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Preface

As video streaming is becoming the most popular application of Internet mobile,
the design and the optimization of video communications over wireless networks
is attracting increasingly attention from both academia and industry. The main
challenges are to enhance the quality of service support, and to dynamically adapt
the transmitted video streams to the network condition. The cross-layer methods,
i.e., the exchange of information among different layers of the system, is one of
the key concepts to be exploited to achieve this goals.

In this thesis we propose novel cross-layer optimization frameworks for scal-
able video coding (SVC) delivery and for HTTP Adaptive Streaming (HAS) over
the downlink and the uplink of Long Term Evolution (LTE) wireless networks.
They jointly address optimized content-aware rate adaptation and radio resource
allocation (RRA) with the aim of maximizing the sum of the achievable rates
while minimizing the quality difference among multiple videos.

In order to perform optimized content-aware rate adaptation, we first analyze
the video quality metrics that allow to assess the quality of a video sequence
and then we provide enhanced low-complexity models to accurately estimate the
Rate-Distortion (R-D) relationship of scalable video transmitted over error-free
and error-prone channels. For the latter scenario, we design an enhanced Unequal
Erasure Protection (UXP) profiler with the objective to provide R-D relationship
that keeps the expected distortion almost unchanged at different packet failure
rate, with only a rate increase/decrease.

For multi-user SVC delivery over downlink wireless systems, where Orthog-
onal Frequency Division Multiple Access (OFDMA) is the key Physical (PHY)
layer technology and IP/TV is the most representative application, we decompose
the optimization problem and we propose the novel iterative local approximation
algorithm to derive the optimal solution, by also presenting optimal algorithms
to solve the resulting two sub-problems.

For multiple SVC delivery over uplink wireless systems, where Single-Carrier
Frequency Division Multiple Access (SC-FDMA) is the key PHY technology and
health-related services are one of the most attractive applications, we propose joint



i

video adaptation and aggregation directly performed at the application layer of the
transmitting equipment, which exploits the guaranteed bit-rate (GBR) provided
by the low-complexity sub-optimal RRA solutions proposed.

Finally, we propose a quality-fair adaptive streaming solution to deliver fair
video quality to HAS clients in a LTE cell by adaptively selecting the prescribed
Guaranteed Bit-Rate (GBR) of each user according to the video content in addi-
tion to the channel condition.

Extensive numerical evaluations show the significant enhancements of the pro-
posed strategies with respect to other state-of-the-art frameworks. Even though
broadband mobile provider are reluctant to include application-aware module in
the design of cellular systems, due to management and coordination issues, our
research show that significant gains in terms of the Quality of Experience (QoE) of
the end-user can be achieved by the proposed content-aware cross-layer strategies.

Most of the contributions presented in this thesis appear in the Author’s pub-
lications listed at the end of the manuscript.
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Chapter 1

Introduction

Today, we are facing an explosion of the video traffic on wireless network due
to the proliferation of multimedia-friendly portable devices [1]. In addition, the
emergence of high speed networks provides the infrastructure and the possibility
for handling a wide set of new applications among which the multimedia con-
tents delivery. Multimedia or more specifically video delivery systems address the
problem of streaming multimedia data as a continuous stream. The end-user can
start displaying the video data or multimedia data before the entire file has been
transmitted.

A high degree of flexibility and adaptivity is required from the video delivery
system to meet different levels of quality requirements depending on the different
characteristics of end-user devices and access networks. The design and the opti-
mization of video communications over wireless networks is thus attracting a lot of
attention from both academia and industry. The main challenges are to enhance
the quality of service (QoS) support in terms of packet loss rate, end-to-end delay
and minimum guaranteed bit-rate, while providing fairness where needed, and to
dynamically adapt the transmitted video streams to the network conditions. One
of the key concept to achieve these goals is the cross-layer approach, which allows
the exchange of information among different layers of the system.

Traditionally, Real Time Protocol (RTP) is used for video streaming services,
since it provides end-to-end delivery for data with real-time characteristics, tim-
ing reconstruction, loss detection, security and content identification. RTP also
allows for the implementation of source rate adaptation to the different network
condition. On-line adaptation of the video sources is enabled by the use of video
encoders that support multiple layers which can be sequentially dropped, thereby
providing a graceful degradation. One of the most promising tool is the H.264
Advanced Video Coding (AVC) standard with scalable extension, also known as

1



1. Introduction 2

Scalable Video Coding (SVC) [2]. The main drawback of RTP is that it requires
dedicated servers and passes through a port that is often block by firewall and
Network Address Translation (NAT). For this reasons most of the video traffic
is now transmitted over HT'TP protocol, which is NAT transparent, and may
exploit the large deployments of cache and content distributed networks (CDN).
A new approach referred to as HT'TP adaptive streaming (HAS) [3] is becoming
popular. HAS is adaptive in the sense that it allows a client to adaptively switch
between multiple bit-rates pre-encoded in the server, according to the bandwidth
or data rate available between the server and the client. This is a particularly
useful feature for a wireless environment since the data rate in mobile systems
can vary over time.

The Long Term Evolution (LTE) represents the next generation broadband
mobile technology [4]. In comparison to the previous cellular standards, LTE
provides improved system capacity and coverage and lower delivery latency. Dif-
ferently to its predecessors, LTE has selected for the first time OFDMA as a key
physical (PHY) layer technology [5]. In the downlink of a multi-user system,
OFDMA allows to to allocate a disjoint number of so-called Physical Resource
Block (PRB) in the time-frequency grid, in which users experience favorable chan-
nel conditions. The better the channel condition are, the higher the rate used in
the resource elements. This results in a very flexible access with high spectral
efficiency.

The main drawback of OFDMA schemes is that the resulting time-domain
waveform exhibits very pronounced envelope fluctuations resulting in a high peak-
to-average power ratio (PAPR) which requires highly linear power amplifiers to
avoid excessive inter-modulation distortion. This problem is more critical in the
up-link transmission where the cost and power consumption of mobile must be
kept as lower as possible. To these ends, Single Carrier - Frequency Division
Multiple Access (SC-FDMA) [6], has been introduced for the LTE uplink. SC-
FDMA provides similar advantages of the OFDMA systems but provide a lower
PAPR by introducing a Discrete Fourier Transform (DFT) pre-coding process at
the transmitter, which spreads the data power over the entire allocated bandwidth.

1.1 Motivation

The most straightforward approach to deliver video streams to multiple users in
bandwidth-limited systems is to divide the available bandwidth equally among
all video streams. However, the rate of an encoded video is variable, as the
result of the variable temporal and spatial structure of the video frames. Also the
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relationship between rate and quality changes within a single video and among
different videos [7-10]. For this reason, RTP-based cross-layer video streaming
optimization of multiple users in the downlink of wireless systems has been usually
addressed in the literature, e.g., in [11][12][13], by formulating a problem where
the objective is to adaptively minimize the sum of the average video distortions
or, similarly, to maximize the sum of the average objective qualities, e.g., Peak-to-
Signal Noise Ratio (PSNR)s, under a particular set of constraints. Such objective
usually leads to the provision of the highest quality, i.e., the lowest distortion,
to the low-complexity videos, while providing low quality to the more demanding
high-complexity videos [14].

The end-user expectation of video streaming is to receive the best feasible qual-
ity independently of the particular video complexity. Therefore, quality fairness
is an important issue that must be addressed in these applications, and the video
models that allow to predict the minimum rate required to achieve a target qual-
ity are essential part of the optimization. Moreover, the presence of an optimized
source rate adaptation technique at the Application (APP) layer becomes crucial
to improve stability, to prevent buffer overflow and to maintain video play-back
continuity.

Beside the distortion due to lossy encoding process, the quality of each video
can be heavily reduced due to the transmission errors and the consequent loss of
part of the video stream. The automatic repeat-request (ARQ) schemes have the
main drawback to increase the delay and can not be suitable for many application
where the playback time is a stringent constraint. Within the framework of RTP-
based SVC video delivery schemes, Forward Error Correction (FEC) has been
proposed to recover channel errors and many contributions in the literature have
proved its effectiveness [15-17].

The solution for the aforementioned issues in RTP-based SVC video delivery
systems requires a Media Aware Network Element (MANE) that is able to extract
from the original video sequences a set of scaled streams with a fair assignment
of expected end-user quality according to the estimated bandwidth and minimum
and maximum rate constraints, even in presence of packet losses.

In the uplink of wireless systems, the transmission of health-related informa-
tion from an ambulance to a remote hospital is a challenging task, due to the vari-
ability and the limitations of the mobile radio link. In particular, the transmission
of multiple video streams can improve the efficacy of the tele-consultation service,
but requires a large bandwidth to meet the desired quality, not always guaranteed
by the mobile network. Moreover, a strict separation into multiple single flows
may turn out to be inefficient, especially in case of simultaneous transmission
from multiple and heterogeneous co-located sources. We consider two categories
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of videos transmitted from the ambulance: (i) ambient videos that allow the hos-
pital staff to visually follow the patient conditions and the activities performed
in the ambulance; (ii) diagnostic videos obtained as result of emergency examina-
tions, such as the Focused Assessment with Sonography for Trauma (F.A.S.T.),
which is used to rapidly assess the status of heart and abdominal organs of the
patient [18]. Due to the different importance of the video flows, a video adapta-
tion module has to manage the inherently different priorities of the video flows
generated by the ambulance.

Since HAS-based video delivery is based on a user-centric optimization ap-
proach, it suffers from three major problems, i.e., efficiency, stability and fair-
ness. Efficiency and stability issues arise when the clients do not fully exploit
the available resources, and perform needless bit-rate switches. The fairness is-
sue mainly arise when users fail to fairly estimate the bandwidth due to periodic
request of video chunk, which results in ON-OFF period. In fact, when no lim-
itation on the allocated resources is taken into account, competing players with
non-overlapping ON-OFF period may not estimate their fair share of bandwidth
correctly. Therefore, also HAS-based systems called for enhanced media-aware op-
timization strategies, aimed at deriving the minimum and the maximum bit-rate
of each user that allows players to fairly estimate the bandwidth and to request
quality-fair video streams.

In wireless systems, the throughput experienced by each user depends on
how the system exploits the available time and frequency resources. Modern
wireless transmission systems make use of suitable Adaptive Modulation and
Coding (AMC) scheme to improve the rate of transmission, and/or bit error rates,
by exploiting the Channel State Information (CSI) that is present at the trans-
mitter. Especially over fading channels where channel gains vary on time and
frequency domains, AMC systems exhibit great performance enhancements com-
pared to systems that do not exploit channel knowledge at the transmitter. In
particular, Orthogonal Frequency Division Multiplexing (OFDM)-based systems
exploiting AMC schemes have an inherent temporal, frequency and multi-user di-
versity, which requires suitable adaptive resource allocation and scheduling strate-
gies. Opportunistic schedulers, as for instance, proportional fair (PF) [19] and
maximum signal-to-noise ratio (SNR) schedulers, take advantage of the knowl-
edge of the channel state information (CSI) in order to maximize the spectral
efficiency. However, with these schedulers, the final share of throughput often re-
sults unfair, especially for the cell-edge users which suffer of data-rate limitations
due to high path-loss and Inter-Cell Interference (ICI). In real-time streaming
the mismatch between the allocated PHY layer rate and the rate required by
the delay-constrained application may cause the loss of important parts of the
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streams, which significantly degrades the end-user quality of experience (QoE).
The provision of acceptable QoE to every user is enabled by the use of a sched-
uler at the medium access control (MAC) layer which delivers a fair throughput,
according to specific utilities and constraints defined by the APP [20].

To summarize, we have to face the following challenges:

e the derivation of accurate and low-complexity models that estimate the min-
imum bit rate of scalable video stream required to achieve a target quality

e the design of optimized UXP profiler in case of transmission over packet era-
sure channel, and the derivation of the resulting expected R-D relationship
at the end-user

e the study of video quality-fair metrics and the investigation of rate adapta-
tion techniques at the APP layer that allows to extract quality-fair streams,
which must also satisfy minimum and maximum rate constraints to ensure
the continuity of the video reproduction and to save bandwidth, respectively

e the study and the solutions of the Radio Resource Allocation (RRA) prob-
lems of OFDMA and SC-FDMA systems to maximize the sum of the achiev-
able throughput under QoS constraints defined by the applications

e The investigation of enhanced cross-layer strategies, which allows the ex-
change of information to jointly optimize the APP and the MAC layers

1.2 Objectives

The general objective of this thesis is to develop an optimized analytical cross-
layer framework for the delivery of video streams with scalable features to multiple
users competing for the same resources. The framework addresses the issues of
source rate adaptation, RRA, error protection and the objective is to provide a
fair video quality among the video programs.

Therefore, the first aim is to analyze the video quality metrics that allow to
assess the quality of a video sequence and to provide enhanced low-complexity
models to accurately estimate the R-D relationship of scalable video transmitted
over error-free and error-prone channels. For the latter scenario, enhanced UXP
scheme have to be investigated. The objective considered here is to provide ex-
pected R-D relationship which keeps the expected distortion almost unchanged
with only a rate increase/decrease at different packet failure rate. This allows
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to model the R-D relationship in error-prone channel with similar function with
respect to the case of error-free channels.

According to the scenario, different application have to be investigated. As first
and simplest scenario, we consider the multi-user cross-layer SVC delivery prob-
lem assuming limited but constant bandwidth and error-prone channels. Then,
the objective is to extend such framework to multi-user cross-layer video deliv-
ery over single-cell and multi-cell wireless scenario in downlink system where the
bandwidth and the user capacity vary on both frequency and time domains. In
this frameworks, applications like video on-demand|21], IP-TV[22], sport broad-
casting, where an initial transmission delay in the order of seconds can be tolerated
by the end-users, as well as real-time streaming [23], are considered.

We then aim at proposing a novel solution for the transmission of multiple
videos from an emergency scenario, based on the joint video adaptation and ag-
gregation directly performed at the APP layer of the transmitting equipment.
The objective is to deliver the ultrasonography information with sufficiently high
quality and the set of ambient videos tuned according to quality fairness criteria.
To provide a certain level of QoS, we also investigate enhanced RRA strategies at
the MAC layer of SC-FDMA systems.

The last objective considered here is to extend the proposed approach to spe-
cific LTE systems and HAS applications.

1.3 Contribution

Here, we briefly summarize the contributions of thesis. A detailed overview of
each contribution is provided at the end of the introduction of each chapter.

The main achievement of this thesis is the proposal of novel cross-layer methods
for maximizing the aggregate ergodic (average) rate assigned to multiple SVC
transmission in the downlink of OFDMA and in the uplink of SC-FDMA systems,
while minimizing the distortion or quality difference among the received video
sequences.

We first propose continuous low-complexity models to accurately estimate the
R-D relationship of SVC and HAS video streams for real-time and near-real-time
video transmission, by also designing an optimized UXP strategy.

