Universita degli Studi di Ferrara

DOTTORATO DI RICERCA IN
MATEMATICA E INFORMATICA

CICLO XXVI

COORDINATORE Prof. Massimiliano Mella

KINETIC APPROXIMATION, STABILITY AND CONTROL OF
COLLECTIVE BEHAVIOR IN SELF-ORGANIZED SYSTEMS

Settore Scientifico Disciplinare MAT/08

Dottorando Tutore
Dott. ALBI GIACOMO Prof. PARESCHI LORENZO

Anni 2011/2013






To my family






Contents

Preface

1 Binary interaction algorithms for flocking and swarming dynamics 1

1.1 Imtroduction . . . . . . . . . .. ... 1
1.2 Microscopic models . . . . . .. ..o 4
1.2.1 Cucker and Smale model . . . . . . ... ... ... ...... 4
1.2.2  D’Orsogna-Bertozzi et al. model . . . . . . ... ... ..... 6
1.2.3 Motsch-Tadmor model . . . . . ... ... ... ........ 6
1.2.4  Perception cone, topological interactions and roosting force . . 7
1.3 Kinetic equations . . . . . . ... L L Lo 8
1.3.1 Boltzman-Povzner kinetic approximations . . . ... ... .. 9
1.3.2  Derivation of the mean-field kinetic model . . . . .. ... .. 9
1.3.3 Alternative formulations . . . . ... ... ... .. ...... 12
1.4 Monte Carlomethods . . . . . . ... ... ... ... ......... 13
1.4.1 Asymptotic binary interaction algorithms . . . . . . . . .. .. 13
1.4.2  Mean-field interaction algorithms . . . . . ... ... ... .. 19
1.5 Numerical Tests . . . . . . . . ... . 21
1.5.1 Accuracy considerations . . . . .. .. ... ... L. 21
1.5.2  Computational considerations and 1D simulations . . . . . .. 24
1.5.3 2D Simulations . . . . ... ... L 25
1.5.4 3D simulations . . . ... ... ... ... . 30
1.6 Conclusions . . . . . . . . . ... 33
2 Stability analysis of flocking and mill rings for 2nd order models in
swarming 35
2.1 Introduction . . . . . . . . ..o 35
2.2 Ring Solutions . . . . . . ... L 38
2.2.1 Radius of Flock and Mill Ring Solutions . . . ... ... ... 39
2.2.2  Radius of the Flock and Mill Ring Solutions as N — o0 . . . . 41
2.3 Linear Stability Analysis for Flock Solutions . . . . . .. .. ... .. 43
2.3.1 Stability of Flock Solutions to (2.1) . . . . ... ... ... .. 43

iii



v

24

2.5

CONTENTS

2.3.2 Numerical Tests . . . . . . . . . . . ... .. . 49
2.3.3  Stability of Flock Solutions to (2.3) . . . . .. ... ... ... 52
Stability for Mill Solutions . . . . . . . .. ... ... ... ...... 56
2.4.1 Linear Stability Analysis . . . . . . ... ... 57
2.4.2 Numerical Tests . . . . . .. ... ... ... .. ... 57
Conclusions . . . . . . . . . e 62

Modeling self-organized systems interacting with few individuals 63

3.1 Imtroduction . . . . . . . . .. .. 63
3.2 Microscopic model . . . . ... 64
3.2.1 Classical swarming models . . . . . . ... ... ... ..... 65
3.3 Kineticmodel . . . . ... ... 66
3.3.1 Formal computations of the mean-field limit . . . . . . . . .. 67
3.3.2  Mesoscopic description . . . . . ... .0 71
3.4 Hydrodynamic approximation . . . . . .. .. ... ... ... 71
3.5 Numerical examples . . . . . . . . . ... . o 73
3.5.1 Confinement: Shepherd dogs . . . . . ... .. ... .. .... 73
3.5.2  Defense: Swarm attacked by predator . . . . ... ... ... 74
3.5.3 Followers: Swarm attracted by a leader . . . . . . .. .. ... 74
3.6 Conclusions . . . . . . . . .. . 75
Kinetic description of optimal control problems and applications
to opinion consensus and flocking 77
4.1 Introduction . . . . . . . ... L 77
4.2 Model predictive control . . . . .. ..o oo 79
4.2.1 A receding horizon strategy . . . ... ... ... ... 80
4.2.2  Derivation of the feedback controller . . . . . ... ... ... 81
4.3 Boltzmann description of constrained opinion consensus . . . . . . . . 83
4.3.1 Binary interaction models . . . . ... ..o 84
4.3.2 Main properties of the Boltzmann description . . . .. . ... 87
4.4  Fokker-Planck modeling . . . . .. ... ... ... 0. 89
4.4.1 The quasi-invariant opinion limit . . . . ... ... ... ... 89
4.4.2 Stationary solutions. . . . . . . ... ... ... 92
4.5 Other constrained kinetic models . . . . .. ... ... ... ..... 94
4.6 Numerical examples . . . . . . . . .. ... 96
4.7 Mean-field model predictive control of flocking behavior . . . . . . . . 101
4.7.1 MPC for flocking models . . . . . ... ... 101
4.7.2 Mean-field description . . . . .. ... L 102
4.7.3 Mean-field model predictive control limit . . . . . . ... ... 104
4.7.4 Numerical tests . . . . . . .. ... Lo 106

4.8

Conclusions . . . . . . . . 109



CONTENTS v

5 Asymptotic Preserving schemes for the time discretization of opti-

mal control for hyperbolic problems with relaxation 111
5.1 Introduction . . . . . . . . . . . . 111
5.2 The semi-discretized problem . . . .. ... .. ... ... ... .. 113
5.3 Optimal choice of M . . . . . . .. .. o 117
5.4 Numerical results . . . . . . . . ... o 118
54.1 Order analysis . . . . . . . . ... o 119
5.4.2 Computational results on the optimal control problem . . . . 121

5.5 Definitions of implicit—explicit Runge-Kutta methods . . .. .. .. 122
5.6 Proof of Lemma 53.1 . .. .. .. ... ... ... ... 124
5.7 Conclusions . . . . . . . . . e 125
Bibliography 125

Acknowledgments 141






Preface

“Look deep into nature, and then you will understand
everything better.”

Albert Einstein

Rome, outside the main station, a huge flock of birds flies around, shaping in ever-
changing geometrical figures. Philippine, some meters below the sea level, a shoal
of fishes creates a massive rotating body, scaring any potential predator. People
can only stare whit amazed eyes at these natural phenomena and at their incred-
ible level of organization, as if a superior intelligence steers them. The beauty of

Figure 1: On the left, a school of fishes shows a typical milling behavior on the right,
murmuration in Rome.

these phenomena may justify a detailed study, but the main motivation arises from
observing that the property of a group of agents to create ordered patterns is non-
trivial. Aristoteles outlined this concept in his famous quote “the whole is greater
then the sums of the parts”, and this idea has evolved across ages till the modern
definition of self-organized system, namely a system that exhibits a spontaneous or-
der out of a multiplicity of simple interactions. Its first formalization was proposed
by the cybernetician W. R. Ashby in [13, 14| and is deeply interconnected with the
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idea of emergence behavior, as “the arising of novel and coherent structures, patterns
and properties during the process of self-organization [...[”, [63].

Many natural systems show emerging properties, such as cells, swarming dynam-
ics, galaxy formations, chemical compounds, organisms or crystals; but we can also
identify self-organized systems in human artifacts, for example in market economies,
crowd dynamics, vehicular traffics, opinion formations, wealth distributions, net-
works, cybernetics or artificial intelligences.

The scientific community has been therefore attracted by the study of self-
organized systems, in various areas such as biology [105, 45], physics [158, 103],
mathematics [47, 75, 66, 23, 24|, engineer |91, 15|, computer science [35, 150] ,
economics and sociology [130, 154], thus designing a fruitful and multidisciplinary
research field.

Figure 2: On the left, computer animation of a swarm from the movie The Croods,
on the right fleet of robots from the open source project swarmrobot.org.

This research field has been exponentially growing in the last decades, since mas-
sive computing techniques allowed more powerful analysis of self-organized systems
and for the development of several applications. At the end of 80s, Boids simulations
by C. Reynolds', [150], shaded light on the usage of a simple swarming model, then
extensively developed in computer graphics for movies and video games, [76, 163].
New perspectives arose with the concept of swarming intelligence, [35], the main idea
was to use the self-organization property of swarming system to perform complex
tasks, for example in optimization, [116], or in engineer with swarm robotics, where
an ensemble of small size robots performs particular actions, improving efficiency
and cost saving, [26, 126]. Other, civil engineers are interested in crowds models to
test the load of structures and to plan evacuation strategy in buildings [69, 165]. In
aerospace engineering, synchronization systems for flight formations of several space-
craft missions (DARWIN, CloudSat, CanX), based on flocking models [40, 148, 136].

thttp://www.red3d.com/cwr /boids/
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The large interest in self-organized system led also to the development of novel
techniques, models and theorems in mathematics. From a mathematical point of
view, a description of self-organized models is provided by complex system theory,
where the overall dynamic is depicted by a nonlinear ODEs system. In the following
we will refer to these models as microscopic description level.

Microscopic models describing the evolution of a population of agents are usually
called individual based models or interacting multi-agent systems. The different
levels of dimensionality and complexity these models present are related to the
behavior under investigation.

In terms of socio-economic dynamics, such as consensus formation or wealth
exchange, we study the evolution of a single property, e.g. the agent income or
opinion, whereas in terms of animal, bacteria or crowd behaviors, we most likely look
to the variation of velocity and position of the agents, which usually corresponds
to a second order ODEs system. The aim of this thesis will mainly focus on these
two types of dynamics, but related models with higher dimensionality and order can
be included, as modeling the behavior of market customers or social-network users
potentially requires the evolution of more than two single properties.

In general microscopic models for interacting agents have the same structure
of many classical problems in computational physics which require the evaluation
of all pairwise long range interactions in a large ensembles of particles. The N-
body problem of gravitation (or electrostatics) is a classical example. Such problem
involves the evaluation of summations of the type

N
SN = Z w; K (z;,x;), V.
=1

A direct evaluation of such sums at N target points clearly involve a O(N?) cost,
therefore study of microscopic model for a large system of individuals implies a
considerable effort in numerical simulations, as microscopic models based on real
data may take into account very large numbers of interacting individuals, [67, 158].

A step towards the reduction of computational complexity of the microscopic
model is represented by the idea of the application of more general level of de-
scriptions, which has been extensively developed in the kinetic research research
(see [138, 75, 53, 72, 73, 100]) and it implies that the derivation of mesoscopic and
macroscopic models presents a first approximation of the original dynamic.

The basic idea of kinetic equation lies on a different level of phenomena descrip-
tion: instead of focusing on the evolution of single particles, it analyzes the density
of particles as in the classical Boltzmann gas dynamic. The interest of kinetic equa-
tion arises in several disciplines, in astrophysics for galactic dynamics, in molecular
biology for chemotaxis, in plasma physics |77], medical physics for radiotherapy [110]
and animal swarming [53].



A rigorous derivation of a kinetic model from the microscopic particle system

constitutes a mathematical issue, also in the case of the Boltzmann equation the
rigorous limit holds just for a short time, but not global result it is known yet, [122].
For interacting multiagent systems in swarming and flocking different approaches
have been used, like BBGKY hierarchy [100], or mean field limit [47], or the binary
interaction approximation, [155, 149]. Certainly by passing from a microscopic
description based on phase-space particles (z;(t),v;(t)) to a mesoscopic level where
the object of study is a particle distribution function f(x,v,t) redefines the model
in a new one.
Specifically kinetic equations for interacting agent system are described typically
by Vlasov-type equations or Fokker—Planck equations, in presence of noise effects.
Such context usually involve high dimensional and nonlinear terms opening several
directions on the numerical approach to use, [86, 98, 6].

The aim of this thesis is to design new perspectives in kinetic modeling of self-
organized systems, with particular attention to the development of numerical meth-
ods and extensions to control dynamics. Each chapter is self consistent, with its
own introduction, results and conclusion, each one referring to a research article,
already published or under revision process in peer-review journals.

Chapter 1 reports the research made in |7], jointly with Lorenzo Pareschi, where
inspired by the techniques introduced in [34] for plasma physics, we develop a direct
simulation Monte Carlo methods based on a binary collision dynamic described by
the corresponding kinetic equation. The theoretical ground of the algorithms is rep-
resented by the stochastic approximation through the Boltzmann-Povzner formula
of the mean-field dynamic for a general swarming models, [53], which reads

atf""” ) vxf =—V,- (g[f]f)

The method developed permits to approximate the microscopic dynamic of N par-
ticles at a cost directly proportional to the number of sample particles, Ny, involved
in the computation, thus avoiding the quadratic computational cost. Furthermore,
in contrast with classical methods for Boltzmann equation [34], the nature of the
approximating equations is such that the resulting Monte Carlo algorithms are fully
meshless, due to the long-range interactions of classical swarming models.
In order to make a step further in the direction of more realistic swarming models,
several features have been taken into account, for example roosting forces, topological
interactions, limited perception and more refined dynamics [51, 19, 138, 53]. Several
numerical results show the efficiency of the algorithms proposed.

Classical multiagent interacting models for sociological or biological phenomena
are based on the so called three zone model, which enlightens three main interaction
rules: attraction, repulsion and consensus. Just by these simple interaction dynamics
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complex behaviors emerge and from the analytical point of view interesting questions
arise in terms of model solution stability [28, 80].

/"’H‘:_.\'\ o ///./
S .,///// g /
f; S S .////'/
7hr LAY SO pass
DTyrrr L g AP Y
:,QI - . { s / o
s 1{\.\ _/././/J /.j //'/‘//.’/
RN '///‘//'///{/
P ,//.////./
N ed of ////

Figure 3: Milling and flocking patterns arising in swarming models with attrac-
tion/repulsion dynamics.

Chapter 2 reports the joint work [2], with José A. Carrillo, Daniel Balagué, James
Von Brecht, where we address our interest to the linear stability of particular solu-
tions of second order individual based models for biological swarming, called flock
ring and mill ring solutions.

The individuals interact via a nonlocal interaction potential that is repulsive in the
short range and attractive in the long range, which in general reads

ZtiIUi

0, ﬂ%w+—ZVW ),

j#i

for particular choices of function S(-, -) and we relate the instability of the flock rings
with the instability of the ring solution of the first order model, of the form

vz—ZVW

j#i

We observe that repulsive-attractive interactions lead to clustering and fattening
instabilities for flock rings that prove analogous to similar instabilities that occur for
ring solutions of the first order model. Finally, we numerically explore mill patterns
arising from these interactions by varying the asymptotic speed of the system. The
results of this chapter have been extended in [55], for the case of non linear stability
of flock ring solutions.

Chapter 3 develops a framework for the description of a group of large number
of agents, influenced by a small number of external individuals. The result refers
to [6], a joint research with Lorenzo Pareschi, where we start from the microscopic
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dynamic, deriving two other different levels of description: the mesoscopic (or ki-
netic) level through a mean-field limit and the macroscopic level through a suitable
hydrodynamic approximation. In both cases the resulting dynamic appears as cou-
pled system of PDEs and ODEs, similar settings has been studied in [81] for opinion
formation and for pedestrian dynamic in [66].

Figure 4: On the left a shoal of fishes reacting to shark attacks, on the right sheep-
dogs regrouping the herd.

In a biological context, this corresponds to the behavior of a flock of birds or a
school of fish attacked by one or more predators, or the movement of a herd of sheep
guided by a sheepdog. From the modeling viewpoint this involves a microscopic dy-
namic described by classical flocking models interacting with a set of few individuals
characterized in way similar to what was done in [59]. Moreover, we endow the clas-
sical dynamic of interaction both with a metric as well as a topological interaction
rule, [19].

From a general view point the idea presented in Chapter 3 can be interpreted as
a first effort to control a self-organized system through the presence of an external
dynamic. A natural improvement of this approach implies the use of optimal control
theory to steer the system to purse a desired state. Such problems have been studied
initially in engineer and computer science communities, in particular for applications
in robotics [91, 128, 137]. Most recently mathematics have focused their attention
to these problems from different point of views: at the level of microscopic [37], for
mean-field models [48, 88, 87, 27| and in conservation laws models in [60].

In a joint research with M. Herty and L. Pareschi, in [5], we worked on feedback
control of such processes, which can be used to study the exterior influence of the
system dynamics. We report the results of this approach in Chapter 4, where an
optimal control problem for a large system of interacting agents is considered using
a kinetic perspective. As a prototype model we analyze a microscopic model of
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opinion formation under constraints, which reads as follows

N
1
w; = N;P(wj,wz)(w] w;) + u,
/(1N v
u = argminf (— Z(wj —wa)” + —u2> dt,
0 Nj:l 2

where w € J = [—1, 1], for some choice of P(-,-) and wy. The aim of the chapter is
to give a kinetic description of this optimal control problem, therefore a Boltzmann-
type equation based on a model predictive control formulation is introduced and
discussed. The main difference respect to classical swarming models is introduced
by the bounds of w, which must be preserved by, the Boltzmann equation. In par-
ticular, the receding horizon strategy permits to embed the minimization of suitable
cost functional into binary particle interactions, where a noise component is added.
The corresponding Fokker-Planck asymptotic limit is derived and reads and explicit
expressions of stationary solutions are given.

The last part of Chapter 4 extends the methodology used to the non-homogeneous
case, whereas optimal control problem is solved for mean-field flocking models. Op-
timal control problems for refined flocking models have been recently investigated in
a similar setting at kinetic level in, [88, 49|, introducing the concept of sparse control
and for microscopic model [37], where the idea is to control the swarm through the
action of a population of leaders. Here we derive a corresponding kinetic approxi-
mation of the control problem, through the mean-field limit. Extensions to a kinetic
description of optimal control problem through leaders are under investigation.

In Chapter 5 we are also interested in optimal control problems for kinetic equa-
tions and report a recent result obtained [3], together with M. Herty, C. Jorres, L.
Pareschi. Many applications, from aerospace and mechanical engineering to the life
sciences, involve a systems of differential equations of the form

Y(0) = Fu(0).1) + Zg(u(0),0),

in particular the development of numerical methods for time discretization of opti-
mal control problems involving differential equations has been an intensive field of
research [101, 107].

More precisely, we consider the development of implicit-explicit (IMEX) time in-
tegration schemes for optimal control problems of boundary problems governed by
the Goldstein—Taylor model. In the diffusive scaling this model is a hyperbolic ap-
proximation to the heat equation. We investigated the relation of time integration
schemes and the formal Chapman-Enskog type limiting procedure. For the class
of stiffly accurate implicit-explicit Runge-Kutta methods (IMEX) the discrete opti-
mality system also provides a stable numerical method for optimal control problems
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governed by the heat equation. The methodology presented opens new perspec-
tives to extend the same techniques for radiative transfer equation, which gives a
description of radiotherapy process in biomedical applications [110, 4].



CHAPTER 1

Binary interaction algorithms for flocking and
swarming dynamics

1.1 Introduction

The study of mathematical models describing collective behavior and synchronized
motion of animals, like bird flocks, fish schools and insect swarms, has attracted a
lot of attention in recent years |1, 50, 66, 54, 141, 67, 80, 138, 158, 47]. In biolog-
ical systems such behaviors are observed in every level of the food chain, from the
swarm intelligence of the zoo plankton, to bird flocking and fish schools, to mammals
moving in formation [84, 113, 142|. Beside biology, emerging collective behaviors
play a relevant role in several applications involving the dynamics of a large number
of individuals/particles which range from computer science [150], physics [98] and
engineering [124] to social sciences and economy [46]. We refer to [141] for a recent
review of some of the mathematical topics and the applications involved.

Naturally occurring synchronized motion has inspired several directions of re-
search within the control community. A well-known application is related to for-
mation flying missions and missions involving the coordinated control of several au-
tonomous vehicles [120]. There are several current projects which are dealing with
the formation flying and coordinated control of satellites, like the DARWIN project
of the European Space Agency (ESA) with the goal of launching a space-based
telescope aiding in the search for possible life-supporting planets, or the PRISMA
project led by the Swedish Space Corporation (SSC) which will be the first real
formation flying space mission launched [70].

In this manuscript we will focus on general models which are capable to reproduce
flocking, swarming and other collective behaviors. Most of the classical models
describing these phenomena are based on the simple definition of three interacting
zones, the so called three-zones model |10, 114].

Let us briefly summarize the three-zones assumptions. We define three regions

1



around each individual: a short-range repulsion zone, an intermediate velocity align-
ment zone and a long-range attraction zone (see Figure 1.1). Each interaction be-
tween individuals is evaluated accordingly to the relative position in the model.

Attraction zone

Repulsion zone .
Alignment zone

Figure 1.1: Sketch of the three-zone model.

e Repulsion zone: when individuals are too close each other they tend to move
away from that area.

o Alignment zone: individuals try to identify the possible direction of the group
and to align with it.

e Attraction zone: when individuals are too far from the group they want to get
closer.

Typically different interaction models are taken in the different zones |1, 80] or the
modelling is focused on a specific zone, like the alignment /consensus dynamic [67,
138]. Of course the particular shape and size of the zones depends on the specific
application considered. For example recent studied on birds flocks suggest that each
bird modifies its position, relative to few individuals directly surrounding it, no
matter how close or how far away those individuals are [19]. It is not clear however
if this applies also to other kind of animals.

Studying this kind of dynamics for large system of individuals implies a con-
siderable effort in numerical simulations, microscopic models based on real data
my take into account very large numbers of interacting individuals (from several
hundred thousands up to millions). Computationally the problems have the same
structure of many classical problems in computational physics which require the
evaluation of all pairwise long range interactions in a large ensembles of particles.
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The N-body problem of gravitation (or electrostatics) is a classical example. Such
problems involve the evaluation of summations of the type

N
SlN = Z UUK(Z}',Z']‘), Y 1. (11)
j=1

A direct evaluation of such sums at N target points clearly requires O(N?) opera-
tions and algorithms which reduce the cost to O(N®) with 1 < a < 2, O(N log N)
etc. are referred to as fast summation methods. For uniform grid data the most
famous of these is certainly the Fast Fourier Transform (FFT). In the case of gen-
eral data most fast summation methods are approximate methods based on an-
alytical considerations, like the Fast Multipole method [98|, Wavelets Transform
methods [30] and, more recently, dimension reduction using Compressive Sampling
techniques [46], or based on some Monte Carlo strategies at different levels [43].
Extensions of the above mentioned approaches to kinetic equations are discussed for
example in [140, 125, 9, 86, 143].

From a mathematical modeling point of view, these problem have been developed
extensively in the kinetic research community (see |72, 100, 54]) where the derivation
of kinetic and an hydrodynamic equations represent a first step towards the reduction
of the computational complexity. Of course, passing from a microscopic description
based on phase-space particles (x;(t), v;(t)) to a mesoscopic level where the object
of study is a particle distribution function f(x,v,t) redefines the model in a new
one where new methods of solution are required.

In this paper we are going to follow this research path in two main directions: first
we review the derivation of the different kinetic approximations from the original mi-
croscopic models and then we introduce and analyze several stochastic Monte Carlo
methods to approximate the kinetic equations. Monte Carlo methods are the most
well-known approach for the numerical solution of the Boltzmann equation of rar-
efied gases in the short-range interactions, and many efficient algorithms have been
presented [32, 16, 43, 143]. On the other hand the literature on efficient Monte Carlo
strategies for long-range interactions, and thus Landau-Fokker-Plank equations, is
much less developed but of great interest in the field of plasma physics [34, 77].

Here, inspired by the techniques introduced in [34, 77| for plasma, we develop di-
rect simulation Monte Carlo methods based on a binary collision dynamic described
by the corresponding kinetic equation. The methods permit to approximate the mi-
croscopic dynamic at a cost directly proportional to the number of sample particles
involved in the computation, thus avoiding the quadratic computational cost. The
limiting behavior characterizing the mean-field interaction process of the particles
system is recovered under a suitable asymptotic scaling of the binary collision pro-
cess. In such a limit we show that the Monte Carlo methods here developed are in
very good agreement with the direct evaluation of the original microscopic model
but with a considerable gain of computational efficiency.



The rest of the manuscript is organized as follows. In the first section we present
some of the classical microscopic models for flocking and swarming. Generalization
of the notion of visual cone [54]| are also discussed. Since the interaction is non
local, the derivation of the limiting mean-field kinetic equation is made through a
Povzner-Boltzmann kinetic equation [149] in the anologous situation of the so-called
grazing collision limit [53]. To solve the resulting Boltzmann-like mesoscopic partial
differential equation we introduce different stochastic binary interaction algorithms
and compare their computational efficiency and accuracy with a direct evaluation
of the microscopic models and a stochastic approximation of the mean-field kinetic
model. We show that the new approach permits to reduce the overall cost from
O(N?) to O(N) operations. In particular we show that the choice ¢ = At, where
¢ is the small scaling parameter leading to the mean field kinetic model, originates
binary interaction algorithms consistent with the limiting behavior of the particle
system. Furthermore, in contrast with classical methods [34, 77|, the nature of the
approximating equations is such that the resulting Monte Carlo algorithms are fully
mesh less. In the last section of the paper we report several simulations in two and
three space dimensions of different microscopic models solved by the binary Monte
Carlo method in the above scaling.

1.2 Microscopic models

In this section we review some well-known microscopic models of flocking and swarm-
ing (see |67, 80, 138] and the references therein). We are interested in the study of
a dynamical system composed of N individuals with the following general structure

€T; = Uy, Zzl,...,N,

N
1.11‘ = S(Uz) + % Z [H(mi,xj)(vj — U,’) + A(.’L’i,l’j) + R($Z, Ij)] wa((L'i,.Tj,Ui)
=1

(1.2)
where (z;,v;) lives in R*, d > 1, S(v;) describes a self-propelling term, H(x;,x;)
the alignment process, A(z;, ;) the attraction dynamic and the term R(z;,z;) the
short-range repulsion. In (2.1) the multiplicative factor ¢, (x;, z;,v;) € [0,1] takes
into account the effects of space perception as a function of some vector of parameters
a.

