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Preface

As video streaming is becoming the most popular application of Internet mobile,
the design and the optimization of video communications over wireless networks
is attracting increasingly attention from both academia and industry. The main
challenges are to enhance the quality of service support, and to dynamically adapt
the transmitted video streams to the network condition. The cross-layer methods,
i.e., the exchange of information among different layers of the system, is one of
the key concepts to be exploited to achieve this goals.

In this thesis we propose novel cross-layer optimization frameworks for scal-
able video coding (SVC) delivery and for HTTP Adaptive Streaming (HAS) over
the downlink and the uplink of Long Term Evolution (LTE) wireless networks.
They jointly address optimized content-aware rate adaptation and radio resource
allocation (RRA) with the aim of maximizing the sum of the achievable rates
while minimizing the quality difference among multiple videos.

In order to perform optimized content-aware rate adaptation, we first analyze
the video quality metrics that allow to assess the quality of a video sequence
and then we provide enhanced low-complexity models to accurately estimate the
Rate-Distortion (R-D) relationship of scalable video transmitted over error-free
and error-prone channels. For the latter scenario, we design an enhanced Unequal
Erasure Protection (UXP) profiler with the objective to provide R-D relationship
that keeps the expected distortion almost unchanged at different packet failure
rate, with only a rate increase/decrease.

For multi-user SVC delivery over downlink wireless systems, where Orthog-
onal Frequency Division Multiple Access (OFDMA) is the key Physical (PHY)
layer technology and IP/TV is the most representative application, we decompose
the optimization problem and we propose the novel iterative local approximation
algorithm to derive the optimal solution, by also presenting optimal algorithms
to solve the resulting two sub-problems.

For multiple SVC delivery over uplink wireless systems, where Single-Carrier
Frequency Division Multiple Access (SC-FDMA) is the key PHY technology and
health-related services are one of the most attractive applications, we propose joint
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video adaptation and aggregation directly performed at the application layer of the
transmitting equipment, which exploits the guaranteed bit-rate (GBR) provided
by the low-complexity sub-optimal RRA solutions proposed.

Finally, we propose a quality-fair adaptive streaming solution to deliver fair
video quality to HAS clients in a LTE cell by adaptively selecting the prescribed
Guaranteed Bit-Rate (GBR) of each user according to the video content in addi-
tion to the channel condition.

Extensive numerical evaluations show the significant enhancements of the pro-
posed strategies with respect to other state-of-the-art frameworks. Even though
broadband mobile provider are reluctant to include application-aware module in
the design of cellular systems, due to management and coordination issues, our
research show that significant gains in terms of the Quality of Experience (QoE) of
the end-user can be achieved by the proposed content-aware cross-layer strategies.

Most of the contributions presented in this thesis appear in the Author’s pub-
lications listed at the end of the manuscript.
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Chapter 1

Introduction

Today, we are facing an explosion of the video traffic on wireless network due
to the proliferation of multimedia-friendly portable devices [1]. In addition, the
emergence of high speed networks provides the infrastructure and the possibility
for handling a wide set of new applications among which the multimedia con-
tents delivery. Multimedia or more specifically video delivery systems address the
problem of streaming multimedia data as a continuous stream. The end-user can
start displaying the video data or multimedia data before the entire file has been
transmitted.

A high degree of flexibility and adaptivity is required from the video delivery
system to meet different levels of quality requirements depending on the different
characteristics of end-user devices and access networks. The design and the opti-
mization of video communications over wireless networks is thus attracting a lot of
attention from both academia and industry. The main challenges are to enhance
the quality of service (QoS) support in terms of packet loss rate, end-to-end delay
and minimum guaranteed bit-rate, while providing fairness where needed, and to
dynamically adapt the transmitted video streams to the network conditions. One
of the key concept to achieve these goals is the cross-layer approach, which allows
the exchange of information among different layers of the system.

Traditionally, Real Time Protocol (RTP) is used for video streaming services,
since it provides end-to-end delivery for data with real-time characteristics, tim-
ing reconstruction, loss detection, security and content identification. RTP also
allows for the implementation of source rate adaptation to the different network
condition. On-line adaptation of the video sources is enabled by the use of video
encoders that support multiple layers which can be sequentially dropped, thereby
providing a graceful degradation. One of the most promising tool is the H.264
Advanced Video Coding (AVC) standard with scalable extension, also known as
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1. Introduction 2

Scalable Video Coding (SVC) [2]. The main drawback of RTP is that it requires
dedicated servers and passes through a port that is often block by firewall and
Network Address Translation (NAT). For this reasons most of the video traffic
is now transmitted over HTTP protocol, which is NAT transparent, and may
exploit the large deployments of cache and content distributed networks (CDN).
A new approach referred to as HTTP adaptive streaming (HAS) [3] is becoming
popular. HAS is adaptive in the sense that it allows a client to adaptively switch
between multiple bit-rates pre-encoded in the server, according to the bandwidth
or data rate available between the server and the client. This is a particularly
useful feature for a wireless environment since the data rate in mobile systems
can vary over time.

The Long Term Evolution (LTE) represents the next generation broadband
mobile technology [4]. In comparison to the previous cellular standards, LTE
provides improved system capacity and coverage and lower delivery latency. Dif-
ferently to its predecessors, LTE has selected for the first time OFDMA as a key
physical (PHY) layer technology [5]. In the downlink of a multi-user system,
OFDMA allows to to allocate a disjoint number of so-called Physical Resource
Block (PRB) in the time-frequency grid, in which users experience favorable chan-
nel conditions. The better the channel condition are, the higher the rate used in
the resource elements. This results in a very flexible access with high spectral
efficiency.

The main drawback of OFDMA schemes is that the resulting time-domain
waveform exhibits very pronounced envelope fluctuations resulting in a high peak-
to-average power ratio (PAPR) which requires highly linear power amplifiers to
avoid excessive inter-modulation distortion. This problem is more critical in the
up-link transmission where the cost and power consumption of mobile must be
kept as lower as possible. To these ends, Single Carrier - Frequency Division
Multiple Access (SC-FDMA) [6], has been introduced for the LTE uplink. SC-
FDMA provides similar advantages of the OFDMA systems but provide a lower
PAPR by introducing a Discrete Fourier Transform (DFT) pre-coding process at
the transmitter, which spreads the data power over the entire allocated bandwidth.

1.1 Motivation

The most straightforward approach to deliver video streams to multiple users in
bandwidth-limited systems is to divide the available bandwidth equally among
all video streams. However, the rate of an encoded video is variable, as the
result of the variable temporal and spatial structure of the video frames. Also the
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relationship between rate and quality changes within a single video and among
different videos [7–10]. For this reason, RTP-based cross-layer video streaming
optimization of multiple users in the downlink of wireless systems has been usually
addressed in the literature, e.g., in [11][12][13], by formulating a problem where
the objective is to adaptively minimize the sum of the average video distortions
or, similarly, to maximize the sum of the average objective qualities, e.g., Peak-to-
Signal Noise Ratio (PSNR)s, under a particular set of constraints. Such objective
usually leads to the provision of the highest quality, i.e., the lowest distortion,
to the low-complexity videos, while providing low quality to the more demanding
high-complexity videos [14].

The end-user expectation of video streaming is to receive the best feasible qual-
ity independently of the particular video complexity. Therefore, quality fairness
is an important issue that must be addressed in these applications, and the video
models that allow to predict the minimum rate required to achieve a target qual-
ity are essential part of the optimization. Moreover, the presence of an optimized
source rate adaptation technique at the Application (APP) layer becomes crucial
to improve stability, to prevent buffer overflow and to maintain video play-back
continuity.

Beside the distortion due to lossy encoding process, the quality of each video
can be heavily reduced due to the transmission errors and the consequent loss of
part of the video stream. The automatic repeat-request (ARQ) schemes have the
main drawback to increase the delay and can not be suitable for many application
where the playback time is a stringent constraint. Within the framework of RTP-
based SVC video delivery schemes, Forward Error Correction (FEC) has been
proposed to recover channel errors and many contributions in the literature have
proved its effectiveness [15–17].

The solution for the aforementioned issues in RTP-based SVC video delivery
systems requires a Media Aware Network Element (MANE) that is able to extract
from the original video sequences a set of scaled streams with a fair assignment
of expected end-user quality according to the estimated bandwidth and minimum
and maximum rate constraints, even in presence of packet losses.

In the uplink of wireless systems, the transmission of health-related informa-
tion from an ambulance to a remote hospital is a challenging task, due to the vari-
ability and the limitations of the mobile radio link. In particular, the transmission
of multiple video streams can improve the efficacy of the tele-consultation service,
but requires a large bandwidth to meet the desired quality, not always guaranteed
by the mobile network. Moreover, a strict separation into multiple single flows
may turn out to be inefficient, especially in case of simultaneous transmission
from multiple and heterogeneous co-located sources. We consider two categories
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of videos transmitted from the ambulance: (i) ambient videos that allow the hos-
pital staff to visually follow the patient conditions and the activities performed
in the ambulance; (ii) diagnostic videos obtained as result of emergency examina-
tions, such as the Focused Assessment with Sonography for Trauma (F.A.S.T.),
which is used to rapidly assess the status of heart and abdominal organs of the
patient [18]. Due to the different importance of the video flows, a video adapta-
tion module has to manage the inherently different priorities of the video flows
generated by the ambulance.

Since HAS-based video delivery is based on a user-centric optimization ap-
proach, it suffers from three major problems, i.e., efficiency, stability and fair-
ness. Efficiency and stability issues arise when the clients do not fully exploit
the available resources, and perform needless bit-rate switches. The fairness is-
sue mainly arise when users fail to fairly estimate the bandwidth due to periodic
request of video chunk, which results in ON-OFF period. In fact, when no lim-
itation on the allocated resources is taken into account, competing players with
non-overlapping ON-OFF period may not estimate their fair share of bandwidth
correctly. Therefore, also HAS-based systems called for enhanced media-aware op-
timization strategies, aimed at deriving the minimum and the maximum bit-rate
of each user that allows players to fairly estimate the bandwidth and to request
quality-fair video streams.

In wireless systems, the throughput experienced by each user depends on
how the system exploits the available time and frequency resources. Modern
wireless transmission systems make use of suitable Adaptive Modulation and
Coding (AMC) scheme to improve the rate of transmission, and/or bit error rates,
by exploiting the Channel State Information (CSI) that is present at the trans-
mitter. Especially over fading channels where channel gains vary on time and
frequency domains, AMC systems exhibit great performance enhancements com-
pared to systems that do not exploit channel knowledge at the transmitter. In
particular, Orthogonal Frequency Division Multiplexing (OFDM)-based systems
exploiting AMC schemes have an inherent temporal, frequency and multi-user di-
versity, which requires suitable adaptive resource allocation and scheduling strate-
gies. Opportunistic schedulers, as for instance, proportional fair (PF) [19] and
maximum signal-to-noise ratio (SNR) schedulers, take advantage of the knowl-
edge of the channel state information (CSI) in order to maximize the spectral
efficiency. However, with these schedulers, the final share of throughput often re-
sults unfair, especially for the cell-edge users which suffer of data-rate limitations
due to high path-loss and Inter-Cell Interference (ICI). In real-time streaming
the mismatch between the allocated PHY layer rate and the rate required by
the delay-constrained application may cause the loss of important parts of the
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streams, which significantly degrades the end-user quality of experience (QoE).
The provision of acceptable QoE to every user is enabled by the use of a sched-
uler at the medium access control (MAC) layer which delivers a fair throughput,
according to specific utilities and constraints defined by the APP [20].

To summarize, we have to face the following challenges:

� the derivation of accurate and low-complexity models that estimate the min-
imum bit rate of scalable video stream required to achieve a target quality

� the design of optimized UXP profiler in case of transmission over packet era-
sure channel, and the derivation of the resulting expected R-D relationship
at the end-user

� the study of video quality-fair metrics and the investigation of rate adapta-
tion techniques at the APP layer that allows to extract quality-fair streams,
which must also satisfy minimum and maximum rate constraints to ensure
the continuity of the video reproduction and to save bandwidth, respectively

� the study and the solutions of the Radio Resource Allocation (RRA) prob-
lems of OFDMA and SC-FDMA systems to maximize the sum of the achiev-
able throughput under QoS constraints defined by the applications

� The investigation of enhanced cross-layer strategies, which allows the ex-
change of information to jointly optimize the APP and the MAC layers

1.2 Objectives

The general objective of this thesis is to develop an optimized analytical cross-
layer framework for the delivery of video streams with scalable features to multiple
users competing for the same resources. The framework addresses the issues of
source rate adaptation, RRA, error protection and the objective is to provide a
fair video quality among the video programs.

Therefore, the first aim is to analyze the video quality metrics that allow to
assess the quality of a video sequence and to provide enhanced low-complexity
models to accurately estimate the R-D relationship of scalable video transmitted
over error-free and error-prone channels. For the latter scenario, enhanced UXP
scheme have to be investigated. The objective considered here is to provide ex-
pected R-D relationship which keeps the expected distortion almost unchanged
with only a rate increase/decrease at different packet failure rate. This allows
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to model the R-D relationship in error-prone channel with similar function with
respect to the case of error-free channels.

According to the scenario, different application have to be investigated. As first
and simplest scenario, we consider the multi-user cross-layer SVC delivery prob-
lem assuming limited but constant bandwidth and error-prone channels. Then,
the objective is to extend such framework to multi-user cross-layer video deliv-
ery over single-cell and multi-cell wireless scenario in downlink system where the
bandwidth and the user capacity vary on both frequency and time domains. In
this frameworks, applications like video on-demand[21], IP-TV[22], sport broad-
casting, where an initial transmission delay in the order of seconds can be tolerated
by the end-users, as well as real-time streaming [23], are considered.

We then aim at proposing a novel solution for the transmission of multiple
videos from an emergency scenario, based on the joint video adaptation and ag-
gregation directly performed at the APP layer of the transmitting equipment.
The objective is to deliver the ultrasonography information with sufficiently high
quality and the set of ambient videos tuned according to quality fairness criteria.
To provide a certain level of QoS, we also investigate enhanced RRA strategies at
the MAC layer of SC-FDMA systems.

The last objective considered here is to extend the proposed approach to spe-
cific LTE systems and HAS applications.

1.3 Contribution

Here, we briefly summarize the contributions of thesis. A detailed overview of
each contribution is provided at the end of the introduction of each chapter.

The main achievement of this thesis is the proposal of novel cross-layer methods
for maximizing the aggregate ergodic (average) rate assigned to multiple SVC
transmission in the downlink of OFDMA and in the uplink of SC-FDMA systems,
while minimizing the distortion or quality difference among the received video
sequences.

We first propose continuous low-complexity models to accurately estimate the
R-D relationship of SVC and HAS video streams for real-time and near-real-time
video transmission, by also designing an optimized UXP strategy.

We then propose method to optimally delivery SVC video streams in the down-
link of OFDMA wireless systems. In this case, the optimization problem is ”ver-
tically” decomposed into two sub-problems, leading to the rate adaptation at the
APP layer and the resource allocation at the MAC layer, and a novel efficient and
optimal iterative local approximation (ILA) algorithm is proposed to obtain the
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global solution. The ILA algorithm is based on the local approximation of the
contour of the ergodic rate region of the OFDMA downlink channel and requires
a limited information exchange between the APP and the MAC layers. Moreover,
we present and discuss optimal algorithms to solve the two sub-problems, i.e.,
rate adaptation at the APP layer and RRA at the MAC layer, and finally prove
the optimality and convergence of the ILA algorithm. The proposed rate adap-
tation algorithm can be seen as extension of the special case of the cross-layer
optimization SVC delivery problem in shared channel with constant bandwidth
and quality-fair constraints.

We also extend the MAC layer algorithm proposed for a single-cell scenario
to multi-cell environment. We propose and compare centralized and distributed
RRA algorithm aimed at maximizing the sum-rate of a multi-cell clustered sys-
tem under proportional rate constraints. While the centralized approach allows
to optimally solve the Inter-Cell Interference Coordination (ICIC) problem, dis-
tributed strategies requires off-line coordinated resource control among the cells
in a cluster. In the latter case we propose power planning schemes with pre-
assigned powers. We show that distributed schemes with aggressive reuse manage
to approach the capacity of a centralized system when the number of users is
large.

For the uplink SC-FDMA wireless network, we propose a novel solution for
the transmission of multiple health-related SVC videos, based on the joint video
adaptation and aggregation directly performed at the APP layer of the transmit-
ting equipment. In this approach, only a single communication link characterized
by given QoS guarantees needs to be managed between the terminal and the re-
ceiver, while additional spectrum efficiency is gained from video multiplexing. In
our solution the adaptation is designed to optimize quality and fairness by ex-
ploiting the information on the available rate assigned by the LTE e-nodeB. The
available rate is derived according to the solution of the ergodic sum-rate maxi-
mization problem under proportional rate constraints in SC-FDMA systems. For
this problem we propose novel sub-optimal algorithmic solution, whose complexity
increases only linearly with the number of users and the number of resources and
the performance gap to optimal solution is limited to the 10% of the sum-rate.

We finally propose a quality-fair adaptive streaming (QFAS) solution to de-
liver fair video quality to HAS clients competing for the same resources in an LTE
cell. The proposed QFAS solution brings intelligence into the network to adap-
tively select the prescribed guaranteed bit-rate and maximum bit-rate of each UE
according to the contents characteristics in addition to the channel condition.

Extensive numerical evaluations show for each proposed cross-layer solution
the significant video quality gain achieved with respect to other state-of-the-art
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solutions.

1.4 Overview of the Thesis

This thesis comprises seven chapters and one appendix. The following chapter
aims to provide a brief overview of the scalable video approach, in particular
of the SVC standard, and of the HAS media preparation. Chapter 3 provides
a detailed analysis of video quality assessment metric and of the R-D relation-
ship also in case of error-prone channel of SVC and HAS. In Chapter 4 we first
analyze and propose solutions multi-user cross-layer video delivery optimization
problem assuming constant bandwidth and error-prone channels. This is the first
contribution of the thesis, which allows to understand the benefits of quality-fair
adaptive rate-adaptation of multiple SVC videos in a simple scenario. Chap-
ter 5 represents the main contribution of this thesis and aims at extending such
approach to the case of multi-user downlink wireless scenario, i.e., a single-cell
OFDMA systems (extended to multi-cell scenario in Appendix A), where band-
width is not constant and depends on how resources are shared among users.
The proposed solutions provides a complete novel framework to optimally and
jointly perform rate-adaptation at the APP layer and resource allocation at the
MAC layer. Chapter 6 focus on the the uplink wireless transmission systems, i.e.,
SC-FDMA systems, where health-related services are one of the most attractive
applications. It aims at proposing a novel solution for the transmission of multi-
ple videos from an emergency scenario, based on the joint video adaptation and
aggregation directly performed at the application layer of the transmitting equip-
ment. Also enhanced RRA strategies at the MAC layer are proposed. In chapter
7 we target HAS applications in LTE networks, by considering all the constraints
at which such applications must adhere. In All the aforementioned chapters we
first introduce the motivation, the objectives, a detailed literature review, as well
as the contribution. I finally draw the conclusion of our work in chapter 8.

1.4.1 Notation

Vectors and sets are denoted by bold and calligraphic fonts, respectively. xT and
‖x‖p indicate transpose and p-norm, respectively, of the vector x. Given the
vectors x = [x1, . . . , xN ], x

′ = [x′1, . . . , x
′
N ] of N components, we use the following

element-wise inequalities:

x � x′ ⇔ xn ≥ x′n, ∀n = 1, . . . , N



9 1.4 Overview of the Thesis

x < x′ ⇔ x � x′ ∧ ∃m : xm > x′m

Ey[·] denotes the expectation taken with respect to the random process y. We
also use notations [x]+ = max(x, 0) and [x]+ǫ = max(x, ǫ), with ǫ arbitrary close
to zero. The operators ∧ indicates ”AND”.

The most used symbols of this thesis are summarized in Table 1.1 for Readers
convenience.
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Notation Description
K, K Set and total number of users
S, S Set and total number of subcarriers
G, G Set and total number of PRBs
J , J Set and total number of feasible patterns
R PHY layer rate region
TR Tangent space to R
E Boundary of R
F Set of rate vectors as in (5.10)
A Set of feasible allocation policies
γ SNR realizations
ψ,p Set of PHY layer allocation variables
R Average PHY layer rate vector
r Instantaneous PHY layer rate vector
φ Rate direction vector
µ Weight vector
F Source rate vector
Fmax Maximum source rate vector
Fmin Minimum source rate vector
γeff Effective SNR
d Discrete distortion
D Continuous distortion
Dmin

k Minimum distortion of video k
Dmax

k Maximum distortion of video k
Uk Utility of user k

αk, βk, ξk Parameter of model (3.12)
PRTP
e RTP error rate
H Overhead factor

∆(x, y) Distortion difference function

Table 1.1: List of of most used symbols



Chapter 2

Scalable Video Encoders

Video streaming is one of the most popular applications of today’s Internet. As
the Internet is a best effort network, it poses several challenges especially for high
quality video streams.

The Advanced Video Coding (H.264/AVC) scalable extension, also called Scal-
able Video Coding (SVC), provides an attractive solution for the difficulties en-
countered when a video source is transmitted over RTP/Internet Protocol (IP)-
based wireless transmission systems. Such challenges include error prone channels,
heterogeneous networks and capacity limitations and fluctuations [2]. SVC allows
for QoS adaptation in RTP transmission to variable network conditions or needs
or preferences of end-user, as well as video content delivery to a variety of decoding
terminals with heterogeneous display resolutions and computational capabilities,
by means of a set of scalability features.

While SVC can exploit RTP connection-oriented video transport protocols,
which maintain per-session state and use a (proprietary) stateful control protocol
to manage the data delivery, more of the video traffic is nowadays transmitted over
HTTP. Due to its stateless design, in HTTP-based streaming the video content is
segmented in different chunk, and the a client fetches each chunk independently
while maintaining the playback session state.

Several proprietary HAS technology has been implemented, i.e., Microsoft
Smooth Streaming [24] Apple HTTP Live Streaming [25] and Adobe HTTP adap-
tive Streaming [26]. However none of them providing a unified standard. The
Moving Picture Experts Group (MPEG) has recently finalized a new standard to
enable dynamic and adaptive streaming of media over HTTP [27], also known as
MPEG-Dynamic Adaptive Streaming over HTTP (DASH). The objective ot the
standard is to address the interoperability needs between devices and servers of
various providers.

11
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In this chapter we briefly review the SVC standard and the HAS state-of-the-
art.

2.1 Scalable Video Coding

SVC is the extension of the H.264/MPEG-4 AVC video compression standard
described in the Annex G [2]. SVC standardizes the encoding of a high-quality
video bit-stream that also contains one or more subset bit-streams. Within SVC,
each sequence is encoded with one base layer (BL) and several enhancement layers
(ELs) which can be sequentially dropped by providing a graceful degradation.
Each layer is then coded and encapsulated into several Network Abstraction Layer
Units (NALUs), which are packets with an integer number of bytes.

Three types of scalabilities, namely spatial, temporal and SNR scalability are
supported by the standard, which allows to extract from the encoded video sub-
streams of a suitable resolution, frame rate and quality matching various network
conditions and terminal capabilities. They corresponds to three key ID values, i.e.,
dependency id, temporal id, and quality id, which are embedded in the header by
means of the high level syntax elements, in order to identify spatial, temporal and
quality layers. An optional priority id can be inserted to prioritize each frame in
stream [28].

In the next subsection we provide a brief overview of the temporal, spatial and
SNR scalability. We refer the interested reader to [2] for a more general overview.

2.1.1 Temporal Scalability

Temporal scalability can be achieved by means of the concept of hierarchical
prediction. The pictures of the video sequence are organized in sets of G frames,
also called groups of pictures (GOPs). Each picture in one GOP is then identified
by a hierarchical temporal index or level τ ∈ {0, 1, . . . , T}.

The encoding/decoding process starts from the first frame of each GOP with
the temporal index τ = 0, which can be intra-coded (I-frame) or inter-coded (P-
frame), according to a trade-off between error-resilience and R-D efficiency. The
interval (in frames) between two consequent I-frames, also called Intra-Decoding
Refresh (IDR) period, is here assumed as multiple of the GOP size G. The remain-
ing frames of the GOP are assumed to be encoded as B-frames using hierarchical
prediction, i.e., the encoding of a frame with temporal index τ exploits prediction
from frames with temporal index smaller than τ . The remaining frames of one
GOP are typically coded as P/B-pictures and predicted according to the hierar-
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Figure 2.1: Enhancement temporal layer prediction for a GOP of 8 frames.

chical temporal index, thereby allowing to extract a particular frame rate. An
implicit encoding/Decoding Order Number (DON) can be set up according to the
temporal index and frame number of each frame.

In Figure 2.1 we show an example of the hierarchical prediction structure for
a GOP with 8 pictures. The DON is obtained by ordering the pictures according
to the temporal index. If more than one frame have the same temporal level, the
DON is assigned according to the picture index. In this example the last frame
is encoded as P-frame in order to allow a GOP-based decoding.

Temporal scalability is an interesting feature that can be also exploited at the
decoder side in case of packet loss. If a picture with temporal index (temporal id)
τ > 0 is lost, the decoder is still able to decode and playback the GOP at the
τ -th temporal resolution, e.g., by simply replacing the missing picture with the
previous one according to a picture copy error-concealment method. Since our
work aims to provide quality fairness to the set of served end-users, we assume that
the adaptation module extracts the same temporal resolution from each video.
Therefore, the temporal scalability is only exploited at the decoder side, when a
B/P frame is lost.
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2.1.2 Spatial Scalability

Spatial scalability is performed according to a layered coding approach which is
used to encode different picture sizes of an input video source. Each layer refers
to a target spatial resolution and corresponds to a spatial layer or dependency
layer. The lowest spatial resolution, i.e., the spatial base layer, is compatible with
H.264/AVC baseline profile and its layer identifier is the lowest one. According
to the output frame rate intended for for each spatial layer, it may contains
several temporal layers. In particular, the standard specifies a maximum of eight
supported dependency layers. To limit the memory requirements and decoding
complexity derived from this multi-layer coding approach, the same coding order
for all supported spatial layers is used. Specifically, the coding order of each
spatial layer is based on an access unit (AU), where an AU is defined as the union
of all the representations with different spatial resolutions for a given time instant.
In In each spatial layer, the traditional motion-compensated and intra-prediction
modes are supported as for non-scalable video coding. Since spatial scalability is
not consider in our work, we refer the interested reader to [29] for further details.

2.1.3 SNR Scalability

The SNR scalability allows to increase the quality of the video stream by intro-
ducing refinement layers. Two different possibilities are now available in SVC
standard and implemented in the reference software [30], namely Coarse Grain
Scalability (CGS) and Medium Grain Scalability (MGS). CGS can be achieved
by coding quality refinements of a layer using a spatial ratio equal to 1 and inter-
layer prediction. However, CGS scalability can only provide a small discrete set
of extractable points equal to the number of coded layers. In this thesis we focus
on MGS scalability which provides finer granularity with respect to CGS coding
by dividing a quality enhancement layer into up to 16 MGS layers.

MGS coding distributes the transform coefficients obtained from a macro-block
by dividing them into multiple sets. The R-D relationship and its granularity
depends on the number of MGS layers and the coefficient distribution. In [31] the
authors analyzed the impact on performance of different numbers of MGS layers
with different configurations used to distribute the transform coefficients. We also
verified their results, by noting that more than five MGS layers reduce the R-D
performance without giving a substantial increase in granularity. This is mainly
due to the fragmentation overhead that increases with the number of MGS layers.

While extracting an MGS stream two possibilities are available in the refer-
ence software: a flat-quality extraction scheme, and a priority-based extraction
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Figure 2.2: Enhancement quality layer prediction for a GOP of 8 frames. The
encoding loop is closed at the base layer

scheme. The second scheme requires a post-encoding process, executed by an
entity denoted as Priority Level Assigner, that computes a priority level for each
NALU. It achieves higher granularity, as well as better R-D-performance [28]. The
priority level ranges from 0 to 63, where 63 is intended for the base-layer, and is
assigned to each NALU according to quality dependencies and R-D improvement.
Nevertheless, in order to exploit the temporal scalability at the decoder side, we
re-assign different priority levels to the base-layer frames (those with q = 0), ac-
cording to their temporal indexes, as specified afterwards. This feature is only
exploited by the UXP profiler and therefore does not change the 6-bit header of
the packet which is necessary to perform the quality-based extraction. The coding
efficiency of MGS scalable streams highly depends on the quality layers used for
motion compensation. In the basic scheme the quality encoding loop is closed at
the base layer as exemplified in Figure 2.2, thus avoiding the drift issue occurring
when motion prediction is not synchronized between encoding and decoding pro-
cess when quality layer are dropped or lost. However, this approach significantly
decreases the coding efficiency of enhancement layers.

The R-D performance of the quality layers can be improved by using quality
frames for motion compensation and introducing the concept of key-picture, which
allows for a trade-off between drifting and coding efficiency as shown in Fig. 2.3.
Nevertheless, this tool should be carefully applied in if most or all quality layers
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are often discarded by the rate adaptation module.

Figure 2.3: Enhancement quality layer prediction for a GOP of 8 frames using
key-pictures

In this thesis we focus on MGS with optimized bit-stream extraction (see [32]
and [28] for further details).

2.2 HTTP Adaptive Streaming

HTTP adaptive streaming aims to overcome all the issues of RTP streaming as
firewalls and NAT traversals, and the requirement of dedicated network infras-
tructure that cannot be used for other web content.

In HAS approach the video content is encoded at multiple bit-rate, also called
profiles, which may consist in different temporal, spatial and SNR resolutions.
Even though, HAS can exploit the higher encoding efficiency of H.264/AVC sin-
gle layer coding compared to SVC, the profiles can be encoded using SVC with
benefits resulting in web caching efficiency and saved uplink bandwidth [33].

Each profile is then segmented in several chunks (with duration of 2 to 10
seconds). At the end of the encoding of the profiles or periodically during en-
coding, the server generates a manifest file, also called Multimedia Presentation
Descriptor (MPD) in DASH, in order to provide location and timing informa-
tion to the client requesting a particular video. An example of HAS approach is
provided in Fig. 2.2.
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Figure 2.4: HAS media preparation.

Figure 2.5: HAS-based video stream adaptation.

Generally the MPD file is downloaded using HTTP at the start of the stream-
ing session, but for flexibility, the MPD may also be updated periodically, espe-
cially in the case of real-time streaming. After appropriate buffering to allow for
network throughput variations, the client continues downloading the subsequent
chunks and also monitors the network bandwidth fluctuations. Depending on its
measurements, the client decides how to adapt to the available bandwidth by
fetching segments of different alternatives (with lower or higher bit-rates) to also
maintain an adequate buffer. An example of HAS-based video delivery is depicted
in fig. 2.2, for the case of 3 profiles.