We then propose method to optimally delivery SVC video streams in the down-
link of OFDMA wireless systems. In this case, the optimization problem is ”ver-
tically” decomposed into two sub-problems, leading to the rate adaptation at the
APP layer and the resource allocation at the MAC layer, and a novel efficient and
optimal iterative local approximation (ILA) algorithm is proposed to obtain the
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global solution. The ILA algorithm is based on the local approximation of the
contour of the ergodic rate region of the OFDMA downlink channel and requires
a limited information exchange between the APP and the MAC layers. Moreover,
we present and discuss optimal algorithms to solve the two sub-problems, i.e.,
rate adaptation at the APP layer and RRA at the MAC layer, and finally prove
the optimality and convergence of the ILA algorithm. The proposed rate adap-
tation algorithm can be seen as extension of the special case of the cross-layer
optimization SVC delivery problem in shared channel with constant bandwidth
and quality-fair constraints.

We also extend the MAC layer algorithm proposed for a single-cell scenario
to multi-cell environment. We propose and compare centralized and distributed
RRA algorithm aimed at maximizing the sum-rate of a multi-cell clustered sys-
tem under proportional rate constraints. While the centralized approach allows
to optimally solve the Inter-Cell Interference Coordination (ICIC) problem, dis-
tributed strategies requires off-line coordinated resource control among the cells
in a cluster. In the latter case we propose power planning schemes with pre-
assigned powers. We show that distributed schemes with aggressive reuse manage
to approach the capacity of a centralized system when the number of users is
large.

For the uplink SC-FDMA wireless network, we propose a novel solution for
the transmission of multiple health-related SVC videos, based on the joint video
adaptation and aggregation directly performed at the APP layer of the transmit-
ting equipment. In this approach, only a single communication link characterized
by given QoS guarantees needs to be managed between the terminal and the re-
ceiver, while additional spectrum efficiency is gained from video multiplexing. In
our solution the adaptation is designed to optimize quality and fairness by ex-
ploiting the information on the available rate assigned by the LTE e-nodeB. The
available rate is derived according to the solution of the ergodic sum-rate maxi-
mization problem under proportional rate constraints in SC-FDMA systems. For
this problem we propose novel sub-optimal algorithmic solution, whose complexity
increases only linearly with the number of users and the number of resources and
the performance gap to optimal solution is limited to the 10% of the sum-rate.

We finally propose a quality-fair adaptive streaming (QFAS) solution to de-
liver fair video quality to HAS clients competing for the same resources in an LTE
cell. The proposed QFAS solution brings intelligence into the network to adap-
tively select the prescribed guaranteed bit-rate and maximum bit-rate of each UE
according to the contents characteristics in addition to the channel condition.

Extensive numerical evaluations show for each proposed cross-layer solution
the significant video quality gain achieved with respect to other state-of-the-art
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solutions.

1.4 Overview of the Thesis

This thesis comprises seven chapters and one appendix. The following chapter
aims to provide a brief overview of the scalable video approach, in particular
of the SVC standard, and of the HAS media preparation. Chapter 3 provides
a detailed analysis of video quality assessment metric and of the R-D relation-
ship also in case of error-prone channel of SVC and HAS. In Chapter 4 we first
analyze and propose solutions multi-user cross-layer video delivery optimization
problem assuming constant bandwidth and error-prone channels. This is the first
contribution of the thesis, which allows to understand the benefits of quality-fair
adaptive rate-adaptation of multiple SVC videos in a simple scenario. Chap-
ter 5 represents the main contribution of this thesis and aims at extending such
approach to the case of multi-user downlink wireless scenario, i.e., a single-cell
OFDMA systems (extended to multi-cell scenario in Appendix A), where band-
width is not constant and depends on how resources are shared among users.
The proposed solutions provides a complete novel framework to optimally and
jointly perform rate-adaptation at the APP layer and resource allocation at the
MAC layer. Chapter 6 focus on the the uplink wireless transmission systems, i.e.,
SC-FDMA systems, where health-related services are one of the most attractive
applications. It aims at proposing a novel solution for the transmission of multi-
ple videos from an emergency scenario, based on the joint video adaptation and
aggregation directly performed at the application layer of the transmitting equip-
ment. Also enhanced RRA strategies at the MAC layer are proposed. In chapter
7 we target HAS applications in LTE networks, by considering all the constraints
at which such applications must adhere. In All the aforementioned chapters we
first introduce the motivation, the objectives, a detailed literature review, as well
as the contribution. I finally draw the conclusion of our work in chapter 8.

1.4.1 Notation

Vectors and sets are denoted by bold and calligraphic fonts, respectively. &' and
||z||p, indicate transpose and p-norm, respectively, of the vector x. Given the
vectors @ = [x1,...,zn|, @ = [2],...,2y] of N components, we use the following
element-wise inequalities:

cr-x' s r, >, ,Vn=1,...,N
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zr=x' =2 ANIm:x, >,

E,[-] denotes the expectation taken with respect to the random process y. We
also use notations [x]" = max(z,0) and [z]] = max(x,€), with € arbitrary close
to zero. The operators A indicates "AND”.

The most used symbols of this thesis are summarized in Table 1.1 for Readers
convenience.
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Notation Description
K, K Set and total number of users
, S Set and total number of subcarriers
g, G Set and total number of PRBs
J,J Set and total number of feasible patterns
PHY layer rate region
Tr Tangent space to R
£ Boundary of R
F Set of rate vectors as in (5.10)
A Set, of feasible allocation policies
ol SNR realizations
Y, p Set of PHY layer allocation variables
R Average PHY layer rate vector
T Instantaneous PHY layer rate vector
o) Rate direction vector
n Weight vector
F Source rate vector
Fmax Maximum source rate vector
Frin Minimum source rate vector
yeft Effective SNR
d Discrete distortion
D Continuous distortion
Djpin Minimum distortion of video k
D Maximum distortion of video k
Uk Utility of user k
g,y Br, &k Parameter of model (3.12)
PRIP RTP error rate
H Overhead factor
Az, y) Distortion difference function

Table 1.1: List of of most used symbols



Chapter 2

Scalable Video Encoders

Video streaming is one of the most popular applications of today’s Internet. As
the Internet is a best effort network, it poses several challenges especially for high
quality video streams.

The Advanced Video Coding (H.264/AVC) scalable extension, also called Scal-
able Video Coding (SVC), provides an attractive solution for the difficulties en-
countered when a video source is transmitted over RTP /Internet Protocol (IP)-
based wireless transmission systems. Such challenges include error prone channels,
heterogeneous networks and capacity limitations and fluctuations [2]. SVC allows
for QoS adaptation in RTP transmission to variable network conditions or needs
or preferences of end-user, as well as video content delivery to a variety of decoding
terminals with heterogeneous display resolutions and computational capabilities,
by means of a set of scalability features.

While SVC can exploit RTP connection-oriented video transport protocols,
which maintain per-session state and use a (proprietary) stateful control protocol
to manage the data delivery, more of the video traffic is nowadays transmitted over
HTTP. Due to its stateless design, in HT'TP-based streaming the video content is
segmented in different chunk, and the a client fetches each chunk independently
while maintaining the playback session state.

Several proprietary HAS technology has been implemented, i.e., Microsoft
Smooth Streaming [24] Apple HT'TP Live Streaming [25] and Adobe HTTP adap-
tive Streaming [26]. However none of them providing a unified standard. The
Moving Picture Experts Group (MPEG) has recently finalized a new standard to
enable dynamic and adaptive streaming of media over HTTP [27], also known as
MPEG-Dynamic Adaptive Streaming over HT'TP (DASH). The objective ot the
standard is to address the interoperability needs between devices and servers of
various providers.

11
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In this chapter we briefly review the SVC standard and the HAS state-of-the-
art.

2.1 Scalable Video Coding

SVC is the extension of the H.264/MPEG-4 AVC video compression standard
described in the Annex G [2]. SVC standardizes the encoding of a high-quality
video bit-stream that also contains one or more subset bit-streams. Within SVC,
each sequence is encoded with one base layer (BL) and several enhancement layers
(ELs) which can be sequentially dropped by providing a graceful degradation.
Each layer is then coded and encapsulated into several Network Abstraction Layer
Units (NALUs), which are packets with an integer number of bytes.

Three types of scalabilities, namely spatial, temporal and SNR scalability are
supported by the standard, which allows to extract from the encoded video sub-
streams of a suitable resolution, frame rate and quality matching various network
conditions and terminal capabilities. They corresponds to three key ID values, i.e.,
dependency_id, temporal_zid, and quality_id, which are embedded in the header by
means of the high level syntax elements, in order to identify spatial, temporal and
quality layers. An optional priority_id can be inserted to prioritize each frame in
stream [28].

In the next subsection we provide a brief overview of the temporal, spatial and
SNR scalability. We refer the interested reader to [2] for a more general overview.

2.1.1 Temporal Scalability

Temporal scalability can be achieved by means of the concept of hierarchical
prediction. The pictures of the video sequence are organized in sets of GG frames,
also called groups of pictures (GOPs). Each picture in one GOP is then identified
by a hierarchical temporal index or level 7 € {0,1,...,T}.

The encoding/decoding process starts from the first frame of each GOP with
the temporal index 7 = 0, which can be intra-coded (I-frame) or inter-coded (P-
frame), according to a trade-off between error-resilience and R-D efficiency. The
interval (in frames) between two consequent I-frames, also called Intra-Decoding
Refresh (IDR) period, is here assumed as multiple of the GOP size GG. The remain-
ing frames of the GOP are assumed to be encoded as B-frames using hierarchical
prediction, i.e., the encoding of a frame with temporal index 7 exploits prediction
from frames with temporal index smaller than 7. The remaining frames of one
GOP are typically coded as P/B-pictures and predicted according to the hierar-
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Temporal index
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Frame index and encoding/Decoding order number (DON)

Figure 2.1: Enhancement temporal layer prediction for a GOP of 8 frames.

chical temporal index, thereby allowing to extract a particular frame rate. An
implicit encoding/Decoding Order Number (DON) can be set up according to the
temporal index and frame number of each frame.

In Figure 2.1 we show an example of the hierarchical prediction structure for
a GOP with 8 pictures. The DON is obtained by ordering the pictures according
to the temporal index. If more than one frame have the same temporal level, the
DON is assigned according to the picture index. In this example the last frame
is encoded as P-frame in order to allow a GOP-based decoding.

Temporal scalability is an interesting feature that can be also exploited at the
decoder side in case of packet loss. If a picture with temporal index (temporal_id)
7 > 0 is lost, the decoder is still able to decode and playback the GOP at the
7-th temporal resolution, e.g., by simply replacing the missing picture with the
previous one according to a picture copy error-concealment method. Since our
work aims to provide quality fairness to the set of served end-users, we assume that
the adaptation module extracts the same temporal resolution from each video.
Therefore, the temporal scalability is only exploited at the decoder side, when a
B/P frame is lost.
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2.1.2 Spatial Scalability

Spatial scalability is performed according to a layered coding approach which is
used to encode different picture sizes of an input video source. Each layer refers
to a target spatial resolution and corresponds to a spatial layer or dependency
layer. The lowest spatial resolution, i.e., the spatial base layer, is compatible with
H.264/AVC baseline profile and its layer identifier is the lowest one. According
to the output frame rate intended for for each spatial layer, it may contains
several temporal layers. In particular, the standard specifies a maximum of eight
supported dependency layers. To limit the memory requirements and decoding
complexity derived from this multi-layer coding approach, the same coding order
for all supported spatial layers is used. Specifically, the coding order of each
spatial layer is based on an access unit (AU), where an AU is defined as the union
of all the representations with different spatial resolutions for a given time instant.
In In each spatial layer, the traditional motion-compensated and intra-prediction
modes are supported as for non-scalable video coding. Since spatial scalability is
not consider in our work, we refer the interested reader to [29] for further details.

2.1.3 SNR Scalability

The SNR scalability allows to increase the quality of the video stream by intro-
ducing refinement layers. Two different possibilities are now available in SVC
standard and implemented in the reference software [30], namely Coarse Grain
Scalability (CGS) and Medium Grain Scalability (MGS). CGS can be achieved
by coding quality refinements of a layer using a spatial ratio equal to 1 and inter-
layer prediction. However, CGS scalability can only provide a small discrete set
of extractable points equal to the number of coded layers. In this thesis we focus
on MGS scalability which provides finer granularity with respect to CGS coding
by dividing a quality enhancement layer into up to 16 MGS layers.

MGS coding distributes the transform coefficients obtained from a macro-block
by dividing them into multiple sets. The R-D relationship and its granularity
depends on the number of MGS layers and the coefficient distribution. In [31] the
authors analyzed the impact on performance of different numbers of MGS layers
with different configurations used to distribute the transform coefficients. We also
verified their results, by noting that more than five MGS layers reduce the R-D
performance without giving a substantial increase in granularity. This is mainly
due to the fragmentation overhead that increases with the number of MGS layers.

While extracting an MGS stream two possibilities are available in the refer-
ence software: a flat-quality extraction scheme, and a priority-based extraction
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Figure 2.2: Enhancement quality layer prediction for a GOP of 8 frames. The
encoding loop is closed at the base layer

scheme. The second scheme requires a post-encoding process, executed by an
entity denoted as Priority Level Assigner, that computes a priority level for each
NALU. It achieves higher granularity, as well as better R-D-performance [28]. The
priority level ranges from 0 to 63, where 63 is intended for the base-layer, and is
assigned to each NALU according to quality dependencies and R-D improvement.
Nevertheless, in order to exploit the temporal scalability at the decoder side, we
re-assign different priority levels to the base-layer frames (those with ¢ = 0), ac-
cording to their temporal indexes, as specified afterwards. This feature is only
exploited by the UXP profiler and therefore does not change the 6-bit header of
the packet which is necessary to perform the quality-based extraction. The coding
efficiency of MGS scalable streams highly depends on the quality layers used for
motion compensation. In the basic scheme the quality encoding loop is closed at
the base layer as exemplified in Figure 2.2, thus avoiding the drift issue occurring
when motion prediction is not synchronized between encoding and decoding pro-
cess when quality layer are dropped or lost. However, this approach significantly
decreases the coding efficiency of enhancement layers.

The R-D performance of the quality layers can be improved by using quality
frames for motion compensation and introducing the concept of key-picture, which
allows for a trade-off between drifting and coding efficiency as shown in Fig. 2.3.
Nevertheless, this tool should be carefully applied in if most or all quality layers



2. Scalable Video Encoders 16

are often discarded by the rate adaptation module.

Quality index
- .

-------

3 E4(KEY)§ 5 7 f

0 3 2 4 1 6 5 7 DON
Frame index and encoding/Decoding order number (DON)

Figure 2.3: Enhancement quality layer prediction for a GOP of 8 frames using
key-pictures

In this thesis we focus on MGS with optimized bit-stream extraction (see [32]
and [28] for further details).

2.2 HTTP Adaptive Streaming

HTTP adaptive streaming aims to overcome all the issues of RTP streaming as
firewalls and NAT traversals, and the requirement of dedicated network infras-
tructure that cannot be used for other web content.

In HAS approach the video content is encoded at multiple bit-rate, also called
profiles, which may consist in different temporal, spatial and SNR resolutions.
Even though, HAS can exploit the higher encoding efficiency of H.264/AVC sin-
gle layer coding compared to SVC, the profiles can be encoded using SVC with
benefits resulting in web caching efficiency and saved uplink bandwidth [33].