1.2.1 Cucker and Smale model

Cucker and Smale model is a pure alignment model, no repulsion or attraction or
other effects are taken in account, see [67, 68] and [53]. The classical model reads
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as follow

iiZUi

L i=1,....N, (1.3)
Vi = D H(jz — i) (v — )

Jj=1

where H(|z; — z;|) is a function that measures the strength of the interaction be-
tween individuals 7 and j , and depends on the mutual distance, under the assump-
tion that closer individuals have more influence than the far distance ones.

A typical choice of function H is the following

K

H(T)Zmy

(1.4)
where K,¢ > 0 are positive parameters and v > 0. Under this assumptions it can
be shown that well-posedness holds for the initial value problem of (1.3) and the
solution is mass and momentum preserving, with compact support for position and
velocity, see for more details [47, 99].

Moreover in [67, 53| it was established that the parameter 7 discriminate the
behavior of the solution, in the following way

Theorem 1.2.1 Let D(t) = 5., |i(t) — z;(t)]* and A(t) = 3lvi(t) —v;(0)]*. If
v < % then

(i) exist a positive costant By such that: T'(t) < By for all t € R.
(ii) A(t) converge towards zero as t — 0.
(11t) The vector x; — x; tends to a limit vector Z;;, for alli,j =1,...,N.

In other words, the velocity support collapses exponentially to a single point
and the flock holds the same disposition. From this theorem we recover the notion
of unconditional flocking in the regime v < % Ify > % in general unconditional
flocking doesn’t follow, but under some conditions on initial data flocking condition
is reached, see [54].

Note that standard Cucker-Smale model prescribes perfectly symmetric interac-
tions and takes in account only the alignment dynamic. As a result total momentum
is preserved by the dynamics. The introduction of a limited space perception (like a
visual cone) breaks symmetry and momentum conservation. This choice corresponds

to take a function for the strength of the interaction of the type
Ha(xi7$j7vi) = H(|l’1 —Z'ija(ZI?i,ﬂ?j,’Ui), (15)

where the parameter vector « is related, for example, to the width of the visual
cone.



1.2.2 D’Orsogna-Bertozzi et al. model

The microscopic model introduced by D’Orsogna, Bertozzi et al. [80] considers a
self-propelling, attraction and repulsion dynamic and reads

abizvi

v = (a—b[v, i__zvmz (Jo; — i)

Jj#1

where a, b are nonnegative parameters, U : R? — R is a given potential modeling
the short-range repulsion and long-range attraction, and N is the number of indi-
viduals. Function U gives us the attraction-repulsion dynamic typically described
by a Morse potential

U(r) = —Cpe™ 4 + Cre™"/', (1.7)

where Cy, Cg,la,lr are positive constants measuring the strengths and the char-

acteristic lengths of the attraction and repulsion. In (1.6) the term (a — blv;|*)v;

characterizes self-propulsion and friction. Asymptotically this term give us a de-

sired velocity, in fact for large times the velocity of every single particle tends to
a/b.

The most interesting case in biological applications occurs when the constants
in the Morse potential satisfy the following inequalities C' := Cr/Cy > 1 and [ :=
[r/la < 1, which correspond to the long range attraction and short range repulsion.
Moreover the choice of the parameters fixes the evolution of the N particles system
towards a particular equilibrium. The following distinction holds: if CI? > 1 then
crystalline patterns are observed and for C1¢ < 1 the motion of particles converges
to a circular motion of constant speed, where d > 2 is the space dimension. In [80]
a further study of the parameters can be found.

1.2.3 Motsch-Tadmor model

In a recent work [138] the authors propose a modification of the classical Cucker-
Smale model as follows

J.Z'iz’l}i

where h is defined by

N
h(l’z‘,ﬂfj) = }IU;—{}—I_)Z‘JD, ﬁ(ﬂ?z) = % Z H(‘%Z — $k‘)
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The model differs from the classical one, since the influence between two particles
H(|z; — z;|) is weighted by the average influence on the single individual 4. In this
way the function h(z;,z;) loses in general any kind of symmetry property of the
original Cucker-Smale dynamic.

We emphasize, however, that in our general setting this model is included in
the Cucker-Smale alignment dynamic of type (1.5) with a particular choice for the
function defining the space perception of the form

1
This can be interpreted as a higher perception level of zones where the individuals

have a higher concentration and a lower interest in zones where individuals are more
scattered.

wa(xi,xj,vi) = (19)

1.2.4 Perception cone, topological interactions and roosting
force

For interacting animals like birds, fishes, insects the visual perception of the single
individual plays a fundamental role [65, 83, 84]. In [54] the authors introduce in the
dynamic a further rule: the wvisual cone. A visual cone identifies the area in which
interaction is possible and blind area where can not be interaction. Mathematically
speaking the visual cone depends on an angle, 6, that give us the visual width.
Together with position and velocity the visual area can be described as follows

0. 6) = o, Wimy)u }
Y(zi,v;,0) {y e R%: T cos(0/2) ¢ . (1.10)
As already discussed the introduction of a visual cone breaks the typical symmetry
of the interaction (see Figure 1.2).

The drawback of this choice is that a single individual that has no one in his visual
cone, never changes his direction. For real situations this assumption is clearly too
strong, since many other stimuli are received by the surrounding. We cannot ignore
other perceptions like hearing, smell and visual memory. For example fishes use
their visual perception mostly on large/medium distance whereas on medium /short
distance they rely on their lateral line. These observations lead naturally to improve
the idea of a visual cone by introducing a perception cone as follows: we assign two
different weights measuring the strength /probability of the interaction. A weight p;
in the case of strong perception and p, in case of weak perception, with 0 < py <
p1 < 1. Note that taking p; = 1 and p, = 0 we have the standard visual cone. For
example, in the simulation section we consider a perception cone v, a = (6, p1, p2),
with the following form

Yo (25, 25,0;) = p2 + (p1 — P2) s 00,0) (7)), (1.11)



Figure 1.2: One of the possible configurations in the interaction with a perception
cone. Individual j is perceived by individual ¢ but not vice versa.

where 1y, 4,0 () is the indicator function of the set X(z;,v;,6) defined according
to (1.10).

Related efforts to improve the dynamic consider also different ingredients like
topological interactions where individuals interact only with the closest individuals
and with a limited number of them, see [19, 66]. Another variant concerns the
introduction of a term describing a roosting force [51, 1|. In fact, flocking phenomena
tends to stay localized in a particular area, this force acts orthogonal to the single
velocity, giving each particle a tendency towards the origin.

1.3 Kinetic equations

For a realistic numerical simulation of a flock the number of interacting individuals
can be rather large, thus we need to solve a very large system of ODEs, which can
constitute a serious difficulty. An alternative way to tackle this problem is to con-
sider a nonnegative distribution function f(z,v,t) describing the number density of
individuals at time ¢ > 0 in position x € R? with velocity v € R?. The evolution of
f(z,v,t) is characterized by a kinetic equation which takes into account the motion
of individuals due to their own velocity and the velocity changes due to the inter-
actions with other individuals. Following |54] we consider here binary interaction
Boltzmann-type and mean-field kinetic approximation of the microscopic dynamics.
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1.3.1 Boltzman-Povzner kinetic approximations

In agreement with (1.3) and (1.5), we consider a microscopic binary interaction
between two individuals with positions and velocities (z,v) and (y,w) according to

v* = (1=n(Ha(lz — yl,v))v + nHa(|z =y, v)w,
(1.12)
w* = nHa(lz —yl, wjv + (1 = n(Ha(lz — y|, w))w,

where v*, w* are the post-interaction velocities and 7 a parameter that measures
the strength of the interaction. Analogous binary interactions can be introduced for
other swarming and flocking dynamics like D’Orsogna-Bertozzi [54].

We describe the interaction of the sistem with following integro-differential equa-
tion of Boltzmann type

(@uf 40Tl 0,0) = 2QUF, ) 0,10,

Q.5 = [, (G om0 - fo0. 0w, )) dudy

(1.13)

where (vy, w, ) are the pre-interacting velocity that generate the couple (v, w) accord-
ing to (1.12), J is the Jacobian of the transformation of (v, w) to (v, w,). Without
visual limitation the Jacobian reads J = (1 —2nH(|z —y|))?. Note that, at variance
with classical Boltzmann equation the interaction is non local as in Povzner kinetic
model [149].

Let us introduce the time scaling

t—t/e, n = A, (1.14)

where A is a constant and ¢ a small parameter. The scaling corresponds to assume
that the parameter n characterizing the strength of the microscopic interactions is
small, thus the frequency of interactions has to increase otherwise the collisional
integral will vanish. This corresponds to large scale interaction frequencies and
small interaction strengths, in agreement with a classical mean-field limit and simi-
larly to the so-called grazing collision limit of the Boltzmann equation for granular
gases [134].

1.3.2 Derivation of the mean-field kinetic model

First of all let us remark that the dynamic (1.12) doesn’t preserve the momentum,
as consequence of the velocity dependent function H, we have

v+ wt =v+w—n(Hy(lzr—y|,w) — Hy(|z —y|,v))(w —v). (1.15)
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Moreover under the assumptions |H,(r,v)| < 1 and n < 1/2 , it is easy to prove
that the support of velocity is limited by initial condition

vt = (1 =nHa(lz =yl v))v + nHa(lz —y|,v)w < max{[v], [w[}. (1.16)

Considering now the weak formulation of (1.13) the Jacobian term disappears
and we get the rescaled equation
0
° o(z,v) f(x,v,t)dvdr + J (v-Vo(z,v))f(z,v,t)dvdr =
525 R2d R2d
X (1.17)

2|00 = o) .00, 0, dvdadody

€

for ¢ > 0 and for all ¢ € C;°(R?*?), such that

lim o(z,v) f(z,v, t)dvdr = o(z,v) fo(z,v)dvdz, (1.18)
t—0 R2d R2d
where fo(z,v) is the starting density.
For small values of € we have v* ~ v thus we can consider the Taylor expansion
of ¢(x,v*) around v up to the second order we obtain the following formulation to
the collisional integral

lfRM (p(z,v*) — d(x,0)) f(z,0,t) f(y, w, t)dvdzdwdy =

€

= )\f (Voo (z,0) - (w—0))Hu(z,y,0) f(z,0,t) f(y, w, t)dvdzdwdy
RA4d

>

=1(0)
d ~
%p(x, v
+ )‘25 fR‘id [ Z %(w] o Uj)2] (Ha(mv Y ’U))2f(£C, v, t)f<y7 w, t)d’l)dl’d’ll)dy
7,7=1 2
=5(50)

(1.19)

for some © = 7o+ (1 —7)v*, 0 < 7 < 1. In the limit ¢ — 0 the term I5(f, f) vanishes
since the second momentum of the solution is not increasing and H,(z,y,v) < 1
hence [53]

B(f. D)l < 20w )l [ [0 fow,v)dod. (1.20)

R
Thus in the limit the second-order term can be neglected and I;(f, f) constitutes
an approximation of the collisional integral Q(f, f), in the strong divergence form

L(f,f)=-V,- (w—v)Huo(x,y,v) f(y,w,t) f(z,v, t)dwdy, (1.21)

R2d
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or equivalently in convolution form [53]

L) =V - {f(z,0,)[(Ha(2,y,0)Ve(v)) = fl(z, 0, 1)}, (1.22)

where e(v) = |v]|?/2 and = is the (x, v)-convolution. As observed in [53], the operator
I (f, f) preserves the dissipation proprieties of original Boltzmann operator.
Finally we get the mean-field kinetic equation

Of +v-Vaf = =2V, (£(f)f) (1.23)

g(f) = Ha(xv Y, U)(w - U)f(ya w, t)dwdy-

R2d
As noted in [1], the continuos kinetic model (1.23) and the microscopic one (1.3)-
(1.5) are really the same when we take the discrete N-particle distribution

0.0) = 5 20l = ()30 - (1),

where §(-) denotes the Dirac-delta function.

Remark 1.3.1

e Kinetic formulation for the D’Orsogna Bertozzi et al. with perception cone
can be derived in the same way and yields the mean-field model

ﬁtf+v'vzf+vv'(5'(v)f) = *)‘vv' (f(xvv7t)f Za(xu y?”)f(%wvt)dydw) )
R

2d
(1.24)
where Zy(x,y,v) = (A(z,y) + R(z,y))Va(x,y,v) represents the attraction re-
pulsion term.

e In [106/] the authors observed that a certain degree of randomness helps the
coherence in the collective swarm behavior. Following [5/], if we add in (1.3)
a nonlinear noise term depending on function H, and perform essentially the
same deriwation of the above paragraph we obtain the kinetic equation

Ouf +v-Vof = =AVy - (§(f)f) + oAu[(Ha « p) f], (1.25)

where p = p(x,t) represent the mass of the system and o = 0 the strength of
the noise. If Hy(x,y,v) = H(x,y), the right hand side can be written as a
Fokker-Plank operator

Vo (0(H +p)Vof — N(F)S),

and thus a global Maxwellian function is a steady state solution for the equa-
tion (1.25).
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1.3.3 Alternative formulations

In this section we present some alternative formulations of the Boltzmann equation
describing the binary interaction dynamics for alignment. All the formulations share
the property that in the mean-field limit originate the same kinetic model (1.23).

The Boltzmann equation (1.13) has much in common with a classical Boltzmann
equation for Maxwell molecules, in the sense that the collision frequency is indepen-
dent of the velocity and position of individuals. An alternative Boltzmann-like
kinetic approximation is obtained with the interaction operator

Q. = [ Holoap) (5500 ) = fla0) o)) dudy, - (1.20)

where now
vt = (]‘ - 77)/0 + nw,
(1.27)
w* =nu+ (1 —nw.

From the modeling viewpoint here the function H, is interpreted as the frequency
of interactions instead of the strength of the same interactions.

Clearly the two formulations (1.13) and (1.26) are not equivalent in general. It
is easy to verify that formally we obtain the same mean-field limit (1.23). Note
however that now the second order term in the expansion (1.19) is slightly different
and reads

B(f.0)= |

R4d

d ~
[Z 0*p(x,0) (wj —v;)* | Ho(2,y,0) f(2,0,t) f(y, w, t)dvdrdwdy.

2
=

Since H, > (H,)?, in practice we may expect a slower convergence to the mean-field
dynamic for small values of ¢.
Let us finally introduce some stochastic effect in the visual cone perception by
defining
Hy(z,xj,v;) = CH(x;, xj),

where ( is a random variable distributed accordingly to some b, ((, z;, z;,v;) = 0 s.t.

Jba(C,xi,mJ—,vi) dC = 1, V xi,x]—,vi. (128)

Then the collision term in the form (1.13) becomes

mma%w<1ﬂ%mv@wnﬂawﬂ%m)mmwa

arn- | -
(1.29)

R2d+1
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whereas in the space dependent interaction frequency form (1.26) reads

arn- |

R2d+1

Bl 0) (0,020 02) = .00 0) ) s,

(1.30)
where B, (¢, z,y,v) = bo((, z,y,v)H(x,y). Again it can be shown that thanks to
(1.28) the limit asymptotic behavior ¢ — 0 is unchanged. We omit the details.

We conclude the section reporting an example of distribution for the random
variable ¢ which corresponds to the stochastic analogue of (1.11)

1 with probability pi, for y € X(z,v,0),
0 with probability 1 —p;, for ye X(z,v,0),

= 1 with probability ps, for y e R4\ X(x,v,6),
0 with probability 1 —ps, for y e RT\ X(z,v,0).

1.4 Monte Carlo methods

Following [34, 77| we introduce different numerical approaches for the above kinetic
equations based on Monte Carlo methods. The main idea is to approximate the
dynamic by solving the Boltzmann-like models for small value of e. We will also
develop some direct Monte Carlo techniques for the limiting kinetic equation (1.23).
For the sake of simplicity we describe the algorithms in the case of the collision
operator (1.13), extensions to the other possible formulations presented in Section
3 are also discussed along the section. As we will see, thanks to the structure of the
equations, the resulting algorithms are fully meshless.

1.4.1 Asymptotic binary interaction algorithms

As in most Monte Carlo methods for kinetic equations, see [143], the starting point
is a splitting method based on evaluating in two different steps the transport and
collisional part of the scaled Boltzmann-Povzner equation

(;—{:—U~fo (T)
0
XN (©

where we used the notation Q.(f, f) to denote the scaled Boltzmann operator (1.13).
We emphasize that the solution to the collision step for small values of € has very
little in common with the classical fluid-limit of the Boltzmann equation. Here in
fact the whole collision process depends on space and on the small scaling parameter
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e. In particular, in the small € limit the solution is expected to converge towards
the solution of the mean-field model (1.23).

By decomposing the collisional operator in equation (C) in its gain and loss parts
we can rewrite the collision step as

of 1

= = _Q7 (1. =pl], (1.31)

where p > 0 represent the total mass and Q7 the gain part of the collisional operator.
Without loss of generality in the sequel we assume that

p = f(z,v,t)dxdv = 1.
R2d
In order to solve the trasport step we use the exact free flow of the sample particles
(x;(t),v;(t)) in a time interval At

zi(t + At) = zi(t) + vi(t)At, (1.32)

and thus describe the different schemes used for the interaction process in the form
(1.31).

A Nanbu-like asymptotic method

Let us now consider a time interval [0, T'] discretized in ny, intervals of size At. We
denote by f™ the approximation of f(x,v,nAt).
Thus the forward Euler scheme writes

A A
o= (1= 2 e e, (133

where since f” is a probability density, thanks to mass conservation, also QX (™, f™)
is a probability density. Under the restriction At < e then also f**! is a probability
density, since it is a convex combination of probability densities.

From a Monte Carlo point of view equation (1.33) can be interpreted as follows:
an individual with velocity v at position x will not interact with other individuals
with probability 1 — At/e and it will interact with others with probability At/e
according to the interaction law stated by QX (f", f"). Since we aim at small values
of £ the natural choice as in [34] is to take At = e. The major difference compare
to standard Nanbu algorithm here is the way particles are sampled from QX (f™, f™)
which does not require the introduction of a space grid. A simple algorithm for the
solution of (1.33) in a time interval [0,T], T = n;uAt, At = ¢ is sketched in the
sequel.



Binary algorithms for flocking and swarming dynamics 15

Algorithm 1.4.1 (Asymptotic Nanbu I)

1. Given N samples (2,v7), with k = 1,...,N from the initial distribution
Jo(x,v);

2. form =0 tong —1

fori=1to N;

(a) select an index j uniformly among all possible individuals (x},v})
except 1;

(b) evaluate Ho(|z} — 2%[,v}');

(c) compute the velocity change v using the first relation in (1.12) with
n=¢;

(d) set (ai*, 07 ") = (af,0]).

end for

end for

Next we show how the method extends to the case of collision operator of the type
(1.26). In this case an acceptance-rejection strategy is used to select interacting
individuals since the forward Euler scheme reads

= (1 - —) = TN D) (1.34)

where PX(f™, ") = Q-(f, f) + f = 0 is again a probability density.
Now using the fact that H, < 1 we can adapt the classical acceptance-rejection
technique [143] to get the following method for (1.34) with At =¢

Algorithm 1.4.2 (Asymptotic Nanbu II)
In Algorithm 1./.1 make the following change

(c) if Ho(lz} — 2%[,v7") > &, & uniform in [0,1] then compute the velocity
change v} using the first relation in (1.27) with n = ¢;

(d) set (xP*h oY) = (2, v}) if the individual has changed its velocity, oth-

erwise set (x?1 vt = (27, uP).

Y
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Note that in this version two individuals interact always with the same strength
in the velocity change but with a different probability related to their distance. As
a result the total number of interactions depend on the distribution of individuals
and on average is equal to H,N < N where

_ 1 X
Ha = m Z Ha(xi,xj,vi).
i,7=1

Thus the method computes less interactions then the one described in Algorithm
1.4.1. In fact, in regions where individuals are scattered very few interactions will
be effectively computed by the method. The efficiency of the method can be further
improved if one is able to find an easy invertible function 1 > W, (z;,z;,v;) =
H,(z;,x;,v;) or is capable to compute directly the inverse of H,(x;,x;,v;). We refer
to [143] for further details on these sampling techniques.

A symmetric version of the previous algorithms which preserves at a microscopic
level other interaction invariants, like momentum in standard Cucker-Smale model,
is obtained as follows

Algorithm 1.4.3 (Asymptotic symmetric Nanbu)

1. Given N samples (29,vY), with k = 1,...,N from the initial distribution

f0<x’v);
2. forn =0 tong —1

(a) set N. = Iround(N/2);

(b) select N. random pairs (i,j) uniformly without repetition among all pos-
sible pairs of individuals at time level n.

(c) evaluate Hy(|z} — 23|, vf') and Hy(|z} — 2}|,v});

(d) For Algorithm 1./.1: compute the velocity changes v}, vy for each pair
(i,7) using relations (1.12) with n = €;

(d) For Algorithm 1./.2:

i if Ho(|of —2%],07) > & & uniform in [0, 1] then compute the velocity
change v} for each pair (i,j) using the first relation in (1.27) with
n=e;

i, if Ho(|2} —2%],0}) > & & uniform in [0, 1] then compute the velocity
change v} for each pair (i, j) using the second relation in (1.27) with
n=e;

(e) set (x?T1 vty = (27 vF), (a7 0" = (a7, v%) for all the individuals

[ ‘ R Jo07 R
that changed their velocity,
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(f) (@}t oty = (a2, o) for all the remaining individuals.

end for

The function Iround(-) denotes the integer stochastic rounding defined as

[z] +1, §<a—[x],
[z], elsewhere

Iround(x) = {

where £ is a uniform [0, 1] random number and [-] is the integer part.

A Bird-like asymptotic method

The most popular Monte Carlo approach to solve the collision step in Boltzmann-like
equations is due to Bird [32]. The major differences are that the method simulate the
time continuous equation and that individuals are allowed to interact more then once
in a single time step. As a result the method achieves a higher time accuracy [143].

Here we describe the algorithm for the collision operator described by (1.13). The
method is based on the observation that the interaction time is a random variable
exponentially distributed. Thus for N individuals one introduces a local random
time counter given by

(1.35)

with ¢ a random variable uniformly distributed in [0, 1].

A simpler version of the method is based on a constant time counter At, corre-
sponding to the average time between interactions. In fact, in a time interval [0, T']
we have

Atc - FC - N)
since N, = NT/e is the number of average interactions in the time interval. Of
course taking time averages the two formulations (1.35) and (1.36) are equivalent.

From the above considerations, using the symmetric formulation and the time
counter At, = 2¢/N, we obtain the following method in a time interval [0,T],
T = NtotAtc

(1.36)

Algorithm 1.4.4 (Asymptotic Bird I)

1. Given N samples (zy,vy), with k = 1,...,N from the initial distribution

fg(l‘,’l))
2. form =0 to Nypy — 1
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(a) select a random pair (i, ) uniformly among all possible pairs;
(b) evaluate H,(|x; — x;|,v;) and Ho(|z; — x4, v;);
(c) compute the velocity changes v}, vi using relations (1.12) with n = ¢;

% k.
(d) set v; = v} and v; = v};

end for

Note that in the above formulation the method has much in common with Algorithm
1.4.3 except for the fact that multiple interactions are allowed during the dynamic
(no need to tag particles with respect to time level) and that the local time stepping
is related to the number of individuals. As a result in the limit of large numbers of
individuals the method converges towards the time continuous Boltzmann equation
(1.13) and not to its time discrete counterpart (1.33), as it happens for Nanbu
formulation. Since in Algorithm 1.4.3 we have ny; = Niy/N., the computational
cost of the methods is the same.

Similarly Bird’s approach can be extended to collision operator in the form (1.26)
by introducing the following changes

Algorithm 1.4.5 (Asymptotic Bird II)

In Algorithm 1././ make the following change

(c) * if Ho(|o] — %], vf') > & & uniform in [0, 1] then compute the velocity
change vy using the first relation in (1.27) with n = ¢;
* if Ho(|2] — 27|, v7) > & & uniform in [0, 1] then compute the velocity
change v} using the second relation in (1.27) with n = &;

Finally we sketch the algorithm to implement the stochastic perception cone
present in (1.29) and (1.30), that can be easily introduced in all the previous algo-
rithms.

Algorithm 1.4.6 (Interaction with stochastic perception cone)
® ifw;e Z(mivviag)

— with probability p; perform the interaction between i and j and compute

vF

(2

else
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— with probability ps perform the interaction between i and j and compute

£
Y;

o if x; € X(xj,v;,0)

— with probability py perform the interaction between i and j and compute

*
i

else

— with probability ps perform the interaction between i and j and compute
*

Y
Note that this reduces further the total number of interactions in the algorithms
just described. In contrast, for the deterministic case we simply change the relative
interaction strengths using respectively n = pie and 17 = pye in the binary interaction
rules.

1.4.2 Mean-field interaction algorithms

Let us finally tackle directly the limiting mean field equation. The interaction step
now corresponds to solve

R2d

o f ==V, - (f H,(z,y,v)(v— w)f(y,w,t)dwdy) .

As already observed, in a particle setting this corresponds to compute the original
O(N?) dynamic. We can reduce the computational cost using a Monte Carlo eval-
uation of the summation term as described in the following simple algorithm.

Algorithm 1.4.7 (Mean Field Monte Carlo)

1. Given N samples vy, with k = 1,..., N computed from the initial distribution
fo(z,v) and M < N;

2. form =0 tong —1

(a) fori=1to N

(b) sample M particles j1, ..., ja uniformly without repetition among all par-
ticles;
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(c) compute

_ 1 d 1 M L an !
HZ(.T»:M];HQ((L},.TM,U?), @?:MZ f;"(lik) - Vs s

(d) compute the velocity change
vt = o (1= AtHg (w:)) + AtH ()

<

n
7

end for
end for

The overall cost of the above simple algorithm is O(MN), clearly for M = N
we obtain the explicit Euler scheme for the original N particle system. In this
formulation the method is closely related to asymptotic Nanbu’s Algorithm 1.4.1.
It is easy to verify that taking M = 1 leads exactly to the same numerical method.
On the other hand for M > 1 the above algorithm can be interpreted as an averaged
asymptotic Nanbu method over M runs since we can rewrite point (d) as

M
U?ﬂ _ % Z [(1 — AtHa(x?,x?k,vf)) v+ AtHa(m?,az?k,v?)v?k] , i=1,...,N.
k=1

The only difference is that averaging the result of Algorithm 1.4.1 does not guarantee
the absence of repetitions in the choice of the indexes ji,...,jy. Thus the choice
At = ¢ in Algorithm 1.4.1 originates a numerical method consistent with the limiting
mean-field kinetic equation. Following this description we can construct other Monte
Carlo methods for the mean field limit taking suitable averaged versions of the
corresponding algorithms for the Boltzmann models. Here we omit for brevity the
details.

