe ex-

periments have been performed, the nonlinearity being driven by the strong

pump pulse. Figure 4.25 (bottom) shows the typical outcome in terms of

the dynamics of the transmitted probe pulse, when the pump wavelength

is held on resonance while the probe is blue-shifted to the −3dB point of

the cavity spectral response. By increasing the pump power up to few tens

of µW , a dramatic increase of the probe transmission is observed when the
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Figure 4.25: Spectral response of the GaAs H0 nanocavity (top) and time-

resolved dynamics of the probe transmission (bottom) in a waveguide side-

coupled to the nano-cavity. High probe transmission (switching) is obtained

in pump-probe configuration with the pump on resonance and the probe

blue-shifted at -3 dB point of the spectal response.

probe overlaps temporally with the pump. This is a signature that the re-

sponse of the cavity is dominated by the plasma effect (carriers generated via

TPA) which is responsible for a pump-induced blue-shift of the resonance,

while the effect of nonlinear losses remains marginal. The data shows that

the dynamics of the carriers is extremely fast with a relaxation time of few

psec, while a good switching contrast of 1 : 3 is achieved at a pump power

of 60mW . The use of membranes allows to give a reasonable description in

2D employing effective index method in the vertical direction, with a value
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Figure 4.26: Dynamics simulated by means of the nonlinear 2D-FDTD code

of the structure characterized in experiments.

n = 2.67 and perfect matched layer (PML) absorbing boundary conditions

in the plane of the PhC. To account the nonlinear effects in GaAs, a Kerr

coefficient n2I = 1.5 × 10−14cm2/W and a TPA coefficient β = 10.2cm/GW

have been used. For the carriers dynamics the recovery time has been taken

τr = 6ps with a diffusion coefficient D = 237, 86cm2/s. To obtain the exact

linear response, a sufficiently large domain of simulation (23 × 41 cells) has

been chosen, that sets the realistic cavity quality factor to be affected only

by the coupling with the waveguide. Moreover, to obtain operative informa-

tions about the transmission efficiency, in the FDTD code the calculus of the

Poynting flux at the bus output port has been implemented, and the outcome

has been processed with a low-pass filter to extract the envelope. The results

are shown in Fig. 4.26. By comparing with Fig. 4.25 it turns out that the

outcomes of the simulations are in good agreement with experimental data,

and this confirm the correct set up of the code.

78



Figure 4.27: Schematic of a three-ports AOG operating in a degenerate fash-

ion with a pump and a probe at different wavelengths.

Figure 4.28: Domain of simulation.

4.10 Design of a three-ports switching device

In this section a first three-ports configuration for ultra-fast optical switching

(see scheme in Fig. 4.27) is studied. The device is composed by a triangu-

lar lattice PhC of air holes in GaAs membrane. The lattice constant is

a = 430nm and the holes radius is 0.22a. As depicted in Fig. 4.28, the struc-

ture consists of a H0 cavity side-coupled to a bus (low) waveguide and a drop

(high) waveguide. The radius of the two first rows in both, bus and drop

waveguides, has been increased to enhance the coupling with the cavity.

FDTD simulations aimed to investigate pump-probe operations have been

performed with the same nonlinear parameters for GaAs material as de-

scribed in the last section. As shows Fig. 4.29, the cavity presents a reso-

nance at λ0 = 1456nm. In order to obtain the best performances in terms

of switching contrast, some tests have been made by changing the probe
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Figure 4.29: Linear drop transmission in dB

detuning with respect to the cavity resonance and maintaining fixed the

frequency pump blue shifted by 0.5nm. In Figs. 4.30-4.35 the normalized

(Pout(pump = On)/Pout(pump = Off)) power ratio in the bus and drop

waveguides for probe detuning from 1nm to 3nm are shown. As expected by

the knowledge concerning to the performances of switching via PhC cavities

[9], and in good agreement with them, the maximum switching contrast not

exceed 3.5. This occurs with the probe blue shifted by 3nm, as displayed

in Fig. 4.35, where the required pump power and the corresponding probe

switching contrast obtained have been also indicated. Further increasing the

probe detuning does not lead to any improvement in the switching perfor-

mances.
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Figure 4.30: Bus switching efficiency with probe detuned by 1nm.
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Figure 4.31: Drop switching efficiency with probe detuned by 1nm that shows