Each profile is then segmented in several chunks (with duration of 2 to 10
seconds). At the end of the encoding of the profiles or periodically during en-
coding, the server generates a manifest file, also called Multimedia Presentation
Descriptor (MPD) in DASH, in order to provide location and timing informa-
tion to the client requesting a particular video. An example of HAS approach is
provided in Fig. 2.2.
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Figure 2.4: HAS media preparation.
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Figure 2.5: HAS-based video stream adaptation.

Generally the MPD file is downloaded using HT'TP at the start of the stream-
ing session, but for flexibility, the MPD may also be updated periodically, espe-
cially in the case of real-time streaming. After appropriate buffering to allow for
network throughput variations, the client continues downloading the subsequent
chunks and also monitors the network bandwidth fluctuations. Depending on its
measurements, the client decides how to adapt to the available bandwidth by
fetching segments of different alternatives (with lower or higher bit-rates) to also
maintain an adequate buffer. An example of HAS-based video delivery is depicted
in fig. 2.2, for the case of 3 profiles.
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Chapter 3

Video Sources: Rate-Distortion
Analysis and Models

The rapid growth of video applications into the wireless networks has called for
highly media-aware encoder control and enhanced streaming strategies to manage
the difficulties of time-varying bandwidth-limited wireless transmission. Capacity
restrictions, heterogeneous devices, network capabilities and error prone transmis-
sions are just some of the problems resulting from the characteristics of modern
video communication systems, to which scalable video coding (SVC) offers an
attractive solution.

Generally, an exhaustive understanding of the quality characteristics of en-
coded video is the basis for traffic modeling and the development of video trans-
port mechanisms. The most straightforward solution to this problem is to allocate
the available bandwidth equally among all video programs. However, due to the
different scene content of the programs and the changes of the scene content over
time, this approach results in suboptimal R-D performance and perceptual quality
differences between the individual sequences.

Models to predict the quality of the encoded video sequence resulting from a
certain encoding rate become then a key tool for the video delivery optimization.
The computation of the perceptual quality requires in general subjective metrics,
which are able to reliably measure the video quality that is perceived by the
Human Visual System (HVS). The subjective video quality methods are based
on groups of trained/untrained users viewing the video content. The resulting
rating are then generally mapped in the so-called Mean Opinion Score (MOS),
which is a value increasing with the perceived quality and ranging from 1 to 5.

For real time or near real-time video streaming systems the computation of
the relationship between the rate and the quality of the encoded scenes should

19
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be fast enough to deal with the timing constraints of the video stream and of
the application. Obviously, subjective quality metric are not suited for these
scenarios, but still are crucial for evaluating the performance of objective visual
quality metrics. An overview of the the latter metrics used throughout this thesis
is provided in section 3.2

R-D or more generally Rate-to-Quality (R-Q) models allow to predict the
minimum bit rate required to achieve a target objective distortion or quality,
respectively. They can be categorized as full-reference (FR), reduced-reference
(RR), and no-reference (NR), depending on whether a reference (FR), partial
information about a reference (RR), or no reference (NR) is used in the evaluation
of the quality.

NR models are analytical R-D models which predict the rate and distortion of
a video sequence prior to the encoding process. They are generally dependent on
the probability distribution of Discrete Cosine Transform (DCT) coefficients.

FR models require the decoding of the encoded video sequences and can be
further categorized in empirical and semi-analytical models. Empirical models re-
quire the computation of all extractable R-D points resulting in a high complexity.
Semi-analytical models aim at reducing such complexity by deriving parameter-
ized functions that follow the shape of analytically derived functions, but are
evaluated through curve fitting from a subset of the R-D empirical data points.
The latter offers an attractive trade-off between computational complexity and ac-
curacy, in case of non-real-time or near-real time video streaming. In this chapter
we first analyze and propose semi-analytical models for SVC video with reference
to Medium Grain Scalability assuming FR and error-free transmission.

The PR models are derived by introducing new functions dependent only on
scalar spatial and temporal parameter of the uncoded/coded video streams, which
can be easily extracted during the encoding process. The coefficients of this new
functions can be estimated off-line through a prior knowledge of the parameters
of a set of sample video sequences, and then used for any future video sequence.
We here propose a PR model which aims at estimating the parameter of the
previously mentioned semi-analytical model according to two program-dependent
indexes. All these models allow to accurately predict the distortion resulting by
the lossy encoding process.

However, the quality of each video can be further heavily reduced due to the
transmission errors and the consequent loss of part of the video stream. An
automatic repeat-request (ARQ) schemes have the main drawback to increase the
delay and can not be suitable for many application where the playback time is
a stringent constraint. Within the framework of video delivery schemes based
on SVC, Forward Error Correction (FEC) has been proposed to recover channel
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errors and many contributions in the literature have proved its effectiveness [15,
16,34]. Due to the different importance and the temporal/quality dependency
of the different frames, Unequal Error Protection (UEP) or UXP schemes are
generally more effective with respect to schemes based on equal protection. An
UXP profiler has the aim to assign a different protection to each frame according
to its dependencies and the related R-D improvements, as function of the average
estimated packet-loss rate, e.g., the loss rate of RT'P packets in RTP transmission.

We then also propose a complete framework to jointly design UXP profiler and
derive the resulting expected additional distortion due to error in the channels, as
well as the related rate resulting after protection. Our proposal provides to each
extractable sub-stream an approximately constant expected distortion for different
values of RTP packet failure rate. This means that a change in the packet failure
rate only induces a rate increment or decrement. This feature allows to model
the expected continuous R-D relationship with the same proposed semi-analytical
model for error-free transmission, where only a constant is added for different
packet failure rates.

Many R-D models have been proposed in the literature for real time and non-
real time video streaming (see for example [34-41] and references therein).

In [35], the authors proposed an accurate semi-analytical square-root model
for MGS coding and compared it with linear and semi-linear models. They con-
cluded that the best performance is obtained by changing the model according
to a parameter that estimates the temporal complexity, evaluated before encod-
ing the entire sequence. However, a general model for the estimation of the R-D
relationship for a large set of video sequences, is necessary to derive analytical
solutions for the rate-adaptation problem.

In [37] the authors present a detailed analysis of the R-D relationship in Fine
Grain Scalability (FGS) coders and provide an accurate square root R-D model,
which requires at least two empirical points. However, as mentioned, FGS has
been removed from the SVC standards, due to its complexity.

In [40] the authors proposed a general semi-analytical R-D model for video
compression, also verified in [34] for SVC FGS layer, where the relationship be-
tween rate and distortion depends on three sequence-dependent parameters which
must be estimated through the evaluation of six empirical R-D points. We have
verified this model with reference to SNR scalability with MGS and the high
accuracy of the results led us to investigate a simplified two-parameters model
with lower complexity, where the number of R-D points needed to estimate the
parameters is reduced.

An improved real-time R-D model for Medium Grain Scalability (MGS) video
coding was proposed in [39]. This model reduces significantly the dependency on
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the encoding process. In this model the delay is reduced by extracting the param-
eters before transformation. Nevertheless it is showed that the model accuracy
highly depends on the complexity of the video sequence.

The optimization of video streaming over packet-erasure channel is also highly
investigated within the framework of SVC, e.g., [16,34,42]. In [34] and in ear-
lier works the authors proposed a complete framework to analyze and model the
video streaming system over packet erasure channel, also in presence of play-out
deadline. They derived an analytical model to estimate the the R-D in case of
base-layer packet losses, while using a semianalytical model for the quality-layers.
An UXP profiler, based on the same priority level assigner used in our work,
solves a rate-minimizing cost functions. Maani et al. [16] proposed a model to
solve the problem of joint bit extraction and channel rate allocation over packet
erasure channels, where the level of protection of each enhancement layer is se-
lected according to the expected distortion-to-rate gradient. However, differently
from our proposed UXP profile, the resulting R-D relationship significantly de-
pends on packet error probability and may result in a non-convex rate adaptation
problem, which is generally much harder to be solved.

Contribution

The contributions of this chapter are summarized as follows

e we evaluate and compare two similar semi-analytical model for the esti-
mation of the R-D relationship for SVC encoded videos transmitted over
error-free channel.

e we propose a simple UXP profiler which provides almost similar values of
distortion in the low-rate part of the R-D relationship for different values
of RTP packet-loss rate; also closed form evaluation of distortion loss is
provided. According to the proposed UXP profile, a R-D model considering
also error-prone channel is proposed.

e we propose new techniques to further reduce the complexity of semi-analytical
models for SVC scalable streams based on the introduction of new functions
dependent only on the uncoded video streams. The coefficients of this new
functions can be estimated off-line through a prior knowledge of the param-
eters of a set of sample video sequences, and then used for any future video
sequence.

e we extend the proposed SVC R-D models to rate-to-quality models (RQ)
for HAS sources.
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e we derive, analyze and discuss the accuracy and the complexity of the pro-
poses R-D models, according to extensive numerical evaluations.

3.1 Test Video Sequences

Table 3.1 summarizes the characteristics of the test video sequences that are
used throughout this thesis. The first ten video sequences, are well-known video
sequences mostly used within the JVT and they are available on-line in [43][44].
They comprises 300 frames, apart from football which has 260 frames.

The four sequences numbered from 11 to 14 are extracted from real video
programs and comprise 2760 frames each.

The last three video sequences are health-related videos. Sequences 15 and
16 was acquired in realistic on board ambulance scenario thanks to the ”"Green
Cross Public Assistance Association” of Cesena (Italy). They comprise 300 frames
each. Finally the ultrasonography sequence was gently provided by the Hospital
of Perugia (Italy) and comprises 150 frames. All video sequences have frame rate
equal to 30 fps. CIF, QCIF, nHD, VGA resolution (Res. in the Table) corresponds
to 352x288 , 7T04x506, 640x360, 640x480 pixels, respectively.

N.  Sequence  Res. Spatial Compl. Temp. Compl. Description

1 Clity CIF Medium Medium An urban area with several buildings
2 Crew CIF Low Low A crew walking

3 Coastguard CIF High Medium/High A Small boat in a river

4 Container  CIF Low Low A container in the sea

5 Football CIF Medium High A football game

6 Foreman CIF Medium Low A foreman speaking

7 Harbour CIF Medium High Sailing boats slowly moving

8 Mobile CIF High Medium A ball rolling over a desk

9 News CIF Low Low A chinese news

10 Soccer CIF Medium Medium A soccer game

11 Sport 4CIF Very High Very High Canoe competition

12 Interview  4CIF Low Very Low An interview

13 Bunny 4CIF High Medium Extract of Big Buck Bunny movie
14 Home 4CIF  Medium/High Low Extract of Home cartoon movie
15 Ambient 1 nHD Medium Low Man in a ambulance (far view)
16 Ambient 2 nHD Medium Medium Man in a ambulance (close view)
17 Ultrasound VGA Low Low An Ultrasonography video

Table 3.1: Test video sequences: spatial (spat.) and temporal (temp.) complexity
(compl.) and general description. The resolution (Res.) CIF, QCIF, nHD, VGA
corresponds to 352x288, 704x506, 640x360, 640x480 pixels, respectively.
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3.2 Objective Video Quality Metrics

The simplest video quality metric to assess the quality of a reconstructed video
sequence are the Mean Square Error (MSE) and PSNR, which were historically
adopted in image processing in order to evaluate the performance of the codec of
interest. Although simple to implement and to compute, they are generally not
considered always reliable. Nevertheless, their use continues to be predominant
in the performance evaluation of any video coding system.

Let us define x[m,n] as the original signal at pixel [m,n] of the i — th frame
of a video with resolution M x N , and y[m,n] as the associated reconstructed
signal. The MSE between the original and reconstructed i-th picture, is evaluated
as:

N M
. 1
MSE[i] = WZZ@WW] — y[m,n])? (3.1)
n=1m=1
while the average MSE between the original and reconstructed set of pictures Z
with cardinality I, composing a video scene is defined as:

1
MSE = < Z MSE[i] (3.2)
€L
The PSNR of the i-th frame is derived by setting the MSE in relation to the
maximum possible value of the luminance (for a typical 8-bit value this is 2 —1 =
255) as follows:
PSNR[i] =101 255° (3.3)
[Z] - 0819 (MSE[Z]) .
The result is a single number in decibels [dB], ranging from 30 to 40 for medium to
high quality reconstructed pictures. Two different ways of computing the PSNR
of a video scene Z, namely PSNR and Average PSNR (APSNR), are possible
according on how the average is performed. However, the correct way to calculate
average PSNR for a sequence is to calculate average MSE for all frames as in (3.2)
and after that to calculate PSNR using ordinary equation for PSNR, i.e.,

2552

Nevertheless, sometimes it is needed to take simple average of all the per frame
PSNR values, i.e.,

10 255>
APSNER = — 26; 10g 4, (m) (3.5)
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Due to their simplicity MSE and PSNR will be mostly used to evaluate the
rate-to-quality relationship of the scalable video stream considered throughout
this thesis. Nevertheless, due to their poor correlation with subjective quality
tests, we will also consider enhanced quality metric, i.e., Structural SIMilarity
(SSIM) and the American National Standards Institute (ANSI) Video Quality
Model (VQM).

The SSIM index is a method for measuring the similarity between two images
proposed by Zhou Wang et. al., [45]. This method differs from the previously
described methods, which all are error based, since it uses the structural distortion
measurement instead of the error. The idea behind this is that the human vision
system is highly specialized in extracting structural information from the viewing
field and it is not specialized in extracting the errors. Thus, a measurement on
structural distortion should give a better correlation to the subjective impression.

Many different quality assessment methods can be developed from this as-
sumption but Wang proposes a simple but effective index algorithm. The SSIM
index of the i-th frame is expressed as

(2papty + a1)(204 , + az)
(12 4 p2 + al)(og + 0y + az)

SSTMinger = (3.6)

where g, tty, 05, 0y, 05y, are the mean of x, the mean of y, the variance of
x, the variance of y and the covariance of x and y respectively, while a;, as are
constants. The value of SSIM is between -1 and 1 and gets the best value of 1
if x[n,m] = y[n,m],¥n,m . The quality index is applied to every image using
a sliding window with 11 x 11 circular-symmetric Gaussian weighting function
for which the quality index is calculated and the total index of the image is the
average of all the quality indexes of the image.

The VQM [46] was developed by the Institute for Telecommunication Science
(ITS) to provide an objective measurement for perceived video quality. It mea-
sures the perceptual effects of video impairments including blurring, jerky/unnatural
motion, global noise, block distortion and color distortion, and combines them into
a single metric.

The VQM considers the original and the processed video as input and it is
computed according to the following steps:

e Calibration: it performs an estimate and a correction of the spatial and
temporal shift as well as of the contrast and of brightness offset of the
processed video sequence with respect to the original video sequence.

o Quality Features Extraction: it extracts a set of quality features that charac-
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terizes perceptual changes in the spatial, temporal, and chrominance prop-
erties from spatial-temporal sub-regions of video streams.

e Quality Parameters Computation: it computes a set of quality parameters
that describe perceptual changes in video quality by comparing features
extracted from the processed video with those extracted from the original
video.

o VQM Computation: the VQM value is computed using a linear combination
of parameters computed in the previous steps.

