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Abstract

This thesis is part of the research project finalized to the measurements of the Electric

Dipole Moment (EDM) of charged particles in a storage ring. The measurement presented

here concern the feasibility tests performed at the COoler SYnchrotron (COSY), located at

the Forschungszentrum-Jülich (Germany).

The Standard Model CP violation source is not strong enough to explain the matter-

antimatter asymmetry of the universe. The observation of a non-zero EDM aligned along

the spin axis of a fundamental particle, nucleus or atomic system would be a signal of CP

violation beyond the Standard Model and, therefore, of new physics.

For a neutral system, the usual method for detecting the EDM ~d consists of the applica-

tion of an electric field ~E and the measure of the energy shift ~d ·~E. This procedure cannot be

applied to charged particles, since they would be accelerated by the electric field and then

lost. The use of a storage ring opens the EDM search to charged, polarized particles. The

basic idea is to align the beam polarization along the momentum, and keep the beam circu-

lating while interacting with the radial electric field always present in the particle frame. The

EDM signal would then be detected as a polarization precession starting from the horizontal

plane and rotating towards the vertical direction.

One of the most serious issues to be dealt with in such an experiment is the limited hor-

izontal polarization lifetime, called Spin Coherence Time, that is the time that takes to the

particle spins for spreading around in the ring plane. This characteristic time of the system

defines the observation time available to detect the EDM signal. The goal for the proposed

deuteron EDM experiment is to achieve an EDM sensitivity of 10−29 e · cm, which requires

a SCT of at least 1000 s.

The development and design of such a high precision experiment demands a powerful

tracking code that allows to track both the position and the spin of the particles circulating in

the storage ring. The code I used to perform the simulations presented in this work is COSY
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ii ABSTRACT

INFINITY, created by Prof. Martin Berz at the Michigan State University.

The purpose of this thesis is to benchmark the COSY INFINITY code against the feasi-

bility studies for the deuteron EDM experiment performed at the COSY storage ring. The

comparison of the simulations to the measurements represented a unique possibility of test-

ing the COSY INFINITY code with actual data. The presented results demonstrate that

COSY INFINITY correctly computes the beam and spin dynamics of a charged particles

beam in a storage ring. The dependence of the spin coherence time on betatron and syn-

chrotron oscillations is qualitatively reproduced, as well as its dependence on the strength

of the sextupole magnets implemented in the simulated lattice. It has been confirmed that,

with the right choice of sextupole strength, it is possible to simultaneously compensate for

the vertical and horizontal beam emittance effects and, therefore, lengthen the SCT.



Riassunto

Questa tesi è parte del progetto di ricerca finalizzato alla misura del momento di dipolo

elettrico (EDM) di particelle cariche in un anello di accumulazione. Le misure qui presentate

riguardano i test di fattibilità svolti al COoler SYnchrotron (COSY), situato al Forschungszentrum-

Jülich (Germania).

La sorgente di violazione di CP del Modello Standard non è sufficientemente grande per

spiegare l’asimmetria materia-antimateria dell’ universo. La scoperta di un EDM non nullo,

allineato con l’asse di spin di una particella fondmentale, nucleo o sistema atomico, sarebbe

un segnale di violazione di CP oltre il Modello Standard e, quindi, di nuova fisica.

Per un sistema neutro, il metodo di solito utilizzato per rilevare un EDM ~d consiste

nell’appicare un campo elettrico ~E e misurare la variazione di energia ~d · ~E. Questa pro-

cedura non può essere applicata a particelle cariche, poichè queste sarebbero accelerate dal

campo elettrico e, quindi, perse. L’utilizzo di un anello di accumulazione apre alla ricerca di

EDM per particelle cariche e polarizzate. L’idea è quella di allineare la polarizzazione del

fascio con il momento, e mantenere il fascio in circolazione nell’anello mentre interagisce

con il campo elettrico radiale che è sempre presente nel sistema di riferimento delle parti-

celle. Il segnale EDM sarebbe quindi rilevato come una precessione della polarizzazione

che parte dal piano orizzontale e ruota verso la direzione verticale.

Uno dei problemi più complessi da affrontare in un esperimento di questo tipo è la limi-

tata vita media della polarizzazione orizzontale, chiamata tempo di coerenza di spin (SCT),

che rappresenta il tempo che impiegano gli spin delle particelle del fascio per andare fuori

fase nel piano orizzontale. Questo tempo caratteristico del sistema definisce il tempo di

misura disponibile per rilevare il segnale EDM. L’obiettivo dell’esperimento proposto per la

misura del momento di dipolo elettrico del deuterone è quello di raggiungere una sensitività

di 10−29 e · cm, che richiede uno SCT di almeno 1000 s.

Lo sviluppo e la progettazione di un esperimento di tale precisione richiede l’utilizzo di

iii
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un potente codice di tracciamento che sia in grado di tracciare sia la posizione che lo spin

delle particelle che circolano nell’anello di accumulazione. Il codice che ho usato per effet-

tuare le simulazioni presentate in questo elaborato è COSY INFINITY, realizzato dal Prof.

Martin Berz alla Michigan State University.

Lo scopo di questa tesi è confrontare le simulazioni eseguite con il codice COSY IN-

FINITY con i risultati degli studi di fattibilità dell’esperimento EDM del deuterone, svolti

a COSY. Tale confronto rappresenta una possibilità unica di testare il codice con dati sper-

imentali. I risultati presentati dimostrano che COSY INFINITY calcola correttamente la

dinamica di fascio e di spin per un fascio di particelle cariche in un anello di accumulazione.

La dipendenza del tempo di coerenza di spin dalle oscillazioni di sincrotrone e betatrone

è qualitativamente riprodotta, cosı̀ come lo è la sua dipendenza dall’intensità dei sestupoli

implementati nel codice. É stato confermato che, per un valore opportuno di intensità dei

sestupoli, è possibile compensare simultaneamente gli effetti dell’emittanza verticale e oriz-

zontale del fascio e, quindi, allungare lo SCT.
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Introduction

This work is included in the research project aimed to measure the Electric Dipole Mo-

ment (EDM) of charged particles in a storage ring. The measurements presented here con-

cern the feasibility tests performed at the COoler SYnchrotron (COSY) ring, located at the

Forschungszentrum-Jülich (Germany).

The discovery of a non-zero EDM aligned with the spin of fundamental particles would

contribute to solving the matter-antimatter asymmetry (also known as baryon asymmetry) of

our universe, which represents one of the mysteries of contemporary physics. The Big Bang

Theory assumes that an equal amount of matter and antimatter was present at the origin of

the universe. According to Sakharov’s conditions, this symmetry must have been broken

by mechanisms violating charge conjugation simmetry C and the combined charge-parity

simmetry CP, taking place outside of thermal equilibrium. Although the Standard Model

of particle physics contains sources of CP violation, coming from the electroweak theory

(K-meson and B-meson decays) and (in principle) the quantum chromodynamics, they are

not large enough to explain the size of the current baryon asymmetry. What is needed is the

observation of new CP-violating processes.

The EDM is a measure of the permanent separation between positive and negative elec-

trical charge that lies along the particle’s spin axis. The action of the time reversal operator

T, which inverts the time coordinate, inverts the spin vector leaving the EDM unchanged.

Under a parity transformation P, which inverts the spacial coordinates, the spin direction re-

mains the same whie the EDM is reversed. Neither of the two operator keeps the system in

its original configuration, meaning that an EDM along the particle’s spin axis violates both

parity and time reversal symmetries. Assuming the CPT theorem to be valid, a violation of

T represents a violation of CP, concluding that EDM indeed violates CP.

The theoretical predictions coming from the CKM mixing in the Standard Model (for the

neutron dCKM
n ∼ 10−32 e · cm) are several orders of magnitude below the current EDM ex-

1



2 INTRODUCTION

perimental limits (|dn| ∼ 10−26 e ·cm). Models beyond the Standard Model, on the contrary,

foresee EDMs within the experimental boundaries. The measurement of a non-vanishing

EDM at the sensitivity of present or planned experiments would clearly prove the existence

of new sources of CP violation beyond the Standard Model.

In 1950, pursuing the suggestion that the strong interactions, whose theory was still un-

known at the time, may violate the parity simmetry, Purcell and Ramsey actually performed

the first EDM experiment by searching for a P-violating up-down asymmetry in neutron

scattering from spin zero nuclei. After that, EDM searches intensified and the level of ex-

perimental precision has increased steadily ever since, getting to include also heavy atoms

and molecules. For a neutral system, the usual method for detecting the EDM ~d consists of

the application of an electric field ~E and the measure of the energy shift ~d ·~E. Unfortunately,

this method cannot be applied to charged particles, since they would be accelerated by the

electric field and then lost.

In order to solve this issue, charged particles EDM experiments in storage rings have re-

cently been proposed. The basic idea is to inject in the ring a horizontally polarized charged

particle beam (particle spins aligned along the momentum) and keep it circulating while in-

teracting with the radial electric field always present in the particle frame. The EDM signal

would then be detected as a polarization precession starting from the horizontal plane and

rotating towards the vertical direction.

The success of this kind of experiment depends on the fulfillment of two fundamental

conditions. First, the polarization precession in the horizontal plane, due to the anomalous

magnetic moment of the particle, has to be frozen, so that the particle spins will always be

aligned with the momentum during the motion and the beam will be longitudinally polar-

ized. Second, it is necessary to provide a long horizontal polarization lifetime which defines

the observation time available to detect the EDM signal.

The realization of a storage ring EDM experiment requires a perfect knowledge of beam

and spin dynamics for the stored particles. In particular, the understanding of spin dynamics

is essential for providing a long horizontal polarization lifetime. In a storage ring, the stable

spin direction is the vertical one, orthogonal to the ring plane. Therefore, as soon as a spin

vector is not aligned with the stable axis, it will start precessing around it with a frequency

proportional to the relativistic factor γ and the local magnetic field. The number of spin

precessions around the stable spin axis per number of revolutions around the ring is called

the spin-tune. Because of the momentum dispersion among the particles in the beam, the

spin vectors will precess with diffent frequencies, going out of phase in the horizontal plane
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and making the polarization vanish. The time that takes to the spins for spreading around in

the ring plane is the horizontal polarization lifetime, called spin coherence time, and defines

the observation time available to measure the EDM signal. The goal for the deuteron EDM

experiment is to achieve an EDM sensitivity of 10−29 e ·cm, which requires a spin coherence

time of at least 1000 s, along with the capability of measuring microradians of polarization

rotation.

The development and design of such a high precision experiment demands a powerful

tracking code that allows to track both the position and the spin of the particles circulating in

the storage ring. The code I used to perform the simulations presented in this work is COSY

INFINITY, created by Prof. Martin Berz at the Michigan State University. Besides tracking

particles during their motion, this code offers the possibility to track the particle spins by

making use of differential algebraic techniques to calculate Taylor coefficients that define

the spin transfer matrix of the system.

The purpose of this thesis is to benchmark the COSY INFINITY code against the fea-

sibility studies for the deuteron EDM experiment performed at the COSY storage ring in

Jülich. In these tests, the precession of the horizontal polarization as a function of time

was measured, and the effects of the transverse beam size on the spin coherence time were

studied. Also the contribution of sextupoles field to the horizontal polarization lifetime was

investigated.

In order to probe the COSY INFINITY code, a lattice as close as possible to the real

COSY ring was implemented. Making use of the code output coming from the spin tracking

procedure, executed on a deuteron having momentum of 0.97 GeV/c, I developed a method

to calculate the spin invariant axis and, consequently, the spin tune of the reference particle.

The change in the spin tune due to either a position or a momentum offset of a particle with

respect to the reference trajectory was then evaluated by selectively setting a certain value of

∆x, ∆y and ∆p/p. The spin-tune spread was determined and the associated spin coherence

time was calculated. In this way, I was able to evaluate the influence of the betatron oscil-

lations and the beam momentum spread to the horizontal polarization lifetime. Afterwards,

the effect of synchrotron oscillations on the spin coherence time was studied by adding an

RF cavity, that bunches the beam. Eventually, I investigated the possibility of lengthening

the polarization lifetime by correcting emittance effects using sextupole magnets.

The thesis is divided in seven chapters:

• Chapter 1 yields a theoretical overview of the EDM as a probe of new physics, in-
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cluding the experimental results achieved so far. The proposed method for the mea-

surement of a charged particle EDM in a storage ring is presented.

• Chapter 2 provides the basic elements of beam dynamics in a storage ring, that are

necessary to understand the simulations and the measurements presented in the thesis.

• Chapter 3 describes the COSY storage ring, where the feaibility tests have been per-

formed. It defines the polarization of a spin-1 particle like the deuteron, and shows

how it can be measured.

• Chapter 4 illustrates the characteristics of the COSY INFINITY code. The COSYScript

language is defined, together with a basic structure of a program. It is described how

beam physics was implemented; the optical elements composing the simulated lattice

are introduced.

• Chapter 5 shows the results of the COSY INFINITY simulations about the betatron

and synchrotron oscillations effects on the spin coherence time, including their cor-

rections by using sextupole magnets.

• Chapter 6 gives a description of the measurements performed at the COSY ring in

which I was involved during my stay at the Forschungszentrum-Jülich. These mea-

surements were fundamental to compare the results emerging from the COSY INFIN-

ITY simulations with data from a real machine. They included the direct measurement

of the horizontal polarization as a function of time, involving the emittance effects and

their corrections with sextupole magnets.



Chapter 1

The Electric Dipole Moment as a

sensitive probe of CP violation

1.1 Baryons-antibaryons asymmetry

One of the mysteries of contemporary physics comes from astronomical observation.

We are living in a matter-dominated universe with basically no evidence for antimatter. This

fact is represented in the baryon to photon ratio, calculated as the ratio between the number

density of baryons nb and the number density of photons nγ . The last measurement of this

quantity, also known as baryon asymmetry parameter, is from PLANCK [1], and its value

is [1, 2]:

η =
nb

nγ
= (6.08±0.14)×10−10 (1.1)

The Standard Model prediction for the number of baryons and antibaryons is rather

small:
nb

nγ
=

nb̄

nγ
∼ 10−18 (1.2)

that is more than 8 orders of magnitude smaller than the observed value (see Eq. 1.1). This

number does not justify the matter content of the universe coming from primordial nucle-

osynthesis [3]. The process responsible for this asymmetry of the universe, that started from

a symmetric configuration, is known as baryogenesis.

In 1967 A. D. Sakharov formulated the three conditions necessary to allow a uni-

5



6 CHAPTER 1. THE EDM AS A SENSITIVE PROBE OF CP VIOLATION

verse, containing initially an equal amount of matter and antimatter, to evolve into a matter-

dominated universe [4], which we see today. These conditions are reported in the following:

1. Baryon number B violation. If every interaction conserves B = nb −nb̄ individually,

then it will always be conserved globally. Therefore must exist at least an elemen-

tary process that violates the baryon number, allowing the baryogenesis to bring the

universe from a B = 0 condition to a B > 0 condition.

2. C and CP symmetries violation. Simple baryon number violation is not enough to

explain matter-antimatter asymmetry if C and CP are symmetries of the universe. It

is indeed possible to demonstrate that, if C and CP are not violated, the processes

generating a baryon excess would occur at the same rate of the processes generating

an antibaryon excess. In this conditions, the baryon asymmetry would preserve its

initial value η = 0.

3. Interactions outside of thermal equilibrium. At thermal equilibrium, the Boltz-

mann distribution dictates that there should be equal amounts of matter and antimat-

ter. Other reactions would then turn any baryon asymmetry back into even number of

baryons and antibaryons. Therefore, any baryogenesis must happen under conditions

outside from thermal equilibrium.

Remarkably, over the years it was realized that the Standard Model contains all three

ingredients. Baryon number fails to be conserved through a combination of non-perturbative

thermal processes in the SU(2) space and an anomaly in the baryon current, fact that fulfills

the first condition. This allows for fluctuations of baryon number in the early universe at

T ∼> 100 GeV , while a combination of the second and third conditions provides a preferred

direction for these fluctuations, which can favor baryons over antibaryons. Despite that, the

resulting baryon asymmetry falls several orders of magnitude short of the baryon asymmetry

that is observed experimentally (see Eq. 1.1). In particular, the SM contributions to CP

violation are not strong enough to explain the baryogenesis.

The impossibility of having successful baryogenesis within the SM is a very strong

motivation for searching new sources of CP violation. In this chapter it will be presented

how this research is connected to the possible existence of an electric dipole moment (EDM)

aligned to the particles spin axis.
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1.2 CP violation in the Standard Model and beyond

In the Standard Model of particle physics there are two distinct sources of CP violation:

• in the electroweak theory, the phase δ in the CKM (Cabibbo-Kobayashi-Maskawa)

quark mixing matrix;

• in quantum chromodynamics (QCD), the θQCD parameter.

CP violation was first observed in 1964 in the system of neutral Kaons [5], when it was

found that weak charged current interactions can violate strangeness and lead to K0 − K̄0

mixing. A later confirmation came from the studies performed on the neutral B-mesons

system [6]. Both these results can be explained through the so called Kobayashi-Maskawa

mechanism, which links CP violation to the single physical phase δ in the unitary mixing

matrix V (the CKM matrix) describing transitions between the three generations of quarks.

Besides the CP-violationg phase, the CKM matrix involves also three quark-flavor mixing

angles. The smallness of CP violation is not due to the smallness of δ , but rather to the

fact that observable violations require that all three quark families contribute to the relevant

transition amplitude, and then they are suppressed by small mixing angles. Although the

Kobayashi-Maskawa mechanism explains the CP violation in the electroweak interactions,

it fails in providing a CP violation source big enough to explain the baryogenesis, meaning

that the Standard Model cannot explain the matter-antimatter asymmetry of our universe.

Quantum chromodynamics allows in principle the introduction in the Lagrangian of a

dimension-four term, known as θ -term, with a dimensionless coefficient θQCD which, if

nonzero, would signify the violation of both parity P and time reversal T simmetries. As-

suming the CPT theorem to be valid, this leads to CP violation. If θQCD ∼ O(1), the neutron

would have a non-zero EDM. The lack of experimental evidence of P and T conservation in

strong interactions led Purcell and Ramsey to the first pioneering experiment [7, 8] aimed

to the search of neutron EDM. It is nowadays known that θQCD is tuned to zero, or at least

cancels, to better than one part in 109. This tuning represents the strong CP problem of the

Standard Model, which has been present since the early days of QCD.

As it has been already pointed out, the Standard Model fails to explains the baryon-

antibaryon asymmetry of our universe. Furthermore, it neither provides an explanation for

why only the electroweak part SU(2)×U(1) is chiral (parity-violating), nor for the gauge

hierarchy problem, that reguards the fact that the masses of the known particles are orders of
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magnitude smaller than the Planck mass (∼ 1019 GeV/c), representing the energy at which

the four forces - electromagnetic, weak, strong and gravitational - would be unified. Gravity

is not even included in the Standard Model. For these reasons, many extensions of the SM

have been conceived, all of them including additional scalar fields that allow new sources of

CP violation.

Among these new models, SuperSymmetry (SUSY) is one of the first which was devel-

oped, and it is motivated by the desire to give an explanation for the gauge hierarchy prob-

lem. SUSY attempts to avoid this problem in a natural way by linking physics at the weak

scale to physics at the Planck scale. In order to achieve that, all SUSY models introduce, for

each fermion (lepton or quark), a supersymmetric bosonic partner (slepton, squark), while

for each Standard Model gauge boson, a supersymmetric fermionic partner called gaugino.

The hypothetical new particles and their interactions yield new CP-violating phases in ad-

dition to SM phase δ , and provide a measurable electric dipole moment of fundamental

particles. For this reason, and, more in general, because of the strong suppression of EDMs

that are induced only by the Kobayashi-Maskawa phase, combined with the prospects for

improving the experimental sensitivity, EDM searches are placed at the forefront in probing

CP-violating physics beyond the SM.

1.3 The EDM as a probe of new physics

The EDM of a fundamental particle is a measure of the permanent separation of positive and

negative electrical charges within the particle volume. It is aligned to the particle spin vector

because all the components perpendicular to that direction have null average. Because of this

alignment, EDM violates both time reversal T and parity P symmetries, as it is illustrated in

Fig. (1.1). In fact, the action of the time reversal operator, that inverts the time coordinate,

would cause an inversion of the spin vector leaving the EDM vector untouched. On the

contrary, the action of the parity operator, that inverts the spatial coordinates, would reverse

the EDM vector without changing the spin direction. Since any CPT invariant interaction

that violates one between time reversal and CP symmetries must violate the other, it is

possible to conclude that EDM violates CP.

