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SUMMARY 

 

The Col6a1-/- null mouse is a known and well characterized animal model for collagen VI 

myopathies in humans (Irwin WA, et al. 2003). Inherited mutations within the COL6 A1, 2 and 3 

genes cause the autosomal dominant or recessive Bethlem myopathy (BM), the dominant or 

recessive Ullrich myopathy (UCMD), the autosomal dominant limb-girdle muscular dystrophy 

(Scacheri PC, et al. 2002) and the recessive rare muscle myosclerosis (Merlini L, et al. 2008). 

These congenital muscular dystrophies are heterogeneous phenotypes underlined by a variety of 

COL6 genes‟ mutations. The phenotype ranges from mild and late onset myopathies (BM) to very 

severe forms (UCMD). Defective mitochondrial functions with ultrastructural alterations, increased 

spontaneous apoptosis and abnormal permeability in the transition pore (PTP) have been 

characterized both in animal models and in patients (Irwin WA, et al. 2003). 

Recently, a further link between COL6 myopathies and mitochondrial dysfunction has been 

established by the discovery that autophagy is defective in collagen VI muscular dystrophies 

(Grumati P, et al. 2010 ). This supports a mechanism of disease pathogenesis that might be due, at 

least in part, to a defect of autophagy, leading to an accumulation of abnormal mitochondria and 

sarcoplasmic reticulum. Amelioration/restoration of a proper autophagic flux in mouse models 

ameliorates these disturbances, however, despite these recent achievements, a complete 

understanding of  COL6-related diseases pathogenesis remains elusive. 

Gene expression profiling is a powerful tool for exploring the alteration of normal tissue 

transcriptional behavior in the course of disease (Shapiro E, et al. 2013 Wang SM, et al. 2013). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Shapiro%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23897237
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=24065236


6 

 

 

In COL6 diseases microarrays are recently employed (Paco S, et al. 2013) also to analyze the 

transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies 

in order to better understand the role of collagen VI in muscle and the mechanism of disease. 

Bioinformatics analysis reveal the molecular functions and gene networks associated with collagen 

VI defects; the most significantly regulated pathways were those involved in muscle regeneration, 

extracellular matrix remodelling and inflammation, opening new insights into disease pathogenesis, 

biomarkers discovery and novel therapeutic targets. 

 

Therefore, we adopted whole genome expression profiling to study if and how the KO Col6a1-/- 

mice exhibit peculiar transcriptional patterns, which can address specific pathway alterations and 

therefore possible transcriptional biomarkers These biomarkers may be useful to better understand 

the pathogenesis of COL6 myopathies and as exploratory biomarkers of disease progression and 

drug response. 

Our studies , among the involvement of some deregulated pathways, highlighted a misregulation of 

two genes belonging to the circadian rhythm. CLOCK and EGR1 were found to be consistently 

upregulated in all KO mice analyzed, though with muscle type-dependent quantitative differences, 

being tibialis  the most affected muscle. The data was technically validated using TaqMan assays 

and customized Fluidic cards which assayed these and others circadian genes. The involvement of 

circadian genes in hereditary muscle dystrophy is fully novel, although it is already known as these 

genes are deeply involved in muscle remodeling, function, performance and aging. This new view 

opens interesting perspectives on new potential target genes involved in muscle damage 

pathogenesis. 

 



7 

 

AIMS 

 

The aim of this work was the identification of pre-clinical, novel genomic or proteomic biomarkers, 

which may correlate with drug response, diagnosis and disease prognosis of NMDs by determining 

genomic variations as well as defining specific transcription or protein profiles or disease-related 

pathways both in human and in suitable animal models.  

Biomarkers have been defined as cellular, biochemical, molecular alteration or biological 

characteristics that are measurable and evaluable in biological material as indicator of normal 

biological or pathogenic processes and may be used in differential and early diagnosis, in 

monitoring of disease progression, regression, or therapeutic outcome. 

One of the many approaches for biomarkers discovery is gene expression profiling which is a 

powerful tool for exploring the alteration of normal tissue transcriptional behavior in the course of 

disease (Shapiro E, et al. 2013; Wang SM, et al. 2013) Great advances in this field have been 

reached in cancer, and some deregulated transcripts are now considered prognostic/therapeutic 

biomarkers of neoplastic diseases (Lam SW et al. 2014; Cernei N. et al. 2013).  

Bioinformatics is a crucial step to understand and translate gene expression gross data and is carried 

out both by developing novel tools for data analysis, and by dedicating software to , for instance, 

whole exome sequencing ,  expression profiling or RNAsew analysis data storage,. 

Using expression profile we identified 47 genes, resulted differentially expressed in COL6 null 

mice compared to wild type mice; using a customized fluidic card we validated all these genes 

differentially expressed. Among these genes, some regulators of the circadian rhythm  process 

(Arntl, Atf5, Clock, Dbp, Egr1, Fkbp5, Per1, Per2 and Per3) were found. Some transcriptional 

http://www.ncbi.nlm.nih.gov/pubmed?term=Shapiro%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23897237
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=24065236
http://www.ncbi.nlm.nih.gov/pubmed?term=Lam%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=23891266
http://www.ncbi.nlm.nih.gov/pubmed?term=Cernei%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23880848
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factors important for muscle-related processes (MyoD, MyoG, Mif6, Pax7) were also present 

confirming the involvement of these pathways in the COL6A1 KO mice pathology 
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Rapidly expanding knowledge of neuromuscular diseases (NMDs) has provided new targets for 

disease characterization, early diagnosis and drug development whilst presenting many challenges 

about how to translate this knowledge into clinical practice. This is all the more challenging as 

initial clinical trials typically run for such a short time that it is difficult for improvement to be 

effectively measured.  

Inherited neuromuscular diseases (NMDs) are chronic degenerative diseases, each of which is 

individually rare (prevalence < 5\10.000) often associated with severe muscle weakness making 

difficult the characterization of clinical parameters. They are present in all populations and affect 

both children and adults. Most NMDs result in chronic long-term disability reduced quality of life 

and sometimes death may result from cardiac and respiratory muscle involvement and failure. The 

goal of existing management is to minimize the impact of complications such as joint or spinal 

deformity and improve cardiac and respiratory function as there currently are no curative treatments 

for any NMD. 

The aim of this work was studying the expression profile in KO COL6 mice in order to increase our 

knowledge about Collagen VI myopathies pathogenesis in the animal model. This might be also 

helping in identifying transcriptomic biomarkers of the disease profile, progression and possibly 

novel therapies monitoring. 

Biomarkers have been defined as cellular, biochemical, molecular alteration or biological 

characteristics that are measurable and evaluable in biological material as indicator of normal 

biological or pathogenic processes and may be used in differential and early diagnosis, in 

monitoring of disease progression, regression, or therapeutic outcome (http://www.bio-

nmd.eu/forPatients/). 

http://www.bio-nmd.eu/forPatients/
http://www.bio-nmd.eu/forPatients/
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 Benefits of biomarkers identification and monitoring can include: 

• Blood and urine testing may be able to replace the use of painful and invasive muscle biopsies in 

the future. 

• Diagnosis can happen earlier because testing for biomarkers is quicker and easier than genetic 

testing. 

• Disease progression can be accurately measured allowing better clinical management of 

symptoms. 

• Existing treatments (including drug dosage) can be adjusted to precisely meet the needs of 

individual patients to ensure they get the maximum benefit.  

One of the possible methods for biomarkers discovery is gene expression profiling which is a 

powerful tool for exploring the alteration of normal tissue transcriptional behavior in the course of 

disease (Shapiro E, et al. 2013; Wang SM, et al. 2013) Great advances in this field have been 

reached in cancer, and some deregulated transcripts are now considered prognostic/therapeutic 

biomarkers of neoplastic diseases (Lam SW et al. 2014; Cernei N. et al. 2013).  

Bioinformatics is a crucial step to understand and translate gene expression gross data and is carried 

both by developing novel tools for data analysis, and by dedicating software to whole exome 

sequencing analysis data storage, expression profiling and RNAseq analysis. 

 

 

 

COLLAGEN VI 

 

http://www.bio-nmd.eu/forPatients/definitions#Biopsy
http://www.ncbi.nlm.nih.gov/pubmed?term=Shapiro%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23897237
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=24065236
http://www.ncbi.nlm.nih.gov/pubmed?term=Lam%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=23891266
http://www.ncbi.nlm.nih.gov/pubmed?term=Cernei%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23880848
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COL6 myopathies are well defined genetic diseses which genetic defects  are well characterized, 

(Irwin W. et al. 2003) and representative of many other conditions because they include both early 

and late onset forms, fast and slow progression and severe and mild symptoms, so any biomarkers 

found may be more widely applicable.  