The VQM value is a number between 0 and 1 used to judge the visual quality.
A low VQM value indicates good perceived quality. Extensive subjective and
objective tests were conducted to verify the performance of the VQM. The results
show a high Pearson correlation coefficient, around 0.95, between subjective tests
and the VQM. For this reason it has been adopted by ANSI as an objective video
quality standard.

In the next sections we will analyze the R-D relationship of SVC encoder with
respect to SNR scalability with MGS coding in terms of the MSE, as well, as
the R-Q relationship of HAS sources in terms of the SSIM. VQM is considered
in chapter 5 to further validate the proposed cross-layer framework. All the R-D
models are extensively tested for the different video sequences mentioned in the
previous section.

3.3 Non-Real-Time Rate-Distortion Models for
SVC in Error-Free Channels

In this section we first analyze and propose two semi-analytical models to estimate
the R-D relationship at the SVC encoder assuming SNR-scalability.

Let us consider an SNR-scalable video stream resulting from the encoding of
a set 7 of pictures, intended for user k. We define D™ = {d{f, ..., dz . } as the
set of distortion values, one for each extractable sub-stream, whose total number
is Ej. The encoder distortion dy’, e = 1, ..., B}, given by the MSE between the
original and the reconstructed pictures averaged over Z is computed as in eq.
(3.2). The R-D theory evaluates the minimum bit-rate F) required to transmit
the k-th stream with a given expected distortion dyj, by defining a function Fj,
that maps the distortion to the rate, i.e.,
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Fp: Dy —RY 57)
ok = Frdgy)

One of the desirable properties of Fj is the strictly decreasing monotony, 1.e.

Fi(diy) > Fi(d5y), Vi, d5 - diyy < djy. (3.8)
implying that for any increasing of the information rate corresponds a decrease in
distortion. The rate Fi(d7}), evaluated here in bps (bit per second), is generally
function of discrete values. Following the approach in [9,34,40] the expected R-
D relationship is modeled through a parametric function Fi(D) of a continuous

variable D.

v
Fi(D) = 5+ B D e (D} D, (3.9)

where the parameters oy, & and S, with ay, & > 0, Vk depend on the temporal

and spatial complexity of the set of pictures Z; and on on the frame rate. The
values of

DY = dee 3.10
e = e A (3.10)
and
D' = min d°% 3.11
e = i d (3.11)

are the expected distortions of the set of pictures Zj, after decoding the base layer
and the highest enhancement layer, respectively.

The drawback of this approach is the need to estimate the three video sequence
dependent parameters, g, & and [, by using curve-fitting over a subset of the
R-D data points. According to extensive simulations, the curve-fitting algorithm
requires a minimum of six empirical R-D points and a relevant number of iterations
and function evaluations to exhibit high accuracy for most sequences.

In order to reduce the complexity, we have simplified this parametrized model
by eliminating one parameter, i.e.,

Fu(D) = % + B (3.12)

In this case, four R-D points are generally sufficient to estimate the two
sequence-dependent parameters ay and [, with high accuracy; as a result, the
number of iterations and function evaluations decreases. Beside the complexity
reduction, this model allows a simple derivation of the solution of the fairness-
oriented rate adaptation problem, as we will show in the cross-layer optimization
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Figure 3.1: R-D Model (straight line), according to eq. (3.12) fitting the empirical
R-D relationship for the GOP with the worst RM SE with reference to Table 3.2.

framework proposed in the next chapters. The selection of the empirical points
depends on the range where the R-D curve is defined. However, to provide more
accuracy the range of interest can be suitably reduced.

Table 3.2 compares the goodness of the two models with respect to the co-
efficient of determination R*[47], the RMSE, the average number of iterations
(ANol) and function evaluations (ANoFE) required by non-linear Least Square
Trust-Region (LSTR) curve-fitting algorithm to converge. It can be noted how
the number of function evaluations, as well as the number of iterations, decreases
while a minimum loss occurs in the goodness parameter. In Figure 3.1, we plot
the empirical R-D relationship for five test video sequences, as well as their related
R-D curves based on model (3.12). All of them are referred to the GOP with the
worst RMSE value (the minimum in Table 3.2). We can also appreciate in this
figure the achievable granularity of the quality-based extraction method.

3.4 Non-Real-Time Rate-Distortion Models for
SVC in Error-Prone Channels

We here extend the proposed semi-analytical R-D models to estimate the expected
distortion in case of transmission over error-prone channel.
Let us now consider an SNR-scalable video stream resulting from the encoding



29 3.4 Non-RT R-D Models for SVC in Error-Prone Channels

Video Model R? [min,max] RMSE [min,max] ANol ANoFE
Constonang Model (3.12) [0.08120.9921 ] [37895,79.992] 302 896
g Model (3.9) [0.9956,0.9982] [22.261,36.724] 347  155.9
Crop  Model (3.12) [0.9795,0.9934] [23.038,89.130] 309 942
Model (3.9) [0.9914,0.9972] [20.019,52.480] 356  159.9
Py Model (312) [0.9662,0.9891] [53.403,205572] 200 895
Model (3.9) [0.9839,0.9993 ] [12.940,99.810] 38.0 169.3
P Model (3.12) [0.9669,0.9955] [19.710,53371] 257 732
Model (3.9) [0.9914 , 0.9980 | [13.516,33.745] 34.1 154.3
Hobone Model (312) [0.9823,0.9920] [51.860,73.344] 375 1298
Model (3.9) [0.9952,0.9991] [18.883,44.822] 453  164.3

Table 3.2: Comparison between the two semi-analytical model in (3.9) and (3.12)
with respect to the minimum and maximum RMSFE, the coefficient of determi-
nation R? the Average Number of Iterations (ANol) and the Average Number of
Function Evaluation (ANoFE), evaluated for each GOP (GOP size G equal to 8)
of five video sequences with CIF resolution and frame rate of 30 fps. The video
are encoded with one base layer (QP equal to 38) and two enhancement layers
(QP equal to 32 and 26), both with 5 MGS layers and a weights vector equal to
324 25], (Q = 10).

of a set 7, of pictures, intended for user k, which has to be transmitted in an
error-prone channel . We define Dy = {di4,...,dg, 1} as the set of expected
distortion values, one for each extractable sub-stream, whose total number is Fj.
The distortion d. g, e = 1, ..., Ej, given by the Mean Square Error (MSE) between
the original and the reconstructed pictures averaged over Zj, is computed as

dejo = A + d2%, (3.13)

where d%? is the additional distortion due to the packet losses in the error-prone

channel, which is function of the frame loss probability as well as on the protection
scheme selected as showed next.
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Figure 3.2: Transmission Sub-Block (T'SB) structure. Following the priority level,
the NALUs of one GOP are placed into one TSB according to a given UXP profile
(protection class) from upper left to lower right. The columns of one ore more
TSB are then encapsulated into RTP packets

3.4.1 Unequal Erasure Protection for SVC Streams

Due to the different importance and the temporal/quality dependency of the dif-
ferent frames, UXP schemes can generally overcome schemes based on equal pro-
tection. In our work, we follow the guidelines presented and discussed in [15] for
RTP video transmission over packet-erasure channel, by focusing our attention
on a GOP-based transmission. In this approach, each GOP is mapped into one
Transmission Sub-Block (TSB) that carries either data and parity bytes, as ex-
emplified in Figure 3.2. Each row of the TSB identifies a RS (n,m) codeword
where m is number of data bytes and n is the total bytes of the codeword. If a
packet-erasure detection is available at the lower-layers, the RS codes are able to
correct up to n — m bytes, equal to the number of parity bytes.

The aim of the UXP profiler is to assign a different protection to each frame
according to its dependencies and R-D improvements.

A first step is to order the NALUs according to their protection class. A
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priority index greater than 62 is re-assigned to the different temporal base layer
frames (¢ = 0), to have lower priority indexes for high temporal indexes. Thus,
all the frames are sorted according to the priority level p and sequentially inserted
into one TSB, according a given UXP profile M* = {m}’q’p}, where m} . identify
the protection class assigned to frame with frame index f, quality index ¢ and
priority level p.

Finally, one or more TSB are placed into a transmission block (TB) whose
columns become the payload of RTP packets. In this way the RS codewords
are interleaved over the different RTP packets. Therefore, RTP packet errors (or
erasures) can be assumed as uniformly distributed inside the codewords. In order
to reduce the overhead due to the need of padding for compensating the different
NALU lengths, the part of the codeword left unused by a given NALU is filled with
the data from the subsequent NALU. For simplicity of presentation and without
loosing generality, we assume that the size Sy, of each NALU is always greater
than or equal to the total size n of the RS code:

Stap =N (3.14)

This assumption ensure that each TSB row contains no more than two different
frames.

Let us finally note that a Multi Time Aggregation Packet (MTAP) header
must be inserted before each priority level NALU in order to deliver the decoding
order number (DON) and timing information assignment.

3.4.2 Frame Error Probability and Expected Distortion

Let assume that the RTP packet error rate information PR is periodically

collected from the lower-layers. According to the proposed UXP scheme a closed
formulation of the expected error probability can be derived by using the failure
probability of a single (n,m) RS codeword:

n

Pum) = Y () - Py (3.15

i=m—n-+1

The individual frame error probability now depends on the number of TB rows
associated to each frame, i.e.,

Tfap = [ Sf—’q’p—‘ (3.16)

*
My qp
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and on whether or not some bytes of the frame are inserted in the row using the
protection class of the preceding priority level. Let z € {0, 1} be a boolean variable
that indicates whether or not this last event occurs. The frame error probability
FEP is then computed as one minus the probability that all codewords of the
TB, associated to the frame, can be correctly decoded by the RS decoder:

Tf,q.p

FEP;, =1- {(1 = Py gm) " (1= POM) g, n))} (3.17)

According to the derived FEP, a closed formula for the expected distortion
can be now computed. Let YD, = |ds, — ds,—1| be the quality improvement
resulting from the correct decoding of the f — th frame with quality id ¢, which
is computed by the priority level assigner. In order to compute the quality im-
provement YDy, due to the enhancement (temporal) frames of the base layer
we assume an error concealment (EC) method based on the picture copy (PC).
Therefore the distortion increment due to the loss of an enhancement picture is
computed by considering the difference between the enhancement frame and the
copy of the previous one. The expected distortion due to the loss of frames with
quality index ¢ < @) can be computed as:

j—1

q q
dfgioss =S YDy, [FEPﬁouf_l +> FEP, T (1- FEPf,sﬂ (3.18)
j=1

r=0 s

where u, is the Heaviside function'. The first term of the sum takes into account
the distortion due to the loss of a temporal enhancement layer. Since a loss of
the I-frame will results in a infinite distortion we assume here that the associated
NALUSs will receive enough protection to have F'FEF, close to zero.

The second sum, on the other hand, takes into account the cumulative prob-
ability that the 7 — 1 quality layers have been successfully received but the j-th
quality frame is lost, where j < ¢. Finally, the total expected distortion of the
entire GOP is the sum of the individual frame loss distortions:

G-1
ds,loss = Z df,q,loss (319>
£=0

Let us note that the number of quality layers of each frame in one GOP can
be different after the rate adaptation. Thus, the index s maps the vector whose

iy = 0if 2 < 0, 1 otherwise, z € Z
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elements are the resulting number of the quality-layer of each frame f: its range is
from 0 to GQ. The values of the expected distortion can be finally used, together
with the required rate, to reshape the R-D relationship according to the values of
the FEP.

3.4.3 Proposed UXP Profiler

The derivation of an optimal UXP profile is hard to achieve. It should be com-
puted according to the solutions of an optimization problem aimed at balancing
the trade-off between protection and overhead. This it is a discrete problem since
the FEP, as well as the overhead resulting from the RS encoding, strictly depends
on the discrete variable m, as shown in Figure 3.3. In order to guarantee a rate
distortion relationship strictly decreasing, the FEP of each frame should increase
as the quality and the temporal indexes increase. However, due to the granu-
larity of the available values of m, sometimes this condition is not met. This
problem could be partially solved by a joint optimization of the encoding process
and the UXP profiler. However, this is out of the scope of this work. In our
framework the UXP profiler simply drops this cases by slightly compromising the
R-D granularity.

We propose a simple strategies by fixing an error probability profile (EPP)
Tqp fOr each frame f with quality id ¢ and priority level p. Based on this
approach, the UXP profile is derived by finding the minimum my,, € [§ 4+ 1,7]
such that

FEP;, < gy (3.20)

Differently to other solutions in literature, this approach has the main ad-
vantage that the expected distortion becomes quasi-independent from the RTP
packet failure rate whereas a change of the P, ,, will only results in a rate in-
crement or decrement. By exploiting the proposed design, the UXP profiler can
adaptively adjust the amount of redundancy according to a target value of RTP
packet loss rate provided by the BS that serves the destination users. The RTP
packet loss rate information can be fixed to a constant conservative value or it
can be estimated through error rate measurements.

As a case of study to provide numerical results and illustrate how rate adap-
tation works when UXP is implemented, we consider here the following choice for
the EPP, by differentiating the base and the enhancement layer protections.
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Figure 3.3: Resulting logarithmic FEP for the first I frame of Football (byte size
equal to 11519) mapped to RS codewords (128, m) at different RTP packet error
probability

A Case Study for the Design of EEP

Since the priority level of the quality layers carries both the information of the
R-D improvements and the dependency of each frame, the values of the EPP for
the quality frames, i.e. ¢ > 0, can be derived according to the following formula

2)10"% if p> 2
Tfap = (2) ) ) (10) (3.21)
1+ (1 —1In(10))2  otherwise

e

where « allows for a trade-off between protection and overhead.

The priority levels for the base layer frames are normally set equal to 63 by
the quality processing tool. If the UXP profile used eq. (3.21), it would assign
similar protection to the base layer and the first enhancement layers. A smaller
frame error rate is ensured for the I-frame, since its loss will produce the drop of
all the frames in the GOP. To avoid this we set then 7, = 107% Va. Moreover,
in order to exploit the temporal scalability at the decoder we propose to re-assign
to frames of the enhancement temporal layer, with ¢ = 0, an higher priority level
and to use again the eq. (3.21) to derive the relative EEP values. The choice of
the priority level for the enhancement temporal layer depends on the particular
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frame rate that must be ensured to each user.

The model (3.12) and (3.9) for the R-D relationship is still applicable in case
of frame losses due to the transmission error in the channel. In this case the
empirical points of the encoder are replaced by new points taking into account
the effects of packet erasures and UXP. These new points are the result of the
rate increase due to UXP, i.e.,

n—m
E s
m* qprf7q7p7 (3'22)
f:(] quvp

and the novel expected distortion dj j,ss evaluated as in (3.19). In Figure 3.4 we
plot the empirical R-D function resulting from the encoder, as the reference curve,
and the related R-D functions outcoming from the UXP profiler at different packet
error probabilities PP > ( for the first GOP of the test-sequence Football. We
can see that the distortion is almost unchanged for the lower points of the curve
with respect to the reference case, since high protection is provided to the high
priority levels which are the first to be extracted. At larger bit rates the gap
with respect to the reference case increases due to insertion of quality frames with
lower protection.