Despite this close relation through CPT theorem, T and CP are different symmetries with

different physical consequences, so possible T-violating observables open a new window on

Standard Model tests and new physics searches.
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Since the recent upper bound on the neutron EDM is dn < 2.9 × 10−26e · cm [11] (see

next section for further details), for the strong CP-violating phase is therefore required

θQCD ∼< 10−11. The unnaturally smallness of this value leads to the strong CP problem,

already mentioned in the previous section.

A significant EDM in hadrons can rise from quark electromagnetic EDMs (du and dd)

and from color (chromo) EDMs contributions. Both CP-violating sources have to be consid-

ered beyond the SM. To give an example, in SUSY the EDM coming from these processes is

generated in a loop containing a supersymmetric particle. According to the supersymmetric

models, as it is reported in the 2008 AGS proposal ”Search for a permanent electric dipole

moment of the deuteron nucleus at the 10−29 e ·cm level” [12], neutron, proton and deuteron

EDMs are defined as:

dn = 1.4(dd −0.25du)+0.83e(dc
u +dc

d)−0.27e(dc
u −dc

d) (1.7)

dp = 1.4(dd −0.25du)+0.83e(dc
u +dc

d)+0.27e(dc
u −dc

d) (1.8)

dD = 1.4(dd +du)+0.2e(dc
u +dc

d)−6e(dc
u −dc

d) (1.9)

Comparing dn with dD in Eqs. (1.7) and (1.9) illustrates how dD, if measured, would be

about 20 times more sensitive to the isovector component e(dc
u −dc

d) than dn.

Because the SM contributions are expected to be small, EDMs are an excellent place

to search for the effects of new physics. These typically have new CP-violating phases and

allow EDMs at one-loop level, leading to values already excluded or within reach of future

EDM experiments. The picture in Fig. (1.2) shows the comparison between the theoretical

predictions from SM and beyond for EDM of fundamental particles and the actual experi-

mental limits. Since the SM expected values are much smaller than the current experimental

sensitivity, every non-zero EDM found between these limits and the SM predictions would

be a strong sign of new physics pointing to a new CP violation source.

1.3.1 The search for EDM

The first search for an EDM is due to the Purcell and Ramsey idea, in 1950, to use

EDMs of particles as high-precision probes of symmetry properties of the strong interac-

tions. Remarkably, it precedes not only the discovery of CP violation in K mesons, but also

the discovery of parity violation in weak interactions. The main motivation behind the initial

idea was the suggestion that the theory of strong interactions, still unknown at the time, may
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Figure 1.2: The picture shows, on the left side, the actual experimental limits for electron

(red) and neutron (black) EDMs. On the right side, the predictions of SM and models beyond

it, such SUSY, are shown.

violate the parity simmetry. It was only 25 years later that the introduction of QCD as the

theory of strong interactions led to the possibility of P and CP violation by the θ -term. In

their work Purcell and Ramsey analyzed the existing experimental data on neutron scattering

from spin zero nuclei, coming to the conclusion |dn|< 3×1018 e · cm [7].

The general strategy used in almost all EDM searches is to place a neutral particle (or

atom, or molecule) of interest in an electric ~E and magnetic ~B field, parallel to each other. If

the system under investigation has a non-zero EDM, the usual Zeeman effect is modified by

an electric field-dependent term, giving the following interaction energy:

H = h̄ω =−~µ ·~B− ~d ·~E (1.10)

where h̄ is the reduced Planck constant, ω is the spin precession angular velocity, ~µ is the

magnetic dipole moment, and ~d is the electric dipole moment. The spin precession frequency

in the case with the ~E field parallel to the ~B field (ω1) is compared to the one in the case with
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anti-parallel fields (ω2):

h̄ω1 = 2µB+2dE (1.11)

h̄ω2 = 2µB−2dE (1.12)

The EDM is then determined by subtracting these two frequencies in order to cancel the

magnetic term:

d =
h̄(ω1 −ω2)

4E
(1.13)

Following the discovery of CP violation in the mixing of neutral kaons, the EDM

searches intensified, and the level of experimental precision has improved steadily ever

since. Indeed, following significant progress througout the past decade, the EDMs of neu-

tron [11] and of several heavy atoms and molecules [13, 14, 15] have been measured to

vanish to remarkably high precision. These searches can be classified into three main cate-

gories, corresponding to the three classes of observable EDMs which currently provide the

best constraints in term of CP-odd sources: the EDMs of paramagnetic atoms and molecules,

that are systems with one unpaired electron and are therefore primarily sensitive to the elec-

tron EDM ; the EDMs of diamagnetic atoms, connected to the nucleus and its constituents

EDMs; and the EDMs of hadrons, nucleons (N) in particular. Each of these categories

probes EDMs induced by different physical processes. The atomic EDMs are complemen-

tary to the neutron and electron ones because they receive contributions not only from the

EDMs of their constituents, but also from the CP-violating e−N or πN interactions. Ex-

amples of EDMs values representing bounds on CP-violating parameters for these three

categories are the atomic EDMs of thallium and mercury and the one of the neutron, whose

values are listed in Tab. (1.1). These bounds have been used to constrain many beyond the

Category EDM Current Limit

Paramagnetic 205T l |dT l|< 9×10−25 e · cm [13]

Diamagnetic 199Hg |dHg|< 3.1×10−29 e · cm [16]

Nucleon n |dn|< 2.9×10−26 e · cm [11]

Table 1.1: Current upper limits of three representative categories of EDMs.

Standard Model scenarios, and provide indirect charged particle EDMs limits. In particular,

from a recent measurement performed on the polar molecule thorium monoxide (ThO), was

derived the electron EDM limit [17]:

|de|< 8.7×10−29 e · cm (1.14)
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while from mercury was derived the proton one [16]:

|dp|< 7.9×10−25 e · cm (1.15)

All nuclear EDM searches carried out to this point have used nuclei that are part of an

electrically neutral atomic or molecular system. This enables large electric fields, fundamen-

tal in EDM experiments, to be applied without accelerating the particle out of the apparatus.

A rough estimation, on dimensional grounds, of the scale of new physics probed by

current EDM experiments was discussed in [18] :

di ≈
mi

Λ2
esinφ (1.16)

where mi is the quark or lepton mass, sinφ is the result of CP-violating phase, and Λ is the

new physics energy scale. For a quark mass mq ∼ 10 MeV and sinφ of order 1/2, one finds:

|dp| ∼ |dD| ∼ 10−22

(

1 TeV

Λ

)2

e · cm (1.17)

Therefore, for |dp| ∼ |dD| ∼ 10−29 e · cm sensitivity it would be possible to probe an energy

scale Λ ∼ 3000 TeV , that is far beyond any present or future accelerators achievable energy.

Making the same kind of considerations for a SUSY model with supersymmetric partners

mass MSUSY ≤ 1 TeV , if neither proton or deuteron EDM at a sensitivity level of 10−29 e ·cm

were observed, sinφ would have to be very small, thus sinφ ≤ 10−5 [12]. It is then clear

how, although no EDM has been measured yet, the current generation of experiments defines

important constraints on the theories beyond the Standard Model. In order to refine these

bounds and eventually measure the EDM of fundamental particles, it is necessary to improve

the experimental techniques and continue to perform such searches on different systems, so

that it will be possible to understand where the new physics is generated.

1.4 EDM experiments in storage rings

The basic idea leading to Eq. (1.13) is not valid for charged particles, such as the electron,

the proton and the deuteron, since they would be lost in an electric field. In order to solve

this issue, the new generation of experiments probing charged particles EDMs require the

use of a storage ring. In such kind of accelerators, a particle beam can be kept in circular

motion up to many hours.
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moment, while q, m and p are respectively the particle electric charge, mass, and momen-

tum. A solution to this issue is given by the so called frozen spin method (see Fig. 1.4),

Figure 1.4: The sketch shows a top view of an ideal EDM experiment in storage ring. The

spin (purple) and momentum (blue) vectors are kept aligned for the duration of the storage,

so that the in-plane precession angular frequency ωG is cancelled. If the EDM ~d is not zero,

the particle spin will precess out of plane due to the radial electric field [21].

whose idea is to employ the proper combination of radial electric field and vertical magnetic

field to cancel the spin precession due to the particle magnetic moment (see Eq. 1.19), with

the net effect being a large amplification of the EDM signal. The horizontal spin precession

can be frozen using different methods, depending on the sign of the anomalous magnetic

moment.

Protons have a positive anomalous magnetic moment, Gp = 1.79, and therefore, accord-

ing to Eq. (1.19), it is possible to get ~ωG = 0 in a pure electrostatic ring (~B = 0) under the

condition:
[

G−
(

m

p

)2
]

= 0 =⇒ p =
m√
G

= 0.701 GeV/c (1.20)

which represents the so called magic momentum.

Deuterons have instead a negative anomalous magnetic moment, GD =−0.14, and there-

fore there is no magic momentum that cancels ~ωG. A combination of vertical magnetic and

outward radial electric field is then needed to achieve the same result, being the additional
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electric field defined as:

β

c

[

(

m

p

)2

−G

]

E = GB =⇒ E =
GBcβγ2

1−Gβ 2γ2
(1.21)

Charged particle EDM experiments in storage rings have recently been proposed, includ-

ing a search for the deuteron EDM with a sensitivity of 10−29 e · cm [12]. Also a proposal

for a proton EDM experiment at BNL (Brookhaven National Laboratory) [21] with the same

sensitivity has been submitted. The storage ring method is a good solution because a proton

or deuteron beam can be held in circular motion by exploiting the Lorentz force. If the spin

of the particles is kept aligned to the momentum, then the EDM signal would arise from the

interaction between the spin itself and a radial electric field.

In order to perform such a precision measurement, it is fundamental that the beam hor-

izontal polarization lifetime (see next section) is large enough for the EDM signal to ac-

cumulate up to a measurable value. Differences in the spin precession rate can occur due

to particle misplacements or momentum spread within the beam, making the particle spins

decohere by spreading in the horizontal plane. The works presented in this thesis concerns

simulations of these depolarizing effects, performed using the COSY INFINITY code (see

Chap. 4), in order to support the feasibility studies that have been taking place at the COoler

SYnchrotron (COSY) facility for the last few years.

1.4.1 Spin Coherence Time

In a storage ring the stable direction for the polarization is the vertical one because the

magnetic fields are vertical and do not influence spin vectors along this direction. The pro-

jection of the polarization onto the vertical axis is then not affected by decoherence effects.

Let us now consider a particle beam polarized in one direction in the horizontal plane.

At injection all particles spin vectors are aligned and they start precessing in phase. After

a characteristic time of the system, called Spin Coherence Time (SCT), the spins go out of

phase due to momentum spread of the particles in the beam, causing the vanishing of the

horizontal polarization (see Fig. 1.5). The spin coherence time is then the horizontal polar-

ization lifetime, thus the time during which the particles spins precess coherently about the

axis n̂ while maintaining a fraction of the initial polarization. In an EDM experiment where

the particles spins must be aligned along the momentum, the spin coherence time represents

the time available to measure the EDM signal.
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Figure 1.5: Fig. (a) shows that the spin vectors are aligned at the injection and they start

precessing in phase; Fig. (b) shows how, after a characteristic time of the system defined as

spin coherence time, the spin vectors are all out of phase in the horizontal plane causing the

depolarization of the beam.

The expected EDM signal can be estimated from:

d~S

dt
= ~d ×~E ⇒ 1

2
h̄ω = dE ⇒ dθ

dt
=

2dE

h̄
(1.22)

whose solution is given by:

θ(t) = θ0 +
2dE

h̄
t (1.23)

where d is the electric dipole moment, that is orthogonal to the radial electric field E, h̄ is

the reduced Planck constant, ant θ is the vertical spin precession angle. If we take an EDM

of d = 10−29 e ·cm as the goal of the experiment, and an electric field close to the maximum

available value E ≈ 10 MV/m, we obtain:

θ(t)≈
(

10−9 rad

s

)

t (1.24)

Considering the minimal detectable precession angle to be θmin ≈ 10−6 rad, the result leads

to an estimation of the time requested for such a signal to buildup:

τSC =
θmin

10−9 rad
s

≈ 103 s (1.25)

This number points out that, in order to be able to measure an EDM signal of the order of

10−29 e · cm, it is necessary that the spins of the stored particles stay aligned (coherent) for

at least τSC ≈ 103 s. This characteristic time of the system is the spin coherence time.





Chapter 2

Elements of particle accelerator

physics

The aim of this chapter is to present a brief introduction to the beam dynamics in a

storage ring, in both longitudinal and transverse directions, in the perspective of the search

of the electric dipole moment. Emphasis will be given to the aspects of the beam dynamics

involved in the studies that will be presented in the following chapters of this work.

It has to be pointed out that it is possible to treat the so called transverse degrees of

freedom for the particle motion independently of the longitudinal one. In fact, the frequency

of longitudinal oscillations is generally rather smaller than that of transverse oscillations,

meaning that, to a reasonable approximation, they are decoupled [22].

2.1 The transverse motion

In a synchrotron storage ring, charged particles are kept circulating by dipole magnets

providing a closed orbit. In order to guarantee a stable transverse motion along this orbit,

quadrupole magnets, providing linear restoring forces, are used. The two transverse degrees

of freedom, thus the vertical and the radial directions, can be treated independently [22].

19
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2.1.1 Strong focusing

A quadrupole magnet cannot provide a restoring force in both transverse degrees of

freedom simultaneously. If it has a focusing effect in the radial direction, it will have a

defocusing effect in the vertical direction, and vice versa. In fact, the condition ~∇× ~B =

0 leads to ∂By/∂x = ∂Bx/∂y, where x and y are respectively the radial and the vertical

coordinate (see Fig. 2.1). It is therefore necessary a method based on alternating magnets

Figure 2.1: Coordinate system for development of the transverse equations of motion [22].

focusing in the vertical and horizontal directions. This method, that involves the use of

quadrupole magnets, is called strong focusing.

A quadrupole magnet, assuming condition ~∇×~B = 0 to be valid, provides a magnetic

field defined as:

~B = B′(yx̂+ xŷ) (2.1)

where the field gradient B′ = ∂By/∂x = ∂Bx/∂y is evaluated at the center of the quadrupole,

and x̂ and ŷ are the unit vectors associated, respectively, to the radial and vertical directions.

For a displacement (x,y) from the reference trajectory, the Lorentz force acting on a particle

with electric charge e and velocity v is:

~F = evB′ŝ× (yx̂+ xŷ) = evB′yŷ− evB′xx̂ (2.2)

with ŝ being the unit vector associated to the longitudinal direction (see Fig. 2.1). It is

evident, looking at Eq. (2.2), that the Lorentz force is focusing in the radial direction (x̂) and
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defocusing in the vertical direction (ŷ), meaning that a quadrupole affects simultaneously

the two directions in an opposite way.

2.1.2 Betatron motion

In a storage ring particles are held in circular motion on a closed orbit, that is the trajec-

tory closing on itself after one revolution and is defined by bending magnets. The transverse

motion of a particle consists of this circular motion plus small amplitude oscillations, called

betatron oscillations, around the closed orbit, that depend on the disposition of quadrupole

magnets in the ring.

Let us assume the coordinate system to be the one represented in Fig. (2.1). Locally the

reference orbit, thus the designed trajectory, has curvature ρ and the path length along this

curve is s, that will be the independent variable. At every point along the reference orbit it is

possible to define the three unit vectors ŝ, x̂, and ŷ. Therefore, the position of a particle can

be expressed as a vector in the form:

~R = rx̂+ yŷ (2.3)

where r ≡ ρ + x. The particle having the right momentum p0 = eBρ and phase to be syn-

chronized with the RF cavity, known as reference or synchronous particle (see section 2.2),

will be identified by ~R = ρ x̂. We are interested in the behaviour of the deviations x and y of

a non-idea particle from the reference orbit. In general, the equations of motion we want to

derive will not be linear. Anyway, if we take into account only fields that are linear functions

of x and y, being this the case of dipoles and quadrupoles, and keep only the lowest order

terms in x and y, we will get the Hill’s equations of betatron motion [22]:

d2x

ds2
+

[

1

ρ2
+

1

Bρ

∂By(s)

∂x

]

x = 0 (2.4)

d2y

ds2
− 1

Bρ

∂By(s)

∂x
y = 0 (2.5)

Let (q,q′) represent the couple of canonical phase space variables either for the radial or the

vertical coordinate, where q′ = dq/ds. Eq. (2.4) and (2.4) are both of the form

q′′+K(s)q = 0 (2.6)
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and differ from a simple harmonic oscillator only because the ”spring constant” K depends

on position s. The general solution of the equation of motion can then be written as:

q(s) = A

√

βq(s)cos [ψq(s)+ψq(s0)] (2.7)

with A and ψq(s0) constants of integration to be determined using initial conditions, and

βq(s) the betatron amplitude function, characterizing an oscillation with varying amplitude
√

βq(s). Substituting Eq. (2.7) in the generic form of the equation of motion (2.6), one

obtains for the phase advance of the particle oscillation:

ψq(s0 → s)≡ ∆ψq =
∫ s

s0

ds

βq(s)
(2.8)

and βq(s) can be interpreted as the local wavelength of the betatron oscillation divided by

2π . Finally, for a circular machine, starting from the definition of the phase advance it is

possible to derive the number of oscillations per particle revolution in the ring, that is:

νq ≡
1

2π

∮

ds

βq(s)
(2.9)

which is called betatron tune of the accelerator.

2.1.3 Courant-Snyder parameters

Since, as we saw in the previous section, the betatron amplitude function β (s) (from

this point on, we do not explicit the subscript q anymore) is a fundamental quantity for the

description of the transverse motion, it is convenient to define two new variables:

α(s) ≡ −1

2

dβ (s)

ds
(2.10)

γ(s) ≡ 1+α2(s)

β (s)
(2.11)

that together, with β (s) itself, are referred to as Courant-Snyder parameters or Twiss pa-

rameters. Using the new set of variables to rewrite the equations of motion, it is possible to

define a constant of motion, whose derivation can be found in reference [22], that is called

the Courant-Snyder invariant:

A2 = γq2 +2αqq′+βq′2 (2.12)

This invariant form describes an ellipse at any point in the accelerator. Each time that a parti-

cle passes a particular position in the ring, its betatron oscillation coordinates will appear as
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a point on the ellipse given by the amplitude function and its slope at that point, as shown in

Fig. (2.2). For different locations through the lattice, the ellipses will have different shapes

and orientations, but they will always have a constant area equal to πA2. The phace space

Figure 2.2: The Courant-Snyder ellipse defined by the Twiss parameters α , β , and γ in the

x− x′ phase space. The area of the ellipse is equal to ε = πA2, and it is constant all along

the orbit. The sketch shows the maximum amplitude of the betatron oscillation A
√

β and

the maximum angle A
√

γ [22].

area associated with the largest ellipse accepted by the accelerator is called the admittance,

and it is equal to (πa/βmax(s), being a the half aperture available to the beam, and βmax(s)

the maximum value of the amplitude function. The phase space area occupied by the beam

is called the emittance, and it is equal to the area of the Courant-Snyder ellipse ε = πA2. In

terms of the emittance, the maximum displacement q and angle q′ in a particular position s

around the ring are:

qmax =

√

εβmax(s)

π
(2.13)

q′max =

√

εγmax(s)

π
(2.14)

It is often convenient to speak of the emittance for a particle distribution in terms of the rms

transverse beam size. Assuming the particle distribution to be Gaussian in both transverse

degrees of freedom, and the beam to be in an equilibrium situation where the distribution is
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indistinguishable from turn to turn, the emittance can be calculated as:

ε =−
2πσ2

q

β (s)
ln(1−F) (2.15)

where β (s) is the amplitude function in the point s, σq is the rms transverse beam size, and

F is the fraction of particles included in the phase space area ε . If the transverse beam width

σq is measured, for instance with an Ionization Profile Monitor (IPM), then the emittance

can be calculated as:

ε =
σ2

q

β (s)
(2.16)

2.1.4 Momentum dispersion

In the previous section we examined the motion of particles having the same momentum

as the reference particle but different transverse coordinates. Now we want to focus on

the motion of particles differing in momentum from that of the reference particle (p0) of a

quantity ∆p = p− p0. Since the bending field of dipole magnets depends on the particle

momentum (Bρ = p/e), we will find that these off-momentum particles perform betatron

oscillations around a new class of closed orbits which are displaced from that of the reference

particle. This displacement is described by a new lattice function, known as the momentum

dispersion function D(p,s), that has its origin in the fact that a particle of higher momentum

is deflected through a lesser angle in a bending magnet. The displacement from the ideal

trajectory of a particle with fractional momentum deviation ∆p/p0 is then given by:

x = D(p,s)
∆p

p0

+ xβ (2.17)

where the first term represents the contribution of the closed orbit of the off-momentum

particle and the second the betatron oscillation about that closed orbit.

