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ABSTRACT 

The rapid response of mitochondria to cellular Ca
2+

 signals depends on their close 

proximity to the ER, allowing them to sense microdomains of high [Ca
2+

] meeting the low affinity 

of the mitochondrial Ca
2+

 uniporter (MCU) of the inner membrane. Recent work has demonstrated 

that the subcellular fraction denominated Mitochondria-Associated Membranes (MAMs) may 

correspond to this signaling domain, as in electron micrographs it shows the apposition of the two 

organelles and it is enriched in Ca
2+

 channels and regulatory proteins. The Transforming Growth 

Factor-β (TGF-β) family consists of more than 30 different but structurally related polypeptides, 

which are known to have crucial roles in the regulation of cell proliferation, differentiation and 

apoptosis. The downstream effectors of TGF-β signaling are intracellular proteins called Smads 

that hetero-oligomerize after phosphorylation and subsequently migrate into the nucleus to 

influence gene expression. While much progress has been made in understanding TGF-β 

regulation of gene expression, the subcellular distribution of Smad proteins and their nuclear-

independent activity are still incompletely understood. 

We have investigated the effect of the TGF-β signaling on intracellular Ca
2+

 homeostasis. 

The results showed that Smad2/3, both in HeLa cells and in liver preparations, are present in 

mitochondria, with a specific enrichment in the MAM fraction. Such a distribution may underlie a 

direct, transcription-independent role in the modulation of the ER/mitochondria Ca
2+

 cross-talk. 

This possibility has been directly investigated using aequorin-based recombinant probes targeted 

to the mitochondria, the ER and the cytosol. Specifically, we observed that treatment with 

inhibitors of the TGF-β receptor family, such as SB431542 and Dorsomorphin (Compound C) 

reduces agonist-dependent increases of mitochondrial Ca
2+

 concentration [Ca
2+

]m, while leaving 

the cytosolic responses unaffected. The effects were observed also upon inhibition of protein 
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synthesis, thus ruling out the possibility that they are due to alterations of the expression levels of 

Ca
2+

 transporters. The same effects were observed by shRNA silencing of Smads, thus involving 

these TGF-β transducers in the mitochondrial effects. Work is currently under way to identify the 

mechanism of the Ca
2+

 signalling alterations (intrinsic desensitization of the MCU, reduction of the 

electrochemical driving force, etc.). 

Altogether, these data demonstrate that also the TGF-β signaling pathway converges on 

mitochondrial checkpoint, clustering intracellular transducers in critical signaling domains and 

modulating Ca
2+

 loading and the sensitivity to growth-promoting and apoptotic challenges.  
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ABSTRACT (italiano) 

La rapida risposta dei mitocondri ai segnali Ca
2+ 

intracellulari dipende dalla loro prossimità al 

Reticolo Endoplasmatica che permette loro di sentire microdomini caratterizzati da elevate 

concentrazioni di Ca
2+ 

che spiegano come questi organelli possano accumulare transitoriamente 

grandi quantità di calcio nonostante sia nota la bassa affinità con cui il trasportatore mitocondriale 

(MCU) sia in grado di muovere lo ione attraverso il doppio strato della membrana. Recentemente 

è stato dimostrato che la frazione subcellulare denominata MAM (Mitochondrial Associated 

Membrane) può corrispondere al dominio funzionale poiché in studi morfologici precedenti è 

stata osservata la giustapposizione dei mitocondri al Reticolo Endoplasmatico e inoltre tali regioni 

risultano arricchite di canali Ca
2+  

e proteine regolatrici. La famiglia del Transforming Growth 

Factor-β (TGF-β) consiste in più di 30 membri diversi, polipeptidi  strutturalmente correlati con 

note proprietà regolatorie in processi cellulari come la proliferazione, il differenziamento e 

l’apoptosi. Gli effettori a valle del TGF-β sono proteine chiamate Smads che etero-oligomerizzano 

in seguito a fosforilazione e migrano nel nucleo dove regolano l’espressione genica. Mentre sono 

stati fatti molti progressi verso la comprensione dell’attività nucleare del TGF-β, la distribuzione 

subcellulare  e l’attività nucleo-indipendente delle Smads risulta ancora piuttosto sconosciuta. In 

questo lavoro è stato investigato il ruolo di TGF-β nell’omeostasi intracellulare del Ca
2+ 

 . 

I risultati dimostrano una localizzazione subcellulare delle Smads nei mitocondri sia in HeLa che in 

preparazioni da fegato di topo, mostrando un particolare arricchimento a livello delle MAMs. 

Questa distribuzione può suggerire un ruolo trascrizione-indipendente di queste proteine nella 

regolazione del cross-talk tra Reticolo Endoplasmatico e mitocondri. Tale ipotesi è stata testata 

direttamente grazie all’utilizzo di sonde per il Ca
2+

 che sfruttano la tecnologia dell’aequorina, 
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targhettate in modo specifico ai mitocondri, al Reticolo Endoplasmatico e al cytosol. Precisamente 

è stato osservato che  l’utilizzo di inibitori di isoforme diverse del recettore per il TGF-β, come la 

molecola SB431542 e Dorsomorphin (Compound C) riduce l’ingresso di calcio nei mitocondri, 

lasciando inalterata la risposta nel cytosol. La stessa osservazione è stata fatta in presenza di un 

inibitore della sintesi proteica, eliminando così la possibilità che tale effetto fosse il risultato di 

un’alterazione nei livelli di espressione dei trasportatori mitocondriali del Ca
2+

. Lo stesso effetto è 

stato osservato mediante l’uso di ShRNA capaci di silenziare diverse isoforme di Smads.  