Remark 1.4.1

o In Algorithm 1.J.7 the size of At can be taken larger then the corresponding
At = ¢ in Algorithm 1./.1. However, as we just discussed, since large values
of At in the mean-field algorithm are essentially equivalent to large values of €
i the Boltzmann algorithms we don’t expect any computational advantage by
choosing larger values of At in Algorithm 1.4.7.

o We remark that changing the time discretization method from FExplicit Fuler
in (1.33) and (1.3]) to other methods, like semi-implicit methods or method
designed for the fluid-limit, permits to avoid the stability restriction At < €.
Even this approach however does not lead to any computational improvement
since a strong deterioration in the accuracy of the solution is observed when
At > e. Here we don’t explore further this direction.
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1.5 Numerical Tests

In this section we first compare accuracy and computational cost of some of the
different methods and then illustrate their performance on different two-dimensional
and three-dimensional numerical examples. We use the following notations: ANMC
(Algorithm 1.4.3), ABMC (Algorithm 1.4.4), and M FMC); (Algorithm 1.4.7 for a
given M).

L, relative error L, relative error

—&— ANMC

T awe o nawe
MFMCyg, o MFMC,
—o— MFMCyq, MFMC,
1 || e MPMC |

At At

Figure 1.3: Relative errors in the Lo norm at 7" = 1 for the different methods as a
function of At = e. On the left the error is computed with N = 1000 particles, on
the right the same test is performed with N = 50000 particles.

1.5.1 Accuracy considerations

Here we compare the accuracy of the different algorithms studied for a simple space
homogeneous situation. In fact, since the algorithms differ only in the binary in-
teraction dynamic the homogeneous step is the natural setting for comparing the
various approaches in term of accuracy.

We consider the standard Cucker-Smale dynamic. Since we do not have any space
dependence we assume H(|x; — z;|) = 1 for each ¢,j. Thus there is no difference
in this test case between formulations (1.13) and (1.26) and the relative simulation
schemes.

We take N = 50000 individuals and at the initial time the velocity is distributed
as the sum of two gaussian

(v + vg)? (v —vg)?

1 _ _
fol(v) e 200 4 ¢ 20?2

B \2mo,
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Figure 1.4: Convergence to the exact solution (continuous line) of the velocity pro-
files calculated with ANMC' (left) and ABMC' (right) algorithms. From the top to
bottom, At = ¢ with e = 1,0.1,0.01.

with vg = 0.7, 0, = v/0.2.
The results obtained for ANMC and ABMC with e =1,0.1,0.01 at time 7" = 1
are reported in Figure 1.4. The reference solution is computed using the microscopic
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Figure 1.5: M FMC); algorithms compared with AN MC method, at different time
steps. From the top At = 1, At = 0.1 and At = 0.01. On the left column M =5
on the left M = 50.

model which in this simple situation can be solved exactly and gives
1 n
. —t P AV = .
v;(t) = v;(0)e™" + (1 —e™)7, U= Nj_glv](()).

As expected convergence towards the exact solution is observed for both methods.
In particular for € = 0.01 the results are in good agreement with the direct solution
of the microscopic model.

Next in Figure 1.5 we compare the behavior of the M FMC); method with
ANMC for the same values of the time step. A considerable difference is observed
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for large values of At and both methods are poorly accurate. On the other hand for
smaller values of At they both converge towards the reference solution.

Finally in Figure 1.3 we report the Ly-norm of the error for ANMC, ABMC' and
MFEMC), for various M as a function of At = . We compare the convergence of
the schemes with different number of particles N = 1000 and N = 50000. Note that
in both cases the convergence rate of the schemes is rather close and for ¢ = At < t*,
the statistical error dominates the time error so that we observe a saturation effect,
where t* ~ 0.1 for N = 1000 and ¢* ~ 0.01 for N = 50000.

1.5.2 Computational considerations and 1D simulations

Next we want to compare the computational cost of the different binary interac-
tion methods for solving the kinetic equation (1.23), when compared to the direct
numerical solution of the original system (2.1).

We consider the same one-dimensional test problem as in [54] for the Cucker-
Smale dynamic. The initial distribution is given by

—2? [ —(v+v9)? —(v—1p)?

202 Le 203 :

1

2
2ro,0,

(&

fo(z,v)

for vg = 2.5, 0, = V0.1 and o, = /2.

The computational time for the different methods at 7" = 1 using ¢ = 0.01
and different number of individuals is reported in Table 1.1. Simulations have been
performed on a Intel Core I7 dual-core machine using Matlab. The O(N) cost of
ANMC and ABMC' is evident. The same results are also reported in Figure 1.6
which shows the linear growth of the various Monte Carlo algorithms.

N 10° 107 10° 10°
ANMC [0.02s| 023s 282s | 383x 10 s
ABMC | 002s]| 021s 220s | 3.14x 10' s

MFMCs | 0.05s| 041s 426s | 444 x 10" s
MFEFMCsoo | 0.14 5 1.58 s 133 x 10 s | 3.14 x 10% s
MFMCrs00 | 5.00s | 520 x 10' s | 1.71 x 10° s | 4.49 x 10" s

Table 1.1: Computational times for the different methods with various values of V.
The final time is 7' = 1 and the scaling factor € = At is fixed at 1072,

Finally we report the phase-space plots of the previous 1D problem obtained
using the perception cone (1.11). Clearly the parameter # has no meaning in the
one-dimensional case, so that the perception limitation concerns only the capability
to detect other individuals on the left and on the right over the line. We compare
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CPU computation time

Figure 1.6: Comparison of the computational times for the different methods. For
each method the time step is equal to At = 0.01.

the evolution in the phase space of two different cases: the classical Cucker-Smale
model (non visual limitation p; = py = 1) and the weighted visual cone with p; = 1
and ps = 0.5. The results are reported in Figure 1.7.

The simulations have been computed using ABMC' with At = ¢ = 0.01. The
number N of individuals is N = 50000, with v = 0.05, that is unconditional flock
condition. The phase space representation is obtained using a space-velocity grid of
100 x 150 cells over the box [—15,15] x [—10, 10]. The results are in good agreement
with the one presented in [54]. Note how perception limitations reduce the flocking
tendency of the group of individuals by creating two different flocks moving towards
left and right respectively.

1.5.3 2D Simulations

Cucker-Smale dynamics A generalization of the previous test in two-dimension
is obtained by considering a group of N individuals with position (z,y) € R?, initially
distributed as

fg(l', Y, Vg, Uy) = gO(wv y)hO(vw» Uy)a

where

1
2702

1

exp{—(a*+17)/20%, k() = 5

go(z,y) =

with 7 = |(vs, v,)], vo = 10, 0 = v/2 and v = 1/0.1. In the following simulations we
use N = 100000 particles and the limited perception cone defined by (1.11).
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Figure 1.7: 1D Cucker-Smale flocking in the phase space. On the left without
perception limitations, on the right with a perception bound characterized by p; = 1
and po = 0.5.
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We compare the evolution of the space density for different choices of the percep-
tion parameters and at different times. In the test case considered the parameters
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Figure 1.8: 2D Cucker-Smale flocking. On the left without perception limitations,
on the right with perception cone with 6 = 4/37, p; = 1 and p, = 0.04.

for the perception cone are § = 4/37w, p; = 1 and py = 0.04.

To reconstruct the probability density function in the space we use a 100 x 100
grid on [—20, 20] x [—20, 20]. In each figure we also add the velocity flux to illustrate
the flock direction. We report the results computed with ABMC method and At =
e = 0.01, similar results are obtained with the other stochastic binary algorithms.
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Figure 1.9: 2D Cucker-Smale dynamics. Spatial density of two flock that merge
together.

At T = 30 the final flocking structure is reached. It is remarkable that in absence
of perception limitations we obtain a perfect circular ring moving at constant speed.

In contrast when we introduce limitations the flocking behavior is less evident
and the groups splits in two flocks moving in opposite directions. Finally we can
also modify the previous example to create more complex patterns, but with the
same basic structure.

The initial distribution now is given by

gO(Ivyavxavy> = f0($ + m,y, ’Ux,’Uy) + fO(z - mvyvvxvvy)a

where fj is defined as before, and m = 7. We report the results obtained in absence
of perception cone. The final flocking state is reached at ¢ ~ 30 (see Figure 1.9).

D’Orsogna, Bertozzi model et al. dynamic Next we want to simulate the
D’Orsogna Bertozzi model et al. model with the aim to reproduce the typical mill
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0.12

0.15

0.05

Figure 1.10: 2D Mill in D’Orsogna-Bertozzi et al. model at various times. Pa-
rameters in the attraction-repulsion potential are such that C' = Cr/C4s = 30,
[ =1p/la =03, a=0.7 5=0.05 Final configuration is reached after ¢t = 20.

dynamics as in |50, 51, 1] but using the Boltzmann kinetic approximation.

Mills and double mills are typical emergence phenomena in school of fishes and
flock of birds which travel in a compact circular motion, for example, in order to
protect themselves from predator attacks. At first we work in the twodimensional
space taking into account N = 100000 individuals. According to the interaction
described in (1.6), we consider the long-range attraction and short-range repulsion.

In Figure 1.10 the initial data is uniformly distributed on a twodimensional torus,
with a circular motion. The evolution shows how the attraction and repulsion forces
stretch the mill reaching after ¢ = 20 a condition of equilibrium in a stable circular
motion as a single mill.
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In Figure 1.11, we instead consider the following initial data

22 + 2 (vz + vg)? (vy — vg)?

f0<x7yavzavy) = We 202 e 2 + e 2

where 0 = v/2 and vy = 0.5. Thus density in space is a normal distribution centered
in zero and velocity distribution has two main directions left and right. The evolution
computed with ABMC' and At = ¢ shows that equilibrium is reached after ¢t = 30
in a stable double mill formation.

1.5.4 3D simulations

Finally we present some three dimensional simulations for the models taking into
account the different effects of the thee zone dynamic. All the simulations have been
performed with ABMC and At = ¢ = 0.01.

Bertozzi-D’Orsogna et al. model In Figure 1.12 we consider the tridimensional
extension of the previous simulation for the Bertozzi-D’Orsogna model et al. Initial
data is uniformly distributed in space on a 3D-torus, and initial velocity is described
by a circular motion in the (z,y) components in z direction initial velocity has no
influence.

We present the evolution of the swarm mass density and the vectorial field. The
equilibrium reached after ¢ = 80 is a ball-shaped flock with mass concentrated on
the border and empty zones in the middle, that is the typical configuration observed
for a mill of a fish school.

Simulation is made taking in account N=200000 particles, and reconstructing
the probability density function in the space we use a 3D grid with Az x Ay x Az =
100 x 100 x 100.

Roosting Force Accordingly to the work [51] we introduce in the D’Orsogna-
Bertozzi model a roosting force term. The term expresses essentially the tendency
of a flock or a school of fishes to stay around a certain zone. Such zones usually are
of food interest or where birds settle their nests. Different approaches can be used
to model this biological behavior, see for example [113, 19].

Mathematically speaking such term can be described by the introduction of a
force term of the type

Froost = — [0 - V()] v;". (1.37)

Such force gives the individuals a tendency to move towards the origin, for a suitable
function ¢. Here ¢, called roosting potential is a function ¢ : R? — R. In the
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Figure 1.11: 2D Double Mill in D’Orsogna-Bertozzi et al. model at various times.
Parameters in the attraction-repulsion potential are such that C' = Cg/Cy = 1.6,
[ =1p/ls =0.025 a= 0.7, 5 = 0.05. Final configuration is reached after ¢ = 30.

simulation we take

o) =5 (5

3
Rroost
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where R, gives the roosting area radius, and b is a constant weight. Other choice
of this roost term are of course possible, we refer the interested reader to [51].
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Figure 1.12: Evolution of the 3D mill in D’Orsogna-Bertozzi et al. model at different
times.

Starting from the following initial data

2o 202

1 1 s
. —\/%1/2 exp {ﬁ [vz + Uy]} ,
with (z9,y0,20) = (—10,10,5), after a certain time the simulation shows a flock in
stable equilibrium as an orbital motion around the roosting zone.
The simulation takes in account the following parameters C' = Cr/Cy = 30,
| =1r/ly =3/5, a =0.7, f = 0.05 and the term of roosting force with parameters

fo(z,y, 2,0z, 0y, 0,) = ! exp{ ! [(z—20)* + (y — w0)* + (z — zO)Q]} :
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Figure 1.13: Trajectory of the center of mass in the roosting dynamic.

Ryoost = 10 and d = 1/10. For a long time simulation the center of mass describe
the trajectory depicted in Figure 1.5.4. Some configurations of the flock at different
times obtained using N = 200000 individuals are reported in Figure 1.14.

1.6 Conclusions

Mathematical modeling of collective behavior involves the interaction of several indi-
viduals (of the order of millions) which may be computationally highly demanding.
Here we focus on models for flocking and swarming where the particle interactions
implies an O(N?) cost for N interacting objects. Using a probabilistic description
based on a Boltzmann equation we show how it is possible to evaluate the interaction
dynamic in only O(N) computations. In particular we derive different approxima-
tion methods depending on a small parameter ¢.

The building block of the method is given by classical binary collision simula-
tions techniques for rarefied gas dynamic. Beside the presence of a further scaling
parameter the resulting algorithms are fully meshless and can be applied to several
different microscopic flocking/swarming models. Applications of the present ideas
to other interacting particle systems and comparison with fast multipole methods
are under study and will be presented elsewhere.
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Figure 1.14: Evolution of the flock in 3D space, subject to a roosting force. The red
arrow denotes the flock direction sampled from the initial population of N = 200000
individuals, the green circle represents the roosting area. We also add the density
distribution of the whole flock projected over the plane (x,y).



CHAPTER 2

Stability analysis of flocking and mill rings for 2nd
order models in swarming

2.1 Introduction

Individual-based models (IBMs) appear in biology, mathematics, physics, and en-
gineering. They describe the motion of a collection of N individual entities, so the
system is defined on a microscopic scale. IBMs are good models for some applica-
tions when the number of particles is reasonable. Nonetheless, when the number
of particles is large it is more reasonable to use a continuum model. Some contin-
uum models, like those described in [58, 50], are derived as a mean-field particle
limit and lead to a mesoscopic, kinetic description of the problem. At this level,
one looks at the probability density of finding particles at a certain position and
velocity at a given time. Several related models have been proposed to describe the
flocking of birds [45, 147, 19, 129], the formation of ant trails [82], the schooling of
fish [104, 33, 21|, swarms of bacteria [117], etc.

Each of these models include rules or mechanisms that describe the behavior of
the individuals in the system. Such mechanisms can help to describe the influence
of each individual on the others as a function of their relative position and velocity.
The classical three zone model [10, 114] provides a well-known example. A three
zone model describes the behavior of an individual in the following way: If two
individuals are too close then they will prefer to have their own space (repulsion);
When one individual is too far from the group it will prefer to socialize and therefore
re-associate with the group (attraction); Finally, in the group, each individual tries
to mimic the behavior of the other individuals (orientation). Other related models
just consider rules for orientation, like the Vicsek model [158, 74]. In this case, there
is a mechanism of self-propulsion in which each individual moves with constant speed
and adopts the average direction among their local neighbors.

We focus our study on the analysis of two particular examples of IBMs. The

35
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first one is a self-propelled interacting particle model that was introduced in [127]
and extensively studied in [80, 58]:

.17]':1}]‘

_ 1< =
iy = S(oshey + 5 D VWl —ay) I e (2)

I=1
1#]

where W represents the social repulsive-attractive interaction potential assumed to
be radial W (z) = k(|z|). In our analysis we will consider the same self-propulsion,/
friction term used in [80, 58],

S(lvjl) == B, o, f>0.

Note that such a term gives a preferred asymptotic speed for the particles equal to
v/a/f. In these references, the authors study (2.1) with interaction potential given
by the so-called Morse potential

k(r) := Cae™"/14 — Ope/'n,

with C4, Cr denoting the attractive and repulsive strengths and [ 4, [r their respec-
tive length scales. The works [80, 58| find and describe several asymptotic behaviors
for this system in 2D. They observed that flocking patterns and milling patterns can
consist of particles distributed on a ring. They also observed that these patterns can
occur when particles form into clusters instead of rings. In [47], a well-posedness
theory is developed for (2.1) that proves the mean-field limit under smoothness as-
sumptions on the potential. The authors show convergence of the particle model
toward a measure solution of the corresponding kinetic equation.

We perform an analysis on the stability of flock rings and mill rings as asymptotic
solutions for (2.1). A flock ring refers to a collection of individuals that lie equally
distributed on a ring that translates with constant velocity, whereas a mill ring refers
to a collection of individuals that lie equally distributed on a ring that rotates with
constant angular velocity. The ring solution was recently studied in [119, 29] where
the authors do a careful general linear stability analysis of the rings for the first

order model
N

X; =Y VW(X,-X;), j=1,...,N. (2.2)
1%
The analysis of (2.2) in [119, 29] is also used to study the the stability of mill rings
in (2.1), whose existence was first demonstrated in [80]. Related pattern formation
in the associated first order model has been studied in [161, 118].
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Another second order model that we are going to study is

Uj

1Y 1 Y , N

NZ = a) (v — vj) NZ (w2 —z;) j=1,..., (2.3)
= i%

with z;,v; € R? where the velocity v; is described by the Cucker-Smale alignment
term, which quantifies the degree to which individuals align their velocities as a
function of their relative positions. We perform our analysis in full generality for
the parameter functions of the model H and W, but we will emphasize the results
in some relevant cases. For instance, we consider the case of power law repulsive-
attractive potentials [119, 18|

o

,
b Y
For the Cucker-Smale alignment [67, 68, 100, 99, 53|, a relevant case is H(x) = g(|x|)
with

k(r) = % - a>b>0. (2.4)

1

Note that flock solutions in the second order models (2.1) and (2.3) correspond to
equilibria of the first order model (2.2). The main result of this work shows that flock
solutions in the second order models (2.1) and (2.3) are spectrally stable if and only
if the corresponding equilibrium is spectrally stable in the first order model (2.2).
In other words, the linearized equations for (2.1) and (2.3) have an eigenvalue with
positive real part if and only if the linearization for (2.2) has a positive eigenvalue.
We therefore demonstrate a spectral equivalence between these three models.

To study the stability of the system of ODEs (2.1), we analyze the eigenvalues
of the linearization of (2.1) at the equilibrium point in the comoving frame in its
full generality. Unlike the first-order model (2.2), the zero solution to the linearized
system associated to a flock solution of (2.1) is always unstable. This instability
results from the fact that translational invariance implies the existence not only of
an eigenvector with zero eigenvalue, but also an additional generalized eigenvector
associated to the same zero eigenvalue of the linearized system (see Remark 2.3.1
for full details). We therefore identify all cases in which the linearized system has
eigenvalues with zero real part as well as their corresponding generalized eigenspaces.
This gives a complete characterization of stability at the linear level and of insta-
bility at the nonlinear level. This is shown in our main result that characterizes
all eigenvalues with positive real part in the linearization of (2.1) in terms of the
positive eigenvalues associated to the linearization of (2.2). The linearized analysis
of the first order system (2.2) was already solved for the case of flock rings in [29] by

g(r) = v > 0.
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using Fourier mode perturbations. Therefore, we can conclude with a full analysis
of the instability of flock rings. However, an analysis of the stability of the family of
flock solutions at the non-linear level is beyond the scope of this work. This analysis
requires deep stability concepts from dynamical systems theory for invariant mani-
folds, and is under way in [56|. Finally, in the analysis of the linearization of (2.3)
in the comoving frame, we use a similar strategy to [29] since the linearization using
Fourier modes perturbations nicely decouples into a set of 4 x 4 ODE systems.

In addition to flock rings, other spatial shapes are possible as asymptotic solu-
tions. When the flock ring is unstable we observe annular flocks, i.e. where the
individuals’ positions in the flock form an annulus, and we refer to this phenomenon
as a fattening instability. We observe clustering instabilities as well, which occur
when the individuals’ positions in the flock highly concentrate in a small number of
locations (usually lines or points). These patterns can be explained based on Theo-
rem 2.3.1 due to the results in [17]. Moreover, these instabilities occur in the same
way for both the first order and second order models, which provides a numerical
demonstration of their spectral equivalence for flock rings.

Finally, we complement the analysis of the stability of asymptotic solutions for
(2.1) by numerically studying mill rings. We extend the results of [29] to an explo-
ration of mill configurations that appear with repulsive-attractive potentials. We
numerically investigate the formation of fat mills, i.e. a group of individuals that
fill an annular region while milling due to the repulsive force, and the formation of
clusters by varying the asymptotic speed of the system. This instability induced by
varying the asymptotic speed is quite interesting as it shows the rich pattern-forming
structure for this model. In addition, we show some switching behaviors between
flock and mill solutions that can occur as well.

The structure of the paper is as follows. In Section 2.2, we introduce the def-
initions of our main objects of study, the flock and mill rings. In Section 2.3, we
do a linear stability analysis on the flock rings for models (2.1) and (2.3). We also
explore the fattening and clustering instabilities. Finally, in Section 2.4 we analyze
the instability with respect to the asymptotic speed for mill rings.

2.2 Ring Solutions

We begin by introducing the particular solutions of the particle model (2.1) and its
continuum counterpart (see Figure 2.1) that we wish to study.

Definition 2.2.1 We call a flock ring, the solution of (2.1) such that {x;}}_, are
equally distributed on a circle with a certain radius, R and {v;}_, = ug, with [ug| =

\a/B.
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Definition 2.2.2 We call a mill ring, the solution of (2.1) such that {x;}}_, are

zt
equally distributed on a circle with a certain radius, R and {v; §V:1 = u?: %‘I—J'
J

with x3 the orthogonal vector &y = (x4, —j1).

By abuse of notation, we will write |uo| for |u?| since |[ud] = \/a/B for all j =

1,...,N. Moreover, we will make use of notation |ug| for both flock and mill rings
indistinctly.
/ -
y / / y PR . .
/ v / N
7 7 / |
/ / ! :
7 7 \ ;
/ /7 N\ 7
VA S~

Figure 2.1: Flock and mill ring solutions.

2.2.1 Radius of Flock and Mill Ring Solutions

Throughout the paper we will identify e = (cos 6, sin #) and use x to identify either
a two-dimensional vector or the corresponding complex number indistinctly when
referring to ring solutions. In the case of mill rings, we are looking for a solution of
the form

2 2 275
zi(t) =R (COS (Wﬁj + wt) ,sin (Wﬁj + wt)) = Re''~ ! (2.5)

The case of a flock ring in the comoving frame is equivalent to looking for a solution
of the form (2.5) with w = 0. Plugging (2.5) into (2.1), for radial potentials W (x) =
k(|x|) we require that

N
T; — X
K(|lz; — x))—2—— = 0. (2.6)
l_Zl ! |z; — @il
l#j

In the case of mill rings, we have
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and thus R*w? = 5- Moreover, by taking the derivative we find

N

. 1

v; = —wir; = —w NZ(CIJ[ —z;) =0
=1
1#]

Plugging this into (2.1), we get

N N
Ty — Tj ~ T — X

Z K|z — o)) ——= —wQ(xl—x»)]=2k’(]$z—x’])—] =0

,_1[ T — e oy —ay) 7

1#] 1#]

with k(r) = k(r) — wzé. Thus in order to find the radius for flock and mill rings,

we need to solve equation (2.6) with potential W (z) = k(||), and w = 0 or w > 0
respectively. This expression implies that the spatial shape has to balance attraction
versus repulsion, as well as centrifugal forces in the case of mills. Now, a direct

computation yields
1
|z; — 1| = 2R sin <( Nj)ﬂ)

for all times. One can easily compute that

—sin (2) cos (&) [cos (6;)
xl—azj=2Rsin(%> " " ' , p=1-17,
cos (B7)  sin (57) sin (0;)
and

N

ey - )’f (lzj — =) _

= |z — @i

1#]

p=1-j \ Cos (E) cos (6;) + sin () sin (6;)

cos (0;) sin(0;)\ N—j —sin(%) - T
: 5 (o ann ()

—sin (0;) cos(6;) po1d\ cos (2)

Since the last sum is invariant by rotations, without loss of generality we fix j = N
N—j [—sin (%) N—1 sm(

and, by using periodicity, deduce that
i (orsn (72) - ¥ (orsn (22))
P;iaj COS (10_]\7;) p=1 CcOS (%)

=[3
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The sum of the cosine terms, evaluated on the uniform grid in [0, 7], vanishes, which
leaves

N—1 (sin (

=3

in (25 i/ sin (22
)12’<2Rsin<%>)= p; <N>k(2R <N)) (2.7)

p=1 \cos (%)

As a conclusion, the radius of a flock or mill ring solution is characterized by

Z (2 i (2rsin (25)) = .

For general potentials there can be more than one radius R for a flock or mill
solution. In the case of the power law potentials (2.4), we will argue below that
there is only one solution. Condition (2.7) reads

N— N-1 » 1 N=
b
g n (B2) - 2R sz_;)sm (%) —2fe N; n? (52) 0.
(2.8)
To prove uniqueness, we notice that the function f(r) = Cir® — Cor® — C3 with
a>b>0and C; > Cy > 0, C3 > 0, has only one zero. Computing the first

derivative and looking for critical points, we obtain r = 0 and rg_b = CQb Taking

the second derivative and evaluating at 75, one obtains f”(ry) = r} 202[7((1 —b) >0,
so re is a local minimum. For 0 < r < rg, one has f'(r) < 0 whereas for all
r € (r9, +00), one has f'(r) > 0. We may therefore conclude that f(r) has a unique
zero. Notice that the solution to (2.8) depends on the number of particles, so we
will use the notation R = R(N) to indicate this dependency.