Collagen VI (ColVI) is an extracellular matrix (ECM) protein forming a microfilamentous network 

in several organs including skeletal muscle, skin, cornea, lung, blood vessels, intervertebral disks 

and joints (Keene DR, et al. 1998). It consists of three chains, alpha1(VI), alpha2(VI) and 

alpha3(VI), encoded by distinct genes (COL6A1, COL6A2, COL6A3, respectively). The 

alpha1(VI) and alpha2(VI) chains are about 140 kDa, while the alpha3(VI) chain has several 

alternatively spliced variants with MW of 250−300 kDa (Bonaldo P, et al. 1989; Bonado P, et al. 

1990; Chu ML, et al. 1990; Doliana R, et al. 1990;). Each chain contains a short triple helical 

domain of 335−336 amino acids and two large N− and C−terminal globular ends composed of 

repeated domains of 200 amino acids sharing similarity with the vWF−A module (Colombatti A, & 

Bonaldo P. 1991). 

ColVI has a complex pathway of intracellular assembly (Colombatti A, et al. 1987; Colombatti A, 

& Bonaldo P. 1987; Colombatti A, et al. 1995). Equimolar association of the three 

alpha−chains into a triple helical monomer is followed by formation of dimers and tetramers 

stabilized by disulfide bonds. After secretion the tetramers form a network of microfilaments with a 

typical 100−nm periodicity that bridges the surface of cells with the connective tissue (Keene DR, 

et al. 1988; Bonaldo P, et al. 1990; Kuo HJ, et al. 1997). ColVI makes a wide range of interactions 

with ECM components (Bonaldo P, et al. 1990; Kuo HJ, et al. 1997; Bidanset DJ, et al. 1992; 

Sabatelli P, et al. 2001) and cell surface receptors, including integrins and NG2 proteoglycan (Pfaff 

M, et al. 1993; Burg MA, et al. 1996). 

http://www.bio-nmd.eu/forPatients/definitions#Mutation
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ColVI is synthesized and secreted by cells organizing an ECM such as skin fibroblasts and smooth 

muscle cells, and transcriptional regulation is a key step in its production. In muscle, ColVI is 

produced both by fibroblasts and myogenic cells, and is a major component of the endomysium 

(Kuo HJ, et al. 1997) (Fig.1). 

 

 

 

Figure 1. Adapted from Bonaldo P, et al. 1990, Collagen VI location within the extracellular matrix. 

 

Deficiency of ColVI  due to mutations in the COL6 genes, causes Collagen type VI-related 

disorders.  

Collagen type VI-related disorders represent a continuum of overlapping phenotypes with Bethlem 

myopathy at the mild end, Ullrich congenital muscular dystrophy (CMD) at the severe end, and two 

rare, less well-defined disorders – autosomal dominant limb-girdle muscular dystrophy and 

autosomal recessive myosclerosis myopathy – in between. Although Bethlem myopathy and Ullrich 

CMD were defined long before their molecular basis was known, they remain useful for 
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clarification of prognosis and management (Bertini E. et al. 2011; Mendell JR et al. 2006; Bushby 

KM, et al. 2014; Lampe AK et al. 1993-2013). 

 

Normal allelic variants 

 COL6A1 comprises 37 exons (35 of which are coding) and produces a single transcript 

encoding a protein of 1021 amino acids with two C-terminal and one N-terminal vWF type 

A-like domains. 

 COL6A2 comprises 30 exons (29 of which are coding) and has been shown to produce 

multiple alternatively spliced mRNAs that differ in the 5'-untranslated region as well as in 

the 3'-coding and noncoding sequences. It produces at least three α2(VI) protein variants 

(828-1019 amino acids) with distinct carboxyl termini, which similarly contain two C-

terminal and one N-terminal vWF type A-like domain (Saitta B, et al. 1990). 

 COL6A3 comprises 44 exons (43 of which are coding) and encodes the α3(VI) chain, which 

can vary in size between 2970 and 3176 amino acids. The α3(VI) chain contains two C-

terminal vWF type A-like domains, subdomains similar to type III fibronectin repeats and 

Kunitz protease inhibitors as well as six to ten N-terminal vWF type A-like domains, thus 

contributing most of the amino-terminal globular domain of the collagen VI heterotrimer. 

Various N-terminal exons ofCOL6A3 are subject to alternative splicing and four variant 

transcripts encoding proteins with variably sized N-terminal globular domains have been 

characterized (Stokes DG, et al. 1991, Dziadek M, et al. 2002). 

 

Pathologic allelic variants 

http://www.ncbi.nlm.nih.gov/pubmed?term=Mendell%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=17163796
http://www.ncbi.nlm.nih.gov/pubmed?term=Bushby%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=24443028
http://www.ncbi.nlm.nih.gov/pubmed?term=Bushby%20KM%5BAuthor%5D&cauthor=true&cauthor_uid=24443028
http://www.ncbi.nlm.nih.gov/pubmed?term=Lampe%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=20301676
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.saitta.1990.6473
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/splicing/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.stokes.1991.8626
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.dziadek.2002.227
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 Single amino acid substitutions disrupting the Gly-Xaa-Yaa motif of the highly conserved 

triple helical domain of any of the three COL6A genes (Jöbsis GJ, et al. 1996, Pepe G, et al. 

1999a, Scacheri PC, et al. 2002, Lampe AK, et al. 2005, Lucioli S, et al. 2005) constitute the 

most frequent pathogenic mechanism at 28% of the total pathogenic variants 

in COL6A1, COL6A2, and COL6A3. 

 Mutations that introduce premature termination codons (splice sites and out of frame 

deletions/insertions) form the second most frequent group at 28%. 

 Splice-site mutations that cause exon skipping occur at around the frequency (Lamande SR, 

et al. 1999, Pepe G, et al. 1999b,Pan TC, et al. 2003, Lampe et al 2005, Lucioli S, et al. 

2005), with 27% of the total. 

 Other splice-site mutations causing small in-frame deletions or insertions in regions that 

encode domains flanking the triple helical domain make up 8% of the total of pathogenic 

variants in COL6A1, COL6A2 and COL6A, with large genomic deletions appearing to be 

rare and occurring at a frequency of around 2% (Vanegas OC, et al. 2002, Lampe AK, et al. 

2005, Lucioli S, et al. 2005). 

Given the high number of mutations that result in benign amino acid changes described for the three 

genes encoding the three collagen VI peptide chains, it is difficult to be sure about the pathogenicity 

of missense mutations other than glycine substitutions within the triple helical domain. 

 

 

 

Abnormal gene product 

http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.jobsis.1996.113
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pepe.1999a.264
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pepe.1999a.264
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.scacheri.2002.593
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lampe.2005.108
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lucioli.2005.1931
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/exon/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lamande.1999.21817
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lamande.1999.21817
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pepe.1999b.802
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pan.2003.355
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lampe.2005.108
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lucioli.2005.1931
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lucioli.2005.1931
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.vanegas.2002.513
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lampe.2005.108
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lampe.2005.108
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lucioli.2005.1931
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/gene-product/
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 Autosomal dominant collagen type VI-related disorders. Heterozygous single amino acid 

substitutions disrupting the Gly-Xaa-Yaa motif of the highly conserved triple helical domain 

of any of the three COL6A genes (Jöbsis GJ, et al. 1996, Pepe G, et al. 1999a, Scacheri PC, 

et al. 2002, Lampe AK, et al. 2005, Lucioli S, et al. 2005), depending on their location, 

appear to either interfere with intracellular chain assembly or, following successful 

secretion, cause kinking of the tetramers, thus affecting extracellular microfibril formation 

(Lamande SR, et al. 2002). Functional haploinsufficiency via a dominant-negative effect has 

also been reported as the pathogenic mechanism for some missense and splice-site mutations 

(Lamande SR, et al. 1999). Heterozygous splice mutations (associated with autosomal 

dominant disease) leading to in-frame exonic deletions as well as in-frame genomic 

deletions preserve a unique cysteine important for dimer formation, allowing secretion of 

abnormal tetramers with a consequent dominant-negative effect on microfibrillar assembly 

(Pan TC, et al. 2003, Baker NL, et al. 2005). 

 Autosomal recessive collagen type VI-related disorders.              

Most mutations associated with autosomal recessive disease reported to date are protein-

truncating nonsense mutations. Some have been shown to result in absence of collagen VI 

because of nonsense-mediated mRNA decay (Zhang RZ, et al. 2002). 