Generally a dynamic adaptation of the UXP to different would require
the periodical application of the curve-fitting algorithm to derive the two param-
eters of the model, thereby increasing the complexity. This problem can be over-
come when the UXP profiler adaptively tracks the FEP profile by changing the
protection class assigned to the different NALUs. In this way only rate has signif-
icant changes while expected distortion practically does not change. While com-
paring the empirical points resulting from different error probabilities (P*F > 0),
we can note in the figure how the proposed UXP profile leads to similar distortion
at different PRTY values. Therefore the adaptation module adapts the sequence-
dependent parameters by simply adding a constant dependent on the value of
PRIP " According to extensive simulations the rate shifting is independent of the
encoded sequence and can be determined by empirical evaluations.

This feature allows to model the expected R-D relationship through the same
parametric function in (3.9) or (3.12), where only ;. changes for different design
values of RTP packet-loss rate. This result can also be appreciated in Table 3.3
where the average expected distortion due to different PR and the resulting
average overhead is evaluated for two video sequences with full quality scalability.

The selection of a small value of o for the EEP results in a small FEP for the
quality layers, thereby increasing the overhead. On the other hand, a loss in the
expected quality is experienced by doubling o with a consequent rate gain in the

RTP
Pe
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Figure 3.4: R-D Model (straight line), according to eq. (3.12) fitting the empirical
R-D relationship for one GOP (size G equal to 8) of the Football test-sequence
with different error probabilities and a=30. The lower curve refers to the R-D

relationship of the encoder.

order of 5%. As mentioned before, the overhead is approximately constant even
for video sequences with high spatial and temporal complexity difference, such
as Foreman and Harbour. On the other hand, the loss in the expected quality
strictly depends on the range of the distortion values as normally increase with
the complexity of the video raises if the same encoding paradigm is used for each
sequence.
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Video ~ PRTP a=15 a=30
Overhead  dggoss [MSE]  Overhead  dgg oss [MSE]
0.01 8.4 % 1.82 5.3 % 4.54
Foreman  0.05 17.7 % 2.13 13.7 % 5.15
0.1 28.0 % 2.17 23.1 % 5.31
0.01 7.8 % 8.95 51 % 19.87
Harbour  0.05 171 % 9.86 13.3 % 20.32
0.1 27.6 % 10.13 23.4 % 20.89

Table 3.3: Percentage of the overhead and expected distortion dgqjoss in term
of MSE with respect to the full quality video streams (@ = 10 and G = 8), for
different values of RTP packet error probability and a parameter in the EEP
profile

3.5 Real-time Rate-Distortion Models for SVC
Streams

The time required to model the R-D curve for a given sequence may drive the de-
cision on the methodology/algorithm to be adopted for the R-D modeling. On the
other hand, the performance of the streaming system is directly affected by the
accuracy of the R-D model [36]. For real time video streaming systems the com-
putation of the model should be fast enough to deal with the timing constraints
of the video stream. Hence, we investigate here techniques to further reduce
the complexity of semi-analytical models. This is made possible by introducing
new functions dependent only on the uncoded video streams. The coefficients
of this new functions can be estimated off-line through a prior knowledge of the
parameters of a set of sample video sequences, and then used for any future video
sequence. Such new model only uses two parameters, i.e., the Spatial Index (SI)
and the Temporal Index (TI), which are calculated taking into account the charac-
teristics of the video sequences through a spatial and a temporal index extracted
from the original raw video streams. Moreover, we also use these complexity in-
dexes to calculate BL and EL rates of the given video stream. We consider as a
reference R-D model the model in eq. (3.12) introduced for MGS coded video,
As already mentioned, the drawback of this model is the fact that its parame-
ters can only be evaluated by looking for the best fitting of at least 4 R-D points
after the encoding process of the video, hence the model is not suited for real time
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Figure 3.5: Proposed strategy for real-time R-D modeling.

applications. The model proposed here replaces the parameters «4, and [, with a
function of the spatial index SI; and the temporal index T'I, as explained in the

following:
ar = p1 + p2SITy + psTI (3.23)

B =1 + @S5Ik + ¢TI (3.24)

The same approach is used to express the BL (base layer) and EL (enhancement

layer) rates: .
F;nn:’l“l—i—’I“QSIk—l—’f’gTIk (325)

F];nax =51+ SQSIk + SgTIk (326)

The values on the sets p = [p1, p2, p3l, ¢ = @1, ¢2, q3], 7 = [r1, 72, r3] and
s = [s1, s2, s3] are coefficients that can be calculated by using fitting methods in
a sufficiently large set of GOPs from a set of video sequences (training set). As
mentioned above, this process is executed off-line only once.

The SI and TT values are evaluated on the luminance component [48] of the
video by means of Spatial Information and Temporal Information [49] of the k-th
GOP as follows:

Sl = max std,{Sobel(x[i](c))} (3.27)
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TI, = max std,{M]i](c)} (3.28)

where Mi](c) = z[i](c) — z[i — 1](0) is the motion difference, x[i|(o) is the
luminance component and ¢ and o are the temporal and spatial coordinates, re-
spectively, of the frames used to encode GOP k.

To summarize, the R-D model is obtained by substituting in (3.12) the pa-
rameters «, and 3, from (3.23) and (3.24), and F}™™ and F™ from (3.25) and
(3.26), respectively, i.e.,

Fy(D) = p—lerSIDHpBTI’c + @+ @ST + 3Ty,
Fk(D) 2T1—|—T251k—|—7’3TIk (329)
Fk(D) S S+ SgSIk + SgTIk

A diagram block of the proposed strategy is presented in fig. 3.5

The proposed R-D model is verified by considering video sequences generated
by the JSVM software [30]. We encoded six video sequences, i.e., Crew, Football,
Coastguard, Soccer, City, and Mother and Daughter (M D) having different
scene complexities, in CIF resolution with a frame rate of 30 fps. We denote
this set as the training set. Two ELs are used to obtain SNR scalability where
each layer is split into 5 MGS layers with vector distribution of [3 2 4 2 5]. All
the videos are coded GOP by GOP with a GOP size of 8 to obtain sequences
comprising 26 GOPs. The Quantization Parameter is set to 38, 32 and 26 to
obtain the BL and two ELs.

Fig. 3.5 shows oy, Sk, BL and highest EL models as in (3.23), (3.24), (3.25)
and (3.26), respectively, using the spatial and temporal indexes. In the two upper
figures the markers are referred to the values of oy and f§; derived according to
model (1) and plotted for each GOP versus the corresponding value of SI; and
T'Ij. In the two lower figures the markers are referred to the BL and EL layer rates
derived by encoding the sequences with JSVM [30]. It can be observed that the
values of the parameters for all the models closely follow a linear behavior. The
metrics used to evaluate the goodness of the model in fitting the set of points are
reported in the caption. The sets of coefficients, appearing in (3.23), (3.24), (3.25)
and (3.26), of the proposed model, are calculated using the linear least square
fitting method [50] with Least Absolute Residuals (LAR) [51] for robustness. The
resulting values for the training set are the following:

p = [—2.4 x 10*,3975, 540.5] q = [—246.1,24.1,3.3]
r = [41.27,17.09,9.12] s = [~237,145.6, 34.02]

In Fig. 3.7 the different R-D models are shown and compared for two sample
GOPs of three video sequences. The accuracy changes GOP by GOP: the upper
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Figure 3.6: Proposed Models for «, 8, BL and EL rates. The parameters used
for the goodness of the models are the coefficient of determination (R?) and Root
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figure shows the result for a GOP with good matching between the proposed model
and the model in (1), whereas the lower figure shows a result with poor matching.
As shown below, the GOPs with less accurate model do not have significant impact
on the behavior of rate adaptation strategies in real time multi-video transmission.
To evaluate the goodness of BL and EL rate estimation, we compare in Fig. 3 the
rates estimated with the model in (3.25) and (3.26), to the original rates obtained
from the encoded sequences.

We consider not only the video sequences in the training set but also the
sequences outside the training set. More emphasis is given to BL rate as it is the
minimum rate requirement of each video sequence when transmitted in bandwidth
constrained channels. It can be observed from Fig. 3 that our model predicts the
BL rate quite accurately for sequences outside the training set, as shown for
Mobile and Foreman. Moreover, it can be seen that the estimation is also good
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for EL rate.

3.6 Rate-to-Quality Models for HAS Streams

The proposed approach for modeling the R-D relationship of SVC SNR-scalable
video stream can be easily extended to consider the case of HAS-based encoded
videos.

Similarly, each profile corresponds to an extractable sub-stream, i.e., using
the notation introduce in section 3.3 and in section 2.2, E), = M, while the set of
pictures Zy, refers to one chunk. We run several simulation by encoding each chunk
and each profile with the 2264 encoder [52], i.e., a fast version of the H.264/AVC
standard, and we finally extract the average MSE, PSNR and the SSIM. We have
verified the model in (3.9) to describe the R-D relationship, which still provide
high accuracy. Nevertheless, we are here interested to model the R-Q relationship
of HAS sources in terms of SSIM quality metric, which will be used in chapter
7 to quantify the k-th user utility Ug(Ry) of downloading a chunk from video k
at a certain rate Ry. We found that the following continuous logarithmic SSIM
to rate model in the interval of interest [Ay, B|, where Ay, By are the minimum
and maximum available profile rate, have an high correlation with respect to the
empirical points:

Uk(Rk) = ay log(ang -+ CL3), Rk € [Ak, Bk] (330)
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Figure 3.8: SSIM-to-rate model (straight line), according to eq. (3.30) fitting the
empirical quality-to-rate relationship for one random chunk (duration equal to 2

sec.). The number of profiles is equal to 9 with rates ranging from 150 kbps to 4
Mbps.

where the parameters a1, as, as are as usual dependent on the spatial and temporal
complexity of each chunk and are derived through curve-fitting over the actual
discrete empirical points.

The validation results of the model (3.30) have shown almost perfect corre-
lation with a Pearson coefficient always higher than 0.99 for each chunk of the
considered video sequences. The parameters values of the SSIM-Rate model can
be derived either off-line and on-line and inserted in each MPD as optional in-
formation. An example of the resulting empirical vs model relationship of one
random chunk of the HAS sources considered in chapter 7 is provided in Fig. 3.8.



Chapter 4

Cross-layer Optimization for SVC
Video Delivery in Shared

Channel with Constant
Bandwidth

In this chapter we analyze a simple scenario that can cover different video ap-
plications. The unique assumption is that the multimedia provider is able to
perform off-line some computation-expensive processes, such as encoding and
quality-computation for each video. In this framework, applications like video
on-demand[21], IP-TV[22], sport broadcasting, where an initial transmission de-
lay in the order of seconds can be tolerated by the end-users, as well as real-time
streaming [23], are well suited to the low-complexity transmission scheme pro-
posed. Each one of these applications requires a multimedia provider that has to
serve several end-users which request different video sources.

Due to the different complexities of the scenes composing a video sequence,
the relationships between the rate and the quality can be really different within
a set of videos. However, the end-user expectation is to receive the best feasi-
ble quality independently of the particular video complexity even in presence of
packet losses. If individual video streams are transmitted to different users in a
broadcast dedicated channel, an equal rate allocation could lead to unacceptable
distortion of high-complexity videos with respect to low-complexity ones. Adap-
tive transmission strategies have to be investigated to dynamically optimize the
overall quality of experience (QoE). Therefore, quality fairness is an important
issue that must be addressed. In this light, the adaptation module of the media
provider is required to extract from the original video sequences a set of scaled

43
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streams with a fair assignment of expected end-user quality, even in presence of
packet losses.

The cross-layer approach considered here assumes that the lower-layers are
able to allocated a shared constant bandwidth to a particular set of users, and
inform the application layer about channel conditions, in terms of packet losses.

Many contributions exist in the literature that consider fairness-oriented rate
adaptation in shared channel with constant bandwidth, but they exploit the
Fine Granularity Scalability (FGS) tool, e.g., [53]-[54]. Nevertheless, FGS mode
has been removed from SVC, due to its complexity, and these works do not
take into account the effects of transmission losses. Cross-layer optimization of
video streaming over packet-erasure channel is also highly investigated, within the
framework of SVC [34][16][42]. In [34] and in earlier works the authors proposed
a complete framework to deliver SVC videos in bandwidth-limited scenario con-
sidering packet erasure channel, also in presence of play-out deadline. An UXP
profiler, based on the same priority level assigner presented in section 3.4.1, solves
a rate-minimizing cost functions. However, the rate adaptation aims at minimiz-
ing the distortion of each video without taking into account fairness issues.

We here propose a multi-stream rate adaptation framework with reference to
SVC with medium grain scalability (MGS). Rate adaptation is carried out on
the temporal and quality domain of the scalable video streams. Nevertheless, the
entire framework can be extended to spatially scalable streams.

We first define a general discrete multi-objective problem with the aim to
maximize the sum of assigned rates, while minimizing the differences among the
expected distortions, under a total bit-rate constraint. A single-objective problem
formulation is then derived by applying a continuous relaxation. It is based on the
simplified continuous semi-analytical model 3.12 introduced in chapter 3.3, which
allows us to derive an optimal and low-complexity procedure to solve the relaxed
problem. The Unequal erasure protection (UXP) proposed in section 3.4.3 is also
considered to suitably shape the rate-distortion relationship for different values of
RTP packet-loss rate. The numerical results show the goodness of our framework
in terms of error gap between the relaxed and its related discrete solution, and
the significant performance improvement achieved with respect to an equal-rate
adaptation scheme.

Contribution
In summary, this chapter collects the following relevant contributions:

e the formulation of a multi-stream rate-adaptation problem which considers
minimization of both expected end-user distortion and distortion difference
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among users, under bandwidth constraint

e the derivation of a optimal low-complexity algorithm for the solution of the
multi-objective problem, based on continuous relaxation

e the derivation, analysis and discussion of simulation results which show the
error gap of the low complexity solution and the improvements with respect
to equal-rate allocation

4.1 System Architecture

In Figure 4.1 we show the architecture of the video delivery system. Each video
sequence is encoded by the SVC encoder to fully support temporal and quality
scalability. The resulting streams are encapsulated into Network Abstraction layer
Units (NALUSs), which are packets of an integer number of bytes, and stored in a
media server. The NALUs have different importance according to a certain coding
paradigm. To support the features of both Adaptation module and Unequal
Erasure Protection (UXP) profiler, the video streams are also processed with the
aim of extracting the information on the quality of each stream. After the encoder,
the priority level assigner evaluates a priority index for each NALU, by considering
the Rate-Distortion (R-D) relationship and the dependency on the other NALUs.
Such information is encapsulated in the NALU header and then exploited by both
the UXP profiler and the Adaptation module. These two processes are executed
off-line.