2.2.2 Radius of the Flock and Mill Ring Solutions as N — «

In this subsection we characterize the radius of flock and mill rings for continuum
models arising as N — oo for the power-law case. We introduce the function

7#tl(es):lfﬂ(l3(:089)(1+s — 25cosf) T * do,

™ Jo

already analyzed in [18]. A change of variables in the previous function shows that

s =2 (2L, (29)

™
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where B(+,-) stands for the Beta function defined as
/2
B(z,y) = QJ (cost)?*!(sint)? ! dt,
0

with x,y > 0.

Lemma 2.2.1 If N — o then R(N) — Rup(|uo|) where Rup(|ugl|) is the solution of
the following equation.:

Ya(1)R* = ()R — w?R = 0.

Proof 2.2.1 Let us start by studying the term 2°7'< Z;V;()l sin®(57).  Multiplying
and dividing by ™ we obtain the following equality

17 p 1 (" 1 (™
]\lfliréo 2%17_? (N ; sin® (F>> = 2“1;L sin(x) do = 2a;L sin®(z) dx.

(2.10)
Now, we use the expression for the Beta function described above with x = %, Yy =
ot and using that B(x,y) = B(y,z) in (2.10) together with (2.9) to obtain

2
1S pr 1 _(a+11
. a—1—" o LN _ a—1 " - _
2 W<szzosm (N)) 2 WB< 2 ’2) Yall):

The same reasoning works by changing a for b in the second term in (2.8). For the
third term we use the fact that we can compute the exact sum

2 p

N 2o (_> =1
E sin .

N = N

Remark 2.2.1 In the case of flock rings w = 0, their radius is determined by the
radius of the aggregation ring found in 18]

1

=
—> as N — 0.

Remark 2.2.2 Let W(x) = k(|z|) be a general interaction potential. Call Q(r) =
—K'(r)/r. Then the radius of the ring is determined by

Lg Q(2R sin(6)) sin?(6) df — 0,

as shown in [29].



Stability for 2nd order models in swarming 43

Remark 2.2.3 The corresponding continuum model to the particle system (2.1), as
proven in [17|, is given by the kinetic equation

A

Oa_t b Vo f +dive[(a — Bl f)] — dive[(VaW = p)f] = 0, (2.11)

where
p(t,x) = | [(t,2,0)dv.
R2
Here, [ represents the probability of finding individuals at a time t at the point (x,v)
and p is the spatial density of individuals. It was shown in |50] that singular solutions
of the type

L
) = oo =), S = plta)s (0= [55)
x
with p(t,z) the uniform distribution on a ring, are weak solutions of the kinetic
model (2.11), called the flock and mill ring continuous solutions respectively.

2.3 Linear Stability Analysis for Flock Solutions

We will now focus on the stability analysis of flock rings in full generality. Later
on, we will leverage these results together with the careful stability analysis of ring
solutions of the aggregation equation, performed in [29], to study their stability in
terms of the parameters (a, b, ug) of the model for the particular case of power-law
potentials.

2.3.1 Stability of Flock Solutions to (2.1)

In order to address stability of flock solutions to (2.1), we must first perform a
change of variables to the comoving frame

{yj(f) = x;(t) — uot

zi(t) = v;(t) — uo j=1...,N, (2.12)

where ug is the asymptotic velocity of a fixed flock ring. Under this change of
variables, the system therefore (2.1) reads

d

Y=V U0 = 7

d 1 w—vyi ., j=1,...,N.
—zj = (a— Blz; +uol>)(zj +uo) + — Y K(lyi — v J

dt™ - o NZ; "y =yl

=
So(25) 1#]
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A flock ring can then be characterized as a stationary solution of this system that
takes the form (39, 2%) = (Re'%,0) , where 6; = 2 for j = 1,..., N. This stationary
solution satisfies
. () —
So(29) =0, YK (ly) - ZJ?D? =
I=
l#%
We may now proceed to linearize this equation around a flock solution. We consider

arbitrarily perturbed solutions of the form y; = yf + h;(t) for h; € R* with |h;| < 1,
which to leading order yields

B = —2Bugul I, + M (y;, y3) (i — hy)

1
N

Fip1=

where M is the matrix defined as follows

() un W\ o W )T
M(ia j)_ 0 Id — 0 0 +k<|yjl|) 0 0]
‘yjl’ ‘yjl’ ‘yjl| ‘yjl‘ ’yjl‘

and y?l = y? — yY. Note that the final term on the right hand side coincides with
the linearization of the first order model (2.2) around the equilibrium {3}, that
defines the flock. If we put h := (hy,..., hy)T € R* and b’ := (h], ..., Wy)T e R?N

then we may write the preceeding linear system in compact form as

$ () () (M
rn 7 AR
dt \ b M —250 ) \ B
An arbitrary perturbation for general flocks therefore leads to a Jacobian matrix of

the form
0 Id

L= ,
M 25U
where the partition into 2N x 2N sub-blocks reflects the distinction between position
and velocity contributions to the Jacobian: The symmetric matrix M is the 2N x 2N
Hessian that results from linearizing the first order system (2.2) about a given flock
configuration, whereas U denotes a block-diagonal matrix with N blocks of the 2 x 2
matrix uoul along the diagonal. By rotational invariance we can reduce to the case
ug = e; = (1,0), so that the block matrix U acts on x = (x1,...,25)T € R?V,
x; € R?, according to the relation

(Ux); = <<xi661>) :
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We now turn to the task of characterizing the eigenvalues of L in terms of the
eigenvalues of M. In other words, we aim to characterize the stability of a flock in
terms of the stability of its spatial shape as a solution to the first order model. To
fix the notation, we write the eigenvalue problem for the flock as

(-G ) e

where the matrix M determines the stability of the flocking configuration as a so-
lution of the first order model. For any given eigenvector (x,v) € C*V x C?V of the
full system (2.13), we always assume the normalization x*x = 1. Substituting the
first equation Ax = v into the second equation yields the equivalent statement

Nx + 28\Ux — Mx = 0. (2.14)

Let |x|, denote the semi-norm on C*" defined according to

N
|x|3 := Z iy el
i=1

and let £V =~ CV denote the subspace
EYN = {xeC*" : x|y = 0} = ker(U).

Premultiplying by x*, the fact that x*Ux = |x|3, the normalization on x and the
quadratic formula combine to imply the key identity

A = —BIx[3 & 4/B2[x]4 + 3" Mx. (2.15)

As M is symmetric, we may write its 2N real eigenvalues and corresponding
normalized (x*x = 1) eigenvectors as

HoN < fon—1 < o0 < g < iy Mx; = pix;.

The notation ar (), apm(p) will denote the algebraic multiplicities of A, i as eigen-
values of their respective matrices. The bulk of the analysis lies in characterizing
the eigenvalues A of the full system (2.13) that have %(\) = 0.

Lemma 2.3.1 Let A denote an eigenvalue of (2.13). Then R(\) =0 and S(N\) # 0
if and only if X\ = +i\/—y for some | with ; < 0 and x; € EN. The eigenspace
consists only of eigenvectors.
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Proof 2.3.1 Ifx; € EVN then (2.14) reads \*x; = Mx;, or equivalently \* = p;. To
have (X)) # 0 then requires p < 0. Conversely, if (x, \x) denotes an eigenvector
with R(\) = 0 and I(N\) # 0, the formula (2.15) implies that necessarily x € EV,
and therefore Mx = \2x. Thus \* = p; for some j; < 0.

To show the last statement, suppose a generalized eigenvector existed that is not
an eigenvector. Then there exists an eigenvector (x, \x) with x € EV so that the

system of equations
—Ald Id u X
( M 28U - AId) (w) - ()\X) (2.16)

has a non-trivial solution. Substituting the first equation w = Au+x into the second
equation, then pre-multiplying by x* demonstrates

Mu — 28Uw = 2Xx + \u
x*Mu = 2\ + \’x*u.

The last line follows as x*x = 1 and x € EY = ker(U). The symmetry of M and
the fact that Mx = \*x combine to show x*Mu = \*x*u. Thus \ = 0, leading to a
contradiction.

Lemma 2.3.2 Let 5 > 0. Then A = 0 is an eigenvalue of (2.13) and (x,0) is a
corresponding eigenvector if and only if Mx = 0. If x € EN then (x,0) generates a
single generalized eigenvector, whereas if x ¢ E™ then (x,0) generates no generalized
etgenvectors.

Proof 2.3.2 The first statement follows trivially from (2.14). To see the second
statement, consider the system of equations (2.16) with A\ = 0. This reduces to the
equations w = x and

Mu = 25Ux,

which by premultiplying by x* as before and using the fact that Mx = 0 necessitates
x € EYN as B > 0. If indeed x € EV then any u € ker(M) suffices. Without loss
of generality, take u = x itself. If (x,0) generates a second generalized eigenvector
then the system of equations

(184 é%U) (v%) B G)

has a non-trivial solution. As then w = x and x € EV this reads Mu = x. Premul-
tiplying one last time by X, the facts that Mx = 0 and x*x = 1 combine to produce
the contradiction 0 = 1.
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This lemma yields, as a corollary, the algebraic multiplicity az(0) of zero as an
eigenvalue of the second order system.

Corollary 2.3.1 Let g > 0. Then
az(0) = dim(ker(M) n EV) + dim(ker(M)).

Let an. 1 (0) := dim(ker(M) n EV), so that az(0) = am.1(0) + am(0). Note that
neither quantity depends on [, and the conclusion holds whenever g is positive.
Thus, if 5 € (0,00) it follows that ar(0) is constant. Moreover, Lemma 2.3.1 holds
uniformly in 5 as well. Let iy < iy < --- < ¢; < 2N denote those (possibly non-
existent) indices where 1;; < 0 has an eigenvector x;, € EN. The two lemmas then
combine to show:

Corollary 2.3.2 Let > 0. Then
det(L — AId) = A2+ OFamOTIL (X2 — y, Yps(N).

The roots of the polynomial pg(\) all have non-zero real part.

This corollary, along with the formula (2.15), suffice to establish the desired
result:

Theorem 2.3.1 (Spectral Equivalence) The linearized second order system around
the flock ring solution (2.1) has an eigenvalue with positive real part if and only if
the linearized first order system around the ring solution has a positive eigenvalue.

Proof 2.3.3 Suppose first that uy < 0. Then x*Mx < 0 for any x, whence all
eigenvalues A of L have non-positive real part due to (2.15). Conversely, suppose
iy > 0 and let A denote the set

A = {B € [0,00): AIQ;%)%O\) > 0} .

Note that 0 € A due to (2.15). Indeed, then (X1, \/i1X1) defines an eigenvector with
eigenvalue A = /py > 0. By continuous dependence of the eigenvalues of L on 3, it
follows that A s relatively open. To show that it is also relatively closed, let 5, € A
and B — Py € (0,00). Up to extraction of subsequences, it follows that there exists a
corresponding sequence A, of eigenvalues with (\;) > 0 converging to some Ny with
R(Xo) = 0. Moreover, by continuous dependence of the coefficients of pg(\) on f3,
the roots of ps,(\) converge to roots of ps,(N). Thus ps,(Ao) = 0. As no such root
can have zero real part by corollary 2.5.2, R(Ng) > 0 and By € A. As A # O it
follows that A = [0,0) as desired.
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Remark 2.3.1 As an artifact of translation invariance in the first order model,
the vector defined by ey := (0,1,...,0,1)T € R*Y always defines an eigenvector of
M with eigenvalue zero. Due to the fact that e; € EVN, Lemma 2.3.2 implies that
(e2,€3) furnishes a generalized eigenvector with eigenvalue zero. Thus the linear
system (2.13) that results from linearization of (2.1) about a flock always has an
unstable zero solution. This type of instability does not occur for the first order
model and is therefore unique to the second order case.

We may now specify this result to the particular case of flock rings. Theorem
2.3.1 implies that spectral stability of a flock ring is equivalent to spectral stability
of a ring solution y; = Re'%i, §; = Qﬁj to the first order model (2.2). Moreover, the
analysis in [29] shows that the stability analysis of ring solutions to (2.2) reduces to

a study of the decoupled set of 2 x 2 eigenvalue problems

A <§t> - (2523 Iﬁ(_ﬁ%) (gt) 1<m<N. (2.17)

"

M

Here the matrix entries I;(m) and Iy(m) are defined by

Ii(m) = 42?(;1 (%) sin? (W) (2.18)

I(m) := 42 G <%p> [sim2 (%?) — sin® (%)] , (2.19)

and for power-law potentials k(r) = r*/a — r’/b the functions G;(¢) are given by

Ch(6) = % [—a(2R|sin¢)* + b2R| sin )],
Ga(6) = % [—(a — 2)(2R]sin )" + (b— 2)(2R| sin 8))"2].

This result follows by considering m-mode perturbations to the ring equilibrium, i.e.
perturbations of the form Re (1 + h;) for

hj _ §+eim6j + é_efimej’

so that a study of stability decouples into a study of individual Fourier modes. We
may therefore conclude the following corollary.

Corollary 2.3.3 A flock ring to (2.1) is spectrally stable if and only if the ring
solution to the first order model (2.2) is spectrally stable with respect to all m-mode
perturbations.
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2.3.2 Numerical Tests

In this section we perform some numerical computations to show stability regions
for the flock ring. Moreover, we enrich the previous analysis by showing that the
same type of instabilities occur in both the second order model and the first order
model. Specifically, when parameters are chosen outside the stability regions either
clustering or fattening instabilities occur simultaneously in both models, as one can
formally argue due to their spectral equivalence proved in Corollary 2.3.3.

Due to Theorem 2.3.1 and Corollary 2.3.3 we are reduced to a study of the trace
and determinant of the matrix M in (2.17) to characterize flock stability. Note that
for fixed values of N and m the determinant of M is a function of the parameters a
and b, so that we may write

D(a,b) :=det(M) = I,(m)I;(—m) — (Iy(m))?
T(a,b) :=trace(M) = I(m) + I;(—m).

N =1000

[ |Stable
[ Unstable
a

a—1

Figure 2.2: Stability areas for flock ring solutions for N = 1000. Markers ()
indicate the explored parameters in Table 2.1 .

Remark 2.3.2 Using the results of [29, Theorem 3.1| one is able to estimate the
S G i

asymptotic value of the determinant of M. In our case, using W (x) o )

obtains that

one

det(M) ~ Cm™" as m — o,

where C > 0 and b € (1,2) u (4,6) U (8,10) U ---. In these cases det(M) > 0
and trace(M) < 0. Moreover, this result shows that there is no spectral gap since
det(M) — 0 as m — 0.
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In Figure 2.2, we compute the stability area as a function of a and b for N = 1000.
To do so, we compute the intersection of all stability areas for m > 2. It can be
observed from our tests that the stability area shrinks when the number of particles
increases. Moreover, it is observed that in the limit when N — oo, the lower
boundary of the stability region converges to the dashed line. The red dashed line
is the curve b = - that corresponds to the m = +o0 mode. This curve is the
separatrix of the ins/stability regions for the continuous delta ring of the first order
continuum model, studied in [119, 18§].

Cluster Formation

The formation of clusters occurs when the repulsion strength is small. In other
words, this phenomenon depends on how singular the potential is at the origin. We
show the bifurcation diagram for the phase transition between equally distributed
flocks and flocks that exhibit cluster formation. Figure 2.3 is obtained by first using

Figure 2.3: Bifurcation diagram for cluster formation at 7 = 500, with N = 1000
particles, a = 5, |ug| = 2.5.

N = 1000 particles equally distributed on the stable circle with all their velocities
aligned. We let them evolve until Ty = 500. We fix the parameters |uo| = 2.5, a = 5
and vary b along the axis. The vertical axis represents the increment of the following

norm
NH HMN_/J’(])VHQ

rel = T NI

116”2

with increasing b, where pl’ is the uniform distribution of N particles along the
stable ring and gV the distribution at time 7. We therefore measure the relative

I
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distance of a computed flock from the flock ring. Simulations are performed with
MATLAB and the evolution of the system of ODEs is solved with the ode/5 routine
with adaptive time step. Table 2.1 illustrates different final states depending on
a,b. The parameters choice depicts some of the patterns observed for the first order
model in [17].

Table 2.1: Long time simulations with N = 1000 particles. The location of param-
eter values are marked in Figure 2.2.
a=3b=25 a=5b=4.1 a="7b=1.5

“ Y N
SN L Ny,

Fattening Formation

We show the transition diagram between a flock on a ring and a flock on an annulus.
In this case, the fattening phenomenon occurs when the parameters of the potential
cross the lower boundary of the stability region. We numerically characterize this
behavior in a similar way as done in the previous subsection.

™ et
°

0.06(-
@R
0.04- *

L L L L L L L
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
b

Figure 2.4: Bifurcation diagram for fattening instability at 7 = 500 with N=1000
particles, a = 5, |ug| = 2.5.

Figure 2.4 is obtained by first starting with N = 1000 particles equally dis-
tributed on the stable ring already in the steady state with all the velocities aligned.
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We then let them evolve until 7 = 500 as before. We fix the parameters |ug| = 2.5,
a = 5 and vary b along the axis. The vertical axis represents the increment of the
relative distance from the mill ring solution with respect to the following norm

rel = T N1

NH H77N - "7(1)\[H2
176" [l2

In

)

where 1}’ represents the average distance from the center of mass for N particles in
a flock ring formation, i.e., )Y = R and n" is the average distance from the center
of mass at time 7%.

2.3.3 Stability of Flock Solutions to (2.3)

As in Section 2.3.1, we perform a stability analysis of flock solutions for the model
(2.3). If we use the same change of variables as in (2.12), then system (2.3) reads

Yy =0 —Uo = %5

. 1 & .
4= 2 H(w =y —2) + = D, VW (w —yy), Jj=L....N.
Mim NE
J

(2.20)
From now on, we will identify vectors in the plane with complex numbers to perform
the linearization of this system for m-mode perturbations of the flock ring. Unlike
in the previous model (2.1), these particular perturbations allow us to conveniently
reduce the linear stability analysis to a decoupled set of 4 x 4 systems of ODEs as in
[29]. We give a characterization of the flock solution in the complex plane for (2.20)
with (y}), z?) = (Re®i,0), where 6; = 2% We consider then the perturbed solution

7;(t) = Re™ (1 + hy(t)),

with h; such that |h;| « 1 and satisfying

Z h;(t) =

Consider the following relations

Nhﬂﬂza (2.21)

i — §; = Re' (e?hy — hy)

. (P R
(3 i (%)

5 = 95| = 2R [(1 =) (e = Ry) + (1 =) (= Dy)].

4 — i = Re™ (e by — 1))
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where ¢, = 2w(l — j)/N = 2mp/N. We linearize the Cucker-Smale alignment term
around the solution up to first order, leading to

H(i— 53l) ~ HR fsin (6,/2)])+
R

H'(2R |sin 2)|) ————F——

H R o)

Substituting the linearization in (2.20) and neglecting the second order terms, we
obtain the following characterization of A

[(1 =) (= hy) + (1= e7%) (= D).

b _lx | ot
h = ; H(2R|sin ¢,|) [ hj — h}]
N
b GG/ — b + Galdy 2B — )] (222)

~—
N
S

In order to study the behavior of the perturbations h;, we reduce the complexity of
the problem by assuming that h; satisfies the following relation

hy = (D)™ + € (t)e™™%, b =& ()™ + &L (e ™, meN.
Therefore, we can express ; in terms of h; as

hy = & (t)e™ e 4 ¢ (t)emmbigmimdr m e N.

Inserting the previous expressions in (2.22) and gathering terms in €™ and e~%i™,

we can characterize £, and £_ as

N
+:%Z (2R|sin ,|) [0 — 1] &} + L (m)&s + L(m)E_,

—//

ZH 2R|sin ¢, |) [e"r" ) — 1] € + L(m)é&y + Li(—m)E_,

where I; and I, are defined in (2.18) and (2.19). Through a simple manipulation of
the sum for the linearized Cucker-Smale term, we obtain that the expression

—ZH 2R sin ¢, |) [er(mE) — 1] =

1#j

—ZH 2R|sin ¢,|) [cos(pp(m £ 1)) — 1] + —ZH 2R|sin ¢,|) sin(¢,(m + 1)),

I#7 I#j
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is real. Actually, H(2R|sin ¢,|) and sin(¢,(m + 1)) are respectively symmetric and
antisymmetric with respect to the values of ¢,, so the imaginary part vanishes.
Recalling the definition of ¢,, we conclude

()] o (0]

S (o (22)]) o (o 0)]

Therefore, we reduce the stability analysis to the following system

i Ii(m)  Iy(m) §+ Ji(m) 0 3
= -
& \&(m) L(-m)) £ No JTm) 3

~ ~
M J

J+(m) —% Z H (21%

+

Taking the conjugate in the second equation and relabeling £ with ¢_ as in [29],
the previous system with 74 = £} is equivalent to

&+ 0 0 1 0 £+ §+

d & | 0 0 0 1 & <0 Id) &

dt | n+ | | L(m)  L(m) Ji(m) 0 ne | \M J) | n+

) \nm) nem 0 am) \n 0
(2.23)

At this point, we will do a stability analysis based on the eigenvalues of the matrix
of the previous system in a similar way as in Section 2.3.1. Since this analysis can
be done in full generality, we consider the linearization, now in vector notation, of
the Cucker-Smale alignment term

—29 lzj — @) (v; — ),
where g(r) denotes any strictly positive function. The corresponding stability matrix

Lcg for the flock reads
Lo — 0 Id
ST \M -G

As before, M denotes stability matrix of the first order model. As the alignment
term is linear in the velocity, the matrix G acts on v = (vy,...,o5)", v; € R?,
according to the relation

N
ZQ lzj —a]) (v — ).

=1
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In particular, if we denote ||v; — v;|[3 := (v; — v;)*(v; — v;) then this relation implies

that
N

1
viGQv = 5 Z g (lz; — x]) |Jv; — vil[3.

Jil=1

Consequently, G is positive semi-definite and Gv = 0 if and only if v is “constant” in
the sense that v; = w for some fixed w € R%. In other words, ker(G) = span {e;, e»}.
By translation invariance of the first order model, both e; € ker(M) and e, € ker(M)
as well.

Note that the eigenvalue problem for Lcg is again equivalent to the following
quadratic eigenvalue problem for x € C2: A\?x + A\Gx — Mx = 0. Assuming the
normalization x*x = 1, the quadratic formula then implies that

—x*Gx £ 4/ (x*Gx)? + 4x*Mx

A= 9

From this relation and the fact that ker(G) < ker(M) we conclude that ker(Lcg) =
ker(M), and moreover that R(A\) =0 < X = 0. Furthermore, e; and e, generate
a single generalized eigenvector whereas each remaining x € ker(M) generates no
generalized eigenvectors. Indeed, corresponding to each x € ker(M) the system of

equations
0 Id u) [(x
M -G)\w/) \0)/°

has a solution if and only if Gx = 0 and u € ker(M). Additionally, if x = e; then
for any u € ker(M) the system of equations

0 Id u) (u
M -G)\w) \x
has no solutions. This follows by multiplying the second equation by x*, then using

the facts that e; € ker(G) < ker(M) and the facts that G and M are symmetric. In
other words, if g(r) is any strictly positive function then

det(Lcs - /\Id) _ )\2+dim(ker(M))pg(/\)7

for some polynomial py(\) that has non-zero roots. Since this equation holds for any
strictly positive function ¢(r), we may follow the proof of Theorem 2.3.1 to conclude
that the second order model has an eigenvalue with positive real part if and only
if the first order system has a positive eigenvalue. Moreover, the vectors (e;, e;) for
each ¢ = 1,2 furnish generalized eigenvectors with eigenvalue zero, so remark 2.3.1
applies for this model as well. As a summary, we have shown:
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Theorem 2.3.2 (Spectral Equivalence) The linearized second order system (2.3)
around the flock ring solution has an eigenvalue with positive real part if and only if
the linearized first order system around the ring solution has a positive eigenvalue.
Moreover, the flock ring solution is unstable for m-mode perturbations for the second
order model (2.3) if and only if the ring solution is unstable for m-mode perturbations
for the first order model (2.2).

The linear stability analysis of the previous system leads to the characterization
of the same stability areas represented in Figure 2.2.

We numerically investigate the behavior of the eigenvalue with the largest real
part, (A1), of the linearized system (2.23) against the increasing value of commu-
nication strength ~ for g(r) of the form

1
g(r) = m

In Figure 2.5, as the potential gets more repulsive at the origin, we see the change
from stability to instability, and the rate of convergence to equilibrium depending
on 7.
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Figure 2.5: The magnitude of R()\;) is influenced by =, for different values of b and
fixed a = 5, N = 10000.

2.4 Stability for Mill Solutions

This section is meant to complement the results in [29] by analyzing the stability
of mill ring solutions with repulsion and attraction. The authors in [29] performed
a linear stability analysis on second order models for mill ring solutions. However,
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they investigated different behaviors of this class of solutions only for attractive
potentials. The goal of this section is to explore new behaviors that arise when
using repulsive-attractive power law potentials.

2.4.1 Linear Stability Analysis

Let us consider the transformation
y;(t) = O(t)x;(t) Ci—1.N
25(t) = O(t); (1)

where O(t) is the rotation matrix defined as

ot)=e%, S= (_Ow (6)) , and  O(t) = Se.

By evaluating y;(t) and Z;(t) explicitly, we get after some straightforward computa-
tions that

9;(t) = Sy;(1) + 2 (1)
5(0) = S2(0) + (0~ Blu P50 + 5w X VW —yy) o I =L N

l#]

A linear stability analysis for mill rings was performed in [29]. Actually, for a fixed

number of particles, we have a mill ring solution given by (y?,29) = (Re™,0),
where 0; = %, and R determined by equation (2.8). With the same notation as in

Section 2.3, the analysis in [29] leads to the linear system

¢, 0 0 1 0 &
¢l 0 0 0 | ¢
. | | —wia +w? + L(m) —wicw + Ir(m) —a — 2wi e n
n_ wia + Iy(m) wia + w? + I1(—m) a —o+2wi) \n-
(2.24)

Let us remind that the perturbations are of the form g;(t) = Re™ (1 + h;(t)), with
hj =&, (t)e™% + & (t)e ™% m = 2,3, ..., such that |hj| « 1 and satisfying (2.21),
with (n4,7m-) = (€,¢"). We will make use of (2.24) to study the stability of mill
rings with repulsion.