The phenotypes associated with collagen type VI-related disorders, once thought to be distinct 

entities, were clinically defined long before their molecular basis was discovered. The collagen type 

VI-related disorders are now recognized to comprise a continuum of overlapping phenotypes with 

Bethlem myopathy at the mild end, Ullrich congenital muscular dystrophy (CMD) at the severe end, 

and two less well-defined disorders – autosomal dominant limb-girdle muscular dystrophy 

and autosomal recessive myosclerosis myopathy – in between. Although these phenotypes are now 

http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/dominant/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.jobsis.1996.113
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pepe.1999a.264
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.scacheri.2002.593
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.scacheri.2002.593
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lampe.2005.108
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lucioli.2005.1931
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lamande.2002.1949
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/haploinsufficiency/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.lamande.1999.21817
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-dominant/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-dominant/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pan.2003.355
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.baker.2005.279
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/recessive/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-recessive/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.zhang.2002.43557
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/congenital/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-dominant/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-recessive/
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recognized to overlap and fall on a continuum, these clinical designations are useful for clarification 

of prognosis and management. 

 

Bethlem Myopathy (MIM #158810) 

The onset of Bethlem myopathy ranges from prenatal to mid-adulthood. Prenatal onset is 

characterized by decreased fetal movements; neonatal onset with hypotonia or torticollis; early-

childhood onset with delayed motor milestones, muscle weakness and contractures; and adult onset 

(4th-6th decade) with proximal weakness and Achilles tendon or long finger flexor contractures 

(FIG.2). As some adults are unaware of weakness, age of onset cannot always be established. 

The contractures may come and go during childhood, but nearly all affected individuals eventually 

exhibit flexion contractures of the fingers, wrists, elbows, and ankles. These contractures can 

become disabling when combined with muscle weakness. 

Individuals can have moderate weakness and atrophy of the muscles of the trunk and limbs with 

proximal muscles being more involved than distal muscles and extensors more than flexors. 

As a result of slow but ongoing progression of the condition, more than two-thirds 

of affected individuals over age 50 years need supportive means (i.e., canes, crutches, or 

wheelchair) for outdoor mobility (Jöbsis GJ, et al. 1999, Pepe G, et al. 1999b). 

Respiratory muscle and especially diaphragmatic involvement necessitating artificial nocturnal 

respiratory support is part of the clinical spectrum but is rare and appears to be related to severe 

weakness occurring in later life (Haq RU, et al. 1999). Respiratory failure may supervene prior to 

loss of ambulation and may be associated with diaphragmatic weakness (Haq RU, et al. 1999). 

 

http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/affected/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/affected/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.jobsis.1999.649
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.pepe.1999b.802
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.haq.1999.174
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Cardiac function is usually normal (Mohire MD, et al. 1988, de Visser M, et al. 1992). 

Missense mutations in either the triple helical or the vWF−A domains of the three COL6 genes 

were described for various BM families (Jöbsis GJ, et al. 1996; Scacheri PC, et al. 2002; Sasaki T, 

et al. 2000). Immunohistochemistry shows apparently normal or mildly reduced levels of ColVI in 

the endomysium of most BM patients. 

 

Ullrich Congenital Muscular Dystrophy (CMD) (MIM #254090) 

In addition to characteristic muscle weakness of early onset, proximal joint contractures, and 

hyperelasticity of the wrists and ankles, other features observed are congenital hip dislocation, 

prominent calcanei, and a transient kyphotic deformity at birth (FIG.2). 

With time, the distal hyperlaxity can evolve into marked finger flexion contractures and tight 

Achilles tendons (Furukawa T, & Toyokura Y. 1977; Muntoni F, et al. 2002). 

Some affected children acquire the ability to walk independently; however, progression of the 

disease often results in later loss of ambulation. 

Rigidity of the spine is often associated with scoliosis. 

Early and severe respiratory involvement may require artificial ventilatory support in the first or 

second decade of life. 

Failure to thrive is common (Demir E, et al. 2002). 

Follicular hyperkeratosis over the extensor surfaces of upper and lower limbs and keloid and 

cigarette paper scar formation are common. 

Cardiac involvement has not been documented to date. 

http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.mohire.1988.573
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.devisser.1992.591
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/congenital/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.furukawa.1977.426
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.muntoni.2002.1
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/affected/
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Usually, UCMD shows an autosomal recessive inheritance with homozygous or compound 

heterozygous mutations in the COL6 genes. However, several cases of UCMD with dominant 

heterozygous mutations were recently reported (Pan TC, et al. 2003; Baker NL, et al. 2005; Angelin 

A, et al. 2007), and patients with a UCMD phenotype but without mutations in COL6 genes were 

also described. ColVI appears to be strongly reduced or absent in muscle biopsies from UCMD 

patients, suggesting that UCMD mutations severely affect the synthesis and secretion of ColVI 

(Camacho Vanegas O, et al. 2001; Zhang RZ, et al. 2002; Squarzoni S, et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (Lampe AK & Bushby KM. 2005). Pictures from clinical patients with Bethlem Myopathy (BM) phenotype 

from left to right; Skin follicular hyperkeratosis and distal contractures in elbows, fingers and ankle. Ullrich‟s 

Congenital Muscular Dystrophy (UCMD) phenotype from left to right; Keloid scar formation, hyperelasticity in feet 

and fingers. 

 

 

About 70 different mutations of the COL6 genes have so far been associated with UCMD and BM 

(Lampe AK, & Bushby KM. 2005) (see also http://www.dmd.nl/), but the reason why certain COL6 

mutations cause BM while others cause the more severe UCMD remains obscure. Based on the 
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partial overlap between BM and UCMD, it had been proposed that COL6 disorders represent a 

clinical continuum (Lampe AK, & Bushby KM. 2005; Pepe G, et al. 2002). 

Selective receptors directly involved in COL6 binding to muscle fibers have not yet been identified 

but the cell membrane chondroitin−sulfate proteoglycan NG2 binds COL6 (Tillet E, et al. 2002; 

Stallcup WB. 2002). NG2 has a highly regulated expression in skeletal muscle, where it is normally 

detectable in the sarcolemma of postnatal myofibers and gradually declines with age (Petrini S, et 

al. 2003). NG2 is selectively decreased in the sarcolemma of UCMD patients and Col6a1–/– mice 

(Petrini S, et al. 2005), suggesting that NG2 may represent an important molecule mediating 

ColVI−sarcolemma interactions. 

 

Other Phenotypes 

The two additional conditions included in the spectrum of collagen VI myopathies are: 

 Autosomal dominant limb-girdle muscular dystrophy (MIM #159000) caused by 

mutations in COL6A1/COL6A2 in three families andCOL6A3 in one family (Scacheri PC, et 

al. 2002). Although some affected individuals had mild weakness with only limited 

functional impairment, others had a more severe, dystrophic-like weakness with findings 

including Gower‟s maneuver, toe walking, and loss of ambulation. Joint contractures were 

either absent or much milder than those of typical Bethlem myopathy. Whereas findings of 

Bethlem myopathy are typically present in infancy, the age at onset in these three families 

ranged from infancy, to early childhood, to adulthood. 

 Autosomal recessive myosclerosis myopathy (MIM #255600) caused 

by mutation of COL6A2 in two individuals from one family (Merlini L, et al. 2008). 

Myosclerosis myopathy is characterized by difficulty in walking in early childhood, toe 

http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/dominant/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.scacheri.2002.593
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.scacheri.2002.593
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/affected/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/recessive/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/mutation/
http://www.ncbi.nlm.nih.gov/books/NBK1503/#bethlem.REF.merlini.2008.1245
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walking, and progressive contractures of calf muscles. In the early 30s the muscles are 

slender with a firm “woody” consistency and associated with contractures that restrict range 

of motion of many joints (FIG.3A-B). By studying an Italian family affected by this rare 

disorder, we found a homozygous missense mutation in the COL6A2 gene. The mutation is 

a novel pathogenic variation of the COL6A2 gene and represents the first truncating 

mutation occurring in homozygosity in the C1 domain of the alpha2(VI) chain. By western 

blot and immunoprecipitation analysis of cell cultures from the patients, we demonstrated 

that this mutation causes the synthesis of a truncated alpha2(VI). The mutated chain is still 

able to form triple helical monomers and dimers with the other two chain, but formation of 

tetramers is strongly impaired, leading to decreased ColVI secretion. Electron microscopy 

confirmed the presence of a decreased amount of ColVI microfilaments in the ECM, 

containing abnormally−shaped tetramers (Merlini L, et al. 2008). 
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Fig.3.(A) Patient shows diffuse muscle wasting, flexion contractures of both elbows, forward abduction of shoulders, 

and flexion of fingers. There is fixed flexion of the trunk with lumbar hyperlordosis and marked flexion contractures of 

the knee and ankle joints in the left lower limb.  