2. Scalable Video Encoders 18



Chapter 3

Video Sources: Rate-Distortion
Analysis and Models

The rapid growth of video applications into the wireless networks has called for
highly media-aware encoder control and enhanced streaming strategies to manage
the difficulties of time-varying bandwidth-limited wireless transmission. Capacity
restrictions, heterogeneous devices, network capabilities and error prone transmis-
sions are just some of the problems resulting from the characteristics of modern
video communication systems, to which scalable video coding (SVC) offers an
attractive solution.

Generally, an exhaustive understanding of the quality characteristics of en-
coded video is the basis for traffic modeling and the development of video trans-
port mechanisms. The most straightforward solution to this problem is to allocate
the available bandwidth equally among all video programs. However, due to the
different scene content of the programs and the changes of the scene content over
time, this approach results in suboptimal R-D performance and perceptual quality
differences between the individual sequences.

Models to predict the quality of the encoded video sequence resulting from a
certain encoding rate become then a key tool for the video delivery optimization.
The computation of the perceptual quality requires in general subjective metrics,
which are able to reliably measure the video quality that is perceived by the
Human Visual System (HVS). The subjective video quality methods are based
on groups of trained/untrained users viewing the video content. The resulting
rating are then generally mapped in the so-called Mean Opinion Score (MOS),
which is a value increasing with the perceived quality and ranging from 1 to 5.

For real time or near real-time video streaming systems the computation of
the relationship between the rate and the quality of the encoded scenes should

19
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be fast enough to deal with the timing constraints of the video stream and of
the application. Obviously, subjective quality metric are not suited for these
scenarios, but still are crucial for evaluating the performance of objective visual
quality metrics. An overview of the the latter metrics used throughout this thesis
is provided in section 3.2

R-D or more generally Rate-to-Quality (R-Q) models allow to predict the
minimum bit rate required to achieve a target objective distortion or quality,
respectively. They can be categorized as full-reference (FR), reduced-reference
(RR), and no-reference (NR), depending on whether a reference (FR), partial
information about a reference (RR), or no reference (NR) is used in the evaluation
of the quality.

NR models are analytical R-D models which predict the rate and distortion of
a video sequence prior to the encoding process. They are generally dependent on
the probability distribution of Discrete Cosine Transform (DCT) coefficients.

FR models require the decoding of the encoded video sequences and can be
further categorized in empirical and semi-analytical models. Empirical models re-
quire the computation of all extractable R-D points resulting in a high complexity.
Semi-analytical models aim at reducing such complexity by deriving parameter-
ized functions that follow the shape of analytically derived functions, but are
evaluated through curve fitting from a subset of the R-D empirical data points.
The latter offers an attractive trade-off between computational complexity and ac-
curacy, in case of non-real-time or near-real time video streaming. In this chapter
we first analyze and propose semi-analytical models for SVC video with reference
to Medium Grain Scalability assuming FR and error-free transmission.

The PR models are derived by introducing new functions dependent only on
scalar spatial and temporal parameter of the uncoded/coded video streams, which
can be easily extracted during the encoding process. The coefficients of this new
functions can be estimated off-line through a prior knowledge of the parameters
of a set of sample video sequences, and then used for any future video sequence.
We here propose a PR model which aims at estimating the parameter of the
previously mentioned semi-analytical model according to two program-dependent
indexes. All these models allow to accurately predict the distortion resulting by
the lossy encoding process.

However, the quality of each video can be further heavily reduced due to the
transmission errors and the consequent loss of part of the video stream. An
automatic repeat-request (ARQ) schemes have the main drawback to increase the
delay and can not be suitable for many application where the playback time is
a stringent constraint. Within the framework of video delivery schemes based
on SVC, Forward Error Correction (FEC) has been proposed to recover channel
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errors and many contributions in the literature have proved its effectiveness [15,
16, 34]. Due to the different importance and the temporal/quality dependency
of the different frames, Unequal Error Protection (UEP) or UXP schemes are
generally more effective with respect to schemes based on equal protection. An
UXP profiler has the aim to assign a different protection to each frame according
to its dependencies and the related R-D improvements, as function of the average
estimated packet-loss rate, e.g., the loss rate of RTP packets in RTP transmission.

We then also propose a complete framework to jointly design UXP profiler and
derive the resulting expected additional distortion due to error in the channels, as
well as the related rate resulting after protection. Our proposal provides to each
extractable sub-stream an approximately constant expected distortion for different
values of RTP packet failure rate. This means that a change in the packet failure
rate only induces a rate increment or decrement. This feature allows to model
the expected continuous R-D relationship with the same proposed semi-analytical
model for error-free transmission, where only a constant is added for different
packet failure rates.

Many R-D models have been proposed in the literature for real time and non-
real time video streaming (see for example [34–41] and references therein).

In [35], the authors proposed an accurate semi-analytical square-root model
for MGS coding and compared it with linear and semi-linear models. They con-
cluded that the best performance is obtained by changing the model according
to a parameter that estimates the temporal complexity, evaluated before encod-
ing the entire sequence. However, a general model for the estimation of the R-D
relationship for a large set of video sequences, is necessary to derive analytical
solutions for the rate-adaptation problem.

In [37] the authors present a detailed analysis of the R-D relationship in Fine
Grain Scalability (FGS) coders and provide an accurate square root R-D model,
which requires at least two empirical points. However, as mentioned, FGS has
been removed from the SVC standards, due to its complexity.

In [40] the authors proposed a general semi-analytical R-D model for video
compression, also verified in [34] for SVC FGS layer, where the relationship be-
tween rate and distortion depends on three sequence-dependent parameters which
must be estimated through the evaluation of six empirical R-D points. We have
verified this model with reference to SNR scalability with MGS and the high
accuracy of the results led us to investigate a simplified two-parameters model
with lower complexity, where the number of R-D points needed to estimate the
parameters is reduced.

An improved real-time R-D model for Medium Grain Scalability (MGS) video
coding was proposed in [39]. This model reduces significantly the dependency on
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the encoding process. In this model the delay is reduced by extracting the param-
eters before transformation. Nevertheless it is showed that the model accuracy
highly depends on the complexity of the video sequence.

The optimization of video streaming over packet-erasure channel is also highly
investigated within the framework of SVC, e.g., [16, 34, 42]. In [34] and in ear-
lier works the authors proposed a complete framework to analyze and model the
video streaming system over packet erasure channel, also in presence of play-out
deadline. They derived an analytical model to estimate the the R-D in case of
base-layer packet losses, while using a semianalytical model for the quality-layers.
An UXP profiler, based on the same priority level assigner used in our work,
solves a rate-minimizing cost functions. Maani et al. [16] proposed a model to
solve the problem of joint bit extraction and channel rate allocation over packet
erasure channels, where the level of protection of each enhancement layer is se-
lected according to the expected distortion-to-rate gradient. However, differently
from our proposed UXP profile, the resulting R-D relationship significantly de-
pends on packet error probability and may result in a non-convex rate adaptation
problem, which is generally much harder to be solved.

Contribution

The contributions of this chapter are summarized as follows

� we evaluate and compare two similar semi-analytical model for the esti-
mation of the R-D relationship for SVC encoded videos transmitted over
error-free channel.

� we propose a simple UXP profiler which provides almost similar values of
distortion in the low-rate part of the R-D relationship for different values
of RTP packet-loss rate; also closed form evaluation of distortion loss is
provided. According to the proposed UXP profile, a R-D model considering
also error-prone channel is proposed.

� we propose new techniques to further reduce the complexity of semi-analytical
models for SVC scalable streams based on the introduction of new functions
dependent only on the uncoded video streams. The coefficients of this new
functions can be estimated off-line through a prior knowledge of the param-
eters of a set of sample video sequences, and then used for any future video
sequence.

� we extend the proposed SVC R-D models to rate-to-quality models (RQ)
for HAS sources.
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� we derive, analyze and discuss the accuracy and the complexity of the pro-
poses R-D models, according to extensive numerical evaluations.

3.1 Test Video Sequences

Table 3.1 summarizes the characteristics of the test video sequences that are
used throughout this thesis. The first ten video sequences, are well-known video
sequences mostly used within the JVT and they are available on-line in [43][44].
They comprises 300 frames, apart from football which has 260 frames.

The four sequences numbered from 11 to 14 are extracted from real video
programs and comprise 2760 frames each.

The last three video sequences are health-related videos. Sequences 15 and
16 was acquired in realistic on board ambulance scenario thanks to the ”Green
Cross Public Assistance Association” of Cesena (Italy). They comprise 300 frames
each. Finally the ultrasonography sequence was gently provided by the Hospital
of Perugia (Italy) and comprises 150 frames. All video sequences have frame rate
equal to 30 fps. CIF, QCIF, nHD, VGA resolution (Res. in the Table) corresponds
to 352×288 , 704×506, 640×360, 640×480 pixels, respectively.

N. Sequence Res. Spatial Compl. Temp. Compl. Description
1 City CIF Medium Medium An urban area with several buildings
2 Crew CIF Low Low A crew walking
3 Coastguard CIF High Medium/High A Small boat in a river
4 Container CIF Low Low A container in the sea
5 Football CIF Medium High A football game
6 Foreman CIF Medium Low A foreman speaking
7 Harbour CIF Medium High Sailing boats slowly moving
8 Mobile CIF High Medium A ball rolling over a desk
9 News CIF Low Low A chinese news
10 Soccer CIF Medium Medium A soccer game
11 Sport 4CIF Very High Very High Canoe competition
12 Interview 4CIF Low Very Low An interview
13 Bunny 4CIF High Medium Extract of Big Buck Bunny movie
14 Home 4CIF Medium/High Low Extract of Home cartoon movie
15 Ambient 1 nHD Medium Low Man in a ambulance (far view)
16 Ambient 2 nHD Medium Medium Man in a ambulance (close view)
17 Ultrasound VGA Low Low An Ultrasonography video

Table 3.1: Test video sequences: spatial (spat.) and temporal (temp.) complexity
(compl.) and general description. The resolution (Res.) CIF, QCIF, nHD, VGA
corresponds to 352×288, 704×506, 640×360, 640×480 pixels, respectively.
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3.2 Objective Video Quality Metrics

The simplest video quality metric to assess the quality of a reconstructed video
sequence are the Mean Square Error (MSE) and PSNR, which were historically
adopted in image processing in order to evaluate the performance of the codec of
interest. Although simple to implement and to compute, they are generally not
considered always reliable. Nevertheless, their use continues to be predominant
in the performance evaluation of any video coding system.

Let us define x[m,n] as the original signal at pixel [m,n] of the i − th frame
of a video with resolution M × N , and y[m,n] as the associated reconstructed
signal. The MSE between the original and reconstructed i-th picture, is evaluated
as:

MSE[i] =
1

NM

N
∑

n=1

M
∑

m=1

(x[m,n]− y[m,n])2 (3.1)

while the average MSE between the original and reconstructed set of pictures I
with cardinality I, composing a video scene is defined as:

MSE =
1

I

∑

i∈I

MSE[i] (3.2)

The PSNR of the i-th frame is derived by setting the MSE in relation to the
maximum possible value of the luminance (for a typical 8-bit value this is 28−1 =
255) as follows:

PSNR[i] = 10 log10

(

2552

MSE[i]

)

(3.3)

The result is a single number in decibels [dB], ranging from 30 to 40 for medium to
high quality reconstructed pictures. Two different ways of computing the PSNR
of a video scene I, namely PSNR and Average PSNR (APSNR), are possible
according on how the average is performed. However, the correct way to calculate
average PSNR for a sequence is to calculate average MSE for all frames as in (3.2)
and after that to calculate PSNR using ordinary equation for PSNR, i.e.,

PSNR = 10 log10

(

2552

MSE

)

(3.4)

Nevertheless, sometimes it is needed to take simple average of all the per frame
PSNR values, i.e.,

APSNR =
10

I

∑

i∈I

log10

(

2552

MSE[i]

)

(3.5)
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Due to their simplicity MSE and PSNR will be mostly used to evaluate the
rate-to-quality relationship of the scalable video stream considered throughout
this thesis. Nevertheless, due to their poor correlation with subjective quality
tests, we will also consider enhanced quality metric, i.e., Structural SIMilarity
(SSIM) and the American National Standards Institute (ANSI) Video Quality
Model (VQM).

The SSIM index is a method for measuring the similarity between two images
proposed by Zhou Wang et. al., [45]. This method differs from the previously
described methods, which all are error based, since it uses the structural distortion
measurement instead of the error. The idea behind this is that the human vision
system is highly specialized in extracting structural information from the viewing
field and it is not specialized in extracting the errors. Thus, a measurement on
structural distortion should give a better correlation to the subjective impression.

Many different quality assessment methods can be developed from this as-
sumption but Wang proposes a simple but effective index algorithm. The SSIM
index of the i-th frame is expressed as

SSIMindex =
(2µxµy + a1)(2σx,y + a2)

(µ2
x + µ2

y + a1)(σx + σy + a2)
(3.6)

where µx, µy, σx, σy, σx,y, are the mean of x, the mean of y, the variance of
x, the variance of y and the covariance of x and y respectively, while a1, a2 are
constants. The value of SSIM is between -1 and 1 and gets the best value of 1
if x[n,m] = y[n,m], ∀n,m . The quality index is applied to every image using
a sliding window with 11 × 11 circular-symmetric Gaussian weighting function
for which the quality index is calculated and the total index of the image is the
average of all the quality indexes of the image.

The VQM [46] was developed by the Institute for Telecommunication Science
(ITS) to provide an objective measurement for perceived video quality. It mea-
sures the perceptual effects of video impairments including blurring, jerky/unnatural
motion, global noise, block distortion and color distortion, and combines them into
a single metric.

The VQM considers the original and the processed video as input and it is
computed according to the following steps:

� Calibration: it performs an estimate and a correction of the spatial and
temporal shift as well as of the contrast and of brightness offset of the
processed video sequence with respect to the original video sequence.

� Quality Features Extraction: it extracts a set of quality features that charac-
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terizes perceptual changes in the spatial, temporal, and chrominance prop-
erties from spatial-temporal sub-regions of video streams.

� Quality Parameters Computation: it computes a set of quality parameters
that describe perceptual changes in video quality by comparing features
extracted from the processed video with those extracted from the original
video.

� VQM Computation: the VQM value is computed using a linear combination
of parameters computed in the previous steps.

The VQM value is a number between 0 and 1 used to judge the visual quality.
A low VQM value indicates good perceived quality. Extensive subjective and
objective tests were conducted to verify the performance of the VQM. The results
show a high Pearson correlation coefficient, around 0.95, between subjective tests
and the VQM. For this reason it has been adopted by ANSI as an objective video
quality standard.

In the next sections we will analyze the R-D relationship of SVC encoder with
respect to SNR scalability with MGS coding in terms of the MSE, as well, as
the R-Q relationship of HAS sources in terms of the SSIM. VQM is considered
in chapter 5 to further validate the proposed cross-layer framework. All the R-D
models are extensively tested for the different video sequences mentioned in the
previous section.

3.3 Non-Real-Time Rate-Distortion Models for

SVC in Error-Free Channels

In this section we first analyze and propose two semi-analytical models to estimate
the R-D relationship at the SVC encoder assuming SNR-scalability.

Let us consider an SNR-scalable video stream resulting from the encoding of
a set Ik of pictures, intended for user k. We define Denc

k = {denc1,k , ..., d
enc
Ek,k
} as the

set of distortion values, one for each extractable sub-stream, whose total number
is Ek. The encoder distortion dence,k , e = 1, ..., Ek, given by the MSE between the
original and the reconstructed pictures averaged over Ik is computed as in eq.
(3.2). The R-D theory evaluates the minimum bit-rate Fk required to transmit
the k-th stream with a given expected distortion ds,k, by defining a function Fk

that maps the distortion to the rate, i.e.,
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Fk : Denc
k → R+

dencs,k → Fk(d
enc
s,k )

(3.7)

One of the desirable properties of Fk is the strictly decreasing monotony, i.e.

Fk(d
enc
i,k ) > Fk(d

enc
j,k ), ∀denci,k , d

enc
j,k : denci,k < dencj,k . (3.8)

implying that for any increasing of the information rate corresponds a decrease in
distortion. The rate Fk(d

enc
i,k ), evaluated here in bps (bit per second), is generally

function of discrete values. Following the approach in [9, 34, 40] the expected R-
D relationship is modeled through a parametric function Fk(D) of a continuous
variable D.

Fk(D) =
αk

D + ξk
+ βk, D ∈ [Dhl

k , D
bl
k ], (3.9)

where the parameters αk, ξk and βk, with αk, ξk > 0, ∀k depend on the temporal
and spatial complexity of the set of pictures Ik and on on the frame rate. The
values of

Dbl
k = max

s∈Denc
k

dencs,k (3.10)

and
Dhl

k = min
s∈Denc

k

dencs,k (3.11)

are the expected distortions of the set of pictures Ik, after decoding the base layer
and the highest enhancement layer, respectively.

The drawback of this approach is the need to estimate the three video sequence
dependent parameters, αk, ξk and βk, by using curve-fitting over a subset of the
R-D data points. According to extensive simulations, the curve-fitting algorithm
requires a minimum of six empirical R-D points and a relevant number of iterations
and function evaluations to exhibit high accuracy for most sequences.

In order to reduce the complexity, we have simplified this parametrized model
by eliminating one parameter, i.e.,

Fk(D) =
αk

D
+ βk (3.12)

In this case, four R-D points are generally sufficient to estimate the two
sequence-dependent parameters αk and βk, with high accuracy; as a result, the
number of iterations and function evaluations decreases. Beside the complexity
reduction, this model allows a simple derivation of the solution of the fairness-
oriented rate adaptation problem, as we will show in the cross-layer optimization
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Figure 3.1: R-D Model (straight line), according to eq. (3.12) fitting the empirical
R-D relationship for the GOP with the worst RMSE with reference to Table 3.2.

framework proposed in the next chapters. The selection of the empirical points
depends on the range where the R-D curve is defined. However, to provide more
accuracy the range of interest can be suitably reduced.

Table 3.2 compares the goodness of the two models with respect to the co-
efficient of determination R2[47], the RMSE, the average number of iterations
(ANoI) and function evaluations (ANoFE) required by non-linear Least Square
Trust-Region (LSTR) curve-fitting algorithm to converge. It can be noted how
the number of function evaluations, as well as the number of iterations, decreases
while a minimum loss occurs in the goodness parameter. In Figure 3.1, we plot
the empirical R-D relationship for five test video sequences, as well as their related
R-D curves based on model (3.12). All of them are referred to the GOP with the
worst RMSE value (the minimum in Table 3.2). We can also appreciate in this
figure the achievable granularity of the quality-based extraction method.

3.4 Non-Real-Time Rate-Distortion Models for

SVC in Error-Prone Channels

We here extend the proposed semi-analytical R-D models to estimate the expected
distortion in case of transmission over error-prone channel.

Let us now consider an SNR-scalable video stream resulting from the encoding
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Video Model R2 [min,max] RMSE [min,max] ANoI ANoFE

Coastguard
Model (3.12) [ 0.9812 , 0.9921 ] [ 37.895 , 79.992 ] 30.2 89.6
Model (3.9) [ 0.9956 , 0.9982 ] [ 22.261 , 36.724 ] 34.7 155.9

Crew
Model (3.12) [ 0.9795 , 0.9934 ] [ 23.038 , 89.130 ] 30.9 94.2
Model (3.9) [ 0.9914 , 0.9972 ] [ 20.019 , 52.489 ] 35.6 159.9

Football
Model (3.12) [ 0.9662 , 0.9891 ] [ 53.403 , 205.572 ] 29.0 89.5
Model (3.9) [ 0.9839 , 0.9993 ] [ 12.940 , 99.810 ] 38.0 169.3

Foreman
Model (3.12) [ 0.9669 , 0.9955 ] [ 19.710 , 53.371 ] 25.7 73.2
Model (3.9) [ 0.9914 , 0.9980 ] [ 13.516 , 33.745 ] 34.1 154.3

Harbour
Model (3.12) [ 0.9823 , 0.9929 ] [ 51.860 , 73.344 ] 37.5 129.8
Model (3.9) [ 0.9952 , 0.9991 ] [ 18.883 , 44.822 ] 45.3 164.3

Table 3.2: Comparison between the two semi-analytical model in (3.9) and (3.12)
with respect to the minimum and maximum RMSE, the coefficient of determi-
nation R2, the Average Number of Iterations (ANoI) and the Average Number of
Function Evaluation (ANoFE), evaluated for each GOP (GOP size G equal to 8)
of five video sequences with CIF resolution and frame rate of 30 fps. The video
are encoded with one base layer (QP equal to 38) and two enhancement layers
(QP equal to 32 and 26), both with 5 MGS layers and a weights vector equal to
[3 2 4 2 5], (Q = 10).

of a set Ik of pictures, intended for user k, which has to be transmitted in an
error-prone channel . We define Dk = {d1,k, ..., dEk,k} as the set of expected
distortion values, one for each extractable sub-stream, whose total number is Ek.
The distortion de,k, e = 1, ..., Ek, given by the Mean Square Error (MSE) between
the original and the reconstructed pictures averaged over Ik, is computed as

de,k = dence,k + dlosse,k , (3.13)

where dlosse,k is the additional distortion due to the packet losses in the error-prone
channel, which is function of the frame loss probability as well as on the protection
scheme selected as showed next.
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Figure 3.2: Transmission Sub-Block (TSB) structure. Following the priority level,
the NALUs of one GOP are placed into one TSB according to a given UXP profile
(protection class) from upper left to lower right. The columns of one ore more
TSB are then encapsulated into RTP packets

3.4.1 Unequal Erasure Protection for SVC Streams

Due to the different importance and the temporal/quality dependency of the dif-
ferent frames, UXP schemes can generally overcome schemes based on equal pro-
tection. In our work, we follow the guidelines presented and discussed in [15] for
RTP video transmission over packet-erasure channel, by focusing our attention
on a GOP-based transmission. In this approach, each GOP is mapped into one
Transmission Sub-Block (TSB) that carries either data and parity bytes, as ex-
emplified in Figure 3.2. Each row of the TSB identifies a RS (n,m) codeword
where m is number of data bytes and n is the total bytes of the codeword. If a
packet-erasure detection is available at the lower-layers, the RS codes are able to
correct up to n−m bytes, equal to the number of parity bytes.

The aim of the UXP profiler is to assign a different protection to each frame
according to its dependencies and R-D improvements.

A first step is to order the NALUs according to their protection class. A
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priority index greater than 62 is re-assigned to the different temporal base layer
frames (q = 0), to have lower priority indexes for high temporal indexes. Thus,
all the frames are sorted according to the priority level p and sequentially inserted
into one TSB, according a given UXP profileM ∗ = {m∗

f,q,p}, where m
∗
f,q,p identify

the protection class assigned to frame with frame index f , quality index q and
priority level p.

Finally, one or more TSB are placed into a transmission block (TB) whose
columns become the payload of RTP packets. In this way the RS codewords
are interleaved over the different RTP packets. Therefore, RTP packet errors (or
erasures) can be assumed as uniformly distributed inside the codewords. In order
to reduce the overhead due to the need of padding for compensating the different
NALU lengths, the part of the codeword left unused by a given NALU is filled with
the data from the subsequent NALU. For simplicity of presentation and without
loosing generality, we assume that the size Sf,q,p of each NALU is always greater
than or equal to the total size n of the RS code:

Sf,q,p ≥ n (3.14)

This assumption ensure that each TSB row contains no more than two different
frames.

Let us finally note that a Multi Time Aggregation Packet (MTAP) header
must be inserted before each priority level NALU in order to deliver the decoding
order number (DON) and timing information assignment.

3.4.2 Frame Error Probability and Expected Distortion

Let assume that the RTP packet error rate information PRTP
e , is periodically

collected from the lower-layers. According to the proposed UXP scheme a closed
formulation of the expected error probability can be derived by using the failure
probability of a single (n,m) RS codeword:

P (n,m) =

n
∑

i=m−n+1

(

n

i

)

(PRTP
e )i(1− PRTP

e )n−i (3.15)

The individual frame error probability now depends on the number of TB rows
associated to each frame, i.e.,

rf,q,p =

⌈

Sf,q,p

m∗
f,q,p

⌉

(3.16)
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and on whether or not some bytes of the frame are inserted in the row using the
protection class of the preceding priority level. Let z ∈ {0, 1} be a boolean variable
that indicates whether or not this last event occurs. The frame error probability
FEP is then computed as one minus the probability that all codewords of the
TB, associated to the frame, can be correctly decoded by the RS decoder:

FEPf,q = 1−

[

(

1− P (m∗
f,q,p, n)

)rf,q,p
(

1− P (m∗
f,q,p−1, n)

)z
]

(3.17)

According to the derived FEP, a closed formula for the expected distortion
can be now computed. Let ΥDf,q = |df,q − df,q−1| be the quality improvement
resulting from the correct decoding of the f − th frame with quality id q, which
is computed by the priority level assigner. In order to compute the quality im-
provement ΥDf,0 due to the enhancement (temporal) frames of the base layer
we assume an error concealment (EC) method based on the picture copy (PC).
Therefore the distortion increment due to the loss of an enhancement picture is
computed by considering the difference between the enhancement frame and the
copy of the previous one. The expected distortion due to the loss of frames with
quality index q ≤ Q can be computed as:

df,q,loss =

q
∑

r=0

ΥDf,r

[

FEPf,0uf−1 +

q
∑

j=1

FEPf,j

j−1
∏

s

(

1− FEPf,s

)

]

(3.18)

where ux is the Heaviside function1. The first term of the sum takes into account
the distortion due to the loss of a temporal enhancement layer. Since a loss of
the I-frame will results in a infinite distortion we assume here that the associated
NALUs will receive enough protection to have FEP0,0 close to zero.

The second sum, on the other hand, takes into account the cumulative prob-
ability that the j − 1 quality layers have been successfully received but the j-th
quality frame is lost, where j ≤ q. Finally, the total expected distortion of the
entire GOP is the sum of the individual frame loss distortions:

ds,loss =

G−1
∑

f=0

df,q,loss (3.19)

Let us note that the number of quality layers of each frame in one GOP can
be different after the rate adaptation. Thus, the index s maps the vector whose

1ux = 0 if x < 0, 1 otherwise, x ∈ Z
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elements are the resulting number of the quality-layer of each frame f : its range is
from 0 to GQ. The values of the expected distortion can be finally used, together
with the required rate, to reshape the R-D relationship according to the values of
the FEP.

3.4.3 Proposed UXP Profiler

The derivation of an optimal UXP profile is hard to achieve. It should be com-
puted according to the solutions of an optimization problem aimed at balancing
the trade-off between protection and overhead. This it is a discrete problem since
the FEP, as well as the overhead resulting from the RS encoding, strictly depends
on the discrete variable m, as shown in Figure 3.3. In order to guarantee a rate
distortion relationship strictly decreasing, the FEP of each frame should increase
as the quality and the temporal indexes increase. However, due to the granu-
larity of the available values of m, sometimes this condition is not met. This
problem could be partially solved by a joint optimization of the encoding process
and the UXP profiler. However, this is out of the scope of this work. In our
framework the UXP profiler simply drops this cases by slightly compromising the
R-D granularity.

We propose a simple strategies by fixing an error probability profile (EPP)
πf,q,p, for each frame f with quality id q and priority level p. Based on this
approach, the UXP profile is derived by finding the minimum mf,q,p ∈ [n

2
+ 1, n]

such that

FEPf,q ≤ πf,q,p (3.20)

Differently to other solutions in literature, this approach has the main ad-
vantage that the expected distortion becomes quasi-independent from the RTP
packet failure rate whereas a change of the Pe,rtp will only results in a rate in-
crement or decrement. By exploiting the proposed design, the UXP profiler can
adaptively adjust the amount of redundancy according to a target value of RTP
packet loss rate provided by the BS that serves the destination users. The RTP
packet loss rate information can be fixed to a constant conservative value or it
can be estimated through error rate measurements.

As a case of study to provide numerical results and illustrate how rate adap-
tation works when UXP is implemented, we consider here the following choice for
the EPP, by differentiating the base and the enhancement layer protections.
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Figure 3.3: Resulting logarithmic FEP for the first I frame of Football (byte size
equal to 11519) mapped to RS codewords (128, m) at different RTP packet error
probability

A Case Study for the Design of EEP

Since the priority level of the quality layers carries both the information of the
R-D improvements and the dependency of each frame, the values of the EPP for
the quality frames, i.e. q > 0, can be derived according to the following formula

πf,q,p =

{

(

p

α

)

10−
p
α if p ≥ α

ln(10)

1 +
(

1
e
− ln(10)

)

p

α
otherwise

(3.21)

where α allows for a trade-off between protection and overhead.
The priority levels for the base layer frames are normally set equal to 63 by

the quality processing tool. If the UXP profile used eq. (3.21), it would assign
similar protection to the base layer and the first enhancement layers. A smaller
frame error rate is ensured for the I-frame, since its loss will produce the drop of
all the frames in the GOP. To avoid this we set then π0,0,p = 10−6 ∀α. Moreover,
in order to exploit the temporal scalability at the decoder we propose to re-assign
to frames of the enhancement temporal layer, with q = 0, an higher priority level
and to use again the eq. (3.21) to derive the relative EEP values. The choice of
the priority level for the enhancement temporal layer depends on the particular
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frame rate that must be ensured to each user.
The model (3.12) and (3.9) for the R-D relationship is still applicable in case

of frame losses due to the transmission error in the channel. In this case the
empirical points of the encoder are replaced by new points taking into account
the effects of packet erasures and UXP. These new points are the result of the
rate increase due to UXP, i.e.,

G−1
∑

f=0

n−m∗
f,q,p

m∗
f,q,p

rf,q,p, (3.22)

and the novel expected distortion ds,loss evaluated as in (3.19). In Figure 3.4 we
plot the empirical R-D function resulting from the encoder, as the reference curve,
and the related R-D functions outcoming from the UXP profiler at different packet
error probabilities PRTP

e > 0 for the first GOP of the test-sequence Football. We
can see that the distortion is almost unchanged for the lower points of the curve
with respect to the reference case, since high protection is provided to the high
priority levels which are the first to be extracted. At larger bit rates the gap
with respect to the reference case increases due to insertion of quality frames with
lower protection.