La comprensione del meccanismo alla base dell’alterazione mitocondriale osservata è ancora in 

fase di studio. I risultati di questo lavoro mostrano comunque che anche la cascata del segnale di 

TGF-β converge al checkpoint mitocondriale regolando la distribuzione di trasduttori intracellulari 

a livello di domini funzionali critici e modulando l’uptake di Ca
2+ 

nella matrice mitocondriale e la 

sensibilità degli organelli a segnali di tipo proliferativo o apoptotico  
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INTRODUCTION 

Mitochondria: key regulators of intracellular calcium homeostasis 

Mitochondria are intracellular organelles characterized by a double membrane and a circular 

double-stranded DNA molecules. The double membrane is composed by a plain outer layer, which 

allows the passage of ions and metabolites up to 5000 Da and the more selective inner membrane, 

characterized by invaginations, the so called cristae. Between these two very different layers the 

mitochondrial matrix is enclosed. The mitochondrial DNA is a 16.6 Kb  molecule and it encodes 13 

proteins all of which are known to be part of the mitochondrial Electron Transport Chain (mETC). 

Thanks to their biosynthetic capacities mitochondria have central role in the supply of the high 

amount of energy required for many different cellular functions such as hormones synthesis and 

secretion, muscle contraction, proliferation, biomolecules synthesis and maintenance of ionic 

gradient across the membrane. Substrates derived from other intracellular processes such as 

glycolysis or the fatty acid metabolism, are converted to Acetyl-CoA which enters the Tricarboxilic 

Acid Cycle TCA and its complete degradation is coupled with the production of NADH and FADH2. 

These new molecules are the effective electron donors for the mETC which is composed of five 

different complexes: complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), 

complex III (ubiquinol cytochrome c reductase), complex IV (cytochrome c oxidase) and complex V 

that constitutes the F1F0-ATP synthase. While electrons are transferred from NADH and FADH2 to 

these complexes, energy is stored as an electrochemical gradient across the inner membrane 

which explains the existence of a negative mitochondrial membrane potential (-180mV against the 

cytosol). The F1F0-ATP synthase can make the H
+
 cross the inner membrane to reenter the matrix 

coupling the energy derived from the proton gradient with the phosphorylation of ADP into ATP 
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(according to the so called chemiosmotic principle). The new ATP molecules are now ready to 

leave the mitochondria first from the inner membrane through the Adenine Nucleotide 

Transferase  (ANT) which exchanges it with ADP (to provide new substrate for the F1F0-ATP 

synthase) and then through a mitochondrial channel of the outer membrane called VDAC.  

In the last few decades many different groups are engaged in the comprehension of new roles for 

mitochondria which have shown to be involved in other cellular mechanisms such as amino-acid 

synthesis, lipid metabolism, reactive oxygen species production (ROS), cell death and, most 

importantly for the present work, Ca
2+

 signaling. Therefore any mitochondrial dysfunction is at the 

basis  of pathological conditions like neurodegenerative diseases such as Alzheimer’s and 

Parkinson’s, motoneuron disorders such as amyotrophic lateral sclerosis, autosomal dominant 

optic atrophy, diabetes, ageing and cancer. Thus it is evident how much importance has the 

understanding of the role of mitochondria in the cohordination of cytosolic and other subcellular 

organelles signals. 

 

Calcium signaling: a general overview 

Ca
2+

 is one of the most described intracellular second messenger (Hajnoczky G., 2000) and this is 

the reason why its cytosolic concentration [Ca
2+

]c is taken under strict control by many different 

pumps, channels, exchangers and binding proteins. Actually [Ca
2+

]c is maintained around value of 

100nM (while the extracellular [Ca
2+

] is 1mM) by the activity of the Plasma membrane Ca
2+

-ATPase 

(PMCA) which pump Ca
2+

 outside the cells and of the Na
+
/Ca

2+
 exchanger (NCX). The increased of 

the intracellular [Ca
2+

] is mainly due to its liberation from intracellular stores (Endoplasmic 

Reticulum and Golgi apparatus) or the entry from the extracellular medium. 

The most important intracellular Ca
2+ 

store is the ER which is characterized by the presence on his 

membrane of the IP3 Receptor (IP3R) a channel which exposes the binding site for IP3 on the 



  

7 

cytosol and forms a transmembrane channel across the ER membrane. Ca
2+ 

is released from the ER 

upon IP3R stimulation by IP3 that derives from the hydrolysis of phosphatidylinositol 4,5 

bisphosphate (PIP2) carried out by Phospholipase C (PLC) which, in its turn, is activated by ligand 

binding to G-coupled receptors on the plasma membrane. Intracellular store depletion activates 

an inward current from the extracellular space, the so called capacitative Ca
2+ 

entry (CCE) which 

molecular mechanism has been recently explained, with the involvment of an ER Ca
2+ 

sensing 

protein (STIM) and a Ca
2+ 

channel on the plasma membrane ORA1 (Oh-hora M. and Rao A., 2008).  