(B) Transverse section of muscle biopsy from the index case (P1, left) and the affected sibling (P2, right), showing 

endomysial fibrosis, increased fatty connective tissue, variability of fiber size, and several internal nuclei. Hematoxylin 
and eosin staining. Bar, 200 _m. 

 

We have also studied biopsies and myoblasts from patients affected by COL6 muscular dystrophies. 

UCMD patients display an increased rate of apoptosis in skeletal muscle in vivo and in primary 

myoblast cultures (Angelin A, et al. 2007). The latter also displayed a measurable fraction of altered 

mitochondria, with morphological alterations ranging from shape changes to overt swelling; and the 

presence of a latent mitochondrial dysfunction that could be revealed by the addition of oligomycin, 

which caused depolarization only in mitochondria from patients (Angelin A, et al. 2007).  The 

mitochondrial defect could be revealed in cultures from UCMD patients irrespective of whether the 

primary genetic defect was in the COL6A1 or COL6A3 gene, and both in homozygous and 
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heterozygous mutations (Angelin A, et al. 2007).  Remarkably, PTP desensitization could be 

obtained also with MeAla3EtVal4−cyclosporin (Debio 025), a specific CyP inhibitor that 

desensitizes the PTP through mitochondrial CyP−D but has no inhibitory effects on calcineurin and 

therefore no immunosuppressive activity (Hansson MJ, et al. 2004). These findings suggest that 

PTP opening plays a key role in all COL6 myopathies and open new perspectives for the 

pharmacological treatment of patients. 

Currently the only available animal model of COL6 muscular dystrophies is a mutant mouse with 

targeted inactivation of the COL6A1 gene in embryonic stem cellsby targeted gene disruption with 

a vector containing neomyvin resistance cassette in the second exon (Bonaldo P, et al. 1998). 

Homozygous null (Col6a1–/–) mice completely lack COL6 because in the absence of the 

alpha1(VI) chain COL6 does not assemble. Col6a1–/– mice are affected by an early onset 

myopathic disease with muscle weakness and histological changes that are similar to those detected 

in BM and UCMD patients (Bonaldo P, et al. 1998; Irwin WA, et al 2003). Ultrastructural analysis 

revealed the presence (in about 30% of the fibers) of marked dilations of the sarcoplasmic reticulum 

(SR), and of mitochondrial alterations that ranged from tubular cristae, to electron−dense 

inclusions, to overt swelling (Irwin WA, et al 2003). Remarkably, myofibers with 

mitochondrial−SR alterations also displayed nuclear features of apoptosis, suggesting a link 

between organellar changes and increased incidence of cell death (fig.4).  

However, has been demostrated that an other pathway correlated with abnormal mitochondria and 

involved in myopathy is an autophagic pathway; indeed a major autophagic effector protein, beclin-

1, is reduced in Col6a1−/− muscles. Thus, beclin-1 seems to be necessary and sufficient for basal 

autophagy and for its correct induction (Grumati P, et al. 2010). 
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Fig. 4: Ultrastructural defects in collagen VI−deficient muscles (Irwin WA, et al. 2003). Electron micrographs of 

diaphragm and FDB muscles from wild-type (a,c,f,h) and Col6a1
-/-

 (b,d,e,g,i) mice. (a,b) Low-power view of FDB 

longitudinal sections showing alterations in SR (arrows) and mitochondria (arrowheads) in Col6a1
-/-

 fibers. Myofibrillar 

network is comparable in Col6a1
-/-

 and wild-type mice. (c−e) High-power view of diaphragm transverse sections 

showing abnormal mitochondria (Mit) with altered cristae and dense bodies (white arrow) in Col6a1
-/-

 fibers. 

Sarcolemma and basal lamina appear normal (arrowheads and inset in e). (f,g) High-power view of the triadic system 

showing dilation of the terminal cisternae of SR and normal T-tubules (arrowheads) in Col6a1
-/-

 fibers. Swelling is 

visible in some Col6a1
-/-

 mitochondria (asterisk). (h,i) Peripheral chromatin condensation and irregular shape 

characteristic of apoptosis are detected in Col6a1
-/-

 myonuclei (Nu). 
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MAIN PUBLICATIONS DURING PHD 

 

 

During my PhD I have contributed to the definition of col6-related disorders, which are a 

heterogeneous group of congenital myopathies, in order to increase both our knowledge about 

Collagen VI myopathies pathogenesis and the identification of specific transcription or protein 

profiles or disease-related pathways both in human and in suitable animal models. 

First step of this huge work has been the identification of the suitability of peripheral blood 

macrophages as a reliable, minimally invasive tool for supplementing or replacing muscle/skin 

biopsies in the diagnosis and monitoring of collagen VI-related myopathies (Gualandi F, et al. 

2011); In the dominant BM patient, no collagen VI alterations were detectable in macrophages or 

muscle biopsy but in the remaining patients, the protein defect caused by the selected mutations, as 

well as the transcriptional abnormalities, were readily detectable in macrophages, at levels 

comparable to those observed in muscle biopsy samples and cultured skin fibroblasts.  

Interestingly two additional collagen VI chains were identified in humans, the α5 and α6 chains 

(Sabatelli P, et al. 2012): results showed a restricted and differential distribution of the novel α6 and 

α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, 

suggesting that these new chains may play specific roles in specialized ECM structures. While the 

α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain 

appears implicated in ECM remodeling during muscle fibrosis. 

A case report has also been described (Martoni E, et al. 2013) focusing the attention on mutations 

within the C-terminal region of the COL6A1 gene where they were only detected in 

Ullrich/Bethlem patients on extremely rare occasions. Two Brazilian brothers with a classic Ullrich 
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phenotype and compound heterozygous for two truncating mutations in COL6A1 gene, were 

expected to result in the loss of the α1(VI) chain C2 subdomain. Despite the reduction in COL6A1 

RNA level due to nonsense RNA decay, three truncated alpha1 (VI) chains were produced as 

protein variants encoded by different out-of-frame transcripts. Collagen VI matrix was severely 

decreased and intracellular protein retention evident. The altered deposition of the fibronectin 

network highlighted abnormal interactions of the mutated collagen VI, lacking the α1(VI) C2 

domain, within the extracellular matrix. 

More recently we have identified a new form of extracellular matrix-related myopathy (Hicks D, et 

al. 2014); it was already known that should be additional causal genes to identify as in ∼50% of BM 

cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like 

phenotype, we first sequenced 12 candidate genes based on their function, including genes for 

known binding partners of collagen VI, and those enzymes involved in its correct post-translational 

modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified 

mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens 

with interrupted triple helices) in five individuals from two families. Both families showed 

dominant inheritance with a clinical phenotype resembling classical BM. Abnormality at the protein 

level was confirmed in both families by the intracellular retention of collagen XII in patient dermal 

fibroblastsWe conclude that the spectrum of causative genes in extracellular matrix (ECM)-related 

myopathies be extended to include COL12A1. 
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METHODS 

 

Samples selection  

Four mice of six months of age for each condition (wild type and knock out) were selected and total 

RNA was extracted and pooled per muscle type: diaphragm, gastrocnemius and tibialis. 

 

RNA extraction 

Total RNAs was extracted from tibialis, diaphragm and gastrocnemius muscle tissue of WT and KO 

mice by using TRIzol Reagent (Invitrogen). Tissues were homogenized in 1 ml of TRIzol and 

incubated for 5‟ at room temperature to permit the complete dissociation of nucleoproteins 

complexes. 200 µl of chloroform were added and tubes were incubated for 3‟ at room temperature. 

After centrifugation (12000 g x 15‟ at 4°C) the mixture separated in a lower red, phenol-chloroform 

phase, an interphase and a colorless upper aqueous phase containing RNA. RNA from each muscle 

was purified with TRIzol Plus RNA Purification Kit (Invitrogen) and quantified by means of a 

Nanodrop (Thermo scientific) spectrophotometer and evaluated for the integrity with a 2100 

Bioanalyser (Agilent) prior to be pooled in the same amount for muscles of the same kind. 