Generally a dynamic adaptation of the UXP to different PRTP
e would require

the periodical application of the curve-fitting algorithm to derive the two param-
eters of the model, thereby increasing the complexity. This problem can be over-
come when the UXP profiler adaptively tracks the FEP profile by changing the
protection class assigned to the different NALUs. In this way only rate has signif-
icant changes while expected distortion practically does not change. While com-
paring the empirical points resulting from different error probabilities (PRTP

e > 0),
we can note in the figure how the proposed UXP profile leads to similar distortion
at different PRTP

e values. Therefore the adaptation module adapts the sequence-
dependent parameters by simply adding a constant dependent on the value of
PRTP
e . According to extensive simulations the rate shifting is independent of the

encoded sequence and can be determined by empirical evaluations.
This feature allows to model the expected R-D relationship through the same

parametric function in (3.9) or (3.12), where only βk changes for different design
values of RTP packet-loss rate. This result can also be appreciated in Table 3.3
where the average expected distortion due to different PRTP

e and the resulting
average overhead is evaluated for two video sequences with full quality scalability.

The selection of a small value of α for the EEP results in a small FEP for the
quality layers, thereby increasing the overhead. On the other hand, a loss in the
expected quality is experienced by doubling α with a consequent rate gain in the



3. Video Sources: R-D Analysis and Models 36

10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

MSE

R
at

e 
[k

bp
s]

 

 
P

e,rtp
=0 model

P
e,rtp

=0 empirical

P
e,rtp

=0.01 model

P
e,rtp

=0.01 empirical

P
e,rtp

=0.1 model

P
e,rtp

=0.1 empirical

P
e,rtp

=0.2 model

P
e,rtp

=0.2 empirical

Figure 3.4: R-D Model (straight line), according to eq. (3.12) fitting the empirical
R-D relationship for one GOP (size G equal to 8) of the Football test-sequence
with different error probabilities and α=30. The lower curve refers to the R-D
relationship of the encoder.

order of 5%. As mentioned before, the overhead is approximately constant even
for video sequences with high spatial and temporal complexity difference, such
as Foreman and Harbour. On the other hand, the loss in the expected quality
strictly depends on the range of the distortion values as normally increase with
the complexity of the video raises if the same encoding paradigm is used for each
sequence.
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Video PRTP
e α = 15 α = 30

Overhead dGQ,loss [MSE] Overhead dGQ,loss [MSE]

Foreman
0.01 8.4 % 1.82 5.3 % 4.54
0.05 17.7 % 2.13 13.7 % 5.15
0.1 28.0 % 2.17 23.1 % 5.31

Harbour
0.01 7.8 % 8.95 5.1 % 19.87
0.05 17.1 % 9.86 13.3 % 20.32
0.1 27.6 % 10.13 23.4 % 20.89

Table 3.3: Percentage of the overhead and expected distortion dGQ,loss in term
of MSE with respect to the full quality video streams (Q = 10 and G = 8), for
different values of RTP packet error probability and α parameter in the EEP
profile

3.5 Real-time Rate-Distortion Models for SVC

Streams

The time required to model the R-D curve for a given sequence may drive the de-
cision on the methodology/algorithm to be adopted for the R-D modeling. On the
other hand, the performance of the streaming system is directly affected by the
accuracy of the R-D model [36]. For real time video streaming systems the com-
putation of the model should be fast enough to deal with the timing constraints
of the video stream. Hence, we investigate here techniques to further reduce
the complexity of semi-analytical models. This is made possible by introducing
new functions dependent only on the uncoded video streams. The coefficients
of this new functions can be estimated off-line through a prior knowledge of the
parameters of a set of sample video sequences, and then used for any future video
sequence. Such new model only uses two parameters, i.e., the Spatial Index (SI)
and the Temporal Index (TI), which are calculated taking into account the charac-
teristics of the video sequences through a spatial and a temporal index extracted
from the original raw video streams. Moreover, we also use these complexity in-
dexes to calculate BL and EL rates of the given video stream. We consider as a
reference R-D model the model in eq. (3.12) introduced for MGS coded video,

As already mentioned, the drawback of this model is the fact that its parame-
ters can only be evaluated by looking for the best fitting of at least 4 R-D points
after the encoding process of the video, hence the model is not suited for real time
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Figure 3.5: Proposed strategy for real-time R-D modeling.

applications. The model proposed here replaces the parameters αk and βk with a
function of the spatial index SIk and the temporal index TIk, as explained in the
following:

αk = p1 + p2SIk + p3TIk (3.23)

βk = q1 + q2SIk + q3TIk (3.24)

The same approach is used to express the BL (base layer) and EL (enhancement
layer) rates:

Fmin
k = r1 + r2SIk + r3TIk (3.25)

Fmax
k = s1 + s2SIk + s3TIk (3.26)

The values on the sets p = [p1, p2, p3], q = [q1, q2, q3], r = [r1, r2, r3] and
s = [s1, s2, s3] are coefficients that can be calculated by using fitting methods in
a sufficiently large set of GOPs from a set of video sequences (training set). As
mentioned above, this process is executed off-line only once.

The SI and TI values are evaluated on the luminance component [48] of the
video by means of Spatial Information and Temporal Information [49] of the k-th
GOP as follows:

SIk = max
i
stdσ{Sobel(x[i](σ))} (3.27)
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TIk = max
i
stdσ{M [i](σ)} (3.28)

where M [i](σ) = x[i](σ) − x[i − 1](σ) is the motion difference, x[i](σ) is the
luminance component and i and σ are the temporal and spatial coordinates, re-
spectively, of the frames used to encode GOP k.

To summarize, the R-D model is obtained by substituting in (3.12) the pa-
rameters αn and βn from (3.23) and (3.24), and Fmin

k and Fmax from (3.25) and
(3.26), respectively, i.e.,











Fk(D) = p1+p2SIk+p3TIk
D

+ q1 + q2SIk + q3TIk

Fk(D) ≥ r1 + r2SIk + r3TIk

Fk(D) ≤ s1 + s2SIk + s3TIk

(3.29)

A diagram block of the proposed strategy is presented in fig. 3.5
The proposed R-D model is verified by considering video sequences generated

by the JSVM software [30]. We encoded six video sequences, i.e., Crew, Football,
Coastguard, Soccer, City, and Mother and Daughter (MD) having different
scene complexities, in CIF resolution with a frame rate of 30 fps. We denote
this set as the training set. Two ELs are used to obtain SNR scalability where
each layer is split into 5 MGS layers with vector distribution of [3 2 4 2 5]. All
the videos are coded GOP by GOP with a GOP size of 8 to obtain sequences
comprising 26 GOPs. The Quantization Parameter is set to 38, 32 and 26 to
obtain the BL and two ELs.

Fig. 3.5 shows αk, βk, BL and highest EL models as in (3.23), (3.24), (3.25)
and (3.26), respectively, using the spatial and temporal indexes. In the two upper
figures the markers are referred to the values of αk and βk derived according to
model (1) and plotted for each GOP versus the corresponding value of SIk and
TIk. In the two lower figures the markers are referred to the BL and EL layer rates
derived by encoding the sequences with JSVM [30]. It can be observed that the
values of the parameters for all the models closely follow a linear behavior. The
metrics used to evaluate the goodness of the model in fitting the set of points are
reported in the caption. The sets of coefficients, appearing in (3.23), (3.24), (3.25)
and (3.26), of the proposed model, are calculated using the linear least square
fitting method [50] with Least Absolute Residuals (LAR) [51] for robustness. The
resulting values for the training set are the following:

p = [−2.4× 104, 3975, 540.5] q = [−246.1, 24.1, 3.3]

r = [41.27, 17.09, 9.12] s = [−237, 145.6, 34.02]

In Fig. 3.7 the different R-D models are shown and compared for two sample
GOPs of three video sequences. The accuracy changes GOP by GOP: the upper
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Figure 3.6: Proposed Models for α, β, BL and EL rates. The parameters used
for the goodness of the models are the coefficient of determination (R2) and Root
Mean Square Error (RMSE). (α) R2= 0.987 RMSE = 1598, (β) R2 = 0.973
RMSE = 21.2, (BL) R2 = 0.979 RMSE = 22.98, (EL) R2 = 0.985 RMSE =
79.36

figure shows the result for a GOP with good matching between the proposed model
and the model in (1), whereas the lower figure shows a result with poor matching.
As shown below, the GOPs with less accurate model do not have significant impact
on the behavior of rate adaptation strategies in real time multi-video transmission.
To evaluate the goodness of BL and EL rate estimation, we compare in Fig. 3 the
rates estimated with the model in (3.25) and (3.26), to the original rates obtained
from the encoded sequences.

We consider not only the video sequences in the training set but also the
sequences outside the training set. More emphasis is given to BL rate as it is the
minimum rate requirement of each video sequence when transmitted in bandwidth
constrained channels. It can be observed from Fig. 3 that our model predicts the
BL rate quite accurately for sequences outside the training set, as shown for
Mobile and Foreman. Moreover, it can be seen that the estimation is also good
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Figure 3.7: R-D comparison among model in eq. (3.12), proposed model and
actual values for two sample GOPs.

for EL rate.

3.6 Rate-to-Quality Models for HAS Streams

The proposed approach for modeling the R-D relationship of SVC SNR-scalable
video stream can be easily extended to consider the case of HAS-based encoded
videos.

Similarly, each profile corresponds to an extractable sub-stream, i.e., using
the notation introduce in section 3.3 and in section 2.2, Ek =M , while the set of
pictures Ik refers to one chunk. We run several simulation by encoding each chunk
and each profile with the x264 encoder [52], i.e., a fast version of the H.264/AVC
standard, and we finally extract the average MSE, PSNR and the SSIM. We have
verified the model in (3.9) to describe the R-D relationship, which still provide
high accuracy. Nevertheless, we are here interested to model the R-Q relationship
of HAS sources in terms of SSIM quality metric, which will be used in chapter
7 to quantify the k-th user utility Uk(Rk) of downloading a chunk from video k
at a certain rate Rk. We found that the following continuous logarithmic SSIM
to rate model in the interval of interest [Ak, Bk], where Ak, Bk are the minimum
and maximum available profile rate, have an high correlation with respect to the
empirical points:

Uk(Rk) = a1 log(a2Rk + a3), Rk ∈ [Ak, Bk] (3.30)
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Figure 3.8: SSIM-to-rate model (straight line), according to eq. (3.30) fitting the
empirical quality-to-rate relationship for one random chunk (duration equal to 2
sec.). The number of profiles is equal to 9 with rates ranging from 150 kbps to 4
Mbps.

where the parameters a1, a2, a3 are as usual dependent on the spatial and temporal
complexity of each chunk and are derived through curve-fitting over the actual
discrete empirical points.

The validation results of the model (3.30) have shown almost perfect corre-
lation with a Pearson coefficient always higher than 0.99 for each chunk of the
considered video sequences. The parameters values of the SSIM-Rate model can
be derived either off-line and on-line and inserted in each MPD as optional in-
formation. An example of the resulting empirical vs model relationship of one
random chunk of the HAS sources considered in chapter 7 is provided in Fig. 3.8.



Chapter 4

Cross-layer Optimization for SVC
Video Delivery in Shared
Channel with Constant
Bandwidth

In this chapter we analyze a simple scenario that can cover different video ap-
plications. The unique assumption is that the multimedia provider is able to
perform off-line some computation-expensive processes, such as encoding and
quality-computation for each video. In this framework, applications like video
on-demand[21], IP-TV[22], sport broadcasting, where an initial transmission de-
lay in the order of seconds can be tolerated by the end-users, as well as real-time
streaming [23], are well suited to the low-complexity transmission scheme pro-
posed. Each one of these applications requires a multimedia provider that has to
serve several end-users which request different video sources.

Due to the different complexities of the scenes composing a video sequence,
the relationships between the rate and the quality can be really different within
a set of videos. However, the end-user expectation is to receive the best feasi-
ble quality independently of the particular video complexity even in presence of
packet losses. If individual video streams are transmitted to different users in a
broadcast dedicated channel, an equal rate allocation could lead to unacceptable
distortion of high-complexity videos with respect to low-complexity ones. Adap-
tive transmission strategies have to be investigated to dynamically optimize the
overall quality of experience (QoE). Therefore, quality fairness is an important
issue that must be addressed. In this light, the adaptation module of the media
provider is required to extract from the original video sequences a set of scaled

43
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streams with a fair assignment of expected end-user quality, even in presence of
packet losses.

The cross-layer approach considered here assumes that the lower-layers are
able to allocated a shared constant bandwidth to a particular set of users, and
inform the application layer about channel conditions, in terms of packet losses.

Many contributions exist in the literature that consider fairness-oriented rate
adaptation in shared channel with constant bandwidth, but they exploit the
Fine Granularity Scalability (FGS) tool, e.g., [53]-[54]. Nevertheless, FGS mode
has been removed from SVC, due to its complexity, and these works do not
take into account the effects of transmission losses. Cross-layer optimization of
video streaming over packet-erasure channel is also highly investigated, within the
framework of SVC [34][16][42]. In [34] and in earlier works the authors proposed
a complete framework to deliver SVC videos in bandwidth-limited scenario con-
sidering packet erasure channel, also in presence of play-out deadline. An UXP
profiler, based on the same priority level assigner presented in section 3.4.1, solves
a rate-minimizing cost functions. However, the rate adaptation aims at minimiz-
ing the distortion of each video without taking into account fairness issues.

We here propose a multi-stream rate adaptation framework with reference to
SVC with medium grain scalability (MGS). Rate adaptation is carried out on
the temporal and quality domain of the scalable video streams. Nevertheless, the
entire framework can be extended to spatially scalable streams.

We first define a general discrete multi-objective problem with the aim to
maximize the sum of assigned rates, while minimizing the differences among the
expected distortions, under a total bit-rate constraint. A single-objective problem
formulation is then derived by applying a continuous relaxation. It is based on the
simplified continuous semi-analytical model 3.12 introduced in chapter 3.3, which
allows us to derive an optimal and low-complexity procedure to solve the relaxed
problem. The Unequal erasure protection (UXP) proposed in section 3.4.3 is also
considered to suitably shape the rate-distortion relationship for different values of
RTP packet-loss rate. The numerical results show the goodness of our framework
in terms of error gap between the relaxed and its related discrete solution, and
the significant performance improvement achieved with respect to an equal-rate
adaptation scheme.

Contribution

In summary, this chapter collects the following relevant contributions:

� the formulation of a multi-stream rate-adaptation problem which considers
minimization of both expected end-user distortion and distortion difference
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among users, under bandwidth constraint

� the derivation of a optimal low-complexity algorithm for the solution of the
multi-objective problem, based on continuous relaxation

� the derivation, analysis and discussion of simulation results which show the
error gap of the low complexity solution and the improvements with respect
to equal-rate allocation

4.1 System Architecture

In Figure 4.1 we show the architecture of the video delivery system. Each video
sequence is encoded by the SVC encoder to fully support temporal and quality
scalability. The resulting streams are encapsulated into Network Abstraction layer
Units (NALUs), which are packets of an integer number of bytes, and stored in a
media server. The NALUs have different importance according to a certain coding
paradigm. To support the features of both Adaptation module and Unequal
Erasure Protection (UXP) profiler, the video streams are also processed with the
aim of extracting the information on the quality of each stream. After the encoder,
the priority level assigner evaluates a priority index for each NALU, by considering
the Rate-Distortion (R-D) relationship and the dependency on the other NALUs.
Such information is encapsulated in the NALU header and then exploited by both
the UXP profiler and the Adaptation module. These two processes are executed
off-line.

As proposed in section 3.4.3, The UXP profiler aims at determining for each
NALU the level of protection against transmission losses, which is obtained by
adding parity bytes according to a specified UXP strategy. This task is executed
by taking into account the estimated packet-loss rate of the lower layers which can
be supplied at regular intervals. The protection profile is then sent to the Adap-
tation module which first estimates the expected R-D relationship, then extracts
a suitable bit-stream from each video stream to meet fairness and bandwidth con-
straints. Each outcoming bit-stream is then encoded by the RS encoder. Finally,
the resulting codewords are encapsulated in a transmission block and interleaved
over RTP packets which are forwarded to the lower layers.
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Figure 4.1: System architecture. Each sequence is encoded to fully support tem-
poral and quality scalability and a priority level is assigned to the NALUs. The
UXP profiler evaluates the overhead required according to a certain protection
policy and RTP packet failure rate, and provides R-D information to the Adap-
tation module. The Adaptation module extracts sub-streams according to the
estimated bandwidth and sends the data bytes to the RS encoder. The result-
ing codewords are then encapsulated in a transmission block, interleaved in RTP
packets and forwarded to the lower layers. The receiver performs the inverse op-
erations (RS decoding and de-interleaving) in order to extract the NALUs which
are sent to the SVC decoder.

4.2 Problem Formulation for Multi-Stream Rate

Adaptation

We first propose a general problem formulation, which can be suitable for different
video coding schemes. At the end we restrict our attention to the proposed system
architecture.

Let K be the number of streams involved in the optimization, indexed by the
set K = {1, . . . , K} and Ek the number of the available encoding schemes char-
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acterized by different SNR resolution. Note that the cardinality Ek of the set
Dk is generally not the same for each video source, and depends on the particu-
lar coding/extraction scheme applied. We recall the definition of set of expected
distortion values for the k-th stream: Dk = {d1,k, ..., dEk,k}, k ∈ K where ds,k is
evaluated according to eq. 3.13. The values in the set Dk take into account the
distortion due to the lossy encoding techniques dencs,k , and the expected distortion
dencs,k due to the packet loss in the error-prone channel. The rate adaptation algo-
rithm must choose at each time slot and according to the optimization strategy,
the best vector d = [d1, ..., dK] ∈ D = D1× . . .×DK . D contains all the possible
combinations of the elements of Dk and has cardinality E =

∏K

k=1Ek. Optimiza-
tion strategies for video rate adaptation has in general the aim to assign to each
video the distortion that minimize the sum of the distortion, or equivalently that
maximize the sum of the achievable PSNRs, under a total bit-rate constraints
Rc [55]. However, the solution of such problem can usually lead to large distor-
tion variations among different streams, due to the different complexity of video
sources. As already mentioned, quality fairness is an important issue that must be
addressed when multiple videos from different sources are transmitted in a shared
channel.

The general objective of our proposed framework is to minimize the differences
among the distortions assigned to each video stream while maximizing the sum of
the rates until a maximum bit-rate is met. We then formulate the general problem
as a multi-objective problem:

min
d∈D

∑

i∈K

∑

j∈K,j<i

∆(di, dj) (4.1a)

max
d∈D
‖F ‖1 (4.1b)

s.t. ‖F ‖1 ≤ Rc (4.1c)

where F = [F1(d1), . . . , FK(dK)] is the vector of rates necessary to achieve the
distortion d In case of video delivery over error-prone channel. As shown in
section 3.4.3, the rate Fk depends on the rate of the encoder and on the overhead
for error control required to obtain the expected distortion ds,k.

The distortion-fairness metric in the objective (4.1a) is defined as:

∆(di, dj) =































0 if di = Dmin
i ∧ dj < di

0 if dj = Dmin
j ∧ di < dj

0 if di = Dmax
i ∧ dj > di

0 if dj = Dmax
j ∧ di > dj

|di − dj| otherwise.

(4.2)



4. SVC Delivery in Shared Channel with Constant Bandwidth 48

and Dmin
i and Dmax

i are the minimum and maximum distortion in the set D. Such
expression can be explained by the following considerations.

Ideal fairness among the distortion values assigned to the multiple video streams
would require di = dj , ∀i 6= j. This is hard to be achieved due to (i) the dis-
cretization of the R-D relationship and (ii) the presence of a minimum and a
maximum distortion values for each source, which are related to the encoding
scheme and to the complexity of each video and can be very different. The defi-
nition of the fairness metric ∆(di, dj) takes this fact into account, by introducing
the effects of the minimum and maximum distortion constraints. In fact if di (or
dj) takes the maximum or minimum values and the difference |di − dj| can not
be further decreased by moving some rate from video with small d to video with
large d, then the fairness metric is set to 0.

It is worth noting that, by assuming a strict decreasing relationship between
the rate and the distortion, this problem admits a feasible solution only if at least
the minimum rates of all the of the video streams, i.e., Fmin = [Fmin

1 , . . . , Fmin
K ],

with Fmin
k = Fk(D

max
k ) are supported by the transmission bandwidth Rc, i.e.,

‖Fmin‖1 ≤ Rc (4.3)

otherwise a certain number of videos are not admitted in the transmission in order
to keep this constraint satisfied.

The solution of the problem in (4.1) requires an exhaustive search in the space
D of all possible vectors. If E becomes large the required complexity can be not
suitable for real-time adaptation. On the other hand if E is small, i.e., there are
few video sources as well as few related R-D points, the problem solution can lead
to a waste of the available bandwidth and to large distortion differences among
multiple videos. In the next section, we then propose a continuous relaxation of
the problem, which implying a reasonable number of extractable sub-stream.

4.2.1 Continuous Relaxation

Considering all the discussions in the previous sections, we apply to the optimiza-
tion problem a continuous relaxation based on the model (3.12). Therefore, we
assume that the discrete variable dk becomes continuous (with notation Dk), but
limited by the minimum and maximum distortion values, i.e.,

Dk ∈ [Dmin
k , Dmax

k ]. (4.4)

With reference to the SNR scalability, the points (Dmax
k , Fmin

k ) and (Dmin
k , Fmin

k )
refer to the base layer and the highest enhancement layer streams, respectively.
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It is worth noting that a trivial solution can be derived if the sum of the full
quality encoded stream rates is less than or equal to the available bandwidth,
that corresponds to transmitting the entire encoded streams without adaptation.
Thus, we analyze the non-trivial case where the following constraint holds:

‖Fmax‖1 > Rc (4.5)

According to the continuous relaxation (4.4) and the assumptions (4.3) and
(4.5), a feasible solution is obtained when the constraint on the overall channel
bandwidth is active with equality. A single-objective problem where the second
objective, i.e., (4.1b) in the problem formulation, is eliminated and replaced by
an equality constraints can be then formulated. Nevertheless, as a result of the
relaxation of the problem, the two constraints on the maximum and minimum
available rates of each stream must be added. They imply that each video sequence
has to obtain at least the base layer and not more than the maximum available
bit-rate must be allocated to each video source to save bandwidth.

Thus, the relaxed problem can be formulated as

min
D

∑

i

∑

j<i

∆(Di, Dj) (4.6a)

s.t. ‖F ‖1 = Rc (4.6b)

F � Fmin (4.6c)

F � Fmax (4.6d)

Note that, with a slight abuse of notation, the model Fk(Dk) replaces the
actual R-D relationship Fk(dk). In the next subsection we will derive an optimal
procedure to solve this relaxed problem using methods that are computationally
efficient and without the use of heuristics or brute-force search.

4.3 Adaptation Algorithms

A solution to the relaxed problem (4.6) can be derived by using sub-optimal
procedures as the golden search algorithm proposed in [53] for a piecewise linear
model. Nevertheless, the continuous formulation of model (3.12) allows us to
derive a low-complexity optimal procedure, by noting that the solutions to the
problem without the constraints (4.6c) and (4.6d) can be easily derived as follows:

D∗ = D∗
k =

∑

k∈K αk

Rc −
∑

k∈K βk
, ∀k. (4.7)
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Since those constraints imply that a minimum (maximum) or a maximum (mini-
mum) rate (distortion) has to be allocated to each video stream, these solutions
can be improved successively through a simple iterative procedure.

Let x = [x1, . . . , xK ], y = [y1, . . . , yK ], with xk, yk ∈ {0, 1}, k ∈ K, be binary
vectors that indicate whether (1) or not (0) the two constraints are active for the
video stream k and these variables will be updated during the procedure. We can
then define:

A(x,y) =
∑

k∈K

xkykαk (4.8)

B(x,y) =
∑

k∈K

xkykβk (4.9)

Ω(x,y) = Rc −

[

∑

k∈K

(1− xk)F
max
k +

∑

k∈K

(1− yk)F
min
k

]

(4.10)

where Ω(x,y) is the available rate for the videos which have not active constraints.
The iterative procedure works as showed in Algorithm 1.

The algorithm requires in the worst case, a maximum of K(K−1)/2 iterations
which happens in the unpractical case Fmin ≃ Fmax. At the first iteration, due to
the initialization, D∗

k is computed as in (4.7). Then at each iteration the algorithm
checks if the related rate solutions violate one of the constraints (4.6c), (4.6d). If
it happens for one video, the algorithm assigns the relative minimum or maximum
rate to this particular video and re-evaluates the distortion for the other video
streams.

The optimality of the solutions (4.11) and (4.12) can be easily proved, by
noting that the sum of the difference functions in (4.6a) is always kept to zero,
i.e.,

∑

i

∑

j<i∆(D∗
i , D

∗
j ) = 0 and the sum of the rates is always equal to the

available bandwidth. A rigorous proof is provided in section 5.5, lemma 2 for an
extended version of the algorithm.
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Algorithm 1 Pseudo code to solve problem (4.6)

1: if ‖Fmin‖1 > Rc then
2: report infeasibility
3: else if ‖Fmax‖1 ≤ Rc then

4: report infeasibility and set F̃k = Fmax
k , ∀k ∈ K

5: else
6: yk = 1, ∀ k ∈ K;
7: repeat
8: condHL = false;
9: xk = 1, ∀ k ∈ K;
10: repeat
11: condBL = false;

12: D̃ = A(x,y)
Ω(x,y)−B(x,y)

;

13: for all k ∈ K : xkyk = 1 do
14: F̃k = αk

D̃
+ βk;

15: if F̃k < Fmin
k then

16: F̃k = Fmin
k ; xk = 0; condBL = true;

17: end if
18: end for
19: until condBL is false
20: for all k ∈ K : xkyk = 1 do
21: if F̃k > Fmax

k then

22: F̃k = Fmax
k ; yk = 0; condHL = true;

23: end if
24: end for
25: until condHL is false
26: end if

The final relaxed solutions, given x,y, are then given by:

F ∗
k =











αk

D∗

k

+ βk if xkyk = 1

Fmin
k if xk = 0

Fmax
k if yk = 0

(4.11)

with

D∗
k =











A(x,y)
Ω(x,y)−B(x,y)

if xkyk = 1

Dmax
k if xk = 0

Dmin
k if yk = 0

(4.12)

From a mathematical perspective the optimal discrete solution d∗, starting
from the relaxed one D∗, should be derived by applying optimization techniques,
e.g., branch & bound search. Nevertheless, such techniques will increase the
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complexity. To keep the complexity low, it is common practice to extract the
higher discrete bit-rate under the optimal relaxed solution, by paying a minimum
waste of bandwidth due to the granularity of the empirical R-D relationship.
When the packet loss is taken into account, i.e., when the probability of losing
RTP packets is such that PRTP

e > 0, the solutions (4.11) are referred to the rate
values which include the overhead. In order to perform the desired bit-stream
extraction the information overhead is fed into the the adaptation module, thereby
allowing the evaluation of the related encoder rate solution, whose distortion is
denoted as D∗

enc.

4.4 Numerical Results

In this section we evaluate the performance of the proposed rate adaptation frame-
work by using the JSVM reference software [30] and a C++ ad-hoc simulator. We
encode five video sequences with different scene complexity, i.e., Coastguard, Crew,
Football, Foreman, Harbour in CIF resolution with a frame-rate of 30 fps (see Ta-
ble 3.1 for further details). Each sequence is coded GOP-by-GOP and we analyze
the performance with two different GOP sizes, i.e., G = 8 and G = 16. In both
cases the coding structure is based on the maximum coding efficiency that allows
to decode GOPs independently, i.e., IDR-period is equal to the GOP size, and to
insert the maximum number of temporal resolutions, i.e., T = log2(G). Thus, in
the former case we suppose an IBBBPBPP encoding structure as depicted in
Fig. 2.1, with 4 temporal layers, while in the latter case the encoding sequence
is IBBBBBBBPBBBPBPP with 5 temporal layers. The SNR-scalability is
obtained through 2 enhancement layers, each one split in 5 MGS layers with
vector distribution [3 2 4 2 5] resulting in a maximum of Q = 10 quality lay-
ers. The Quantization Parameter (QP) of the base and enhancement layers are
equally spaced and set to 38, 32 and 26, respectively. The post-processing priority
level assignment is then applied, as described in section 2.1.3, which provides the
priority level information as well as the distortion increment of each layer.

We compare the solution of the proposed algorithm (OPT) with an equal-
rate (ER) scheme where no quality-based adaptation is performed, i.e., the same
portion of the available bandwidth is assigned to each video.

To have a fair comparison we apply to ER scheme the constraints (4.6c) and
(4.6d) in order to guarantee the resource to the base-layer of each video and to
fulfill the available bandwidth. Therefore, after sorting the streams in two vectors,
one into decreasing order with respect to base-layer bit-rate and the other into
increasing order with respect to highest layer bit-rate, respectively, we iteratively
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check if the bit-rate Rk = Rc/K required by each ordered stream violates one of
those constraints. If it happens, we assign the corresponding bit-rate and equally
re-distribute the remaining bandwidth to the other streams.

The fairness is computed according to three different metrics: the average
MSE difference

δav =
1

L

∑

i

∑

j<i

|D∗
i −D

∗
j | , (4.13)

where the average is computed over L = K(K − 1)/2 possible MSE difference
terms, the modified average modified difference

∆av =
1

L

∑

i

∑

j<i

∆(D∗
i , D

∗
j ) (4.14)

and the most used MSE variance for each GOP.
We first analyze the performance of the adaptation algorithm by assuming

error-free channel, i.e., PRTP
e = 0, and GOP size equal to 8.

4.4.1 Error-free channel

In Table 4.1, we show the improvements of our proposed scheme with respect
to ER when the available bandwidth is fixed to Rc= 3000 kbps. The average
modified MSE difference is significantly reduced and equivalently the variance is
decreased up to ten times. Let us note that ∆av also gives us the information on
the error generated when the discrete solution replaces the continuous solution
in the relaxed problem, (where ∆av is zero). This error includes two contribu-
tions: the estimation error of the model and the integrality gap. As expected, the
average error is not small due to mainly the granularity of the low-rate points.
Moreover, in this particular case of bandwidth, the MSE difference (variance) is
still quite high, due to the minimum rate constraints. Our algorithm, while pro-
viding fairness, is able to improve the performance of the most demanding videos,
by allocating more bits to sequences with more complex scenes. This is more
clear in Figure 4.2 where we plot the rate assigned by our adaptation algorithm
to each video sequence GOP-by-GOP. More bit-rate is assigned to Coastguard,
Football and Harbour video sequences, allowing them to achieve more quality. In
Figure 4.3, the MSE variance averaged over 30 GOPs is evaluated for different
bandwidths. In the bandwidth interval considered, the assumptions (4.3) and
(4.5) hold for each GOP. When the bandwidth is very low both schemes show
high MSE variance, because the optimization range is limited by the minimum
rate constraints. When the bandwidth increases, our procedure improves the fair-
ness leading the variance close to 0. A slight variance increase occurs at large
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bandwidths when the maximum rate constraints limit the achievable distortion.
On the other hand, the ER scheme generally increases the MSE variance un-
til the base-layer constraints are active for most of the streams. This behavior
can be partially improved by controlling the base-layer bit-rate [56] of each video
according to its complexity, as performed for instance in [53].