In addition, higher momentum particles are bent less effectively in the focusing elements.

That is, there is an effect completely analogous to chromatic aberration in conventional

optics. The dependence of focusing on momentum will be responsible for the dependence of

betatron oscillation tune on momentum. The lattice parameter quantifying this relationship

is called the chromaticity, and it is indicated with the symbol ξ (p). The change in tune δν

due to momentum is then defined as:

δν = ξ (p)
∆p

p0

(2.18)
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where ∆p/p0 is the particle fractional momentum deviation. The source of chromaticity we

are discussing is the dependence of focusing strength on momentum for the ideal acceler-

ator fields, and it is called the natural chromaticity. There are additional sources, coming

for instance from field imperfections, but we are not treating them here. The main rea-

son to worry about chromaticity is that, if the beam has a large momentum spread, then a

large chromaticity may place some portions of the beam on resonances that, amplifying the

particles displacement from the reference trajectory, will cause the loss of the beam.

2.1.5 Sextupoles

In order to provide chromaticity adjustments, what is needed is a set of magnets pre-

senting a field gradient that is a function of particle momentum. A distribution of sextupole

magnets is normally used for this purpose. In the horizontal plane, the sextupole field is of

the form

B = kx2 (2.19)

and so the field gradient on a displaced equilibrium orbit is

B′ = 2kx = 2kD(p,s)
∆p

p0

(2.20)

Unfortunately, the sextupoles inevitably introduce nonlinear aberrations that cannot be de-

scribed in this brief description of linear beam dynamics.

One of the goals of this work is to prove that sextupole magnets, that provide a position

dependent focusing, can be used to compensate the decoherence effects of betatron oscilla-

tions and, consequently, lengthen the horizontal polarization lifetime by an opportune choice

of sextupole strength, defined as:

K2 =
1

Bρ

∂ 2B

∂x2
(2.21)

where B is the magnetic field within the magnet and ρ is the curvature. This topic will be

treated in details in Sec. 5.4.

2.1.6 Betatron oscillations effect

For the purpose of this thesis, we want to highlight the crucial contribution of betatron

oscillations to the horizontal polarization lifetime (see Chap. 5). In general, a particle under-

going betatron oscillations travels a longer path than the reference particle. The fractional
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orbit lengthening due to the betatron motion is the sum in quadrature of the radial (x) and

vertical (y) contributions, giving as result

∆L

L
=

(∆x′)2 +(∆y′)2

4
(2.22)

where L is the path length of the reference particle, while ∆x′ and ∆y′ are the maximum angle

deviations from the ideal path in the radial and vertical directions, respectively. Since, as we

will see in Sec. 2.2.1, the RF cavity effect is to keep all particles on average isochronous,

betatron oscillations lead to a longer beam path and, therefore, a higher particle velocity,

meaning a change in the spin precession rate. It will be shown in Chap. 5 how such a change

during the beam motion affects the horizontal polarization lifetime.

2.2 The longitudinal motion

It has been already mentioned that charged particles in a synchrotron storage ring are

held in a circular motion by bending dipole magnets and focusing quadrupole magnets. The

beam can be kept circulating in ”packages” (bunched beam) or it can occupy the whole ring

circumference (coasting beam). Since the measurements and, therefore, the simulations pre-

sented in this thesis concern the bunched beam case, this is the one that will be discussed in

this section.

The bunched beam is provided by means of a radio-frequency cavity that produces an

oscillating longitudinal electric field that accelerates the particles. There is a particle, called

synchronous particle (or reference particle), that at each moment of time has exactly the

right momentum and the right transit time through the accelerating cavity so that it receives

exactly the right increment of energy to move on a closed orbit passing through the center

of all magnets in the ring. Nevertheless a particle beam is composed by a distribution of

particles differing in momentum and, then, in transit time through the RF cavity. We thus

have to deal with a stability issue: do particles initially nearby in momentum and transit time

to those of the reference particle remain close in the phase space throughout the acceleration

process? The answer is provided by the so called phase stability principle, that will be ex-

plained in the next section.
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2.2.1 Phase stability

During each revolution in the ring, a particle with electric charge e goes through the

resonant cavity, being its energy gain per turn equal to:

ε = eV0 sin(ωRFt +φs) (2.23)

where V0 is the amplitude of the accelerating voltage, ωRF is the angular frequency of the

RF cavity, and φs is the RF phase angle. A particle synchronized with the RF cavity has the

same phase φs and is called synchronous (reference) particle. The system is designed so that

the synchronous particle arrives at the cavity each turn with the same phase φs (modulo 2π)

and receives the same energy difference at each passage, always moving on the reference

trajectory, that corresponds to a closed orbit passing through the center of all the magnets in

the ring. If φs = 0, the synchronous particle will neither gain nor lose energy when it goes

through the cavity.

In general the particles in the beam will deviate from the designed motion described

above. Let us consider a case of a particle with momentum p that differs from the one of the

synchronous particle p0. If L is the length of the ring circumference, and v is the velocity of

the particle considered, the time needed for one complete revolution will be τ = L/v. The

fractional change in τ associated with deviations in L or v is by logarithmic differentiation:

∆τ

τ
=

∆L

L
− ∆v

v0

(2.24)

where v0 is the velocity of the synchronous particle. Eq. (2.24) shows how a particle moving

with speed greater than the one of the ideal particle will take less time to make one complete

revolution. But if its path length is larger, this deviation will increase the time needed to

reach the RF cavity. The fractional change in the velocity can be expressed in terms of the

fractional momentum deviation [22] in the following way:

∆v

v0

=
1

γ2

(

∆p

p0

)

(2.25)

with γ being the relativistic factor. In a storage ring, and generally in a circular accelerator,

the magnetic rigidity is defined as Bρ = p/e. Since it is proportional to the momentum, one

can expect the orbit circumference to be larger for a particle of momentum slightly above

the momentum of the ideal particle. Indeed the variation of the orbit length with momentum

is determined by the momentum compaction factor αc, whose value depends on the design
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of the accelerator, and it is defined as:

∆L

L
= αc

∆p

p0

(2.26)

After substituting Eq. (2.25) and (2.26) in Eq. (2.24), we obtain the relation between the

fractional change in τ and the one in momentum, that is:

∆τ

τ
=

(

αc −
1

γ2

)

∆p

p0

= η
∆p

p0

(2.27)

where the coefficient

η =

(

αc −
1

γ2

)

(2.28)

is the slip factor. The energy

γt =
1√
αc

(2.29)

for which the slip factor vanishes is called transition energy, and it is a characteristic of

Figure 2.3: Sketch of an RF wave where the phase angles of the synchronous particle (red)

and the higher (∆p/p0 > 0; green) and lower (∆p/p0 < 0; blue) energy particles are

shown [23]. In order to provide a stable synchrotron motion, the phase stability requires

φs = 0 for η < 0 and φs = π for η > 0.

the particular accelerator design. Eq. (2.27) can be also written in terms of the revolution

frequency, thus:
∆ f

f0

=−∆τ

τ
=−η

∆p

p0

(2.30)
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where f0 is the revolution frequency for the synchronous particle. The sketch in Fig. (2.3),

together with Eq. (2.30), helps to understand the phase stability principle. If we consider a

system below the transition energy (γ < γt), thus with η < 0, a particle with a momentum

higher than p0 (∆p/p0 > 0) will have a revolution frequency higher than f0, meaning that it

will pass through the RF cavity earlier than the synchronous particle. Therefore the partical

phase is negative, so that it acquires less energy than the ideal particle and is decelerated.

In the same way, a particle with a momentum lower than p0 (∆p/p0 < 0) will arrive at the

RF cavity later and will get more energy in comparison with the ideal particle, being then

accelerated. The effect of this process is the reduction of both the phase change and the

energy difference from turn to turn between particles in the beam, providing then the phase

stability of the synchrotron motion.

2.2.2 Synchrotron motion

The equations of the synchrotron motion can be derived from the phase stability process

described in the previous section. The demonstration of this derivation can be found in [22].

The synchrotron motion of a particle with arbitrary energy E and phase angle φ with

respect to the synchronous particle is described by two difference equations, that are:

φn+1 = φn +
ωRFτηc2

v2Es

∆En+1 (2.31)

∆En+1 = ∆En + eV (sinφn − sinφs) (2.32)

where n stands for the n-th particle transit of the RF cavity and ∆E = E−Es is the difference

in energy between the particle in question and the reference particle.

The φ −∆E phase space is represented in Fig. (2.4), where the application of the syn-

chrotron equations of motion is shown for 8 different values of initial energy difference ∆E,

each one corresponding to one orbit. In each case the starting value of the phase is the syn-

chronous one. We see in the picture that there is a well defined boundary between confined

and unconfined motion. This boundary is called the separatrix. The area in phase space

within the separatrix is called a bucket, whose number corresponds to the harmonic number,

while the collection of particles sharing a particular bucket is called a bunch. The figure

depicts three different buckets.

It is possible to approximate the difference equations, Eq. 2.31 and Eq. 2.32, by one dif-

ferential equation of the second order, considering phase and energy as continuous variables
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Figure 2.4: Application, in the stationary case (the reference particle is not accelerated),

of the difference equations of synchrotron motion for 8 different values of initial energy

difference ∆E, each one represented by one orbit. The starting value of the phase is the

synchronous one for all the cases. The regions within the separatrices are called stationary

buckets [22].

and the turn number n as an independent variable. After a first integration, assuming that

∆φ = φ −φs is small, we obtain [22]:

d2∆φ

dn2
+(2πνs)

2∆φ = 0 (2.33)

where νs is the number of synchrotron oscillations per turn, known as synchrotron oscillation

turn, and is defined as:

νs =

√

−ηωRFτc2eV0 cosφs

4π2v2Es

(2.34)

The stability condition, discussed in the previous section, is satisfied by requiring η cosφs <

0, that establishes the correct choice for the synchronous phase depending on η .



Chapter 3

Experimental setup

3.1 The COoler SYnchrotron storage ring

The COoler SYnchrotron (COSY) is a 184 cm long storage ring situated at the Institute

for Nuclear Physics (IKP) of the Forschungszentrum-Jülich, and it represents an ideal envi-

ronment for the EDM experiment’s feasibility tests.

The storage process starts with negative ions sources producing unpolarized and polar-

ized hydrogen and deuterium ions, which are then accelerated in the JULIC cyclotron up

to, respectively, a momentum of 300 MeV/c and 600 MeV/c. These pre-accelerated ions

are stripped off their electrons, and the remaining protons or deuterons are injected into the

COSY ring where they can be accelerated and stored in a momentum range from 300 MeV/c

(600 MeV/c for deuterons) to 3.7 GeV/c. The phase space cooling of the stored beam is

provided by an electron cooler (electron energy: 25-100 KeV ) at or near injection momen-

tum and completed by a stochastic cooling covering the momentum range above 1.5 GeV/c.

The achieved beam intensity is ∼ 1010 particles stored in the accelerator.

At the injection energy, the Low Energy Polarimeter (LEP) provides a polarization mea-

surement of the states generated by the polarized source. During the experiments that are

the subject of this thesis, the RF solenoid placed in one arc of COSY was used to move

the polarization from the vertical axis to the horizontal (ring) plane by inducing a spin reso-

nance. The horizontal and vertical polarization components have been then measured using

the EDDA scintillator detectors, as explained in the next section.

An overview of the COSY ring is shown in Fig. (3.1) indicating the main experiments,
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of deuterons in terms of the magnetic quantum number along the spin axis are given by

f1, f0 and f−1, for which is valid the relation f1 + f0 + f−1 = 1. The unpolarized state is

characterized by the condition f1 = f0 = f−1 = 1/3, while the vector pV and the tensor pT

polarization states are defined by the following equations:

pV = f1 − f−1 (3.1)

pT = 1−3 f0 (3.2)

The vector polarization pV can assume values in the range from −1 to 1, while the tensor

polarization range goes from −2 to 1. With atomic beam sources, a pure vector polarization

with no tensor polarization, thus f0 = 1/3, can only reach the value |pV | = 2/3; if a large

tensor polarization is allowed, values may reach |pV | ∼ 1.

Figure 3.2: The coordinate system for polarization direction (bold arrow) based on the

observation of a reaction product in a detector (small box). The beam travels along the ẑ

axis. The detector position at an angle β defines, along with the beam, the reaction plane

and positive x̂. The quantization axis for the polarization (bold arrow) lies in a direction

given by the polar angles θ and φ (as measured from the ŷ axis.

The polarization of a deuteron beam can be determined by measuring deuteron-induced

reactions on a target, provided that the relevant analyzing powers (or sensitivities to the po-
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larization) are sufficiently large. The large vector analyzing power available with suitably

chosen targets makes it preferable to focus on the vector polarization measurement rather

than the tensor. Fig. (3.2) shows the definition of the spin direction with respect to a coor-

dinate system determined by the detected reaction products. The beam defines the positive

ẑ axis. The location of the particle detector, along with the beam axis, defines the scattering

plane and the dorection of the positive x̂ axis. The scattering angle is β . In this coordinate

system we can specify the orientation of the deuteron beam quantization axis by using the

two angles of a spherical coordinate system, θ and φ , where φ is measured from the ŷ axis

and increases toward the positive x̂ axis. The interaction cross section between a polarized

deuteron beam and an unpolarized carbon target is given by:

σ(β ,θ ,φ) = σunp(β )[1+
√

3pV iT11(β )sinθ cosφ

+
1√
8

pT T20(β )(3cos2 θ −1)

−
√

3pT T21(β )sinθ cosθ sinφ (3.3)

−
√

3

2
pT T22(β )sin2 θ cos2φ ]

where the Tkq are the analyzing powers (k = 1 for vector, k = 2 for tensor). Both the unpo-

larized cross section and the analyzing powers are properties of the reaction.

The reaction is most sensitive to the vertical (along the ŷ axis) component of the vector

polarization when sinθ cosφ is near 1 or −1. If both pV and iT11 are positive, for example,

then the rate at th detector (shown by the small box in Fig. 3.2) will increase relative to the

unpolarized beam rate when sinθ cosφ ∼ 1. Likewise, a detector on the opposite side of the

beam (on the −x̂ side) will see a reduce rate. The asymmetry in these two rates is a measure

of the product pV iT11 and, for iT11 known, of the vertical component of pV . If the left and

right rates are, respectively, l and R, then the asymmetry is given by

εLR =
√

3pV,yiT11(β ) =
L−R

L+R
(3.4)

Over the length of a beam store, the size of pV,y will steadily increase due to the accumulated

contributions from the interaction of the deuteron EDM with the radial electric field. This is

the signal that will reveal the presence of the EDM (see Chap. 1).

If the polarization lies in the x− z plane (COSY ring plane), there will be a large and

oscillating x̂ component of the deuteron polarization due to the precession of the magnetic

moment in the dipole fields of the ring. In a storage ring with just horizontal bending, the
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stable spin direction n̂, called spin invariant axis, coincides with the vertical axis, orthogo-

nal to the ring plane. Any horizontal polarization component would precess about n̂ while

the beam circulates in the ring. In a similar manner as described above, this will gener-

ate a difference in count rates for detectors mounted above and below the beam, giving an

asymmetry defined as:

εDU =
√

3pV,xiT11(β ) =
D−U

D+U
(3.5)

that is a measure of the horizontal component of pV . This asymmetry will oscillate with

the g−2 frequency. The number of spin precessions about n̂ per beam revolution in the ring

is called the spin tune, and it is defined as:

νs = Gγ (3.6)

thus, the spin precession rate depends on the particle anomalous magnetic moment G and on

the particle velocity through the relativistic factor γ .

3.2.1 The EDDA polarimeter

The concept for the polarimeter used for the feasibility tests at COSY involves stopping

detectors that deliver their largest signals for elastic scattering events, since they are the most

sensitive to spin interactions. In order to reduce the background of other processes, such

as deuteron break-up interactions, an absorbing medium between the target and the detector

is installed. This setup was already developed for a previous experiment [28], using a thick

carbon target and the scintillators of the EDDA detector (see Fig. 3.3) [25]. Long scintil-

lators, called bars, run parallel to the beam and their signal is read out by photomultiplier

tubes mounted on the downstream end. These 32 scintillators are divided into groups of 8,

corresponding to scattering to the left, right, down and up directions. Outside the bars there

are rings that intercept particles scattering through a range of polar angles beginning at 9.1◦.

In order to extend the sensitive angle range up to 21.5◦, four consecutive EDDA rings were

included in the ”polarimeter group” [29]. Over this angle range, the vector analyzing power

for the deuteron-carbon elastic scattering is positive and crosses the first interference max-

imum (see Fig. 3.4) [27], making this range excellent for operation as a polarimeter. The

requirement that elastically scattered deuterons stop within the forward angle ring detectors

led to the choice of 970 MeV/c as the optimum beam momentum.

The EDDA polarimeter scheme provides a continuous monitor of the polarization during
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Figure 3.3: The EDDA detector, with the thick carbon target placed in front of it. B: scintil-

lator bars; R: scintillator rings; F: rings made of scintillating fibers. The different sectors

are highlighted in different colors: green for the left sector, blue for the right, orange for the

up, and red for the down. [25, 26].

the beam storage time, in contrast to previous experiments techniques that offered observa-

tion at only one time during the measurement process. In order to achieve that, the deuteron

beam is slowly and continuously extracted onto the thick carbon target, which is a carbon

tube of length 15 mm that surrounds the beam. This slow extraction is obtained by locally

steering the beam in the vertical upward direction into the top edge of the tube. Deuterons

intercepting the target front face pass through the full target thickness, increasing their scat-

tering probability into the EDDA scintillator system [29].

3.3 Data Acquisition

3.3.1 Vertical polarization measurement

The triggers from the four segments (left, right, up, down) of the EDDA detector were

recorded in a single computer file for each run. A run consists of a number of stores whose

events could be added as a function of time since the start was synchronized to polarization
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Figure 3.4: Measurements of deuteron elastic scattering cross section and vector analyzing

power iT11 from carbon at 270 MeV [27].

precession operations through the use of a reproducible start time marker.

If both positive (+ŷ) and negative (−ŷ) vector polarizations are available from the po-

larized source, the vertical component of the vector polarization can be determined from the

cross ratio formula given by:

εCR =
r−1

r+1
with r2 =

L(+)R(−)

L(−)R(+)

where L and R are the count rates for the left and right segments of the EDDA detector, for

the positive (+) and negative (−) polarization states. Analysis of the stores produced two

cross ratio asymmetries, one for vector and one for vector-tensor polarized states. The two

sets of cross ratio (see Eq. 3.3.1) data from each run were normalized to one based on the

asymmetries recorded before making any polarization manipulation. The two measurements

were then averaged. This procedure combined all the polarized beam data from a given run

into one time-dependent set of vector polarization measurements [23, 29].

3.3.2 Horizontal polarization measurement

The most challenging new skill needed to measure the spin coherence time (see Sec. 1.4.1)

was the development of a ”time-stamp system” which made possible recording the horizon-

tal polarization as a function of time while it precessed at 120 kHz.
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The first direct measurement ever of the rapidly rotating horizontal polarization was ac-

complished at COSY facility using the Data Acquisition (DAQ) software written by V. Hejny.

A vertically polarized beam was injected into the COSY ring, and then the polarization was

rotated to the horizontal plane, reaching a state of null vertical polarization, using an RF-

solenoid operating at the spin resonance frequency:

fres = fcyc(1−Gγ) (3.7)

where fcyc is the COSY cyclotron frequency and Gγ is the spin tune. The RF solenoid spin

resonance frequency was determined at the beginning of the experiment using a variable-

frequency Froissart-Stora scan [30] across the resonance, whose effect is to flip the vertical

polarization component, and refined with a series of fixed-frequency scans to locate the

center of the resonance within an error of about 0.2 Hz (see Sec. 6.1.1).