 

 

Whole genome expression microarray analysis 

To analyse the transcriptional profile in the mouse samples available, we selected the Whole Mouse 

Genome gene expression kit composed by four arrays of 44000 probes (Agilent Technologies, 

G4122F). 
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Sample labeling and hybridization were performed in triplicate according to the protocols provided 

by Agilent (One-Color Microarray-Based Gene Expression Analysis version 5.0.1). The array was 

analyzed using the Agilent scanner and Feature Extraction software (v9.1). Quality of the results 

was verified via Agilent Quality Controls (Spike-in), consisting of a mixture of 10 in vitro-

synthesized, polyadenylated transcripts derived from the Adenovirus E1A gene, premixed at 

concentrations spanning six logs and differing by one-log or half-log increments. 

Data analysis was performed using GeneSpring GX v.11. Data were normalized and log 

transformed. Unreliable “flagged” probes were excluded from further analysis. 2wayANOVA were 

performed for WT vs KO muscles with p<0.05 and Benjamini-Hochberg correction for multiple 

testing followed by fold change analysis (cut-off >3.0). Gene Ontology (p<0.01) was performed to 

group the differentially expressed genes into three main domains: cellular component, molecular 

function and biological process. 

 

 

Microarray data analysis validation by fluidic cards 

Following the pathway‟s bioinformatics analysis, 46 genes have been selected which resulted both 

differentially expressed between wild type and KO mice, in addition we analyzed Beclin-1 as 

candidate gene from literature data. The 47 selected genes predominantly include circadian pathway 

and muscle regeneration, but also known genes involved in autophagy and apoptosis. These genes 

were used to design customized TaqMan systems based on the Applied Biosystems database in 

order to set up a TaqMan low density array (TLDA or Fluidic card). The Fluidcard was used to 

validate the results obtained using the microarray platform. One gene (Mip) was selected as 

negative control for its absence of expression in the microarray data. 

The fluidic card format 48, able to analyze 48 genes (47 test and the 18S housekeeping gene) 

simultaneously in eight samples, was run five times for each sample. 
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A total of 150 ng for each pool was retrotranscribed by means of a High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems), according to the manufacturer's instructions to be loaded in 

a single port of the TLDA and run on an ABI 7900HT System (Applied Biosystem) for 2 min at 50 

°C, 10 min at 95 °C, followed by 40 cycles for 15 s at 97 °C and 1 min at 60 °C. 

Data analysis was performed following the ∆∆CT Method (Applied Biosystems User Bulletin #2) 

and using the 18S gene as calibrator and the WT samples as controls in respect to the KO samples. 

The mean 2-DDCT obtained has been Log transformed to be compared with the normalized fold 

change microarray data (raw data table).  
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RESULTS 

 

To analyze the transcriptional profile in the KO Col6a1
-/-

 mice as compared to WT mice we 

selected the Whole Mouse Genome gene expression kit (Agilent Technologies, G4122F) which is 

composed of four arrays and a total of 44000 probes. Gene expression profiles were analyzed in 

three muscle types; diaphragm, tibialis and gastrocnemius. 

 

Data processing 

Only 6-months-old mice were included in analysis and intensity data with local background 

adjustment by spatial detrending was extracted from Agilent files. This resulted in 45018 probes 

and 48 samples. Synonymous probes (which match to the same gene) were averaged. The final 

dataset consisted of 28052 probes. Additionally, data was log-transformed. 

Quantile between-array normalization was utilized to make distributions of probes equal for each 

array. Box plot for probe distribution for each array before and after normalization is shown in fig 

5. 
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Fig 5: Data normalization 

 

To perform multi-way comparisons in complex experiment design we utilized limma package 

(Wettenhall JM, & Smyth GK. 2004). This package fits separate linear model for each gene and 

uses moderated t-statistics to estimate differences between arrays. Empirical Bayes analysis is used 

to improve statistical power in small sample sizes. For each gene we fitted linear model with zero 

intercept parameterization because of the factorial design of the experiment. Corresponding p-

values were corrected for multiple testing using Benjamini & Hochberg approach (Benjamini & 

Hochberg, 1995). 

All data analysis and graphics were performed using free R statistical language (www.r-project.org) 

and set of bioinformatics-related packages, Bioconductor (www/bioconductor.org), Matlab and 

Ariadne Pathway Studio (ResNet8). 

 

Samples clustering 

A gene cluster analysis of the expression profiles in each muscle type samples in both the KO and 

WT mice was performed. We utilized complete linkage hierarchical clustering coupled with 

Spearman correlation as a distance measure. The resulting dendrogram is shown in figure 6. The 

http://www.ncbi.nlm.nih.gov/pubmed?term=Wettenhall%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=15297296
http://www.ncbi.nlm.nih.gov/pubmed?term=Smyth%20GK%5BAuthor%5D&cauthor=true&cauthor_uid=15297296
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expression profiles of KO and WT gastrocnemius were most similar and thus clustered together.  

Those of diaphragm were also fairly well correlated and clustered together, although they were 

significantly different than the patterns seen in gastrocnemius. Interestingly, the expression profiles 

of KO vs. WT tibialis were most varied; with the profile of WT clustering with those gastrocnemius 

and that of the KO tibialis clustering with diaphragm. 

 

 

Fig 6: Data clusterization 

 

Significant genes selection 

To determine those genes that were significantly differentially expressed (p-value < 0.05, limma 

package) we analyzed each muscle type separately and in “pooled” tissue (averaged expression 

change over all muscle types).  

The tissue most affected by col6 knockout is tibialis with 11170 differentially expressed genes. 

Diaphragm is second with 6790 differentially expressed genes and the least affected is 

gastrocnemius (3759 genes) . 
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KO vs WT effect 

We applied “Find Go groups enriched with selected entities: cellular component” tool to genes with 

p-value <0.05 and chose top 10 significant (p-value <0.05) results by overlap for each muscle and 

for pooled dataset to ascribe differentially expressed genes to cellular components (tab. 1).  

 

% of genes assosiated with 

cellular component 

Muscle Type 

Cellular Component Tibialis Diaphragm Gastrocnemi

us 

All 

membrane 26% 24% 23% 23% 

cytoplasm 24% 22% 20% 22% 

nucleus 23% 22% 18% 21% 

plasma membrane 12% 12% 11% - 

cytosol 8% 8% 6% 5% 

mitochondrion 8% 8% 6% 7% 

extracellular region 8% 8% 8% 7% 

endoplasmic reticulum 6% 5% 5% 4% 

integral to plasma membrane 5% 4% 4% - 

Golgi apparatus 4% 4% 4% 3% 

extracellular space 4% 4% 4% - 

cytoskeleton 4% 3% 3% 4% 

proteinaceous extracellular 

matrix 

1% 1% 2% 3% 

 

Tab 1. differentially expressed genes associated to cellular components 

 

Muscles comparison 

Genes associated with muscle development and function displayed altered expression in Col6-/- 

mice. These changes affected multiple aspects of muscle biology including structure, metabolism, 

transcription and regulation and varied between the tested muscle types. 60% (26 out of 44) of 

muscle-specific genes change their expression in an opposite direction when comparing tibialis to 

diaphragm, 23% between tibialis and gastrocnemius (7 out of 30) and 67% between gastrocnemius 

and diaphragm (12 of 18) (each set filtered by pvalue KO vs WT mice 0.05) (Fig.7). 
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Fig. 7.  each set filtered by p-value KO vs WT mice 0.05  in diaphragm, tibialis and gastrocnemius muscles 

 

Below is the cluster analysis of non-filtered muscle-related genes in different muscle types (fig. 8).  
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Fig. 8: Muscle-related genes KO vs WT 
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Comparing to other muscle types Tibialis displayed differential expression of variant myosin, 

troponin and calsequestrin isoforms (predominantly cardiac and slow), and increased expression of 

PAX3. Genes, differentially expressed in diaphragm and tibialis, are almost all members of the 

dystrophin-glycan complex (dystrophin, dystrobrevin, dystroglycan 1, syntrophin, α-, β-, γ-

sarcoglycans) and several transcriptional factors important for muscle-related processes, such as 

MYOD1, MYOG, MYF6, NFATC2, PAX7. In diaphragm embryonic isoforms of myosin are up-

regulated, which can be regarded as a sign of regeneration as well as up-regulated PAX7, a marker 

of satellite cells activity. 

Differentially expressed genes 

The majority of gene expression changes in KO vs. WT mice differ for the different muscle types. 