GOP index ∆av δav Variance
ER OPT ER OPT ER OPT

1 34.54 2.04 35.07 23.40 719.4 216.1
2 35.08 2.36 35.09 25.38 715.0 262.2
3 34.27 1.45 34.79 23.56 772.4 217.6
4 33.13 0.29 37.63 19.50 780.5 227.0
5 29.62 0.26 35.16 21.95 652.0 258.2
6 33.67 0.55 37.99 23.36 774.9 281.8
7 26.88 0.31 31.78 17.63 551.3 170.8
8 30.07 1.28 34.76 25.58 636.0 241.6
9 25.57 0.38 31.18 15.58 493.3 139.8
10 29.46 1.14 40.94 17.75 902.9 164.2
11 38.84 0.20 38.84 18.34 810.6 185.8
12 34.68 0.25 34.68 14.43 666.7 111.6
13 39.09 0.43 39.09 20.33 811.4 223.3
14 32.80 0.19 38.25 16.92 741.0 172.6
15 36.21 0.05 36.21 15.17 680.5 85.4

Av. 32.92 0.74 36.09 19.92 713.9 197.2

Table 4.1: Average modified MSE difference ∆av, average MSE difference δav and
MSE variance in each GOP interval. Comparison between the proposed algorithm
(OPT) and equal-rate (ER) assignment with bandwidth equal to 3000 kbps.

4.4.2 Packet-erasure channel

In this subsection we assess the performance in the case of transmission over
packet-erasure channel, by evaluating only the proposed algorithm with two dif-
ferent GOP sizes. The number of bytes per RS codeword is set equal to n = 128
(as a shortened version of the code with natural length 255) by allowing the in-
sertion of more than one GOP into a TB and then filling the payload of each
RTP packet with a reasonable number of bytes. In order to limit the overhead
to about 20% for the worst case considered, i.e., PRTP

e = 0.1, the parameter α
of the proposed UXP scheme is set equal to 30 (see Table 3.3). According to
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Figure 4.2: Rate assigned GOP-by-GOP by our adaptation algorithm (GOP size
G equal to 8), when bandwidth is equal to 3000 kbps.

extensive simulations we define the range of the EPP values for the enhancement
temporal layers between 10−6, which is intended to the I-frame, and 10−(6−T ). We
also consider a value of bandwidth sufficiently high, i.e., Rc= 7000 kbps, to allow
the insertion of the higher quality layers which have less protection.

Table 4.2 shows the average distortion resulting at different PRTP
e for the dif-

ferent video sequences. The average is obtained by looping the first 240 frames
of each sequences for 1000 times. Here, D∗rec

av is the average received MSE; D∗
av

is the average expected distortion which is the discrete solution of the adaptation
algorithm, and D∗enc

av is its related encoding distortion. We can note that the
expected distortions as well as the received distortions at the same RTP packet
failure rate PRTP

e are approximately equal, showing the goodness of the frame-
work even in presence of packet erasures. The distortion values decrease for most
of the video sequences, while the packet error rate increases, due to the effect of
bandwidth constraint. At large values of PRTP

e the outcoming overhead from the
UXP profiler increases and the Adaptation module reacts by reshaping the rate of
each sequence, thereby increasing the distortion to provide fairness. This behav-
ior is less marked in the case of GOP size equal to 8 for the Foreman sequence
whose distortion does not change significantly, since it receives in most cases only
the base-layer with the highest protection. The slight increase of distortion with
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Figure 4.3: Variance of the MSE averaged over 30 GOPs, with different bandwidth
values. Comparison between the proposed algorithm (OPT) and equal-rate (ER)
assignment.

respect to the encoding MSE is due to the loss of certain enhancement temporal
layers.

As expected, an higher GOP size decreases the distortion thanks to the higher
coding efficiency, which allows to improve the R-D performance of the base layer.
Nevertheless, such gain is reduced with respect to the case of error-free channel,
since more quality layers with low protection are transmitted. This behavior can
be improved with a more careful design of the EPP aimed at balancing overhead
and degree of protection according to the available bandwidth.
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Video PRTP
e G = 8 G = 16

D∗rec
av D∗

av D∗enc
av D∗rec

av D∗
av D∗enc

av

Coastguard
0.01 33.9 37.4 29.6 27.3 29.4 19.8
0.05 37.5 40.1 33.6 31.2 32.0 22.4
0.1 40.8 42.3 37.8 36.1 37.7 27.0

Crew
0.01 36.5 36.6 36.2 28.4 28.4 28.2
0.05 39.3 39.4 39.1 32.4 32.5 32.3
0.1 41.4 41.5 41.3 36.6 37.0 36.0

Football
0.01 35.2 35.6 34.0 27.9 28.4 26.4
0.05 38.4 38.9 37.1 30.8 31.6 29.2
0.1 41.8 41.8 40.5 35.9 37.3 34.3

Foreman
0.01 35.7 35.6 34.2 28.1 28.7 27.9
0.05 35.9 36.0 35.4 30.4 30.8 30.1
0.1 36.2 37.1 36.1 33.8 34.9 33.2

Harbour
0.01 35.3 38.8 23.7 29.8 30.3 18.2
0.05 40.6 42.2 26.5 32.0 32.3 20.3
0.1 42.8 44.2 31.0 34.4 37.8 22.9

Table 4.2: Average received distortion, D∗rec
av , expected distortion, D∗

av, and en-
coding distortion, D∗enc

av , in term of the MSE for different video sequences, GOP
size G, and packet-erasure rate values PRTP

e , resulting from the proposed rate-
adaptation algorithm. Available bandwidth is Rc =7000 kbps.
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Chapter 5

Cross-layer Optimization for SVC
Video Delivery in Downlink
OFDMA Channels

In beyond-3G and 4G wireless system orthogonal frequency division multiple ac-
cess (OFDMA) has been selected as a key physical (PHY) layer technology to
support a very flexible access with high spectral efficiency. In OFDMA wireless
systems, the channel capacity of each user depends on how the channel is shared
by the multiple users and on the fading correlation properties, which are not static
in both time and frequency domains. In order to exploit the available temporal,
frequency and multi-user diversity, and to provide a given level of QoS, suitable
adaptive resource allocation and scheduling strategies have to be implemented.
Opportunistic schedulers, as for instance, Proportional Fair (PF) [19] and maxi-
mum signal-to-noise ratio (SNR) schedulers, take advantage of the knowledge of
the channel state information (CSI) in order to maximize the spectral efficiency.
However, with these schedulers, the final share of throughput often results unfair,
especially for the cell-edge users which suffer of data-rate limitations due to high
path-loss and inter-cell interference.

In real-time streaming the mismatch between the allocated PHY layer rate
and the rate required by the delay-constrained application may cause the loss of
important parts of the streams, which significantly degrades the end-user quality
of experience (QoE). The provision of acceptable QoE to every user is enabled by
the use of a scheduler at the medium access control (MAC) layer which delivers
a fair throughput, according to specific utilities and constraints defined by the
application [20]. Moreover, the presence of an optimized source rate adaptation
technique at the application (APP) layer becomes crucial to improve stability, to
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prevent buffer overflow and to maintain video play-back continuity. As already
mentioned, source rate adaptation is enabled by the use of video encoders, e.g.,
SVC, that support multiple layers which can be sequentially dropped, thereby
providing a graceful degradation.

In this chapter we extend the framework proposed in Chapter 4, where we
have assumed constant bandwidth, to the more general case of OFDMA wireless
scenario where the user capacity and the total bandwidth vary on the time and
strictly depends on how the resources are allocated to each user. As in chapter 4,
we target the delivery of quality-fair SVC video streams.

In the literature, several researchers proposed a cross-layer approach for the
optimization of multi-user wireless communications systems.

The Authors in [57] proposed a cross-layer approach for the delivery of one
scalable video in a TDMA-based wireless local-area network under a predefined
service time constraint. It is based on an unequal error protection scheme which
jointly selects the different rates for each scalable video layer and the amount of
enhancement layers permitted in order to maximize the PSNR of the delivered
video. They showed that such intelligent link adaptation scheme significantly
improves the end-video quality with respect to conventional layer drop solutions.

In [58] the framework has been extended to also consider traffic control for a
multi-user scalable video delivery. The optimization framework specifies for each
video the PHY layer rate of each layer and the amount of the packets that should
be dropped from each video.

Both frameworks assume quasi-static fading channel in the time scale of one
group of pictures where the rate can be predicted with enough accuracy. However,
these assumptions can not be applied to realistic OFDMA wireless systems where
the channel capacity depends on how the channel is shared by the multiple users
and fading is not static in both time and frequency domains. Moreover, temporal
fairness constraints simplify the resource allocation in TDMA-based scenarios,
but they are not able to capture the frequency and multi-user diversity of the
OFDMA systems. In this paper we specifically address optimal resource allocation
for multiple users in OFDMA scenario where fading is variable in both time and
frequency domains.

In [12] the Authors presented a cross-layer method to solve the problem of
multiuser SVC streaming over ODFMA networks. The framework is based on a
gradient scheduling algorithm where user-priority weights are derived heuristically
according to video contents, deadline requirements, and previous transmission
results. However, differently from our work, optimized source adaptation is not
addressed, leading to the loss of important parts of the streams, in case of scarce
resources.
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The work in [13] addressed the maximization of the weighted sum of the av-
erage PSNRs achieved by a set of users sharing a wireless channels, but without
addressing fairness and OFDMA systems, as in our framework. As already men-
tioned, the solution of such problem can usually lead to large quality variations
among different streams.

The Authors in [14] proposed a fairness-oriented coo-petition strategy for
multi-user multimedia radio resource allocation (RRA) under the assumption of
a general PHY layer setup with convex rate region. The problem is solved by
using the layering as optimization decomposition (LOD) method, which enables
a simple implementation in a layered transmission system. It is shown that it
improves the number of satisfied users by providing a video quality proportion-
ally fair to the user channel condition, but requires a careful adaptive selection
of the minimum PSNR thresholds for each user according to system throughput,
which is left in future works. As in [14], we propose a decomposition method for
the optimization problem resulting in algorithmic solutions that handle parameter
and constraints of a single layer, but differently from [14], our framework provides
video quality fairness and does not depend on specific thresholds selection.

To the best of our knowledge only the work in [7] addressed the issue of trans-
mitting quality-fair SVC streams by jointly optimizing APP and MAC layers in
OFDMA downlink. The fairness problem is handled by minimizing the maximal
end-to-end distortion among all users at each transmission time interval (TTI),
under rate constraints. Due to the NP-hard nature of the problem, the Authors
proposed a suboptimal algorithmic solution. However, the TTI-based optimiza-
tion does not allow to fully capture the time diversity of the channel and requires
extensive exchange of information between MAC and APP layers.

In our work we show that an ergodic-based optimization problem can be opti-
mally solved resulting in a limited scalar information exchange among the involved
layers. In fact, in practical applications, the definition of utilities and constraints
should be function of the rate averaged over a certain time period [59], e.g., an
interval related to the structure of the encoded video streams. When the objective
of the optimization is to maximize of the sum of concave utility functions of the
ergodic rates, the optimal solution for the downlink of an OFDMA system can be
derived through dual decomposition, which results in MAC layer scheduling algo-
rithms with decoupled subcarrier and power allocations. Similar frameworks were
proposed in [60] and [61], which proved that quasi-optimal solutions have linear
complexity with respect to the number of both subchannels and users. The main
drawback of such solutions is that the MAC layer has to directly manipulate the
utility functions of the APP layer, thus limiting the applicability to layered trans-
mission systems where only limited scalar information can be exchanged between
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APP and MAC layers.

We here propose a cross-layer method for maximizing the aggregate ergodic
(average) rate assigned to multiple SVC transmission in an OFDMA wireless
network, while minimizing the distortion difference among the received video se-
quences. The optimization problem is ”vertically” decomposed into two sub-
problems, leading to rate adaptation at the APP layer and resource allocation at
the MAC layer, and a novel efficient iterative local approximation (ILA) algorithm
is proposed to obtain the global solution. The ILA algorithm is based on the local
approximation of the contour of the ergodic rate region of the OFDMA downlink
channel and requires a limited information exchange between the APP and the
MAC layers. Moreover, we present and discuss the algorithms to solve the two
sub-problems and prove the optimality and convergence of the ILA algorithm.

It should be pointed out that a similar approach has been developed in [62] to
solve the maximization of a general concave utility function. In such approach,
the APP layer derives iterative solutions on the space tangent to the rate region.
But differently from our approach, a gradient-based update of the utility function
is proposed, hence requiring a careful selection of the related step-size to ensure
convergence. In our work, since the utility is replaced by a one-dimensional man-
ifold representing the fairness constraints, such issue is overcome. Moreover, the
Authors in [62] proposed to project the APP solutions on the contour of the rate
region, orthogonally to the tangent space. Differently, our approach projects the
APP solution by using a parametric line representing a proportionality constraint.

In this chapter we also address some issues arising in practical implementa-
tions, by designing a suboptimal solution based on the outcome of a single step of
the ILA algorithm and on the use of stochastic algorithms for resource allocation.
Our numerical evaluations show (i) the fast convergence of the ILA algorithm, (ii)
the resulting low gaps in terms of efficiency and fairness between optimal and sub-
optimal proposed strategies, and (iii) the significant video quality improvements
with respect to other state-of-the-art solutions.

The remainder of this chapter is organized as follows. Section 5.1 introduces
the system architecture, The PHY layer model is presented in 5.2. In Section
5.3 the optimization problem and its ”vertical” decomposition are formulated and
discussed, whereas the ILA algorithm is proposed in Section 5.4. The solutions of
the APP and MAC sub-problems are provided in Section 5.5 and 5.6, respectively,
whereas in Section 5.7 optimal and suboptimal solutions suited for realistic im-
plementation are discussed. The performance of the proposed schemes is finally
evaluated in Section 5.8.
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Contribution

In summary, this chapter collects the following relevant contributions:

� we formulate the cross-layer optimization problem for maximizing the ag-
gregate ergodic (average) rate assigned to multiple SVC transmission in an
OFDMA wireless network, while minimizing the distortion difference among
the received video sequences. We prove that the global optimal solution is
unique.

� we decompose the cross-layer optimization problem into two sub-problems
that handle parameter and constraints of a single layer. They results in rate
adaptation at the APP layer and resource allocation at the MAC layer,

� we propose a novel efficient Iterative Local Approximation (ILA) algorithm
to obtain the global solution and we rigorously prove its convergence and
optimality.

� We propose optimal algorithm for the solution of the APP layer sub-problem
which has linear complexity in the number of users for practical scenario

� We re-trace the optimal algorithmic solution for the resource allocation sub-
problem at the MAC layer, by also analyzing its impact to the computational
complexity of the ILA algorithm.

� we propose and design suboptimal solution for practical implementations
based on the use of stochastic algorithms for resource allocation.

� in order to further reduce the complexity, we propose the 1-step ILA algo-
rithm, which is based on the outcome of a single step of the ILA algorithm.
Due to its sub-optimality, we also investigate methods to adaptively com-
pensate its residual error.

� we finally provide extensive numerical evaluation by comparing optimal and
suboptimal proposed solution with respect to other state-of-the-art frame-
works.

5.1 System Architecture

In Figure 5.1 we show the architecture of a video delivery system, where the three
key elements taken into account in this work are outlined, i.e., the multimedia
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Figure 5.1: System architecture

provider (MP), the media aware network element (MANE) and the OFDMA-
based wireless access network (WAN) which includes a base station (BS) that
serves K users indexed by the set K = {1, . . . , K}. Each mobile user in the
WAN requests a video sequence and the MP encodes the requested video to fully
support temporal and quality scalability. The video streams are further processed
to extract a priority index for each frame [28] and the R-D information for each
layer. The R-D modeling block collects the R-D information and evaluates the
set of parameters describing the R-D relationship, according to the parametric
model introduced in the section 3.4. Specifically, we consider the three parameter
model in eq. (3.9). Priority indexes and R-D parameters are then sent as side
information to the MANE.

The UXP (unequal erasure protection) profiler assigns a different protection
to each frame according to its dependencies and the related R-D improvements.
This task is executed by taking into account the estimated average packet-loss
rate at the lower layers of the systems. According to the scheme described in
section 3.4.1, the profiler also computes the rate and the expected distortion after
error protection, which will be used to update the parameters of the expected R-D
characteristics. The resulting information is then sent to the adaptation module
which extracts a suitable bit-stream from each encoded video stream, according to
the outcome of the adaptation algorithm. The parameters of the R-D relationships
available at the MANE, as well as bandwidth and buffer information provided by
the BS, are the input of the adaptation algorithm.

The packetization process is carried out according to the guidelines presented
in section 3.4.1. Each GOP of the adapted video stream is mapped into one
transmission block (TB) that carries both data and UXP parity bytes. After
interleaving and packetization, the TB is then re-organized into a sequence of
RTP packets which are finally forwarded to the MAC/PHY layers through a
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suitable protocol stack, e.g., with UDP/IP/link layers. It is worth noting that,
due to the GOP interleaving over RTP packets, the receiver is not able to decode
any frame until the entire TB is received.

The MANE procedures are executed at regular time intervals (in the order
of seconds), here named as application frame intervals. During each application
frame interval the MANE and the BS of the WAN exchange limited information
related to QoS constraints, PHY layer bandwidth constraints, buffer status and
packet-loss rate, according to a cross-layer paradigm. We assume here that this
information exchange introduces a negligible delay, thanks to the high-speed con-
nection in the fixed network. Radio resource allocation (RRA) and scheduling
at the BS are based on adaptive algorithms, which aim to maximize the spectral
efficiency of the OFDMA network, using QoS constraints provided by the MANE
and CSI information from the PHY layer.

5.2 Physical Layer Model for the Downlink of

the Wireless Access Network

In this chapter we consider a single-cell time-slotted OFDMA system where the
BS and users are equipped with one antenna. Methods and algorithms developed
here are also extended to multi-cell scenario in Appendix A and they can be easily
extended to multi-antenna configurations [63].

The total available bandwidth B is divided into S orthogonal subcarriers in-
dexed by the set S = {1, . . . , S}, with subcarrier spacing ∆B = B/S. The channel
gain hk,s[n] between the BS and user k, on subcarrier s and time slot n, is modeled
as a complex Gaussian random process (Rayleigh fading), in general correlated
across subcarriers and time slots. We define the normalized SNR of user k, on
subcarrier s and time slot n, as

γk,s[n] =
|hk,s[n]|

2

σ2
(5.1)

where σ2 is the noise power.

The RRA at the BS aims to allocate the available resources, i.e., subcarriers
and power, at each time slot, to the users according to a predefined allocation
strategy. We first assume that subcarriers can be shared by multiple users over
non-overlapping fractions of the total time slot duration tslot. We denote with
ψk,s[n] ∈ [0, 1] and pk,s[n] > 0 the fraction of time slot and the power, respectively,
allocated to user k, on subcarrier s and time slot n. By using a suitable adaptive
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modulation and coding (AMC) scheme, the rate achieved by user k on subcarrier
s can be evaluated with the following model:

rk,s(ψk,s[n], pk,s[n]) = ∆Bψk,s[n]C

(

γk,s[n]pk,s[n]

ψk,s[n]

)

(5.2)

if ψk,s[n] > 0 and rk,s(ψk,s[n], pk,s[n]) = 0 otherwise, where C(x) = a1 log2(1 +
x/a2) and a1, a2 are two parameters, namely the rate adjustment and the SNR-
gap, respectively, depending on the specific AMC scheme adopted [64]. To sum-
marize, given the set γ = {γk,s, k ∈ K, s ∈ S} of the SK realizations of the SNR
random process, the RRA algorithm at the BS determines the set of allocation
variables ψ = {ψk,s, k ∈ K, s ∈ S} and p = {pk,s, k ∈ K, s ∈ S} functions of
the SNR realizations γ, i.e., p(γ),ψ(γ). Although we use for the sake of clarity
a simplified notation, it should be noted that γ, p and ψ are sets of random
processes along time dimension n.

Finally, we assume that the application frame interval tI is sufficiently large to
support ergodic approximation for the average rate provided to users. Specifically,
we assume that the rate assigned to user k averaged over the discrete time window
WI =

⌊

tI
tslot

⌋

≫ 1 can be approximated by its expected value with respect to the
random process γ, i.e., the ergodic rate:

Rk(ψ,p) =
1

WI

WI
∑

n=1

[

∑

s∈S

rk,s(ψk,s[n], pk,s[n])

]

∼=

Eγ

[

∑

s∈S

rk,s(ψk,s(γ), pk,s(γ))

]

.

(5.3)

According to the proposed source rate-distortion model in chapter 4, The average
PHY rate can be mapped to the average rate required by the source with the
relationship

Rk(ψ,p) = HFk(D) (5.4)

where H ≥ 1 is a constant that takes into account the overhead introduced by the
different layers of the network architecture. Therefore, the continuous distortion
Dk of the set of pictures delivered to user k has an implicit dependence on the
allocation variables ψ,p, i.e.,

Dk = F−1
k

(

Rk(ψ,p)/H
)

. (5.5)
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5.3 The Optimization Problem

Similarly to the framework proposed in chapter 4, our objective is to provide a
fair video quality by maximizing the overall video quality while minimizing the
quality difference among the different videos, under the minimum and maximum
rate constraints.

Let us denote with A the set of feasible allocation policies ψ(γ),p(γ), i.e.,

A =
{

(ψ,p) : ψk,s(γ) ≥ 0, pk,s(γ) ≥ 0,
∑

k∈K

ψk,s(γ) ≤ 1
}

(5.6)

and with P the set of the feasible allocation policies (ψ,p) ∈ A which also satisfy
an average sum-power constraints, i.e.,

∑

k∈K

∑

s∈S

Eγ [pk,s(γ)] ≤ P (5.7)

where P is the average power budget of the OFDMA transmitter. The achievable
ergodic rate region is then given by

R =
⋃

(ψ,p)∈P

{

̺ : ̺ � R(ψ,p)
}

(5.8)

where R(ψ,p) = [R1(ψ,p), . . . , RK(ψ,p)]
T is the ergodic rate vector and ̺ =

[̺1, . . . , ̺K ]
T. When subcarrier sharing is considered, as here, the rate region

results in a convex set of the rate vectors [61].
The optimization problem can be then described by the following constrained

sum-rate maximization:

max
(ψ,p)∈A

‖R(ψ,p)‖1 (5.9a)

s.t. ∆(Di, Dj) = 0 ∀i, j ∈ K, i 6= j (5.9b)

HFmin � R(ψ,p) � HFmax (5.9c)

R(ψ,p) ∈ R (5.9d)

where the fairness constraints in (5.9b) are translated into rate constraints through
Dk = F−1

k

(

Rk(ψ,p)/H
)

, ∀k ∈ K and Fmin = [Fmin
1 , . . . , Fmin

K ]T, with Fmin
k =

Fk(D
bl
k ), and Fmax = [Fmax

1 , . . . , Fmax
K ]T, with Fmax

k = Fk(D
hl
k ), are the mini-

mum and the maximum rates, respectively, of the SNR scalable video streams
in the given application frame interval. The relationship between the rate and
the distortion is here modeled according to eq. 3.9. The definition of the the
distortion-fairness metric in the constraint (5.9b) can be found in eq. (4.2).
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Figure 5.2: An example of two-user optimization problem as in (5.9). R∗ is the
optimal solution given by the intersection between the boundary of the rate region
E and the piece-wise (bold dashed) curve F related to the constraint ∆(D1, D2) =
0. The problem is feasible because HFmin belongs to R.

According to the constraints (5.9c) and (5.9d), any feasible solution of the problem
should belong to Rc = {R ∈ R : HFmin � R � HFmax}, if it is a non-empty
set. This happens if and only if the rate vector HFmin belongs to the interior of
R, i.e., if transmission at minimum rate for all videos is supported by the PHY
layer. It is also worth noting that a trivial solution to the problem can be derived
when all the full quality encoded streams are supported by the rate region, i.e.,
if HFmax ∈ R, that corresponds to transmitting all the encoded streams without
any adaptation. In Fig. 5.2 we draw an example of the optimization problem for
a two-user case. The feasible solutions also lie on the piece-wise curve (dashed
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line in the figure):

F =
{

̺ : ∆
(

F−1
i (̺i/H), F−1

j (̺j/H)
)

= 0, ∀i, j ∈ K
}

(5.10)

representing the constraints (5.9b).
We have the following property:

Property 1. The set F in eq. (5.10) describes a one-dimensional monotonically
increasing manifold with boundary in the RK space, i.e., the coordinates in RK−1

are expressed explicitly as a function of one coordinate:

R
F
−→ RK−1, (5.11)

and for any given ˜̺, ˜̺′ ∈ F , if ˜̺i > ˜̺′i then

[ ˜̺1, . . . , ˜̺i−1, ˜̺i+1, . . . , ˜̺K ] � [ ˜̺′1, . . . , ˜̺
′
i−1, ˜̺

′
i+1, . . . , ˜̺

′
K ] (5.12)

Proof. According to the definition of F in (5.10), any ̺ ∈ F is constrained by
K(K − 1)/2 equations. By fixing one component ˜̺i ∈ [HFmin

i , HFmax
i ], the con-

straint equations can be reduced to K − 1 equations, i.e.,

αj

̺j/H − βj
− ξj =











Dbl
j , if Dbl

j ≤ D̃i

Dhl
j , if Dhl

j ≥ D̃i ∀j ∈ K \ {i}

D̃i otherwise

(5.13)

where D̃i = F−1
i (˜̺i/H), which readily proves the one-dimensionality of the mani-

fold with boundary F . The monotonically increasing property is straightforward
from the last equation of (5.13), by considering that the inverse of the R-D func-
tion given in eq. 3.9, i.e., αk

Fk−βk
−ξk, is a monotonically strictly decreasing function

of Fk.

According to property 1, since the objective (5.9a) is concave [65], increasing
and uniformly bounded ∀ R ∈ R [61], if we assume HFmax /∈ R and HFmin ∈ R
the optimal solution R∗ is clearly attained at the boundary of the rate region R,
identified by the Pareto-efficient set:

E = {R ∈ R : ∄ ̺ ∈ R s.t. ̺ < R}. (5.14)

and is given by the intersection of the piece-wise curve with the rate region bound-
ary E . The optimal solution R∗ is unique as proved in lemma 1.

We finally remark that the optimization provides a continuous rate solution,
whereas the scalable encoding works with a discrete set of rates. A discrete
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rate solution could be evaluated, starting from the continuous one, by further
applying proper optimization techniques, e.g., branch & bound search. To keep
the complexity low, it is common practice to convert the continuous rate into the
nearest discrete rate value smaller than the continuous one, at the expense of a
minimum waste of bandwidth.

The evaluation of the optimal solution of the problem in (5.9) would generally
require a controller that manages both APP and MAC layers variables and con-
straints, which is not suitable for realistic network implementations. A desirable
solution is the possibility to have single-layer entities that exchange a limited in-
formation in a cross-layer fashion, as indicated in Fig. 5.1. This motivates us to
decompose problem (5.9) into two sub-problems, each one handling parameters
and optimization constraints which are characteristics of a single layer, i.e., in
our case, the APP or the MAC layer. In the next subsection we will describe this
vertical problem decomposition.

5.3.1 Problem Decomposition

If we first assume that the APP layer has a perfect knowledge of the boundary E
of the rate region R, the problem (5.9) can be simplified into a multi-dimensional
constraint-satisfaction problem that aims to find F such that

{

HF ∈ E ∩Rc

∆(Di, Dj) = 0, ∀i, j ∈ K
(5.15)

This is a rate adaptation problem that can be handled by the APP layer. Note
that it does not include any objective since the objective of maximizing the source
rates is achieved on the boundary E due to the convexity of the R-D functions.

On the other hand, if we assume that the information about the line where the
optimal rate vector lies, which is identified by the parametric equationR∗ = φρ, is
available, the problem (5.9) can be simplified into a problem that can be handled
by the MAC layer. The rate direction vector φ = [φ1, . . . , φK ]

T � 0 defines the
direction of the line and ρ ∈ R+ is the parameter. This line departs from R = 0
and intersects the boundary E in R = R∗. By assuming ‖φ‖1 = 1, we also obtain
‖R∗‖1 = ‖φ‖1ρ = ρ, i.e., the parameter is the sum-rate. By exploiting this
information, the second problem becomes a constrained sum-rate maximization
where the objective is to find the optimal allocation policy (ψ,p) that maximizes
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the sum-rate under the aforementioned proportionality constraints:

max
(ψ,p)∈A

ρ (5.16a)

s.t. R(ψ,p) ∈ R (5.16b)

R(ψ,p) � φρ (5.16c)

This is a simple resource allocation problem. Optimal and efficient solutions of it
are well known in literature [66] and do not require the a-priori knowledge of the
rate region R. Only the information on the vector φ is needed and this could be
provided by the APP layer. In fact, once the solution F ∗ of the first problem in
(5.15) is known, vector φ can be easily evaluated as

φ =
F ∗

‖F ∗‖1
(5.17)

The main challenge is still on setting up and solving problem (5.15). In fact,
the boundary E of the rate region for the OFDMA scenario cannot be explicitly
derived in a fading environment, even when a perfect channel distribution infor-
mation (CDI) is available at the BS side. To overcome this challenge we propose
an efficient iterative method based on the local approximation of the boundary E ,
which simplifies problem (5.15).

5.4 Iterative Local Approximation (ILA) Algo-

rithm

The starting point for developing the algorithm is the following proposition [61]:

Proposition 1. Each point on the boundary E of the rate region R is the result
of the maximization of a weighted sum of average rates (WSAR), i.e.,

max
(ψ,p)∈A

µTR(ψ,p) (5.18a)

s.t. R(ψ,p) ∈ R (5.18b)

for a given µ = [µ1, . . . , µK ]
T < 0.

The WSAR maximization problem is a well-investigated problem and low-
complexity procedures can be derived to obtain almost-sure optimal solutions for
OFDMA wireless systems [61,67]. In this problem the vector µ is usually selected
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Figure 5.3: An example of the first step of the ILA algorithm for a system with
two users.

to enforce some notions of fairness, efficiency, etc., commonly embedded inside
utility functions [62].

However, it is shown in [66] that even the solution of problem (5.16) can
be obtained through a WSAR maximization problem, where the weights µ are
derived in the dual domain.