a maximum SC achievable of about 1.3 (red curve).
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Figure 4.32: Bus switching efficiency with probe detuned by 2nm.
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Figure 4.33: Drop switching efficiency with probe detuned by 2nm that shows

a maximum SC achievable of about 2.6 (red curve).
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Figure 4.34: Bus switching efficiency with probe detuned by 3nm.
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Figure 4.35: Drop switching efficiency with probe detuned by 3nm corre-

sponding to the best performances: maximum achievable SC of about 3.3

(red curve).
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4.11 Three-ports All Optical Gate (AOG):

optimized design

Finally, in this section some optimized topologies of a three-ports All Opti-

cal Gate (AOG) are developed. The aim is to enhance the performances of

the three-ports switching device previously described. The bottom line idea

is that a better switching contrast can be obtained by exploiting the inter-

ference between multi-resonators that can exhibit very sharp transmission.

In this perspective, the optimization is pursued by numerically investigating

different PhC topologies.

The basic structure is the same PhC discussed in the previous section that

has been modeled by means of the 2D-FDTD nonlinear code by using the

nonlinear coefficients for GaAs membrane material. As before, the device

is made of a photonic crystal triangular lattice of air holes in a thin semi-

conductor membrane. All the configurations share the same lattice constant

a = 430nm, while holes radius is r = 0.22a. The waveguides are W1 ones,

with an inner row of holes with radius 0.29a. A set of two or three H0 cou-

pled cavities with different parameters is used.

In the first topology shown in Fig. 4.36 (a), two coupled H0 cavities with

shifts of 0.18a and 0.19a act as multi-frequency resonator to switch the sig-

nal from bus (bottom waveguide) to drop (top waveguide). As shown in Fig.

4.36 (d) the interference between the cavities makes a very steep peak of

transmission that can lead to high switching performance in pump-probe op-

erations with very low driving power when the probe is slightly blue-detuned

with respect to the maximum of the drop transmission. The linear trans-

mission along the through channel exhibits an insertion loss of 0.22dB at

the operating (probe) frequency (see Fig. 4.36 (c)). Furthermore, the linear

transmission evaluated in the drop channel exhibits a sharp change (30dB) in

the transmission as the frequency changes by 1nm. Switching in pump-probe

regime has been investigated by employing a 6ps Gaussian pump pulses to

drive a continuous-wave probe. The dynamical response (pump-probe degen-

erate operation) modeled by means of the 2D-FDTD nonlinear code exhibits

a switching contrast SC = 55 in the drop channel and a switching contrast

SC = 0.45 in the through one (see Fig 4.37). This has been obtained with
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Figure 4.36: Optimized topology of three-ports switching device with two

cavities. (a) PhC structure. (b) Pattern of the magnetic field on resonance

corresponding to high drop transmission. (c) Linear bus transmission in dB.

(d) Linear drop transmission in dB: in figure pump and probe wavelengths

used for nonlinear operations are indicated. (e) Linear transmission evaluated

by an equivalent CMT model.
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Figure 4.37: Two-cavities design. Nonlinear transmission at the drop (a) and

through (b) port evaluated for different levels of input power.

(estimated) input peak power P0 ≈ 350mW , which is comparable to that

required to have a SC = 3 in the simple device realized with only one cavity.

In the second topology, a system of three cavities with shifts of the holes

set to 0.22a, 0.19a and 0.16a is used (see Fig 4.38 (a)). Figs. 4.38 (b) and

(c) show the linear transmission in the through and drop port, respectively.

The linear transmission in the drop presents a sharp change of 30dB as the

frequency is shifted by 1nm. The insertion loss in the through channel evalu-

ated at the probe frequency is 0.5dB. In this case, in pump-probe degenerate

operation, the expected SC is 205, still with the same power level as above

(see Fig. 4.39 (a) and (b)).
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Figure 4.38: Optimized topology of three-ports switching device with three

cavities. (a) PhC structure. (b) Linear bus transmission in dB. (c) Linear

drop transmission in dB: in figure pump and probe wavelengths used for

nonlinear operations are indicated.
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Figure 4.39: Three-cavities design. Nonlinear transmission at the drop (a)

and through (b) port evaluated for different levels of input power.