Three classes of Ca
2+ 

channel on the plasma membrane are also responsible of intracellular Ca
2+ 

increased: the Voltage Operated Ca
2+

 channels (VOCs) which open following a decrease of 

membrane potential (Bertolino M. and Llinas R.R., 1992), the Receptor Operated Ca
2+

 channels 

(ROCs), also called ligand gated channels, which open following the binding of an external ligand 

(McFadzean I. and Gibson A., 2002) and the Second Messenger Operated Channels (SMOCs) which 

open following the binding of a second messenger on the inner surface of the membrane 

(Meldolesi J. and Pozzan T., 1987). Ca
2+

 has to be rapidly removed once it has exerted its second 

messenger function and mechanisms for its extrusion are PMCA and NCX but also pumps capable 

to refill the intracellular stores such as Sarco-Endoplasmic Reticlum Ca
2+ 

ATPases (SERCAs). 

Mitochondria can rapidly accumulate Ca
2+ 

thanks to the electrochemical gradient established by 

the movement of protons across the inner mitochondrial membrane (IMM), however the 

development of specific probes for the measurement of [Ca
2+

]  in the mitochondria revealed a 

capacity of uptaking the ion much higher if compared with the affinity of [Ca
2+

] transporter, this is 

the reason why today it is generally accepted the idea of a strategic close proximity of a 

mitochondrial fraction able to sense short but large [Ca
2+

].    
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Mitochondria cohordinate Ca
2+ 

signaling 

By the end of 70’s mitochondria were thought to be intracellular Ca
2+ 

stores, indeed according to 

the chemosmotic theory these organelles could exploit the H
+
 electrochemical gradient to produce 

ATP but also to accumulate cations into the matrix. Ca
2+ 

transfer across the ion-impermeable 

membrane is in fact not due to the activity of pumps or exchangers but it is mediated by a 

“uniporter” which molecular identity has not been completely described yet and the 

electrochemical potential gradient across the mitochondrial membrane (-180mV negative to the 

cytosol) drives it (Gunter T.E., 1998). Moreover if Ca
2+  

accumulation into the matrix was due to 

thermodynamic parameters, according to the Nerst equation, equilibrium would be reached only 

when [Ca
2+

]  in the matrix reaches value 10
6 

higher than in the cytosol. 

Only a decade later, researchers discovered that the [Ca
2+

]m was lower than expected, this notion 

and the discovery of a new intracellular organelle the Endoplamic Reticulum (Streb H., 1983) made 

evident that mitochondria were not a Ca
2+ 

store. 

At the end of the 80s the general idea was that mitochondria could not accumulate significant 

amount of the cations considering the low affinity of their uniporter and the low values of the 

[Ca
2+

]c ,around 0.1 μM in normal conditions and 1-3 μM under stimulation. 

Nevertheless three mitochondrial enzymes (pyruvate-, α-ketoglutarate and isocitrate 

dehydrogenase) were regulated by Ca
2+ 

oscillations but the demonstration of this idea had to wait 

until the early 90s. Indeed the direct measurement of Ca
2+

  transients within the mitochondrial 

compartment was possible only in 1990s, when Rizzuto and coworkers introduced  the Ca
2+

-

sensitive probe aequorin, which could be targeted to mitochondria and other intracellular 

organelles.  These studies demonstrates in many different cellular type that the mitochondrial 

ability of uptaking Ca
2+

 was much more higher than expected (ranging from 10μM to 500μM). 
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Taking into consideration the low affinity of mitochondrial uniporter and the low concentration of  

Ca
2+ 

in the cytosol. This discrepancy lead the researchers to the formulation of the “hotspot 

hypothesis” according to which mitochondria could sense microdomains of high [Ca
2+

]   achieved 

through close proximity between a fraction of mitochondria and the ER. 

The release of Ca
2+ 

from the latter happens through the IP3 channels on its surface and this creates 

a microenviroments where [Ca
2+

]  is much higher than that measured in the bulk cytosol (Rizzuto 

R., 1993). Few years later a strong evidence in support of the “hotspot hypothesis” was that 

collected by Griffiths and coworkers, who observed that in cardiac cells concentrations of Ca
2+ 

chelator EGTA that could abolish Ca
2+ 

cytosolic transient, could not inhibit Ca
2+ 

transient into the 

mitochondria, this experiment suggested that the distance was so small that the cations could 

diffuse from ER to mitochondria more rapidly than it can be buffered by EGTA. 

The idea of a cross-talk between the two organelles was recently demonstrated by fast single-cell 

imaging with targeted Ca
2+ 

sensitive GFPs (pericams and cameleons) and supported by the 

observation that [Ca
2+

]m spikes originates from a discrete number of sites and rapidly diffuse 

through the mitochondrial network (Szabadkai G., 2004). 

Endoplasmic Reticulum/mitochondria physical contacts: the MAMs microdomains 

The existence of a subdomain of the ER (Endoplasmic Reticulum) that comes into transient contact 

with mitochondrial outer membranes, has been deeply demonstrated in mammalian cells and 

described as a functional site of the import of PS (Phosphatidylserine) into mitochondria (Vance 

JE., 2008). 