2.4.2 Numerical Tests

Unlike the case of flock solutions where the asymptotic speed does not play role in
the linear stability, we will show that the asymptotic speed |ug| can be used as a
bifurcation parameter for mills.
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In Table 2.2 we numerically investigate the behavior of the stability region for
a fixed number of particles, N = 1000, and for increasing values of the asymptotic
speed |ug|. We observe that the stability region shrinks with respect to a and gets
larger with respect to b. Each stability region in Table 2.2 is computed out of the
intersection of the stable areas for the system (2.24) for each perturbation mode
m = 2. Note that for |ug| = 0 the stability region coincides with the one for the the
first order model (2.2) and for the flock ring solution presented in Figure 2.2.

Table 2.2: Stability region for N = 1000 and different values of the asymptotic speed
|ug|. Markers (®) and () correspond to the explored parameters in Table 2.3 and
Table 2.4.

N =1000, |up| =0.5 N =1000, |ug| =5 N =1000, |ug| =50

[ stable 7 [ stable 7 [ | stable
- Unstable N - Unstable o - Unstable

A similar analysis, as done in Subsection 2.3.2, can be performed to study the
formation of fat mills and clustered mill solutions. We show how both the fattening
and the clustering instability are triggered by tuning the asymptotic speed for a
choice of the interaction potential (a and b).

In the case of flock ring solutions we observe cluster solutions or annulus solutions
when parameters a and b are chosen respectively “below" or “above" the stability
region. In the case of mill solutions, a similar behavior is observed, but this will
depend also on the chosen value of |ug|. As an example, we fix (a,b) = (5,0.5),
marked as (®) in Table 2.2, and we observe the behavioral change of the system for
increasing values of the asymptotic speed.

Table 2.3 exhibits this switching behavior from a fat mill to a cluster pattern
along with the increment of the asymptotic speed. We observe that for small values
of the asymptotic speed fat mill solutions are stable patterns, but when increasing
the value of |ug| the stable solutions form a clustered mill. The first row shows the
evolution of the system until stabilization with asymptotic speed |ug| = 0.25 towards
an annulus mill. In each of the following rows, we initially start with the previous
stable solution (last picture of the preceeding row) and we increase the value of the
asymptotic speed. In the second row, we increase its value to |ug| = 0.5 to observe
that the stable solution is formed by clusters. The speed in the third row is switched
to |ug| = 5 and clusters on lines emerge as a stable configuration. Increasing further
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the speed to |ug| = 50 in the fourth row, we can observe that clusters on “points”
are the stable configuration.

Table 2.3: N = 1000 particles, a = 5,b = 0.5. The table shows the evolution of a
mill ring for increasing values of the speed |ug|. Each row depicts the behavior of
the system for a fixed speed, until a stable state is reached. The evolution of the
second, third and fourth row is computed starting from the stable pattern of the
previous line.

t=20

lug| = 0.25
lug| = 0.5
luo| =
lug| = 50
For the sake of completeness, we enrich the analysis by fixing |ug| = 0.5 and

considering different values of b, in order to cross the stability region. Therefore in
Table 2.4 we show the evolution of a mill ring solution with b taken equal to 0.5,1.25
and 3.5, respectively. The parameter choices are marked as (k) in Table 2.2 . The
first line of Table 2.4 shows the convergence to the same stable state as the one in
second line of Table 2.3, but since the system starts to evolve directly from a ring
mill solution the transient behavior is different. Parameters in second line belong to
the stability region, see Table 2.2. Therefore, the stable state becomes a mill ring
solution. Finally, in the third line we increase b and a three point cluster solution is
observed as stable pattern.
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Table 2.4: N = 1000 particles, a = 5, |ug| = 0.5. The table shows the evolution
of a mill ring for increasing values of b, i.e. decreasing repulsion. The evolution of
the second and the third row is computed starting from the stable pattern of the
previous line.

b=0.5
b=1.25
b=35

Mill to Flock and Flock to Mill behavior

We numerically investigate the stability of mill and flock ring solutions for small
values of the asymptotic speed, |ug|, and the parameter b, which corresponds to a
strong repulsion condition. We perform two representative simulations showing that
for a particular choice of the parameters, mill ring solutions can switch to fat flock
solutions and conversely flock mill solutions switch to fat mill patterns.

In Table 2.5 we take N = 100 particles and we fix a = 4,b = 0.0005 and
|ug| = 0.01. The frames in the first row show the instability of mill ring solutions for
this choice of parameters. The system initially evolves to an almost chaotic state,
then particles start to organize and rotate around the center of mass. This rotation
actually causes the alignment of the agents and the final fat flock configuration
described in the second row.

In Table 2.6 we consider as initial state a flock ring solution. The parameters
of the model are N = 100, a = 4, b = 0.001 and |uo| = 0.1. The first row of the
table illustrates that the initial configuration is not a stable solution. Therefore, the
symmetry of the flock ring is broken and the system exhibits a chaotic behavior. In
the second row a rotating dynamic emerges out of the disordered state and finally
the system stabilizes to a fat mill solution.

These numerical tests show surprisingly that it is possible to obtain mill con-
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Table 2.5: System with N = 100 agents, parameters are fixed a = 4 and b = 0.0005
and |ug] = 0.01. The first row shows that the initial mill ring configuration is
unstable. The second row outlines the self organization of the system in a fat flock
configuration.
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Table 2.6: System with N = 100 agents, parameters a = 4 and b = 0.001 and
|ugp| = 0.1. The first row shows the instability of the flock ring solution while the
second exhibits the convergence to a fat mill type solution.
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figurations out of perturbations of initial flock solutions and flock solutions out of
perturbations of mill ring solutions. These heteroclinic-kind solutions have not been
previously reported. We also remark that the parameter choice is connected to
the number of agents we are considering; changing N means finding another set of
parameters for which the same switching behavior occurs.
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2.5 Conclusions

Numerical simulations of second order models in swarming lead to very rich patterns
in a robust way, which indicates their stability. The simplest patterns are flock
solutions and mill solutions. We have shown the surprising fact that the spectral
stability of flocks for the 2nd order model, either with fixed asymptotic speed (as in
(2.1)) or Cucker-Smale alignment (as in (2.3)) terms, is equivalent to the spectral
stability for steady states of the first order model. Moreover, particular Fourier
mode perturbations allow us to predict the typical instabilities undergone by flock
rings. These instabilities, clustering and fattening, are numerically demonstrated.
Unlike the case of flock solutions, the stability for mill rings, based on our numerical
simulations, cannot be directly related to first order models. Finally, we have shown
the numerical instability of mill rings with repulsion in terms of the asymptotic
speed and how these instabilities are explained in terms of the linearized analysis of
reduced 4 x 4 ODE systems. Some movies illustrating the results in this work can
be browsed in giacomoalbi.com /research/simulations/ .



CHAPTER 3

Modeling self-organized systems interacting with
few individuals

3.1 Introduction

The aim of this paper is to present different levels of description for the dynamic of a
large group of agents influenced by a small number of external agent. In a biological
context, this corresponds to the behavior of a flock or a school of fishes attacked by
one or more predators, or the movement of a heard of sheep guided by a sheepdog.
Recently such dynamics have been studied also in robotic research, where scientists
tried to control the action of a school of fishes introducing a fishbot recognized as
leader, see [15].

From the modeling viewpoint this involves considering a microscopic dynamic
described by classical flocking models interacting with asset of few individuals char-
acterized in way similar to what was done in |24, 59]. Moreover, motivated by the
analysis in [19], we endow the classical dynamic of interaction both with a metric
as well as a topological interaction rule.

Classical flocking models with topological interaction gives more freedom to the
model and general results are no more valid, for example in the case of Cucker-Smale
model a typical question is under which conditions velocity alignment occurs, in the
metric case, when the agents interact all each other. The problem has been solved
at the microscopic and kinetic level in [67, 53].

Following the approach in [54] we start from the microscopic dynamic, given
by a ODEs system, and we derive two other different levels of description: the
mesoscopic (or kinetic) level through a mean-field limit and the macroscopic level
through a suitable hydrodynamic approximation. Here, differently from the first-
order macroscopic models proposed in [59], we obtain second-order models for the
corresponding continuum dynamic.

Finally we report some numerical examples for the solution of the mean field

63
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model in a series of test cases. The simulations have been performed using the fast
algorithm recently presented in [6].

3.2 Microscopic model

We are interested in the study of a dynamical system composed of N individuals
and NP external agents with the following general structure

((dwi _

"

i=1,...,N
N,

dv; 1 1 &

) CT; - N* Z F(xiWi?xjv”j)‘FFZFp(iL“i,Ui,Pk) (3.1)
JEO% (z;) P =1
dph o N B
ﬁ - (ph(tupv‘/q'p (phat)> h = 1, .. .,Np

where (x,v); = (z;,v;) livesin R* d>1,i=1,...,N and (p), = p» € R" with
n=12 h=1,...,N, and N, <« N.

A A

FP

Figure 3.1: Sketch for F' and F? forces acting on each agent of the swarm.

The function F' describes the interactions inside the swarm, and F? depicts the
interaction with each external agent p,. According to the three zone model |? |, F
can be decomposed in

F(xi, v, xj,05) = H(zg, x5)(v; — vi) + Az, ;) + R(wi, x5) + S(v;)v;. (3.2)

In the above expression H characterizes the alignment term, A the attraction, R the
repulston and S represents a self propulsion-friction term. The same decomposition
holds for F? if py, = (a},v}), i.e. n = 2. In a first order model, n = 1, similar
interactions can be considered.

Moreover we endow the model with a topological rule of interaction. Each agent
will interact only with a fix number of agents of their species

ON(x;) = {the N* closest neighbors respect to i} . (3.3)
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A topological interaction is motivated by some recent studies, see [19, 66|. If N* = N
each agent interacts with all the others and the topological interaction coincides with
the global metric interaction [6, 53]. Functions ¢y, : [0, +00) x (R")Nr x R — R,
describe the evolution in time of each external individual and they depend on the
discrete density p" defined as the empirical measure

(1) — %2 5z — 2:(t)).

According to [59] we define A as a convolution operator ApY (z,t) = (pV = n)(z, 1),
where 7 is a smooth kernel with compact support.

Remark 3.2.1  The self propelling-friction term S which appears in (3.2), has the
aim to give a desired velocity to the swarm, such velocity is the solution of S(v) = 0.
In our case, this term is not particularly relevant since each agent will change his
velocity mainly according to the action of the leaders/predators rather then trying to
reach a desired velocity.

3.2.1 Classical swarming models

The classical swarming models take into account a global interaction between the
agents, that corresponds in our case to choose N* = N neighbors.

Cucker-Smale model It describes an alignment dynamic with
H (i, zj)(vj —vi) = H(|lzi — 2;])(v; — vi), (3-4)

where H (|z;—x;|) is a function that measures the strength of the interaction between
individuals ¢ and j , and depends on the mutual distance. Under the assumption

that closer individuals have more influence than the far distant ones this function is

defined as
1

H(T)Zm,

where v > 0 discriminates the behavior of the solution. We refer to 53, 54| for fur-
ther details. The classical Cucker-Smale model take in account a global interaction
between the agents, that corresponds in our case to the choice of N* = N neighbors
in the topological rule, (3.3). In this case the standard Cucker-Smale model pre-
scribes perfectly symmetric interactions, as a result total momentum is preserved
by the dynamics.
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D’Orsogna, Bertozzi et al. model It considers a self-propelling, attraction and
repulsion dynamic with

A(zi, ;) + R(xi, x5) + S(vi)vi = =V, W(|zj — i]) + (o — Blvil*)vi (3.5)

where W : RY — R is a given potential modeling the short-range repulsion and
long-range attraction and «, 8 are positive parameters. A possible choice is given

by the following power law

ra 7,.b

W(T) - E ?7
where a > b > 0 are positive parameters. See [80] for more details.

Both the models take in account symmetric interactions between agents, which
correspond to the conservation of momentum. Clearly this assumption sounds not
very realistic if we want to model interactions among a group of animals. However,
the introduction into the models of other features, like the notion of perception
cone |6, 53] or the concept of relative distance [138] breaks the interaction symmetry
and consequently loses the conservation of momentum. Note that also the topological
interaction breaks the symmetry. Other choices have been taken in account as a
class of Quasi-Morse potentials, |52], or other power law potentials.

3.3 Kinetic model

To obtain a mesoscopic description of the system (3.1) we proceed formally through
a mean-field limit following [53, 54|. Similarly er can recover the same mean-field
kinetic equation by deriving first its corresponding Boltzmann model and then con-
sidering the asymptotic quasi-invariant limit. Note that, since the limit is done only
for the first set of equations, which describes the evolution of the swarm, as result we
obtain an hybrid model composed of one kinetic equation and the system of ODEs
governing the external agents.

The basic idea of the mean-field limit is to derive, through a weak argument, a
single evolutionary equation for fV, the empirical measures defined as

(2, 0,t) = %Z Sz — 24(t))0 (v — vi(1)).

i=1

Next, one computes the limit f~ — f for N — o0 and performs a rigorous deriva-
tion of the limiting kinetic equation. A well-posedness theory for this asymptotic
derivation has been developed in [47] for a general set of swarming models, we refer
to it for technical details.

Moreover we assume that for all N the ratio N*/N is fixed and equal to some
constant A. This supposition allow us to define the topological density as p* = Ap,
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where p = SRQd f(y,v,t) dy dv is constant in time. We assume that, in the mean-
field limit, an analogue of the topological set of interaction ©%(x,t) is described by
a characteristic function on the ball B(x, R*), with center x and radius R*(z,t) such
that we have

R*(x,t) = min {R s.t. R >0, J J fly,v,t)dydv = p*} : (3.6)
B(z,R)

3.3.1 Formal computations of the mean-field limit

We report here the formal computations for the derivation of the mean-field limit.
Let us consider a test function ¢ € C}(R?*?) and we compute

d, x L d
E<f (t), o) = N; EM%@)’%@)) =

%;vmwi(tm(w) N Z ST Va(wi(t), vil) Flas, a5, 01, v5)

i= 1]‘56 ()
hd ~- -/
I I
N Np
p p
NN ZZV ¢ 'TZ Ui )) (xiaxkavivvk)'
Pi=1k=1
~- -/
I3

We solve term by term the summation

- %Z Vog(i(1), vi(t)) - vi(t) = (N (), Vo - v)

Next we rewrite in I the sum on j as the sum on all the agents, where each compo-
nent of the force field, F(z,y,v,w), is multiplied by y.(x), defined as the character-
istic function of the smallest ball centered in x, which contains the topological set
O (), namely x«(2) = XB(z,r*) (x), with R* defined in (3.6). Moreover we consider
F as the sum of the Cucker-Smale and the D’Orsogna Bertozzi et al. models, as
follows
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N* ? i,7=1
S 20 H () = i 0])xs () Vb (1), wlt) - (v5(0) — () +

3 25 Veblm0), u(0) (Ve W (lst) — 2,0)) xa (o) =

G0 5 D H (e = 2O ()Y (05(8) — w)t
N0 55 D Veb (T (= i (0))) wel):
Defining the following quantities
N N 1 Al
p(x,t) = y (v, t)dv = N;é(:c —z4(t)),
m (2, 1) = JRd N (2,0, £)dv — %;w(t)é(x ~ (b)),

we can express the previous relation in the following way

Iy = (FN(8), Vo (Hxa) xm™) = (fV (1), Vo6 - (Hxa) = o)
= N0, Vud - (VaW)xa) » o)

The last term I3 has exactly the same structure of the previous one, and we
assume that the interaction is led by the same dynamic but with different function

values
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N Np
Z Z xz Uz ))Fp(xi,xi,vi,vi) =
1=1 k=1

ivp 33 Fublat), 1) - VoV (alt) — (1)) =

G0, 5 3 e~ a0V (110) — )+

1

—( N () Zv ¢ VoW (lx — 2L (1)),

Pk1

Analogously to the previous case, we define the following quantities

Z

prla,t) = 0(x — (1)),

— *32| —
=~
Il
kN

Z

mP(z,t) = F v;()0(z — 2} (1)),

we can express the previous relation in the following way

Iy = (fN(), Vo - HxmP) — (fN(8), Vg - Hx Py — (N (1), Vo - VoW 5 7).

Collecting all the terms and integrating by parts in (z,v) we recover the following
weak formulation

DN = = WV, 6) (T ()Y 6) + (P )
(VAU + (T * )Vf Y,

where
& (M) (v, 1) = JRM H(|a —y|) (v — w)xa(2) f (y, w, t)dyduw,
a0 t) = [ VW (= e 2o ()
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and
1 &
EMwont) = | Filla = oo = w0,y = 55 32 e = )= ),
k=1
1 &
C(f7) (w,0,1) W(lz —y)pP(y, t)dy = — > Vo W(|lz —ysl),
Z,, J T —y Y Yy Npkz:]l T — Yk
with
1 &
fp(fl,',/l),t) —Z(S(SIS*ﬁZ(t))(;(U*UZ(t))
P k=1

Rewriting the main expression we have

A

CTARTEAATAR PR VA VA SRV A
F VLY =V (VW * )Y ) = 0,

and thus the strong form reads

0
AR SR A T VAR AR TV A
+ VE(I)IN = (VW % pP) VW, fN =

Then the limit for k& — oo of subsequence (fV*); leads formally to

Ouf +v-Vaof = =V, - [E(f) + EUMN + () +CUP) - Vof (BT

where now

e =3 | | o S e

e Y R SR T

Remark 3.3.1 Note that with the introduction of the characteristic function x.(z),
i order to describe the topological interaction, we can not in general use the well-
posedness theory developed in []7], since it requires the force field to be continuous
and locally Lipschitz. This issue could be avoided, with a small change in the initial
model: introducing a smooth function ¥<(x), corresponding to a reqularization of
the characteristic function x.(z), as done in [1] for the case of perception cone.
Rigorous derivation of the particular mean-field model is under investigation.
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3.3.2 Mesoscopic description

The general mesoscopic model results as a coupled system of a kinetic equation for
the swarm and an ODEs for the external agents, as follows

Of +v-Vof ==V, - (E(x,v)f) =V, (EP(x,v)[),

(3.8)
pr = en(t, P, Ap(pn; 1)), h=1,...,Np,
where p(z,t) SRd z,v,t)dv and
£ (x,v) = ~[j Fla, v, y, ) f(y, w) dy dw, e%xv:——ZFvam>
R JB(x,R*) Pk 1
(3.9)

Remark 3.3.2 If we consider the decompositions (3.2) in the case of Cucker-Smale
and D’Orsogna-Bertozzi et al. models and p, = (},v}), we can compute explicitly
E* and EP as

E*(x,v) = S(v)v+
+§ L(m R¥) < R H(|x B y\)(w N v)f(y, w)dw — VrW(W - 3/|)P(y)> dy

(3.10)
and
1 NP 1 Np
€ (w,0) = 5 2 H(Jr —af)(of —v) = 57 D VWP (e —afl)  (3.11)
P k=1 P k=1

3.4 Hydrodynamic approximation

Lastly, we will detail a possible macroscopic description of the system. From a nu-
merical point of view, this corresponds to reduce the dimensionality of the problem
in such a way that simulations become affordable. Any macroscopic description
of a kinetic equation depends upon the local equilibria. In the kinetic theory of
rarefied gases, this is a well studied task, which connects Boltzmann equation with
the Euler and Navier-Stokes system of fluid dynamics. In the presented situation
the determination of the local equilibrium state of the system is, in general, a very
difficult task. One usually resorts to approximate equilibrium states which are phys-
ically reasonable and simplify the mathematical computations. Here we follow the
approach introduced in [58] and subsequently used also in [54, 100].
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First let us define the momentum and the temperature of the system as

pu(, t) —fvfdv, T(x,t) —J|v—u|2fdv.

In order to obtain a system of equations which describes the evolution of the mass
density p and the momentum pu we integrate the kinetic equation in (3.8) against
dv and vdv.

According to [58] we impose the closure the momentum assuming that the fluc-
tuations are negligible, i.e., that the temperature 7'(x,t) = 0, and the velocity
distribution is monokinetic

flzyv,t) = p(z,t)6(v — u(z,t)).
The previous assumptions lead to the following hydrodynamic system
O + div,(pu) = 0,
Or(pu) + Vi - (pu®@u) = F*(z,u)p(x, t) + FP(x, u)p(x, t), (3.12)

P = ©n(t, P, Ap(pa,t)) h=1,...,N,

where in the particular case of Cucker-Smale and D’Orsogna Bertozzi et al. model
and py, = (27,v7) we have

F(z,u) = S(u)u

e f (H(Jz —y))(uly, t) —ulz, 1)) = VoW (|z —yl)) ply, 1) dy
A JB(2,r%)

(3.13)
LSy 1
=— Y HP(|Jz — 2| (v) —u(x,t)) — — > V. WP(Jx — 2h]). (3.14)
NP k=1 ’ N Z—]1 ’
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3.5 Numerical examples

We show here some qualitative simulations of the kinetic model inspired by the work
done in [59]. We solve numerically the kinetic model (3.8), using the techniques
introduced in Chapter 1.

3.5.1 Confinement: Shepherd dogs

The dynamics considered for the swarm in both cases are characterized by
F(zi, v, 25,05) = H(lwi — 25]) (vj — vi) + Vo, W (Jzi — x;]),

and only a repulsion dynamic with respect to p, in F? is considered, given by
WP(r) = —r¢/c with ¢ > 0, and where r = |z; — py|.

Figure 3.2: Shepherd dogs. With parameters a = 2.5, b = 0.1, v = 0.45 for models
(3.4) and (3.5).

The simulation represents the evolution of a swarm controlled by two leaders
p1,p2 € R?", n = 1, interacting with the swarm in the following way

1
Sh,

Ph L, P, Sh :V—a
o) =V T

3
n(x) = W—@(max{oa rp 12PN sni= Ap(af,t) = (p o Vn)(a}, 1),

V, =300, r,=5 h=12
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As we can see in Figure 3.2 the action of the leaders is able to force the flocking of
the particles.

3.5.2 Defense: Swarm attacked by predator

25
o
"‘ |
o1
.
o
a
0.06 2
!
004
0
ooz -1
2
o
E3 o 2 4 s
X

Figure 3.3: Swarm attacked by a predator. With parameters a = 4, b = 2, v = 0.45
for models (3.4) and (3.5).

We consider the evolution of a swarm which undergoes the action of a predator.
The predator is modeled by the evolution of p = (zF,v?) € R*", n = 2 and its
evolution is lead by the following potential

o(t,p,s) = (v, V,s);  V, =1500, r,=5.
3
n<$) = F(max{oyrf) - ’$’2})27 § = (.Ap)(l'p7t) = (/0 * VT])@?pat)
p

We report the results in Figure 3.3. It is evident how the predator attack splits the
flock in two groups which subsequently merge again together.

3.5.3 Followers: Swarm attracted by a leader

We consider the evolution of a swarm which follows the action of a leader. The
leader’s trajectory is prescribed as a circular trajectory, we report the results in
Figure 3.4.
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Figure 3.4: Swarm attracted by a leader. With parameters a = 4, b = 2, v = 0.45
for models (3.4) and (3.5).

3.6 Conclusions

In this chapter we focus on the study of self-organized systems interacting with few
external individuals, representing a set of leader or predators. We presented differ-
ent levels of descriptions: (1) microscopic as a coupled system of ODEs, describing
the evolution of the swarm and its reaction to external individuals. (2) Mesoscopic,
derived through the mean-field limit, leaving the evolution of the external forces
at level of the microscopics, this results as a system of a single kinetic equation of
Vlasov-type, coupled with a system of ODEs. (3) Finally we derive the macroscopic,
assuming the ansatz of a monokinetic distribution, therefore we obtain a system of
two PDEs, mass conservation and momentum, coupled with the microscopic evolu-
tion of the externals. The whole dynamic is embedded with a topological interaction,
we show that the equivalent continuous interaction is described by a ball of a ra-
dius determined by the local density at point x. Results are validate with several
numerical tests. The perspectives of these chapter follow two directions. First at
the modeling level, we can see external leaders or predators as a control dynamic on
the swarming system, this is further explored in Chapter 4. Second, simulations are
performed just for the metric interaction case with the numerical methods devel-
oped in Chapter 1, further developments of these Monte Carlo technique are under
investigation for the topological interaction.
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CHAPTER 4

Kinetic description of optimal control problems and
applications to opinion consensus and flocking

4.1 Introduction

The development of mathematical models describing the collective behavior of sys-
tems of interacting agents originated a large literature in the recent years with
applications to several fields, like biology, engineering, economy and sociology (see
[22, 24, 62, 64, 67, 80, 90, 102, 130, 154, 155, 108, 109, 11, 106] and the references
therein). Most of these models are at the level of the microscopic dynamic described
by a system of ordinary differential equations. Only recently some of these models
have been related to partial differential equations through the corresponding kinetic
and hydrodynamic description [7, 11, 39, 71, 73, 85, 97, 100, 108, 106, 131, 155]. We
refer to the recent surveys in [139, 141, 159] and to the book [146] for an introduction
to the subject.

In this paper we consider problems where the collective behavior corresponds
to the process of alignment, like in the opinion formation dynamic. Different to
the classical approach where individuals are assumed to freely interact with each
other, here we are particularly interested in such problems in a constrained setting.
We consider feedback type controls for the resulting process and present a kinetic
modeling including those controls. This can be used to study the exterior influence of
the system dynamics to enforce emergence of non spontaneous desired asymptotic
states. Classical examples are given by persuading voters to vote for a specific
candidate or by influencing buyers towards a given good or asset [25, 81, 130, 131]. In
our model, the external intervention is introduced as an additional control subject to
certain bounds, representing the limitations, in terms of economic resources, media
availability, etc., of the opinion maker.