Interestingly, the null space of the weight vector µ also identifies the tangent
space to the boundary E of the rate region at the point where the optimal solution
of the WSAR problem is located [62]. The key idea proposed here is to exploit
the tangent space as a local approximation of E to build an iterative procedure
between APP and MAC layers that converges to the optimal solution of the prob-
lem. To this end, let us denote with R̃ the optimal rate solution of the WSAR
problem with weights µ̃. The tangent space of R at the point R̃ is then defined
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by the following set:
TR(µ̃) = {̺ : µ̃T(̺− R̃) = 0}. (5.19)

The cross-layer procedure, named iterative local approximation (ILA) algo-
rithm, can be presented as follows.

Given an initial values of the vector φ, i.e., φ̃(0), the MAC layer solves the
problem in (5.16). The resulting optimal rate solution R̃(0) and the weights µ̃(0),
which identify the tangent space TR(µ̃

(0)), are forwarded to the APP layer. The
APP layer exploits this information to derive the optimal distortion-fair solution
F̃ (1) such that HF̃ (1) is on the tangent space, i.e., HF̃ (1) ∈ F ∩ TR(µ̃

(0)). hence
outside the achievable rate region due to the convexity of R.

The solution for vector φ, i.e., φ̃(1) (see eq. (5.17)), is then forwarded to
the MAC layer, which projects the solution on the boundary of R by solving
the problem (5.16) to get R̃(1), and the related weights µ̃(1). These steps are
iterated until convergence, according to a closed loop strategy. The procedure
can be stopped when the error between APP and MAC solutions, which is δ(i) =
‖HF̃ (i) − R̃(i)‖1, is sufficiently small. An example of the first step of the ILA
algorithm for two users is depicted in Fig. 5.3, whereas the details are reported
in Algorithm 2 below. The optimality and convergence is stated in the following

Algorithm 2 ILA algorithm

1: i = 0; set φ̃(0) and error bound ǫ
2: Solve problem (5.16) to get µ̃(0), R̃(0)

3: repeat
4: i = i+ 1
5: Find F̃ (i) : HF̃ (i) ∈ TR(µ̃

(i−1)) ∩ F

6: φ̃(i) = F̃ (i)

‖F̃ (i)‖1

7: Solve problem (5.16) to get µ̃(i), R̃(i)

8: until δ(i) < ǫ

lemma:

Lemma 1. ILA algorithm converges to the unique optimal rate solution R∗ ∈
E ∩ F of problem (5.9) under the assumptions HFmax /∈ R and HFmin ∈ R, i.e.

lim
i→∞

F̃ (i) = R∗/H. (5.20)

Proof. We first prove that the optimal solution is unique.
Since the optimal solution R∗ is given by the intersection of the boundary E of

the convex rate region, which is a (K − 1)-dimensional manifold with boundary,
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with the monotonically increasing one-dimensional manifold with boundary F ,
then R∗ is a unique point in RK . In fact, if we had two intersections belonging
to F , i.e., R′ and R′′, we would obtain R′ � R′′ if at least one k exists such
that R′

k < R′′
k. But R

′′ should also be below the tangent space touching R′, i.e.,
µ̃T(R′ −R′′) ≤ 0, thus contradicting R′ � R′′ if µ̃ ≻ 0. Note that we can never
have µ̃k = 0, as in this case the solution of the WSAR problem would lead to
Rk = 0 which is the coordinate of a point that can not be touched by any line
with φ̃k = F̃k/‖F̃ ‖1 > 0.

We now prove that F̃ (i) is a monotonically decreasing sequence. According to
the problem formulation in (5.31), we have HF̃ (i) ∈ F , ∀i, and

µ̃(i)THF̃ (i+1) = µ̃(i)TR̃(i) (5.21)

if the manifold F intersects the tangent space TR(µ̃
(i)). Since R̃(i) is the projection

of HF̃ (i) on E through the line defined by the proportionality contraints

R̃(i) = φ̃(i)ρ =
F̃ (i)

‖F̃ (i)‖1
ρ, (5.22)

we have

HF̃ (i)
< R̃(i), ∀i (5.23)

By combining it with eq. (5.21) and by observing that µ̃
(i)
k 6= 0, ∀k ∈ K, we find

µ̃(i)THF̃ (i+1) < µ̃(i)THF̃ (i) (5.24)

Therefore, from (5.12) and (5.24) it follows that F (i) is a component-wise mono-
tonic sequence, i.e.,

F̃ (i+1)
4 F̃ (i), ∀i. (5.25)

If there were no intersection between F and TR(µ̃
(i)), we would have µ̃(i)THFmax <

µ̃(i)TR̃(i), thus implying µ̃(i)THFmax < µ̃(i)THF̃ (i). But this can not happen, be-
cause F (i) � Fmax.

We now prove that the sequence F̃ (i) converges to the limiting fixed point
R∗/H . A sufficient condition is given by

‖F̃ (i+1) − F̃ (i)‖2
i→∞
−−−→ 0⇒ F̃ (i) −R∗/H

i→∞
−−−→ 0 (5.26)
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By exploiting (5.21), we have:

HF̃ (i) − R̃(i) = φ̃(i)δ(i) (5.27a)

µ̃(i)T(HF̃ (i) − R̃(i)) = µ̃(i)Tφ̃(i)δ(i) (5.27b)

Hµ̃(i)T(F̃ (i) − F̃ (i+1)) = δ(i) (5.27c)

H‖F̃ (i) − F̃ (i+1)‖2 ≥
δ(i)

‖µ̃(i)‖2
(5.27d)

where (5.27c) holds because µ̃(i)T φ̃(i) = 1 and (5.27d) follows from the Cauchy-

Schwarz inequality. If ‖µ̃(i)‖2 is bounded and ‖F̃ (i+1)− F̃ (i)‖2
i→∞
−−−→ 0, eq. (5.27d)

implies that δ(i)
i→∞
−−−→ 0, proving the lemma. To show that ‖µ̃(i)‖2 is bounded, we

first consider that

φ(i) � Fmin/‖Fmax‖1 � 1min
k

(Fmin
k )/‖Fmax‖1. (5.28)

Then, from µ̃(i)T φ̃(i) = 1 we obtain

1 ≥ µ̃(i)T1min
k

(Fmin
k )/‖Fmax‖1 = ‖µ̃

(i)‖1min
k

(Fmin
k )/‖Fmax‖1 (5.29)

which implies that ‖µ̃(i)‖1 is bounded ∀i:

‖µ̃(i)‖1 ≤
‖Fmax‖1

mink(F
min
k )

(5.30)

Since ‖µ̃(i)‖2 ≤ ‖µ̃
(i)‖1 , ‖µ̃(i)‖2 is also bounded.

Let us finally underlining that, for our proposed projection, the error at step
i, given by δ(i) = ‖δ(i)φ̃(i)‖1, is proportionally distributed across individual rates

according to φ̃(i), i.e., the error for the k-th user rates is given by δ
(i)
k = φ̃kδ

(i).
This property enforces the fairness also for the intermediate solutions of the ILA
algorithm when they are used as suboptimal solutions for practical applications
(see Section 5.7).

5.5 Application Layer Algorithm: Rate Adap-

tation

By exploiting the local approximation of E given by the tangent space TR(µ̃)
at R̃, the problem (5.15) at the APP layer will be simplified into the following
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constraint-satisfaction problem:











µ̃THF − Λ = 0

Fmin � F � Fmax

∆(Di, Dj) = 0 ∀i, j ∈ K

(5.31)

where Λ = µ̃TR̃ is the value of the WSAR resulting from the solutions of (5.18).
The problem admits a feasible solution under two conditions, µ̃THFmax ≥ Λ and
µ̃THFmin ≤ Λ, which relax the two feasibility conditions of the main problem,
i.e., HFmax /∈ R and HFmin ∈ R, respectively. In the ILA algorithm, if the first
condition is violated at the iteration i, the vector F̃ (i) = Fmax can be used to re-
place the APP layer solution. Conversely, if the second condition is violated at the
iteration i, the APP layer can terminate the ILA algorithm, since no adaptation
is feasible.

In Chapter 4 we derived an optimal low-complexity procedure based on the
simplified SVC model with two parameters to solve problem (5.31), in the special
case where all the weights are equal to 1 and sum-rate is a fixed value. The
procedure can be extended to the more general case considered here. Let xk, yk ∈
{0, 1}, k ∈ K, with (xk, yk) 6= (0, 0), be binary variables that indicate whether
(1) or not (0) the two constraints Fk ≥ Fmin

k and Fk ≤ Fmax
k , respectively, are

satisfied. We then define the function

Γ (x,y, D) =
∑

k∈K

xkykµ̃k

(

αk

D + ξk
+ βk

)

− Λ(x,y) (5.32)

where

Λ(x,y) =
Λ

H
−
∑

k∈K

µ̃k

[

(1− xk)F
min
k + (1− yk)F

max
k

]

(5.33)

generalizes the similar function defined in equation 4.10. By applying the proce-
dure in Algorithm 1 we obtain the pseudo-code of the algorithm summarized as
follows.
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Algorithm 3 Pseudo code to solve problem (5.31)

1: if µ̃THFmin > Λ then
2: report infeasibility
3: else if µ̃THFmax ≤ Λ then
4: report infeasibility and set F̃k = Fmax

k , ∀k ∈ K
5: else
6: yk = 1, ∀ k ∈ K;
7: repeat
8: condHL = false;
9: xk = 1, ∀ k ∈ K;
10: repeat
11: condBL = false;
12: Compute D̃ : Γ (x,y, D̃) = 0;
13: for all k ∈ K : xkyk = 1 do
14: F̃k = αk

D̃+ξk
+ βk;

15: if F̃k < Fmin
k then

16: F̃k = Fmin
k ; xk = 0; condBL = true;

17: end if
18: end for
19: until condBL is false
20: for all k ∈ K : xkyk = 1 do
21: if F̃k > Fmax

k then

22: F̃k = Fmax
k ; yk = 0; condHL = true;

23: end if
24: end for
25: until condHL is false
26: end if

As in previous case, the algorithm requires in the worst case a maximum of
K(K−1)/2 iterations, which happens in the unpractical case when Fmin ≃ Fmax.
According to extensive simulations in practical scenarios, K iterations are enough
to terminate the procedure. The optimality of the algorithm is stated in the
following lemma:

Lemma 2. Algorithm 3 converges to the unique optimal rate solution F ∗ of prob-
lem (5.31) under the assumptions µ̃THFmin ≤ Λ and µ̃THFmax ≥ Λ.

Proof. For a given pair of vectors x = [x1, . . . , xK ]
T and y = [y1, . . . , yK]

T, the
value of distortion D∗ to be assigned to all videos that have xk = yk = 1, can be
obtained from the equation

Γ (x,y, D) = 0 (5.34)
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by using a numerical method. With other words, this value of D∗ is the unique
solution of



















µ̃THF − Λ = 0

Fk = Fk(D) if xk = yk = 1

Fk = Fmin
k if xk = 0

Fk = Fmax
k if yk = 0

(5.35)

By denoting with F ∗ the resulting source rate vector, if Fmin
k ≤ F ∗

k ≤ Fmax
k ,

∀k ∈ K, then F ∗ is also the unique solution of problem (5.31). Hence, the solution
of problem (5.31) can be obtained through a search in the space of all (x,y) to find
the optimal pair (x∗,y∗) that gives Fmin � F ∗ � Fmax. Algorithm 2 performs
this search by reducing the complexity from exponential to quadratic. To show
the optimality of the algorithm, let us consider the two following propositions.

Proposition 1: Let D′ be the solution of eq. (5.34) for a given (x,y) having
xm = ym = 1. If xm is changed from 1 to 0 and at the same time Fm(D

′) < Fmin
m ,

the new solution D′′ is such that D′′ > D′ and, consequently, F ′′
k < F ′

k, ∀k : xkyk =
1.
This can be proved by evaluating from (5.34) the difference

D′′ −D′ = µ̃m(F
min
m − Fm(D

′))

[

∑

k 6=m

xkykµ̃kαk

(D′ + ξk)(D′′ + ξk)

]−1

which is always greater than 0.
Proposition 2: Let F ′ be the solution of the problem



















µ̃THF − Λ = 0

∆(Di, Dj) = 0 ∀i, j ∈ K

Fk ≥ Fmin
k if yk = 1

Fk = Fmax
k if yk = 0

(5.36)

for a given y having ym = 1. If F ′
m > Fmax

m and ym is changed from 1 to 0, the
new solution F ′′ is such that F ′′

k > F ′
k, ∀k : xkyk = 1. The solution of this problem

can be obtained through a search in the space of all x, after having fixed y, to
find the optimal vector x′ that satisfies the last two contraints of (5.36).
The proof is straightforward.

The two propositions can be used to show that Algorithm 2 is able to find
the solution of the original problem (5.31). In the algorithm, the inner procedure
from line 8 to line 19, for a given vector y, finds the values of Fk, ∀k ∈ K, that
solve problem (5.36). It starts from x = 1, evaluates D, evaluates Fk for all users
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and finally sets Fk = Fmin
k and xk = 0 for those users resulting with Fk < Fmin

k .
Then, it repeats the same steps until no update is done on vector x. Note that,
according to Proposition 1, the updated values of Fk can only decrease. The outer
procedure from line 6 to line 25 finds the values of F that solve problem (5.31).
It starts from y = 1, evaluates Fk for all users by solving the problem (5.36) in
the inner loop, and finally sets Fk = Fmax

k and yk = 0 for those users resulting
with Fk > Fmax

k . Then, it repeats the same steps until no update is done on
vector y. Note that, according to Proposition 2, the updated values of Fk can
only increase.

5.6 MAC Layer Algorithm: Resource Alloca-

tion

By exploiting the value of vector φ̃, provided by the APP layer at each ILA
algorithm iteration, the MAC layer is now able to find the solution of problem
(5.16). The solution is derived through dual decomposition, as in [66], which also
provides the dual geometric multipliers, i.e., the weight vector µ of the WSAR.
We retrace here the main results of [66] according to the time-sharing assumption
of the subcarriers.

Let L(ψ,p, λ,µ) be the Lagrangian function, where λ is the dual variable
related to the average power constraint implicitly considered in (5.16b), and µ
is the dual vector related to the proportionality constraint (5.16c). The dual
problem becomes

min
λ,µ

g(λ,µ)

s.t. λ > 0, µ < 0, (1− µTφ̃) = 0
(5.37)

where the third constraint holds to avoid sum-rate diverging to infinity or being
zero and g(λ,µ) = maxψ,p L(ψ,p, λ,µ) is the dual objective. In order to derive
g(λ,µ), given λ and µ, the expression of the Lagrangian function can be suitably
manipulated leading to:

g(λ,µ) = λP + SE

[

max
ψ,p

M(ψk,s, pk,s)

]

(5.38)

where M(ψk,s, pk,s) = µkrk,s(ψk,s, pk,s) − λpk,s. The unique solution for the dual
objective is obtained when each couple, subcarrier s and time slot n, is assigned
to a unique user us[n], i.e.,

u∗s[n] = argmax
k∈K

M(ψ∗
k,s[n], p

∗
k,s[n]) (5.39)
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where the optimal sharing factors and powers, are [61]:

ψ∗
k,s[n] = 1; p∗k,s[n] =

[

a1∆Bµk

λ ln 2
−

a2
γk,s[n]

]+

. (5.40)

which means exclusive subcarrier assignment, i.e., ψ∗
k,s[n] = p∗k,s[n] = 0, ∀k 6=

u∗s[n].
Due to the convex definition of R and the concavity of the constraints, the

strong duality holds, i.e., the optimal dual solution is equal to the primal one,
resulting in a zero duality-gap. Since the dual problem is in general not tractable
analytically, an iterative sub-gradient method as in [66] can be used to solve it.
It is important to remark that the scheduling algorithm described by (5.38) and
(5.39) works on the time scale of slot intervals (order of milliseconds), whereas
the dual problem solution needs to be updated every application frame intervals
(order of seconds). Such solution is the input for the ILA algorithm, and therefore
should be computed N times, where N is the number of iterations required by
the ILA algorithm to converge.

5.7 Practical Issues for the Implementation

The cross-layer framework, based on the ILA approach presented in section 5.4,
requires the iteration of the two algorithms presented in section 5.5 and 5.6, i.e.,
those that solve problems (5.31) and (5.16), respectively. The main practical chal-
lenges come from the solution of (5.37), which generally requires perfect knowledge
of CDI to compute the expectation of rate and power. Although some methods to
estimate the CDI and compute the expectation are known in literature (see [68]
and [67]), they are computationally expensive. A viable alternative for the solu-
tion of (5.37) is to implement an adaptive stochastic sub-gradient algorithm as in
[60][67], where the update equations are evaluated along time, once for each time
slot, and the average power and rate in the subgradients are computed through a
stochastic approximation. The implementation details of the ILA with stochastic
algorithm at MAC layer are discussed in the next section. It is shown that par-
allel processing is required to execute the ILA algorithm. To drastically reduce
the complexity with a small performance penalty, the 1-step ILA algorithm is
proposed.

5.7.1 ILA with Stochastic Algorithm at MAC Layer

In the adaptive implementation, the solution of (5.37) is evaluated through an
adaptive stochastic sub-gradient algorithm, after user and power allocations are
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Figure 5.4: Evolutions of the ILA algorithm iterations according to the stochastic
approximation framework.

obtained as in (5.39) and (5.40). The dual variables are updated at each time slot
n according to the following equations:

{

λ[n + 1] = [λ[n]− δλgλ[n]]
+
ǫ

µ[n+ 1] = [µ[n]− δµgµ[n]]
+

(5.41)

where
gλ[n] = P −

∑

s∈S

p∗k,s[n], (5.42)

gµ[n] = r
∗[n]− φ̃‖r∗[n]‖1 (5.43)

with r∗[n] = [r∗1, . . . , r
∗
K ], and

r∗k =
∑

s∈S

r∗k,s(ψk,s[n], pk,s[n]) (5.44)

Finally, δλ, δµ are step-sizes suitably selected to ensure convergence [66].
The time required for the MAC layer algorithms to converge may be significant

and with great impact on the ILA algorithm. However, the proposed framework
can still work by introducing parallel processing and by assuming perfect synchro-
nization between APP and MAC algorithms. The final cost will be the presence
of a latency td in the transmission of video frames, which is the time required to
execute N steps of the ILA algorithm.

The implementation details of the ILA algorithm based on the stochastic al-
gorithm at the MAC layer are illustrated in Fig. 5.4 and explained as follows.

Let us assume that the first set of encoded videos V0 at the application frame
0 is ready for transmission. the encoded pictures set Ik of each video. Given any
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Figure 5.5: The 1-step ILA algorithm.

initial φ̃, i.e., φ̃
(0)
0 , the MAC layer performs the iterations along n0 time slots to

find the dual variables µ̃
(0)
0 , and the related rate vector R̃

(0)
0 , which are forwarded

to the APP layer. The APP layer derives the vector φ̃
(1)
0 by solving problem

(5.31), and sends it to the MAC layer, which again finds the related optimal

solutions µ̃
(1)
0 along n1 time slots.

After N iterations, required by the ILA algorithm to converge, the APP layer
extracts the sub-streams of the videos in V0 that meet the optimal rate solution
F ∗

0 and forward the resulting TBs, i.e., the set V
∗
0, to the lower layers. of the

related I0 sub-streams. Simultaneously to the transmission of V∗
0, MAC and APP

layers restart the same procedure for the next set V1 of videos, in order to derive
the optimal transmission parameters µ̃

(N)
1 and F ∗

1 . The transmission of the a-th
set V

∗
a of adapted sub-streams can starts after atI + td seconds, where td is the

time allowed for ILA algorithm to converge.

The number of parallel processes depends on the relationship between td and
tI. By assuming td = ctI, c ∈ R+, it is intuitively provable from Fig. 5.4 that APP
and MAC layers require ⌈c⌉ and ⌈c⌉+1 parallel processes, respectively. Therefore,
as the delay td increases, also the complexity increases. The most interesting
approach to achieve a good trade off between complexity and performance is the
1-step-based ILA algorithm, which does not require parallel computation.

5.7.2 1-step ILA Algorithm

The 1-step ILA algorithm is built on the assumption that the R-D relationship
of the encoded sets of pictures does not significantly change over two consecutive
application frames. This allows to eliminate the parallel processing illustrated in
the previous section, to finally obtain the operations described in Fig. 5.5 where
only one step of the ILA algorithm is executed. As shown in the figure, the APP
layer solution φ̃ for the current application frame with index a, denoted with φ̃a,
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is derived instantaneously, because the one-step ILA outcomes are obtained from
the results of MAC algorithm in the (a − 1)-th application frame, i.e., by using

the initial vectors1 µ̃
(0)
a = µ̃

(1)
a−1 and R̃

(0)
a = R̃

(1)
a−1. Therefore, the rate adaptation

process is based on the local approximation of the rate region resulting from
the preceding application frame, and the set of encoded sub-streams (Ṽa in the
figure) can be sent to the BS buffer at the beginning of the current application
frame without delay. This approach greatly reduces the algorithm complexity and
the number of cross-layer iterations, and makes transmission latency negligible.

However, the residual rate error δ(1) of the ILA algorithm at the first itera-
tion is not negligible. Hence, the transmission of the adapted sub-stream may
require more than one application frame interval. Such error is expected to be
small as long as the video complexities and the channel conditions present slight
variations between two consecutive application frames. When such conditions do
not hold buffer underflow may arise with uncomfortable pauses during the video
reproduction. We will propose next a method to compensate the rate error δ(1).

5.7.3 Residual Error Compensation in the 1-step ILA Al-
gorithm

As usually done in practical applications, we introduce a minimum initial play-out
delay t0, before starting to reproduce the video, in order to allow the transmission
of the data still in the queue at the beginning of each application frame interval.
Let Bk be the total amount of data still in the buffer of the BS for user k. If more
than one TB has not been transmitted, the queue contains several blocks of bits
bk,g, which have different time-to-deadlines tdlk,g, updated to include the play-out
delay t0, where g = 1, 2, . . . , is the TB index. We then define

Qk = max
g

∑g

i=1 bk,i
tdlk,g

(5.45)

as the minimum rate required to ensure the transmission of all TBs, before their
time-to-deadline. When t0 > 0, the APP layer will be able to compensate the
effects of rate mismatch if it updates the R-D functions Fk(D) of the next appli-
cation frame in order to satisfy the following two not-exclusive constraints:

1. Fk must support the transmission of the incoming encoded set of pictures
also considering the residual data in the buffer, i.e.,

Fk(D) ≥
αk

D + ξk
+ βk +Bk/tI (5.46)

1Here and in Fig. 5.5, the subscript in the vectors refers to the application frame index.
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2. (ii) Fmin
k must be greater than or equal to the minimum rate required to

transmit the residual data in the buffer before its time-to-deadline, i.e.,

Fmin
k ≥ Qk. (5.47)

Such constraints are always satisfied by simply re-evaluating: the parameter βk
of the R-D functions as β ′

k = βk+Bk/tI to obtain a new function F ′
k(D); the max-

imum rate as Fmax
k = F ′

k(D
hl
k ); the minimum rate as Fmin

k = max{Qk, F
′
k(D

bl
k )},

∀k ∈ K. The compensation method proposed here can be easily implemented
without changing the proposed algorithms.

5.8 Numerical Evaluations

We consider an OFDMA access network with frequency spacing ∆B = 15 kHz,
time slot duration tslot = 10 ms and a maximum average power budget P = 1 W.
The number of available subcarriers is set to S = 64 if not specified otherwise.
A total of K = 10 users are uniformly distributed in a cell with radius equal
to 300 m, with resulting average SNR ranging from 7 to 28 dB. The adaptive
modulation and coding system is characterized by a rate adjustment a1 = 0.905
and an SNR gap a2 = 1.34 [64]. The users request different video sequences with
different spatial and temporal complexities, i.e., City, Crew, Coastguard, Con-
tainer, Football, Foreman, Harbour, Mobile, News and Soccer in CIF resolution
with a frame-rate of 30 fps (see Table 3.1). Each sequence is looped 10 times and
encoded with the JSVM reference software [30] with one base layer and two en-
hancement layers, and quantization parameters 40, 34 and 28, respectively. Each
enhancement layer is split into five MGS layers with vector distribution [3 2 4 2 5]
and the post-processing priority level assignment is then applied. GOP size and
IDR period are set to 8 and to 32 frames, respectively. The three parameters of
model (3.9) are evaluated for each IDR period, resulting in an application frame
window WI = 106. We set the overhead factor H = 1.

Individual video qualities are evaluated according to the PSNR computed
through the MSE Dmean

k averaged over all the transmitted frames as in eq. 3.4:

PSNRk = 10 log10

(

2552

Dmean
k

)

(5.48)

while the overall performance is evaluated with the global PSNR [11] as

GPSNR = 10 log10

(

2552K
∑

k∈KD
mean
k

)

(5.49)
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Figure 5.6: PHY layer rates at each step of the ILA algorithm for a randomly se-
lected application frame interval. iterations provide solutions close to the optimal
ones.

Moreover, to better assess the improvements of our strategy in terms of end-
user perceived quality, we also provide results in terms of the standardized ANSI
VQM, assuming full reference calibration (see [46]). The VQM value is a number
between 0 and 1 used to judge the visual quality, which shows high correlation
with subjective quality test. A low VQM value indicates good perceived quality.

We compare the performance of the ILA and the 1-step ILA algorithms, de-
noted with EQ-ILA and EQ-1STEP, respectively, aiming at equalizing the distor-
tion, with the two following strategies:

� equal rate strategy, denoted with ER-1STEP, which aims to provide fair-
ness only in terms of assigned video rate, while satisfying the minimum and
maximum rate constraints. It is unaware of the individual R-D relation-
ship of each video and is built by replacing the constraints in (5.9b) with
∆F (Fi, Fj) = 0 where the function ∆F is defined in a way similar to (4.2).
It can be implemented through a 1-step of the ILA algorithm by replacing
line 14 of algorithm 2 with

F̃k =
Λ(x,y)

∑

k∈K xkykµ̃k

(5.50)
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Figure 5.7: PSNR of each video resulting from distortion-fair ILA (EQ-ILA) al-
gorithm, 1-step ILA (EQ-1STEP) algorithm, equal-rate algorithm (ER-1STEP)
and the strategy proposed in [12] (GBS-JI09). The initial playout deadline is set
to 200 ms.

as in [10], which is an extension of the approach used for numerical compar-
ison in section 4.4.

� cross-layer gradient-based scheduling strategy proposed by Ji et al. [12],
denoted with GBS-JI09, which maximizes an instantaneous weighted sum-
rate. In this framework, the APP layer collects and sorts the frames of each
GOP into several sub-flows according to their dependencies, and the MAC
layer, at each scheduling interval and for each sub-flow, updates the weights
according to: distortion reduction achieved through successful delivery of
the sub-flow, time-to-deadline and sub-flow length. Let us note that the
framework exploits the temporal and quality scalability of the SVC streams
only when the packets violate their play-out deadline, i.e., no prior rate
adaptation is performed. However, in order to have a fair comparison, we
assume that a preliminary rate adaptation for each video sequence is carried
out to not exceed a maximum average PSNR of 35 dB as in [12].

For performance evaluation we consider two different scenarios. In the first sce-
nario, the transmissions are assumed error-free and only affected by fast fading
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which is obtained from a multi-path channel model with delay spread of 2.3 µs
and Doppler bandwidth of 6 Hz. In the second scenario, the transmissions are af-
fected by RTP packet losses, with loss-rate of 10% as in [11][10], and by additional
mobility effects modeled through a log-normal shadowing process (std. deviation:
6 dB) with an exponential auto-correlation (correlation time: 20s).

5.8.1 Static Scenario with Error-free Transmission

In Fig. 5.6 the PHY layer rate of each user resulting at each iteration of the
EQ-ILA algorithm is plotted for a randomly selected application frame interval
(similar results are obtained for the other application frame intervals), by using

the initialization φ
(0)
k = 1/K, ∀k ∈ K. As expected, the ILA algorithm quickly

converges, achieving the optimal solutions, i.e., δ ≈ 0, in no more than 10 − 11
iterations in all the investigated cases. However, two iterations are always enough
to approach the optimal solution with a relative error (HFk − Rk)/Rk < 10−4 in
all the investigated cases. This result further justifies the use of the suboptimal
1-step ILA algorithm.

Fig. 5.7 compares the individual video qualities obtained with play-out dead-
line t0 = 200ms for the different scheduling and adaptation strategies. We first
note that the gap between best and worst PSNR resulting from the optimal (EQ-
ILA) and the sub-optimal (EQ-1STEP) is relatively small. It ranges from 0.1
to 0.8 dB. Both the approaches provide approximately uniform quality to each
video, with the exception of News whose minimum rate constraints are active for
most of the time. Moreover, the proposed EQ-1STEP compared to the GBS-JI09
strategy is able to improve the video quality of the users requesting the most
demanding videos, i.e., Coastguard, Football, Harbour and Mobile, and experienc-
ing relatively bad channel conditions, e.g., City and Coastguard, in the scenario
simulated here, while exhibiting similar complexity2. For these videos EQ-1STEP
achieves a gain ranging between 1.5 to 7 dB. It is also interesting to note that the
ER-1STEP strategy generally outperforms the gradient-based scheduling, thanks
to the adaptation process, even based on rate information only. In the GBS-JI09
strategy, the loss of base-layer frames, due to several deadline violations, highly
reduces the received PSNR. It should also be noted that the PSNR values of GBS-
JI09 are computed by excluding the set of pictures with missing I-frames, thus
overestimating the actual quality.

2EQ-1STEP requires stream adaptation at each application frame interval (in the order of
seconds), but GBS-JI09 requires information exchange at each time slot (in the order of tenth
ms) for the evaluation of the weights.
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Figure 5.8: Overall performance in terms of global PSNR (GPSNR) (a) and stan-
dard deviation of the PSNRs (b) of distortion-fair ILA (EQ-ILA) algorithm, 1-step
ILA (EQ-1STEP) algorithm, equal-rate algorithm (ER-1STEP) and the strategy
proposed in [12] (GBS-JI09), for different numbers of available subcarriers S.

Such behaviour is more clear in Table 5.1 where the ANSI VQM values are
reported for S = 128. We can first note the significant improvement of the
adaptation-based strategies, i.e., EQ-1STEP and ER-1STEP, over GBS-JI09,
since the perceived video quality is more sensitive to the temporal impairments
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ANSI VQM EQ-1STEP ER-1STEP GBS-JI09
City 0.128 0.068 0.711
Crew 0.133 0.110 0.518

Coastguard 0.072 0.090 0.548
Container 0.157 0.082 0.636
Football 0.121 0.135 0.837
Foreman 0.129 0.070 0.767
Harbour 0.045 0.063 0.830
Mobile 0.027 0.046 0.255
News 0.109 0.033 0.723
Soccer 0.114 0.102 0.904

Average 0.103 0.085 0.672
Std. Dev. 0.041 0.039 0.192

Table 5.1: Individual and global (average and standard deviation) values of the
ANSI VQM for different strategies

of the videos. We also note the comparable performance of ER-1STEP and EQ-
1STEP. In fact, in the absence of frame losses, small encoding rate variations do
not significantly impact the perceived quality. However, when the VQM values
are smaller than 0.1-0.2, the VQM metric becomes less useful for comparing the
different strategies, because the correlation between VQM values and subjective
scores decreases [46].