The Time-to-Digital Converter (TDC) ZEL GPX, created at the Forschungszentrum-

Jülich, marked the polarimeter events with the elapsed time from a continuously running

clock. The clock period of the TDC was 92.59 ps, a much smaller value than the COSY

beam revolution time of 1.332 µs. This allowed good resolution on the longitudinal position

Figure 3.5: Scatterplot of polarimeter events as a function of location around the ring (ver-

tical axis) and clock time in seconds (horizontal axis). Parts of four different machine cycles

are shown. The intensity scale starts with violet and goes on through blue, green, yellow

and red [23].

of a detected particle within the beam bunch. Once the RF cavity signal and the TDC



3.3. DATA ACQUISITION 39

oscillator were cross-calibrated, so that the turn number since DAQ start could be calculated,

it became possible to use the fractional part of the turn number to provide a map of the

particle distribution within the beam bunch. This means that the fractional part of the turn

number may be interpreted as the location of particles around the ring with respect to the

center of the bunch. A scatterplot of polarimeter events as a function of the fractional part

of the turn number (vertical axis) and clock time in secons (horizontal axis) is shown in

Fig. (3.5). This plot shows that, at the beginning of the cycles, the beam is spread around the

ring. The initial few seconds are for injection, ramping, bunching, and the start of cooling.

The bunching moves events out of the area near 300 and toward the center of the bunch

near 1000 along the vertical axis. Electron cooling makes the bunch more compact (narrow

yellow-red band). Outliers are slowly gathered into the main beam. After about 30 s, the

extraction of the bunch onto the polarimeter target starts and, after that, the height of the

cooling peak declines until the beam is nearly gone [23]. One machine cycle represents

about 8.8×107 turns.

In order to calculate the total spin precession angle, only the integral part of the turn

number is needed. This calculation requires the knowledge of the spin tune frequency, which

can be derived from Eq. (3.7) by making the difference between the RF solenoid resonance

frequency and the cyclotron frequency, giving as result Gγ fcyc ∼ 120 kHz. Therefore, the

total horizontal polarization precession angle was calculated for each event as:

ωtot = 2πGγ Int(Nturns) (3.8)

being Gγ the spin tune, and Int(Nturns) the integral part of the turn number.

In order to finally measure the beam horizontal polarization, the circle around which the

particle spins precessed was divided into 9 bins, and then the polarimeter events collected

in the up and down sectors of the EDDA detector were sorted separately into each bin.

The high frequency of the polarization precession represented an issue. In fact, one full

precession corresponded to only 6 revolutions of the beam around the COSY ring (about

8.3 µs), while the rate of the elastic scattered deuterons was approximately one every 700

turns. In order to enhance the statistics, an accumulation time of 3 s was chosen, and the

down-up asymmetries were calcuated for each bin and reproduced with a sine wave with

variable magnitude, phase and offset, defined as:

D−U

D+U
= Asin(ω +φ)+B (3.9)
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The magnitudes from successive 3-seconds accumulation times were put together to create

a history of the horizontal polarization during the store.

In the last part of the measuring process, the spin tune was varied over a small range

in each accumulation time in order to find the value that gave the largest polarization mag-

nitude. A peak was always evident. The spin tune is typically known up to 10−8 in each

accumulation time and varies by 10−7 during a beam store [23]. This variation seems to be

associated with the spin tune change across the beam profile during its extraction onto the

carbon target of the polarimeter.
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The COSY INFINITY code

In order to design and study particle optical systems, several simulation codes have been

developed in the recent past. It is possible to divide these codes in two different categories:

• Ray tracing codes, which determine the trajectory of the single rays through electro-

magnetic fields by using numerical integration techniques. Although they generally

have a core easy to set up, they often result to be quite slow for many apllications,

without giving access to other informations than ray coordinates values.

• Map codes, which compute the transfer matrix of the Taylor expansion coefficients

that describe the action of the optical system on the phase space. They are usually

faster than the integration codes and, through the expansion coefficients, they provide

more specific informations about the system than only the coordinates values. On the

other hand, the majority of these codes has a limited expansion order and, therefore, a

limited accuracy in determining the system parameters.

The goal would be to merge the advantages of these two categories in one code able to

compute Taylor maps for arbitrarily complicated fields and to arbitrary order. The usage of

differential algebraic (DA) tecniques [31] allows to do that efficiently, up to high order and

with the speed of classical mapping codes.

This is the purpose of the COSY INFINITY code [32, 33], created by Prof. Martin

Berz at the Michigan State University. Besides tracking particles during their motion, this

code offers the possibility to track also the particle spins (see Sec. 4.3.4) by using DA to
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calculate the spin transfer matrix of the system.

This chapter will define how the COSY INFINITY language, COSYScript, works by

presenting the basic structure of a program. It will then explain in details how the beam

physics is included in the code and how the spatial coordinates and the spin transfer maps

are computed. The optical elements used to build the COoler SYnchrotron lattice will be

defined. Finally, details about the position and spin tracking procedure are given.

4.1 The COSY INFINITY language

COSY INFINITY is a new generation code based on differential algebra for the study

and design of optical systems like accelerators, spectrometers, beamlines, electron micro-

scopes, etc. It has an object oriented language environment, called COSYScript, that al-

lows, by defining different subsequent procedures, to call and use powerful DA operations

up to high order of Taylor expansion and, at the same time, to reduce the computational time

to the minimum. It is a recursive language with a PASCAL based syntax; for compatibility

reasons, the compiler is written in Fortran 77 that, because of its portability, serves as a ma-

chine independent assembly language [34].

Most commands of COSYScript consist of a keyword, followed by names of variables

and expressions, that are terminated by a semicolon; the individual entries are separated by

blanks. The assignment statements represent an exception because they do not have a key-

word, but they are identified by the assignmen identifier :=. When a procedure is called, the

pocedure name is used instead of the keyword. Commands can extend over several lines,

and several commands can be written in one line; furthermore line breaks are not significant.

It is possible to add comments to the program script by writing them within curly brackets,

so that the compiler ignores them. Finally, the language is not case sensitive [32].

4.2 Basic structure of a program

A COSY input program consists of a tree-structured arrangement of nested program

segments. The user generally uses three types of these segments. The first and also indis-

pensable one is the main program, which opens and closes the input files and contains all

the other segments; its keywords are
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BEGIN ; and END ;

The other two types of program segments are procedures and functions; they are identi-

fied respectively by the commands

PROCEDURE < name > {< name >} ; and ENDPROCEDURE ;

or

FUNCTION < name > {< name >} ; and ENDFUNCTION ;

The first < name > is the identification expression that allows to call a procedure or a

function; the < name > in curly brackets is optional and defines the local names of variables

passed into the routine. While the call to a procedure is a separate statement, the identifica-

tion name of a function can be used as a mathematical object in arithmetic expressions.

Each one of the segments just described is constituted by three sections: the first one

contains the declaration of the local variables, the second one contains the local procedures

and functions, and the third one contains the executable commands. Concerning the last

part, it is important to specify that both procedure and function segment must contain at

least one executable line.

To declare a variable there is the command

VARIABLE < name > < expression > {< expression >} ;

where the < name > is the identifier of the variable that has to be declared. The first

< expression > represents the size of the memory that has to be allocated when the variable

is used. Since no type of variable has to be specified at declaration, the amount of memory

has to be sufficient to hold the different types that the variable can assume in the program.

For instance, a real or double precision number requires a memory allocation length equal

to 1, while a complex double precision number requires a length of 2; a DA vector, which is

the type we are mainly interested in, requires at least a length of (n+v)!/(n! ·v!), expression

that represents the number of partial derivatives in v variables to order n.

It is also possible to use a declared variable as an array; in that case, the second

< expression > has to indicate the number of components of the array. For example, the

line

VARIABLE K 50 3 ;

declares the variable K as an one-dimensional array with 3 components, each of which has

a memory allocation length of 50.

All variables declared inside a specific program segment are available also for the proce-
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dures and functions defined inside it. This ensemble of local procedures and functions is the

second section of the segment. When a routine is called, all the executable lines contained

in it are processed, and this includes also the commands specified inside local routines.

The final section of the program segment is the one containing the executable statements.

Among this class of commands we find the assignment statement that, as already introduced,

is characterized by the identifier := and is not associated to any keywords. It has the form

< variable or array component >:=< expression > ;

where the < expression > is an arithmetical combination of numbers, variables and array

elements visible in the routine where the assignment is defined.

The call to a procedure or a function is an executable statement too. In order to use

it, it is necessary to write the first < name > that appears in the definition of the selected

procedure or function, followed by the name of the local variables needed to define it.

In order to control the program flow, there are statements consisting of command pairs

indicating the beginning and ending of the control structure. Such statements are called by

the keywords

IF < expression >;

WHILE < expression >;

and

LOOP < name > < beginning > < end >;

where < expression > in the IF and WHILE commands indicates one or more operations

that have to be done when certain conditions occur. The LOOP flow controller is used to

iterate one or more operations: < name > is the variable that is incremented in the process,

while < beginning > and < end > represent the initial and the final value of this variable.

Control sequences can be arranged in a nested arrangement, with the constraint of including

completely the beginning and ending of the lower level control structure inside the begin-

ning and ending of the higher level control structure.

As last example of executable instructions, it is important to mention the input and out-

put statements. These have respectively the form

READ < unit > < name > ;

and

WRITE < unit > < expression >;

where the < unit > stands for a unit number that specifies where the input has to be read
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and where the output has to be written; unit 5 indicates the keyboard and unit 6 denotes

the screen, while other numbers can be associated with file names by using the procedures

OPENF and CLOSEF in order to read from or write in a file. In the READ command, the

< name > following the < unit > refers to the variable to be read, that can be either of type

number or string; in the WRITE command, the < expression > after the < unit > is the

output quantity that, also in this case, can be a number or a string.

Inside the program structure just described, the user has the possibility to call beam

physics elements in order to create and study complex systems such as a particle accelerator.

This physics environment deserves a more detailed treatment.

4.3 Beam physics in COSY

The physics part of COSY INFINITY is written in its own input language in a separate

file named cosy.fox, where all the elements necessary to the study of a beam physics system

are defined as procedures. Therefore, most commands in the user’s input file are simply calls

to those previously defined procedures. The user can also decide to create new commands

simply by defining new procedures. In this optic, beamlines are formed by a sequence of

calls to procedures representing individual elements [33].

Using the DA techniques and the powerful environment described above, COSY INFIN-

ITY proves to be a very flexible code that allows map computation and particle tracking in

a compact way. This approach permits, in particular, to avoid many approximations in the

resolution of the particles equation of motion in the accelerator by computing the transfer

map of the system to high order.

The transfer map M is the flow of the Ordinary Differential Equation (ODE)

~z f = M(~zi,~δ ) (4.1)

where ~zi and ~z f are the vectors of, respectively, the initial and the final conditions, while ~δ

is the vector of the system parameters, among which there is time. So, for any initial state

~zi of the system, the time dependent map tells us the final state of the system after a certain

interval of time. Note that, for a repetitive system like, for instance, a beam line, only a one

turn map has to be computed, making the particle tracking much faster than with ray tracing

codes, that trace each individual particle through the system.

As well as for the orbital motion, it is possible to calculate the spin transfer map Â for
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the investigated system, that represents the ensemble of solutions of the ODE

~S f = Â(~zi,~δ ) ·~Si (4.2)

where ~Si and ~S f are the spin vectors of, respectively, the initial and the final state. A funda-

mental charachteristic of this form of the spin equation of motion, deriving from the Thomas-

BMT equation [19, 20], is that the orthogonal matrix Â(z) does not depend on the spin com-

ponents, but only on the orbital quantities. This means that, once the orbital transfer map is

computed, it is straightforward to obtain the spin one by calculating the solution of Eq. (4.1)

and consider it as the new initial condition.

Every time COSY INFINITY computes a map, it stores it in a global variable called

MAP that is updated by each particle optical element that is called. It is always possible to

print both the orbital and the spin transfer map using respectively the commands PM and

PSM, that print the desired map to a chosen unit.

4.3.1 Optical elements

Among the several optical elements supported by COSY INFINITY, it is opportune to

discuss about the main of them used to build a lattice (see App. A) as close as possible to

the COooler SYnchrotron (COSY), being this the system we are interested in simulating.

The simplest particle optical element is the field-free and material-free drift length, that

can be applied to the transfer map with the command

DL < length > ;

where the parameter < length > is given in meters and specifies how long the drift space is

wanted.

Since the aim is to recreate a circular trajectory, bending elements are needed. It is

possible to call a parallel faced bending magnet with the call

DP < ρ > < θ > < aperture > ;

that applies on the map a vertical magnetic field B ∝ (1/ρ), being ρ the bending radius; the

angle θ denotes the bending angle and the < aperture > corresponds to the half gap width

of the magnet.

Other necessary elements are quadrupole and sextupole magnets. In order to call a

quadrupole magnet, that acts on the beam as a focusing device, there is the command

MQ < length > < B > < aperture > ;
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where < length > is the length of the magnet in meters, B is the magnetic flux density at the

pole tip, and < aperture > denotes the half gap width of the magnet. This element acts on

the map with a magnetic field defined as:

{

Bx = ky

By = kx
(4.3)

where k is the related multipole strength parameter [35]. For a sextupole, that provides a

position dependent focusing, the call is similar

MH < length > < B > < aperture > ;

This type of magnets is used for non linearity and chromaticity corrections, since the gener-

ated magnetic field depends on the second order of the spatial coordinates:

{

Bx = mxy

By =
1
2
m(x2 − y2)

(4.4)

where m is again the related multipole strength parameter [35].

The last important element to be introduced is the Radio-Frequency (RF) cavity. There

is a simple model for the cavity in COSY INFINITY, based on a potential depending on

position and time according to the relation:

V (x,y) = P(x,y) · sin [2π(ν · t +φ/360)] (4.5)

where ν is the frequency in Hertz and φ is the phase in degrees at which the reference parti-

cle enters the cavity. The command tha allows to call the RF device is

RF <V > < I > < ν > < φ > < aperture > ;

being V a two dimensional array containing the coefficients of a polynomial of order I de-

scribing the dependence on the position of the potential V (x,y), defined as:

P(x,y) =
I

∑
j,k=0

V ( j+1,k+1) · x j · yk (4.6)

For the purpose of this thesis, I has been chosen to be equal to zero.
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4.3.2 Implementation

The COSY INFINITY input file that contains all the user commands is a .fox file and

it is compiled by foxy.f, that is the compiler and executor of COSYScript written in Fortran

77. The first line of this input file must be

INCLUDE ’COSY’ ;

which allows the use of all the compiled code contained in the program cosy.fox. The user

input itself is contained in the main COSY procedure, that has to be named RUN. Accord-

ing to the COSYScript syntax precedently described, all commands must then be included

between the statements

PROCEDURE RUN ; and ENDPROCEDURE ;

As for all the procedures, also the procedure RUN must be called to be executed, then the

ENDPROCEDURE statement has to be followed by the call

RUN ;

followed by the final line that completes the input file

END ;

Before any DA operation can be executed, thus before any maps can be computed, it is

necessary to set up the DA tools via the call

OV < order > < phase space dimension > < number of parameters > ;

The order specifies the maximum order of computation required by the user and it can be

changed during the run time, but it can never exceed the one set in OV. The phase space

dimensionality can assume the value 1, 2 or 3: if it is 1, only the horizonthal motion is com-

puted; if it is 2, also the vertical motion is taken into account; if it is 3, the code computes

also the time of flight and the chromatic effects. The number of parameters is the number of

additional quantities that the transfer map of the system will depend on, besides the phase

space variables.

4.3.3 Beam parameters

All the calculations are performed in COSY INFINITY in the following set of coordi-

nates:
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r1 = x

r3 = y

r5 = l =
−(t − t0)v0γ

1+ γ

r7 = δm =
m−m0

m0

r2 = x′ =
px

p0

r4 = y′ =
py

p0

(4.7)

r6 = δK =
K −K0

K0

r8 = δZ =
Z −Z0

Z0

The first six variables form three canonically conjugate pairs in which the map is symplec-

tic; x and y are, respectively, the radial and the vertical position in meters with respect to the

reference trajectory, thus the trajectory corresponding to an ideal orbital motion; p0, K0, v0,

t0 and γ are, respectively, the momentum, kinetic energy, velocity, time of flight and total

energy in unit of m0c2 of the reference particle, that is the particle travelling on the reference

trajectory; m0 and Z0 are, respectively, the mass and the charge of the reference particle.

We understand therefore that all the optical coordinates are calculated relatively to a

reference particle, that has to be defined within the input file with the command

RP < kinetic energy in MeV > < mass in amu > < charge in units of e > ;

It is also possible to set the reference particle by assigning a value in MeV/c to the momen-

tum:

RPM < momentum in MeV/c > < mass in amu > < charge in units of e > ;

Finally, in order to activate the spin computation, it is necessary to call the procedure

RPS < LS > < G > ;

where < LS > is the spin mode, with 1 indicating spin computation ON and 0 no spin com-

putation, while G = (g−2)/2 is the anomalous magnetic moment of the selected particle.

4.3.4 Tracking

One of the main features of COSY INFINITY is its ability to trace rays through the

system. To every selected ray is applied the map of the system as result of the compositions

of the maps of the single elements called by the user. It is possible to print the coordinates

of these rays, and also to plot their trajectories. In order to set a ray that has to be traced

through the system, it is given the command

SR < x > < x′ > < y > < y′ > < l > < δK > < δm > < δZ > < color > ;
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where the specified quantities are the particle optical coordinates defined in Eq. (4.7); the

unit < color > indicates a number that can be specified to choose the line color for the plot.

x'
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x
 (

m
)
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Phase Space x-x' - dx = 20 mm , 1000 turns - RF OFF

Figure 4.1: Phase space x− x′ for a deuteron with momentum 970 MeV/c and initial radial

position x = 20 mm. The tracking is here performed for 1000 turns.

If the spin computation is ON, it is necessary to set the spin coordinates of the particle.

This can be achieved using the command

SSR < Sx > < Sy > < Sz > ;

where Sx, Sy and Sz are, respectively, the radial, vertical and longitudinal components of the

normalized spin vector ~S. This call has to be made immediately after the coordinates setting

via SR.

An aspect of the feature of the code just described that is very important for the aim of

this work is the repetitive tracking of particles through the defined lattice. Using the call

TR < N > < NP > < ID1 > < ID2 > < D1 > < D2 > < TY > < NF > < IU > ;

COSY INFINITY tracks each of the particles selected with SR through the map of the

system for the required number of iterations N. After each NP iterations, the position of

the phase space projection ID1− ID2 is drawn to the selected unit IU . The phase space

identification numbers ID1 and ID2 can assume values going from 1 to 6, corresponding to

the group of optical variables r1 → r6 defined in Eq. (4.7); it is also possible to select the

x, y and z components of the spin by assigning to the identifiers, respectively, the numbers

-1, -2, -3. The maximum value that these components can get, is set with D1 and D2. The

parameter TY specifies the symplectification mode. Notice that it is also possible to store
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the output of the tracking procedure in a file, that can be analyzed with different softwares.

An example of repetitive tracking is shown in Fig. (4.1).





Chapter 5

Spin Coherence Time simulations

To investigate the actual feasibility of an electric dipole moment experiment in a stor-

age ring, dedicated studies are being performed at the COoler SYnchrotron (COSY) facility.

Such experiments investigate the polarization lifetime of a horizontally polarized deuteron

beam in the COSY storage ring.

The realization of a Storage Ring EDM experiment requires a long time during which

the longitudinal polarization remains stable. This requirement comes from the fact that the

EDM signal is detected as a build-up of a vertical polarization component in a horizontally

polarized system (see Sec. 1.4). Therefore, for such a high precision experiment, it is nec-

essary a perfect knowledge of the spatial motion of the beam and the evolution of the spin

motion inside the ring.

The aim of the work at the base of this thesis is to benchmark the COSY INFINITY

code for the spin tracking, probing its reliability for a future use in the design of the new

generation EDM storage ring. To achieve that, the results obtained from the simulations

have been compared with the experimental results of the precursor experiments performed

at the COoler SYnchrotron.

In this chapter both the simulations and the comparison with the experiments will be

shown. In the first part, after defining the spin tune and the spin coherence time in COSY

INFINITY, the calculation of the latter starting from the spin tune spread dependence on

radial and vertical position, and on the momentum offset is presented. Both the cases with

and without the RF cavity will be treated. The second part will be about the correction of

these decoherence effects through the use of sextupole magnets installed in the ring.

53
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5.1 Spin tune

The spin-tune of the particles composing a beam is defined as the number of spin rota-

tions around the vertical axis during one revolution in the ring. It depends on the particles

velocity through the relation:

ν = |G|γ (5.1)

where G is the particles anomalous magnetic moment, and γ is the relativistic factor. This

dependence is responsible for introducing a spin-tune spread (∆ν) among the particles com-

posing the beam. Each particle will have then a spin tune differing from the one of the

reference particle (νRP) by the quantity:

∆ν = ν −νRP (5.2)

Therefore, since in a real beam all the particles do not have the same velocity, they will

precess with different frequencies and, after a certain amount of time depending on the spin

tune spread, called spin coherence time, they will be all out of phase in the horizontal plane

(see Fig. 1.5) ending in the vanishing of the initial horizontal polarization of the beam.