Control mechanisms of self-organized systems have been studied for macroscopic
models in [60, 61] and for kinetic and hydrodynamic models in |7, 81, 109]. However,

7
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in the above references, the control is modeled as a leader dynamics. Therefore, it is
given a priori and represented by a supplementary differential model. Also, in [109]
the control is modeled a posteriori on the level of the kinetic equation mimicking
a classical LQR control approach. Recently, the control of emergent behaviors in
multiagent systems has been studied in |49, 88] where the authors develop the idea of
sparse optimization (for sparse control it is meant that the policy maker intervenes
the minimal amount of times on the minimal amount of individual agents) at the
microscopic and kinetic level. We refer also to [27] for results concerning the control
of mean-field type systems. Contrary to all those approaches we derive a controller
using the model predicitive control framework on the microscopic level and study
the related kinetic description for large number of agents. In this way we do not
need to prescribe control dynamics a priori or a posteriori but these are obtained
automatically based only on the underlying microscopic interactions and a suitable
cost functional.

The starting point of our modeling is a general framework which embed several
type of collective alignment models. We consider the evolution of N agents where
each agent has an opinion w; = w;(t) € 3, I = [—1,1], i =1,..., N and this opinion
can change over time according to

1

where the control u = u(t) is given by the minimization of the cost functional over
a certain time horizon T’

(M1 & v
u = argmmfo N; (a(w]— —wy)? + §u2) ds, u(t) € [ug, ugl. (4.2)

In the formulation (4.2) the value wy is the desired state and v > 0 is a regular-
ization parameter. We chose a least—square type cost functional for simplicity but
other costs can be treated similarly. We additionally prescribe box constraints on
the pointwise values of u(t) given by the constants u; and ugr > wuy. The bound
constraints on wu(t) are required in order to preserve the bounds for w;. The dy-
namic in (4.1) describes an average process of alignment between the opinions w;
of the N agents. Typically, the function P(w,v) is such that 0 < P(w,v) < 1
and represents a measure of the inclination of the agents to change their opinion.
Usually such function P follows the assumption that extreme opinions are more
difficult to be influenced by others [97, 154, 155]. Problem (4.1)-(4.2) may be refor-
mulated as Mayer’s problem and solved by Pontryagin’s maximum principle [153]
or dynamic programming. The main drawback of this approach relies on the fact
that the equation for the adjoint variable has to be solved backwards in time over
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the full time interval [0,7]. In particular, for large values of N the computational
effort therefore renders the problem unsolvable. Also, an approach u = P(x) where
P fulfills a Riccati differential equation cannot be pursued here due to the large
dimension of P € RV*N and a possible general nonlinearity in P. This approach is
known as LQR controller in the engineering literature [121]. A standard methodol-
ogy, when dealing with such complex system, is based on model predictive control
where instead of solving the above control problem over the whole time horizon, the
system is approximated by an iterative solution over a sequence of finite time steps
[44, 133, 135].

In order to decrease the complexity of the model when the number of agents is
large, a possible approach is to rely on a kinetic description of the process. Along
this line of thought, in this work we introduce a Boltzmann model describing the
microscopic model in the model predictive control formulation. Moreover, a Fokker-
Planck model is derived in the so called quasi-invariant opinion limit. The kinetic
models presented in this paper share some common features with the Boltzmann
model introduced in [155] in the unconstrained case and with the mean-field con-
strained models in [49, 88|. Here, however, a remarkable difference with respect to
[49, 88] is that, thanks to the receding horizon strategy, the minimization of the
cost functional is embedded into the particle interactions. Similarly to [155], this
permits to compute explicitly the stationary solutions of the resulting constrained
dynamic.

The rest of the manuscript is organized as follows. In the next Section we
introduce the model predictive control formulation of system (4.1)-(4.2). In Section
4.3 a binary dynamic corresponding to the constrained system is introduced and a
the main properties of the resulting Boltzmann-type kinetic equation are discussed.
In particular, estimates for the convergence of the solution towards the desired state
are given. Section 4.4 is devoted to the derivation of the Fokker-Planck model and
the computation of explicit stationary solutions for the resulting kinetic equation.
Some modeling variants are discussed in Section 4.5. In Section 4.6 several numerical
results are reported showing the robustness of the present approach. Finally in
Section 4.7.2 we extend the results to the case of flocking models, including a mean-
field limit for the derivation different of the kinetic approximation of the optimal
control problem. We add in the last part some numerical experiments to validate
the methodology presented. Some conclusions and future research directions are
made at the end of the chapter.

4.2 Model predictive control

In this section we adapt the idea of the moving horizon controller (or instantaneous
control) to derive a computable control u at any time t. Compared with the solution
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to (4.1)-(4.2) this control will in general only be suboptimal. Rigorous results on
the properties of u for quadratic cost functional and linear and nonlinear dynamics
are available, for example, in [44, 132]. The model predicitive control framework
applied here is also called receding horizon strategy or instantaneous control in the
engineering literature.

4.2.1 A receding horizon strategy

We consider a receding horizon strategy with horizon of a single time interval. Hence,
instead of solving (4.1)-(4.2) on [0, T], we proceeds as follows:

e Split the time interval [0, 7] in M time intervals of length At and let t" = At n.

e We assume that the control is piecewise constant on time intervals of length
At > 0,

M-1
U/(t) = Z unX[tn7t7L+l](t).
n=0

e Determine the value of the control u™ € R by solving for a state w; the (re-
duced) optimization problem

(4.3)

e Having the control u" on the interval [t",t"*1], evolve w; according to the
dynamics

S .
w; = N;P(wi,wj)(wj —w;) +u (4.4)

to obtain the new state w; = w;(t"*1).
e We again solve (4.3) to obtain v"*! with the modified initial data.
e Repeat this procedure until we reach nAt = T.

The advantage compared with the problem (4.1)-(4.2) is the reduced complexity of
(4.3) being an optimization problem in a single real-valued variable ™. Furthermore,
for the quadratic cost and a suitable discretization of (4.4) the solution to (4.3) allows
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an explicit representation of u™ in terms of w; and w;(t"™') provided uy = —o0 and
upr = 00. As shown in section 4.2.2 this allows to reformulate the previous algorithm
as a feedback controlled system which in discretized form reads

n n At a n n n n n -
wtt = Wl + ~ leij(wj —w}') + Atu”, w = w;, (4.5a)
iz
n At Al n+1
u" = —mj_l(wfr — wg). (4.5Db)

Remark 4.2.1 Later on, bounds on the controlu as in (41.3) are required in order to
guarantee that opinions w; € J for all times. Instead of considering the constrained
problem (4.3) we will present a condition on v ensuring this property in the case of
a binary interaction model in Proposition /.5.1 below. This allows to treat (4.3) as
an unconstrained problem and does not require to a priori prescribe bounds uy and
up. Also note that in general the expression of the control u in terms of wi'*" and wy
as in equation (4.5b) would be much more involved if the bound constraints ur, ug
are present.

4.2.2 Derivation of the feedback controller

We assume for now that u;, = —o0 and ur = 400 and assume sufficient regularity
conditions such that any minimizer u = u" € R to problem (4.3) fulfills the necessary
first order optimality conditions. We further assume that those conditions are also
sufficient for optimality and refer to [153] for more details.

The optimality conditions on [t", t""!] and for w; = w(t"); are given by the set
of the following equations.

1 &t
At vu = N 24 jn Aidt,
1 N
W; = N;P<wi7wj)(w] wz) +u, wl(tn> = Wi,
. 1 al n+1
Ai = —(w; —wg) — N;Rijv Ai(t") =0,

Rij = NiOuw, { P(wi, w;)(w; — wi)} + AjOu; { P(w;, i) (wi — wy)}.

The function A" = X\;(t) is the (Lagrange) multiplier. If we discretize the adjoint
equation (backwards in time) by the implicit Euler scheme we obtain due to the

boundary conditions
M= = At (W — wg)
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n+1
Further, we may solve for u after discretizing the integral as S:,f f(t)dt = At f to
obtain

At &
u=— NVZ(’LU T awy)

i=1

Applying an explicit Euler discretization to the dynamics for w; on the time
interval [¢",¢""!] and substituting the control we obtained, we observe that the
feedback control u is given by (4.5b) and hence the final equation is given by (4.5a).

The previous derivation is obtained by first computing the continuous optimality
system and then applying a suitable discretization. However, applying first an ex-
plicit Euler discretization and then computing the discrete optimality system leads
to the same result. Indeed, consider the discretization of (4.1)—(4.2) in the interval
[t",t"+!] for constant control u and with Pj} = P(w}, w}):

witt = w + Z Pli(w] —wi') + Atu, wl' = w,
(4.6)
At &
u = argmin W] 1 <2(w —wd)2+g(un)2> 7
The discrete Lagrangian is given by
1 & v 1 &
L(w, A\, u) =At (N Z(w,ﬁf“ —wg)? + §u2) + Z A (wyp — wy)
et k=1
L A (4.7)
— Z Pl — ot — Z P (wf —wy) + Atu
N &= N =

A minimizer to equation (4.6) fulfills under suitable regularity assumptions the equa-
tions (4.6), (4.8) and (4.9).

N
A= A" At (w] — wy) Z (w; ("), w; (") AP AP = 0. (4.8)

2|l>

N
0= Atvu" + — Z AL (4.9)

Upon substituting the terminal condition for \"*! and expressing u in terms of /\;L+1

we obtain the feedback control (4.5b).
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Remark 4.2.2 In order to generalize the idea we may assume that the control acts
differently on each agent. For example, one can consider the situation where action
of the control u, acting on the single agents, is influenced by the individual opinion.
Therefore we replace u in (4.1) by u@Q(w;), where Q(w) is such that g, < Q(w) <
qur- Following the previous computation, the action of the control, at discrete time,
1s driven by
nn At = n+1 nn
u"Q} = TN « 1(wj _wd)QjQi (4.10)
=

where QF = Q(w!'). Then the control dynamics on the opinion is described by

3 K3

At &
1 0
wi = wl + N;:l] (W) —wi') + Atu" Q7 w}

4.3 Boltzmann description of constrained opinion
consensus

In this section, we consider a binary Boltzmann dynamic corresponding to the above
model predictive control formulation. We emphasize that the assumption that opin-
ions are formed mainly by binary interactions is rather common, see for example
[39, 97, 146, 155]. Following [6, 85, 146] the first step is to reduce the dynamic to bi-
nary interactions. Let consider the model predictive control system (4.5a)—(4.5b) in
the simplified case of only two interacting agents, numbered ¢ and j. Their opinions
are modified in the following way

At

witt = w]' + — P (w] —w}') + Atu”,
A2t (4.12)
w?“ = wj + TPﬁ(wf —wj) + Atu",
where the control
At
a" = = (T = wa) + (= wa)). (4.13)

is implicitly defined in terms of the opinions pair at the time n+ 1. The above linear
system, however, can be easily inverted and its solutions can be written again in the
form (4.12) where now the control is expressed explicitly in terms of the opinions
pair at time n as

1 At . . 1 A#?
oy ap (F v+ el = wa)) = 57

n

(Pyj = Pji) (wf —wy).

J 7

(4.14)
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Note that, as a result of the inversion of the 2 x 2 matrix characterizing the linear
system (4.12)-(4.13), in the explicit formulation the control contains a term of order
At?

4.3.1 Binary interaction models

In order to derive a kinetic equation we introduce a density distribution of particles
f(w, t) depending on the opinion variable w € J and time ¢ > 0. The precise meaning
of the density f is the following. Given the population of agents under study, if the
opinions are defined on a subdomain €2 < J , the integral

JQ f(w, t) dw

represents the number density of individuals with opinion included in € at time
t > 0. It is assumed that the density function is normalized to 1, that is

ij(w,t) dw = 1.

The kinetic model can be derived by considering the change in time of f(w,t) de-
pending on the interactions with the other individuals. This change depends on the
balance between the gain and loss due to the binary interactions.

Accordingly to the explicit binary interaction (4.12), two agents with opinion w
and v modify their opinion as

w* = (1 —aP(w,v))w + aP(w,v)v — g (v —wq) + (W —wy))

- ozg((P(w, v) — P(v,w))(w —v)) + ©1:D(w),
5 (4.15)
v* = (1—aP(v,w))v+ aP(v,w)w — 5 (v —wq) + (w —wyq))

— ozg((P(v, w) — P(w,v))(v —w)) + O:D(w),

where we included an additional noise term as in [155], to take into account effects
falling outside the description of the model, like changes of opinion due to personal
access to information. In (4.15) we defined the following nonnegative quantities

B At 402

= = 4.1
“T p v+ 4a?’ (4.16)

which represent the strength of the compromise and of the control respectively. The
noise term is characterized by the random variables ©; and ©, taking values on a
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set B = R, with identical distribution of mean zero and variance o? measuring the

the degree of spreading of opinion due to diffusion. The function D(-) represents
the local relevance of diffusion for a given opinion, and is such that 0 < D(w) < 1.
In the absence of diffusion, from (4.15) it follows that

w* +v* = (1-75)(v+w)+20wg + a(l = 5)(Plw,v) — Plv,w))(v —w) (4.17a)
w* —v* = (w—0v)(1 = a(P(w,v) + P(v,w))), (4.17Db)

thus in general the mean opinion is not conserved. Since 0 < P(w,v) < 1, if we
assume 0 < « < 1/2 from (4.17b) we have

|lw* —v*| = (1 — a(P(w,v) + P(v,w)) |lw—v| < (1 —2a)|lw—1|, (4.18)

which tells that the relative distance in opinion between two agents cannot increase
after each interaction.

When dealing with a kinetic problem in which the variable belongs to a bounded
domain we must deal with additional mathematical difficulties in the definition of
agents interactions. In fact, it is essential to consider only interactions that do not
produce values outside the finite interval. The following proposition gives a sufficient
condition to preserve the bounds.

Proposition 4.3.1 Let us assume that 0 < P(w,v) <1 and

ggap, 6] <d(1—§>, i=1,2 (4.19)

where p = min, ,eg {P(w,v)} > 0 and d = minge {(1 —w)/D(w), D(w) # 0} > 0,
then the binary interaction (4.15) preserves the bounds, i.e. the post-interaction
opinions w*, v* are contained in I = [—1,1].

Proof 4.3.1 We will proceed in two subsequent steps, first by considering the case

of interactions without noise and second by including the noise action. Let us define
the following quantity

V=« (1 - g) P(w,v) + agp(v,w), (4.20)

where 0 < § < 1/2 by definition.
Thus relation (4.15) in absence of noise can be rewritten as

w*—(l—y—é)w%—(v—g)v%—ﬁwd, (4.21)
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therefore it is sufficient that the following bounds are satisfied
C<y<1-2 (4.22)

to have a convexr combination of w, v and wy. From equation (4.20), by the as-
sumption on P(w,v), we have ap < v < a. Therefore the left bound requires that
ap < /2, which gives the first assumption in (4.19).

If we now consider the presence of noise, we have

w* = (1 e g) w + (’y — g) v+ Pwg + D(w)O;. (4.23)

Equation (4.23) implies the following inequalities

w*<<1—7—§>w+ (7—§>+6wd+D(w)@1

<<1—7—§>w+ (7+§)+D(w)@1.

Finally, the last relation is bounded by one if

0 < (1 oy g) %zw“)}), D(w) # 0.

which yields the second condition in (4.19). The same results are readily obtained
for the post interacting opinion v*.

Remark 4.3.1 From the above proposition it is clear that agents should have a
minimal amount of propensity to change their opinion in order for the control to
act without risking to violate the opinion bounds. This reflects the fact that extreme
opinions are very difficult to change and cannot be controlled in general without
some additional assumption or model modification. In the case of ©; = 0, o # 0 we
obtain from (4.19) the condition

2c0
v+ 4a?

< p.

This condition can be satisfied provided either o is sufficiently small or v sufficiently
large.
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4.3.2 Main properties of the Boltzmann description

In general we can recover the time evolution of the density f(w,t) through (4.15)
considering for a suitable test function ¢ (w) an integro-differential equation of Boltz-
mann type in weak form [146]

d

E ; So(w)f(wa t)dw = (Q(fa f>7 @)7 (424>

where
QU £):9) = ([ B (lw?) = plu) flw.0fwr0) dw o). (425)

In (4.25), as usual, { - ) denotes the expectation with respect to the random variables
0©;, 1 = 1,2 and the nonnegative interaction kernel B;,; is related to the probability
of the microscopic interactions. The simplest choice which assures that the post
interacting opinions preserves the bounds is given by

Bint = Bint(w,v,01,035) = nx(Jw*| < 1)x(|v*| < 1) (4.26)

where 77 > 0 is a constant rate and x( - ) is the indicator function. A main simplifica-
tion occurs if the bounds of w*, v* are preserved by (4.15) itself and the interaction
kernel is independent on w, v, this will corresponds the classical Boltzmann equation
for Maxwell molecules. In the rest of the paper, thanks to Proposition 4.3.1, we will
pursue this direction. Following the derivation in |62, 146] the present results can
be extended to kernels in the form (4.26).

Let us assume that |w*| < 1 and |v*| < 1, therefore the interaction dynamic of
f(w,t) can be described by the following Boltzmann operator

QU 0)0) =0 [ (et = et fw o dwdo). (@)

The above collisional operator guarantees the conservation of the total number of
agents, corresponding to ¢(w) = 1, which is the only conserved quantity of the
process. Let us remark that, since f(w,t) is compactly supported in J then by
conservation of the moment of order zero all the moments are bounded. By the
same arguments in [155] the existence of a uniform bound on moments implies
that the class of probability densities {f(w,t)}i=o is tight, so that any sequence
{f(w,t,)}+,>0 contains an infinite subsequence which converges weakly as t — o to
some probability measure f.,.
For ¢(w) = w, we obtain the evolution of the average opinion. We have

% [ertwnao = ([ @ - w sy dwa) @
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or equivalently

% jwf(w,t)dw = g<L2 (w* +v* —w —v) f(w,t)f(v,t) dw dv>. (4.29)

Indicating the average opinion as

m(t) = wa(w, t) dw, (4.30)

from relation (4.29) and (4.17a), since ©;, i = 1,2 have zero mean, we obtain

%m@) -1 =0 =) f(0)f (w) dw v+

+3a(1=8) | (Pw.) ~ Plo,w) (v = w)f(0)f(w) duwdo

= nfua = () + a1 = 5) | (Plw.0) = Plo.w))of (0)f(w) duds
(4.31)

Note that the above equation for a general P is not closed. Since 0 < P(w,v) < 1
we have |P(w,v) — P(v,w)| < 1, then we can bound the derivative

nua—n(B + a1~ Hym(t) < Lmlt) < nBu— (5~ a1 - Hm(?)

solving on both sides we obtain the following estimate

I5; _ _ _ _
t) > 1 — n(B+a(1-P))t + 0 n(B+a(1-p))t
m(t) 5+a(1—ﬁ)( e )wd m(0)e
I6]

(1 — e ME=a=90Y ) 4 (0)e~MB—aU=B)E,

m(t) < m

If we now assume that

v < da, (4.32)
then 8 — (1 — ) > 0 and if the average m(t) — mq as t — oo we have the bounds
dov 4o
< < . 4.33
4a+1/wd e 4a—ywd ( )

Therefore small values of v force the mean opinion towards the desired state. In
the symmetric case P(v,w) = P(w,v), equation (4.31) is in closed form and can be
solved explicitly

m(t) = (1—e ") wy +m(0)e " (4.34)
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which in the limit ¢ — oo converges to wy, for any choice of the control parameters.
Let us now consider the case ¢(w) = w? in the simplified situation of P(w,v) = 1.
We have

% ijf(w,t)dw = g<J32 (w*)* + (v*)* = w* = v*) f(w,t)f(v,t) dw dv>.
(4.35)
Denoting by
E(t) = Lwa(w, t)dw, (4.36)
easy computations show that
80 == (2a0-a)+ 5 (1 5) ) (B0 - m(t7) - 20 (8m(e) - v
(4.37)

F(1— Bym()(m(t) — wa)) + 0o f D(w) f(w, ) duw,

where we used the fact that ©;, i = 1,2 have zero mean and variance 0. In absence
of diffusion, since m(t) — wy as t — 00, we obtain that E(t¢) converges exponentially
to w? for large times. Therefore the quantity

Lf(w, t)(w —wyg)*dv = E(t)* + w; — 2m(t)wy, (4.38)

goes to zero as t — o0. This shows that, under the above assumptions, the steady
state solution has the form of a Dirac delta fi(w) = d(w — wy) centered in the
desired opinion state.

4.4 Fokker-Planck modeling

In the general case, it is quite difficult to obtain analytic results on the large time
behavior of the kinetic equation (4.27). As it is usual in kinetic theory, particular
asymptotic limit of the Boltzmann model result in simplified models, generally of
Fokker-Planck type, for which the study of the theoretical properties is often easier
[146].

4.4.1 The quasi-invariant opinion limit

The main idea is to rescale the interaction frequency 7, the propensity strength «,
the diffusion variance o and the action of the control v at the same time, in order
to maintain at level of the asymptotic procedure the memory of the microscopic
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interactions (4.15). This approach is usually referred to as quasi-invariant opinion
limit [146, 155] and is closely related to the grazing collision limit of the Boltzmann
equation for Coulombian interactions (see [89, 160]).

We make the following scaling assumptions

1
a=c¢, n=-, 0? = ¢g, vV = ¢k, (4.39)

where £ > 0 and as a consequence the coefficient 5 in (4.15) takes the form

4e

ﬂ:/@+45'

This corresponds to the situation where the interaction operator concentrates on
binary interactions which produce a very small change in the opinion of the agents.
From a modeling viewpoint, we require that scaling (4.39) in the limit ¢ — 0 pre-
serves the main macroscopic properties of the kinetic system. To this aim, let us
observe that the evolution of the scaled first two moments for P(w,v) = 1 reads

d 4
Smlt) =———(wa = m(1)),
d 2e

ZE(t) = —2 ((1 —e)+ - 548 <1 - 4€>) (E(t) —m(t)%)
8 ( 1e (m(t)? — w?) + (1 i ) m(t)(m(t) — uu))

_I{+4€ K + 4e

+¢ L D(w) f(w,t) dw,

which in the limit ¢ — 0 gives

d 4
Em(t) =E<wd —m(t)), (4.40)
%E(t) =2 (1 + %) (E() = m(t))

. (4.41)
— =m(t)(m(t) — wq) + < L D(w) f(w,t) dw.

K
This shows that in order to keep the effects of the control and the diffusion in the
limit it is essential that both v and o2 scale as «.

In the sequel we show how this approach leads to a constrained Fokker—Planck
equation for the description of the opinion distribution. Even if our computations
are formal, following the same arguments in [146, 155] it is possible to give a rigorous
mathematical basis to the derivation. Here we omit the details for brevity.
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The scaled equation (4.27) reads

[t =2 [ o) - ptw) fw0s00 dwar)y @)

dt ) £
where the scaled binary interaction dynamic (4.15) can be written as

2¢e
K + 4e

w* —w = eP(w,v)(v—w) +

(2wg — (w +v)) + ©5D(w) + O(?),  (4.43)

where O is a random variable with zero mean and variance &g.
In order to recover the limit as ¢ — 0 we consider the second-order Taylor
expansion of ¢ around w

—w)*¢"(w) (4.44)

N
—_

where for some 0 <
w = Jw* + (1 —J)w.

Therefore, inserting this expansion in the interaction integral (4.42) we get

([ (- o)+ 0 = 0l w) fnf) dude ) + BE). (1.5)

The term R(e) denotes the remainder and is given by

Re) = o ([ 0= 0 (00 - D)) dudo ). (a0)

Using now (4.43) we can write

+5D()" (w)] f(w)f(v) dwdv + R(#) + O(e),

where we used the fact that ©f has zero mean and variance es.

By the same arguments in [155] it is possible to show rigorously that (4.46)
converges to zero as soon as € — 0. Therefore we have as limiting operator of (4.27)
the following

d
dt ),

(4.47)

plwpfw)dn = |

]2

(P(w, v)(v—w) + % (wd v ;— U)) O'(w) f(w) f(v)dwdv

+3 L D(w)*¢" (w) f (w) duw.
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Figure 4.1: Continuous line and dashed lines represent the steady solutions f,, and
15, respectively. On the left wy; = m(0) = 0 with diffusion parameter ¢ = 5, on
the right wy = m(0) = 0 with diffusion parameter ¢ = 2. In both cases the steady
solution changes from a bimodal distribution to an unimodal distribution around
Wy -

Integrating back by parts the last expression we obtain the following Fokker—Planck
equation

0. 0 F ¢ & )
5 T 3, W) f(w) + 2K fl(w) f(w) dv = 5= 5 (D(w)"f(w)), (4.48)
where
KLf)(w) = | Plwo)o = w)fo) do, (4.49)
I f)(w) fj (s =Y $0) do = = (g = 22T (4.50)

Remark 4.4.1 The ratio between o?/a = < is of paramount importance in order
to obtain in the limit the contribution of both controlled compromise propensity and
diffusion [155]. Other limiting behaviors can be considered like diffusion dominated
(¢ — o) or controlled compromise dominated (¢ — 0).

4.4.2 Stationary solutions

In this section we analyze the steady solutions of the Fokker—Planck model (4.48),
for particular choices of the microscopic interaction of the Boltzmann dynamic.
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¢=5 k=01 <=5, k=0.01
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—wqg = —0.75 —wqg = —0.75
st --wd=—0.5, 8t --wd=—0.5,
~-cwg =0 ---wg =0
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s 1 7t 1
6 6

0 0t5 — 1 -1 0 0‘5 1
Figure 4.2: Steady state solutions in the controlled case for different values of x and
wy. From left to right we change values of £ = 0.1 and x = 0.01 for a fixed value of

¢ =5 and different desired states wy = {—0.75,—0.5,0,0.25}.