As proposed in section 3.4.3, The UXP profiler aims at determining for each
NALU the level of protection against transmission losses, which is obtained by
adding parity bytes according to a specified UXP strategy. This task is executed
by taking into account the estimated packet-loss rate of the lower layers which can
be supplied at regular intervals. The protection profile is then sent to the Adap-
tation module which first estimates the expected R-D relationship, then extracts
a suitable bit-stream from each video stream to meet fairness and bandwidth con-
straints. Each outcoming bit-stream is then encoded by the RS encoder. Finally,
the resulting codewords are encapsulated in a transmission block and interleaved
over RTP packets which are forwarded to the lower layers.
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Figure 4.1: System architecture. Each sequence is encoded to fully support tem-
poral and quality scalability and a priority level is assigned to the NALUs. The
UXP profiler evaluates the overhead required according to a certain protection
policy and RTP packet failure rate, and provides R-D information to the Adap-
tation module. The Adaptation module extracts sub-streams according to the
estimated bandwidth and sends the data bytes to the RS encoder. The result-
ing codewords are then encapsulated in a transmission block, interleaved in RTP
packets and forwarded to the lower layers. The receiver performs the inverse op-
erations (RS decoding and de-interleaving) in order to extract the NALUs which
are sent to the SVC decoder.

4.2 Problem Formulation for Multi-Stream Rate
Adaptation

We first propose a general problem formulation, which can be suitable for different
video coding schemes. At the end we restrict our attention to the proposed system
architecture.

Let K be the number of streams involved in the optimization, indexed by the
set K = {1,..., K} and Ej the number of the available encoding schemes char-
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acterized by different SNR resolution. Note that the cardinality Ej of the set
Dy, is generally not the same for each video source, and depends on the particu-
lar coding/extraction scheme applied. We recall the definition of set of expected
distortion values for the k-th stream: Dy = {dy4,...,dg, 1}, k € K where dg, is
evaluated according to eq. 3.13. The values in the set D; take into account the
distortion due to the lossy encoding techniques df7)’, and the expected distortion
dgy due to the packet loss in the error-prone channel. The rate adaptation algo-
rithm must choose at each time slot and according to the optimization strategy,
the best vector d = [dy, ...,dx| € D = D; x ... x Dg. D contains all the possible
combinations of the elements of D; and has cardinality £ = Hszl E).. Optimiza-
tion strategies for video rate adaptation has in general the aim to assign to each
video the distortion that minimize the sum of the distortion, or equivalently that
maximize the sum of the achievable PSNRs, under a total bit-rate constraints
R, [55]. However, the solution of such problem can usually lead to large distor-
tion variations among different streams, due to the different complexity of video
sources. As already mentioned, quality fairness is an important issue that must be
addressed when multiple videos from different sources are transmitted in a shared
channel.

The general objective of our proposed framework is to minimize the differences
among the distortions assigned to each video stream while maximizing the sum of
the rates until a maximum bit-rate is met. We then formulate the general problem
as a multi-objective problem:

min > > A(d;,d)) (4.1a)

deD
iek jek,j<i
max || F'|l, (4.1b)
st. |[|[Fl1 < R. (4.1c)
where F' = [Fi(dy),..., Fx(dk)] is the vector of rates necessary to achieve the

distortion d In case of video delivery over error-prone channel. As shown in
section 3.4.3, the rate F}, depends on the rate of the encoder and on the overhead
for error control required to obtain the expected distortion dj .

The distortion-fairness metric in the objective (4.1a) is defined as:

p

if d; = D™ A d; < d;
it d; = DM A d; < d
if d; = D™ A d; > d; (4.2)
if d; = D A\ d; > d

|d; — d;| otherwise.

A(dl, d]) -

o O o O

\
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and D™ and D" are the minimum and maximum distortion in the set D. Such
expression can be explained by the following considerations.

Ideal fairness among the distortion values assigned to the multiple video streams
would require d; = d;, Vi # j. This is hard to be achieved due to (i) the dis-
cretization of the R-D relationship and (ii) the presence of a minimum and a
maximum distortion values for each source, which are related to the encoding
scheme and to the complexity of each video and can be very different. The defi-
nition of the fairness metric A(d;, d;) takes this fact into account, by introducing
the effects of the minimum and maximum distortion constraints. In fact if d; (or
d;) takes the maximum or minimum values and the difference |d; — d;| can not
be further decreased by moving some rate from video with small d to video with
large d, then the fairness metric is set to 0.

It is worth noting that, by assuming a strict decreasing relationship between
the rate and the distortion, this problem admits a feasible solution only if at least
the minimum rates of all the of the video streams, i.e., F™" = [Fmin  [min]
with Fmin = F (D) are supported by the transmission bandwidth R., i.e.,

| Em), < R (4.3)

otherwise a certain number of videos are not admitted in the transmission in order
to keep this constraint satisfied.

The solution of the problem in (4.1) requires an exhaustive search in the space
D of all possible vectors. If E becomes large the required complexity can be not
suitable for real-time adaptation. On the other hand if E is small, i.e., there are
few video sources as well as few related R-D points, the problem solution can lead
to a waste of the available bandwidth and to large distortion differences among
multiple videos. In the next section, we then propose a continuous relaxation of
the problem, which implying a reasonable number of extractable sub-stream.

4.2.1 Continuous Relaxation

Considering all the discussions in the previous sections, we apply to the optimiza-
tion problem a continuous relaxation based on the model (3.12). Therefore, we
assume that the discrete variable dj, becomes continuous (with notation Dy), but
limited by the minimum and maximum distortion values, i.e.,

Dy € [DM™ D], (4.4)

With reference to the SNR scalability, the points (D, F™in) and (D, Fmin)
refer to the base layer and the highest enhancement layer streams, respectively.
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It is worth noting that a trivial solution can be derived if the sum of the full
quality encoded stream rates is less than or equal to the available bandwidth,
that corresponds to transmitting the entire encoded streams without adaptation.
Thus, we analyze the non-trivial case where the following constraint holds:

||FmaxH1 > Rc (45)

According to the continuous relaxation (4.4) and the assumptions (4.3) and
(4.5), a feasible solution is obtained when the constraint on the overall channel
bandwidth is active with equality. A single-objective problem where the second
objective, i.e., (4.1b) in the problem formulation, is eliminated and replaced by
an equality constraints can be then formulated. Nevertheless, as a result of the
relaxation of the problem, the two constraints on the maximum and minimum
available rates of each stream must be added. They imply that each video sequence
has to obtain at least the base layer and not more than the maximum available
bit-rate must be allocated to each video source to save bandwidth.

Thus, the relaxed problem can be formulated as

min > > A(D;, D)) (4.6a)

i g<i
st ||F|l; = R, (4.6b)
F = F™in (4.6¢)
F < Fm (4.6d)

Note that, with a slight abuse of notation, the model Fy(Dy) replaces the
actual R-D relationship Fj(dy). In the next subsection we will derive an optimal
procedure to solve this relaxed problem using methods that are computationally
efficient and without the use of heuristics or brute-force search.

4.3 Adaptation Algorithms

A solution to the relaxed problem (4.6) can be derived by using sub-optimal
procedures as the golden search algorithm proposed in [53] for a piecewise linear
model. Nevertheless, the continuous formulation of model (3.12) allows us to
derive a low-complexity optimal procedure, by noting that the solutions to the
problem without the constraints (4.6¢) and (4.6d) can be easily derived as follows:

> ke Ok
D*=Df = =kl 2y, 4.7
k Rc _ Zke]c /Bk; ( )
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Since those constraints imply that a minimum (maximum) or a maximum (mini-
mum) rate (distortion) has to be allocated to each video stream, these solutions
can be improved successively through a simple iterative procedure.

Let @ = [21,...,2x], ¥y = [y1,- .., Y], with xp,yx € {0,1}, k € K, be binary
vectors that indicate whether (1) or not (0) the two constraints are active for the
video stream k and these variables will be updated during the procedure. We can
then define:

Alz,y) = Z LYk (4.8)
kek

B(x,y) = Zxkykﬁk (4.9)
kek

Oe.y) = Re— | S0 -aF™ + T -wr| (@10

kel kel

where Q(x, y) is the available rate for the videos which have not active constraints.
The iterative procedure works as showed in Algorithm 1.

The algorithm requires in the worst case, a maximum of K (K —1)/2 iterations
which happens in the unpractical case F™ ~ F™ax At the first iteration, due to
the initialization, D} is computed as in (4.7). Then at each iteration the algorithm
checks if the related rate solutions violate one of the constraints (4.6¢), (4.6d). If
it happens for one video, the algorithm assigns the relative minimum or maximum
rate to this particular video and re-evaluates the distortion for the other video
streams.

The optimality of the solutions (4.11) and (4.12) can be easily proved, by
noting that the sum of the difference functions in (4.6a) is always kept to zero,
e, Yy . Zj<iA(Dj,Dj) = 0 and the sum of the rates is always equal to the
available bandwidth. A rigorous proof is provided in section 5.5, lemma 2 for an
extended version of the algorithm.
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Algorithm 1 Pseudo code to solve problem (4.6)

1 if ||F™"|; > R. then
2: report infeasibility
3: else if ||F™||; < R, then
4: report infeasibility and set Fj, = F**, Vk € K
5: else
6: y =1,V kek,
7 repeat
8: condy;, = false;
9: r,=1,VkekK,
10: repeat
11: condgy, = false;
. N — Ay .
12: D= s@y-n@s)
13: for all k € K : 7y =1 do
14: Fy, = a_f;; + Br;
15: if [, < F™" then
16 Fy, = 0 g = 0; condpy, = true;
17: end if
18: end for
19: until condg;, is false
20: for all k € K : 7y, = 1 do
21: if Fj, > F"* then
22: Fy, = F'5 y, = 0; condyy, = true;
23: end if
24: end for
25: until condgy, is false
26: end if

The final relaxed solutions, given «, y, are then given by:

pr + 0k if zpyr =1
Fy = q Fmin if 7, = 0 (4.11)
Fmaxif g, = 0
with Ao '
@y _BEg if xpyp =1
Dj; = { pmax if 2 = 0 (4.12)
D,?i“ if yp, =0

From a mathematical perspective the optimal discrete solution d*, starting
from the relaxed one D*, should be derived by applying optimization techniques,
e.g., branch & bound search. Nevertheless, such techniques will increase the
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complexity. To keep the complexity low, it is common practice to extract the
higher discrete bit-rate under the optimal relaxed solution, by paying a minimum
waste of bandwidth due to the granularity of the empirical R-D relationship.
When the packet loss is taken into account, i.e., when the probability of losing
RTP packets is such that PR > 0, the solutions (4.11) are referred to the rate
values which include the overhead. In order to perform the desired bit-stream
extraction the information overhead is fed into the the adaptation module, thereby
allowing the evaluation of the related encoder rate solution, whose distortion is
denoted as D}

enc’

4.4 Numerical Results

In this section we evaluate the performance of the proposed rate adaptation frame-
work by using the JSVM reference software [30] and a C++ ad-hoc simulator. We
encode five video sequences with different scene complexity, i.e., Coastguard, Crew,
Football, Foreman, Harbour in CIF resolution with a frame-rate of 30 fps (see Ta-
ble 3.1 for further details). Each sequence is coded GOP-by-GOP and we analyze
the performance with two different GOP sizes, i.e., G = 8 and G = 16. In both
cases the coding structure is based on the maximum coding efficiency that allows
to decode GOPs independently, i.e., IDR-period is equal to the GOP size, and to
insert the maximum number of temporal resolutions, i.e., T = log,(G). Thus, in
the former case we suppose an [ BBBPBPP encoding structure as depicted in
Fig. 2.1, with 4 temporal layers, while in the latter case the encoding sequence
is IBBBBBBBPBBBPBPP with 5 temporal layers. The SNR-scalability is
obtained through 2 enhancement layers, each one split in 5 MGS layers with
vector distribution [3 2 4 2 5] resulting in a maximum of @) = 10 quality lay-
ers. The Quantization Parameter (QP) of the base and enhancement layers are
equally spaced and set to 38, 32 and 26, respectively. The post-processing priority
level assignment is then applied, as described in section 2.1.3, which provides the
priority level information as well as the distortion increment of each layer.

We compare the solution of the proposed algorithm (OPT) with an equal-
rate (ER) scheme where no quality-based adaptation is performed, i.e., the same
portion of the available bandwidth is assigned to each video.

To have a fair comparison we apply to ER scheme the constraints (4.6¢) and
(4.6d) in order to guarantee the resource to the base-layer of each video and to
fulfill the available bandwidth. Therefore, after sorting the streams in two vectors,
one into decreasing order with respect to base-layer bit-rate and the other into
increasing order with respect to highest layer bit-rate, respectively, we iteratively
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check if the bit-rate R, = R./K required by each ordered stream violates one of
those constraints. If it happens, we assign the corresponding bit-rate and equally
re-distribute the remaining bandwidth to the other streams.

The fairness is computed according to three different metrics: the average

MSE difference 1
5aV:ZZZ|Dz*_D;| ) (413)
i j<i
where the average is computed over L = K(K — 1)/2 possible MSE difference
terms, the modified average modified difference

1 * *
Ay = ZZZA(DZ.,Dj) (4.14)
i j<i
and the most used MSE variance for each GOP.
We first analyze the performance of the adaptation algorithm by assuming
error-free channel, i.e., P* = (0, and GOP size equal to 8.

4.4.1 Error-free channel

In Table 4.1, we show the improvements of our proposed scheme with respect
to ER when the available bandwidth is fixed to R.= 3000 kbps. The average
modified MSE difference is significantly reduced and equivalently the variance is
decreased up to ten times. Let us note that A,, also gives us the information on
the error generated when the discrete solution replaces the continuous solution
in the relaxed problem, (where A,, is zero). This error includes two contribu-
tions: the estimation error of the model and the integrality gap. As expected, the
average error is not small due to mainly the granularity of the low-rate points.
Moreover, in this particular case of bandwidth, the MSE difference (variance) is
still quite high, due to the minimum rate constraints. Our algorithm, while pro-
viding fairness, is able to improve the performance of the most demanding videos,
by allocating more bits to sequences with more complex scenes. This is more
clear in Figure 4.2 where we plot the rate assigned by our adaptation algorithm
to each video sequence GOP-by-GOP. More bit-rate is assigned to Coastguard,
Football and Harbour video sequences, allowing them to achieve more quality. In
Figure 4.3, the MSE variance averaged over 30 GOPs is evaluated for different
bandwidths. In the bandwidth interval considered, the assumptions (4.3) and
(4.5) hold for each GOP. When the bandwidth is very low both schemes show
high MSE variance, because the optimization range is limited by the minimum
rate constraints. When the bandwidth increases, our procedure improves the fair-
ness leading the variance close to 0. A slight variance increase occurs at large
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bandwidths when the maximum rate constraints limit the achievable distortion.
On the other hand, the ER scheme generally increases the MSE variance un-
til the base-layer constraints are active for most of the streams. This behavior
can be partially improved by controlling the base-layer bit-rate [56] of each video
according to its complexity, as performed for instance in [53].