Direct inspection of all genes displaying significant changes in expression level with the same sign 

in all tissues identified a relatively small subset of only 479 genes. This small number of consistent 

changes in expression corresponds to the high heterogeneity of effects that the col6 mutation has in 

the different muscle groups. Gene set enrichment analysis of these 479 genes was employed to 

identify those gene ontology (GO) groups with the most significant (p < 0.05) level of consistent 

change. The top 10 GO groups are listed in Table 2. 

479 genes have the same sign effect in KO vs WT with p-value 

<0.05 in each muscle 

Up  Down  

inflammatory response 18 1 

positive regulation of cell proliferation 10 9 

regulation of transcription 33 12 

hydrolase activity 21 22 

transferase activity 19 21 

modification-dependent protein catabolic process 8 7 

GTPase activity 7 6 

cholesterol metabolic process 5 1 

positive regulation of mast cell cytokine production 3 0 

positive regulation of integrin activatioin  1 1 
Tab.2: The top 10 GO groups 
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Unfortunately, the majority of the GO groups identified are somewhat vague and not specific 

enough to yield insight regarding the effects of the col6 KO. Thus, we further probed the composite 

gene expression profile of the "pooled" data from all muscle groups, which indicated 334 relevant 

genes. Gene set enrichment analysis of these 334 genes identified a different subset of GO groups 

(Table 3). 

334 genes are significantly different for pooled muscles in KO vs 

WT 

Up  Down  

rhythmic process  0  6  

nuclear localization sequence binding  0  3  

retinol metabolic process  0  3  

regulation of transcription  17  9  

ATP binding  10  14  

Wnt-protein binding  2  1  

response to cadmium ion  1  2  

thyroid hormone generation  2  0  

transport  7  11  

apoptosis  4  5  
Tab. 3: different subset of GO groups from “pooled” data 

The intersection of two lists above has 94 genes with the following GO groups enriched (tab. 4): 

Intersected 94 KO vs WT genes Up Down 

transferase activity 7 8 

negative regulation of signal transduction 2 1 

negative regulation of ubiquitin-protein ligase activity 

involved in mitotic cell cycle 

0 3 

response to lead ion 1 1 

transcription factor activity 5 4 
Tab. 4: intersection of the two lists 

It is clear that if data from different muscles are pooled, there are not so many inflammatory genes 

that have significant expression change between KO and WT mice. This leaded us to conclusion 

that inflammatory genes are most variable between different muscle types, so they are probably not 

suitable biomarkers. 

Interestingly, one of the top 10 GO groups selected was "rhythmic process" which is a set of genes 

that are involved in the regulation of circadian rhythms. 
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Significant regulators 

For further identifying key regulators that might affect or be effected in col6 disease, we employed 

sub-network enrichment analysis (SNEA) using Pathway Studio (Elsevier). SNEA utilizes literature 

(ResNet) and experimentally determined data to define the relationships between all molecular 

entities within the cell. In this way key pathways, either upstream or downstream, of identified gene 

expression changes can be elucidated and thus provide insight into potential key regulators of an 

altered cellular process. Again we performed this analysis on both the expression profiles of each 

muscle group individually as well as in the "pooled" dataset. Furthermore, we explored the 

intersection of these two datasets. For this initial SNEA experiment we used the Fisher Exact test as 

a measure of statistical significance. Identified key regulators are presented in figure 9. 

  

 

Fig. 9. Regulators of KO vs WT significant genes: each muscle group individually (blue highlight; “pooled” dataset 

yellow highlighted and the intersection red highlighted) 
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Genes with similar effect, but different base levels in different muscle groups are primarily 

regulated by inflammatory cytokines and receptors. In the "pooled" dataset a large number of key 

regulators for the most stable group of differentially expressed genes are regulators of cellular 

circadian rhythm (ARNTL, CLOCK, PER1, PER3) in good agreement the prior GO analysis. 

Unsurprisingly, identified regulators for the intersection of the two datasets shows features of the 

both previous groups, with the following intersecting genes: CLOCK, ARNTL, GFI1B, IL2, 

cytokine, CD28, PIM3. In total 47 key regulators were selected. 

To verify the selected key regulators, we used additional statistical procedures within the Pathway 

Studio software (sub-network enrichment analysis with Mann-Whitney test, p-value 0.05, top 100 

regulators) to verify potential regulators of the observed expression changes. All log ratio values 

KO vs. WT in the 3 muscle groups and the “pooled” dataset were used. Data was filtered to accept 

only gene expression changes with p-values <0.05 and used SNEA afterwards. This procedure gave 

us 8 different ranking lists (Table 5). Regulators, found in at least 4 of these ranking lists are 

presented below. Only two of the SNEA regulators were found more than 4 times – GH1 and, 

again, CLOCK. Noteworthy, none of the most common regulators is significant for gastrocnemius 

muscle. 
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Rank 
value 

All All (diff. 
exp 

pval<0.05) 

Diaphragm Diaphragm 
(diff. exp 

pval<0.05) 

Gastrocnemius Gastrocnemius  
(diff. exp 

pval<0.05) 

Tibialis Tibialis  
(diff. exp 

pval<0.05) 

Total 
Sum 
of # 

GH1 8  15 5   3 3 34 

CLOCK  2 26 21   19 28 96 

HNF4A   1 1   1 1 4 

HNF1A   2 2   2 2 8 

NR1H4   5 6   4 4 19 

NR1I3   3 10   8 5 26 

PPARA   7 8   5 11 31 

FOXA2   4 4   16 8 32 

CEBPA   9 7   9 10 35 

RXRA   14 11   13 9 47 

retinoid-X receptor 21 18   6 6 51 

NR1I2   8 17   14 14 53 

IL6   22 15   12 7 56 

HNF1B   16 13   15 15 59 

GCG   13 16   17 20 66 

HNF4G   10 14   26 22 72 

FOXM1   6 3   44 23 76 

LXR   19 31   10 17 77 

NR1H3 9  53    11 18 91 

CEBPB   30 30   18 13 91 

NR   23 20   33 16 92 

ONECUT1  11 12   35 35 93 

nuclear hormone 
receptor 

25 24   20 27 96 

NR0B2   20 26   30 32 108 

FOXA3   31 29   24 25 109 

fibrinogen  28 36   29 21 114 

SREBF1   48 49   7 12 116 

NR5A2   38 35   23 24 120 

NR3C1   36 38   28 19 121 

THRB   39 27   49 31 146 

F9   32 37   38 41 148 

INS   51 25   37 40 153 

FABP1   40 63   96 43 242 

DBP   58 50   61 80 249 

FGF21   45 52   64 93 254 

 

Table 5: ranking list  
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Among the possible pathways of expression changes it seems that circadian rhythm is one of the 

most affected circuit (significant GO group, CLOCK and ARNTL as regulators found by several 

statistical procedures). We used corresponding sub-networks found above to construct a possible 

circadian pathway (Fig. 10). 

 

 

 

Fig 10: CLOCK ARNTL pathway. Highlighted - differentially expressed genes KO vs WT in pooled tissue sample 
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Microarray data analysis validation (fluidic card) 

To validate the 47 selected key regulators, we again explored the differential expression of these 

proteins using Taqman low-density array (TLDA) cards (Fig. 11). 

 

 

Fig 11: Fluidic card design  

 

Comparison of the data obtained from both the microarray experiments and those with the TLDA 

cards resulted in the same sign and trend of fold change in 37 out of 44 genes (84%) in the 

diaphragm and tibialis tissues, whereas in the gastrocnemious we found 32 out of 44 (75%) of genes 

with these characteristics (fig.12) 
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Fig 12. representation of non validated/validated genes in the three tissues. 
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However, a number of genes (Ccr5, Gh1, Ifng, Il6ra, Il2, Prl and Socs1) for which a significant 

fold-change was detected by the microarray, were poorly or not at all detected by the TLDA card. 

The Csf3 gene was only detected by the TLDA in tibialis muscle. 

 

Up-regulated and down-regulated genes as detected by the TLDA cards in KO vs. WT mice are 

presented in figure 12. Negative control genes, Mip and Col6a1, were undetectable or down-

regulated, respectively, for both methods in all three muscle types representing a true negative 

control. The TLDA and microarray data were in good agreement for regulators of the rhythmic 

process (Arntl, Atf5, Clock, Dbp, Egr1, Fkbp5, Per1, Per2 and Per3) and transcriptional factors 

important for muscle-related processes (MyoD, MyoG, Mif6, Pax7) in both diaphragm and tibialis 

and to a lesser extent in gastrocnemious confirming the involvement of these pathways in the 

Col6a1 KO mice (fig. 12).   