Let consider the case in which P(w,v) = 1. In presence of the control the average
opinion in general is not conserved in time, but since m(t) converges exponentially
in time to wy, the steady state opinion solves

%aw(D(w)zf) - (1 - %) (wa —w)f. (4.51)

If we now consider as diffusion function D(w) = (1—w?), then it is possible explicitly
compute the solution of (4.51) as follows [155]

. Cogee (14w 1 —muw 2
p =g () el (n)) e

where Cy, ¢, Is a normalization constant such that { f,, dw = 1. We remark that
the solution is such that f(+1) = 0, moreover due to the general non symmetry of
f, the desired state reflects on the steady state through the mean opinion. Note
that in the case kK — o0 we obtain the steady state of the uncontrolled equation
[155]. We denote by f(w) this latter uncontrolled stationary behavior. We plot
in Figure 4.7 the steady profile f,, and f% for different choices of the parameters x
and ¢. The initial average opinion m(0) is taken equal to the desired opinion wy, in
this way we can see that for kK — oo the constrained steady profile approaches the
unconstrained one, ff — f,. On the other hand small values of x give the desired
distribution concentrated around wy.

In Figure 4.8 we show the steady profile f% for different choice of the parameters
k and the desired state w,;. We can see that decreasing the value of k lead the
profiles to concentrate around the requested value of wy.
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Figure 4.3: Continuous line and dashed lines represent the steady solutions f,, and
[, respectively. On the left wy; = m(0) = 0 with diffusion parameter ¢ = 0.9, on
the right wy; = m(0) = 0 with diffusion parameter ¢ = 0.5, in this last case note that
f is a uniform distribution on [—1,1].

Let consider P(w,v) = P(w) then stationary solutions of (4.48) satisfy the
following

S0 (D(w)’f) = (P<w> n z) (1w — w) . (4.53)

Taking P(w) = 1 — w? and D(w) = 1 — w? we can compute [155]

wy—1 w wg+l wy 2 1—'U)d'l,U

fo'é(w) = C§7m(1 - U})_Q_df_?gu. + ’U))_2+T+*T< exXp {;m} (454)

We present in Figure 4.3 different profiles of f% for m(0) = wgy, where we switch
from the steady profile of the uncontrolled case to the steady profile (4.54).

4.5 Other constrained kinetic models

The constrained binary collision rule (4.15) admits several variants accordingly to
the different ways we realize the diffusion and control dynamics.

From the modeling point of view we decided to introduce noise at the level of
the explicit binary formulation (4.12),(4.14) as an external factor which can not be
affected by the opinion maker. In contrast, adding noise from the very beginning
in (4.1)-(4.2), or equivalently in the implicit formulation (4.5a)-(4.5b), would imply
a different action of the control over the spreading of the noise. More precisely, for
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the binary interaction model this will originate the dynamic

w* = (1 —aP(w,v))w+ aP(w,v)v — g (v —wq) + (W —wy))

— aE((P(w, v) — P(v,w))(w —v)) + (1 — g 01D(w) — §®2D(U),
v* = (1—-aP(v,w))v+ aP(v,w)w — g (v —wa) + (W —wy))

- ag((P(v,w) P(w,v))(v—w)) + (1 - g) O:D(v) — g@lD(w)

(4.55)

For this binary dynamic preservation of the bounds is more delicate and the cor-

responding Boltzmann model is typically written using the kernel (4.26). Note,

however, that in the quasi-invariant opinion limit due to the rescaling (4.39) we
have f — 0 and therefore the limiting Fokker-Planck equation is again (4.48).

Next we remark that the microscopic constrained system (4.5a)-(4.5b) can be

written in explicit form by solving the corresponding linear system for wj**, ... wi'!.
Straightforward computations yields the explicit formulation
n+1 n n 0 __
= w;' —i——ZP wi —wy') + Atu”, w,; = W, (4.56)
where now
N
(At)? At
' = (wp, w;) —w + ————=(wg —m"), (4.57
v+ (At)? Z_ o W u+(At)2(d ), (457)

and we denoted by
1 X
- ¥ Z
the mean opinion value. This show that a different way to realize the constrained
binary dynamic (4.15) is given by
w* = (1 —aP(w,v))w+ aP(w,v)v — [ (m(t) — wy)

— ozg((P(w, v) — P(v,w))(w —v)) + ©1D(w),
v = (1—aP(v,w))v+ aP(v,w)w — B (m(t) — wy)
— ag((P(v, w) — P(w,v))(v—w)) + O3D(w).
Again preservation of the bounds is a difficult task and the Boltzmann equation is
written in the general form (4.25). Performing the same computations as in Section
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4.4.1 we obtain the limiting Fokker-Planck equation (4.48) with the simplified control
term
4
H(S)(w) = (wg—m). (159

The main difference now, is that when m(t) — w, the contribution of the control
vanish, H[f](w) — 0, and the steady states corresponds to those of the uncon-
strained equation by Toscani [155] in the case where the mean opinion is given by
the desired state. In other words, in the examples of Section 4.4.2; they are given
by (4.52) and (4.54) in the limit case K — oo0. Therefore, in this case, the action
of the control is weaker, since it is not able to act on any opinion distribution with
mean opinion given by the desired state.

Finally, from system (4.10)-(4.11), we can also generalize (4.15) with an agent
dependent action of the control. Following the same derivation as in Section 3 we
have the binary interaction rule

w* = (1 — aP(w,v))w + aP(w,v)v — 5“;’ Q) (0 — wa) + Q) (w — wa)

- a@(@(w)ﬁ’(u}, v) — Q(v)P(v,w))(v —w) + ©1D(w),
v = (1 - aP(v,w))v + aPv, w)w — 5“’2"”) Q) (v — wa) + Q(w)(w — wy))

— QM(Q@)P(U, w) — Q(w)P(w,v))(w — v) + O2D(v),

(4.60)
where
Bl ) = s i @)
’ v+ 20%(Q(v)? + Q(w)?)’

with property f(w,v)Q(v) = f(v,w)Q(w). In this case, sufficient condition for
the preservation of the bounds can be found provided that a minimal action of the
control is admitted by the agents, namely assuming that 0 < Q(-) < 1. Under the
scaling (4.39) we obtain the general Fokker-Plank equation (4.48) where now the
control term reads

HLf)(w) = (3 [ @ — ) + @t ) dv) Q). (461)

K

4.6 Numerical examples

In this section we report some numerical test obtained by solving the constrained
Boltzmann equation with the binary interaction rule (4.15) for different kind of
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Figure 4.4: Steady solutions of the Boltzmann equation with P(w,v) = 1 and
D(w) = 1 — w? in the scaling (4.39) for different values of € and ¢ = 3. Continuous
lines represent the steady profile of the Fokker—Planck equation. From left to right
from top to bottom, we increase the control action, diminishing the value of k.

opinion models. In the numerical simulations we use a Monte Carlo methods as
described in Chapter 4 of [146]. We simulate equation (4.48) for particular choices of
the parameters of the model comparing the stationary solutions obtained in absence
of control [155, 8] with different increasing actions of the control term.

Quasi-invariant opinion limit

In the first numerical example we compare the solutions obtained with the Monte
Carlo method in the quasi-invariant opinion limit with the exact profile of the steady
solution of the Fokker-Planck model (4.48). We consider the particular case

P(w,v) =1, D(w) =1 —w? (4.62)

then exact solutions are described by (4.52).
In Figure 4.4 we simulate the evolution of the probability density f(w,t), using
a sample of N, = 10° agents each of them interacting through the binary dynamic
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Figure 4.5: Sznajd-type model at different times. The effect of concentration (v = 1)

on the left, and separation (v = —1) are visible for the uncontrolled case (k = o).
The action of a mild control k = 1 and a strong control x = 0.1 forces the dynamic
towards different desired states, respectively wy = —0.25 and wy = 0.5. As expected

the process needs a larger amount of time to control the separation dynamic.

(4.43) for different scaling values € and © distributed uniformly on (—o,0), with
0% = 3e¢, ¢ = 3. Note that the discrepancy of the steady profiles in Figure 4.4
is due to the fact we are simulating the convergence of the Boltzmann equation
towards its Fokker-Planck limit. Therefore decreasing € and increasing the size of
the sample N, we can obtain better approximations of the Fokker—Planck profiles.

Sznajd-type model
In this test we consider a compromise propensity of the form

P(w,v) =v(1 —w?), yeR (4.63)

in absence of diffusion D(w) = 0. Note that, when the initial mean opinion m(0) = 0,
the quasi-invariant opinion limit in absence of control is governed by the mean-field
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Wqg = 0.25 Wq = 0.5 Wq = 0.75 Wq = 0.95
k=10 1.7139e-01 3.428e-01 5.1351e-01 6.5032e-01
K =05 1.1468e-01 2.2653e-01 3.3844e-01 4.2362e-01
k=1 1.0592e-03  1.6027e-03 1.5460e-03 1.2877e-03
k=0.5 7.0990e-07 9.0454e-07 6.9543e-07 4.9742e-07

Table 4.1: L,y distance between wy and the average opinion m at time T" = 2 for the
controlled Sznajd-type model with separation interactions.

Sznajd’s model [154, 8]

Orf = 70w (w(1 —w?)f). (4.64)
The model (4.64) can be solved explicitly and gives [§]
e 2t w
F) = s () (469

where fo(x) is the initial distribution. For v > 0 we have concentration of the
profile around zero, conversely for v < 0 a separation phenomena is observed and
the distribution tends to concentrate around w = 1 and w = —1.

We simulate the binary dynamic with control corresponding to the above choices
starting from an initial mean opinion m(0) = 0. Our aim is to explore the differences
between the controlled concentration and separation dynamics. We choose a scaling
parameter £ = 0.005 and a number of sample agents of N = 10°.

In Figure 4.5 we simulate the evolution of f(w,t) for the concentration (y =
1) and separation (y = —1) cases. Starting from the uniform distribution on J,
we investigate three different cases: uncontrolled (k = o0), mild control (k = 1)
towards desired state wy = —0.25 and strong control (k = 0.1) towards w,; = 0.5.
The solution profiles in the uncontrolled case, k = oo coincides with the exact
solution profile given by (4.65). Observe that separation phenomena implies a slower
convergence towards the desired states.

We complete the tests just presented with Table 4.1, where we measure the L?
distance between the average opinion m at final time 7" = 2 and the desired state
wg, in the separation case, (7 = —1). We compare the errors for decreasing values of
x and for different values of the desired state w,, showing that more effective control
implies faster convergence.

Bounded confidence model

Next, we consider the case of bounded confidence models, where the possible interac-
tion between agents depends on the level of confidence they have [102, 97|. This can
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be model through a compromise function which accounts the exchange of opinion
only inside a fixed distance A between the agent opinions

P(w,v) = x(Jlw —v| < A), (4.66)

where x(-) is the indicator function.

v =50000, A =0.2, 0 =0.01 v =5, A=0.2, 0 =0.01
200

0
t
1
4
0.5 .
3
25
s 0 ) ¥
1.5
-0.5 1
—
0.5
—1 0
0 200 0
t

Figure 4.6: Bounded confidence model. On the left the control parameter v = 5000
on the right v = 5. In the top row the result of a particle simulation with N = 200
agents where the color scale depicts the opinion value. Bottom row represents the

evolution of the kinetic density. In both cases the simulation is performed for o =
0.01 and A =0.2.

t

In Figure 4.6, we simulate the dynamic of the agents starting from an uniform
distribution of the opinions on the interval J = [—1,1]. The confidence bound is
taken A = 0.2 and the diffusion parameter ¢ = 0.01. We consider the case without
control and with control, letting the system evolve in the time interval [0 T'], with
T = 200. In the left column figures we represents the weak controlled case, with
penalization parameter v = 5000, and three mainstream opinions emerge, on the
right the presence of the control, ¥ = 5 is able to lead the opinions to concentrate
around the desired opinion, wy = 0.
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Top row of plots shows the evolution of the dynamic at the particle level, with
N = 200. Bottom row represents the same dynamic at the kinetic level, simulation
is performed with a sample of N, = 2 x 10° particles with e = 0.05.

4.7 Mean-field model predictive control of flocking
behavior
In the following section we extend the results of the previous sections to the case of

second-order models for alignment, [158, 67, 138].
We consider the evolution of N agents where each agent has position and velocity

(;(t),v;(t)), i =1,..., N and this can change over time according to
:I./'i = U,
1 & 4.67
=V Z a(@iy ) (v, — v;) + u, v;(0) = vy, (4.67)

where at variance with respect to Cucker-Smale model, function H, is such that
Hu(x,y) # Hu(x,y). As before the control u = u(t) is given by the minimization of
the cost functional over a certain time horizon T'

u = argmin L ' %jzi (%(vj(s) —vg)? + g(u(s))2> ds, (4.68)

In the formulation (4.2) v > 0 is a regularization parameter and the value v, is a
desired velocity, which can be also extended to more general objects, for example to
a time dependent velocity vy = v4(t) or the direction along some desired trajectory.

4.7.1 MPC for flocking models

We use instantaneous control to derive a computable control v at any time ¢, which
results to be suboptimal respect to the solution to (4.67)-(4.68).

A receding horizon strategy

Following the same approach of section 4.2.1, we split the time interval [0,7] in
M time intervals of length At and let t" = At n, assuming the control piecewise
constant on time intervals of length At > 0,

M—-1
= Z unX[tnytn-#l] (t) .
n=0
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We determine the value of the control u™ € R, solving for a state v; the (reduced)
optimization problem

o1 N
U = N - Z a(Ti, x5)(v; —v;) + u, v (t") = 1,

tn+1

(4.69)
N Z ( —vg)? + gu2) ds, u € [up, ug).

Having the control u™ on the interval [t",¢""!], we let evolve v; according to the
dynamics

u" = argminueRf

tn

o(Ti, ) (v; — v;) + u” (4.70)

i

HMZ

in order to obtain the new state v; = v;(t"*!). We again solve (4.69) to obtain u"*!
with the modified initial data and we repeat this procedure until we reach nAt = T.

In this way we are able to reduce the complexity of the initial problem (4.67)-
(4.68), to an optimization problem in a single real-valued variable u". Moreover the
quadratic cost and a suitable discretization of (4.70) allows an explicit representation
of u™ in terms of v; and v;(t"™!). As shown in section 4.2.2 this allows to reformulate
the previous algorithm as a feedback controlled system which in discretized form
reads

vt = 4 Z aii (V7 — i) + Atu”, vl = 1y,
(4.71)
n At n+1
u" = VN (v —vg).

where H',. = H,(a?, a" ) Therefore the feedback controlled system in the dis-

a,ij i %g
cretized form results

!t = 2"+ At"

n+1 n+1 n
v =) +—Z a” v; Z v;

2

(4.72)

Il
i~
S

Where the action of the control is substituted by a relaxation term toward the
desired velocity vy, appearing in an implicit form.

4.7.2 Mean-field description

The aim of this section is to show that out of system (4.72) we are able to derive a
corresponding kinetic approximation of the feedback controlled system.
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Derivation of the forward system

Let us introduce the parameter v = At/N, we can write the second part of system
(4.72) as follows

N N"}/Q N
ot = L ) = T D e, e (4T3)
j=1 J=1

in matrix-vector notation we have

2 N 2
<Id + lE) " = 0" 4 yHM" — /D" — T evy (4.74)
v v
where
HYy Hpy ... Hliy Zng,U 0 ... 0
H,=1 : .|, D'= : :
Hiyny Hine oo Hiny 0 0 ... Zng,Nj
11 1
E = coe=(1,1,..., 0" o= (@on, . o)t
11 1
The system can be reverted in a fully explicit form
n+1 n n,n n,n N’)/Q
V" = Av" + yAH 0" — yAD"™0" — Aevy (4.75)
v
where A has the following structure and property
2 -1 2
g Y v
A=(Ild+ —E =Ild- ——E Ae=———e.
< Y > v+ N2 © V+N’)/2€
therefore
2 N2
AH"=H!' - — EH! =H! - ——H”
“  v+4 Ny? “ ¢y N2
ol 7 T
AD"=D"—- —ED"=D"—- ———(H!
v+ N~2 V—FN’}/Q( a)

where we indicate H? the matrix product EH” = (ED")T. The full vector-system
reads
Ny? v

T e — — ) Eu"+
1/+N72vde v+ Nv? !

" =" 4+ 4 (HY — D") 0" +
7 5 T

T @ @)

o7 N2 Ha — (Ha) o,

(4.76)
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where the last term disappears if function H, = H,(z,y) is symmetric. Reverting
back In terms of At the full system reads have

2!t = 2" 4+ A",

A 1 Y
n+1: n . _
SR R
At?
HTL ’I’L
1/+At2N2 i = Hoyg )

For At — 0 this corresponds to a time discretization of the original system (4.69),
where the action of the control is lost since it is expressed in terms of O(A¢?) .

In order to see the control action is necessary to assume the following scaling on
the regularization parameter, v = Atk, thus we obtain

. . At 1Y .
ot = ] +—Z aii o) + fi—l—Ath(vd_vj) + O(At), (4.78)

Letting At — 0 we obtain the full controlled continuous system as follows

1 I 4.79
v = NZH (x5, ;) (v; — v —NZ Vg — V) ( )

At this level, in order to derive a corresponding kinetic approximation, as done
in section 4.3 we could proceed approximating the dynamic through a binary in-
teraction and deriving the corresponding Boltzmann-Povzner equation. At variance
with this approach we show in the following a direct approximation through the
mean-field limit, [17].

4.7.3 Mean-field model predictive control limit

We want to give a kinetic description of (4.79), therefore we introduce function
f = f(z,v,t), representing the particle density at time ¢ with position and velocity
(x,v). We assume that f is equivalent to a probability density function on R?¢, thus

f(z,v,t) dedv = 1.
R2d
Since the right term of system (4.79) is assumed to be continuos, bounded and
locally Lipschitz, it satisfies all the nice properties of classical swarming models, see
[47]. Therefore the derivation of a mean-field equation follows from straight forward
computations.
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Mean-field limit derivation

We define the empirical measures
N
Z x —z;(t))d(v — vi(t)),
i=1

and let consider a test function ¢ € C}(R??) and we compute

d ,.x 14hd _
@i {I70:9) = 7 2 golastt) ) -

SIS0, (0) 1) + 1ty D) Vo), (D) ) o~ 1) +
i - — - g

HNQ Zquxz v; () (vg — ;) .

2,7=1

N~

I3

We solve term by term the summation, thus
1N
I = Nvacb(xi(t),vz( = FN(), Vet v,

I = N2 Z Ho(2i(t), 2;(1) Vod(i(t), vi(t)) - (v;(1) — vi(t)) =

i,7=1

1N
< b 2 Al =0 v¢<<>—v>>.

and

N RN
Iy - HNQZVMM» (vd—vz<))=<f b 2T vd—v>>

i,7=1

Defining the following quantities
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we can express the previous relation in the following way
L ={fN),Vod - Hem™y — (fN(t), Voo - Hx p")
1
L= (0.9 (- m¥))

where » represents the convolution product. Collecting all the terms and integrating
by parts in (z,v) we recover the following weak formulation

%<fN> ¢> == <vv1‘fNa ¢> - <vvg{[fN]fN7 ¢> - <vvg<[fN]fN7 ¢>
where

HL (@0, t) = | Halz,y)(v = w) [ (y, w, t)dydw,

R2d

%UﬁMﬂ—lka—wﬁW%mﬂ@Mk

R

Rewriting the main expression we have

%fN + oV, N+ VL HNN + VKN, ¢> =0
and thus the strong form reads

%fN + oV N+ VHFVFY + VK[V = 0.

Then the limit for k¥ — oo of subsequence (f*), leads to the following evolution
equation for f = f(x,v,t)

Ocf+v - Vof = =V - (H[f1f) = Vo - (X[f1])
H[f] = Hy(z,y)(w —v) f(y, w,t) dydw. (4.80)

KUf] = 5 [ = 0)f0.0) dydw =+ (1= m(t),

K

4.7.4 Numerical tests

In the following section we perform some numerical test using the algorithms devel-
oped in [6].
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Figure 4.7: Evolution of the kinetic Cucker-Smale model with v = 10, with different
actions of the control, at three different steps. First row, x = oo, the alignment
condition is not reached. Second row, £ = 10, (mild control action) alignment is
reached towards the desired velocity vy = (1,1)T. Bottom row, strong control action,
k = 1 the control is reached quickly and the spatial density is more concentrated.

Forcing consensus

We recall that the classical alignment dynamic in Cucker-Smale model is weighted
by the following not increasing function

K

it has been shown that for v < 1/2 we have unconditional focking, i.e. all agents tend
to move exponentially fast with the same velocity, while their relative distances tend
to remain constant, |54, 67]. We want to address our attention to the formation of
alignment, when this condition is not satisfied by the parameter v or by the initial
conditions.
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In Figure 4.7 we solve model (4.80), with v = 10 and with desired speed vy =
(1,1)T, we compare the evolution of the same initial data for different choices of
control strength . The initial data, normally distributed in space and with symmetric
bimodal distribution in velocity

e [a )]

where vg = 5 and 0, = 0, = 1 and C a normalization constant. Top row shows
the evolutions without control action, x = oo, so the density follows the velocity
flux spreading in the space with a fat ring shape, without reaching a condition of
alignment. Second row shows the evolution with mild control action (k = 10) and
bottom row the evolution of a strong control (k = 1), in both cases the alignment
to the desired speed is obtained, but in different time scale and spread of density.

x10°
i
s
7
3
s
4
3
2
1
30

Figure 4.8: The flock density is forced to follow a desired trajectory ~4(t) =
(cos(t), sin(2t)), described by a lemniscate, the regularization parameter is k = 0.1
and the scaling parameter ¢ = 0.01.

Following a desired trajectory

We can extend the forcing consensus problem to a problem of following a desired tra-
jectory ~v,4(t), considering a desired speed as a function of time, vy = v,4(t), therefore
va(t) = ~4(t). In this way the control action at time ¢ forces the system to converge
instantaneously to the corresponding desired velocity at time t. Note that in this
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case the choice of k and At are of paramount importance to reconstruct exactly the
trajectory.

We simulate the evolution of an aligned density solution, forcing the system
to follow a desired trajectory v4(t) = R(cos(t),sin(2t)) with R = 1, which cor-
responds to a lemniscate. The corresponding desired speed is given by v4(t) =
R(—sin(t), 2 cos(2t)), which we discretize according to our algorithm with At = 0.01.

In Figure 4.8 we show the evolution of the system with control action, x = 0.1.

4.8 Conclusions

In this chapter we introduced a general way to construct a Boltzmann description of
optimal control problems for large systems of interacting agents. The approach has
been applied to a constrained microscopic model of opinion formation. The main
feature of the method is that, thanks to a model predictive approximation, the con-
trol is explicitly embedded in the resulting binary interaction dynamic. In particular
in the so-called quasi invariant opinion limit simplified Fokker-Planck models have
been derived which admit explicit computations of the steady states. The robustness
of the controlled dynamics has been illustrated by several numerical examples which
confirm the theoretical results. Different generalizations of the presented approach
are possible, like the introduction of the same control dynamic through leaders or
the application of this same control methodology to swarming and flocking models.
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CHAPTER D

Asymptotic Preserving schemes for the time
discretization of optimal control for hyperbolic
problems with relaxation

5.1 Introduction

We are interested in numerical methods for time discretization of optimal control
problems of type (5.1). The construction of such methods for control problems
involving differential equations has been an intensive field of research recently [36,
79, 101, 123, 162]. Applications of such methods can be found in several disciplines,
form aerospace and mechanical engineering to the life sciences. In particular, many
applications involves systems of differential equations of the form

Y(0) = F(0).1) + Zg(u(0),0), (1)

where f and g, eventually obtained as suitable finite-difference or finite-element
approximations of spatial derivatives, induce considerably different time scales in-
dicated by the small parameter ¢ > 0 in the previous equation. Therefore, to
avoid fully implicit integrators, it is highly desirable to have a combination of im-
plicit and explicit (IMEX) discretization terms to resolve stiff and non-stiff dy-
namics accordingly. For Runge-Kutta methods such schemes have been studied in
[12, 38, 78, 112, 115, 145, 144].

Control problems with respect to IMEX methods have been investigated also
in [111, 107] in the case of fixed positive value of ¢ > 0. Among the most relevant
examples for IMEX scheme are the time discretization of hyperbolic balance laws
and kinetic equations. As discussed in [115, 144] the construction of such methods
imply new difficulties due to the appearance of coupled order conditions and to
the possible loss of accuracy close to stiff regimes ¢ « At and At being the time
discretization of the numerical scheme. In contrary to the existing work [111, 107]

111
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we focus here on optimal control problems where the time integration schemes also
allow a accurate resolution in the stiff regime. As a prototype example including
already the major difficulties for such methods we choose the Goldstein-Taylor model
(5.3). This equation already contains several ingredients typical to linear kinetic
transport models and serves as a prototype and test case for numerical integration
schemes. The model describes the time evolution of two particle densities f*(x,t)
and f~(z,t), with x € Q < R and ¢t € R, where f*(x,t) (respectively f~(x,t))
denotes the density of particles at time ¢ > 0 traveling along a straight line with
velocity +c¢ (respectively —c). The particle may change with rate o the direction.
The differential model can be written as

ff+efd=a(f = f"),

- - _ (5.2)
fr—clo=a(fr=17).
Introducing the macroscopic variables
p=f"+f, j=cf —f")
we obtain the equivalent form
+ Jz = 0,
Pt T (5.3)

ji + Pp, = —203.

We introduce a linear quadratic optimal control problem subject to a relaxed hyper-
bolic system of balance laws. Let Q = [0,1] , terminal time 7" > 0, regularisation
parameter v > 0 and let u(t) be the control. The function p,(z) is a desired state.
To simplify notation we set ¢ = 20 = 1/e? and € > 0 is the non-negative relaxation
parameter.