5.1.1 Spin tune calculation in COSY INFINITY

The first step towards the investigation of the dependence of the spin coherence time

on the machine parameters through simulations with COSY INFINITY, is the development

of an effective procedure for computing the spin tune. As explained in Chap. 4, COSY

INFINITY allows to track the spin of the particles of the beam and print out the spin vector

coordinates for each particle after every time they complete a revolution in the ring. With this

information it is possible to calculate the spin-invariant axis by making use of the normalized

cross product of each couple of spin vectors for two consecutive turns:

n̂i =
~Si ×~Si+1

|~Si||~Si+1|
(5.3)

where i is the number of turns counter, that can assume values 0 ≤ i ≤ N, being N the

total number of turns. The spin invariant axis is the axis around which the spin vector is

precessing. As the spin tune is defined as the number of spin rotations around this particular

axis in one beam revolution, we can calculate the spin phase advance around n̂i in one turn
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as:

θi = arcsin

(

|~Si ×~Si+1|
|~Si||~Si+1|

)

(5.4)

and then obtain the spin tune by:

νi =
θi

2π
(5.5)

It emerges from Eq. 5.5 that get several spin tune values, specifically as many as the

number of turns N. The choice of an high number of turns has been made in order to increase

the accuracy of the calculation by averaging the spin tune over N. The procedure can be

N
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0.16049816

0.160498165

Spin Tune

Figure 5.1: Spin tune’s dependence on the number of revolutions in the ring for a reference

deuteron with momentum p= 970 MeV/c. The tracking has been performed for N = 2×105,

and the average over this number of turns gives as result 〈ν〉RP = 0.1604981. Only the

values for the first 1000 turns are shown, to avoid confusion.

clarified by looking at Fig. 5.1, that shows the spin tune’s dependence on the number of

turns for the reference particle. The presented case is that of a deuteron with momentum p =

970 MeV/c and initial spin vector ~S = (Sx,Sy,Sz) = (0,0,1). Sx, Sy, and Sz are, respectively,

the radial, vertical and longitudinal spin components. Spin tracking has been performed for

N = 2×105 turns, and the spin tune values obtained are within the interval

0.16049812 < ν < 0.16049817

with an average over N calculated to be:

〈ν〉RP = 0.1604981 (5.6)
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The differences between the spin tune values occur to the 8th digit, due to the limitation

in the number of digits used in the code. These differences are therefore due to numerical

approximations in the analysis.

As a cross-check, the same result can be obtained by making use of the spin tune defini-

tion ν = |G|γ (see Eq. 5.1), where in this case G=−0.1425617 is the deuteron anomaly [36],

and γ is the relativistic factor. This evidence represents a first confirmation that the code is

correctly computing the spin motion.

An additional check that can be done is looking at the horizontal spin precession around

the spin invariant axis. Fig. (5.2a) shows the radial Sx and the longitudinal Sz components
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Figure 5.2: Fig. (a) shows the spin precession in the horizontal plane during 300 revolutions

around the ring. The black line refers to the Sx component, starting from 0, the red line refers

to the Sz component, starting from 1, and finally the blue line refers to the Sy component that

starts and stays constant at 0. This is in agreement with the initial condition ~S = (0,0,1).

Fig. (b) shows the period of the spin precession, thus one complete oscillations of Sx and Sz.

oscillating between −1 and +1 with a phase difference of π/2, while the vertical compo-

nent Sy remains constant at its starting value 0, consistently to the motion of a spin vector

~S = (0,0,1) in a vertical magnetic field. Sx and Sz make a complete oscillation in Nν ∼ 6.23

revolutions of the particle in the ring, as it is shown in Fig. (5.2b), meaning that the spin tune

can be derived also from this plot as:

ν = 1/Nν ≃ 0.1605 (5.7)

This result is close to the one obtained with the average method, suggesting again that COSY

INFINITY calculates the reference deuteron’s spin tune correctly.
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5.2 Spin tune spread evaluation

So far we have talked about the spin tune of the reference particle, that represents the

spin precession frequency that, for an ideal beam, would be the same for all the particles.

Our aim is to study a real system where the particles have parameters, like momentum and

position, that differ from the reference ones and change during the storing time.

In a real beam, there are three different contributions to the spin tune spread coming

from beam dynamics:

• a first order contribution due to the momentum spread ∆p/p of the particles in the

beam;

• a second order contribution due to betatron oscillations that cause both a radial and a

vertical position offset with respect to the reference trajectory, ending in a lengthening

of the beam path, a change in the particles speed, and a resulting spin tune spread;

• a second order contribution due to (∆p/p)2.

The method described in the previous section has been applied to calculate the spin tunes of

the offset particles.

Three different offsets have been studied in this work: the radial and vertical position

with respect to the reference orbit, respectively ∆x and ∆y, and the momentum spread ∆p/p.

Their contributions to the spin tune spread have been considered indipendently. The com-

putation order of COSY INFINITY has been set to 2.

5.2.1 Transverse phase space

The first case considered is the one with RF cavity switched off. For studying the radial

offset effect on the spin tune, an ensemble of 15 deuterons was declared in COSY INFINITY

with initial spin vector ~S = (0,0,1) and an assigned value of ∆x included in the interval

−35 mm ≤ ∆x ≤ 35 mm with a difference of 5 mm between one particle and the following.

This spread was chosen to resemble the size of an uncooled beam. The spin tracking was

performed for N = 2× 105 turns, and the spin tune was calculated as average over N. The

result of the simulation is shown in Fig. (5.3), representing the spin tune dependence on ∆x.
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The obtained spin-tune values are fitted by the second order polynomial
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Figure 5.3: Dependence of the spin-tune on the radial offset ∆x with respect to the reference

orbit. Each one of the red dots represents the spin tune, averaged over the number of turns

N = 2×105, of one particle with an assigned offset. The blue curve corresponds to the 2nd

order polynomilal fit, indicating a quatratic dependence of the spin tun on ∆x.

ν = p0 + p1∆x+ p2(∆x)2 (5.8)

where p0, p1 and p2 are the fit parameters shown in the fit box in Fig. (5.3). The p0 coeffi-

cient, that indicates the position of the vertex of the parabola, is the spin tune of the reference

particle, as defined in Eq. (5.6); p2 > 0 indicates that the parabola has an upward concavity,

meaning that the average spin tune increases with respect to the reference value as the mod-

ule of the radial offset increases. Finally, p1 6= 0 shows that the axis of the parabola does not

coincide with the ordinate axis, probably because there is not a perfect symmetry between

the spin tune values corresponding to positive and negative offsets. The obtained spin-tune

spread varies in the region:

10−7 < ∆νx < 10−5 (5.9)

where

∆νx = 〈ν〉∆x −〈ν〉RP (5.10)

The same procedure was adopted to study the vertical offset effect on the spin tune. Also

in this case, to each of the 15 deuterons, with initial spin vector ~S = (0,0,1), was assigned

a value of ∆y included in the interval −35 mm ≤ ∆y ≤ 35 mm with a difference of 5 mm
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between the particles. The spin tune dependence on ∆y is shown in Fig. (5.4). The ensemble
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Figure 5.4: Spin tune’s dependence on the vertical offset ∆y with respect to the reference

orbit. Each one of the red dots represents the spin tune, averaged over the number of turns

N = 2×105, of one particle with an assigned offset. The blue curve corresponds to the 2nd

order polynomilal that fits the spin tune values ensemble, indicating a quatratic dependence

of the spin tun on ∆y.

of spin tune values obtained is fitted by the second order polynomial:

ν = p0 + p1∆y+ p2(∆y)2 (5.11)

where p0, p1 and p2 are the fit parameters shown in the fit box in Fig. (5.4). The obtained

interval of spin-tune spread is comparable to the radial one:

10−7 < ∆νy < 10−5 (5.12)

where

∆νy = 〈ν〉∆y −〈ν〉RP (5.13)

5.2.2 Longitudinal phase space

The last contribution to be considered is the one due to the momentum offset ∆p/p of

particles of the beam with respect to the reference one. An ensemble of 13 deuterons was

declared, each one with initial spin vector ~S = (0,0,1) and an initial value of momentum
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offset included in the interval 10−4 ≤ |∆p/p| ≤ 3.2×10−3. This choice of ∆p/p replicates

the average momentum spread that is present among particles of an uncooled beam. The

spin tracking was performed for N = 2×105 turns, and the spin tune was calculated as av-

erage over N. The result of this investigation is shown in Fig. (5.5), presenting the spin tune

dependence on ∆p/p. In this case, the relation between the spin tune and the offset is linear,
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Figure 5.5: Spin tune’s dependence on the momentum offset ∆p/p with respect to the refer-

ence particle. Each one of the red dots represents the spin tune, averaged over the number of

turns N = 2×105, of one particle with an assigned offset. The blue curve corresponds to the

1st order polynomilal that fits the spin tune values ensemble, indicating a linear dependence

of the spin tune on ∆p/p.

as expected considering the linear dependence existing between the momentum and the rel-

ativistic factor γ . The spin-tune, according to its definition (see Eq. 5.1), is proportional to

γ too, explaining the relation derived by the simulations. The polynomial that fits the values

obtained is:

ν = p0 + p1
∆p

p
(5.14)

where p0 and p1 are the fit parameters reported in the fit box in Fig. (5.5). The p0 coeffi-

cient indicates the ordinate of the point where the straight line crosses the vertical axis, and

represents the value of the spin tune of the reference particle, defined in Eq. (5.6); p1 is the

angular coefficient of the line and it is negative, indicating that the spin tune decreases while

the momentum offset increases (∆p = p− p0). This point is controversial and deserves some

discussion. From the definition of spin tune ν = Gγ , it is clear that to a higher γ should cor-

respond a bigger ν , thus an increase in the momentum should lead to a bigger spin-tune. The
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authors of the code have been informed of this discrepancy: the latest possible explanation

concerns the computation of fringe fields of dipoles and quadrupoles in COSY INFINITY,

which seem to have a conflict when a momentum offset is inserted. Further investigations

are required in order to understand if this is the real problem and find a solution to it. Never-

theless this situation does not affect our capability to probe the code because, as we will see

later in this chapter, the quantity that matters to the calculation of the spin coherence time is

the absolute value of the spin tune spread.

Finally, it is important to point out that ∆p/p induces a much bigger spin tune spread

than ∆x and ∆y, being its order of magnitude:

10−5 ≤ ∆νp ≤ 10−3 (5.15)

where

∆νp = 〈ν〉∆p −〈ν〉RP (5.16)

5.2.3 Introduction of the RF cavity

The following step in the simulation of a lattice as close as possible to the real COSY

ring, is the introduction in the simulations of the effect of the RF cavity. The COSY INFIN-

ITY procedure calling a RF cavity has been described in Sec. (4.3.1); in Eq. (4.6), describing

the position dependence of the cavity’s potential, the choice I = 0 has been made so that the

potential is a simple sinusoid, whose amplitude has been set to V = 0.7 kV . The RF cavity

effect on the beam can be seen in Fig. (5.6) that shows the ∆p/p-l phase space, where l

is the distance travelled by a particle with respect to the reference one (see Eq. 4.7), for a

particle with initial momentum offset ∆p/p = 4× 10−4 in the cases with and without RF.

When the RF cavity is off, the phase space plot is the one shown in Fig. (5.6a). In this case,

the particle considered has a larger momentum with respect to the reference one, meaning

that it is faster and this condition will not change turn after turn. Therefore the particle will

always be ahead of the reference one, and the distance between them will increase turn by

turn. The situation changes if the RF cavity is switched on, as shown in Fig. (5.6b). In this

case ∆p/p does not stay constant at the initial value because the cavity changes turn by turn

the momentum of the offset particle in order to compensate its being in advance. This action

leads to oscillations of the particle around the reference position, called synchrotron oscil-

lations, as it is shown by the characteristic ellipse-shaped curve. In this example, only one

particle was considered, but the same thing happens in a real beam composed by particles
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Figure 5.6: ∆p/p-l phase space for a case where the RF cavity is off: ∆p/p remains constant

at the initial value 4×10−4 during the motion, while l keeps on increasing, meaning that the

particle will be further and further from the reference one. Fig (b) shows the same situation,

but with the RF cavity on: both ∆p/p and l starts oscillating around 0, showing that the

RF is trying to compensate the effect of the initial momentum offset by inducing synchrotron

oscillations. Here only a tracking for 1000 turns is shown; when the ellipse is closed, one

synchrotron oscillation is complete.

with different momenta: the RF cavity cancels the first order contribution of the momentum

spread. In fact, each particle has an average momentum offset equal to zero in a complete

synchrotron oscillation, thus its contribution to the path lengthening (see Eq. 2.26), and then

to the spin-tune, vanishes. This underlines the importance of the RF cavity in the achieve-

ment of high spin coherence times, since it cancels the only first order contribution to the

spin-tune spread, leaving only the second order ones to be dealt with.

Once defined that COSY INFINITY reproduces the action of the RF cavity on the beam

correctly, the spin tune spread calculations for position and momentum offsets were re-

peated, in order to study the effect of the RF on the beam and spin dynamics. The adopted

procedure is the same already described for the case with no cavity, except for an important

detail: synchrotron oscillations occur even if the starting value of the momentum offset is

zero. In facts, a particle having a position offset with respect to the reference trajectory,

would be ahead or delayed with respect to the reference particle, and the RF cavity will

induce a momentum offset, varying like in Fig. (5.6b), in order to compensate this differ-

ence. The induced ∆p/p are generally small, of the order 10−5; anyway, since a change

in momentum is involved, they affect the spin tune vs. number of turns distribution (see



5.2. SPIN TUNE SPREAD EVALUATION 63

Fig. 5.1), introducing an oscillation frequency in such distribution. This means that it is not

possible anymore to average the calculated spin tune over an arbitrary number of turns, but

instead the chosen number of turns has to be the closest possible to a multiple of the number

of revolutions needed for the phase space ellipse in Fig. (5.6b) to close, thus to an integer

number of synchrotron oscillations. Notice that it is not assured that a complete synchrotron

oscillation occurs in an integer number of revolutions in the ring, but it is not possible to

average on a fractional number of turns. This will imply a systematic in the calculation of

the spin tune spread and, later, of the spin coherence time, that has to be taken into account.

Transverse phase space

The result of the simulation confirms also in this case the quadratic dependence of the

spin tune on ∆x (see Fig. 5.7a). Each spin tune is the result of an average over N = 199363

turns, corresponding to 73 complete synchrotron oscillations (≃ 2731 revolutions per pe-

riod). The differences with respect to the case without RF cavity are mainly two: first, the

concavity of the parabola is now downward, implying that the spin tune is decreasing while

the offset becomes larger. This is probably due to effect of the RF cavity on the spin-tune

vs. number of turns distribution. In facts, due to the RF, the distribution starts oscillating

with the synchrotron oscillations frequency, and the average spin-tune dramatically changes

depending on the number of turns chosen to calculate it. This dependence can lead to either

an increase or a decrease of the spin-tune with respect to the reference one, affecting the

direction of the concavity of the parabola. It is important to highlight that we are interested

in the absolute value of the spin tune change, not in its sign, because that is the quantity

involved in the calculation of the spin coherence time. Second, the p2 coefficient is about

half of the one calculated without cavity, meaning that the spin tune change is slower than

in the previous case. This leads also to a smaller magnitude of the spin tune spread, defined

in Eq. (5.10), that in this case is evaluated to be:

10−8 < ∆νx < 10−6 (5.17)

The quadratic dependence of the spin-tune on ∆x in the presence of the RF cavity is

confirmed also for the case of a vertical offset, as shown in Fig. (5.8). In this case the

parabola is not reversed, and the quadratic coefficient p2 is about two orders of magnitude

smaller than the one calculated without cavity, showing that the spin tune change is much
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Figure 5.7: The left plot shows the spin tune’s dependence on the radial offset ∆x with

respect to the reference orbit when the RF cavity is switched on. Each red dot represents the

spin tune, averaged over the number of turns N = 199363, of one particle with an assigned

offset. The blue curve corresponds to the 2nd order polynomial that fits the spin tune values

ensemble, indicating a quadratic dependence of the spin tune on ∆x. The right plot [26]

shows the dependence of the reciprocal of the beam polarization lifetime, thus the module of

the tune spread (see next section), on the beam horizontal width for the data taken in May

2012 at COSY. The quadratic dependence has been confirmed experimentally.

slower than in the previous case. As already reported for the radial offset effect, this decrease

of p2 leads to a smaller spin tune spread:

10−8 < ∆νx < 10−6 (5.18)

that is comparable to the spread induced by ∆x. This drastic reduction of the spin-tune spread

is due to the effect of the RF cavity on the particles momenta. As explained above, the RF

induces a varying momentum offset on the particles that, having a position offset, either

radial or vertical, are ahead or delayed with respect to the reference one. This momentum

offset, like for the phase stability principle (see Sec.2.2.1), in part compensates the path

lengthening due to the position difference.
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Figure 5.8: Spin tune’s dependence on the vertical offset ∆y with respect to the reference

orbit when the RF cavity is switched on. Each one of the red dots represents the spin tune,

averaged over the number of turns N = 199363, of one particle with an assigned offset. The

blue curve corresponds to the 2nd order polynomial that fits the spin tune values ensemble,

indicating a quatratic dependence of the spin tune on Deltay.

Comparison with experimental results

As it will be shown in the next chapter, the quadratic dependence of the spin-tune from

the horizontal beam width has been experimentally confirmed by the data taken during the

spin coherence time tests at the COSY ring, as it is possible to see looking at Fig. (5.7b) [26]

where the data points related to the accelerator run occured in May 2012 are shown. This

comparison is only qualitative, but represents a rather strong hint about the right approch of

COSY INFINITY to the spin dynamics in a storage ring. One of the following steps will be

the attempt to find a quantitative equivalence between simulation and experiment.

There were no data taken at the COSY ring with a vertically wide beam; in fact, due to

the limited vertical acceptance of the accelerator, the attempts to increase the vertical profile

of the beam resulted in its complete loss. This makes not possible the comparison between

experiment and simulation.
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Longitudinal phase space

The effect of the RF cavity on the spin tune is even more evident for the case involving

momentum offset as initial condition. As already specified, the cavity should cancel the first

order contribution of ∆p/p to the spin tune spread, leaving a residual quadratic dependence.

This is in part confirmed by Fig. (5.9), that shows the dependence of the spin tune on ∆p/p

when the cavity is switched on. The curve that fits the spin tune values ensemble is not a
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Figure 5.9: Spin tune’s dependence on the momentum offset ∆p/p with respect to the ref-

erence particle when the RF cavity is switched on. Each one of the red dots represents the

spin tune, averaged over the number of turns N = 199363, of one particle with an assigned

offset. The blue curve corresponds to the 2nd order polynomial that fits the spin tune values

ensemble; the parabola does not have its vertex in corrispondence of ∆p/p = 0, suggesting

some residual linear contribution.

straight line anymore (see Fig. 5.5), but a second order polyomial of the type:

ν = p0 + p1
∆p

p
+ p2

(

∆p

p

)2

(5.19)

The spin tune spread is much smaller than the one calculated without RF cavity (see Eq. 5.15),

and its order of magnitute is

10−8 < ∆νp < 10−6 (5.20)

One would expect the parabola to have its vertex in corrispondence of ∆p/p = 0, that would

lead to a quadratic dependence just like in the case of the position offsets shown above.
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This is not the case, suggesting that there is still a residual linear dependence affecting

the relation. A possible explanation could be connected to the number of turns N chosen

for the average; in fact the synchrotron oscillation frequency depends on the starting value

of ∆p/p assigned to the particles composing the ensemble considerated, meaning that N

could be slightly different for each of the particles selected. It could be possible to improve

the situation by increasing the order of computation of the Taylor coefficients in COSY

INFINITY, in order to better calculate the synchrotron oscillation period for each of the

particles and, then, the correct N. This has been made for the 3rd order of computation,

and the results are shown in Fig.(5.10). The offset values |∆p/p|> 4×10−4 have not been
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Figure 5.10: Spin tune’s dependence on the momentum offset ∆p/p with respect to the ref-

erence particle when the RF cavity is switched on. The computation order was set to 3. The

vertex of the parabola is now in ∆p/p = 0.

considered, because this more accurated calculation showed that such values could be too

big for the RF cavity to succeed in compensating them and lead to a miscalculation of the

spin tune-momentum offset relation. This could be indeed another factor explaining the plot

in Fig. (5.9). The new calculation shows a parabola with its vertex back in ∆p/p = 0, but

still not symmetric around it.