We confirmed the down regulation of Beclin-1, as reported by Grumati P. et al., in KO vs WT mice 

in all 3 muscle tissues analyzed, even though this deregulation does not appear significantly 

relevant. 
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DISCUSSION 

 

Collagen VI myopathies are a heterogeneous group of inherited diseases caused by mutations in 

COL6A genes. It has been previously identified a latent mitochondrial dysfunction in myoblasts 

from patients which displayed altered mitochondria and increased occurrence of spontaneous 

apoptosis.  

The Col6a1-/- null mouse is a known and well characterized animal model for collagen VI 

myopathies in humans (Irwin WA, et al. 2003). Inherited mutations within the COL6 A1, 2 and 3 

genes cause the autosomal dominant or recessive Bethlem myopathy (BM), the dominant or 

recessive Ullrich myopathy (UCMD), the autosomal dominant limb-girdle muscular dystrophy 

(Scacheri PC, et al. 2002) and the recessive rare muscle myosclerosis (Merlini L, et al. 2008). 

These congenital muscular dystrophies are heterogeneous phenotypes underlined by a variety of 

COL6 genes‟ mutations. The phenotype ranges from mild and late onset myopathies (BM) to very 

severe forms (UCMD). Defective mitochondrial functions with ultrastructural alterations, increased 

spontaneous apoptosis and abnormal permeability in the transition pore (PTP) have been 

characterized both in animal models and in patients (Irwin WA, et al. 2003). The PTP abnormalities 

are reverted by inhibition of the pore via Cyclosporine A (CsA) treatment. Proof of principle of 

these effects of CsA have been demonstrated in vitro as well as in animal models and has 

subsequently been translated into a pivotal clinical trial (Angelin A, et al. 2007). 

Recently, a further link between COL6 myopathies and mitochondrial dysfunction has been 

established by the discovery that autophagy is defective in collagen VI muscular dystrophies 

(Grumati P, et al. 2010). This supports a mechanism of disease pathogenesis that might be due, at 

least in part, to a defect of autophagy, leading to an accumulation of abnormal mitochondria and 
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sarcoplasmic reticulum. Amelioration/restoration of a proper autophagic flux in mouse models 

ameliorates these disturbances, however, despite these recent achievements, a complete 

understanding of  COL6 disease pathogenesis remains elusive. 

However in our data, beclin-1, a major autophagic effector protein, does not appear to be 

significantly deregulated suggesting the involvement of other candidated pathways in the 

pathophysiological mechanism of Col6 related myopathies.  

 

Skeletal muscle biopsy is a choice method to monitor disease progression and the effects of 

treatments; however, it is an invasive and painful method and requires surgical expertise. Cultured 

skin fibroblasts are currently used to evaluate the expression pattern of collagen VI in UCMD/BM 

patients. However, cultured fibroblasts are not useful for functional studies since they do not display 

the characteristic mitochondria alterations.  

Gene expression profiling is a powerful tool for exploring the alteration of normal tissue 

transcriptional behavior in the course of disease (Shapiro E, et al. 2013 Wang SM, et al. 2013). 

Great advances in this field have been reached in cancer, and some deregulated transcripts are now 

considered prognostic/therapeutic biomarkers of neoplastic diseases (Lam SW et al. 2014. Cernei 

N. et al. 2013).  

Animal models do represent an established model to study expression profile in human diseases, 

including muscular dystrophies and muscle pathologies („t Hoen PA, et al. 2006; Marotta M, et al. 

2009). 

In COL6 diseases microarrays are recently employed (Paco S, et al. 2013) also to analyze the 

transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies 

in order to better understand the role of collagen VI in muscle and the mechanism of disease. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Shapiro%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23897237
http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=24065236
http://www.ncbi.nlm.nih.gov/pubmed?term=Lam%20SW%5BAuthor%5D&cauthor=true&cauthor_uid=23891266
http://www.ncbi.nlm.nih.gov/pubmed?term=Cernei%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23880848
http://www.ncbi.nlm.nih.gov/pubmed?term=Cernei%20N%5BAuthor%5D&cauthor=true&cauthor_uid=23880848
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Bioinformatics analysis reveal the molecular functions and gene networks associated with collagen 

VI defects; the most significantly regulated pathways were those involved in muscle regeneration, 

extracellular matrix remodelling and inflammation, opening new insights into disease pathogenesis, 

biomarkers discovery and novel therapeutic targets. 

 

We adopted whole genome expression profiling to study if and how the KO Col6a1-/- mice exhibit 

peculiar transcriptional patterns which can address specific pathway alterations and therefore 

possible transcriptional biomarkers. These biomarkers may be useful to better understand the 

pathogenesis of COL6 myopathies and as exploratory biomarkers of disease progression and drug 

response. 

To analyze the transcriptional profile in the KO mice compared to WT we used the whole mouse 

genome expression kit (Agilent technologies G4122F) in three different muscular district: tibialis, 

diaphragm and gastrocnemius of mice of six months of age. We differentiated our analysis studying 

those genes that were significantly differentially expressed in each muscle type both separately and 

in “pooled” tissues (all tissues taken together as one) and among the three muscles analyzed, tibialis 

and diaphragm seemed to be the most affected whereas gastrocnemius showed only few differences. 

We identified changes in genes associated with muscle function including structure, metabolism, 

transcription and regulation and varying between the tested muscles. 

The number of genes significantly changed in all tissues analyzed both separately and “pooled” 

together with the same sign of effect is relatively small, 479 genes and 334 genes respectively; gene 

set enrichment of these genes was employed to  identify a list of top GO groups, one for tissues 

analyzed separately and one for “pooled” muscles. The intersection of these two GO groups 

allowed us to conclude that inflammatory genes (found at the top of GO group of genes analyzed 

separately as inflammatory response) are probably not suitable transcriptomic biomarkers; they 
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disappear in prioritization after the GO intersection. On the contrary one of the top GO groups, 

maintained after intersection,  was “rhythmic process” which is a set of genes involved in circadian 

rhythm regulation. 

In order to further refine the transcriptomic signature, we employed a sub-network enrichment 

analysis again on both separate tissues and  “pooled” ones. Furthermore we explored again the 

intersection of the two dataset. In total 47 key regulators were selected. 

To verify the selected key regulators we used an additional statistical procedures, data was filtered 

several times giving us 8 ranking lists; regulators found at least in four of these ranking lists have 

been taken and just two regulators were found more than four times: CLOCK and GH1. 

Among the possible mechanism of expression it seems that circadian rhythm is one of the most 

affected (significant GO groups and CLOCK and ARNTL s regulators found by several statistical 

procedures). 

 

To validate the 47 selected key regulators we explored again the differential expression of these 

transcripts  using low-density array cards (fluidic cards); fluidic cards and microarray data were in 

good agreement for: 

 Regulators of the circadian rhythm process (Arntl, Atf5, Clock, Dbp, Egr1, Fkbp5, Per1, 

Per2 and Per3). 

 Transcription factors important for muscle related process (MyoD, MyoG, Mif6, Pax7). 

All these genes were deregulated both in diaphragm and in tibialis and lower in gastrocnemius. 

Interestingly, in null COLVI mice the expression profile was slightly moved toward the up-

regulation respect to the down-regulation suggesting a possible gain of function of the involved 

genes rather than a loss of function. 
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In summary our studies revealed a clear involvement of two genes known to be controlling the 

circadian rhythm, CLOCK and EGR1 found to be consistently upregulated in all KO mice analyzed, 

although with muscle-type dependent quantitative differences. Tibialis is the muscle most affected. 

The graphs below show the gene expression microarray data analysis (blue) and the fluidic cards 

validation (red) for each muscle (Fig.13).  
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Fig 13.  gene expression microarray data analysis (blue) and the fluidic cards validation (red) for each muscle in 

circadian pathway 

 

The involvement of circadian genes in hereditary muscle dystrophy is fully novel, although it is 

already known that these genes are deeply involved in muscle remodeling, function, performance 

and aging (Andrews JL, et al. 2010; McCarthy JJ, et al. 2007). This new view opens interesting 

perspectives on new potential target genes involved in muscle damage pathogenesis and potentially 

a cure. 

Circadian rhythms are approximate 24 hours (24-h) behavioral and physiological cycles that 

function to prepare an organism for daily environmental changes. 