Close appositions between ER and mitochondria have been observed thanks to the analysis of 

electron micrographs (EM) in fixed samples of many different cell types while experiments 

performed in living cells by Rizzuto and coworkers had eventually confirmed the physical and 
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functional coupling of these two organelles, by labelling the two organelles with targeted spectral 

variants of GFP (mtBFP and erGFP) (Rizzuto R., 1998). These experiments revealed the presence of 

overlapping regions of the two organelles (thus establishing an upper limit of 100 nm for their 

distance) and allowed to estimate the area of the contact sites as 5-20% of total mitochondrial 

surface. More recently, electron tomography studies allowed to estimate an even smaller distance 

(10-25 nm) and revealed the presence of trypsin-sensitive (hence proteinaceous) tethers between 

the two membrane (Csordas A., 2006). 

The specific mitochondrial regions showing close proximity to the ER cisternae are referred to as 

MAMs (Mitochondrial Associated Membranes) (Vance JE., 1990) and being the headquarters of 

lipid transfer contain several phospholipids and glycosphingolipid-synthesizing enzymes such as 

Fatty Acid CoA ligase 4 (FACL) as well as those enzymes involved in PS synthesis pathway. 

MAMs are also involved in rapid movement of Ca
2+ 

ions between the two organelles, playing a 

fundamental role in the coordination of ATP production through the activation of the 

mitochondrial dehydrogenases as well as the activation of the cell death program (Berridge M. J., 

2002) . 

The shaping of the ER-mitochondrial network can be affected by bounding proteins and 

physiological ligands; recently Hajnoczky and coworkers demonstrated that exposure to TGFβ 

affects Ca
2+  

transfer to the mitochondria.(Hajnoczky G., 2008). 

Unfortunately, very few of the relevant scaffolding or signaling proteins of the ER/mitochondria 

contacts have been identified, despite the growing interest on the topic. Nevertheless, novel 

candidates have being rapidly isolated, and are under scrutiny. Thus it can be envisaged that the 

molecular characterization will rapidly proceed thanks to the validation of biochemical approaches 

for the isolation of ER/mitochondria contacts.  
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Indeed a known technical pitfall of subcellular fractionation, i.e. the “contamination” of the 

mitochondrial fraction with ER vesicles, has been demonstrated to be due to the actual co-

segregation of stably associated mitochondrial and ER membranes. This has led to a more accurate 

separation, by gradient centrifugations, of pure mitochondria from a “mitochondria-associated 

membrane” (MAM). This is the fraction enriched in enzymes involved in lipid and glucose 

metabolism and in signalling proteins (such as the IP3Rs), and thus representing the biochemical 

counterpart of the ER/mitochondria units revealed in the signaling studies (Vance J.E., 1990). More 

recently, the same subcellular fraction has been shown to contain as well Ca
2+

 signaling elements 

of both organelles (Szabadkai G., 2007), thus supporting its central role in ER (or SR)/mitochondria 

crosstalk .  

The molecular scenario is gradually adding new information, and we will here cite a couple of 

interesting examples, involving chaperones. The role of glucose-regulated protein 75 (grp75) 

within the mitochondrial matrix as a molecular chaperone assisting the refolding of newly 

imported proteins, was well established. It was then reported that a pool of grp75 is not imported 

into the matrix, but has a cytosolic distribution. Previous works carried out in our lab identified, in 

two hybrid screenings, grp75 as a VDAC interactor, and demonstrated that it can mediate the 

molecular interaction of VDAC with the IP3R, allowing a positive regulation of mitochondrial Ca
2+

 

uptake. This implies a sort of conformational coupling between the Ca
2+

 channels of the two 

organelles, and highlights the importance of macromolecular complexes located in the MAM for 

this functional interaction (Colombini M., 2004). The second interesting example is that of sigma-1, 

a novel ER chaperone serendipitously identified in cellular distribution studies which shown to be 

involved in the Ca
2+

-mediated stabilization of IP3Rs. Sigma-1 receptor is normally localized in 

MAM, bound to another ER chaperone (BiP). When the luminal Ca
2+

 concentration of the ER 

drops, following the opening of IP3Rs, sigma-1 dissociates from BiP and binds to type 3 IP3R, thus 
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preventing its degradation by the proteasome. Thus, sigma-1 appears to be involved in 

maintaining, from the ER luminal side, the integrity of the ER/mitochondrial Ca
2+

 cross-talk in 

conditions (e.g. ER stress) that could impair signal transmission, and hence control of cellular 

bioenergetics.  In 2005, Simmen et al. reported the identification of a multifunctional sorting 

protein PACS-2, that integrates ER-mitochondria and apoptosis signaling, depletion of this protein 

causes mitochondrial fragmentation and uncoupling from ER, influencing Ca
2+  

homeostasis. 

Moreover in response of apoptotic stimuli, PACS-2 has been demonstrated capable of inducing Bid 

recruitment to mitochondria, event that leads to cytochrome c release and caspase 3 activation.  

The dynamical interconnection between the two organelles involves a family of “mitochondria-

shaping proteins” such as the dynamin-related GTPase DRP1, required for the mitocondria-ER 

fission, or the GTPase called Optic Atrophy 1 (OPA 1) crucial for the so called mitofusion. Along this 

line, Scorrano and coworkers have recently pointed out the crucial role of the mitofusin (MFN 1 

and 2), in particular the isophorm 2 is thought to be important for ER-mitochondrial interactions 

engaging them both in homo and etero-complexes. (Scorrano L., 2008). They showed how the 

distance of two organelles is increased where MFN 2 lacks and how it impairs mitochondrial  Ca
2+ 

uptake, giving solid evidence in support to the microdomains theory. Moreover the ER-

mitochondrial apposition performed by MFN 2 predispose mitochondria to high  Ca
2+ 

microdomains and the consequent overloading, leading eventually to apoptosis by excessive Ca
2+ 

transfer.
  