The trade-off between efficiency and fairness is investigated in Fig. 5.8(a) and
5.8(b), where the global PSNR and the standard deviation of the user PSNRs
(stdPSNR) are plotted for different numbers of allocable subcarriers. We first
note how the fairness achieved by the proposed strategies improves as the number
of available sub-carriers increases, due to the de-activation of the minimum rate
constraints for the low-complexity videos. which limits the minimum allocable
distortions. Even though the GBS-JI09 strategy is aimed at maximizing the
efficiency, the loss of the base layer frames due to the limited resources (up to
64 and 96 available sub-carriers) and to the lack of adaptation between APP and
MAC layer does not allow GBS-JI09 to outperform the fairness-oriented strategies,
unless the number of available resources becomes quite large. We finally plot in
Fig. 5.9(a) and 5.9(b) the end-user quality, frame-by-frame, resulting from EQ-
1STEP and ER-1STEP, respectively, for a subset of three videos. The figures
further assess the benefits of the proposed strategy in terms of PSNR fairness
with respect to rate-oriented strategies.
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Figure 5.9: End-user frame-by-frame PSNR resulting from distortion-fair 1-step
ILA (EQ-1STEP) algorithm (a) and equal-rate algorithm (ER-1STEP), with
S=128.

5.8.2 Scenario with User Mobility and Error-prone Trans-
mission

In this scenario, the presence of mobility makes the channel non-stationary in a
time scale larger than the application frame interval. Therefore, we first inves-
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Strategy GPSNR [dB] min-max PSNR [dB] stdPSNR [dB]
EQ-ILA 31.9 31.4-32.6 0.29

EQ-1STEP 31.3 30.8-32.6 0.42
ER-1STEP 31.8 28.5-37.4 2.75

Table 5.2: GPSNR and fairness (minimum and maximum PSNR, PSNR standard
deviation) for different strategies.

tigate this issue in error-free channel by comparing the behaviour of both the
proposed 1-step ILA algorithm and the GBS-JI09 strategy in presence of mobil-
ity with the behaviour of the same algorithms in static scenario. The GPSNR
achieved with 64 subcarriers decreases from 31.3 dB to 31 dB for EQ-1STEP
and from 29.7 dB to 27.7 dB for GBS-JI09, which indicates the robustness of the
1-step ILA to moderate non-stationarity.

We move now to error-prone transmission by assuming a initial play-out-
deadline t0 = 500ms and a number of available subcarriers S = 128, which allows
the system to support at least the base layer rate (including the UXP parity bytes)
of each video for all the simulation time. As benchmark we consider an ideal ILA
algorithm virtually running without shadowing variations in the channel. We do
not consider the GBS-JI09 strategy, since it can not support the UXP. Table 5.2
compares the performance in terms of global PSNR and fairness. We can note
the small gap of the EQ-1STEP strategy with respect to the benchmark, even in
case of error-prone channel and the significant fairness improvement compared to
ER-1STEP.



5. SVC Video Delivery in Downlink OFDMA Channels 92



Chapter 6

Cross-layer Optimization for
Health-com Services Delivery in
Uplink SC-FDMA Channels

In the last decade, e-health has become one of the most promising applications
of emerging information and communication technologies (ICT) [69]. The funda-
mental concept of the e-health is to provide innovative healthcare services sup-
ported by electronic/digital processes and data remote transmission. In partic-
ular, telemedicine services can highly benefit from the recent advances offered
by mobile communication systems [70], which are nowadays potentially able to
support a wide range of ubiquitous healthcare applications, such as tele-diagnosis
[71], real-time monitoring of vital parameters [72], remote treatment of patients
and even tele-surgery. In the next future, this kind of mobile-health (m-health)
services are expected to spread rapidly, increasing the efficacy and efficiency of
the healthcare offer with decreasing costs.

M-health services can also play an important role in the management of emer-
gency situations, such as those involving one or more ambulances rushed to the
scene of an accident. In this case, the presence of a 3G/4G radio access network
can be exploited to establish a communication link between the emergency area
and a remote hospital, enabling real-time and interactive tele-consultation services
through the exchange of audio, video and other medical information [73].

In this context, the transmission of health-related information from an ambu-
lance to a remote hospital is a challenging task, due to the variability and the
limitations of the mobile radio link. In particular, the transmission of multiple
video streams can improve the efficacy of the tele-consultation service, but re-
quires a large bandwidth to meet the desired quality, not always guaranteed by

93
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the mobile network. Therefore, the possibility to adapt the video encoding to the
current transmission conditions becomes particularly important in the context
of emergency m-health. In these cases, in fact, just a limited buffering can be
adopted, since a low delivery latency is imposed by the need of real-time interac-
tion with remote specialists, while high quality videos are always fundamental to
provide an effective medical support. As already mentioned, SVC conjugates good
compression efficiency with high flexibility in rate adaptation. For these reasons
several solutions have been recently proposed for e-health applications based on
SVC [74][75].

In LTE, healthcare related video traffic can be prioritized over less critical
traffic. This can be done through enhanced RRA techniques, allowing to sup-
port a certain level of QoS. However, differently from the uplink where OFDMA
is used and optimized QoS aware RRA strategies have already been proposed,
Single Carrier - Frequency Division Multiple Access (SC-FDMA) [6], also known
as DFT-spread FDMA, has been selected as key-technology for the LTE uplink.
The main reason is that in OFDMA schemes the resulting time-domain waveform
exhibits very pronounced envelope fluctuations resulting in a high peak-to-average
power ratio (PAPR). Signals with a high PAPR require highly linear power ampli-
fiers to avoid excessive inter-modulation distortion. To achieve this linearity, the
amplifiers have to operate with a large back-off from their peak power, resulting
in an increasing cost and power consumption. Such problem is clearly more crit-
ical in the up-link transmission where the cost and power consumption of mobile
must be kept as lower as possible. SC-FDMA keeps similar advantages of the
OFDMA systems but provide a lower PAPR by introducing a DFT pre-coding
process at the transmitter (see Fig. 6.1), which spreads the data power over the
entire allocated bandwidth. Such advantages is paid in an increased Inter-Symbol
Interference (ISI) at the receiver, which requires adaptive frequency domain equal-
ization to cancel this interference. These trade-offs are then well balanced in a
cellular system since an increasing cost of complex signal processing (frequency
domain equalization) at the base station is acceptable if followed with a reduction
of the burden of linear amplification in portable terminals.

There are two types of SC-FDMA: localized-FDMA (L-FDMA) in which the
sub-channels assigned to a user are adjacent to each other, and interleaved-FDMA
(I-FDMA) in which users are assigned with sub-channels distributed over the
entire frequency band. Only L-FDMA is taken into account by LTE. A detailed
overview of the SC-FDMA scheme can be found in [76] and [6].

After the introduction of the SC-FDMA for the uplink, by LTE in 2004, the re-
lated RRA problem has gather increasingly interest. SC-FDMA, and more specif-
ically L-FDMA, consider only contiguous PRBs allocation, making the problem a
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Figure 6.1: Transmitter and receiver structure of SC-FDMA and OFDMA modu-
lation. SC-FDMA introduces a N-point DFT (N > M) pre-coding to spread the
data power over the entire allocated bandwidth.

strict NP-hard problem [77], where the techniques traditionally used to optimally
solve OFDMA RRA problem (e.g., dual decomposition as proposed in section
5.6) cannot be directly applied. For this reason, the first scheduler proposals,
e.g., [6] [78][77], were based on greedy approaches, following the idea of maximiz-
ing the per-user marginal utility, i.e., multiple contiguous PRBs are assigned to
users which have the maximum increase of benefits. The first proposal published
by Lim et. al.[78] consider and equal-bit-equal-power (EBEP) allocation for each
sub-channel in order to maximize a proportional fairness utility function. Instead
of solving the optimization problem, they provide a sub-carrier allocation scheme
which improves the marginal utility using both L-FDMA and I-FDMA schemes.
In both cases the heuristic scheduler aims to find the subchannel which has the
highest marginal utility for one user. It is defined as the difference between the
utility obtained when the s-th subchannel is allocated to user k and the utility of
user k in the absence of a subchannel allocation. The heuristic is derived to en-
sure contiguous or interleaved subchannel allocation, according to L-FDMA and
I-FDMA, respectively. Specifically, when a user is allocated to a set of subchan-
nels, the algorithm deletes such set from the set of available subchannels, without
checking if other users can exhibit a larger marginal utility gain. The complex-
ity results linear in the number of users and subchannels. The authors show the
significant gain, in terms of aggregate throughput of the localized scheme com-
pared to interleaved one. They also extended their work to take into account the
outdated CSI as in practical high-mobility scenario [79].
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The authors in [80] provide three different proposal, namely the First Maxi-
mum Expansion (FME), Recursive Maximum Expansion (RME), Minimum Area
Difference (MAD), based on a proportional fairness metric. FME and RME al-
gorithm are extensions to the one proposed in [78]. Both algorithms assign the
subchannels starting from that with the highest metric of the S ×K matrix rep-
resenting the channel gain. Then it expands the allocation for a selected user
on both the right and the left sides of the subchannel with the largest metric.
However the subchannels are not dropped from each allocation as in [78], but
the algorithms also verify if an other user can provide a largest marginal utility
improvement. The main difference between FME and RME is the action taken
when reaching a subchannel allocation whose maximum metric is found for two
user. Finally MAD algorithms aims to provide the minimum difference between
the cumulative utility of different users and the the maximum utility value for any
given subchannels.

A comparison study of the performance of these scheduler proposals was pro-
vided in [81] with respect to the Search-Tree Based Packet Scheduling (STBPS)
algorithms proposed in [82]. They also proposed a modified version of the FME
algorithm. The performance comparison are carried out according to throughput,
spectral efficiency and fairness for different number of users in the systems. They
shows how all the schemes are able to exploit multi-user diversity by increasing
throughput and spectral efficiency as the number of users increases. However,
as expected, all algorithms lacks for QoS support due to the absence of GBR
constraints in the problem statements. STBPS algorithm exhibits better perfor-
mance in terms of fairness data-rate with respect to all scheme but pays in a loss
of sum-throughput. On the other hand, MAD provides the highest efficiency, both
in terms of sum of throughput and spectral efficiency, also providing more fairness
with respect to FME and RME which exhibit the worst overall performance.

An extended comparison study was provided by the same authors in [83], where
mixed traffic is used as prescribed by 3GPP for practical performance evaluation.
In their study an heuristic localized gradient algorithm (HLGA) as proposed in
[84] was also included. HLGA is designed to include Hybrid -Automatic Request
(H-ARQ) schemes as contemplated by LTE, where a subset of RBs are reserved for
H-ARQ process for previous unsuccessful transmissions. Performance evaluations
were carried out in terms of per-user throughput, packet loss and fairness. How-
ever, none of the mentioned framework provides optimal solutions to understand
the overall benefits of each proposal in terms of performance and complexity.

Recently, Wong et al. [85] provided a novel reformulation of the RRA prob-
lem into a pure binary-integer program (BIP), namely a set partitioning problem,
which allows to compute the optimal allocation through known methods of the op-
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eration research, e.g., linear programming (LP) relaxation, thus avoiding exhaus-
tive enumeration. Ahmad and Assaad [86] took advantage of such reformulation
to transform the BIP problem into a canonical dual problem in the continuous
space. They analytically proved that under certain conditions, the solution of
the canonical dual problem is identical to the solution of the primal problem and
finally showed that such solution is close to the optimal one. The algorithmic
complexity of the proposals in [85]-[86] is still unsuited for practical applications
and, although both frameworks are able to capture frequency and multi-user di-
versity of OFDM-based systems, the TTI-based maximization does not allow to
fully capture the time-diversity of the channel. Moreover, the consideration of
user-specific rate requirements is not addressed, which may be a drawback in
QoS-aware applications [87][88].

In order to ensure the required level of QoS to the m-health application con-
sidered in this chapter, we will first address the problem of ergodic sum-rate
maximization under proportional rate constraints for the uplink of SC-FDMA
systems. To the Author knowledge, this problem has not yet been investigated in
the literature. We then propose a novel cross-layer adaptation strategy for mul-
tiple SVC videos delivered over a single LTE channel, which dynamically adjusts
the overall transmitted throughput to meet the actual available bandwidth, while
being able to provide high quality to diagnostic video sequences and lower (but
fair) quality to less critical ambient videos

Contribution

The novel contribution of this chapter is two-fold:

� We analyze the ergodic sum-rate maximization problem under proportional
rate constraints in SC-FDMA systems and propose a novel sub-optimal algo-
rithmic solution, whose complexity increases only linearly with the number
of users and the number of resources. Numerical results show that the per-
formance gap to optimal solution is limited to the 10% of the sum-rate.

� We propose a novel solution for the transmission of multiple videos from an
emergency scenario, based on the joint video adaptation and aggregation
directly performed at the application layer of the transmitting equipment.
In fact, a strict separation into multiple single flows may turn out to be
inefficient, especially in case of simultaneous transmission from multiple
and heterogeneous co-located sources. we consider two categories of videos
transmitted from the ambulance: (i) ambient videos that allow the hospital
staff to visually follow the patient conditions and the activities performed
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Figure 6.2: The proposed m-health architecture for emergency scenarios.

in the ambulance; (ii) diagnostic videos obtained as result of emergency
examinations, such as the Focused Assessment with Sonography for Trauma
(F.A.S.T.), which is used to rapidly assess the status of heart and abdominal
organs of the patient [18]. From the LTE e-NodeB perspective, only a
single communication link characterized by given QoS guarantees needs to be
managed between the ambulance and the remote hospital, while additional
spectrum efficiency is gained from video multiplexing. In our solution the
adaptation is designed to optimize quality and fairness by exploiting the
information on the available rate assigned by the LTE e-nodeB. It is shown
that the proposed strategy permits to achieve a good end-to-end quality
even in the presence of rate limitations and fluctuations due to the wireless
channel and intense traffic within the LTE cell.

6.1 System Architecture

The m-health scenario addressed in this chapter is depicted in Fig. 6.2. An ambu-
lance equipped with multiple cameras and medical devices reaches an emergency
area where one or multiple injured persons need immediate medical assistance.
Multiple information is sent through the available LTE radio access network to the
emergency management center at the hospital, where specialized medical staff can
follow the first-aid operations, coordinate the intervention and acquire the health-
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state information necessary to prearrange the treatment at the hospital. The
doctors at the hospital interact in real-time with the ambulance staff, receiving
both ambient and ultrasonography videos, as well as other important information
on the vital parameters of the patients, such as ECG data, respiratory and cardiac
frequency, blood pressure and oxygen concentration. In this work, the real-time
video streams consist of one diagnostic F.A.S.T. sequence and N ambient videos
acquired by a set of cameras installed on the ambulance. The multimedia flows
are processed in real-time and multiplexed with the other medical information by
the video adaptation and data aggregation unit before transmission over the LTE
radio channel.

From the LTE network perspective, the ambulance (also indicated in the fol-
lowing as m-health user) competes for radio resources with other K users within
the cell, indexed by the set K, subdivided into K1 GBR users and K2 best-effort
users, indexed by the sets K1 and K2, respectively. The e-NodeB tries to guar-
antee the transmission rates R̄0 to the m-health user1 and R̄k to the k-th GBR
user, with k ∈ K1, while the throughput to best-effort users is provided fairly,
according to the resources left after allocating all GBR users.

The video adaptation unit performs two fundamental tasks:

� It manages the inherently different priorities of the data flows generated
by the m-health user. In particular, it optimally adapts the SVC-encoded
streams, in order to deliver the ultrasonography information with sufficiently
high quality and the set of ambient videos tuned according to quality fairness
criteria.

� It produces an aggregated throughput adapted to the radio channel and
cell traffic conditions, according to the amount of resources assigned by the
e-NodeB to the m-health user.

6.2 Physical Layer Model for the Uplink of the

Wireless Access Network

We consider a single-cell time-slotted SC-FDMA system where multiple users and
base station are equipped with a single antenna. The total available bandwidth
B is divided into S orthogonal subcarriers, which are grouped in G subchannels
of 12 adjacent subcarriers indexed by the set G = {1, . . . , G}. Each group has

1Note that here, as well as in the rest of this chapter, we indicate the m-health GBR user
with the subscript 0.
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bandwidth ∆B (180 KHz in LTE). The piece of frame composed of one group and
one slot (0.5ms) is defined as the Physical Resource Block (PRB), which is the
elementary resource unit for RRA. Let hk,s[n] be the channel gain between the
BS and the user k, on subcarrier s and time slot n. It is modeled as a complex
Gaussian ergodic random process (Rayleigh fading), generally correlated across
subcarriers and time slots. We define the normalized SNR of user k on subcarrier
s and time slot n, as

γk,s[n] =
|hk,s[n]|

2

σ2
(6.1)

where σ2 is the noise power. As already mentioned, in SC-FDMA the available
resources, i.e., PRBs, are assigned in a contiguous manner. By assuming a MMSE
receiver, the effective SNR experienced by user k over a ”pattern” j of Gj adjacent
PRBs is given by:

γeffk,j[n] =

[(

1

12Gj

∑

s∈Gj

pk,sγk,s[n]

1 + pk,sγk,s[n]

)−1

− 1

]−1

(6.2)

where pk,s is the power allocated to user k on subcarrier s and Gj is the set
of subcarriers belonging to the PRBs of pattern j. As in [85][86], we consider
constant power allocation, i.e., pk,s =

Pk

12Gj
where Pk is the per-user power budget.

Moreover, power control schemes as in LTE [89] can be easily considered as well.
By using a suitable AMC scheme, the rate achieved by user k on slot n when
pattern j is allocated, can be evaluated with the following model:

rk(γ
eff
k,j)[n] = Gj∆B log2(1 + γeffk,j[n]

)

. (6.3)

As in [85], we define A as the matrix of all feasible allocation patterns in a
system with G PRBs. The matrix has G rows and J = (G2 +G)/2 + 1 columns.
Each column represents a pattern and each element indicates whether (1) or not
(0) the PRB is allocated. It can be easily built by including for each integer l ∈ G
one column with index jl = 1+

∑l−1
t=0(G− t) composed of l ones and G− l zeros,

and all the shifted version of it with indexes jl + m, m = 1, ..., G − l − 1. An
example of the matrix A for a set-up with G=5 PRB is given by:













0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1
0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1












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This construction facilitates the reduction of the search space when the infor-
mation on the maximum number of PRBs to be allocated to each user is known.
In fact, the patterns with G̃ ≥ 1 allocated PRB have indexes in the set

JG̃ =

{

j : 2 +

Gj−2
∑

t=0

(G− t) ≤ j ≤ 1 +

Gj−1
∑

t=0

(G− t)

}

(6.4)

which has cardinality |JG̃| = G− G̃+ 1.
Given the matrix A, the RRA algorithm computes for each slot n the K × J

allocation matrix I[n] which has the generic form I = [i1, . . . , iK ]
T, where the

row ik = [ik,1, . . . , ik,J ] indicates which pattern out of J is allocated to user k, i.e.,
ik,j = 1 if pattern j is allocated to user k and 0 otherwise. A feasible allocation
matrix satisfies the constraints:

‖IaT
g ‖1 = 1, ∀g ∈ G,

‖ik‖1 = 1, ∀k ∈ K,

where ag is the g-th row of matrix A. The set of all feasible allocation matrices
is here denoted as A.

6.3 MAC Layer: Radio Resource Allocation

In this section, we analyze the framework of ergodic sum-rate maximization for
continuous (capacity based) rates under proportional rate constraints, as done in
[66] for downlink OFDM systems. Let us denote with R = [R1, . . . , RK ]

T, the
vector of the ergodic achievable rates where

Rk = Eγ

[ J
∑

j=1

ik,j[n]rk(γ
eff
k,j)[n]

]

. (6.5)

The MAC scheduler within the e-NodeB allocates the rates to the users in the
cell according to the solution of the following optimization problem,

max‖R‖1 (6.6a)

Rk ≥ R̄k, ∀k ∈ K1 (6.6b)

Rk ≥ θk

(

∑

l∈K

Rl −
∑

l∈K1

R̄l

)

, ∀k ∈ K2 (6.6c)

I[n] ∈ A (6.6d)
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where θk ≥ 0, k ∈ K2,
∑

l∈K2
θl = 1, define the required average share of through-

put for the best-effort users.
The constraint (5.16c) accounts for the target rate requirement holding for the

m-health user and the other GBR users within the cell. On the contrary, the rate
allocated to non GBR users must satisfy the inequality (6.6c), which requires that
the residual rate after serving all the GBR users (see the term in parenthesis at
the right hand side) is assigned to the best effort users based on the φk. Problem
(6.6) admits feasible solutions if and only if the required GBR R̄k are supported
by the rate region, and thus it requires a careful selection of R̄k according to traffic
load and channel conditions. To overcome such issue we translate the problem
in (6.6) to an ergodic sum-rate maximization with proportional rate constraints,
i.e.,

max ‖R‖1 (6.7a)

s.t. R � φ‖R‖1 (6.7b)

I[n] ∈ A (6.7c)

where now the vector φ = [φ1, . . . , φK ]
T � 0, defines the required average share

of throughput among all users which must satisfy ‖φ‖1 = 1. In this problem, the
values of φk, ∀k ∈ K1 can be statistically configured, or adaptively updated to
follow the prescribed GBR rate R̄k, ∀k ∈ K1.

Problem (6.7) is a non-linear combinatorial problem which is difficult to be
solved directly. As in [66], we decompose the problem by considering a Lagrangian
relaxation of the rate constraint. It is important to remark that since the problem
is not defined on a convex set and the objective is not differentiable, this is not
a convex optimization problem, thus the resulting duality gap may not be zero.
Nevertheless, the following Lagrangian relaxation will help to find an excellent
suboptimal solution.

6.3.1 Lagrangian Relaxation

Let L(µ) be the Lagrangian function, associated to the problem (6.7a)-(6.7b), and
µ be the dual vector related to the constraint (6.7b). The dual problem becomes

min
µ

Θ(µ) (6.8a)

s.t. µ < 0 (6.8b)

µTφ = 1 (6.8c)
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where constraint (6.8c) holds to avoid sum-rate diverging to infinity or being zero.
Given the dual vector µ = [µ1, . . . , µK], the dual objective

Θ(µ) = max
I[n]∈A

µTR (6.9)

is evaluated by using the allocation matrix I[n] that maximize, slot by slot,
the instantaneous weighted sum-rate (WSR) under the SC-FDMA constraints,
i.e.,

Θ(µ) = Eγ

[

max
I[n]∈A

∑

k∈K

µk

J
∑

j=1

ik,j[n]rk,j[n]

]

(6.10)

where rk,j[n] is used to denote rk(γ
eff
k,j)[n]. The solution I[n] of the WSR problem

can be evaluated as the optimal solution of a set partitioning problem as in [85], or
as a quasi-optimally solution through a canonical dual relaxation of the SC-FDMA
constraints in the continuous space as in [86].

Since the dual problem is in general not tractable analytically, an iterative
sub-gradient method as in [66] can be used to solve it. However, in realistic
applications, the adaptive implementation is suggested, where the dual variables
are updated at each time slot as:

µ[n+ 1] = µ[n]− δµ(r
∗[n]− φ‖r∗[n]‖1) (6.11)

where r∗=[r∗1, . . . , r
∗
K ], with

r∗k[n] =

J
∑

j=1

i∗k,j[n]rk,j[n] (6.12)

and δµ is a step-size suitably selected to ensure convergence [61].

By varying the proportionality constraints and, consequently, the dual geo-
metric multiplier µ∗, the convex hull of ergodic rate region can be parameterized.
Note that, since the original problem is not convex, the optimum may not lie on
the convex hull and the dual problem may lead to a suboptimal solution which
is the point that lies on the convex hull and is the closest to the optimum. The
algorithmic complexity of this solution is mainly due to the search for the optimal
patterns to be used in I∗[n]. Such complexity can be highly reduced when an es-
timate of the average number of PRBs required to achieve the prescribed portion
of rate is available as shown in the next section.
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6.3.2 Estimation of the Average Amount of Allocated Re-
sources

We derive here a linear estimate of the average number of PRBs allocated to each
user, i.e., Ḡ∗ = [Ḡ∗

1, . . . , Ḡ
∗
K ], with Ḡ∗

k = E[G∗
k], when the optimal rate R∗ is

achieved. Since R∗ depends on φ, we would like to obtain Ḡ∗ as function of φ.
The first step of the derivation is to build a simple local approximation of the
convex hull of the rate region around R∗, which can be expressed in parametric
form as function of the vector G̃ = [G̃1, . . . , G̃K ] � 0, denoting the average number
of allocated PRBs. We approximate the convex hull of the rate region with the
(K − 1)-dimensional hyperplane

Rv = {R̃ : R̃k = akG̃k, ∀k, ‖G̃‖1 = G}, (6.13)

where the constraint ‖G̃‖1 = G, implying that all the resources are allocated at
each slot, is usually reasonable when K is sufficiently large. As an example, in
the two-user case Rv is a parametric line with parameters G̃1 and G̃2 = G− G̃1,
leading to R̃1 = a1G̃1, R̃2 = a2(G− G̃1). To make Rv a local approximation, the
two following constraints must hold:

1. the optimal rate vector R∗ must belong to Rv

2. Rv is tangent to the rate region at R∗.

Condition 1. implies that R∗
k = akG

∗
k, ∀k ∈ K, which follows ak = R∗

k/G
∗
k.

Condition 2. implies that Rv is orthogonal to µ∗, since, from convex optimization
theory, it is known that the dual geometric multiplier µ∗ associated to the solution
of the dual problem defines the normal vector to the convex hull of the rate region
at the optimal rate vector R∗ [90]. This means that

µ∗
k = c

(

dR̃k

dG̃k

)−1

=
c

ak
= c

G∗
k

R∗
k

, ∀k ∈ K (6.14)

where c is a real constant which can be derived by combining (6.14) with constraint
(6.8c), as follows

c =

(

∑

k∈K

φkḠ
∗
k

R∗
k

)−1

. (6.15)

By considering R∗
k = φk‖R

∗‖1 and ‖Ḡ∗
k‖1 = G, we obtain:

µ∗
k ≈

R∗
k

Ḡ∗
k

(

∑

k∈K

φkḠ
∗
k

R∗
k

)−1

=

(

Ḡ∗
k‖R

∗‖1
φk‖R∗‖1‖Ḡ∗

k‖1

)

=
Ḡ∗

k

Gφk

(6.16)
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Thus

Ḡ∗
k ≈ Gφkµ

∗
k, ∀k ∈ K. (6.17)

The proposed estimate of the average number of allocated PRBs depends on the
dual variables µk. By exploiting the adaptive implementation of µ as in (6.11),
eq. (6.17) can be used to adaptively estimate the average number of allocated
PRBs, i.e., Ḡk[n] = µk[n]φkG.

6.3.3 Proposed RRA Algorithm

The knowledge of an estimate of the average number of allocated PRBs G∗
k is here

exploited to reduce the search space of optimal patterns in the WSR maximization
problem in (6.10). In fact, we consider for allocation only the patterns having up
to Ḡk[n] PRBs, leading to a sub-optimal solution of problem (6.7).

The pseudo-code of the proposed algorithm 4, which is is composed of two
stages, is listed in Algorithm 1. In the first stage (lines 6-18) users are sequentially
scheduled according to their best value of µkrk,j, i.e., with rk,j obtained among the
not yet allocated patterns of G̃k PRBs, where G̃k is not larger than the estimate
in (6.17). The initial value of G̃k is initialized to Ḡk[n] = ⌈µk[n]φkG⌉, where
the Ceil operator projects the estimate on the discrete space G and ensures that
∑

k Ḡk[n] ≥ G.

After each pattern allocation, G̃k is reduced or preserved in order to consider
only set of patterns that have no PRBs in commons with the ones already allo-
cated. This is performed by evaluating the maximum number of still allocable
adjacent PRBs (lines 15-16), thereby ensuring contiguous PRB allocation. Note
that the operations in lines 15 and 16 can be performed through a look-up table,
which can be easily built off-line. Since each search is performed in the pattern
set JG̃k

with cardinality G− G̃k+1, the worst-case complexity of this stage which
corresponds to the case ⌈µk[n]φkG⌉ = 1/G, is O(GK). In case the final values
G̃k are such that Q =

∑

k G̃k < G, there may still be a maximum of G − Q
unallocated PRBs. An increase of the objective, i.e., the sum-rate, can be still
obtained by allocating these PRBs. The second stage (lines 21-28) tries to allo-
cate each not yet allocated PRB to users having already allocated neighbor PRBs,
according to the maximum increase in marginal weighted rate. The complexity
of this second stage is O(KQ), where Q ≪ G. Therefore, the overall algorithm
complexity increases only linearly with the number of users and the number of
resources.
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Algorithm 4 Sub-optimal algorithm to solve problem (6.7)

1: Input φ, γ
2: Initialize µ[0]
3: for all n do
4: µk[n]← µk[n]/(µ

T[n]φ), ∀ k ∈ K;
5: J ′ = J , G ′ = G, K′ = K, Gmax = G;
6: repeat
7: for all k ∈ K′ do
8: G̃k ← min(⌈µk[n]φkG⌉, G

max), ∀ k ∈ K;
9: j̃k ← argmax

j∈J
G̃k

rk(γ
eff
k,j[n]);

10: end for
11: k∗ ← argmax

k∈K′

µkrk(γ
eff
k,j̃
[n]);

12: j∗k∗ = j̃k∗ ;
13: K′ ← K′ \ {k∗};
14: G ′ ← G ′ \ Gj∗

k∗
;

15: J ′ ← J ′ \ {j : Gj∗
k∗
∩ Gj 6= {0}}

16: Gmax ← argmax
g

{g : J ′ ∩ Jg 6= {0}}

17: gmin
k∗ ← minGj∗

k∗
g, gmax

k∗ ← maxGj∗
k∗
g

18: until G ′ 6= {0} ∨ K′ 6= {0}
19: if G ′ 6= {0} then
20: define δj := G−Gj

21: for all g ∈ G ′ do
22: kt = argmin

gmin
k

>g

gmin
k

23: kb = argmax
gmin
k

<g

gmax
k

24: define uk := 1 if k = kb, 0 otherwise;
25: ∆rk = µk[n](rk,j∗

k
+δj∗

k
+uk

[n]− rk,j∗
k
[n]), k = kt, kb

26: k∗ = argmax(∆rkt,∆rkb)

27: j∗k∗ ← j∗k∗ + δj∗
k
+ uk∗

28: end for
29: end if
30: compute r̃[n] and update µ[n+ 1] according to (6.3) and (6.11)
31: end for
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6.3.4 Comparative Study

In this section we first evaluate and compare the performance of the proposed
algorithm in realistic scenario through simulation. We consider an uplink SC-
FDMA system with subcarrier spacing equal to 15 kHz and time slot duration
equal to 10 ms. We investigate the performance of the proposed solution by
varying the number of users, which are uniformly distributed in a cell with radius
equal to 500 m, and the values of total bandwidth, i.e., B = 1.75, 3, 5 MHz
resulting in G = 6, 15, 25 allocable PRBs, respectively. The user power budget
is set to 23 dBm. Each user is affected by fast fading which is obtained from a
multi-path channel model with delay spread of 2.3 µs and Doppler bandwidth of
6 Hz. In the evaluation of the assigned rates an SNR gap of 3dB is taken into
account.