The basic clock mechanism is a network of transcriptional-translational feedback loops that drive 

rhythmic expression of genes over a 24-h period. The cycles are endogenously generated self-

sustaining rhythms but can be influenced, in mammals, by environmental stimuli such as light and 

feeding (Ko CH. Et al, 2006, Levi F. et al. 2007, Shibler U. 2005). The temporal coordination 

between endogenous cellular rhythms and the environment has been experimentally shown to 

provide an adaptive advantage by enhancing an organism‟s ability to anticipate daily changes in 
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light, temperature, and humidity (Woelfle MA. Et al, 2004). The molecular mechanism regulating 

circadian rhythms is described as a network composed of transcriptional-translational feedback 

loops and is referred to as the core clock (Lowrey PL. et al, 2004, Sangoram AM. et al, 1998). The 

positive loop of the core clock is formed by two members Clock (circadian locomotor output 

control kaput), and Bmal1 (brain muscle arnt-like 1). The CLOCK:BMAL1 heterodimer activates 

transcription of additional core clock genes Period (Per1, Per2, and Per3) and Cryptochrome (Cry1 

and Cry2). The CRY and PER proteins constitute the negative loop of the core clock by forming a 

multimeric complex that inhibits CLOCK:BMAL1 activity upon translocation to the nucleus. The 

orphan nuclear receptors Rev-erb_, Rev-erb_, and Rora (RAR-related orphan receptor alpha) are the 

remaining core clock genes and are interwoven into the core clock mechanism via their action in 

repressing and activating Bmal1 gene transcription, respectively (Akashi M, et al. 2005, Lowrey PL. 

et al, 2004, Sato TK, et al. 2004, Ueda HR. et al, 2002) (Fig 14). 

 

 

Fig. 14: schematic representation of circadian rhythm 



51 

 

 

We have provided, at least in part, the evidence that the core regulators of the circadian rhythm are 

deregulated in Col6a1
-/- 

mice versus WT, highlighting a possible link between NMDs and circadian 

oscillators to be further and deeper clarified. 

Expression profile has already been employed to determine the circadian transcriptome of adult 

mouse skeletal muscle. (McCarthy JJ, et al. 2007). Identifying genes associated with regulation of 

transcription, protein synthesis and degradation, and lipid metabolism illustrating the fundamental 

role that the core clock plays in maintaining cellular homeostasis. Few genes were identified as 

having a circadian pattern of expression in adult skeletal muscle: among of these Arntl 1 (Bmal1) 

Period 2 (Per2) transcript levels oscillate over 48h with a circadian period in adult skeletal muscle 

(Fig.15). 

 

 

 

Fig 15. Arntl 1 (Bmal1) Period 2 (Per2) transcript levels oscillate over 48h with a circadian period in adult skeletal 

muscle (McCarthy J et al, 2007) 

 

 

 

Clock mutant shown also an altered expression  of circadian genes and MyoD, a known 

transcription factor key regulator of muscle differentiation; the identification of Myod1 as a 

circadian gene was an exciting finding because it expands the potential function of Myod1 beyond 

its known role in myogenesis to include an active role in the daily maintenance of adult skeletal 

muscle.  



52 

 

The circadian expression of Myod1 transcript may be conserved between mouse and human as 

suggested by a recent study that found daily variation in Myod1 expression in human skeletal 

muscle (Vissing K, et al. 2005). The circadian function of Myod1 remains to be determined, but the 

possible conservation of Myod1 circadian expression between species indicates an important role in 

skeletal muscle.  

It is important to note that we have also found MyoD as a deregulated gene into GO group of 

transcriptional factors important for muscle related processes among those validated by fluidic 

cards. 

MyoD is a master regulator of myogenesis and exhibits a circadian rhythm in its protein and RNA 

levels suggesting a possible role in the daily maintenance of muscle phenotype and function. 

 

Another work (Andrews JL, et al. 2010) reports that MyoD is a direct target of the circadian 

transcriptional activators CLOCK and BMAL1, which bind in a rhythmic manner to the core 

enhancer of the MyoD promoter (all of them resulted deregulated in our findings). Skeletal muscle 

of ClockΔ19 and Bmal1−/− mutant mice exhibited ∼30% reductions in normalized maximal force 

miming NMDs (Fig. 16).  
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Fig. 16: Altered expression of circadian genes in Clock mutant. Approximately 30% of the circadian genes in the Clock 

mutant showed a loss in cycling. Graphs comparing wild-type vs. Clock mutant expression (A–C) (Andrews J L et al. 

PNAS 2010;107:19090-19095) 

 

 

 

A similar reduction in force was observed at the single-fiber level. Electron microscopy (EM) 

showed that the myofilament architecture was disrupted in skeletal muscle of ClockΔ19, Bmal1−/−, 

and MyoD−/− mice. The alteration in myofilament organization was associated with decreased 

expression of actin, myosins, titin, and several MyoD target genes (Fig.17). 
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Fig 17. Decreased whole-muscle function and myofilament structure in ClockΔ19, Bmal−/−, and MyoD−/− mice. 

 

It is important to highlight that similar reduction in specific tension, and these deficits are very 

comparable to those observed in Duchenne muscular dystrophy and others NMDs such as collagen 

VI myopathies as well as those seen in aging (Gonzalez E, et al. 2000; Lynch GS, Et al. 2001). 

This suggests that the abnormalities observed in skeletal-muscle function might also be due to 

alterations in molecular clock function. The deficits recorded for whole-muscle tissue were also 

present at the single-cell level. These findings are consistent with the concept that proper function 

of the molecular clock in skeletal muscle fiber/cell is critical for maintenance of muscle function. 

 

EM analysis also demonstrated that muscle from both ClockΔ19 and Bmal1−/− mice had a 40% 

reduction in mitochondrial volume. The remaining mitochondria in these mutant mice displayed 

aberrant morphology characterized by swelling and disrupted cristae and increased uncoupling of 

respiration (Fig. 18).  
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Fig 18. Decreased mitochondrial volume and respiratory function in muscle of ClockΔ19 and Bmal1−/− mice. 

 

This result recapitulates the mitochondrial dysfunction found in mice with collagen VI deficiency 

(Irwin WA. et al. 2003) where authors have shown that Col6a1
-/-

 muscles have a loss of contractile 

strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria 

with abnormal cristae with tubular shape and altered matrix density associated with the presence of 

dense bodies. 

 

 

Taken together these results demonstrate that disruption of CLOCK or BMAL1 leads to structural 

and functional alterations at the cellular level in skeletal muscle. The identification of MyoD as a 

clock-controlled gene provides a mechanism by which the circadian clock may generate a muscle-

specific circadian transcriptome in an adaptive role for the daily maintenance of adult skeletal 

muscle. 
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CONCLUSIONS 

 

 

In conclusion evidence is growing that links inflammation, cancer, cardiovascular disease, sleep 

disorders, and metabolic disease with altered expression of the molecular clock in peripheral tissues 

(Duez H, et al. 2008. Maywood ES, et al. 2006. Takahashi JS, 2008). Thus, the significant force and 

metabolic deficits in the muscle of ClockΔ19 and Bmal1−/− mice, abnormal sarcoplasmic reticulum 

(SR) and mitochondria seen in Col6a1
-/- 

mice, and pathways involved in muscle regeneration, 

extracellular matrix remodeling and inflammation, can open the possibility that the profound 

peripheral weakness and fatigue seen in chronic diseases may also be the result from disruption of 

proper circadian factor expression in muscle. Therefore, circadian oscillators and proteins might 

represent molecular biomarkers measuring the muscle damage and impairment in COL6 

myopathies and other NMDs. Their strong link with environment opens also new avenues for novel 

therapeutic options. 
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tornare un po‟ bambini è davvero bellissimo. A Enrico che è la mia roccia, che mi ha sempre 

supportato e tanto sopportato nei periodi più difficili senza mai farmi perdere d‟animo. 

Ai miei genitori, ai miei zii e ai miei suoceri, che per quanto brontolo mi hanno aiutato come 

nessuno potrebbe, mostrandosi sempre così disponibili con il nipotino e con i miei mille orari 

sempre diversi. Senza di voi non ce l‟avrei davvero mai fatta! 

A mio fratello Andrea e a mia nonna Marina per essermi sempre vicino anche se purtroppo ci 

vediamo poco.  

Alle mie amiche di sempre, a Lara ed Elena per avere la fortuna di avere amiche Vere come lo siete 

voi, e per esserci davvero sempre state nei momenti spensierati e soprattutto in quelli più difficili.  

A Cristian, inseparabile amico d‟infanzia, per tutto ciò che abbiamo trascorso insieme e che ricordo 

sempre con un nodo alla gola, e per avere dato una svolta alla mia vita. 

Ora inizia per me un nuovo percorso, ma non dimenticherò mai questi anni bellissimi, grazie a tutti 

voi.  

 