GOP index JAV Oav Variance
ER OPT ER OPT ER OPT
34.54 2.04 35.07 2340 7194 216.1
35.08 2.36 35.09 25.38 715.0 262.2
34.27 145 34.79 2356 7724 217.6
33.13 0.29 37.63 19.50 780.5 227.0
29.62 0.26 35.16 21.95 652.0 258.2
33.67 0.55 37.99 23.36 7749 2818
26.88 0.31 31.78 17.63 551.3 170.8
30.07 1.28 34.76 25.58 636.0 241.6
25.57 0.38 31.18 15.58 493.3 139.8
2946 1.14 40.94 17.75 9029 164.2
38.84 0.20 38.84 18.34 810.6 1858
34.68 0.25 34.68 14.43 666.7 111.6
39.09 043 39.09 20.33 811.4 223.3
32.80 0.19 38.25 16.92 741.0 172.6
36.21 0.06 36.21 15.17 680.5 85.4

O O Ui Wi+

— = == == O
Tl W N = O

Av. 3292 074 36.09 19.92 7139 197.2

Table 4.1: Average modified MSE difference A,,, average MSE difference d,, and
MSE variance in each GOP interval. Comparison between the proposed algorithm
(OPT) and equal-rate (ER) assignment with bandwidth equal to 3000 kbps.

4.4.2 Packet-erasure channel

In this subsection we assess the performance in the case of transmission over
packet-erasure channel, by evaluating only the proposed algorithm with two dif-
ferent GOP sizes. The number of bytes per RS codeword is set equal to n = 128
(as a shortened version of the code with natural length 255) by allowing the in-
sertion of more than one GOP into a TB and then filling the payload of each
RTP packet with a reasonable number of bytes. In order to limit the overhead
to about 20% for the worst case considered, i.e., PXF = 0.1, the parameter a

e

of the proposed UXP scheme is set equal to 30 (see Table 3.3). According to
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Figure 4.2: Rate assigned GOP-by-GOP by our adaptation algorithm (GOP size
G equal to 8), when bandwidth is equal to 3000 kbps.

extensive simulations we define the range of the EPP values for the enhancement
temporal layers between 1075, which is intended to the I-frame, and 10~¢=7), We
also consider a value of bandwidth sufficiently high, i.e., R.= 7000 kbps, to allow
the insertion of the higher quality layers which have less protection.

Table 4.2 shows the average distortion resulting at different PFTY for the dif-
ferent video sequences. The average is obtained by looping the first 240 frames
of each sequences for 1000 times. Here, D> is the average received MSE; D7,
is the average expected distortion which is the discrete solution of the adaptation
algorithm, and D;<"¢ is its related encoding distortion. We can note that the
expected distortions as well as the received distortions at the same RTP packet
failure rate PRTY are approximately equal, showing the goodness of the frame-
work even in presence of packet erasures. The distortion values decrease for most
of the video sequences, while the packet error rate increases, due to the effect of
bandwidth constraint. At large values of PR the outcoming overhead from the
UXP profiler increases and the Adaptation module reacts by reshaping the rate of
each sequence, thereby increasing the distortion to provide fairness. This behav-
ior is less marked in the case of GOP size equal to 8 for the Foreman sequence
whose distortion does not change significantly, since it receives in most cases only

the base-layer with the highest protection. The slight increase of distortion with
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Figure 4.3: Variance of the MSE averaged over 30 GOPs, with different bandwidth
values. Comparison between the proposed algorithm (OPT) and equal-rate (ER)
assignment.

respect to the encoding MSE is due to the loss of certain enhancement temporal
layers.

As expected, an higher GOP size decreases the distortion thanks to the higher
coding efficiency, which allows to improve the R-D performance of the base layer.
Nevertheless, such gain is reduced with respect to the case of error-free channel,
since more quality layers with low protection are transmitted. This behavior can
be improved with a more careful design of the EPP aimed at balancing overhead
and degree of protection according to the available bandwidth.
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4.4 Numerical Results

Video  PRIP G=38 G=16
Di* D, Dw™ Dy D D™
0.01 339 374 296 273 294 198
Coastguard  0.05 37.5 40.1 33.6 31.2 32.0 224
0.1 40.8 423 378 36.1 37.7 27.0
0.01 36.5 36.6 36.2 284 284 282
Crew 0.05 393 394 39.1 324 325 323
0.1 414 415 413 36.6 370 36.0
0.01 352 356 340 279 284 264
Football 0.05 384 389 371 308 316 29.2
0.1 41.8 41.8 405 359 373 343
0.01 35.7 356 342 281 287 279
Foreman 0.05 359 36.0 354 304 308 30.1
0.1 36.2 371 36.1 33.8 349 33.2
0.01 353 388 23.7 298 303 18.2
Harbour 0.0 40.6 422 26.5 32.0 323 20.3
0.1 42.8 442 31.0 344 37.8 229

Table 4.2: Average received distortion, DT/ expected distortion, D

av ?

*
av?

and en-

coding distortion, D" in term of the MSE for different video sequences, GOP

av

size G, and packet-erasure rate values
adaptation algorithm. Available bandwidth is R, =7000 kbps.

e

PRTP

, resulting from the proposed rate-
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Chapter 5

Cross-layer Optimization for SVC
Video Delivery in Downlink
OFDMA Channels

In beyond-3G and 4G wireless system orthogonal frequency division multiple ac-
cess (OFDMA) has been selected as a key physical (PHY) layer technology to
support a very flexible access with high spectral efficiency. In OFDMA wireless
systems, the channel capacity of each user depends on how the channel is shared
by the multiple users and on the fading correlation properties, which are not static
in both time and frequency domains. In order to exploit the available temporal,
frequency and multi-user diversity, and to provide a given level of QoS, suitable
adaptive resource allocation and scheduling strategies have to be implemented.
Opportunistic schedulers, as for instance, Proportional Fair (PF) [19] and maxi-
mum signal-to-noise ratio (SNR) schedulers, take advantage of the knowledge of
the channel state information (CSI) in order to maximize the spectral efficiency.
However, with these schedulers, the final share of throughput often results unfair,
especially for the cell-edge users which suffer of data-rate limitations due to high
path-loss and inter-cell interference.

In real-time streaming the mismatch between the allocated PHY layer rate
and the rate required by the delay-constrained application may cause the loss of
important parts of the streams, which significantly degrades the end-user quality
of experience (QoE). The provision of acceptable QoE to every user is enabled by
the use of a scheduler at the medium access control (MAC) layer which delivers
a fair throughput, according to specific utilities and constraints defined by the
application [20]. Moreover, the presence of an optimized source rate adaptation
technique at the application (APP) layer becomes crucial to improve stability, to

29
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prevent buffer overflow and to maintain video play-back continuity. As already
mentioned, source rate adaptation is enabled by the use of video encoders, e.g.,
SVC, that support multiple layers which can be sequentially dropped, thereby
providing a graceful degradation.

In this chapter we extend the framework proposed in Chapter 4, where we
have assumed constant bandwidth, to the more general case of OFDMA wireless
scenario where the user capacity and the total bandwidth vary on the time and
strictly depends on how the resources are allocated to each user. As in chapter 4,
we target the delivery of quality-fair SVC video streams.

In the literature, several researchers proposed a cross-layer approach for the
optimization of multi-user wireless communications systems.

The Authors in [57] proposed a cross-layer approach for the delivery of one
scalable video in a TDMA-based wireless local-area network under a predefined
service time constraint. It is based on an unequal error protection scheme which
jointly selects the different rates for each scalable video layer and the amount of
enhancement layers permitted in order to maximize the PSNR of the delivered
video. They showed that such intelligent link adaptation scheme significantly
improves the end-video quality with respect to conventional layer drop solutions.

In [58] the framework has been extended to also consider traffic control for a
multi-user scalable video delivery. The optimization framework specifies for each
video the PHY layer rate of each layer and the amount of the packets that should
be dropped from each video.

Both frameworks assume quasi-static fading channel in the time scale of one
group of pictures where the rate can be predicted with enough accuracy. However,
these assumptions can not be applied to realistic OFDMA wireless systems where
the channel capacity depends on how the channel is shared by the multiple users
and fading is not static in both time and frequency domains. Moreover, temporal
fairness constraints simplify the resource allocation in TDMA-based scenarios,
but they are not able to capture the frequency and multi-user diversity of the
OFDMA systems. In this paper we specifically address optimal resource allocation
for multiple users in OFDMA scenario where fading is variable in both time and
frequency domains.

In [12] the Authors presented a cross-layer method to solve the problem of
multiuser SVC streaming over ODFMA networks. The framework is based on a
gradient scheduling algorithm where user-priority weights are derived heuristically
according to video contents, deadline requirements, and previous transmission
results. However, differently from our work, optimized source adaptation is not
addressed, leading to the loss of important parts of the streams, in case of scarce
resources.
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The work in [13] addressed the maximization of the weighted sum of the av-
erage PSNRs achieved by a set of users sharing a wireless channels, but without
addressing fairness and OFDMA systems, as in our framework. As already men-
tioned, the solution of such problem can usually lead to large quality variations
among different streams.

The Authors in [14] proposed a fairness-oriented coo-petition strategy for
multi-user multimedia radio resource allocation (RRA) under the assumption of
a general PHY layer setup with convex rate region. The problem is solved by
using the layering as optimization decomposition (LOD) method, which enables
a simple implementation in a layered transmission system. It is shown that it
improves the number of satisfied users by providing a video quality proportion-
ally fair to the user channel condition, but requires a careful adaptive selection
of the minimum PSNR thresholds for each user according to system throughput,
which is left in future works. As in [14], we propose a decomposition method for
the optimization problem resulting in algorithmic solutions that handle parameter
and constraints of a single layer, but differently from [14], our framework provides
video quality fairness and does not depend on specific thresholds selection.

To the best of our knowledge only the work in [7] addressed the issue of trans-
mitting quality-fair SVC streams by jointly optimizing APP and MAC layers in
OFDMA downlink. The fairness problem is handled by minimizing the maximal
end-to-end distortion among all users at each transmission time interval (TTI),
under rate constraints. Due to the NP-hard nature of the problem, the Authors
proposed a suboptimal algorithmic solution. However, the TTI-based optimiza-
tion does not allow to fully capture the time diversity of the channel and requires
extensive exchange of information between MAC and APP layers.

In our work we show that an ergodic-based optimization problem can be opti-
mally solved resulting in a limited scalar information exchange among the involved
layers. In fact, in practical applications, the definition of utilities and constraints
should be function of the rate averaged over a certain time period [59], e.g., an
interval related to the structure of the encoded video streams. When the objective
of the optimization is to maximize of the sum of concave utility functions of the
ergodic rates, the optimal solution for the downlink of an OFDMA system can be
derived through dual decomposition, which results in MAC layer scheduling algo-
rithms with decoupled subcarrier and power allocations. Similar frameworks were
proposed in [60] and [61], which proved that quasi-optimal solutions have linear
complexity with respect to the number of both subchannels and users. The main
drawback of such solutions is that the MAC layer has to directly manipulate the
utility functions of the APP layer, thus limiting the applicability to layered trans-
mission systems where only limited scalar information can be exchanged between
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APP and MAC layers.

We here propose a cross-layer method for maximizing the aggregate ergodic
(average) rate assigned to multiple SVC transmission in an OFDMA wireless
network, while minimizing the distortion difference among the received video se-
quences. The optimization problem is "vertically” decomposed into two sub-
problems, leading to rate adaptation at the APP layer and resource allocation at
the MAC layer, and a novel efficient iterative local approximation (ILA) algorithm
is proposed to obtain the global solution. The ILA algorithm is based on the local
approximation of the contour of the ergodic rate region of the OFDMA downlink
channel and requires a limited information exchange between the APP and the
MAC layers. Moreover, we present and discuss the algorithms to solve the two
sub-problems and prove the optimality and convergence of the ILA algorithm.

It should be pointed out that a similar approach has been developed in [62] to
solve the maximization of a general concave utility function. In such approach,
the APP layer derives iterative solutions on the space tangent to the rate region.
But differently from our approach, a gradient-based update of the utility function
is proposed, hence requiring a careful selection of the related step-size to ensure
convergence. In our work, since the utility is replaced by a one-dimensional man-
ifold representing the fairness constraints, such issue is overcome. Moreover, the
Authors in [62] proposed to project the APP solutions on the contour of the rate
region, orthogonally to the tangent space. Differently, our approach projects the
APP solution by using a parametric line representing a proportionality constraint.

In this chapter we also address some issues arising in practical implementa-
tions, by designing a suboptimal solution based on the outcome of a single step of
the ILA algorithm and on the use of stochastic algorithms for resource allocation.
Our numerical evaluations show (i) the fast convergence of the ILA algorithm, (ii)
the resulting low gaps in terms of efficiency and fairness between optimal and sub-
optimal proposed strategies, and (iii) the significant video quality improvements
with respect to other state-of-the-art solutions.

The remainder of this chapter is organized as follows. Section 5.1 introduces
the system architecture, The PHY layer model is presented in 5.2. In Section
5.3 the optimization problem and its ”vertical” decomposition are formulated and
discussed, whereas the ILA algorithm is proposed in Section 5.4. The solutions of
the APP and MAC sub-problems are provided in Section 5.5 and 5.6, respectively,
whereas in Section 5.7 optimal and suboptimal solutions suited for realistic im-
plementation are discussed. The performance of the proposed schemes is finally
evaluated in Section 5.8.
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Contribution

In summary, this chapter collects the following relevant contributions:

e we formulate the cross-layer optimization problem for maximizing the ag-
gregate ergodic (average) rate assigned to multiple SVC transmission in an
OFDMA wireless network, while minimizing the distortion difference among
the received video sequences. We prove that the global optimal solution is
unique.

e we decompose the cross-layer optimization problem into two sub-problems
that handle parameter and constraints of a single layer. They results in rate
adaptation at the APP layer and resource allocation at the MAC layer,

e we propose a novel efficient Iterative Local Approximation (ILA) algorithm
to obtain the global solution and we rigorously prove its convergence and
optimality.

e We propose optimal algorithm for the solution of the APP layer sub-problem
which has linear complexity in the number of users for practical scenario

e We re-trace the optimal algorithmic solution for the resource allocation sub-
problem at the MAC layer, by also analyzing its impact to the computational
complexity of the ILA algorithm.

e we propose and design suboptimal solution for practical implementations
based on the use of stochastic algorithms for resource allocation.

e in order to further reduce the complexity, we propose the 1-step ILA algo-
rithm, which is based on the outcome of a single step of the ILA algorithm.
Due to its sub-optimality, we also investigate methods to adaptively com-
pensate its residual error.

e we finally provide extensive numerical evaluation by comparing optimal and
suboptimal proposed solution with respect to other state-of-the-art frame-
works.

5.1 System Architecture

In Figure 5.1 we show the architecture of a video delivery system, where the three
key elements taken into account in this work are outlined, i.e., the multimedia
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Figure 5.1: System architecture

provider (MP), the media aware network element (MANE) and the OFDMA-
based wireless access network (WAN) which includes a base station (BS) that
serves K users indexed by the set K = {1,...,K}. Each mobile user in the
WAN requests a video sequence and the MP encodes the requested video to fully
support temporal and quality scalability. The video streams are further processed
to extract a priority index for each frame [28] and the R-D information for each
layer. The R-D modeling block collects the R-D information and evaluates the
set of parameters describing the R-D relationship, according to the parametric
model introduced in the section 3.4. Specifically, we consider the three parameter
model in eq. (3.9). Priority indexes and R-D parameters are then sent as side
information to the MANE.