 

Integration of the TGF-B pathway into the cellular signaling network 

Transforming growth factor–β (TGF-β) is a secreted cytochine that exerts an amazing diversity of 

biological effects including proliferation, differentiation, migration and apoptosis. The superfamily 

of TGF-β proteins comprises more than thirty members, the most important being TGF-β itself, 
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bone morphogenetic proteins (BMPs), activins and differentiation growth factors (GDFs). 

(Massaguè J. 1998). 

Considering the limited assortment of transmembrane receptors and downstream signaling 

molecules, the pivotal nature of TGF-β asks for a great flexibility of the signaling cascade, this is 

achieved thanks to  a complex network of mechanisms that control the activation of TGF-β in the 

extracellular space to modulate transcriptional activation in the nucleus. 

The variability of this pathway is generated by cell and tissue-specific composition, interaction of 

receptors, signal transducers, DNA-binding partners and finally the cross-talk with regulators from 

other pathways. 

TGF-β signal transduction: the basics 

Three human isoforms of TGF-β (TGF-β1, TGF-β2, TGF-β3) are synthesized as  large precursor 

which is processed to obtain the mature protein. Bioactive TGF-β homodimers signal through 

transmembrane serine/threonine  kinase receptors designated as TGF-β Receptor type I (TBRI) and 

type II (TβRII) (Frazen P. 1993). Initial binding to the constitutively active TβRII is followed by 

recruitment of TβRI into a heteromeric complex. Subsequent transphosphorylation of TβRI at the 

serine rich region, the so called GS-box, is mediated by TβRII and leads to activaton of TβRI. 

Interestingly TβRI  activation is not due to an increase of actual kinase activity but is rather based 

on the creation of a binding site for Smad proteins which represent the substrates for TβRI (Huse 

M. 2001). A key determinant  of TβRI-Smad interaction is represented by a region located in the 

kinase domain of TβRI called L45-loop. Within the L45-loop four amino acids that differ in TGF-β  

and BMP type I receptors, confer specificity for distinct Smad isoform and thus separate TGF-β and 

BMP pathways (Persson U. 1998). 
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Smad proteins can be divided into three subfamilies: receptor-activated Smads (R-Smads) 

including BMP-activated Smads (smad1, Smad5 and Smad8) and TGF-β activated Smads (Smad2 

and Smad3), the common mediator Smad4 (Co-Smad) and finally the inhibitory Smad6 and Smad7 

(I-Smads) (Heldin C.-H. 1997). TβRI causes R-Smad phosphorylation at the C-terminal SSXS-motif 

which is conserved among all R-Smads thereby causing dissociation from the receptor and 

heteromeric complex formation with Smad4 (Massaguè J. 2000). Smad complexes translocate to 

the nucleus, assemble with specific DNA-binding co-factors and co-modulators to finally activate 

transcription. The choice of target genes is thereby determined by the composition of the 

transcriptional complex. 

The Transforming growth factor-β signaling receptors 

In mammals only five type II receptors and seven type I receptors have been identified for ligand 

belonging to the large TGF-β superfamily. They all are transmembrane receptors that contain an 

intracellular serine/threonine kinase domain. 

The most described signaling receptors for TGF-β are TGF-β type II receptors (TGF-βRII) and the 

TGF-β type I receptor (TGF-βRI). In addition, two other TGF-β binding proteins called betaglycan 

(or TGF-βRIII) and endoglin are frequenty involved in formation of receptor complexes and 

function predominantly in ligand presentation. However as shown in table 1, the repertoire of 

TGF-β receptors is supplemented by other receptors or splice variants of the receptors that are 

also capable of transducing signals in response to TGF-β. Thus, signal diversity may be generated 

by different receptor combinations.  

In addition to TGF-β RI , there are other type I receptors such as ALK1 and ALK2 that transmit 

signals evoked by TGF-β. Pathological relevance is reflected by the linkage of mutations in both the 

endoglin and the ALK1 gene to an autosomal dominant disorder named hereditary hemorrhagic 
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teleangiectasia (HHT). Moreover ALK1 plays an important role during vascular development. ALK2 

is similar to ALK1 because it binds TGF-β following interaction with TGF-β receptor II and an 

accessory receptor and conveys the signal via the BMP-Smads, Smad1 and Smad5 respectively (Lai 

Y.T., 2000). 

Referring to type II receptors, it has a splice variant, TβRII-B which contains an insertion of 25 

aminoacids in the extracellular part of the receptor and shows functional differences. An 

outstanding physiological relevance for TβRII-B expression is therefore predicted for tissue such as 

bone, in which TGF-β2 represents the major TGF-β isoform. 

The major TGF-β-binding molecule on most cell type is TβRIII also called betaglycan, it is a 

transmembrane proteoglycan that is able to bind all three TGF-β isoforms via two independent 

binding sites in the core protein. TβRIII exerts its function in presenting TGF-β2 to TGF-βRII which 

shows only low intrinsic affinity for TGF-β2. In contrast to the facilitation of ligand access to the 

receptors, the soluble secreted domain of TGF-βRIII has antagonistic effects through binding and 

sequestering the ligand. The short cytoplasmic domain is rich in serines and threonines which 

represents suitable sites for phosphorylation. Indeed a previous report describes that 

phosphorylation of the cytoplasmic domain by autophosphorylated TGF-βRII initiates the release 

of TGF-βRIII from the active signaling complex, consisting in TGF-βRI and II and the bound ligand. 