Now that we have the way to calculate the spin tune spread for an ensemble of particles,

it is necessary to understand how to extract from this information a good extimate for the

spin coherence time. This is the topic of the next section.
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5.3 Spin Coherence Time estimation

As shown in Sec. 2.1.6, the change in path length depends on the square of the maxi-

mum angular deviation from the reference trajectory. It is therefore reasonable to expect the

reciprocal of the spin coherence time to go as the square of the width of the beam profile:

1

τSC

= A〈(∆x)2〉+B〈(∆y)2〉 (5.21)

where ∆x and ∆y are connected to the angular deviations ∆x′ and ∆y′ through the emittance.

Since in the previous section we saw how the spin-tune has a quadratic dependence on ∆x

and ∆y, it is possible to define a relation between the spin-tune spread and the horizontal

polarization lifetime:

|∆ν | ∝
1

τSC

(5.22)

Given that the polarization is a property of an ensemble of particles, we assume that

these particles are distributed with a Gaussian shape, as shown by the heavy solid curve

below the spin tune points in Fig. (5.11). The Gaussian width is shown by the long-dashed

line; the curve on the right shows the distribution of the spin tune shifts that is produced by

the calculation of the shift itself for each Gaussian width selected. We assume, therefore, that

each of the offset values chosen for the spin tune spread evaluation represents the Gaussian

width of the beam in the simulation, in order to be able to compare its polarization lifetime

to the one coming from the experiment. The measurements (see next chapter) show that the

Gaussian width is, in most cases, a reasonable measure of the beam width [37].

In the measurements that we will present in Sec. 6.2, the spin coherence time τSC of a

particles beam was defined as the time for which the spin tune spread produces a polarization

equal to p = 0.606 of the initial value of one. This definition derives from the analysis of

the time dependence of the measured up-down asymmetry, whose shape is neither Gaussian

nor exponential. A numerical template was therefore needed in order to associate a value

of the spin coherence time to this shape. It was determined that, at small time, the template

function behaves like a Gaussian, whose width corresponds to a drop in the polarization

from 1 to p = 0.606.

In order to estimate the spin coherence time for a Gaussian-distributed beam, we start

with the width of the Gaussian distribution of displacements, that in our case is a value

included in the chosen ∆x or ∆y intervals. If we project this width onto the spin tune spread

quadratic curve obtained (see Fig. 5.11), it corresponds to some value of the spin tune shift.
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Figure 5.11: Association of a spin tune spread value to a selected beam Gaussian width, in

order to exctract an estimation for the spin coherence time [37].

That shift represents the spin tune change for one turn. After many turns (N), the phase

difference between the particles spin vectors precessing in the horizontal plane will be N

times the difference after one turn. A simulation, whose details are reported in Sec. 6.2,

carried out by Ed Stephenson with a simple no-lattice model [38], shows that, when the

polarization drops to 0.606, the angle indicating the phase spread of the spin vectors in the

horizontal plane has increased to a value of 1.254 rad. A reasonable estimate of the spin

coherence time would then be to use the number of turns needed for the phase difference of

the spin vectors to reach 1.254 rad. Thus the spin coherence time becomes:

τSC =
1.254

2π|∆ν | fcyc

(5.23)

where fcyc = 750602.5 Hz is the COSY cyclotron frequency, and ∆ν is the spin tune spread

calculated for different beam conditions in the previous section.

5.3.1 Horizontal betatron oscillations

Fig. (5.12) shows the spin coherence time dependence on the horizontal beam profile ∆x

when the RF cavity is switched on. Each spin tune value has been averaged over N = 199363

turns, being N close to the number of revolutions in the ring needed by the particles to

complete 73 synchrotron oscillations. The function that fits the spin coherence time values
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Figure 5.12: Spin coherence time’s dependence on the horizontal beam profile ∆x with re-

spect to the reference orbit when the RF cavity is switched on. Each one of the red dots rep-

resents the spin coherence time corresponding to a spin tune shift calculated as in Eq. (5.10).

The spin tune values for each particle with an assigned offset are averaged over the num-

ber of turns N = 199363. The blue curve corresponds to a fitting function that indicates a

1/(∆x)2 dependence of the spin coherence time.

is the one defined in Eq. (5.23).

Comparison with experimental results

In order to calculate an estimation of the spin coherence time for a certain value of ∆x,

data from the May 2012 run across a wide range of horizontal widths are available. As an

example we pick a value of ∆xexp = 5 mm, that is in the middle of the data set. For such

width the measured spin coherence time is τSC = 11.4 s [38]. To compare this number to

the estimation coming from the simulations, it is necessary to consider that the ∆x used in

COSY INFINITY is evaluated in a different position in the ring with respect to the one

measured by the Beam Profile Monitor (BPM), thus in the middle of the target telescope in

one of the straight sections, corresponding to the starting point of the tracking. Therefore

we need to scale ∆x by making use of the relationship between emittance and the position,

that is εβx = (∆x)2. As the emittance does not vary over the ring, we have:

∆xcode =

√

βcode

βexp

∆xexp (5.24)
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Using the beta functions values βcode = 6.582 m and βexp = 22.12 m, the COSY INFINITY

width corresponding to 5 mm is ∆xcode = 2.727 mm. This yields, after substituting the right

values in Eq. (5.23), an estimate for the spin coherence time of τSC = 11.5 s. The agreement

between the measured and estimated spin coherence time for this example is excellent, but

at the present stage of investigation might be accidental. It is important anyway that the

order of magnitude is correct. In fact, there are still elements that are missing in the COSY

INFINITY lattice, for example the electron cooler. Specified this, the important result to be

pointed out is the possibility of calculating the spin coherence time of a particles beam by

using the COSY INFINITY spin tracking tools and, furthermore, the order of magnitude of

this characteristic time is comparable to the one measured in the experiments at the COSY

ring.

5.3.2 Vertical betatron oscillations

The same described procedure for the ∆x case has been used in order to determine the

spin coherence time dependence on the vertical beam profile ∆y, shown in Fig. (5.13a),

where we can see that it is of the same kind of the one described for the radial case, thus

τSC ∝ 1/(∆y)2. It is important to highlight that a vertical offset affects the polarization life-

time less than a horizontal one. In fact, comparing the quadratic fit parameters of Fig. (5.12)

and Fig. (5.13a), that are respectively px
2 = 85.64 and p

y
2 = 400.5. Since p

y
2 > px

2, we see

that a vertical offset would cause a decrease in the spin coherence time that is smaller than

the one caused by the same offset in the radial direction. This yields, for ∆x and ∆y equal to

5 mm, a spin coherence time respectively of 3.4 s and 16 s.

As already mentioned relatively to the spin tune spread calculation, because of accep-

tance problems in the COSY storage ring it was not possible to probe the polarization life-

time of a vertically wide beam. Therefore, no comparison can be made.

5.3.3 Synchrotron oscillations

In Fig. (5.13b) the spin coherence time dependence on the momentum offset is shown. For

the reasons already explained in the previous section, this calculation has been performed

up to the 3rd order of approximation and for a more limited ensemble of ∆p/p values than

in the case with the RF cavity switched off. A second order polynomial fit to the data evi-
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Figure 5.13: The left plot shows the spin coherence time dependence on the vertical offset

∆y with respect to the reference orbit when the RF cavity is switched on. Each one of the

red dots represents the spin coherence time corresponding to a spin tune shift calculated as

in Eq. (5.13). The blue curve corresponds to the fitting function that indicates a 1/(∆y)2

dependence of the spin coherence time. Fig. (b) shows the spin coherence offset on the

momentum offset ∆p/p. The spin tracking in this case has been performed up to the 3rd

order.

dences the persistence of a linear dependence from ∆p/p. The data collected about the study

of the effects of a momentum spread on the beam polarization lifetime are presently being

analyzed; we need then to wait for these results in order to compare them to the simulations

and check the exsistence of this linear dependence.

5.4 Use of sextupoles to enhance the SCT

The evidence that both position and momentum offsets affect dramatically the spin co-

herence time of the beam, and knowing that for a future EDM experiment we need at least

τSC ∼ 103 s, we need to find a way to compensate these depolarizing effects. In this section

it is described how this has been done for vertical and radial offsets by using sextupole mag-

nets.

Sextupole magnetic fields, which vary as the square of the radius from the center (see

Eq. 4.4), provides a position dependent focusing that can adjust the particle orbit and com-

pensate for the emittance terms that originate a spread in the spin-tune. Referring to Eq. (5.21),
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we can add the sextupole corrections as in the following way:

1

τSC

= A〈(∆x)2〉+B〈(∆y)2〉+(a1K2MXS
+a2K2MXL

)〈(∆x)2〉+(b1K2MXS
+b2K2MXL

)〈(∆y)2〉
(5.25)

where K2MXS
and K2MXL

are the sextupole strengths (see Eq. 2.21) for, respectively, the MXS

and MXL sextupole families of the COSY ring. These magnets are installed respectively

where the βx and βy are separately large, as shown in Fig. (5.14).

Within the COSY INFINITY code, the sextupole magnets are defined as described in

Figure 5.14: Plot of the horizontal (black) and vertical (blue) beta functions, and of the

dispersion function (green) around the ring. The position of the MXS and MXL sextupoles is

shown: they are placed in the arc sections, respectively where the βx and βy are separately

large [39].

Sec. (4.3.1), and located in the same position as in the real lattice. In order to find the sex-

tupole corrections that cancel the emittance effects on the spin coherence time, it is necessary
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to set 1/τSC to zero, then solve the system:

(

K2MXS

K2MXL

)

=−
[

a1 b1

a2 b2

]−1(

A

B

)

(5.26)

where A and B represent the known quadratic dependences of the spin tune spread on the

radial and the vertical offset respectively. The coefficients ai and bi, with i = 1, 2 represent

the sextupole corrections and have to be determined in the simulations. Values of the spin

coherence time have been calculated for different values of K2MXS
and K2MXL

, separately

varied, and for a certain value of the beam width ∆x or ∆y. By setting the vertical offset to

zero and operating exclusively with the MXS magnets, Eq. (5.25) becomes:

1

τSC

= (A+a1K2MXS
)〈(∆x)2〉 (5.27)

As an example, let us examine the case of a particle with a radial offset ∆x = 1 mm

and try to compensate the effect of this offset by varying the MXS family magnets strength.

Fig. (5.15) represents the dependence of the spin coherence time on K2MXS
. What we see
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Figure 5.15: Scan of the MXS sextupoles strength, showing how the polarization lifetime

varies while the current circulating in the magnets is changing. The lifetime increases fast

up to its maximum, that is reached at the strength of 0.015344 m−3, and then decreases

likewise. The blue curve fits the set of simulated spin coherence times.

is a considerable increase of the polarization lifetime while the strength is varying, until

a maximum value that is reached at Kmax
2MXS

= 0.015344 m−3 where the spin coherence time

reaches a value τSC ∼ 2.12×106 s. As a reference, the value of spin SCT for K2MXS
= 0 m−3 is
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around 86 s. The simulation supports the idea that the sextupoles could be effectively used to

compensate for the spin-tune spread caused by the finite size of the beam and consequently

increases the SCT. In particular for the presented study, the SCT has been increased by a

factor ≃ 2.5×104. The functional form, reproduced by the blue fitting curve in the plot, is

defined as:

τSC =
p0

|K2MXS
− p1|

(5.28)

where p1 is the sextupole strength that maximizes the spin coherence time (Kmax
2MXS

), and can

be extracted from the fit. The other parameter p0 is related to the curve’s width. If the spin

tune spread was exactly canceled, the spin coherence time would become infinity.

The simulations evidence how sensitive is the SCT from the changes in K2; the strength

values are then reported with six digits, considering that a shift of 10−6 m−3 from the maxi-

mum means a change of one order of magnitude in τSC, or, in some cases, even more.

Comparison with experimental results

Let us now compare the result obtained from the simulation to what has been observed

during the beam time in May 2012. In Fig. (5.16) the comparison for the reciprocal of the

spin coherence time is shown. The left side plot (5.16a) shows the same MXS scan shown

in Fig. (5.15), this time with 1/τSC on the ordinates axis, performed for ∆x = 1 mm (blue

line) and ∆x = 3 mm (red line). The reciprocal of the spin coherence time becomes very

close to zero in correspondance of Kmax
2MXS

. It is important to highlight that the zero crossing

point is the same for both the values of simulated beam width, suggesting that Kmax
2MXS

does

not depend on the beam size. In order to determine whether this behavior is linear, the

1/τSC values before or after such a zero crossing are reversed in sign. In Fig. (5.16a) this

has been done for all the points above 0.015344 m−3. The same linear behavior has been

observed during the May 2012 run, as it is possible to see in Fig. (5.16b) where results for

three different values of ∆x are shown. Also from the data emerges a common zero cross

point for different values of ∆x.

Despite of the correspondance in the linear dependence, there is a big difference in the

scale of the MXS strength axis. In fact, the K2MXS
value that was experimentally found to

maximize the spin coherence time is 5.4 m−3, that is a factor ∼ 350 bigger than the one

determined from the simulations. This is a large difference, suggesting that something was

missing in the COSY INFINITY lattice. The evidence triggered additional investigations.
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Figure 5.16: The left plot shows the reciprocal of the spin coherence time as function of

the MXS sextupoles strength for ∆x = 1 mm (blue line) and ∆x = 3 mm (red line). In or-

der to determine whether this behavior is linear, all the values above the zero crossing at

0.015344 m−3 were reversed in sign. The two lines crosses zero in the same point, sug-

gesting that Kmax
2MXS

does not depend on the beam size. In the right plot we can look at the

same dependence, this time obtained from the data taken in May 2012 at COSY. The three

lines correspond to three different beam profile widths. The behavior is again linear, but the

common zero crossing is at 5.4 m−3. The values above this point were reversed in sign to

test the linearity.

5.4.1 Implementation of the sextupole component of the dipoles

The real dipole magnets have a sextupole field component that was not taken into ac-

count for the performed simulations.The first attempt to reduce the K2 scale factor between

experiment and simulation involved the implementation of the dipole magnets sextupole

component in COSY INFINITY. These multipole components are in fact responsible for the

residual sextupole field present in the ring when all the sextupole magnets are switched off,

and therefore they can affect the polarization lifetime exactly as the sextupole magnets do.

The result of the dipoles sextupole components measurement, carried out about twenty

years ago at COSY, is reported in Fig. (5.17). The plot shows the sextupole components of

the 24 dipoles of the COSY ring as function of the currents circulating in the coils. The

large spread at the lowest current is due to errors in the magnetic fields measurements and

the geometrical differences between the magnets. The dashed line represents a linear fitting
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function, defined as:

y =

(

−1.18×10−5 m−3

A

)

x+1.13×10−3 m−3 (5.29)

The current circulating in the dipoles during the May 2012 run is 1040 A, so we can calculate

the sextupole strength, that is K
dip
2 =−0.011149 m−3.

Figure 5.17: Sextupole component of the 24 dipoles of the COSY ring as function of current.

In order to take this multipole component into account in the simulations, the choice was

to modify the dipole magnets field by using the thin lense approximation, that allows us to

attach to both sides of each dipole a sextupole magnet and then consider the resultant field as

the superposition of the dipole and the sextupole components. Each added sextupole has a

length of lsext = 5 cm, and a strength equal to K
dip
2 /2, scaled by the ratio between the length

of the dipole and the length of the sextupole itself ldip/lsext . This scale factor is needed be-

cause the tranfer matrix element associated to the sextupoles is proportional to K
dip
2 lsext . We

are actually defining a field component of a dipole, meaning that this component has to be

considered over the total length of the dipole instead of only over 5cm. Therefore the ratio

ldip/lsext transforms the matrix element into K2lsext ldip/lsext = K2ldip, and the contribution of

the sextupole component is properly evaluated.

Horizontal case After the implementation of the sextupole component of the dipoles, a
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new MXS scan was performed for the case ∆x = 1 mm; the results are shown in Fig. (5.18).

The dependence of the spin coherence time on the MXS sextupoles strength is still described

by Eq. (5.28); what has substantially changed is the sextupole strength scale. In fact now

the lifetime reaches its maximum at 0.755958 m−3, improving by a factor ≃ 50 the agree-

ment with the measured value. This large increase in the sextupoles strength scale indicates
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Figure 5.18: Spin coherence time dependence on the MXS sextupoles strength when the

dipoles sextupole component is taken into account. The lifetime maximum is reached at

the strength of 0.755958 m−3, and its value is ∼ 4× 106 s. The blue curve fits the set of

simulated spin coherence times.

that it has been reasonable to consider sources of sextupole field other than the sextupole

magnets themselves. Anyway, the new value is still a factor ∼ 7 off the 5.4 m−3 found

experimentally, fact that tells us that there might still be sextupole components in the ring

that are not accounted for. For instance, it is already known that the electron cooler, con-

stituted by solenoid and toroid magnets, contributes to the residual sextupole component of

the COSY ring. Since there is no element in the COSY INFINITY code that describes an

electron cooler, it is not possible to include this further contribution in the simulations. At

the moment it is not clear if this contribution would compensate the remaining factor ∼ 7;

for this reason it is necessary to understand which other effects could possibly change the

sextupole field of the ring.

Vertical case As shown in Sec. (5.2), also a vertical position offset with respect to the

reference orbit is responsible for the generation of a spin tune spread that reduces the beam
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polarization lifetime. For this reason, a compensation of the ∆y offset effect is needed. The

sextupoles of the MXL family are located where the function βy is large, and they are then

the right choice for the vertical dimension. As the final aim is the cancellation of both the

radial and the vertical offset effects, this requires the consideration of the cross terms, thus

radial compensation changing MXL and vertical compensation changing MXS. A study has

been performed to determine whether the MXS and MXL compensating effects add linearly,

following the relation:

K2MXL
=C1 +C2K2MXS

(5.30)

Both the cases ∆x = 1 mm and ∆y = 1 mm were separately considered. In Tab. (5.1) the

∆x = 1 mm ∆y = 1 mm

K2MXS
(m−3) K2MXL

(m−3) K2MXS
(m−3) K2MXL

(m−3)

0 1.3176 -0.5 0.5221

0.2 0.9688 0 0.3288

0.4 0.6202 0.4 0.1742

0.7559 0 0.8505 0

Table 5.1: MXS and MXL strength pairs that separately cancel the spin tune spread gener-

ated by a radial and a vertical position offset.

pairs of MXS and MXL strengths that separately cancel the effect of a 1 mm radial and

vertical offset are reported. In Fig. (5.19) the relative plot is shown. The points in the

graphic represent the pairs (K2MXS
,K2MXL

) that maximize the spin coherence time in the two

cases studied. The green line fits the values relative to the radial offset, while the blue line

fits the ones relative to the vertical offset. Both curves are well described by the relation

of Eq. (5.30), confirming that the two compensation effects of the MXS and MXL families

add linearly, and also that it would be possible to simultaneously cancel the spin tune spread

caused by the radial and vertical beam widths. The two lines cross each other indeed, and

the pair of sextupole strengths that should provide the cancellation is:

{

K2MXS
= 0.7303 m−3

K2MXL
= 0.0446 m−3

(5.31)

Unluckily is not possible to compare this result with an experimental one because, as

already pointed out, due to acceptance problems it is not possible at COSY to study the

vertical offset effect on the polarization lifetime. The simulations result is anyway very
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Figure 5.19: The plot shows two sets of MXS and MXL strengths that cancel the spin tune

spread caused separately by a radial (green line) and a vertical (blue line) 1 mm offset. The

two lines cross each other, suggesting that it is possible to cancel both effects at the same

time.

promising, and confirms that the COSY INFINITY code is potentially a very powerful tool

for spin dynamics studies in a storage ring.



Chapter 6

Measurements at the COSY ring

The purpose of this thesis is to benchmark beam and spin dynamics calculations in the

COSY INFINITY code. The EDM feasibility experiments that have been taking place at the

COSY ring, presented a unique opportunity to test the code on field.

The feasibility of the deuteron EDM experiment depends on the minimization of the spin

tune spread, that is responsible for the vanishing of the beam horizontal polarization with

time. In order to understand the mechanisms which cause it, a series of polarization studies

were performed at COSY. These studies can be performed using either a coasting beam or a

bunched beam.

In the case of a coasting beam, this is injected in the storage ring and it occupies the en-

tire circumference. The main contribution to the spin tune spread comes from ∆p/p which,

in the case of an uncooled beam, kills the spin coherence time in ∼ 10−3 s (∼ ( fcyc∆p/p)−1).