The optimization problem then reads

1 T
win J(p.0) = 5 | (o) = puta) Po + 5 [0y (5.4
0 0
subject to

pr + jg; = 0, (55&)

. 1 1.
Je + ?pz = 752]' (55b>
p(xa 0) = o, j(il?, O) = jU (55C)

Further, we set box constraints for the control
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In the limit case ¢ — 0, (5.5b) formally yields

j(m7t) = —px<1’, t)'

Plugging this into (5.5a) yields the heat equation

Pt = Prx

and the optimal control problem (5.4) — (5.5) reduces to a problem studied for exam-
ple in [156]. Obviously, we expect a similar behavior for a numerical discretization.
This property, called asymptotic preserving, has been investigated for the simulation
of Goldstein—Taylor like models in [38, 78, 112] but has not yet been studied in the
context of control problems.

The paper is organized as follows. In Section 5.2 we introduce the temporal dis-
cretization of problem (5.5) and describe in detail the resulting semi-discretized op-
timal control problems. We investigate which numerical integration schemes yield
a stable approximation to the resulting optimality conditions. In the third section
we show how to provide a stable discretization scheme in the parabolic regime by
introducing a splitting and applying the formal Chapman-Enskog type limiting pro-
cedure. In Section 5.4 we present numerical results on the several implicit explicit
Runge-Kutta methods (IMEX) schemes for the limiting problem as well as on an ex-
ample taken from [156]. Definitions for properties of the IMEX schemes are collected
for convenience in the appendix 5.5.

5.2  The semi—discretized problem

We are interested to derive a numerical time integration scheme which allows to
treat the optimal control problem (5.4)—(5.5) for all values of € € [0, 1], including
in particular the limit case € = 0. Therefore, we leave a side the treatment of the
discretization of the spatial variable z as well as theoretical aspects of the differentia-
bility of solutions (p, J) of equation (5.5). We remark that the semigroup generated
by a nonlinear hyperbolic conservation/balance law is generically non-differentiable
in L' even in the scalar one-dimensional (1-D) case. More details on the differential
structure of solutions are found in [41, 42|, on convergence results for first—order
numerical schemes and scalar conservation laws are found in [31, 577 | 94, 157]
Numerical methods for the optimal control problems of scalar hyperbolic equations
have been discussed in [20, 92, 93, 157]. In [95, 96|, the adjoint equation has been
discretized using a Lax-Friedrichs-type scheme, obtained by including conditions
along shocks and modifying the Lax-Friedrichs numerical viscosity. Convergence
of the modified Lax-Friedrichs scheme has been rigorously proved in the case of a
smooth convex flux function. Convergence results have also been obtained in [157]
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for the class of schemes satisfying the one-sided Lipschitz condition (OSLC) and
in [20] for a first-order implicit-explicit finite-volume method. To the best of our
knowledge there does not exists a convergence theory for spatial discretization of
control problems subject to hyperbolic systems with source terms so far.

In view of the previous discussion the interest is on the availability of suit-
able time—integration schemes for the arising optimal control problem. We consider
therefore a semi—discretized problem in time. We further skip the spatial depen-
dence whenever the intention is clear. The system (5.5a) consists of a stiff and a
non-stiff part we employ diagonal implicit explicit Runge-Kutta methods (IMEX).
Convergence order of such schemes for positive € and the property of symplecticity
has been analysed in [107]. In the following we briefly review IMEX methods and
discuss a splitting [38] in order to also resolve efficiently the stiff limiting problem
(e =0).

An s—stage IMEX Runge-Kutta method is characterized by the s x s matrices
A, A and vectors ¢, ¢, b, b € R®, represented by the double Butcher tableau:

Explicit: ¢ Z;;l’ Implicit: ¢ b/jlﬂ

We refer to the appendix 5.5 for further definitions and examples of IMEX RK
schemes. Applying an IMEX time-discretization to the Goldstein-Taylor model
(5.5) yields in the limit ¢ = 0 an explicit numerical scheme for the heat equation
[38]. This is only stable provided the parabolic CFL condition At ~ Axz? holds
true. This is highly undesirable and therefore, a splitting has been introduced such
that also in the limit e = 0 an implicit discretization of the heat equation can be
obtained. We rewrite (5.5a) as

explicit implicit
——
pr = —(J + ppx)e + (1puz) (5.6)

where p = p(e) = 0 is such that (0) = 1 and leave equation (5.5b) unchanged.
Within an IMEX time discretization we treat explicitly the first term and implicitly
the second term as indicated in (5.6). It remains to discuss the choice of p in equa-
tion 5.6 depending on €. Using formal Chapman—FEnkog expansion for this choice,
presented in section 5.6, we observe that in the diffusive limit ¢ = 0 the term j + pp,
vanishes.

Combining the previous computations we state the semi—discretized problem for
an s—stage IMEX scheme. Introduce a temporal grid of size At and N equally
spaced grid points t,, such that T'= AtN and t; = 0. Let p" = p(t,,-), " = j(tn, ),
e=(1,...,1) e R and denote by R = (R,(-));_, the s stage variables and similarly
for J. For notational simplicity we discretize the control on the same temporal
grid u™ = wu(t,). However, this is not necessary for the derived results and other
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approaches can be used. We prescribe boundary conditions in the case ¢ > 0 as
follows: Since in the limit ¢ = 0 we obtain j(t,z) = —p,(t, ) we add 5" (1) = —p2(1)
and j"(0) = —p2(0) as boundary conditions. Further let M = diag(y;) € R*** define
the values of y; for the levels [ = 1,...,s.

Then, the semi-discretization of problem (5.5) reads

min% Jo (PN () — pa(z))?dz + At% Z (un)2 ,

R = p'e — AtA(0,J + MaZR) + AtA (MZR),
e2J = %"e — AtA(O,R + J),
Pl =t — AtT(0,3 + MA2,R) + Atb” (M2, R) (5.7)
g2t = g2m — Atb" (0,R + J),
pt=po ' =Jjo,
j*(0) =0, j"(1)=p"(1) = —u",
7"(0) = =pz(0),  j"(1) = =p"(1)a-

n=1

Using formal computations we derive the (adjoint) equations (5.8) for the La-
grange multipliers (p”, ¢")Y_, and the corresponding stage variables P, Q with P =
(Pe())i_;, Pr e R® and Q respectively.

pr=p"" +e"P, PN —pa—p" =0,
2q" = 24" 1 £2e7Q, 24V =0,
P =At (0,(ATQ) + 0uq""'b) — AtM (fﬁm(flTP) + 631;19”“5) (5.8)
+ AM (02, (ATP) + 02,p" D) |
£2Q = — At (ATQ + ¢"F'b) + At (ax(flTP) + M"“B) :

We obtain boundary conditions for (5.8) as
¢"(0) =0, ¢"(1)+p"(1) =0, ¢"(0) =p;(0) and ¢"(1) =p;(1). (59)

Furthermore, we consider under the assumption of using a type A scheme (we
leave on purpose a definitions of these scheme in appendix 5.5) the limit case € = 0
of the optimal control problem (5.5). Note that for ¢ = 0 we have M = Id. The
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semi—discretized problem is

min% fo (PN (x) — pa(z))?dx + At% Z (u")2

n=1
I; z iif_{ AtA (0,3 + 02 R) + AtA (02, R) (5.10)
pttt = pt = AT (0,3 + 02, R) + A" (02, R)
pl=ro P2(0)=0, pi(1)+p"(1) =u",
and the corresponding adjoint equations are given by (5.11).
pt=p"tt e, pN —pa—pN =0,
P=0,Q - At (0§x(ATP) + 2 prHip
b AF(EL(ATP) + 2, ) (510)
Q=At (az<ATP) + &mp”HE)
We obtain boundary conditions for (5.11) as
pr(1)+p"(1) =0, and p’(0)=0. (5.12)

The relation between the limiting problem and the small € limit of the adjoint
equations (5.8) and (5.11) is summarized in the following Lemma.

Lemma 5.2.1 If the IMEX Runge Kutta method is implicit stiffly accurate (ISA)
and of type A, then the e = 0 limit of (5.8) is given by

pt=eP, pV—pi—pV =0, " =0, ¢" =0
P —p'tle, + Atd, (ATQ)
~ At (agx (ATP) 2, (ATP)) AT — e A)E e (5.13)

0=— At (ATQ — o, (ATP)) + AT — e, A)d,p el

Further, there exists a linear variable transformation such that a solution to
(5.13) is equivalent to a solution of the adjoint equation (5.11) of Problem (5.10) for
e =0.

Proof 5.2.1 In the case of implicit stiffly accurateness the IMEX scheme simplifies
to

R = p'e — AtA(0,J + M2 R) + AtA (MZR)
2 = e?j"e — AtA(0,R + J) (5.14)
Pttt =elR — At(b" — el A) (0, + M2, R), "= elJ

S
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and the corresponding adjoint equations are given by
p"=e'P, ¢" =%"Q, PN —pa—pN =0, ¢V =0,
P — ptle, + Atd, (ATQ)
~ A (afm (ATP> _ 2 (ATP)> ~ AT — T A)32 p M
2Q =¢" e, — At (ATQ — 0y (ATP» + ALV —eT A)optle

Since M = 1d in the limit € = 0 we obtain the adjoint equations (5.13). Introducing
the transformation

Q = AtATQ.

=

and proceeding yields from (5.13) the system (5.15).
p'=e"P, ¢" =0, PN —pa—p" =0, " =0,
P=p""e, +0,.Q

- At (6?” (ATP) — &2, (ATP)> ~ AT — T A)32, p e (5.15)

Q= Atd, (ATP) + AHDT — el A)op e

The latter are the adjoint equations (5.11) to problem (5.10) provided an implicit
stiffly accurate scheme (5.14) has been used. Therein p"** = p"—AtbT (0,J + 0%, R)+

AT (02 R) becomes p"t! = e,R — At <Z~)T - esfl> (0.d + 72 R), which yields fur-

ther simplifications in (5.13) and (5.15), respectively.

A particular, yet important case of Lemma 5.2.1 are the so-called globally stiffly
accurate IMEX scheme. They fulfil additionally (b7 — el A) = 0.

5.3 Optimal choice of M

In the following section we discuss the optimal choice of 1 in equation (5.6). We want
to avoid parabolic stiffness for small value of €, and the numerical instabilities due to
the discretization of the term (j + pp,).. In [38] the following formula has been used
p = exp(—e/Ax), here we want to choose p in such a way that Chapman-Enskog
expansion with respect to ¢ at least to order O(g?) and the term j + up, vanishes.
It can been shown that independent of p a stiffly accurate asymptotic-preserving
IMEX yields an asymptotic—preserving scheme for the limit equation.

Considering an s—stage IMEX scheme and a semi-discretization of (5.5) as in
(5.7), the optimal choice of an diagonal matrix M, such that the explicit term
J + M0, R vanishes in the O(g?) regime is presented in the following lemma.
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Lemma 5.3.1 If the IMEX scheme is of type A an optimal choice for M in the
O(g?) regime for scheme

R = p"e — AtA0, (J + M, R) + AtAM? R
e2J = e%j"e — AtA(O,R + J)
Pt = gt — AT, (3 + MA,R) + AthT M2, R (5.16)
g2t = 25 — Atb' (0,R + J)
15 given by

M = At (2Id + At diag(A)) ™" diag(A). (5.17)

The formula follows straightforward substituting stage by stage the approximation
of order O(g?) in the subsequent stages

auAt 2
Jy=— —120 5 R+ O(e2),
! g2 + CLHAt 1+ (5 )
. CLQQAt azlAt 2y aggAt 2
Jy = Tt T I A (0Ry + J1) +0(e%) = o amAt@ng + 0(e%)
O(g?)
a“At = aijAt 2 a“At 9
Ji o 52 + CL”At et 2_11 52 + auAt LaxR] ,_/+ JJ) +O(€ ) N _52 + CL”Atale + O(f‘: )

O(g2)
We leave a rigorous proof in subsection 5.6.

Remark 5.3.1 Note that M = diag(u}) is not depending on t,, i.e, pu} = i, and
the solution of (5.17) can be computed for the stages once and for all. Moreover
(5.17) tells us that when € — 0, M has the expected behavior, namely M — Id.

5.4 Numerical results

For the temporal discretization we use different IMEX schemes fulfilling the prop-
erties of Lemma 5.2.1. We consider second—order in time schemes. The IMEX
GSA(3,4,2), [107], as given by the Butcher tables in table 5.4 is a globally stiffly
accurate scheme which is of type A. The implicit part is invertible and the last row
of implicit and explicit scheme coincide. It is of second—order as the numerical re-
sults show. Further, we consider the second—order IMEX SSP(3,3,2) scheme, [3§],
(table 5.5) which is only implicitly stiffly accurate and of type A. In view of Theorem
3.1 [107] we observe that SSP(3,3,2) is symplectic. Theorem 2.1 [107| guarantees
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that for all considered schemes the convergence order of the IMEX scheme applied
to the optimality system is also of second—order.

For the spatial discretization we introduce an equidistant grid with M grid points
{z;}}, and grid size Az, such that z; = &% and zy = 1 — 2. We set p"(z;) = p'
and j"(z:) — j7"

Since the Goldstein-Taylor model depends on e, we expect parabolic behavior
for ¢ « 1 and hyperbolic behavior else. We use second order central difference for
the diffusive part p,, and hyperbolic discretization based on an Upwind scheme for
the advective terms. In order to determine the Upwind direction, we recall from

section 5.1 the definition of the macroscopic variables

P B ) (5.15)

€
We obtain for f*, the density of particles with positive velocity, the Upwind
scheme,
fi+ - i+—1 o :H - fztl Az iJ—ri-l - 2fi+ - itl

Ax 2Ax 2 (Azx)?

Similar for the scheme of f~. By combining the discretization for f* and f~ we

obtain the discrete stencils in the original variables by applying (5.18), as follows:
A A

Dtp=Dp—2Ep2i phj=pej - Sip2, (5.19)

2 2e

where D¢ is the stencil for central difference = (=1 0 1) and D? the second order

central difference @(1 —2 1). Using a convex combination of the discretization

of the diffusive term with the hyperbolic part by the function ® = ®(¢) we finally

obtain

Dp=®D + (1 —®)D"p, Dj = ®D% + (1 — ®)D"j (5.20)

The function @ is chosen such that ®(0) = 1 and ®()5% — 0 for ¢ — 1. The
simplest possible way is ® = 1 — ¢, but more cleaver choices have been proposed
in [? |, where the value of ® coincides with u = exp(—¢/Ax) or in [? | with
® =1 — tanh(e/Ax).

In all cases we discretize the with a spatial grid size Ax ~ At since we avoid
the parabolic CFL condition due to introduced splitting, (5.6). The discretization

of Az ~ At is the typical hyperbolic CFL type condition induced by the transport.

5.4.1 Order analysis

To verify the theoretical results numerically we set up the following test problem.
We consider the parabolic case. Let ¢ = 0,v = 0,u; = —1 and u, = 1. Further
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N | lpk = palre@re) | lok = pdliew=w@) || IPilr=wi@) | IPili=wsw)
20 1.31e-04 2.69¢e-07 1.25e-04 2.02e-07

40 | 3.100-05 (2.08) | 6.08¢-08 (2.14) | 3.03¢-05 (2.04) | 4.88¢-08 (2.04)
80 | 7.55¢-06 (2.04) | 1.43e-08 (2.09) || 7.46¢-06 (2.02) | 1.21e-08 (2.01)
160 || 1.86e-06 (2.01) | 3.45¢-09 (2.05) | 1.85¢-06 (2.01) | 3.01e-09 (2.00)
320 4.62e-07 (2.00) 8.41e-10 (2.03) 4.61e-07 (2.00) | 7.55e-10 (1.99)

Table 5.1: Order results for the GSA(3,4,2), table 5.4, ¢ = 0. In brackets the the
log,-ratio between the results from two subsequent step width.

set pg = cos(x), jo = 0 and pg(x) = e T cos(x). Then, the solution to the optimal

control problem (5.4) — (5.5) is given analytically by u*(¢) = e~* (cos(1) — sin(1)) and
J =0 . Within this setting p(z,t) = e " cos(z) is solution of (5.5) and p*(¢,1) = 0.
The domain is 2 = [0, 1] and the terminal time 7" = 1.

We compute the numerical solution for different values of N € {20, 40, 80, 160, 320}
using different IMEX schemes. We denote by p% and p% the solution to (5.8) with
initial values pg = p(z,T) and p" = p%. We compare ratios of L® and L' errors of
the approximate solutions using the following norms:

LP(LY(Q)) := LP(0,T; LY Q)  and  L®(L®(Q)) := L®(0,T; L*(Q)).

The results for different IMEX schemes are listed in table 5.1 and 5.2.

N | oy = paleewr@y | ok = paleew=@y | IPxlewi@) | 1Pkl wew)
20 || 1.296-04 2.730-07 1.226-04 1.966-07

40 || 3.07-05 (2.06) | 6.15¢-08 (2.15) || 2.99¢-05 (2.03) | 4.80e-08 (2.02)
80 | 7.51e-06 (2.03) | 1.44-08 (2.09) || 7.426-06 (2.02) | 1.19¢-08 (2.00)
160 || 1.85¢-06 (2.01) | 3.46¢-09 (2.05) | 1.85¢-06 (2.00) | 3.00e-09 (1.99)
320 | 4.62e-07 (2.00) | 84310 (2.03) | 4.61e-07 (2.00) | 7.52e-10 (1.99)

Table 5.2: Order results for the SSP2(3,3,2), table 5.5, ¢ = 0. In brackets the
log,-ratio between the results from two subsequent step width corresponds.

As expected we observe the convergence order of two for all discussed schemes.
We tested the example for stiffly accurate (SSP2(3,3,2)) as well as globally stiffly
accurate schemes (GSA(3,4,2)). The order two is in particular preserved in the limit
e = 0 as expected by the previous Lemmas.
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5.4.2 Computational results on the optimal control problem

We compare the IMEX methods applied to the Goldstein—Taylor model in the limit
case ¢ = ( with the numerical solution presented in [156]. Therein, the limit problem
has been studied using parameters: T = 1.58, p, = jo = 0, pa(z) = 0.5(1 — 2%),v =
0.001,u4;, = —1 and u, = 1. We furthermore set N = 100 and M = 50. We use a
gradient based optimization to iteratively compute the optimal control u* using an
implicit stiffly accurate scheme (ISA). The numerical approximation to the gradient
for the reduced objective functional J (u) is then given by

VJ = At(vu™ + p")

where p" is the solution to the adjoint equation (5.8), respectively (5.13), at time ¢".
The terminal condition for the gradient based optimization is |progu, .,1(VJ)| L2001y <
1076,

IMEX || e=0 | =01 e=05 | =08 | e=1
GSA(3,4,2) || 6.51-107% [ 5.94-107* [ 2.85-10* [ 2.47-107* | 2.44 - 10~*
SSP(3,3,2) || 6.52-10~% - 2.84-107% | 2.46-107* | 2.43-107*

Table 5.3: Results for J(u?), different IMEX schemes and values of €. For ¢ = 0 in
[156], they obtain J(u) = 6.86 - 107

The final values for J(u¥) for the different schemes are presented in table 5.3.
The calculated values with our method J(ug) are consistent with respect to the
numerical discretization in space and time to the ones in [156]. Note that in the
limit ¢ = 0 we do not have a parabolic CFL condition due to the applied splitting
and the obtained results are precisely as in [156].

Figure 5.1 shows the numerical solutions using GSA(3,4,2) scheme for different
values of ¢ € {0,0.1,0.5,1}. The globally stiffly accurate IMEX schemes yield solu-
tions to the e—dependent class of optimization problems (5.5) across the full range
of parameters €.

In figure 5.2 we plot the numerical solutions using SSP(3,3,2) scheme for different
values of ¢ € {0,0.5,0.8,1}. As in [38] shown, SSP(3,3,2) is not globally stiffly
accurate, and therefore we cannot expect stability for small values of ¢, even if ¢ = 0
provides a stable solution. Further, we set N = 200 for similar reasons.

In both figures, one can observe oscillations at the boundary x = 1 for values of
e > 0.25. This is caused due to the assumption j = —p, in z = 1, which holds true
just for ¢ = 0. We set ® = 0.3 for GSA(3,4,2) and ¢ = 1. Further for SSP(3,3,2)
and € = 0.5 we set ® = 0.385. All other values of ¢ are treated with ® = 1 — 3.
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Figure 5.1: Numerical solution, using GSA(3,4,2) scheme, see appendix 5.5, for 150
time steps and 50 grid points in space. The left part of the plot shows the optimal
controls u? for different values of €. On the right plot we show the corresponding
optimal states pf(-,T) — pg for different choices of .
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Figure 5.2: Numerical solution, using SSP2(3,3,2), i.e. table 5.5, for 200 time steps
and 50 grid points in space. On the left the optimal control u* is plotted. The right
part shows the difference of the optimal state to the desired state, i.e. p*(-,T) — pa.

5.5 Definitions of implicit—explicit Runge—Kutta meth-
ods
We consider the Cauchy problem for a system of ODEs such that
v =f+gly), y0) =y, te[0,T], (5.21)

where y(t) € R and f, g : R — R Lipschitz continuous functions. Using an Implicit-
Explict Runge-Kutta method with time step At we obtain the following numerical
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scheme for (5.21)
Y = e + At (AF(Y) + AG(Y))
Y=yt AL (BTF(Y) + bTG(Y)) ,

where Y = (Y;(+));_; denotes the s stage variables, and F(Y") = (f(Y1));_,, G(Y) =

(9(Y1));_;, moreover e = (1,...,1) € R®. The matrices A, A are s x s matrices, and

¢,c,b,be R°. We take in account IMEX schemes satisfying the following definition

Definition 5.5.1 A diagonally implicit IMEX Runge Kutta (DIRK) method is such
that matrices A, and A are lower triangular, where A has zero diagonal.

Further we consider the following basic assumptions on ¢, c, b, b € R*

s s i—1 7
Zbizl, Zbi:L Cizzaija Cizzaz’j,
i=1 i=1 j=1 j=1

Those conditions need to be fulfilled for a first order Runge Kutta method. Increas-
ing the order of a Runge Kutta method increases the number of restrictions on the
coefficients in the Butcher tables. For IMEX methods up to order k£ = 3, the number
of constraints can be reduced if ¢ = ¢ and b = b, [152, 151].

Definition 5.5.2 (Type A [38, 145]) If A is invertible the IMEX scheme is of
type A.

/2] 1/2 0 0 0
5/41| 3/4 12 0 0
/4] -1/4 0 1/2 0
1|16 —-1/6 1/2 1/2

| 1/6 —1/6 1/2 1/2

0] o0 0 0
3/213/2 0 0
1/25/6 —1/3 0
1 |1/3 1/6 1/2

/3 16 1/2

o) O OO

Table 5.4: GSA(3,4,2), [107], Type A scheme and globally stiffly accurate, (GSA).

Definition 5.5.3 (Type GSA [38]) An IMEX method is globally stiffly accu-
rate (GSA), if ¢s =cs =1 and

' =elA  and b' =elA, (5.22)

If the previous equalities hold only for the implicit part, the method is implicit
stiffly accurate (ISA).

To denote each IMEX scheme we use the following convention for the names of
the schemes: Acronym(og, oy, k),where o denoting the effective number of stages
of the explicit, oy of the implicit scheme. and k& the combined order of accuracy.
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0O]0 0 o0 1/411/4 0 0
1/211/2 0 0 /41 0 1/4 0
1 [1/2 1/2 0 1 |[1/3 1/3 1/3

11/3 1/3 1/3 11/3 1/3 1/3

Table 5.5: SSP2(3,3,2) [145], Type A and implicit stiffly accurate scheme (ISA).

5.6 Proof of Lemma 5.3.1

Let consider system (5.16), we can decompose matrix A in this way A = D + L,
where D = diag(A) and L is the lower triangular part of A, Therefore we can rewrite
the second equation for J in this way

e?J =e%j"e — AtD (0,R + J) — AtL (0,R + J)
(e’Id + AtD) J =e*j"e — AtDO,R — AtL (0,R + J)

Neglecting the O(g?) term and inverting the diagonal matrix on the lefthand side
we have

J =~ At (2Id + AtD) "' DO,R — At (21d + AtD) ™' L (0,R + J) + o(c?).

M X

(5.23)
Recursively we substitute in J (5.23) itself, the first recursion gives
J=—-M0o,R+ XK (Id—M)0,R +K*(0,R+J)+ o(c?)

applying the recursion s — 1 times we obtain

J=—-MoR - si(—ﬂc)’ (Id —M)0,R — (=K)* (,R + J) + o(e?) =

=1

=—Mo,R + (821(—1)1—190) (Id — M) 0, R + o(e?),

where in the last equation K?® vanishes since it is a nilpotent matrix of grade s,
moreover each element of matrix I'd — M has order o(¢?), from a direct computation
on the general 7 element of the diagonal matrix we have

Ataii Ata“ 52
Id—M)y=1- "% _q_ -
( ) g2 + Ata“ g2 + Atan— g2 + Ata“
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Thus the expression for J reads
J =—Mo,R + o(e?),

which cancel exactly the explicit part of the semi-discretize scheme, in the o(g?)
regime. Hence the appropriate choice for M is given by

M = At (e2Id + AtD) ' D. (5.24)

In table 5.6 we show M for different schemes using the provided method. Note
that we use the same M for the adjoint equations.

IMEX M(e)
GSA(3,4,2) s diag(1,1,1,1)
SSP2(3’3’2) dlag (462A+tAt’ 462AJ:At’ 352A-:At)

Table 5.6: Optimal choice of matrix M for the different IMEX schemes used.

5.7 Conclusions

In this chapter we develop an asymptotic preserving implicit-explicit Runge-Kutta
scheme for optimal control problems of boundary problems governed by the Gold-
stein—Taylor model. We investigated the relation of time integration schemes and
the formal Chapman-Enskog type limiting procedure. For the class of stiffly accu-
rate implicit-explicit Runge-Kutta methods (IMEX) the discrete optimality system
also provides a stable numerical method for optimal control problems governed by
the heat equation. The stability of the method is optimized for the stiff regime
thanks to the BPR approach and an optimal choice of the related function p(e),
which permit a fully implicit solver for the limiting heat equation and numerically
cancel any loss of accuracy due to the explicit part of the method. The methodol-
ogy presented opens new perspectives to extend the same techniques for radiative
transfer equation, which gives a description of radiotherapy process in biomedical
application, results are a under investigations.
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