A receptor variant that cross-regulates pathways of different members of the TGF-β family is 

represented by BMP and activin membrane bound inhibitor, this inhibitor is a pseudoreceptor 

similar to type I receptor apart from the lacking cytoplasmic kinase domain. Its capacity to 

associate with various type I receptor prevents the formation of functional homodimeric  type I 

receptor complexes and thus causes abrogation of BMP as well as TGF-β and activin–mediated 

signaling. 
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In conclusion the repertoire of signaling receptors gives rise to multiple hetero-oligomeric 

receptor complexes and each of the involved receptor variants depicts a distinct expression 

pattern, ligand isoform specificity and ligand affinity, thus expanding signal diversity. 

Distribution of different receptors 

The overall distribution of the TGF-β receptors is functional to the formation of different 

oligomeric units. TβRI, TβRII, TβRIII have all been found as homo-oligomers already in the absence 

of  TGF-β (Henis Y.I., 1994), in addition heteromeric complexes consisting of TβRII, TβRIII could be 

detected  in absence and in presence of TGF-β. Based on their affinity for each other, a small but 

detectable proportion of TβRI-TβRII heteromeric receptor complexes exists in unstimulated cells. 

The fraction of these heteromeric complexes is significantly increased by ligand binding to TβRII 

which causes subsequent recruitment of TβRI. 

The resulting tetrameric complexes consist of two molecules each of TβRI and  TβRII and represent 

the actual signaling entity (Luo K., 1997). Homomeric receptor complexes are not sufficient to 

propagate TGF-β responses but are considered to be functionally important for regulating 

receptor kinase activity, as reported in the case of intermolecular autophosphorylation at multiple 

serine residues of TβRII (Luo K., 1996). 

The ligand binding to TGF-β receptor triggers not only signaling but also initiates internalization of 

both ligand and receptor, in fact in absence of TGF-β, receptors are constantly internalized and 

recycled back to the membrane. Various proteins have been identified as capable of regulating 

TGF-β signaling. The basal receptor activity is kept under tight control by immunophilin FKBP12 

(Wang T.1994), by binding the unphosphorylated GS-box of TβRI, FKBP12 stabilizes a conformation 

of TGF-βRI that is incapable of getting transphosphorylation by TGF-ΒR II thus preventing ligand-

independent signaling. Ligand binding to TGF-βRII however induces conformational changes that 
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lead to displacement of FKBP12 and subsequent TGF-βR I activation by TGF-βR II (Huse M., 2001). 

Smad Anchor for Receptor Activation SARA  has a binding domain for R-Smads and the C-terminal 

part which directly interacts with the activated TGF-ΒR I. The cooperative binding of SARA proteins 

enables the Smads phosphorylation by TGF-βR I which is followed by the dissociation of them from 

SARA and formation of heteromeric complex with Smad4.  

The Disabled-2 protein Dab2 (Hocevar B.A., 2001) facilitates TGF-β signaling by bridging the 

receptors complex to the Smad proteins thanks to its N-terminal phosphotyrosine binding site PTB 

that is likely to allow association to the MH2 domain of Smad2 and Smad3.  

The TβRI-Associated Protein-1 TRAP-1 associates with Smad4 attracting the co-Smads to the 

vicinity of receptors thus facilitating heteromeric complex formation between activated R-Smads 

and Smad4. 

Negative regulation of TGF-β signaling is achieved by the inhibitory Smad7 (Nakao A., 1997), 

serine/threonine kinase receptor-associated protein STRAP or the Smad ubiquitination regulatory 

factors Smurf1 and 2. Smad7 lacks the SSXS-motif and so it is not a substrate for TβRI but it stably 

interacts with the activated receptor thereby competing with other R-Smads. STRAP was described 

to interact with both TβRI and TβRII and stabilizes the binding between TβRI and Smad7. Smurf 

proteins are bridged to the receptor by Smad7 and the ubiquitination of Smad7 leads to 

subsequent proteasomal and lysosomal degradation of the complex containing Smad7 and the 

TβRs. 

Downstream effectors of TGF-β pathway: the Smad proteins 

Smad proteins are so far the only known substrate for TβRs capable of transmitting the signal 

directly from the receptors to the nuclear transcriptional machinery. 
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Members of Smad family can be subdivide on the basis of their structural and functional 

properties: i) receptor activated Smads (R-Smads: Smad1, Smad5 and Smad8 (BMP activated); 

Smad2 and Smad3 (TGF-β activated) that become phosphorylated by type I receptors, ii)  common 

mediator Smad (Co-Smad: Smad4) which oligomerizes with R-Smads and iii) the inhibitory Smads 

(I-Smads: Smad6 and Smads7) which antagonize TGF-β or BMP signals by competing with R-Smads 

for type I receptor activation (Massaguè J., 1998). 