Both configurations with two and three cavities exhibit a highly improved

switching contrast by means of interference between the resonant cavities

introduced in the gate section. The efficiency in terms of the SC is shown at

different values of input power in Figs. 4.37 and 4.39. The drop efficiency

(power transferred from input bus to output drop) is about 30% for the first
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configuration and about 40% for the second configuration. The reflected

power is of about 50% in both cases.

4.12 Summary

In this chapter the most relevant nonlinear effects present in semiconduc-

tor materials such as two photon absorption and free carriers dispersion as

well as absorption induced by TPA have been analytically studied. All of

these nonlinear effects have been incorporated in a 2D-FDTD code in order

to model high-performances PhC switching devices. Finally, some optimized

designs of a three-ports All Optical Gate have been analyzed. In particu-

lar, two different configurations have been reported, that in a pump-probe

degenerate operation show a switching contrast of SC ≈ 50 and SC ≈ 200

respectively, resulting far superior to the performance of a single-mode cavity

device operating at the same input power levels.
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Conclusions

This thesis has been focused on the study of nonlinear effects in optical de-

vices realized in semiconductor materials. The Kerr and two photon absorp-

tion nonlinearities have been deeply analyzed as dominant effects in standard

semiconductors. In particular, the study has been developed by investigat-

ing device topologies based on photonic crystals but it should be emphasized

that the results obtained here can be easily extended to any other settings

involving different types of optical structures such as ring resonators and po-

htonic wires.

A first interesting target of this thesis, was the analytical study of the bistable

response in systems affected by TPA nonlinearities by means of the CMT

model. In fact, this theoretical investigation highlighted some important

features about the switching performances of an optical cavity coupled to a

waveguide. In particular, the conditions in terms of the detuning between

the cavity resonance and driving frequency able to trigger the switch have

been obtained, and the performances in terms of switching efficiency have

been related to the quality factor and the modal volume of the cavity.

Another important result is the implementation of a 2D-FDTD nonlinear

code in which all the nonlinear effects have been incorporated. The real-

ization of this numerical tool has firstly required to extend the governing

equations that ruled the nonlinear effects to frameworks in which the elec-

tromagnetic field acquires a specific polarization. Furthermore, in order to

validate the correctness of the simulations, different tests such as comparisons

between the numerical outcomes and CMT models as well as comparisons

between the FDTD results and experimental data have been performed.

Finally in the last part of this work, the knowledge acquired about the physic

of the nonlinear effects, the analysis of theoretical models, the implemen-
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tation of numerical tools, has been exploited for the design of new high-

performances switching devices aimed to realize ultra-fast all-optical signal-

processing. This latter results are currently the basis for the fabrication and

characterization of a new generation of optical devices.
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Appendix A

The Finite Difference Time

Domain (FDTD) method

In this study numerical methods based on time domain techniques that use

spatial and temporal discretization of the electromagnetic differential equa-

tions are applied. One of the best known and widely diffused is the finite

difference time domain (FDTD) approach [26] whose general guidelines and

advantages are briefly described in this appendix. The purpose is to intro-

duce a scheme that is next extended to study the nonlinear dynamics in

semiconductor materials.

The FDTD scheme applies the Yee’s algorithm that solves Maxwell’s curl

equations for both electric and magnetic fields in time and space. In the

Yee’s algorithm the spatial domain is divided in cubic cells, so that the edge

of each cube forms the three dimensional space grid. The E and H spatial

components are positioned in this grid structure so that every E component

is enclosed in a square of four circulating H components and vice versa (see

Fig. A.1). Thereby, the method implicitly applies the Faraday and Ampere

laws. In the time, the Yee’s algorithm calculates the E and H components

at temporal instants that differ of half time step ∆t/2 (see Fig. A.2).