In the case of a bunched beam, an RF cavity confines the particles inside a bucket, as

explained in Chap. 2. Particles with a different velocity from the reference particle will un-

dergo synchrotron oscillations inside the bunch such that the first order contribution of ∆p/p

averages to zero. Only a second order effect due to betatron oscillations is left.

This chapter presents how a vertically polarized beam was prepared in order to perform

a measurement of the horizontal polarization lifetime. It will be shown how the polariza-

tion was precessed from the vertical to the horizontal plane by exciting an RF solenoid spin

resonance, and then how the spin coherence time was extracted from the measures of the hor-

izontal polarization asymmetry. Finally, beam emittance effects on SCT will be discussed,

including the possibility to correct them by making use of sextupole magnets.

81
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6.1 Beam preparation

In order to obtain a horizontally polarized beam with variable profile widths, suitable

for use in the exploration of bem emittance effects on the spin tune spread, the following

procedure was adopted:

1. Injection in the COSY ring of a vertically polarized beam.

2. Set up beam ramp up to 0.97 GeV/c and bunch on the first harmonic.

3. Set up cooling/heating cycles, with the electron cooling running for 30 s, followed by

10 s in weach selective heating is available to enlarge vertical or horizontal width.

4. Slow extraction into a thick carbon target.

5. Set up a Froissart-Stora scan that stops with zero vertical polarization, resulting in a

horizontally polarized beam whose polarization rapidly precesses in the ring plane.

Machine parameter Value

Horizontal tune, Qx 3.60

Vertical tune, Qy 3.62

Compaction factor, αc 0.177±0.003

Slip factor, η −0.612±0.003

Cycotron frequency, fcyc 750602.5(5) Hz

Beam parameter Uncooled Cooled

∆p/p (8.02±0.23)×10−4 (4.91±0.13)×10−5

Horizontal width, ∆x 6.01 mm 1.43 mm

Vertical width, ∆y 6.51 mm 1.77 mm

Horizontal emittance, εx 1.6 µm 0.09 µm

Vertical emittance, εy 5.8 µm 0.42 µm

Table 6.1: Machine and beam parameters [29].

The tests at COSY made use of a bunched vertically polarized deuteron beam with a mo-

mentum p = 0.97 GeV/c. Only three polarization states were used: positive and negative

vector polarization states with no tensor polarization, and an unpolarized state. The beam
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was bunched on the first harmonic (h = 1) with a maximum oscillator voltage of 400 V . For

the uncooled beam, this captures most of the beam into about half of the ring circumference,

as shown by Fig. (6.1a), that represents the oscilloscope traces of the RF (top) and beam

pickup (bottom) for the uncooled beam [29]. When electron cooling is applied at the begin-

ning of beam storage, the momentum spread and the size of the beam are greatly reduced

(see Fig. 6.1b). A number of machine parameters were measured for the various running

(a) (b)

Figure 6.1: Oscilloscope traces of the RF (top) and beam pickup (bottom) for both the

uncooled (see Fig. (a)) and the cooled (see Fig. (b)) beam. The time trace represents roughly

1.5 RF periods. In the uncooled case, the pickup sees no beam for about half of the machine

cycle, while in the cooled case the beam is gathered into a narrow bunch and there is a long

residual uncooled tale on the peak sides [29].

conditions, and they are reported in in Tab. (6.1), where the slip factor η is calculated from

the measure of αc using Eq. (2.28).

6.1.1 RF solenoid spin resonance

The vertical polarization was perturbed by a longitudinal radio-frequency (RF) magnetic

field, provided by an RF solenoid, inducing an RF depolarizing resonance that can flip the

spin direction of stored polarized particles. The resonance frequency is defined as:

fres = fcyc(k±Gγ) (6.1)
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where fcyc is the cyclotron frequency and k is an integer.

The studies began by exciting the 1−Gγ resonance, whose frequency was estimated by

Figure 6.2: Froissart-Stora scan for the uncooled beam. The zero crossing was used to

make a first estimate of the spin resonance frequency. The curve is calculated assuming a

resonance frequency of 871434 Hz and a ramp rate of 10 Hz/s starting from 871200 Hz at

5.8 s [29].

making a Froissart-Stora frequency sweep [30] across the expected location of the resonance

using the uncooled beam. The frequency at which the polarization changed sign was taken

as the initial resonance location. Fig. (6.2) shows the data from this scan, which was started

at 871200 Hz (at a time of 5.8 s and ramped at a speed of 10 Hz for a total of 40 s. The zero

crossing is clearly evident near 29 s, corresponding to 871434 Hz. The polarization does not

completely reverse, an issue that is consequence of synchrotron oscillations effects on the

spin resonance [29].

The cooled beam measurements on resonance are shown in Fig. (6.3). The data represent

a slow oscillation of the vertical component of the polarization with a period of about 2/3 s.

It persists for the 55 s that the RF solenoid was kept running after the initial ramp-up, which

lasted 200 ms. This allows a very precise determination of the mgnetic field strength of the

RF solenoid. The oscillation pattern requires an effective strength of ε = (4.05± 0.01)×
106 rev/turn.

Refinements to the position of the resonance were made using the RF solenoid operating
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at a fixed frequency in the immediate neighborhood of the resonance. Being off resonance by

even a fraction of 1 Hz creates clear changes in the polarization oscillation pattern. The most

Figure 6.3: Cooled beam measurements on resonance ( fres = 871434 Hz), with a solenoid

field strength of ε = (4.05± 0.01)× 106 rev/turn. The vertical polarization oscillates for

55 s. The curve is a model calculation [29].

accurate results were obtained in the cooled beam case, in which the beam has a very narrow

profile and the synchrotron oscillation contribution is small. The resonance frequency value

obtained with such a procedure is 871434.13±0.04 Hz.

The RF solenoid was run at this frequency in order to precess the vertical polarization

of the beam towards the horizontal plane, at which point the solenoid strength is ramped to

zero. Fig. (6.4) shows the left-right asymmetry in function of the measure time. While the

RF solenoid is on, the vertical polarization oscillates. The solenoid was switched off when

the vertical polarization reached zero, staying zero for the rest of the cycle, meaning that the
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only left component of the beam polarization is now the horizontal one.

Figure 6.4: Vertical polarization behaviour during the measure time. While the RF solenoid

is on, the vertical polarization oscillates. The solenoid is then switched off when Py = 0.

The vertical polarization stays zero for the rest of the cycle, suggesting that the only left

component is the horizontal one. [40]

6.1.2 Machine cycles

Once we had a horizontally polarized beam in a ”non-magic” machine (see Sec. 1.4),

we had to deal with the precession motion of the particle spins in the ring plane, due to the

particle anomalous magnetic momentum. This required the development of a method for

measuring the rapidly rotating (∼ 120 kHz) horizontal polarization as a function of time.

The procedure applied, involving the use of a new data acquisition software, is described in

Sec. 3.3.2.

In order to have good statistics on the time evolution of the horizontal polarization, many

beam storage cycles are required. Each of these machine cycles begins with a vertically po-

larized beam. At a given moment, an RF solenoid is ramped on at the 1−Gγ harmonic of
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the spin tune (see previous section). If the solenoid frequency is on resonance, then it will

precess the vertical polarization toward the horizontal plane, at which point the solenoid

strength is ramped to zero. This preparation, adjusted in advance to minimize the final verti-

cal polarization, was initiated with a start signal that was also passed to the data acquisition

as an event with a clock time. For each machine cycle, this was taken as the data acquisition

start time. The RF solenoid process was assumed to be reproducible on each cycle.

The intention is to prepare a horizontally wide beam of variable width suitable for use

Figure 6.5: The distribution of polarimeter events for one machine cycle shown as a function

of the circumference of the ring and as a function of the time during the store [40].

in the exploration of sextupole field effects on the spin tune spread. Fig. (6.5) shows the

distribution of polarimeter events for one machine cycle as a function of the circumference

of the ring and as a function of the time during the store.

In the early part of the machine cycle, after the initial few seconds used for injection,

ramping and bunching, electron cooling ran for 30 s to minimize the momentum spread and

transverse size of the beam. The next 10 s provided a time window in which selective heat-

ing with white noise applied to electric field plates could be used to enlarge the horizontal

size of the beam depending on the power being applied. After heating, the signal for the

data acquisition start was issued and the RF solenoid began the process of precessing the

polarization into the ring plane.

In order to monitor the polarization during the beam storage time, the deuteron beam is
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slowly and continuosly extracted onto the thick carbon target, consisting of a carbon tube

15 mm thick with a rectangular interior opening for the beam, that is placed in front of the

EDDA scintillators. The extraction of the beam was made through a vertical steering bump

that brought the beam close to the thick polarimeter target (see Sec. 3.2).

In the COSY arcs there are two sextupole families (groups of four magnets), MXS and

MXL, which are located respectively where βx and βy functions are large. The original goal

was indeed to study separately the emittance effects in both radial (x) and vertical (y) direc-

tions. Nevertheless, it was not possible during the run, due to an acceptance issue, to find

a machine condition where the vertical emittance could be varied while keeping the beam

bunched. Therefore, only the effects of the MXS family on a beam with large horizontal

emittance were studied.

6.2 Spin Coherence Time extraction

In order to explore the effect of sextupole magnetic fields on the longevity of polarization

in a storage ring such as COSY, it was necessary to have a way to define the spin coherence

time and to provide a procedure through which it may be extracted from horizontal polar-

ization measurements.

Horizontal polarization asymmetries, measured for small to large horizontal beam pro-

files, are shown in Fig. (6.6). As the profile becomes larger, the horizontal polarization

lifetime shrinks because of the larger spin tune spread. The time dependent shapes visible in

the three plots are neither Gaussian nor exponential, so a numerical template was needed in

order to match the data and characterize the shape with a value of the spin coherence time.

The template assumes that spin decoherence is driven only by the lengthening of the

particle path (see Sec. 2.1.4) associated with the finite εx and εy emittances of a bunched

beam. At any point in the ring with known beta functions, the emittance may be charac-

terized by the angles θx and θy that represent the maximum deviation from the direction of

the reference orbit at the location of the rms deviation of the distribution. The change in

spin tune depends on the combination θ 2
x +θ 2

y for each particle track. The values for θx and

θy where chosen from two separate Gaussian distibutions, each characterized by a width,

σx and σy respectively. Changing these widths one with respect to the other, changes the

time-dependent shape of the template curve, which therefore may be described by a new

parameter α = σy/σx [23]. As already mentioned, during the experiment it was possible to
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Figure 6.6: The three plots show horizontal polarization asymmetries measured for small,

medium and large horizontal beam profiles. As the profile becomes larger, the spin coherence

time shrinks. [23].

make σx, originally reduced through electron cooling, wider by applying white noise to a

set of horizontal field electric plates. All tests were then made with horizontal ribbon beams

whose shape represented cases with α < 1.

A simple model of the process from our experiment begins with the assumption that,

after the RF solenoid has precessed the polarization into the horizontal plane, all of the par-

ticle spins stay aligned with each other at the maximal polarization. Then, over time, they

spread around a unit circle in the horizontal plane. The template shapes were built by taking

106 spins and distributing them around this unit circle for a particular value of α . Fig. (6.7)

shows an example of such a distribution for 300 spin vectors and a single non-zero emit-

tance (α = 0). At t = 0 s all of the spins were at (x,y) = (0,1), thus the beam polarization

was p = 1. As time increases, the points revolve around the unit circle in one direction

(increasing spin tune) since the quadratic sum of the angles is always positive. The distribu-

tion was allowed to spread linearly with time. At each time point, the x and y components

of the polarization were calculated and the total polarization determined by adding these

components in quadrature. The resulting polarization time dependence for the α = 0 case

was matched by a template curve departing from one quadratically at small time, just like

a Gaussian function. The spin coherence time was then chosen as the width corresponding

to a polarization value of p = 0.606, the same value that corresponds to the amplitude of a

Gaussian function whose argument is the function’s width σ .
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Figure 6.7: Unit circle in the ring plane where the spins are distributed following the square

of a Gaussian distribution. It represents the spin vectors positions in the plane.

6.3 Emittance effects

The contributions to the spin tune spread from beam dynamics have been illustrated in

Sec. 5.2. We saw how the change in path length goes as the square of the maximum angle

of deviation from the reference trajectory. Therefore, the reciprocal of the spin coherence

time should depend on the square of the width of the beam profile (see Eq. 5.21), as it is

confirmed by Fig. (6.8). The plot shows a set of measurements where the effect on the

spin coherence time of increasing horizontal emittance is evident. The vertical axis is the

inverse of the horizontal polarization lifetime (or spin coherence time), that was extrapolated

with the method described in the previous section. The horizontal axis is the average beam

profile Gaussian width in mm at the location of the profile monitor. These data were taken

with electron cooling off, following a period with cooling on in order to reduce the phase

space size, and with another short period of heating to expand the beam profile horizontally.

The blue circles are the data recorded without sextupole field corrections (MXS = 0%, see

Sec. 5.4 and next section), the red circles with MXS = 5%, and the magenta circles with

MXS = −5%. The black line through the data is only a guide to the eye to suggest that a
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Figure 6.8: The plot shows part of the data taken for several horizontal profile widths.

These data were taken with electron cooling off, following a period with cooling on in order

to reduce the phase space size, and with another short period of heating to expand the

beam profile horizontally. The blue circles are the data recorded without sextupole field

corrections (MXS = 0%, see Sec. 5.4 and next section), the red circles with MXS = 5%, and

the magenta circles with MXS = −5%. The black line through the data is only a guide to

the eye to suggest that a quadratic dependence is reasonable. [23].

quadratic dependence is reasonable.

Fig. (6.9) shows two examples of horizontal polarization measurements for a narrow (a)

and a wide (b) beam, in the case of MXS = 0%. It is clear that there is a large emittance

effect on the spin coherence time, which is 50.0±2.5 s in the first case and 5.5±0.6 s in the

second case.

6.4 Sextupole corrections

In Sec. 5.4 it has been explained how sextupole corrections were added starting from

Eq. 5.21

During the beam time in May 2012, it was observed that changes in the MXS sex-

tupole current were capable of lengthening the polarization lifetime. The results are shown
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Figure 6.9: Comparison of the horizontal polarization as a function of time for a narrow

beam (a) and for a wide beam (b) for MXS = 0%. It is evident how emittance affects the

spin coherence time. [23].

in Fig. (6.10) that reports the plot of the reciprocal of the spin coherence time as a function

of the strength (see Eq. 2.21) of the MXS sextupole magnets. We can observe how changing

the value of the sextupole field has a dramatic effect on the horizontal polarization lifetime,

that gets close to infinity as 1/SCT goes to zero. The linearity of the effect comes from the

matching of the quadratic sextupole field as a correction to the quadratic path lengthening,

which is a function of the size of the horizontal emittance.

Another test was made to measure the spin coherence time of a beam that was cooled

during all the storage time, since it represents the case where the particle momentum dis-

tribution and the emittances are the smallest. In this case the beam was extracted onto the

EDDA thick carbon target for only a short time at the beginning and end of the horizontal

polarization window, as it is shown in Fig. (6.11). Under these conditions, the longest po-

larization lifetime measured was 316±40 s, that is the time required for the polarization to

fall to 1/e of its initial value. Without the polarization values in the gap, this lifetime cannot

be converted into a spin coherence time using the previous definition.

Although this result is promising, since it approaches the goal value (τSC > 1000 s) for

dedicated EDM measurements, the adopted cooling tecnique, making use of the electron

cooler, cannot be directly applied to the final experiment because the magnetic fields used

in the electron cooling system would destroy the EDM signal. As a possible alternative, the

use of stochastic cooling has been proposed, but its effects on the spin dynamics of a stored

beam have to be investigated.
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Figure 6.10: Dependence of the reciprocal of the spin coherence time on the MXS sextupole

strength. The three lines correspond to three different beam profile widths, starting from a

narrow (bottom, blue) to a wide (top, black) profile. In order to determine wether this be-

havior is linear, all the points above the zero crossing at 5.4 m−3 were reversed in sign. [23].

Figure 6.11: Measurements of the spin coherence time for an electron cooled beam. Due

to the lack of polarization values in the gap, the polarization lifetime is defined as the time

required for the polarization to fall to 1/e of its initial value, and corresponds to 316±40 s.





Conclusions

This thesis is intended as a support to the feasibility studies for the search for an Electric

Dipole Moment (EDM) of charged particles in a storage ring. The discover of a non-zero

EDM at the sensitivity of present or planned experiments would clearly point to new sources

of CP violation beyond the Standard Model. The basic idea proposed to measure the EDM

of charged particles, is to inject in a storage ring a longitudinally polarized beam and keep it

circulating while interacting with a radial electric field. The EDM signal would then be de-

tected as a polarization precession starting from the horizontal plane and rotating towards the

vertical direction. For such an experiment to succeed, a long horizontal polarization lifetime

is required, since it defines the observation time available to measure the EDM signal. In the

case of a deuteron EDM experiment, in order to reach a sensitivity of about 10−29 e · cm, a

spin coherence time of at least 1000 s is required, together with the capability of measuring

microradians of vertical polarization rotation.

Such a high precision experiment requires a powerful tracking tool that allows to track

both the position and the spin of the particles circulating in the storage ring. The code I used

to perform the simulations presented in this thesis is COSY INFINITY, created by Prof.

Martin Berz at the Michigan State University.

The purpose of this work is to benchmark the COSY INFINITY code against the fea-

sibility studies for the deuteron EDM experiment that have been performed at the COoler

SYnchrotron (COSY) storage ring, located at the Forschungszentrum-Jülich (Germany).

The simulations carried out with COSY INFINITY concern the investigation of the

dependence of the spin coherence time from beam dynamics mechanisms occurring to a

deuteron beam stored in the COSY ring.

The first part of the work regarded the evaluation of the betatron oscillations and the

beam momentum spread contribution to the spin coherence time of a coasting beam. The

change in the spin tune due to either a position or a momentum offset of a particle with

95
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respect to the reference trajectory was calculated by selectively setting a certain value of ∆x,

∆y and ∆p/p. The spin-tune spread was determined and the associated spin coherence time

was calculated. These simulations highlighted a quadratic dependence of the spin-tune on

the horizontal and vertical beam profile widths, while a linear dependence from ∆p/p was

found.

In order to compare the simulation results to the data emerging from the measurements,

the case of a bunched beam was studied. An RF cavity was implemented in the code, and the

spin coherence time was calculated for these new conditions. The quadratic dependence of

the spin-tune on the profile widths was confirmed, but a significant reduction of the spin-tune

spread was observed. This has to be related to the action of the RF cavity, which partially

compensates for the particle path lengthening, due to the position difference with respect to

the reference trajectory, by bunching the beam. In this case, the spin-tune depence on the

momentum offset is not linear anymore, but quadratic, since the cavity cancels the first order

contribution of ∆p/p to the spin-tune spread, leaving a residual quadratic effect.

The following step consisted of verifying the possibility of lengthening the polarization

lifetime by correcting emittance effects using sextupole magnets, whose field varies as the

square of the distance from the reference trajectory providing a position dependent focusing,

and can compensate the decoherence effects due to betatron oscillations. Sextupoles were

then implemented in the code and placed in the same position as in the real lattice. In order

to take into account the residual sextupole field present in the COSY ring when all the sex-

tupole magnets are switched off, the sextupole components of the dipole magnets were also

implemented.

The vertical and horizontal beam emittance cases were treated separately. The sex-

tupoles of the MXS family of the COSY ring, placed were βx is large, were used for the

vertical case, while the sextupoles of the MXL family, placed were βy is large, were used

for the horizontal one. For a particular value of sextupole strength, the reciprocal of the spin

coherence time, which is proportional to the spin-tune spread, became zero, confirming the

cancellation of the beam emittance effects on the horizontal polarization lifetime. This is

a fundamental result because it confirms the hypothesis of lengthening the spin coherence

time by making use of sextupole magnets. The zero crossing point was found to be inde-

pendent of the chosen value of beam width, qualitatively reproducing the behavior of the

experimental data. The MXS sextupole strength corresponding to the maximum spin co-

herence time is a factor ∼ 7 off the measured value, suggesting the presence in the ring of

further sextupole components that were not accounted for. Due to acceptance issues, it was
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not possible to obtain a vertically wide beam in COSY, making it impossible to compare the

simulation results to the experimental ones.

The COSY INFINITY calculations demonstrated that the MXS and MXL compensating

contributions add linearly and, furthermore, that it is possible to simultaneously cancel the

effects of vertical and horizontal emittance on the horizontal polarization lifetime.