The UXP (unequal erasure protection) profiler assigns a different protection
to each frame according to its dependencies and the related R-D improvements.
This task is executed by taking into account the estimated average packet-loss
rate at the lower layers of the systems. According to the scheme described in
section 3.4.1, the profiler also computes the rate and the expected distortion after
error protection, which will be used to update the parameters of the expected R-D
characteristics. The resulting information is then sent to the adaptation module
which extracts a suitable bit-stream from each encoded video stream, according to
the outcome of the adaptation algorithm. The parameters of the R-D relationships
available at the MANE, as well as bandwidth and buffer information provided by
the BS, are the input of the adaptation algorithm.

The packetization process is carried out according to the guidelines presented
in section 3.4.1. Each GOP of the adapted video stream is mapped into one
transmission block (TB) that carries both data and UXP parity bytes. After
interleaving and packetization, the TB is then re-organized into a sequence of
RTP packets which are finally forwarded to the MAC/PHY layers through a
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suitable protocol stack, e.g., with UDP/IP/link layers. It is worth noting that,
due to the GOP interleaving over RTP packets, the receiver is not able to decode
any frame until the entire TB is received.

The MANE procedures are executed at regular time intervals (in the order
of seconds), here named as application frame intervals. During each application
frame interval the MANE and the BS of the WAN exchange limited information
related to QoS constraints, PHY layer bandwidth constraints, buffer status and
packet-loss rate, according to a cross-layer paradigm. We assume here that this
information exchange introduces a negligible delay, thanks to the high-speed con-
nection in the fixed network. Radio resource allocation (RRA) and scheduling
at the BS are based on adaptive algorithms, which aim to maximize the spectral
efficiency of the OFDMA network, using QoS constraints provided by the MANE
and CSI information from the PHY layer.

5.2 Physical Layer Model for the Downlink of
the Wireless Access Network

In this chapter we consider a single-cell time-slotted OFDMA system where the
BS and users are equipped with one antenna. Methods and algorithms developed
here are also extended to multi-cell scenario in Appendix A and they can be easily
extended to multi-antenna configurations [63].

The total available bandwidth B is divided into S orthogonal subcarriers in-
dexed by the set S = {1, ..., S}, with subcarrier spacing AB = B/S. The channel
gain hy, s[n] between the BS and user k, on subcarrier s and time slot n, is modeled
as a complex Gaussian random process (Rayleigh fading), in general correlated
across subcarriers and time slots. We define the normalized SNR of user k, on
subcarrier s and time slot n, as

uln] = eI (5.1)

o2
where o2 is the noise power.

The RRA at the BS aims to allocate the available resources, i.e., subcarriers
and power, at each time slot, to the users according to a predefined allocation
strategy. We first assume that subcarriers can be shared by multiple users over
non-overlapping fractions of the total time slot duration ty.. We denote with
Yr.s[n] € [0,1] and py s[n] > 0 the fraction of time slot and the power, respectively,
allocated to user k, on subcarrier s and time slot n. By using a suitable adaptive
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modulation and coding (AMC) scheme, the rate achieved by user k on subcarrier
s can be evaluated with the following model:

mAWAMmmMDZABWAMC(%%%%#@) (5.2

if Yrs[n] > 0 and 7y s(Vr s[n], prsin]) = 0 otherwise, where C'(z) = ay log,(1 +
x/ag) and aq, ay are two parameters, namely the rate adjustment and the SNR-
gap, respectively, depending on the specific AMC scheme adopted [64]. To sum-
marize, given the set v = {5, k € K,s € S} of the SK realizations of the SNR
random process, the RRA algorithm at the BS determines the set of allocation
variables ¢ = {Yp s,k € K,s € S} and p = {prs. k € K,s € S} functions of
the SNR realizations ~, i.e., p(7), 4 (7). Although we use for the sake of clarity
a simplified notation, it should be noted that «, p and 1 are sets of random
processes along time dimension n.

Finally, we assume that the application frame interval t is sufficiently large to
support ergodic approximation for the average rate provided to users. Specifically,
we assume that the rate assigned to user k averaged over the discrete time window
Wy = Lt—IJ > 1 can be approximated by its expected value with respect to the

tslot
random process 7, i.e., the ergodic rate:

&WM=%ZJZmM%mmmﬂz
seS (53)

B[ X st )]

seS

n=1

According to the proposed source rate-distortion model in chapter 4, The average
PHY rate can be mapped to the average rate required by the source with the
relationship

Ri(¢,p) = HF:(D) (5.4)

where H > 1 is a constant that takes into account the overhead introduced by the
different layers of the network architecture. Therefore, the continuous distortion
Dy, of the set of pictures delivered to user k£ has an implicit dependence on the
allocation variables v, p, i.e.,

Dy = F (Ru(v, p)/H). (5.5)
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5.3 The Optimization Problem

Similarly to the framework proposed in chapter 4, our objective is to provide a
fair video quality by maximizing the overall video quality while minimizing the
quality difference among the different videos, under the minimum and maximum
rate constraints.

Let us denote with A the set of feasible allocation policies ¥ (7), p(~), i-e.,

A={(,p) : Yes(¥) = 0,prs(7) 20, () < 1} (5.6)

kel

and with P the set of the feasible allocation policies (7, p) € A which also satisfy
an average sum-power constraints, i.e.,

YD By <P (5.7)

ke se$S

where P is the average power budget of the OFDMA transmitter. The achievable
ergodic rate region is then given by

R= |J {e:e=R(¥ p)} (5.8)

(¢, p)EP

where R(1p,p) = [Ri(¥,p), ..., Rx(1,p)]" is the ergodic rate vector and g =
[01,...,0k]T. When subcarrier sharing is considered, as here, the rate region
results in a convex set of the rate vectors [61].

The optimization problem can be then described by the following constrained

sum-rate maximization:

&g@”ﬂ%ﬁ)!h (5.9a)
st. A(D;, D;) =0 Vi, jeK,i#j (5.9b)
HF™ < R(v,p) < HF™> (5.9¢)
R(y,p) €R (5.9d)

where the fairness constraints in (5.9b) are translated into rate constraints through
Dy, = F, ' (Ri(¢,p)/H), Yk € K and F™n = [Fin T with Frin =
F.(DYY), and Fmox = [ppax x| T5with Fmex = Fy (DY), are the mini-
mum and the maximum rates, respectively, of the SNR scalable video streams
in the given application frame interval. The relationship between the rate and
the distortion is here modeled according to eq. 3.9. The definition of the the
distortion-fairness metric in the constraint (5.9b) can be found in eq. (4.2).
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Figure 5.2: An example of two-user optimization problem as in (5.9). R* is the
optimal solution given by the intersection between the boundary of the rate region
& and the piece-wise (bold dashed) curve F related to the constraint A(Dy, Dq) =
0. The problem is feasible because H F™" belongs to R.

According to the constraints (5.9¢) and (5.9d), any feasible solution of the problem
should belong to R, = {R € R : HF™" < R < HF™>}_ if it is a non-empty
set. This happens if and only if the rate vector H F™" belongs to the interior of
R, i.e., if transmission at minimum rate for all videos is supported by the PHY
layer. It is also worth noting that a trivial solution to the problem can be derived
when all the full quality encoded streams are supported by the rate region, i.e.,
if HF™ € R, that corresponds to transmitting all the encoded streams without
any adaptation. In Fig. 5.2 we draw an example of the optimization problem for
a two-user case. The feasible solutions also lie on the piece-wise curve (dashed
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line in the figure):
F={o: A(F 0/ H).F o,/ H) = 0.¥ij €K} (510)

representing the constraints (5.9b).
We have the following property:

Property 1. The set F in eq. (5.10) describes a one-dimensional monotonically
increasing manifold with boundary in the RE space, i.e., the coordinates in RE 1
are expressed explicitly as a function of one coordinate:

R L RE1, (5.11)
and for any given p,0 € F, if 0; > 0; then

[@17 LI éi—la éi-ﬁ-lv tr @K] i [@/17 ) @;—17 é;-ﬁ-l? ) @II{] (512)

Proof. According to the definition of F in (5.10), any @ € F is constrained by
K(K — 1)/2 equations. By fixing one component g; € [HEF™» HF™>] the con-
straint equations can be reduced to K — 1 equations, u.e.,

DY, if DY <
= &= DM if D>

D;
T b,
0j/H — j3;

Vi€ K\ {i} (5.13)

J
D; otherwise

where D; = F;*(p;/H), which readily proves the one-dimensionality of the mani-
fold with boundary F. The monotonically increasing property is straightforward
from the last equation of (5.13), by considering that the inverse of the R-D func-
tion given in eq. 3.9, i.e., ﬁ —¢&4, is a monotonically strictly decreasing function

According to property 1, since the objective (5.9a) is concave [65], increasing
and uniformly bounded V R € R [61], if we assume HF™>* ¢ R and HF™" € R
the optimal solution R* is clearly attained at the boundary of the rate region R,
identified by the Pareto-efficient set:

E={RecR:focRst o= R} (5.14)

and is given by the intersection of the piece-wise curve with the rate region bound-
ary £. The optimal solution R* is unique as proved in lemma 1.

We finally remark that the optimization provides a continuous rate solution,
whereas the scalable encoding works with a discrete set of rates. A discrete
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rate solution could be evaluated, starting from the continuous one, by further
applying proper optimization techniques, e.g., branch & bound search. To keep
the complexity low, it is common practice to convert the continuous rate into the
nearest discrete rate value smaller than the continuous one, at the expense of a
minimum waste of bandwidth.

The evaluation of the optimal solution of the problem in (5.9) would generally
require a controller that manages both APP and MAC layers variables and con-
straints, which is not suitable for realistic network implementations. A desirable
solution is the possibility to have single-layer entities that exchange a limited in-
formation in a cross-layer fashion, as indicated in Fig. 5.1. This motivates us to
decompose problem (5.9) into two sub-problems, each one handling parameters
and optimization constraints which are characteristics of a single layer, i.e., in
our case, the APP or the MAC layer. In the next subsection we will describe this
vertical problem decomposition.

5.3.1 Problem Decomposition

If we first assume that the APP layer has a perfect knowledge of the boundary &
of the rate region R, the problem (5.9) can be simplified into a multi-dimensional
constraint-satisfaction problem that aims to find F' such that

{HFGEQ'RC (5.15)

This is a rate adaptation problem that can be handled by the APP layer. Note
that it does not include any objective since the objective of maximizing the source
rates is achieved on the boundary £ due to the convexity of the R-D functions.

On the other hand, if we assume that the information about the line where the
optimal rate vector lies, which is identified by the parametric equation R* = ¢p, is
available, the problem (5.9) can be simplified into a problem that can be handled
by the MAC layer. The rate direction vector ¢ = [¢1,...,dx|T = 0 defines the
direction of the line and p € R* is the parameter. This line departs from R =0
and intersects the boundary € in R = R*. By assuming ||¢||; = 1, we also obtain
IR ||y = ||¢llip = p, i.e., the parameter is the sum-rate. By exploiting this
information, the second problem becomes a constrained sum-rate maximization
where the objective is to find the optimal allocation policy (%, p) that maximizes
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the sum-rate under the aforementioned proportionality constraints:

max p (5.16a)
(¥,p)eA

st. R(yp,p) €R (5.16Db)

R(¢,p) = ¢p (5.16¢)

This is a simple resource allocation problem. Optimal and efficient solutions of it
are well known in literature [66] and do not require the a-priori knowledge of the
rate region R. Only the information on the vector ¢ is needed and this could be
provided by the APP layer. In fact, once the solution F* of the first problem in
(5.15) is known, vector ¢ can be easily evaluated as

1 [lx

¢ (5.17)

The main challenge is still on setting up and solving problem (5.15). In fact,
the boundary £ of the rate region for the OFDMA scenario cannot be explicitly
derived in a fading environment, even when a perfect channel distribution infor-
mation (CDI) is available at the BS side. To overcome this challenge we propose
an efficient iterative method based on the local approximation of the boundary &,
which simplifies problem (5.15).

5.4 Iterative Local Approximation (ILA) Algo-
rithm

The starting point for developing the algorithm is the following proposition [61]:

Proposition 1. Fach point on the boundary £ of the rate region R is the result
of the maximization of a weighted sum of average rates (WSAR), i.e.,

TR(+, 5.18
Jhax p (¥, p) (5.18a)
s.t. R(p,p) € R (5.18h)

for a given p = [y, ..., ux]? = 0.

The WSAR maximization problem is a well-investigated problem and low-
complexity procedures can be derived to obtain almost-sure optimal solutions for
OFDMA wireless systems [61,67]. In this problem the vector p is usually selected
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Figure 5.3: An example of the first step of the ILA algorithm for a system with
two users.

to enforce some notions of fairness, efficiency, etc., commonly embedded inside
utility functions [62].

However, it is shown in [66] that even the solution of problem (5.16) can
be obtained through a WSAR maximization problem, where the weights p are
derived in the dual domain.

Interestingly, the null space of the weight vector p also identifies the tangent
space to the boundary £ of the rate region at the point where the optimal solution
of the WSAR problem is located [62]. The key idea proposed here is to exploit
the tangent space as a local approximation of £ to build an iterative procedure
between APP and MAC layers that converges to the optimal solution of the prob-
lem. To this end, let us denote with R the optimal rate solution of the WSAR
problem with weights fi. The tangent space of R at the point R is then defined
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by the following set: .
Tr(R) = {e: ' (e~ R) =0} (5.19)

The cross-layer procedure, named iterative local approximation (ILA) algo-
rithm, can be presented as follows.

Given an initial values of the vector ¢, i.e., @, the MAC layer solves the
problem in (5.16). The resulting optimal rate solution R and the weights (),
which identify the tangent space T (f2(?)), are forwarded to the APP layer. The
APP layer exploits this information to derive the optimal distortion-fair solution
FO such that HF® is on the tangent space, i.e., HF" € F N Tx(®). hence
outside the achievable rate region due to the convexity of R.

The solution for vector ¢, i.e., 1) (see eq. (5.17)), is then forwarded to
the MAC layer, which projects the solution on the boundary of R by solving
the problem (5.16) to get RM, and the related weights (). These steps are
iterated until convergence, according to a closed loop strategy. The procedure
can be stopped when the error between APP and MAC solutions, which is §¢) =
|HF® — RM||,, is sufficiently small. An example of the first step of the ILA
algorithm for two users is depicted in Fig. 5.3, whereas the details are reported
in Algorithm 2 below. The optimality and convergence is stated in the following

Algorithm 2 ILA algorithm

= TFol, i
Solve problem (5.16) to get @, R®
until 60 < e

1: i = 0; set @ and error bound ¢

2: Solve problem (5.16) to get i, R©
3: repeat

4: 1=1+1 5

5. Find FO : HFY € To(pt=Y)yn F
6: @) = LU

T

8:

lemma:

Lemma 1. ILA algorithm converges to the unique optimal rate solution R* €
ENF of problem (5.9) under the assumptions HF™ ¢ R and HF™" € R, i.e.

lim F®) = R*/H. (5.20)

1—>00

Proof. We first prove that the optimal solution is unique.
Since the optimal solution R* is given by the intersection of the boundary &£ of
the convex rate region, which is a (K — 1)-dimensional