The overall structure of R-Smads and Co-Smads comprises the highly conserved N-terminal Mad 

homology 1 domain, MH1, and the C-terminal Mad homology 2 domain, MH2, which form 

globular structures, I-Smads contain the conserved MH2 domain but show little similarity in the N-

terminal (Itoh S., 2000). Smad proteins have no intrinsic enzymatic activity and exert their role 

exclusively by protein-protein or DNA-protein interactions. The MH1 domain mediates 

autoinhibition by physically interacting with the MH2 domain, impeding its function in the absence 

of ligand, moreover the MH1 domain is necessary also for the ability to bind directly to DNA. The 

crystal structure of Smad proteins reveal that  MH1 domain contains the hairpin-loop which is 

responsible for binding the DNA helix (Shi Y., 1998). Protein-protein interactions with transcription 

factors such as ATF2, c-Jun, SP1 or TFE3 are also mediated by MH1. This is the domain containing 

the nuclear localization signal NLS, for instance phosphorylation of Smad3 causes conformational 

changes that exposes its NLS-like motif allowing interaction with importin-β and recognition by the 

nuclear import machinery.  Ligand-induced release of SARA unmasks the NLS motif and leads to 

Smad nuclear translocation by a mechanism independent of importin-β but requiring the MH2 

domain.  

The cytoplasmic localization of Smad4 is based on active nuclear export signal NES, its nuclear 

entry presupposes inactivation of NES which is achieved by hetero-oligomerization with R-Smads 

(Pierreux C.E., 2000). 
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Recent publications suggest that Smad1 and Smad2 upon ligand induced phosphorylation 

assemble to form a homotrimer which is stabilized by the MH2 domain of the neighbouring 

monomer, however formation of heterotrimer is energetically favoured over the homotrimer 

formation.   

TGF-β induced activation of TGF-βRI is followed by transient interaction between TGF-βRI and R-

Smads which are phosphorylated in the last two serine residues within the C-terminal SSXS-motif, 

consequently Smad proteins are released from their retention such as SARA, as well as TGF-βRI 

and the affinity for Smad4 is increased. Several lines of evidence show that Smads are the 

substrates also for the ERK subfamily of MAP kinases which are activated by the hepatocyte 

growth factors or epidermal growth factors. Nuclear accumulation of Smad2 was demonstrated to 

be affected by Ca
2+

-calmodulin-dependent protein kinase II which triggers phosphorylation of 

several serine residues of Smad proteins (Wicks S.J., 2000). Protein Kinase C activated by TGF-β, 

provides a negative feedback by phosphorylating specific serine residues in the MH1 domain of 

Smad3 thus precluding its ability to bind the DNA. Further cytoplasmic kinases mediating Smad 

phosphorylation is the c-Jun N-terminal kinase JNK. TGF-β stimulates JNK  and it leads to the 

phosphorylation of Smad3 at sites other than the SSXS motif, facilitating the following 

phosphorylation by TGF-βR I. 

Several proteins negatively regulate TGF-β signaling , first of all inhibitory Smads rapidly induced 

by TGF-β, block phosphorylation of Smads, second Smad binding proteins and transcriptional co-

repressors, third the Smurf proteins that target Smads for degradation, however the most obvious 

mechanism is the dephosphorylation of R-Smads after prolonged TGF-β stimulation.  
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TGF-β and Mitochondrial function 

A functional relationship between TGF-β signaling and mitochondria has already been established 

by many different groups, for instance in regulating the intrinsic pathway of apoptosis. Gottfried et 

al. demonstrated that ARTS, a proapoptotic protein localized in the mitochondria, is essential for 

TGF-β-induced programmed cell death (Gottfried Y., 2004). In epithelial cell it has been observed 

that TGF-β treatment causes generation of reactive oxygen species and the consequent loss of 

mitochondrial membrane potential (Δψ) which leads to activate the programmed cell death 

(Wang F., 2008). Clybouw et al. in 2008 showed that in early stages of tumor progression, TGF-β 

mediates apoptosis of epithelial and hepatocyte cells by leading Bim (a proapoptotic member of 

the BH3-only proteins) at the mitochondrial surface where it associates with Bcl-2 or Bcl-xL. The 

sequestration of these prosurvival members of the Bcl-2 family by Bim allows the activation of the 

apoptotic regulators Bax and Bak (Clybouw C., 2008). Moreover mutations in specific TGF-β family 

members proved to be linked to altered mitochondrial energy metabolism and oxygen 

consumption rate. (Liunan L., 2009). 

Recently a new potential role has been demonstrated for TGF-β in the impairment  of normal 

mobilization of intracellular Ca
2+

 stores (McGowan T.A., 2000), prior studies showed the reduction 

in IP3R1 Ca
2+ 

release in diabetic aortic and proglomerular smooth muscle cells which is indeed 

mediated by TGF-β (Sharma K., 2003). Thus the impairment of vascular cell dysfunction has been 

directly linked to the IP3 –cytoplasmic Ca
2+ 

signaling.  