Insight into FDTD method can be obtained by considering for simplicity

the homogeneous Maxwell’s equations in a Cartesian coordinate system in

92



Figure A.1: Yee’s scheme.

linear, isotropic, nondispersive three dimensional media:

∂Ex

∂t
=

1

ǫ

[

∂Hz

∂y
− ∂Hy

∂z
− σEx

]

∂Ey

∂t
=

1

ǫ

[

∂Hx

∂z
− ∂Hz

∂x
− σEy

]

∂Ez

∂t
=

1

ǫ

[

∂Hy

∂x
− ∂Hx

∂y
− σEz

]

∂Hx

∂t
=

1

ǫ

[

∂Ey

∂z
− ∂Ez

∂y

]

∂Hy

∂t
=

1

ǫ

[

∂Ez

∂x
− ∂Ex

∂z

]

∂Hx

∂t
=

1

ǫ

[

∂Ex

∂y
− ∂Ey

∂x

]

(A.1)

With the notation

Ex|i,j,k = Ex(i∆x, j∆y, k∆z) (A.2)

where the grid spatial points are denoted by (i, j, k) = (i∆x, j∆y, k∆z) with

∆x, ∆y and ∆z the spatial step along the three directions x, y and z, and i,

j and k integer number, by space and time discretization, the first equation

of (A.1) for the Ex component becomes
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Figure A.2: The 1D space-time Yee algorithm showing central differences

for the space derivatives and leapfrog over the time derivatives. k represent

electric field node numbers and n is the time step.

Ex|n+1/2
i,j+1/2,k+1/2 =

(

1 − σ∆t
2ǫ

1 + σ∆t
2ǫ

)

Ex|n−1/2
i,j+1/2,k+1/2+

+

(

∆t
ǫ

1 + σ∆t
2ǫ

)[

Hz|ni,j+1,k+1/2 − Hz|ni,j,k+1/2

∆y
−

Hy|ni,j+1/2,k+1 − Hy|ni,j+1/2,k

∆z

]

(A.3)

For the other field components analogous discretized expressions hold. It

is clear that a first advantage of this technique is that the new value of a

electromagnetic component at any grid point depends only on its previous

value and previous values of the other fields at adjacent points. Then, in

very simple way, the Maxwell’s equations are fully solved. Moreover, the

discretized equations result explicit, thus numerical implementations do not

require solving for matrix inversion. Another advantage is that the conti-

nuity of the tangential components of E and H fields is naturally ensured

by the gird structure. Finally, it must be noted that due to their definition,

the central finite difference expression for the derivatives have second-order

accuracy.
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A.1 Reduction to two dimension: TM and

TE modes

If the structure extends to infinity along the z coordinate without any change

in both the geometry and the electromagnetic properties, the electromagnetic

wave is also uniform in z direction and all partial derivatives with respect to

z are zero. In this case the Maxwell’s equations become

∂Hx

∂t
= − 1

µ

∂Ez

∂y
∂Hy

∂t
=

1

µ

∂Ez

∂x

∂Hz

∂t
= − 1

µ

[

∂Ex

∂y
− ∂Ey

∂x

]

∂Ex

∂t
=

1

ǫ

[

∂Hz

∂y
− σEx

]

∂Ey

∂t
= −1

ǫ

[

∂Hz

∂x
+ σEy

]

∂Ez

∂t
=

1

ǫ

[

∂Hy

∂x
− ∂Hx

∂y
− σEz

]

(A.4)

The equations that involve only Hx, Hy, and Ez are designed as transverse

magnetic modes (TM):

∂Hx

∂t
= − 1

µ

∂Ez

∂y
∂Hy

∂t
=

1

µ

∂Ez

∂x

∂Ez

∂t
=

1

ǫ

[

∂Hy

∂x
− ∂Hx

∂y
− σEz

]

(A.5)

whereas the equations that involve only Ex, Ey, and Hz are designed as

transverse electric modes (TE):

∂Ex

∂t
= −1

ǫ

[

∂Hz

∂y
− σEx

]

∂Ey

∂t
= −1

ǫ

[

∂Hz

∂x
+ σEt

]

∂Hz

∂t
=

1

µ

[

∂Ex

∂y
− ∂Ey

∂x

]

(A.6)
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Discretization for the TM modes yields

Ez|n+1/2
i−1/2,j+1/2 =

(

1 − σ∆t
2ǫ

1 + σ∆t
2ǫ

)

Ez|n−1/2
i−1/2,j+1/2+

+

(

∆t
ǫ∆x

1 + σ∆t
2ǫ

)

[

Hy|ni,j+1/2 − Hy|ni−1,j+1/2

]

+

(

∆t
ǫ∆y

1 + σ∆t
2ǫ

)

[

Hx|ni−1/2,j + Hx|ni−1/2,j+1

]