The comparison of the simulations to the measurements represented a unique possibility

of testing the COSY INFINITY code with actual data. The presented results demonstrate

that COSY INFINITY correctly computes the beam and spin dynamics of a charged parti-

cles beam in a storage ring. The dependence of the spin coherence time on betatron and syn-

chrotron oscillations is qualitatively reproduced, as well as its dependence on the strength

of the sextupole magnets implemented in the simulated lattice. Further investigations are

needed in order to be able to reproduce the experimental results also quantitatively. A first

step towards this achievement could be the implementation in the code of the electron cooler,

whose components could contribute to the sextupole field present in the COSY ring. Future

plans also forsee the study of the second order contribution of the beam momentum spread

to the spin coherence time, which is not compensated by the RF cavity effect.
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Appendix A

The COSY INFINITY lattice

In this appendix we report the COSY storage ring lattice, written in the COSYScript lan-

guage, that have been used to obtain the results presented in Chap. 5.

A.1 Code

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

{Variables declaration}

VARIABLE sext 1 ;

VARIABLE ORDER 1 ; VARIABLE TY 1 ; VARIABLE TITLE 80 ; VARIABLE NR 1 ;

VARIABLE ER 1 ; VARIABLE ES 1 ; VARIABLE I 1 ; VARIABLE ANG 1 ;

VARIABLE TRACE 1 3 ; VARIABLE LTUNE 1 3 ; VARIABLE PHASESPACE 1 ;

VARIABLE q1 1 ; VARIABLE q2 1 ; VARIABLE q3 1 ;

VARIABLE APER_QUAD 1 ; VARIABLE APER_SEXT 1 ; VARIABLE APER_BEND 1 ;

VARIABLE IDEMO 1 ; VARIABLE IWAIT 1 ; VARIABLE ONESEC 1 ;

VARIABLE IGR 1 ; VARIABLE IPIC1 1 ; VARIABLE IPIC2 1 ;

101



102 APPENDIX A. THE COSY INFINITY LATTICE

{ GUI variables }

VARIABLE DONE 1; VARIABLE BUTTON 100;

VARIABLE SYMP 1; VARIABLE SYMPTYPE 1;

VARIABLE DISTX 1; VARIABLE NRAYLOCAL 1; VARIABLE NTURN 1;

VARIABLE NREP 1 ; VARIABLE Nfree 1 ; VARIABLE Nsweep 1 ;

VARIABLE DISTY 1; VARIABLE DISTE 1;

VARIABLE TXA 1; VARIABLE UNIT 1; VARIABLE PSFILE 1;

VARIABLE NSPIN 1; VARIABLE TSX 1; VARIABLE PROT 1; VARIABLE D0OPTIK 1;

VARIABLE TSXN 1; VARIABLE TSYN 1; VARIABLE TSZN 1;

VARIABLE TYB 1; VARIABLE TTD 1 ;

VARIABLE TSXY 1; VARIABLE TSXZ 1; VARIABLE TSYZ 1;

VARIABLE TXN 1; VARIABLE TYN 1; VARIABLE TEN 1;

VARIABLE ONLYX 1; VARIABLE ONLYY 1; VARIABLE ONLYE 1;

VARIABLE FGQU1 1; VARIABLE FGQU2 1; VARIABLE FGQU3 1; VARIABLE FGQU4 1;

VARIABLE FGQU5 1; VARIABLE FGQU5 1; VARIABLE FGQU6 1;

VARIABLE FGQT1 1; VARIABLE FGQT2 1; VARIABLE FGQT3 1; VARIABLE FGQT4 1;

VARIABLE FGQT5 1; VARIABLE FGQT6 1; VARIABLE FGQT7 1; VARIABLE FGQT8 1;

VARIABLE MXG 1; VARIABLE MXS 1; VARIABLE MXL 1;

VARIABLE MXL01 1; VARIABLE MXL02 1; VARIABLE MXL03 1; VARIABLE MXL04 1;

VARIABLE MXL10 1; VARIABLE MXL11 1; VARIABLE MXL12 1; VARIABLE MXL13 1;

VARIABLE DmassAmu 1; { deuteron mass in atomic units }

VARIABLE MD 1; { mass of the deuteron }

VARIABLE T0 1; { central kinetic energy }

VARIABLE P0 1; { central momentum }

VARIABLE Alpha 10 ; {Momentum Compaction Factor}

VARIABLE Epconv 1 ; {Conversion factor between dK/K and Dp/p}

VARIABLE a 1; { deuteron anomalous magnetic moment }

VARIABLE V1 1 2 2; {parameters for RF cavity potential shape}

VARIABLE Voltage 1 ;

VARIABLE fRF 1; {RF frequency in Hz}

VARIABLE phiRF 1; {RF phase in degrees}

VARIABLE HARM 1; {Harmonic number}

VARIABLE mu 1000 3; { variable for tunes }
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VARIABLE mu2 1000 3; { variable for tunes }

variable spinvect 1000 3 ;

variable spinvect2 1000 3 ;

variable spintune 1000 ;

variable spintune2 1000 ;

VARIABLE CALIBT 1;

VARIABLE CALIBU 1;

VARIABLE BRHO 1 ; { magnetic rigidty }

VARIABLE RHO 1 ; { bending radius of the dipole }

VARIABLE AD 1 ; { aperture of the dipole }

VARIABLE LDP 1 ; {length of the dipole LDP = RHO*[(15*2pi)/360]}

VARIABLE LBS 1 ; {length of a sext attached to a dipole}

VARIABLE BES01 1; VARIABLE BES02 1; VARIABLE BES03 1; VARIABLE BES04 1;

VARIABLE BES05 1; VARIABLE BES06 1; VARIABLE BES07 1; VARIABLE BES08 1;

VARIABLE BES09 1; VARIABLE BES10 1; VARIABLE BES11 1; VARIABLE BES12 1;

VARIABLE BES13 1; VARIABLE BES14 1; VARIABLE BES15 1; VARIABLE BES16 1;

VARIABLE BES17 1; VARIABLE BES18 1; VARIABLE BES19 1; VARIABLE BES20 1;

VARIABLE BES21 1; VARIABLE BES22 1; VARIABLE BES23 1; VARIABLE BES24 1;

VARIABLE LQU 1 ; { length of a bend section quad }

VARIABLE AQU 1 ; { aperture of a bend section quad }

VARIABLE GQU1 1 ; { quad gradient }

VARIABLE GQU2 1 ; { quad gradient }

VARIABLE GQU3 1 ; { quad gradient }

VARIABLE GQU4 1 ; { quad gradient }

VARIABLE GQU5 1 ; { quad gradient }

VARIABLE GQU6 1 ; { quad gradient }

VARIABLE LQT 1 ; { length of a straight section quad }

VARIABLE AQT 1 ; { aperture of a straight section quad }

VARIABLE GQT1 1 ; { quad gradient }
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VARIABLE GQT2 1 ; { quad gradient }

VARIABLE GQT3 1 ; { quad gradient }

VARIABLE GQT4 1 ; { quad gradient }

VARIABLE GQT5 1 ; { quad gradient }

VARIABLE GQT6 1 ; { quad gradient }

VARIABLE GQT7 1 ; { quad gradient }

VARIABLE GQT8 1 ; { quad gradient }

VARIABLE ALIGNX 1 ; VARIABLE ALIGNY 1 ; VARIABLE ALIGNROT 1 ;

VARIABLE BRFADJUST 1 ;

VARIABLE RFRANGE 1 ;

VARIABLE BRFSOL 1 ; VARIABLE FRFSOL 1 ;

VARIABLE J 1 ; VARIABLE K 1 ; VARIABLE L 1 ;

VARIABLE SAVEFILE 1 ;

VARIABLE pxave 1 ; VARIABLE pyave 1 ; VARIABLE pzave 1 ;

VARIABLE pxref 1 ; VARIABLE pyref 1 ; VARIABLE pzref 1 ;

VARIABLE pscalar 1 ;

[.....]

{*****************************************************************}

PROCEDURE BCELL1 Q1 Q2 ALIGNX ALIGNY ALIGNROT;

{ one unit cell of the bend; three cells make a 180 deg. turn }

{ length of each cell = 17.33m }

DL 1.439 ;

RA ALIGNROT ;

MQ LQU Q1*AQU AQU ;

DL 0.389 ;

MH LBS (BES01/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES01/2)*(LDP/LBS)*brho*AD^2 AD;

RA -1*ALIGNROT ;

DL 0.389 ;
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MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES02/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES02/2)*(LDP/LBS)*brho*AD^2 AD; {

DL 1.389 ;

{ ------------------ symmetry point ---------------- }

DL 1.389 ;

MH LBS (BES03/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES03/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.062 ;

MH 0.14 MXS*brho*AQU^2 AQU ;

DL 0.187 ;

MH LBS (BES04/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES04/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q1*AQU AQU ;

DL 1.439 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE BCELL2 Q1 Q2 ALIGNX ALIGNY ALIGNROT;

{ one unit cell of the bend; three cells make a 180 deg. turn }

{ length of each cell = 17.33m }

DL 1.127 ;

MH 0.243 MXL*brho*AQU^2 AQU ;

DL 0.069 ;

RA ALIGNROT ;

MQ LQU Q1*AQU AQU ;
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DL 0.389 ;

MH LBS (BES05/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES05/2)*(LDP/LBS)*brho*AD^2 AD;

RA -1*ALIGNROT ;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES06/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES06/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.233 ;

MH 0.328 MXG*brho*AQU^2 AQU ;

DL 0.828 ;

{ ------------------ symmetry point ---------------- }

DL 1.389 ;

MH LBS (BES07/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES07/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES08/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES08/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q1*AQU AQU ;

DL 0.069 ;

MH 0.243 MXL*brho*AQU^2 AQU ;

DL 1.127 ;

ENDPROCEDURE ;

{*****************************************************************}
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PROCEDURE BCELL3 Q1 Q2 ALIGNX ALIGNY ALIGNROT;

{ one unit cell of the bend; three cells make a 180 deg. turn }

{ length of each cell = 17.33m }

DL 1.439 ;

RA ALIGNROT ;

MQ LQU Q1*AQU AQU ;

DL 0.389 ;

MH LBS (BES09/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES09/2)*(LDP/LBS)*brho*AD^2 AD;

RA -1*ALIGNROT ;

DL 0.187 ;

MH 0.14 MXS*brho*AQU^2 AQU ;

DL 0.062 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES10/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES10/2)*(LDP/LBS)*brho*AD^2 AD;

DL 1.389 ;

{ ------------------ symmetry point ---------------- }

DL 1.389 ;

MH LBS (BES11/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES11/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES12/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES12/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q1*AQU AQU ;

DL 1.439 ;
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ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE BCELL4 Q1 Q2 ALIGNX ALIGNY ALIGNROT;

{Same element disposition of BCELL1, different dipole’s sext components}

{ one unit cell of the bend; three cells make a 180 deg. turn }

{ length of each cell = 17.33m }

DL 1.439 ;

RA ALIGNROT ;

MQ LQU Q1*AQU AQU ;

DL 0.389 ;

MH LBS (BES13/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES13/2)*(LDP/LBS)*brho*AD^2 AD;

RA -1*ALIGNROT ;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES14/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES14/2)*(LDP/LBS)*brho*AD^2 AD;

DL 1.389 ;

{ ------------------ symmetry point ---------------- }

DL 1.389 ;

MH LBS (BES15/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES15/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.062 ;

MH 0.14 MXS*brho*AQU^2 AQU ;

DL 0.187 ;

MH LBS (BES16/2)*(LDP/LBS)*brho*AD^2 AD;
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DP RHO 15 AD ;

MH LBS (BES16/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q1*AQU AQU ;

DL 1.439 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE BCELL5 Q1 Q2 ALIGNX ALIGNY ALIGNROT;

{Same elements disposition of BCELL2, different dipole’s sext components}

{ one unit cell of the bend; three cells make a 180 deg. turn }

{ length of each cell = 17.33m }

DL 1.127 ;

MH 0.243 MXL*brho*AQU^2 AQU ;

DL 0.069 ;

RA ALIGNROT ;

MQ LQU Q1*AQU AQU ;

DL 0.389 ;

MH LBS (BES17/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES17/2)*(LDP/LBS)*brho*AD^2 AD;

RA -1*ALIGNROT ;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES18/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES18/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.233 ;

MH 0.328 MXG*brho*AQU^2 AQU ;

DL 0.828 ;

{ ------------------ symmetry point ---------------- }

DL 1.389 ;
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MH LBS (BES19/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES19/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES20/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES20/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q1*AQU AQU ;

DL 0.069 ;

MH 0.243 MXL*brho*AQU^2 AQU ;

DL 1.127 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE BCELL6 Q1 Q2 ALIGNX ALIGNY ALIGNROT;

{Same elements disposition of BCELL3, different dipole’s sext components}

{ one unit cell of the bend; three cells make a 180 deg. turn }

{ length of each cell = 17.33m }

DL 1.439 ;

RA ALIGNROT ;

MQ LQU Q1*AQU AQU ;

DL 0.389 ;

MH LBS (BES21/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES21/2)*(LDP/LBS)*brho*AD^2 AD;

RA -1*ALIGNROT ;

DL 0.187 ;

MH 0.14 MXS*brho*AQU^2 AQU ;

DL 0.062 ;

MQ LQU Q2*AQU AQU ;
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DL 0.389 ;

MH LBS (BES22/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES22/2)*(LDP/LBS)*brho*AD^2 AD;

DL 1.389 ;

{ ------------------ symmetry point ---------------- }

DL 1.389 ;

MH LBS (BES23/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES23/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q2*AQU AQU ;

DL 0.389 ;

MH LBS (BES24/2)*(LDP/LBS)*brho*AD^2 AD;

DP RHO 15 AD ;

MH LBS (BES24/2)*(LDP/LBS)*brho*AD^2 AD;

DL 0.389 ;

MQ LQU Q1*AQU AQU ;

DL 1.439 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE TRIPLET1 Qedge Qmid Sext;

MQ LQT Qedge*AQT AQT ;

DL 0.38 ;

MQ LQT Qmid*AQT AQT ;

DL 0.24 ;

MQ LQT Qmid*AQT AQT ;

DL 0.0685 ;

MH 0.243 SEXT*brho*AQU^2 AQU ;

DL 0.0685 ;

MQ LQT Qedge*AQT AQT ;

ENDPROCEDURE ;
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{*****************************************************************}

PROCEDURE TRIPLET2 Qedge Qmid Sext;

MQ LQT Qedge*AQT AQT ;

DL 0.0685 ;

MH 0.243 SEXT*brho*AQU^2 AQU ;

DL 0.0685 ;

MQ LQT Qmid*AQT AQT ;

DL 0.24 ;

MQ LQT Qmid*AQT AQT ;

DL 0.38 ;

MQ LQT Qedge*AQT AQT ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE HALFSTRAIGHT1A ;

DL 4.546 ;

TRIPLET1 GQT1 GQT2 MXL01;

DL 6.457 ;

TRIPLET1 GQT3 GQT4 MXL02;

DL 1.41 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE HALFSTRAIGHT1B ;

DL 1.41 ;

TRIPLET2 GQT3 GQT4 MXL03;

DL 2;

{ PS 0.15; { EDDA }

} DL 4.456 ;

TRIPLET2 GQT1 GQT2 MXL04;
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DL 4.546 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE HALFSTRAIGHT2A ;

DL 2.547 ;

TRIPLET1 GQT5 GQT6 MXL10 ;

DL 2.488 ;

{ cavity }

DL 3.968 ;

TRIPLET1 GQT7 GQT8 MXL11 ;

DL 2.112 ;

DL 0.600 ; { toroid }

DL 0.7 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE HALFSTRAIGHT2B ;

DL 0.7 ;

DL 0.600 ; { toroid }

DL 2.108 ;

TRIPLET2 GQT7 GQT8 MXL12 ;

DL 6.456 ;

TRIPLET2 GQT5 GQT6 MXL13 ;

DL 2.547 ;

ENDPROCEDURE ;

{*****************************************************************}

PROCEDURE THERING ;

{ beginning of the ring, middle of target telescope }

HALFSTRAIGHT1B ;
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BCELL1 GQU1 GQU2 ALIGNX ALIGNY ALIGNROT ;

BCELL2 GQU3 GQU4 ALIGNX ALIGNY ALIGNROT;

BCELL3 GQU5 GQU6 ALIGNX ALIGNY ALIGNROT;

HALFSTRAIGHT2A ;

DL 1 ;

HALFSTRAIGHT2B ;

RF V1 0 fRF phiRF 1;

BCELL4 GQU5 GQU6 ALIGNX ALIGNY ALIGNROT;

BCELL5 GQU3 GQU4 ALIGNX ALIGNY ALIGNROT;

BCELL6 GQU1 GQU2 ALIGNX ALIGNY ALIGNROT;

HALFSTRAIGHT1A ;

DL 1 ;

{ end of the ring }

ENDPROCEDURE ;

[.....]
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[3] A. G. Cohen, A. De Rújula, and S. L. Glashow. A Matter-Antimatter Universe? The

Astrophysical Journal, 495:539–549, March 1998.

[4] A. D. Sakharov. Violation of CP invariance, C asymmetry, and baryon asymmetry of

the universe. Pis’ma Zh. Eksp. Teor. Fis., 5:32–35, 1967.

[5] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the 2π decay

of the k0
2 meson. Phys. Rev. Lett., 13:138–140, July 1964.

[6] B. Aubert and others (BABAR Collaboration). Study of CP-violating asymmetries in

b0 → π+π−,k+π− decays. Physical Review D65, 051502, 2002.

[7] E. M. Purcell and N. F. Ramsey. On the Possibility of Electric Dipole Moments for

Elementary Particles and Nuclei. Phys. Rev., 78:807–807, Jun 1950.

[8] J. H. Smith, E. M. Purcell, and N. F. Ramsey. Experimental Limit to the Electric Dipole

Moment of the Neutron. Physical Review, 108:120–122, October 1957.

[9] P. Langacker. The Standard Model and Beyond. Series in High Energy Physics, Cos-

mology, and Gravitation. CRC Press, 2010.

[10] Jihn E. Kim and G. Carosi. Axions and the strong CP problem. Rev. Mod. Phys.,

82:557–601, Mar 2010.

115



116 BIBLIOGRAPHY

[11] C. A. Baker et al. Improved Experimental Limit on the Electric Dipole Moment of the

Neutron. Phys. Rev. Lett., 97:131801, Sep 2006.

[12] D. Anastassopoulos et al. AGS Proposal: Search for a permanent electric dipole

moment of the deuteron nucleus at the 10−29 e · cm level, April 2008. Available at

http://www.bnl.gov/edm/.

[13] B. C. Regan et al. New Limit on the Electron Electric Dipole Moment. Phys. Rev.

Lett., 88:071805, Feb 2002.

[14] M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson. New Limit on the

Permanent Electric Dipole Moment of 199Hg. Phys. Rev. Lett., 86:2505–2508, Mar

2001.

[15] J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds. Measurement of the Electron

Electric Dipole Moment Using YbF Molecules. Phys. Rev. Lett., 89:023003, Jun 2002.

[16] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N.

Fortson. Improved Limit on the Permanent Electric Dipole Moment of 199Hg. Phys.

Rev. Lett., 102:101601, Mar 2009.

[17] ACME Collaboration. Order of Magnitude Smaller Limit on the Electric Dipole Mo-

ment of the Electron. ArXiv e-prints, October 2013.

[18] B. Lee Roberts and W. Marciano. LEPTON DIPOLE MOMENTS, volume 20 of

Advanced Series on Directions in High Energy Physics - Vol. 20. World Scientific,

2010.

[19] L. H. Thomas. The kinematics of an electron with an axis. Philosophical Magazine,

3:1–22, 1927.

[20] V. Bargmann, Louis Michel, and V. L. Telegdi. Precession of the Polarization of Parti-

cles Moving in a Homogeneous Electromagnetic Field. Physical Review Letters, 2:1–2,

May 1959.

[21] The Storage Ring EDM Collaboration. A Proposal to Measure the Proton Electric

Dipole Moment with 10−29 e · cm Sensitivity, March 2011.



BIBLIOGRAPHY 117

[22] D. A. Edwards and M. J. Syphers. An Introduction to the Physics of High Energy

Accelerators. Wiley Series in Beam Physics and Accelerator Technology. WILEY-

VCH, 2004.

[23] G. Guidoboni. Spin Coherence Time studies for a polarized deuteron beam at COSY.
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