We first validate the estimate in (eq. (6.17)) by running Monte Carlo simula-
tion with different number of users and B = 3 MHz. For simplicity, the weights
µ are fixed and the values of φ are then evaluated. The built-in bintprog matlab
procedure is used to solve the WSR problem (6.10) at each slot [85]. Fig. 6.3
reports two examples of the results obtained when the weights µk of each user
are selected as: (i) inversely proportional to its long term channel capacity (Fig.
6.3(a)), and (ii) randomly with uniform distribution (Fig. 6.3(b)). We can observe
that in the first case (Fig. 6.3(a)), the estimation is highly accurate due to the
fact that the resulting share of rate among users is quite balanced. In the second
case the final share of throughput is generally unfair, with few users having large
Ḡk. Nevertheless, the estimate is still quite effective.

We next compare the performance of the proposed linear resources estimate
(LRE) algorithm with (i) the optimal solution (OPT) obtained by using the built-
in Matlab function bintprog [85], which performs a branch & bound search proce-
dure and a LP relaxation at each iteration to solve (6.10), and (ii) a quasi-optimal
solution obtained through the canonical dual method (CDM) proposed in [86], to
solve (6.10). The results presented here refers to φk = 1/K, ∀k ∈ K. Table 6.1
shows for each algorithm the complexity order and the typical number of itera-
tions required to converge in the test-case of 10 users and 25 PRBs. The bintprog
procedure achieves an optimal solution within Imjr ≈ 2 major iterations of branch
& bound search at which corresponds Imnr ≈ 40 LP relaxations with complexity
O((G+K)2). The sub-gradient based iterative approach used in the CDM strat-
egy requires the computation of KJ , K and G variables in the vectors, ρ,λ and ǫ,
each one requiring Iρ, Iλ and Iǫ iterations, respectively. The number of iterations
highly depends on the choice of the initial variables. In our numerical evaluations
the overall complexity of the CDM approach is generally comparable to that of
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Figure 6.3: Scatter plots showing the empirical correlation between Ḡk/G and
µkφk. µk is selected as the inverse of the achievable long term user capacity (a),
and randomly with uniform distribution (b), considering G=15 PRBs. Pearson
correlation coefficient is 0.9999 (a), and 0.9945 (b).

Strategy Complexity Typical value (K=10, G=25)
OPT O(ImjrImnr(K +G)2) ∼ 104

CDM O(IρK[(G2 +G)/2 + 1] + IǫG + IλK) ∼ 105

LRE O(GK) 200

Table 6.1: Complexity Comparison.

the optimal procedure, even when the initial values are chosen as the optimal
values computed at the previous slot. The linear complexity of our proposed al-
gorithm greatly reduces the number of required iterations. Fig. 6.4 provides a
performance comparison in terms of the average sum-rate, by varying the number
of available PRBs with K = 10 users (left histogram) and by varying the number
of users with G = 15 PRBs (right histogram). The fairness is evaluated through
the Jain index [91], which is always greater than 0.99 in all investigated cases. The
CDM algorithm approaches the performance of the optimal solution with a loss
always less than 1%. The performance loss of the proposed LRE algorithm ranges
between 9% and 11%, thus offering an attractive trade-off between computational
complexity and average throughput in practical QoS aware applications.
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Figure 6.4: Average sum-rate resulting from the proposed LRE algorithm, CDM-
based algorithm and the optimal (OPT) solution, by varying the number of avail-
able PRBs with K=10 users (left histogram) and by varying the number of users
with G=15 PRBs (right histogram).

6.4 APP Layer: Video Coding and Adaptation

For the m-health application addressed in this chapter, we adopt the GOP en-
coding format IBPBPBPP and exploit temporal and SNR scalability with a fixed
spatial resolution. More precisely, for the high quality ultrasound video tempo-
ral scalability is allowed with two available temporal decimations, whereas only
SNR scalability is allowed for ambient videos. We here focus on MGS scalability
using one enhancement layers and optimized bit-stream extraction (see section
2.1.3 for further details). RD Rate adaptation techniques dynamically adapt the
amount of transmitted information to the available channel bandwidth by taking
into account the content of the videos and its impact on the end user quality.
Rate-distortion (R-D) models enable to predict the minimum bit rate required
(in bit/s, or bps) to achieve a target distortion, defined in terms of Mean Square
Error (MSE). In this chapter we consider the semi-analytical R-D model proposed
in eq. (3.9).

We assume that the ambulance equipment negotiates with the LTE access net-
work a guaranteed bit rate R̄0 to support the emergency m-health services. Such
value R̄0 is derived by defining the value of φ0 in problem (6.7) and eventually
updated everyW seconds in case of critical cell-load conditions or bad channel con-
ditions for the ambulance. The m-health user exploits this guaranteed bandwidth
to deliver the best video quality according to priority and fairness constraints de-
fined for the different videos. This is obtained through a dynamic rate adaptation
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strategy, consisting in maximizing the overall video quality while minimizing a
weighted quality difference among the different videos under minimum and max-
imum rate constraints. This strategy extends the one proposed in chapter 4 by
addressing the problem for both empirical and semi-analytical R-D model with
two-parameters and then extended in chapter 5 with three-parameters models,
but without considering weighted quality difference. As shown in section 4.2.1,
when the parametric R-D model is sufficiently accurate, it can be used to relax
the multi-objective optimization problem leading to a much simpler constraint
satisfaction problem. Here, we follow this approach by defining an adaptation
strategy which derives the transmission rates as the solution of the following set
of equations and constraints:

∑

v∈V

HFv = R̄0, (6.18a)

∆(Di, Dj ;wi, wj) = 0 ∀i, j ∈ V, i > j (6.18b)

Fmin
v < Fv < Fmax

v ∀v ∈ V (6.18c)

where V is the set of videos handled by the ambulance for e-health emergency
services, H is the estimated overhead introduced at the different layers of the
network architecture, wv, v ∈ V are the weights used to account for the different
priorities mentioned in the introduction and ∆(Di, Dj;wi, wj) is the extended
distortion-fairness metric for each pair of videos, defined as

∆(Di, Dj;wi, wj) =































0 if di = Dmin
i ∧ dj < di

0 if dj = Dmin
j ∧ di < dj

0 if di = Dmax
i ∧ dj > di

0 if dj = Dmax
j ∧ di > dj

|wiDi − wjDj | otherwise.

(6.19)

The algorithm 3 proposed in section 5.5 to solve the similar problem 5.31 can be
suitable extended to solve the problem considered here. Recall that xv, yv ∈ {0, 1},
v ∈ V, are binary variables that indicate whether (1) or not (0) the two constraints
Fv > Fmin

v and Fv < Fmax
v are active for the video v. We then can then extend

the function defined in eq.5.32 and 5.33 as

Γ (x,y, D) =
∑

v∈V

xvyv

(

αv

wvD + ξv
+ βv

)

− Λ(x,y) (6.20)
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where

Λ(x,y) =
R̄0

H
−
∑

v∈V

[

(1− xv)F
min
v − (1− yv)F

max
v

]

(6.21)

Algorithm 3 in page 51 can be then used to optimally solve problem (6.18).

6.5 Numerical Results

In our simulations we consider an LTE-like access network with subcarrier spacing
∆B = 15 kHz and system bandwidth set to 5 MHz, resulting in G=25 allocable
PRBs. A total of K =20 users with a maximum per-user power budget of 23 dBm
are uniformly distributed in a cell, resulting in an average SNR ranging from 5
to 28 dB. More specifically the ambulance user experiences an average SNR of 13
dB and receives from the LTE access network a GBR with values negotiated in
the range from 2.5 to 7 Mbps, which are obtained by varying the related value
φ0 ∈ [0.2, 1] in problem (6.7). The other users are assumed best-effort, i.e., with

φk =
1− φ0

K − 1
, ∀k ∈ K2 (6.22)

The radio channel for all users is modeled according to the ITU extended vehicular
A model, with a Doppler frequency of 70Hz.

The ambulance sends N=2 raw ambient videos consisting of 300 frames with
resolution 640x360 and one raw ultrasound sequence of 150 frames with resolution
640x480. Each video is acquired with a frame-rate of 30 fps and is looped until
a sequence of 50 seconds is obtained. The video sequences are encoded with the
JSVM reference software [30] with one base layer and two enhancement layers.
Each enhancement layer is split into five MGS layers with vector distribution [3 2 4
2 5]. The GOP size and the IDR period are set to 8 and to 32 frames, respectively.
After encoding, the resulting quality in terms of the average PSNR, ranges from
29 to 35 dB for the ambient videos and from 32 to 40 dB for the ultrasound
video. The three parameters of model (3.9) are evaluated for each IDR period,
resulting in adaptation interval of about 1 sec. The video distortion weights wv

of the ambient videos are set to 1, whereas the weight of the ultrasound video is
set to 2. Finally, video playout deadline at the receiver is set to 200 ms and the
overhead factor is set to H = 1.

Figure 6.5 shows the PSNR at the receiver averaged over each adaptation in-
terval for the three video sequences when a GBR R̄0 = 4.5 Mbps is provided to
the ambulance. We can note how the resulting qualities closely follow the selected
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Figure 6.5: Average PSNR received at the hospital when a GBR R̄0 = 4.5 Mbps
is guaranteed to the Ambulance.

video quality priorities providing a PSNR difference of approximately 3 dB be-
tween ultrasound and ambient videos. Fluctuations on the PSNR are mainly due
to the different spatial and temporal complexity of the scenes composing the video
sequences. Such behaviour can also be appreciated in Figure 6.6 where the aver-
age PSNR of each video sequence is plotted against the different GBRs granted to
the ambulance. By looking also at Table 6.2, where the average rates provided to
ambulance and to the other best-effort users are reported for different R̄0 settings,
we can note that our strategy adjusts the quality of each video in a proportional
way by reshaping the source rate, thus keeping a reasonable throughput also for
the best-effort users. On the other hand, an high GBR requirement, i.e., 7 Mbps,
allows to transmit the highest enhancement layer for most of the time, but a large
part of the physical resources is drained by the ambulance, thereby starving the
best-effort users.

Finally, in Figures 6.7 and 6.8 we report a few examples of received frames, as
they result from the joint adaptation process. Frames in Fig. 6.7 are extracted
from to the ultrasound video sequence, while frames Fig. 6.8 from the ambient
video 1. Comparing the received frames with the original ones, we note that the
proposed adaptation strategy is capable to achieve good visual results even when
the overall available throughput for the m-health user is low (R̄0 = 3.3 Mbps). At
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Figure 6.6: Average PSNR of the video sequences received at the hospital for
different values of GBR granted to the ambulance.

R̄0 [Mbps] (guaranteed) 2.5 3 4 4.5 5 6 7
R0 [Mbps] (achieved) 2.7 3.3 4.2 4.5 5 6 6.8
Rk, k ∈ K2 [Mbps] 1.35 1.21 0.93 0.81 0.67 0.27 0.08

Table 6.2: Average rate R0 provided to m-healt user and average rate Rk, k ∈ K2

provided to the best-effort users, for different values of GBR R̄0 settings.

the same time, when the amount of available resources is higher (R̄0 = 7 Mbps),
the optimization strategy adaptively increases the final quality of all the videos.
We conclude by observing that in all cases, the diagnostic ultrasound sequence is
transmitted with higher quality with respect to ambient videos, according to the
weights used in (6.18), enabling effective tele-diagnosis services.
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(a) (b) (c)

Figure 6.7: Examples of original and received frames for the echo sequence with
different GBR settings for the m-health user: original frame (a), R̄0 = 7Mbps.
PSNR= 39.46dB (b) and R̄0 = 3.3Mbps. PSNR= 34.70dB (c).

(a) (b) (c)

Figure 6.8: Examples of original and received frames for on sequence with different
GBR settings for the m-health user: original frame (a),R̄0 = 7 Mbps. PSNR=
35.93 dB.. (b) and R̄0 = 3.3Mbps. PSNR= 29.58dB (c).



Chapter 7

Cross-layer Optimization for
HTTP Adaptive Streaming in
LTE Networks

In the previous chapters, we have proposed a complete framework to fully optimize
the video delivery over IP/UDP/RTP protocol stacks in both downlink and uplink,
i.e., OFDMA and SC-FDMA, systems of the next generation wireless systems.
We have assumed the possibility to handle both the MAC layer and and the
APP layer i.e., by performing enhanced RRA and source rate adaptation/control,
respectively. The transmissions based on RTP have the main drawback that
requires dedicated servers and pass through a port that is often blocked by firewall
and NAT. For this reasons most of the video traffic is now transmitted over HTTP
protocol, which is NAT transparent, and may exploit the large deployments of
cache and content distributed networks (CDN).

A new approach referred to as HTTP adaptive streaming (HAS) [3] is becom-
ing popular. HAS is adaptive in the sense that it allows a client to adaptively
switch between multiple bit-rates, depending on the bandwidth or data rate avail-
able between the server and the client. This is a particularly useful feature for a
wireless environment since the data rate of the wireless link can vary over time.
Based on TCP, one of the objectives of HAS is keeping the fairness among multi-
ple homogeneous/heterogeneous connections in the network. In fact, fair share of
network resources among multiple heterogeneous connections is one of key issues
especially for the commercial use of the Internet [92].

On the MAC layer side, optimized RRA was performed by assuming the com-
plete and perfect knowledge of the CSI of each user. Nevertheless, in order to
limit the large feedback required by such information, LTE allows only a limited
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feedback, that is the sub-band with the highest CSI and its index. In such case,
RRA scheduler is often based on a proportional fair rule [93, 94] with GBR and
MBR contraints, which basically allows only to optimize the GBR values accord-
ing to the type of services and traffic load. In this chapter, we then extended the
multi-user cross-layer proposed solution presented in chapter 5 to cope with HAS
and LTE RRA constraints.

In literature, multi-user HAS video delivery optimization has attracted increas-
ingly attention in the last few years. In [95], an overview of the recently standard-
ized quality metrics for HAS and an end-to-end evaluation study are presented.
They concluded that network-level and radio-level adaptation is required for en-
hancing service capacity and user perceived quality. Recently, Authors in [93]
propose an efficient method to optimally and adaptively set up the GBR of each
video flow in a LTE network with heterogeneous traffic. The approach is intended
to achieve a level of fairness among the video flows while preventing starvation
of other data flows. However, the definition of the utilities is not content-aware
and may not lead to the best possible quality fairness among the video flows.
To the best of our knowledge only [96] investigated an optimized content-aware
multi-user HAS video delivery framework in LTE networks. Similarly to here, a
media-aware network element (MANE) is in charge of selecting the streaming rate
required by each client in order to maximize the aggregate video utilities under
resource constraint. However, differently from here, video quality fairness is not
considered and the peculiarities of pull-based delivery strategy of HAS technology
are not taken into account.

We here propose a quality-fair adaptive streaming (QFAS) solution to deliver
fair video quality to HAS clients competing for the same resources in an LTE cell.
Using a similar mechanism as [93], the proposed QFAS solution brings intelligence
into the network to adaptively select the prescribed GBR of each UE according
to the contents characteristics in addition to the channel condition. Such GBR
values are derived by solving an optimization problem aimed at maximizing the
aggregate video utility under minimum and maximum rate constraints, available
resource, and quality-fair constraint across multiple video clients. Numerical eval-
uations resulting from extensive and detailed ns2 simulations show that QFAS
solution provides significant improvement to the quality received by the end-users
demanding more complex video, even when they are experiencing bad channel
condition, with a tolerable degradation of the other low-complexity videos. The
quality fairness is thus well improved among heterogeneous clients compared to
best effort and AGBR approaches.
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Figure 7.1: System Architecture.

7.1 System Model and Assumptions

As depicted in Fig. 7.1, we consider an LTE wireless access network serving a
total of K UEs, subdivided in V HAS users indexed by the set V = {1, . . . , V },
and L data users. One or more HAS servers encode the video sequences at multi-
ple bit-rates and, after segmentation, generate a manifest file, also named media
presentation descriptor (MPD). We assume that each HAS server extracts syn-
thetic quality information from each segment (also called chunk in the following)
and inserts them in the MPD. A MANE, located close to the e-NodeB (eNB),
is able to intercept and process the MPD requested by each HAS client in order
to get rate and quality information. The eNB allocates the available resources
according to a general proportional fair scheduler with minimum rate, i.e., GBR,
constraints, which are dynamically updated by the MANE.

In the following we omit the index of the client and we details the adaptation
process for a single client-server link in an ideal scenario as illustrated in Fig. 7.2.
Let R be the set ofM available rate profiles rm, m = 1, . . . ,M , listed in the MPD
and assume that the client is able to follow the GBR provided by the eNB. This
means that once a chunk, i.e., chunk (n − 1) in Fig. 7.2, is received, the rate
decision algorithm (RDA) at the client completes the measurement of the chunk
download rate R̂[n− 1] and requests chunk n with a profile rate

r∗[n] = max
rm≤R̂[n−1]

rm, (7.1)

according to a pull-based approach.
When the MANE intercepts the request, it collects the channel state infor-

mation (CSI) from the eNB and updates the GBR value R[n] that the scheduler
at the eNB will use to send chunk n. In case of ideal rate measurement, which
requires that the channel state information do not vary significantly between time
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Figure 7.2: Proposed approach for a single HAS video delivery optimization.

instant n and time instant (n + 1), we would have R[n] = R̂[n], i.e., the GBR
value R[n] is then used for the rate request of chunk (n + 1). Thus, to avoid
mismatch due to video characteristic changing over time, the GBR value R[n] is
computed based on the video utility of the chunk (n+1). With this approach, the
MANE only acts as pre-scheduler that dynamically selects the feasible guaranteed
minimum rate, transparently to the actual physical LTE scheduler. More details
are provided in the next Section.

7.2 Optimization Problem and Solutions

The objective of our quality-based approach is to derive the rate which allows to
maximize the overall video quality under quality fairness constraint and according
to users channel condition. Let n be the chunk index requested by user k, we define
Uk as the utility of requesting chunk (n+1) in terms of video quality metric. The
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following parametric rate-utility model is used to describe the evolution of the
utility Uk as a function of the rate Rk:

Uk = f (ak, Rk) , (7.2)

where ak ∈ A ⊂ RNa is a time-varying and program-dependent parameter vector.
For all values of a belonging to the set of admissible parameter values A, f (ak, R)
is assumed to be a continuous, invertible and strictly increasing function of R. The
model (7.2) may represent the variation of the SNR, the PSNR, the SSIM (see
section 3.6), or any other strictly increasing quality metric as function of the
encoding rate [97].

Following the approach in [93,96], we consider a simplified air interface model
where the maximum achievable rate for each UE is estimated according to its
average channel condition. Let γk be the average signal-to-noise plus interference
ratio (SNIR) experienced by UE k. As in [93], we define wk = [log2(1 + γk)]

−1 as
the inverse of the estimated average rate per unit bandwidth. The optimization
problem is then stated as follows:

max
∑

k∈V

f (ak, Rk) (7.3a)

s.t. Ak ≤ Rk ≤ Bk, ∀k ∈ V (7.3b)
∑

k∈V

wkRk ≤ Π (7.3c)

∆(Ui, Uj) = 0 ∀i, j ∈ V, i 6= j (7.3d)

where Ak, Bk are the minimum and maximum rates from the MPD of the video
requested by UE k. The value of Π defines the amount of resources dedicated
to the HAS UEs, which can be statically configured or dynamically computed
at each time transmission interval (TTI) based on number of users and scaling
factors [93].

The utility-fairness metric in the constraint (7.3d) is defined as:

∆(Ui, Uj) =































0 if Ui = f(ai, Ai) ∧ Uj < Ui

0 if Uj = f(aj , Aj) ∧ Ui < Uj

0 if Ui = f(ai, Bi) ∧ Uj > Ui

0 if Uj = f(aj , Bj) ∧ Ui > Uj

|Ui − Uj | otherwise.

(7.4)

The metric, introduced in eq. (4.2) in terms of video distortion extends the simple
fairness metric |Ui−Uj | to the case where Ri, Rj are constrained to their minimum
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and maximum values. The motivation behind such formulation are similar to the
one mentioned for the video distortion and can be explained as follows: Ideal
fairness among the utility values assigned to the multiple HAS users would require
Ui = Uj , ∀i 6= j, if the utilities were not constrained to their maximum or minimum
rate values. This may not be guaranteed due to the constraints on the minimum
and the maximum rates which are different for each flow. In fact, in presence
of rate constraints, if a video achieves its maximum utility, it is reasonable to
use the available resources to increase the utilities of other videos. On the other
hand, in a case of scarce resources, if decreasing the rate of the i-th video is not
possible since its minimum utility value has been already reached, it is necessary
to decrease the rate of the other videos, at the price of decreasing the related
utility.

The optimization problem in (7.3) admits a feasible solution under the condi-
tion

∑

k∈V wkAk ≤ Π. By considering the trivial condition
∑

k∈V wkBk ≥ Π, we
have already show in chapter 4 that the problem (7.3) collapses in a constraint-
satisfaction problem where the objective is achieved by fulfilling constraint (7.3c)
with an equality constraint. Optimal solution can be derived by relaxing con-
straint (7.3b) with two boolean variables and applying a procedure with quadratic
complexity in the worst case. More specifically, we can re-formulate the function
presented in eq. 5.32 , based on the utility-to-rate model as:

Γ (x,y, U) =
∑

k∈V

xkykwkf
−1(ak, U)−Π(x,y) (7.5)

where
Π(x,y) = Π−

∑

k∈V

wk

[

(1− xk)Ak + (1− yk)Bk

]

, (7.6)

and f−1 is the inverse function of f . Since f (a, R) is a continuous and strictly
increasing function of R, f−1 (a, U) is continuous and strictly increasing function
of U .

The algorithm is then the same as the one proposed in Algorithm 3, where
Π = Λ/H and µk = wk, Ak = Fmin

k , Bk = Fmax
k , ∀k and the solutions are R̃k = F̃k.

The outcoming solutions R̃k of such algorithm are send to the eNB as GBR
contraints and will be set equal to the Maximum Bit-Rate (MBR) constraints.

7.3 Numerical Results

We consider 4 video sequences extracted from real time programs, i.e., Interview,
Sport, Bunny and Home, in 4CIF format at 30 fps (see Table 3.1. The sequences
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Figure 7.3: Chunk-by-chunk SSIM at the client for scenario (A) resulting from
BE (a), AGBR (b) and the proposed QFAS (c).

are looped 10 times and encoded through DASH Encoder [98] with 10 profiles
with rate ranging from 150 kbps to 5 Mbps. Chunk duration is set to 2 seconds.

We have considered both PSNR and SSIM metric [45] to assess the video
quality. Due to the lack of space, we here provide results only in terms of SSIM.
Specifically, to model the dependency between the utility (here SSIM) and the
rate, we consider a logarithmic SSIM to rate continuous utility in the interval of
interest [Ak, Bk] proposed in section 3.6.

Simulations are carried out on the ns2 -platform which includes HAS servers
and clients, LTE radio interface and radio resource management as well as the
different protocol layers (TCP/IP, PDCP and RLC). Specifically, we consider a
single cell where a total of 20 UEs (L=16 FTP UEs and V = 4 HAS UEs) are
uniformly distributed in one cell with a radius of 1 km.
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Figure 7.4: Chunk-by-chunk SSIM at the client for scenario (B) resulting from
BE (a), AGBR (b) and the proposed QFAS (c).

The radio channel is modeled according to the ITU extended pedestrian A
model [99] and users are also affected by log-normal shadowing (std. deviation:
8 dB) with an exponential auto-correlation (correlation distance: 100 m). Each
HAS client requests one of the video sequences mentioned above. The amount of
available resources Π dedicated to HAS UEs is derived according to the on-line
implementation proposed in [93]. A maximum receiver buffer of 40 s is considered
allowing to absorb the possible mismatch between the rate at which the chunk is
encoded and the rate actually resulting after transmission.

In order to better assess the goodness of the proposed framework, we investi-
gate two different scenarios; in the first scenario (A) UEs requesting high complex
videos, i.e., Home and Sport, are in good channel conditions while in the second
(B) such UEs experience bad channel conditions.
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Scen. Average Rate [Mbps] Average SNIR [dB]
Traffic BE AGBR QFAS Bunny Home Interv. Sport

A
FTP 1.19 0.93 0.94

8.1 16.8 10.2 19.6
HAS 0.76 1.11 1.26

B
FTP 1.13 0.94 0.97

16.8 8.1 19.6 10.2
HAS 0.73 1.11 0.95

Table 7.1: Average SNIRs in dB of HAS clients and resulting average rates for
FTP and HAS users.

We compare the proposed strategy with the two following approaches: (i) best
effort (BE), where all UEs are non-GBR (QCI equal to 9) [100]; (ii) AGBR ap-
proach [93] where the GBR values are updated every 2 seconds for each HAS UEs
(QCI equal to 4). Table 7.1 reports the average SNIRs experienced by each client
as well as the average MAC rate provided by the three approaches in the two
scenarios. Fig. 7.3 shows the received chunk-by-chunk SSIM at the client in the
first scenario (A) for each strategy, while Table 7.2 reports the overall average and
the standard deviation of the SSIM. We can note how AGBR approach allows to
increase the quality of the high complex video with respect to BE approach by in-
creasing the average rate provided to HAS clients. However, both approaches (BE

Scen. SSIM BE AGBR QFAS

A
Average 0.946 0.966 0.971
Std. Dev. 0.042 0.031 0.005

B
Average 0.934 0.960 0.959
Std. Dev. 0.063 0.045 0.012

Table 7.2: Overall average and standard deviation of the SSIM at the clients for
two different scenarios resulting from BE, AGBR and the proposed QFAS.

and AGBR) experience less than ideal quality fairness with a standard deviation
of the SSIM at the client higher than 0.031. Moreover, high quality fluctuations
are experienced by users requesting high-complexity video, although they are in
good channel condition. Our proposed QFAS strategy allows to significantly in-
crease the quality of the high-complexity video up to 0.058 in average SSIM and
0.011 in overall SSIM, while keeping reasonable high quality to the low-complexity
ones. However some quality drops in QFAS are still experienced by the Bunny
client due to the gap between the limited number of available rate profiles and
the continuous utility.
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The benefits of our QFAS approach are also significant in the scenario B,
as showed in Fig. 7.4. Due to the unfavorable channel condition, BE causes
intolerable average and instantaneous quality degradation. AGBR improves video
quality over BE. However, compared to QFAS, AGBR still results in lesser quality
to Sport, exhibits higher fluctuations, and provides unfair quality in contrast to
Interview. QFAS better distributes the available resources, as confirmed by the
resulting average rates in Table 7.1, by providing a chunk SSIM equal or higher
than 0.9 to all video programs which ensure a good quality level for all users. As
reported in Table 7.2, similar overall SSIM are provided by both approaches but
the fairness in terms of standard deviation is highly improved. We also verified
that both AGBR and QFAS approaches maintains similar buffer stability at the
client. However, some drop in quality experienced by Home client in AGBR are
due to the RDA at the client, which is selecting the minimum rate profile to
prevent buffer underflow.



Chapter 8

Conclusions

As video streaming has become the most popular application of Internet mobile,
the requirements of enhanced video QoE of the end-user have called for content-
aware optimized video delivery wireless systems. The main challenges still resides
on a better Quality of Service (QoS) support, and on a dynamic adaptation of the
transmitted video streams to meet the network condition. Without an efficient and
optimized exchange of information among the different layers of the transmission
systems, such goals are hard to be achieved.

In this thesis we have proposed novel cross-layer optimization frameworks
for SVC delivery and for HAS application over the downlink and the uplink of
Long Term Evolution (LTE) wireless networks. They jointly addressed optimized
content-aware rate adaptation and radio resource allocation (RRA) with the aim
of maximizing the sum of the achievable rates while minimizing the quality dif-
ference among multiple videos.

In order to perform optimized content-aware rate adaptation, we have first
analyzed the video quality metrics that allow to assess the quality of a video se-
quence and then we have provided enhanced low-complexity models to accurately
estimate the R-D relationship of scalable video transmitted over error-free and
error-prone channels. For the latter scenario, an enhanced UXP profiler has been
designed with the objective to provide R-D relationship that keeps the expected
distortion almost unchanged with only a rate increase/decrease at different packet
failure rate.

For the multi-user SVC delivery over downlink wireless systems, where OFDMA
is the key PHY layer technology and IP/TV is one of the most representative ap-
plication, we have first formulated the optimization problem and discussed its
feasibility, showing that the optimal solution is unique and lays on the boundary
of the convex rate region. Then, the problem has been ”vertically” decomposed
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into two sub-problems, each one characterized by parameters and optimization
constraints confined within a single layer. The novel ILA algorithm has been pro-
posed to achieve the global solution and its convergence and optimality have been
rigorously proved. Also efficient methods to solve the two sub-problems has been
presented by proving their optimality. Finally, in order to reduce the overall com-
plexity and the latency of the proposed algorithm, a suboptimal low-complexity
strategy based on the first-step of the ILA algorithm has been designed. From the
implementation perspective, the proposed cross-layer strategy only requires that
the base station is able to allocate resources according to a weighted sum-rate
maximization, where the weights can be dynamically updated to track the exist-
ing rate constraints. In the timescale of the application frame interval the MAC
layer sends the weights to the APP layer while the APP layer sends constraint
parameters to MAC layer. Our numerical evaluations have shown that the ILA
algorithm converges in few iterations and the suboptimal one-step version achieves
almost the same performance of the ILA algorithm. Moreover, it is shown that
the 1-step ILA algorithm is able to obtain significant overall and individual video
quality gains, up to 1.5 and 7 dB in average PSNR, respectively, compared to
other state-of-the-art frameworks exhibiting similar complexity.