Hx|n+1
i−1/2,j+1 = Hx|ni−1/2,j+1 +

(

∆t

µ∆y

)

[

Ez|n+1/2
i−1/2,j+1/2 − Ez|n+1/2

i−1/2,j+3/2

]

Hy|n+1
i,j+1/2 = Hy|ni,j+1/2 +

(

∆t

µ∆x

)

[

Ez|n+1/2
i+1/2,j+1/2 − Ez|n+1/2

i−1/2,j+1/2

]

(A.7)

and discretization for TE modes yields

Ex|n+1/2
i,j+1/2 =

(

1 − σ∆t
2ǫ

1 + σ∆t
2ǫ

)

Ex|n−1/2
i,j+1/2 +

(

∆t
ǫ∆y

1 + σ∆t
2ǫ

)

[

Hz|ni,j+1 − Hz|ni,j
]

Ey|n+1/2
i−1/2,j+1 =

(

1 − σ∆t
2ǫ

1 + σ∆t
2ǫ

)

Ey|n−1/2
i−1/2,j+1 +

(

∆t
ǫ∆x

1 + σ∆t
2ǫ

)

[

Hz|ni−1,j+1 − Hz|ni,j+1

]

Hz|n+1
i,j+1 = Hx|ni,j+1 +

(

∆t

µ∆y

)

[

Ex|n+1/2
i,j+3/2 − Ex|n+1/2

i,j+1/2

]

+

(

∆t

µ∆y

)

[

Ey|n+1/2
i−1/2,j+1 − Ey|n+1/2

i+1/2,j+1

]

(A.8)

These very simple expressions are suitable for numerical implementation of

electromagnetic propagation in structures that support polarized light. In

particular, since this is the situation of interest for the devices analyzed in

this thesis, they are often applied to the analysis of nonlinear dynamics in

photonic crystal devices.

A.2 Boundary conditions: Perfectly Matched

Layer

At boundaries the set of Eqs. (A.4) must be modified by alternative equations

(boundary conditions) to treat the edge of the computational domain. To
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Figure A.3: Partially filled cells: (a) interface orthogonal to the electric field

component. (b) interface parallel to the electric field component [29].

this end, different constrains (perfectly electric or magnetic material, or pe-

riodical conditions) can be imposed depending on the different situations. If

the structure is thought as an indefinitely extended domain, then the bound-

ary conditions should guarantee the propagation toward infinite without any

spurious reflection. In this case the boundary conditions are named Absorb-

ing Boundary Condition (ABC) [26]. When ABC satisfy the two constrains:

- are extended over a thin layer so that the number of cells involved is very

low and the computational effort is not affected by their presence

- absorb outgoing waves from the interior of the domain without reflecting

them back

then they are said Perfectly Matched Layer (PML) conditions [27].

A.3 Effective permittivity

Effective permittivity method accounts for the boundary condition of the

electromagnetic field at dielectric interfaces. Different shaped dielectric sur-

faces, such as periodic array of holes in a PhC, can generate partially filled

FDTD cells [28], [29]. An approach to minimize the computational errors

emerging to this not fine tuned of dielectric boundary is to assign an ef-

fective permittivity for partially filled cells. The calculation of the effective

permittivity requires both the tangential and the normal components of the

electric field. If the electric field is parallel to the interface, the effective
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permittivity can be derived from the integral form of Ampere’s law, whereas

if the electric field is perpendicular to the interface (see Fig. A.3), it follows

from the integral form of the Faraday’s law. Both parallel and perpendicular

contributions to the effective permittivity can be treated with the following

expression for the dielectric constant [30]:

ǫ|| = fǫ2 + (1 − f)ǫ1 (A.9)

ǫ⊥ =

(

f

ǫ2

+
(1 − f)

ǫ1

)−1

(A.10)

where f is the ratio of the filled area of the cell to the whole cell area and ǫ1,

ǫ2 are the dielectric permittivity of media 1 and 2 respectively. For curved

surfaces, the effective permittivity is the superposition of the normal and the

parallel effective permittivity with respect to the angle between the electric

field and the boundary, therefore the following phenomenological relation can

be used

ǫeff = ǫ||cos
2θ + ǫ⊥(1 − cos2θ) (A.11)

where θ is the angle between the electric field vector and the normal vector

to the boundary.
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Appendix B

Nonlinear FDTD scheme

In this appendix the discretized 2D-FDTD equations that fully account for

the TE polarized light in nonlinear regime are described. The spatial grid is

discretized in cells of size ∆x×∆z in a two-dimensional domain (x, z) where

the i, k indexes denote the coordinates of the single cell. The equations are

updated at the time (n + 1/2)∆t for the electrical field, and at the time

(n + 1)∆t for the magnetic field, being ∆t the temporal step.

99



B.1 Main equations

The coefficients accounting for the nonlinear evolution of the electric field

are set up as follows

G1x
n+1/2(i, k) =

ǫ0

∆t
ǫr,x(i, k) + χ

n+1/2
Kerr (i, k) +

2ǫ0
√

ǫr

∆t
∆n

n+1/2
plasma(i, k)+

+
ǫ0

4

[

χTPA
n+1/2(i, k) + χ

n+1/2
TPA,stored(i, k)

]

+
c0ǫ0

√
ǫrσFCA

2
Nn+1/2(i, k)

G2x(i, k)n+1/2 =
ǫ0

∆t
ǫr,x(i, k) + χ

n+1/2
Kerr,stored(i, k) +

2ǫ0
√

ǫr

∆t
∆n

n+1/2
plasma,stored(i, k)+

+
ǫ0

4

[

χTPA
n+1/2(i, k) + χ

n+1/2
TPA,stored(i, k)

]

+
c0ǫ0

√
ǫrσFCA

2
Nn+1/2(i, k)

G1z(i, k)n+1/2 =
ǫ0

∆t
ǫr,z(i, k) + χ

n+1/2
Kerr (i, k) +

2ǫ0
√

ǫr

∆t
∆n

n+1/2
plasma(i, k)+

+
ǫ0

4

[

χTPA
n+1/2(i, k) + χ

n+1/2
TPA,stored(i, k)

]

+
c0ǫ0

√
ǫrσFCA

2
Nn+1/2(i, k)

G2z(i, k)n+1/2 =
ǫ0

∆t
ǫr,z(i, k) + χ

n+1/2
Kerr,stored(i, k) +

2ǫ0
√

ǫr

∆t
∆n

n+1/2
plasma,stored(i, k)+

+
ǫ0

4

[

χTPA
n+1/2(i, k) + χTPA

n−1/2(i, k)
]

+
c0ǫ0

√
ǫrσFCA

2
Nn+1/2(i, k)

(B.1)

where σFCA is the cross section for free-electrons and free-holes absorption.

Following the order in RHS of Eqs. (B.1), each coefficients stores the linear

polarization, the Kerr effect, the plasma effect, the losses induced by TPA,

and the losses due to FCA, respectively. It is worth to note that the relative

dielectric permittivity is separated in two components x and z in order to take

into account the effective permittivity seen by the two electric components

Ex and Ez as described in last section of appendix A.

By means of these definitions, the time-step equations for the electric field

are written in compact form as follows

Ex
n+1/2(i + 1, k) =

G2x(i + 1, z)

G1x(i + 1, k)
Ex

n−1/2(i + 1, k) − Hy
n(i + 1, k + 1) − Hy

n(i + 1, k)

∆zG1x(i + 1, k)

Ez
n+1/2(i + 1, k) =

G2z(i + 1, z)

G1z(i + 1, k)
Ex

n−1/2(i + 1, k) +
Hy

n(i + 1, k + 1) + Hy
n(i + 1, k)

∆zG1z(i + 1, k)

(B.2)
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For the Kerr susceptibilty, at the step (n + 1/2)∆t, the old χ
n−1/2
Kerr must be

firstly stored and then the corresponding equation can be updated:

χ
n+1/2
Kerr,stored(i, k) = χ

n−1/2
Kerr (i, k)

χ
n+1/2
Kerr (i, k) = c0ǫ0ǫrn2I(i, k)

[

|Ex
n+1/2(i, k)|2 + |Ez

n+1/2(i, k)|2
] (B.3)

where n2I is the nonlinear Kerr coefficient.

Equivalently, the update equations for the TPA losses are given by

χ
n+1/2
TPA,stored(i, k) = χ

n−1/2
TPA (i, k)

χ
n+1/2
TPA (i, k) =

2c0ǫ0ǫrβTPA(i, k)

2

[

|Ex
n+1/2(i, k)|2 + |Ez

n+1/2(i, k)|2
] (B.4)

with βTPA being the TPA coefficient.