For multiple SVC delivery over uplink wireless systems, where SC-FDMA is
the key PHY layer technology and healt-care services are the most attractive and
challenging application, we have proposed joint video adaptation and aggregation
directly performed at the application layer of the transmitting equipment, which
exploits the guaranteed bit-rate (GBR) provided by the e-NodeB. The proposed
approach is able to manage the inherently different priorities of the data flows gen-
erated by the m-health user. In particular, it optimally adapts the SVC-encoded
streams, in order to deliver the ultrasonography information with sufficiently high
quality and the set of ambient videos tuned according to quality fairness criteria

Due to the NP-hardness of the RRA resource allocation problem and the re-
quirements of QoS-aware scheduling strategies, we have also analyzed the ergodic
sum-rate maximization problem under proportional rate constraints in SC-FDMA
systems and we have proposed a novel sub-optimal algorithmic solution, whose
complexity increases only linearly with the number of users and the number of
resources. Numerical results have shown that the performance gap to optimal
solution is limited to the 10% of the sum-rate.

Finally, we have proposed a quality-fair adaptive streaming solution to de-
liver fair video quality to HAS clients in a LTE cell by adaptively selecting the
prescribed (GBR) of each user according to the video content in addition to the
channel condition. By adding intelligence in the network, i.e., through the use
of a MANE, the proposed approach is able to control the rate provided to each
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HAS user in order to obtain fair video quality among multiple HAS clients. This is
achieved even when HAS users are requesting programs with significant differences
in video complexity and are experiencing different channel conditions. Numeri-
cal results have shown that, compared to other state-of-the-art approaches, the
proposed QFAS solution provides significant improvement in the overall quality
delivered to user demanding complex video with a tolerable degradation of the
other low-complex videos. However, some quality fluctuations dependent on the
RDA at the client, are still present. Future works will consider the possibility of
optimizing the rate request, e.g., by overwriting the chunk request at the MANE,
according to the solution of a problem aimed at provisioning fair video quality
and buffer stability.

Even though broadband mobile provider are reluctant to include application-
aware module in the design of cellular systems, due to management and coordina-
tion issues, our research have shown that tremendous gains in terms of the QoE
of the end-user can be achieved by the proposed cross-layer strategies.
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Appendix A

MAC Layer Algorithm:
Extension to Multi-cell Scenario

RRA in the downlink of OFDMA systems has been studied extensively for the
single-cell case [101]-[102]. However, to address realistic scenarios, a multi-cell
environment has to be considered [103, 104]. In this Appendix we extend the
downlink RRA algorithm for OFDMA system for a single cell scenario proposed
in section 5.6 as part of the ILA algorithm, to multi-cell environment. In this
case, LTE specifications suggest aggressive frequency reuse and distributed low-
complexity implementations [105]. Nevertheless, if the frequency resource is fully
reused in every cell of the network and no inter-Enhanced Node-B (eNB) coopera-
tion/coordination is supported, the cell throughput will be reduced in the attempt
of serving the users at the cell edge, due to inter-cell interference (ICI). Radio re-
source management with ICI coordination is a key issue under investigation by
LTE research community.

ICI coordination can be achieved through the implementation of different de-
grees of network coordination and complexity. High complexity MIMO network
approach [106] requires the availability of user data to be transmitted at all the
eNB’s, as well as collaborative processing based on dirty-paper coding and suitable
precoding. A first step toward complexity reduction is to keep network coordi-
nation to only perform RRA. In a centralized RRA, a control unit collects all
the channel state information (CSI) of every user in the system and allocates
the available Physical Resources Block (PRB) of each eNB trying to maximize
the capacity according to fairness and power constraints. Without an efficient
and fast infrastructure, centralized scheduling is an hard task due to the stringent
time required to exchange the inter-cell scheduling information and the large feed-
back required by the User Equipments (UEs) to send all the CSI. Some strategies
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to reduce this complexity are under study for LTE-advanced [107] where joint
transmission coordinated multi-point (JT-COMP) is proposed [108].

However, distributed RRA at each eNB is suggested for low-complexity multi-
cell radio design. In distributed RRA each eNB allocates resources to its users
only, and UEs feed back a partial CSI. ICI can be partially avoided by means of
an off-line coordinated resource control among the cells in a cluster. Examples
are given by Fractional Frequency Reuse (FFR) and Soft Frequency Reuse(SFR)
[109][110], power planning techniques [111][112], load balancing (LB) [113], or by
partial coordination as in [114] where only cell-edge users send CSI of interfering
links. The lack of full coordination in RRA simplifies the implementation at
the expense of some capacity degradation with respect to centralized RRA. Few
contributions until now, e.g., [114],[115], are addressing RRA in multicell OFDMA
systems.

In this Appendix we first introduce a centralized RRA algorithm aimed at
maximizing the sum-rate of a multi-cell clustered system under proportional rate
constraints contraints, extending the strategy proposed in 5.6. The algorithm is
obtained from an ergodic optimization framework presented in [102]. A stochastic
approximation is applied to derive on-line implementation. After, we reformulate
the algorithm to consider the constraints of a distributed RRA based on power
planning schemes with pre-assigned powers. The distributed RRA algorithm pre-
serves intra-cell fairness, but requires a LB algorithm to ensure inter-cell fairness.
All the algorithms support PRB-based allocation typical of LTE systems.

By comparing centralized and distributed schemes, this work shows that dis-
tributed schemes with aggressive reuse manage to approach the capacity of a
centralized system when the number of users is large. However, a fractional reuse
between 2/3 and 4/5 helps to reduce the gap. This work is organized as follows.
The framework proposed here can be then used, when multiple video has to be
transmitted from a set of eNB connected to the MANE.

A.1 System Model

We consider a a cluster of Q cells with a total of K UEs or users and a multi-
carrier transmission system with S available subcarriers divided in G groups Gg,
g = 1, . . . , G, of N = 12 adjacent subcarriers. The piece of frame composed of
N allocable subcarrier and one slot is defined as PRB, which is the elementary
resource unit for RRA. Each cell is served by one eNB. In this paper, only the basic
configuration where eNBs and UEs are equipped with one antenna is investigated.
However, methods and algorithms developed here can also be extended to multi-
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antenna configurations [102].
We use the discrete variable or index ug,q ∈ K0 = {0, 1, .., K} to indicate the

user (i.e., 0 means no user) that is scheduled to use cell q on PRB g. Note that
only one user or none can be scheduled for each PRB and each cell. The whole
set of these variables is the matrix U ∈ KG×Q

0 , whereas the whole set of powers
assigned for transmission is the matrix P ∈ R+,S×Q∪{0}. It is implicitly assumed
that if ug,q = 0 then ps,q = 0, ∀s ∈ Gg that also means that P has an implicit
dependence on U and viceversa as shown afterwards.

Network coordination is only exploited to perform RRA, i.e., no co coming
from other eNB are considered as inter-cell interference. We define the Signal-to-
Interference plus Noise Ratio (SINR) of user k at frequency s, when the signal is
coming from cell q, as

γk,s,q(ps) =
ps,qck,s,q

1 +
∑Q

m=1,m6=q ps,mck,s,m
(A.1)

where ps = [ps,1, . . . , ps,Q] and ck,s,q = |hk,s,q|
2/σ2

n, being σ2
n the noise power

and |hk,s,q|
2 the channel power gain between eNB q and UE k on subcarrier s.

The channel gain that includes the contribution of path-loss, shadowing and fast
fading.

A.2 Centralized RRA

We consider here a centralized architecture where a control unit collects all the
CSI of every user in the system and allocates the resource units of the cluster
trying to maximize the capacity according to fairness and power constraints.

Following the approach in [101], we consider the framework of ergodic sum-
rate maximization for continuous (capacity based) rates extended to the multi-cell
case. The problem can be formulated, similarly to problem (5.16), as

max
U,P
‖R(U,P )‖1

s.t. Pq(U,P ) ≤ P̄q,

R(U,P ) � φ‖R(U,P )‖1,

(A.2)

where R(U,P ) = [R1(U,P ), . . . , RK(U,P )] and

Rk(U,P ) =
∑

g∈G

∑

m∈Gg

Q
∑

q=1

E[δ
ug,q

k C(γk,m,q(pm))] (A.3)
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is the average rate per unit bandwidth provided to user k and

Pq(U,P ) =
M
∑

m=1

E[pm,q] (A.4)

is the total average power spent by cell q to serve the allocated users. Finally, δuk
is the Kronecker’s delta1 and C(x) = log2(1 + x).

The first constraint refers to the total average power used by q-th eNB, which
must be less than or equal to a maximum amount P̄q. Let us note that this con-
straint allows instantaneous power levels to exceed the average power when nec-
essary. The second constraint determines the share of throughput finally achieved
by each user. Therefore φ = [φ1, . . . , φK ]

T defines the required QoS by each user
and must satisfy the condition

∑K

k=1 φk = 1.

A.2.1 Solutions for the Allocation Problem

Here, we follow the approach presented in [102] for a single-cell multi-antenna
system, which is based on a dual optimization framework that utilizes the La-
grangian function L(U,P,λ,µ), where the dual variables λ = [λ1, ..., λQ]

T ,µ =
[µ1, . . . , µK]

T relax the cost function. The dual problem becomes

min
λ,µ

g(λ,µ)

s.t. λ > 0, µ ≥ 0, (1− µTφ) = 0
(A.5)

where the third constraint on µ holds if sum-rate is not diverging to infinity and
g(λ,µ) = maxU,P L(U,P,λ,µ) is the dual objective.

Although the system utility in (A.2) is non-concave, for ergodic optimization
it is proved that duality gap is zero if the cumulative density function (CDF) of
channel gains is continuous, which happens in classical Rayleigh and Ricean sce-
narios. However, it is not possible to guarantee the dual problem is differentiable.
Hence, an iterative sub-gradient method which updates the Q+K solutions λ,µ
of the dual problem (A.5) at each iteration can be applied. Nevertheless, in the
practical applications, the adaptive implementation is suggested, where the itera-
tions are performed along time and the evaluation of the average power and rate
in the subgradients can be done through a stochastic approximation, as outlined
in [101, 102].

1 δu
k
= 1 if u = k , 0 otherwise
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In order to derive the dual objective g(λ,µ) given λ,µ the expression of the
Lagrangian function can be suitably manipulated as in [102], leading to:

g(λ,µ) =

Q
∑

q=1

λqP̄q + SE

[

max
ug,pm,m∈Gg

M(ug,P )

]

(A.6)

where ug = [ug,1, . . . , ug,Q] and

M(ug,P ) =

Q
∑

q=1,ug,q 6=0

∑

m∈Gg

[

µug,q
C(γug,q,m,q(pm))− λqpm,q

]

(A.7)

The optimal solutions for the evaluation of the dual objective, given λ,µ, denoted
as U ∗ = [u∗

1, ...,u
∗
G]

T , P ∗ = [p∗1, ...,p
∗
M ]T , becomes:

u∗
g = argmax

ug

M∗(ug) (A.8)

with
M∗(ug) = max

ps,s∈Gg

M(ug,P ) (A.9)

and p∗s is the argument that finally leads to M∗(ug).
It should be noted that user allocation in (A.8) represents a discrete opti-

mization problem which requires in general an exhaustive search in the space of
all possible vectors ug. This huge search space can eventually be reduced by
using suboptimal heuristic algorithms as in [102]. However, for each element of
this search space the power allocation solution, i.e., (A.9), has to be computed.
This non-convex problem can be solved by using successive convex approximation
methods as in [116]. A suboptimal solution is obtained by simplifying power al-
location with the water-filling solution evaluated by assuming constant uniform
power for the interfering cells, i.e.,

p̃s,q =

[

µug,q

λq ln2
−

V

γug,q,s,q(Vs)

]+

(A.10)

where the components of Vs are vs,q = V δ
ug,q

0 . The power V is a parameter which
estimates the power of interfering cells in each subcarrier.

Even though the power allocation algorithm based on (A.10), as well as the
update of variables λ in the adaptive implementation, can be distributed on each
base station, user allocation algorithm as in (A.8) requires a centralized controller
which determines, for all sub-carriers, the vectors ug and sends them to eNB
through signaling. Therefore, each eNB has to forward the received CSIs of each
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UE to the centralized controller and to receive back the allocation informations
before transmitting, resulting in a high black-haul signaling. Besides, the signaling
interface in realistic systems, i.e., LTE X2 interface, has not a negligible latency,
resulting in an additional delay on the CSIs report, that should be taken into
account, especially in very fast fading environments. Thus, in a realistic network,
centralized resource allocation is practically difficult to be realized. In the next
section we provide a distributed solution and analyze techniques to mitigate the
inter-cell interference.

A.3 Distributed RRA

In distributed RRA each eNB allocates resources to its users only without any
knowledge of the allocation process at the other eNBs, meaning without knowledge
of the actual ICI. Only partial ICI information is available at each eNB, which
essentially consists of a “power mask“ Vs = [V s,1, . . . , V s,Q], s = 1, . . . , S, used
to limit the power allocated by each eNB q on each subcarrier s. The effects of
ICI can be further mitigated by means of an off-line coordinated resource control
among the cells in a cluster, which is the subject of next Section.

To formulate the distributed RRA problem, let us first define K(q), with cardi-
nality K(q), as the set of users served by the q-th eNB, where K(1)

⋂

. . .
⋂

K(Q) =
{0} and

⋃Q

q=1K
(q) = K. In the distributed setting, only the lower-bound of the

SINR which depends on the power mask Vs, s = 1, . . . , S is known at the eNB,
i.e., γk,s,q(ps) ≥ ps,qηk,s,q where

ηk,s,q =
ck,s,q

1 +
∑Q

m=1,m6=q V s,mck,s,m
(A.11)

is the normalized SNIR lower-bound. The UE can measure ηk,s,q and send it
through a feedback channel to its eNB only. The average rate per unit bandwidth
that can be provided to user k in cell q, without incurring in outages, is given by

R̃k(U,P ) =
∑

g∈G

∑

s∈Gg

E[δ
ug,q

k C(ps,qηk,s,q)], k ∈ K
(q) (A.12)

We can then write the distributed problem as a maximization problem for each
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cell q = 1, . . . , Q :

max
U,P
‖R̃(U,P )‖1

s.t. Pq(U,P ) ≤ P̄q,

R̃k(U,P ) ≥ φk

∑

m∈Kq

R̃m(U,P ), ∀k ∈ Kq

ps,q ≤ V s,q, ∀m

(A.13)

where now there is a restriction on the set of allocation variables U , i.e., ug,q ∈ K
q,

and φk must satisfy the constraint
∑

k∈Kq

φk = 1, ∀q (A.14)

In this way each cell tries to maximize its sum-rate, taking care of intra-cell
fairness only.

A solution for the RRA problem can derived for each cell q by following the
same approach of Sec.A.2 through dual optimization and adaptive algorithms.
The set of dual variables to be updated is still the same, but now the constraints
on µ change as (µTφ)(q) =

∑

k∈Kq µkφk = 1. The allocation problem, due to cell
decoupling, is now simpler than before, because it avoids the non-convex multi-
cell power allocation, and requires, for each cell q and PRB g, the maximization
of the following metric

M (q)(ug,q,P) =
∑

s∈Gg

[

µug,q
C(ps,qηug,q,s,q)− λqps,q

]

(A.15)

leading to the optimal solution [61]:

p∗s,q = min

{

V s,q,

[

µug,q

λq ln 2
−

1

ηus,q,s,q

]+
}

(A.16)

u∗g,q = argmax
ug,q

M(q)(ug,q,P
∗) (A.17)

The main drawback of this solution is the fact that the fairness of rate allocation
is confined within each cell, whereas global fairness depends on load and channel
conditions on each cell. The fairness issue can be partially solved with an off-line
algorithm that balances the eNBs load, as contemplated by LTE [105]. Although
LB is not within the scope of our paper, we will evaluate the performance of
distributed RRA when a simple LB algorithm, is running, which is reported next
for the sake of completeness.
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A.3.1 A Greedy Load Balancing Algorithm

The algorithm considers for each cell q of the cluster the following load metric:

Lq =
∑

k∈Kq

lk,q (A.18)

where

lk,q =
φkK

(q)

C(SIRk,q)
(A.19)

and SIRk,q is the signal-to-interference ratio of user k with respect to cell q eval-
uated by taking only into account distance-based attenuation. The load metric
lk,q estimates the amounts of resource units needed by user k, if served by cell
q, to achieve the required portion φk of the sum-rate. The pseudo-code of the
algorithm is listed in Algorithm.

After an initial assignment of each users k to cell q (line 2-6) having on the min-
imum estimated resources lk,q, the LB algorithm aims to minimize the difference
between the maximum and minimum load of the eNB, i.e., ∆L = Lqmax − Lqmin .
This is iteratively done by moving the user belonging to the cell qmax with the
highest load to the cell qmin with the minimum load, and also having the minimum
positive difference ∆lk = lk,qmin− lk,qmax between the estimated amount of resource
lk,q, which would drain by the cell qmin and qmax. It easy to see that if ∆L[i] is the
difference between the maximum and minimum load at iteration i then ∆L[i+1]
after the new assignment of user u is such that

∆L[i+ 1] =(Lqmax [i]− lu,qmax)− (Lqmin[i] + lu,qmin) (A.20a)

=∆L[i]− lu,qmin − lu,qmax (A.20b)

≤∆L[i] (A.20c)

where the inequality holds given the condition in line 19.
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Algorithm 5 Pseudo code of the Greedy Load Balance Algorithm

1: Initialize tolerance ǫ
2: K(q) = {0}, ∀q
3: for all k ∈ K do
4: q∗ ← argmin

q

lk,q

5: K(q∗) ← K(q∗) ∪ k
6: end for
7: qmin ← argmin

q

Lq;

8: qmax = argmax
q

Lq;

9: ∆L← Lqmax − Lqmin

10: ∆lk ← lk,qmin − lk,qmax, ∀k ∈ Kqmax

11: Kcand = {0}
12: for all k ∈ Kqmax

do
13: if ∆lk > 0 then
14: Kcand ← Kcand ∪ k
15: end if
16: end for
17: if Kcand 6= {0} then
18: u = argmin

k∈Kcand

∆lk

19: if ∆lu > ǫ ∨∆L ≥ lk,qmin + lk,qmax then

20: K(qmax) ← K(qmax) \ {u}

21: K(qmin) ← K(qmin) ∪ {u}
22: Go to line 9
23: end if
24: end if

A.3.2 PRB-based Power/Rate Allocation

In order to decrease feedback complexity, in a realistic LTE scenario also rate and
power are allocated per PRB, as channel state feedback is reduced to no more
than one value per PRB. In this downlink case, the Exponential Effective SNIR
Mapping (EESM)[117] is used to evaluate the SNIR of each PRB, by taking into
account that power mask is constant inside each PRB, i.e., Vs = Vg, ∀s ∈ Gg,
with Vg = [V g,1, . . . , V g,Q].

The EESM for user k, PRB g, cell q is defined as

γ
(eff)
k,g,q = −β log





1

N

∑

s∈Gg

e−
(V g,qηk,s,q−γ

(min)
k,g,q

)

β



 + γ
(min)
k,g,q (A.21)
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where
γ
(min)
k,g,q = V g,q min

s∈Gg

ηk,s,q (A.22)

and the parameter β is used to tune the approximation. Here, with respect to
[117], the term γ

(min)
k,g,q is introduced as an offset that keeps the range of exponential

function limited. The effective instantaneous rate for user k using PRB g in cell
q, when a power pg,q is allocated for transmission, becomes

r
(eff)
k,g,q = N · C

(

pg,q
γ
(eff)
k,g,q

V g,q

)

(A.23)

Parameter β in (A.21) has to be designed to keep the probability P (r̃k,g,q ≤ r
(eff)
k,g,q),

where r̃k,g,q =
∑

m∈Gg
C(pg,qηk,m,q), below a given threshold to prevent outage

events.
In distributed RRA using EESM feedback for each PRB, the equations (A.12),

(A.15) and (A.16) change by replacing ηk,s,q with γ
(eff)
k,g,q/V g,q and by setting ps,q =

pg,q, V s,q = V g,q, ∀s ∈ Gg.

A.4 Power Planning for ICI Coordination

Generally, in distributed RRA each eNB allocates resources without complete
knowledge of ICI. However, when the maximum value of the transmitted power
is predefined and known to all the eNB, partial information on ICI is available,
which enables some kinds of ICI coordination. Since the loss of performance is
usually due to the unlucky UEs close to the cell border which drain radio resources
in the attempt to obtain the same capacity of the lucky UEs closer to the eNB,
ICI coordination techniques can be used to reduce interference in resource units
assigned to unlucky users.

In this work we denote in general as ”power planning” techniques those tech-
nique aimed at determining the set of values Vg, g = 1, . . . , G that allow the best
distribution of ICI across resource units as function of system and load conditions.
Within this framework, the simplest techniques that consider an off-line static de-
sign of maximum power values are FFR and SFR. In this paper we consider FFR
techniques to be combined with distributed RRA. Improvements might come from
more sophisticated power planning techniques which optimize all the values of Vg

with a limited set of constraints, but this calls for further investigation.
When FFR is applied, Vg is one of the elements of a finite set V; we assume

that if the vector V is an element of V, then all the vectors obtained as cyclic shifts
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Figure A.1: An example of FFR based power planning for a cluster of Q = 3 cells
with overall reuse factor 2/3

Sub-band 1 2 3 4 5 Overall Reuse Factor
Reuse 1/3 1/3 1/3 1/3 1/3 1/3
Reuse 1/3 1/3 2/3 2/3 2/3 8/15
Reuse 1/3 2/3 2/3 2/3 1 2/3
Reuse 2/3 2/3 2/3 1 1 4/5
Reuse 1 1 1 1 1 1/1

Table A.1: Frequency partitioning for different FFR schemes with Q = 3

of V are elements of V. All the available PRBs are partitioned in G/Q sub-bands
of Q PRBs. Inside each sub-band the Q shifts of the same power vector V ∈ V
are assigned to the Q PRBs. If G/Q is not integer we may apply the partitioning
and assignment of power vectors to a pool of GQ PRBs over Q slots. If one or
more of the elements of power vector V ∈ V are zero, we say that the resource
unit or PRB is working with power vector V has a reuse factor smaller than 1.
This means that for one cell the PRB has a reduced ICI, because one or more of
the other cells are not allowed to transmit in the PRB.

As an example for Q = 3 we consider the following elements of V:
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� V 1
3
= [V

(0)
1
3

, V
(1)
1
3

, V
(2)
1
3

] = [∞, 0, 0]

� V 2
3
= [V

(0)
2
3

, V
(1)
2
3

, V
(2)
2
3

] = [3
2
V, 3

2
V, 0]

� V 1
1
= [V

(0)
1
1

, V
(1)
1
1

, V
(2)
1
1

] = [V, V, V ]

and we also assume that P̄q = P̄ , ∀q and V = ξP̄ /G. The parameter ξ allows a
simple off-line optimization of power levels. Note that in the power vector V 1

3
the

non zero elements is infinity, because there is no need to limit the power when all
the other cells are not allowed to use the PRB. The assignment of these vectors
to sub-bands and PRBs is illustrated in Fig.A.1 with reference to a system with
overall reuse factor 2/3. The just introduced concept allow us to define other FFR
schemes. We summarize in table A.1 the most relevant used to obtain numerical
results.

A.5 Numerical Results

The performance evaluation is carried out through Monte-Carlo simulations ac-
cording to models and assumptions summarized in Tab. A.2, also following the
guidelines for LTE in [105][118]. In the evaluation of assigned rates an SNR gap
of 3dB is taken into account. We consider a downlink scenario with a cluster of
Q = 3 cells, where the centralized and distributed RRA techniques described in
the paper are evaluated and compared. We denote with S1 the distributed sys-
tem where the power and the user rates are evaluated per subcarriers (sect. A.3),
whereas S2 indicates the distributed system with per-PRB power and rate alloca-
tion based on the EESM metrics (subsect. A.3.2). The fairness in rate allocation
is evaluated through the well-known Jain Index [91]

J =
(
∑K

k=1 xk)
2

K
∑K

k=1 x
2
k

(A.24)

where xk is modified to take account of inter-class fairness, i.e., xk = Rk

φk
.

However, without loosing generality, we presents here the results for one class,
i.e., φk =

1
K
, ∀k in centralized RRA and φk =

1
K(q) , ∀k ∈ K

q in distributed RRA.
Fig. A.2 provides a comparison of the different RRA techniques proposed in the

paper by showing the capacity loss of distributed RRA with various FFR schemes
with respect to centralized RRA for different number of UEs in the cluster. The
LB algorithm is implemented for the distributed RRA. All the RRA schemes
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System model
User distribution Uniform, in average 5, 10, 15, 20 per sector
Cell layout Single Hexagonal Cluster, with 3 sectors
Inter-eNB distance 520 m
Data generation Full buffer

Channel model
Path Loss 40 + 15.2log(d), d = distance in meter
Doppler Bandwidth 6Hz
Shadowing model Log-normal with 6dB standard deviation
Fast Fading 3GPP Pedestrian model
Delay spread 2.3 µs

PHY model
System Bandwidth 3 MHz
Subcarrier spacing 15 KHz
Number of allocable subcarriers 180
Number of carrier per PRB 15
Frame duration 10 ms
Slot duration 0.5 ms
DL slots per frame 8 (TDD - Configuration 1 [105])
OFDM symbols per slot 7
CSI update 5 ms
Transmission Time Interval (TTI) 1 ms
Average Maximum eNB Power 1 W
Noise Power Density 2 · 10−20 W/Hz

Table A.2: Simulation model

allocate rates with a Jain’s index ranging from 0.97 with K=15 user to nearly
1. We note that the capacity loss decreases when the number of users increases,
emphasizing that multiuser diversity significantly help distributed RRA. We also
note that FFR schemes with reuse factor of 4/5 reduce the capacity gap with
respect to full-reuse RRA, and a loss of some percent units is due to to per-
PRB allocation. Optimal reuse factor moves towards 1 as the number of users get
large. In all the investigated cases the capacity loss is between 5% and 30%. In the
centralized RRA investigated here power allocation is evaluated with suboptimal
solution (A.10). However, it has been checked that optimal power allocation
provides a limited capacity gain around 7% for K = 30 users, at the expense of
more complexity.

Table A.3 collects results illustrating the impact of LB techniques to ensure
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Figure A.2: Capacity loss of distributed RRA with respect to centralized RRA

fairness in distributed RRA. The table shows the sum-rate and Jain’s index of
the whole system, with and without LB, as well as the load metric in each cell.
Without LB a larger sum-rate is achieved at the expense of fairness among users.
It is also interesting to note that in case of spatially uniform distribution of user,
LB looses relevance when the number of users get large.

Next table, Tab. A.4 shows the trade-off between allocated sum-rate and out-
age rate as function of parameter β in the EESM metric. According to these
results we set β = 410 for all simulations in order to keep P (r̃k,g,q ≤ r

(eff)
k,g,q) below

1%.
Finally, in Fig. A.3 we investigate the sensitivity of achieved sum-rate to the

choice of parameter ξ, which selects the values in the power vectors used in dis-
tributed RRA with K = 30 users. It is shown that the maximum capacity is
obtained with ξ = 1, which is the value used in all simulations. This result does
not change for different values of K.
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K q without LB with LB
Lq J R[kbps] Lq J R[kbps]

15
1 1.371 2.756
2 1.773 0.845 5402 3.054 0.971 4969
3 4.188 2.441

30
1 6.178 5.106
2 4.341 0.941 6532 4.341 0.990 6621
3 3.046 4.344

45
1 3.131 7.628
2 8.498 0.944 8103 6.933 0.998 7398
3 7.226 7.226

60
1 5.811 8.965
2 7.068 0.968 9636 8.601 0.999 9501
3 12.582 9.122

Table A.3: Load metric, Jain’s index and sum-rate in each cell (Q = 3) of the clus-
ter for different values of K and full-reuse distributed RRA in a single simulation
scenario

β 350 395 400 405 410 420 450
Sum-rate [Kbps] 6402 6433 6440 6442 6444 6449 6466
Outage Prob. % 0.00 0.34 0.51 0.72 0.96 1.56 3.96

Table A.4: Sum-rate and outage probability P (r̃k,g,q ≤ r
(eff)
k,g,q) vs EESM parameter

β. Distributed RRA with full-reuse and K = 30
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Figure A.3: Sum-rate vs parameter ξ in S2 systems with K = 30 UEs
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[94] S. Cicalò, N. Changuel, R. Miller, B. Sayadi, and V. Tralli, “Quality-fair
adaptive streaming over LTE networks,” in in Proc.of IEEE 39th Interna-
tional conference on Acoustic, Speech and Signal Processing, May 2014, pp.
1–5.

[95] O. Oyman and S. Singh, “Quality of experience for HTTP adaptive stream-
ing services,” IEEE Communications Magazine, vol. 50, no. 4, pp. 20–27,
2012.

[96] A. E. Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and
E. Steinbach, “Quality-of-experience driven adaptive HTTP media deliv-
ery,” in IEEE Int. Conf. on Commun. (ICC 2013), Budapest, Hungary,
Jun 2013.

[97] K. Seshadrinathan, R. Soundararajan, A. Bovik, and L. Cormack, “Study
of subjective and objective quality assessment of video,” IEEE Transactions
on Image Processing, vol. 19, no. 6, pp. 1427 – 1441, June 2010.

[98] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming over
HTTP dataset,” in Proceedings of the 3rd Multimedia Systems Conference,
ser. MMSys ’12. New York, NY, USA: ACM, 2012, pp. 89–94. [Online].
Available: http://doi.acm.org/10.1145/2155555.2155570

[99] G. T. 36.521-1, “User equipment (UE) conformance specification, radio
transmission and reception. part 1: Conformance testing,” version 11.0.1
Release 11, Tech. Rep., 2013.

[100] G. T. 23.203, “Policy and charging control architecture,” version 10.7.0
Release 10, Tech. Rep., 2012.

[101] I. Wong and B. Evans, Resource Allocation in Multiuser Multicarrier Wire-
less Systems. Springer, 2008.

[102] P. Henarejos, A. I. Perez-Neira, V. Tralli, and M. Angel Lagunas, “Low-
complexity resource allocation with rate balancing for the miso-ofdma
broadcast channel,” Signal Process., vol. 92, no. 12, pp. 2975–2989, dec.
2012. [Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2012.05.031

http://doi.acm.org/10.1145/2155555.2155570
http://dx.doi.org/10.1016/j.sigpro.2012.05.031


155 BIBLIOGRAPHY
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