The rate equation discretized for the carriers density N writes as

Nn+1(i, k) =
1

co1

c2
0ǫ

2
0ǫrβTPA(i, k)

8~ω0

[

|Ex
n+1/2(i, k)|2 + |Ez

n+1/2(i, k)|2
]2

+

+
co2

co1
N(i, k) +

co3

co1

[Nn(i + 1, k) + Nn(i − 1, k)] +
co4

co1

[Nn(i, k + 1) + Nn(i, k − 1)]

(B.5)

where the coefficients cop with p = 1, 2, 3, 4 are defined as follows

co1 =
2τr + ∆t

2τr∆t
co1 =

2τr − ∆t

2τr∆t

co3 =
D

2∆x2
co4 =

D

2∆z2

(B.6)

with τr the carriers recovery time and D the diffusion coefficient. The same

constraint applied for the Kerr and TPA coefficients must be followed for the

plasma effect, that is firstly stored and then updated:

∆n
n+1/2
plasma,stored(i, k) = ∆n

n−1/2
plasma(i, k)

∆n
n+1/2
plasma(i, k) = − e2

2ǫ0ω2
0m

∗√ǫr

N(i, k)
(B.7)

where e is the electron charge and m∗ the effective mass of the charges.

Finally, the time-step equation for the Hy field is given by

Hn
y (i + 1, k + 1) = Hn−1

y (i + 1, k + 1) +
∆t

µ0∆x

[

En+1/2
z (i + 1, k + 1) − En+1/2

z (i, k + 1)
]

−

− ∆t

µ0∆z

[

En+1/2
x (i + 1, k + 1) − En+1/2

x (i + 1, k)
]

(B.8)
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Figure B.1: Computational domain.

B.2 Computation of energies and powers

Other useful discretized equations are those set up for the time-domain cal-

culation of the energy in a cavity and the power in a waveguide. As sketched

in Fig. B.1, by identifying with the indexes i1e, i2e, i1e and i2e a Carte-

sian region including the cavity, at each time-step the energy stored inside

the cavity can be evaluated by means of two nested loops that realize the

discrete spatial integration:

do ni = i1e, i2e

do nk = k1e, k2e

Energyn+1/2 = Energyn+1/2+

+
ǫ0ǫr(ni, nk

2

[

|En+1/2
x (ni, nk)|2 + |En+1/2

x (ni, nk)|2
]

∆x∆z

end do

end do

(B.9)

Equivalently, the temporal evolution of the power flux that crosses a section

of a waveguide (see definition of the indexes in Fig. B.1) can be numerically
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integrated as follows

do nk = k1p, k2p

Powern = Powern − En+1/2
z (ip, nk)Hn

y (ip, nk)∆z

end do

(B.10)

Finally, it is worth to emphasize that in simulations involving pump and

probe signals, it could be useful to maintain the pump and the probe equa-

tions stored in two different lines.

103



List of publications

Stefania Malaguti, Gaetano Bellanca, Stefano Trillo, ”Two-dimensional en-

velope localized waves in the anomalous dispersion regime”, Optics Letter,

15 Maggio 2008, Vol. 33, No. 10, pp. 1117-1119.

Stefania Malaguti, Stefano Trillo, ”Envelope localized waves of the conil-

cal type in linear normally dispersive media”, Physical Review A, 1 Giugno

2009, Vol. 79, pp. 063803-1 063803-10.

A. Armaroli, S. Malaguti, S. Trillo, C. Conti, A. Fratalocchi, ”Dispersive

shock waves from optical dark beams”, XVIII RiNEm (Riunione Nazionale

di Elettromagnetismo), Benevento, Italy, Sept 6-10, 2010.

A. Armaroli, S. Malaguti, A. Fratalocchi, S. Trillo, ” Control of disper-

sive shock dynamics developing from dark waveforms” in Nonlinear Photon-

ics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper

NWB7; within Advanced Photonics and Renewable Energy OSA Optics and

Photonics Congresses, Karlsruhe, Germany, June 21-24 , 2010.

S. Malaguti, A. Armaroli, G. Bellanca, S. Trillo, S. Combrié, P. Colman, A.
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