A key aspect of endoplasmic reticulum (ER) Ca
2+ 

release is its
 
coupling with the mitochondria 

(Rizzuto R. and Pozzan T., 2006) and Ca
2+ 

mobilized through the IP3 receptors or ryanodine 

receptors is effectively transferred to the mitochondria and stimulates, in the mitochondrial 

matrix, the ATP production. 
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Mitochondrial Ca
2+ 

uptake exerts positive and negative feedback effects on the IP3 receptor- 

mediated ER Ca
2+ 

mobilization and affects SERCA pump-mediated ER Ca
2+

 reuptake. Moreover 

mitochondrial Ca
2+ 

uptake  regulates the mitochondrial phase of cell death, thus a well described 

binding between Ca
2+ 

overload in the mitochondrial matrix and the activation of the apoptotic 

process has been already understood. Since TGF-β has been implicated as a key factor in many 

cellular processes, many different groups have been doing great efforts to understand the 

mechanism by which TGF-β may affect ER-mitochondrial communication.  
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AIMS 

In the present study we observed a close relationship between the presence of the downstream 

effectors of TGF-β cascade in specific mitochondrial functional sites and the shaping of 

mitochondrial calcium homeostasis. Mitochondria can sense microdomains of high [Ca
2+

] thanks 

to their close proximity to the ER. Recent work has demonstrated that the subcellular fraction 

denominated Mitochondria-Associated Membranes (MAMs) may correspond to this signaling 

domain which happen to be enriched in Ca
2+

 channels and regulatory proteins. The Transforming 

growth factor-β is known to have crucial roles in the regulation of cell proliferation, differentiation 

and apoptosis. The downstream effectors of TGF-β signaling are intracellular proteins called Smads 

that hetero-oligomerize after phosphorylation and subsequently migrate into the nucleus to 

influence gene expression. While much progress has been made in understanding TGF-β 

regulation of gene expression, the subcellular distribution of Smad proteins and their nuclear-

independent activity are still incompletely understood. 

We have investigated the effect of the TGF-β signaling on intracellular Ca
2+

 homeostasis. The 

results showed that Smad2/3, both in HeLa cells and in liver preparations, are present in 

mitochondria, with a specific enrichment in the MAM fraction. Such a distribution may underlie a 

direct, transcription-independent role in the modulation of the ER/mitochondria Ca
2+

 cross-talk. 

This possibility has been directly investigated using aequorin-based recombinant probes targeted 

to the mitochondria, the ER and the cytosol. Specifically, we observed that treatment with 

inhibitors of the TGF-β receptor family, such as SB431542 and Dorsomorphin (Compound C) 

reduces agonist-dependent increases of mitochondrial Ca
2+

 concentration [Ca
2+

]m, while leaving 
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the cytosolic responses unaffected. The effects were observed also upon inhibition of protein 

synthesis, thus ruling out the possibility that they are due to alterations of the expression levels of 

Ca
2+

 transporters. The same effects were observed by shRNA silencing of Smads, thus involving 

these TGF-β transducers in the mitochondrial effects. Work is currently under way to identify the 

mechanism of the Ca
2+

 signalling alterations (intrinsic desensitization of the MCU, reduction of the 

electrochemical driving force, etc.). 

Altogether, these data demonstrate that also the TGF-β signaling pathway converges on 

mitochondrial checkpoint, clustering intracellular transducers in critical signaling domains and 

modulating Ca
2+

 loading and the sensitivity to growth-promoting and apoptotic challenges.  
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MATERIALS AND METHODS 

Aequorin:  a Ca
2+

 sensitive probe 

 
Aequorin is a 21 KDa protein isolated from jellyfish of the genus Aequorea which emits blue light 

in presence of calcium ions. The aequorin originally purified from jellyfish is a mixture of different 

isoforms called “heterogeneous aequorin” (Shimomura O., 1986). In its active form the 

photoprotein includes an apoprotein and a covalently bound prosthetic group, coelenterazine. 

When calcium ions bind to the three high affinity EF hand sites, coelenterazine is oxidized to 

coelenteramide, with a concomitant release of carbon dioxide and emission of light.  

Although this reaction is irreversible, in vitro an active aequorin can be obtained by incubating the 

apoprotein with coelenterazine in the presence of oxygen and 2-mercaptoethanol. Reconstitution 

of an active aequorin (expressed recombinantly) can be obtained also in living cells by simple 

addition of coelenterazine to the medium. Coelenterazine is highly hydrophobic and has been 

shown to permeate cell membranes of various cell types, ranging from the slime mold 

Dictyostelium discoideum to mammalian cells and plants. 

Different coelenterazine analogues have been synthesized that confer to the reconstituted protein 

specific luminescence properties (Shimomura O., 1993). A few synthetic analogues of 

coelenterazine are now commercially available from Molecular Probes. 

The possibility of using aequorin as a calcium indicator is based on the existence of a well 

characterized relationship between the rate of photon emission and the free Ca
2+

 concentration. 

For physiological conditions of pH, temperature and ionic strength, this relationship is more than 

quadratic in the range of [Ca
2+

] 10
-5

-10
-7

 M. The presence of 3 Ca
2+

 binding sites in aequorin is 
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responsible for the high degree of cooperativity, and thus for the steep relationship between 

photon emission rate and [Ca
2+

]. The [Ca
2+

] can be calculated from the formula L/Lmax, where L is 

the rate of photon emission at any instant during the experiment and Lmax is the maximal rate of 

photon emission at saturating [Ca
2+

]. The rate of aequorin luminescence is independent of [Ca
2+

] 

at very high (>10
-4

 M) and very low [Ca
2+

] (< 10
-7

 M). However, as described below in more details, 

it is possible to expand the range of [Ca
2+

] that can be monitored with aequorin. Although 

aequorin luminescence is not influenced either by K
+
 or Mg

2+
 (which are the most abundant 

cations in the intracellular environment and thus the most likely source of interference in 

physiological experiments) both ions are competitive inhibitors of Ca
2+

 activated luminescence. 

Aequorin photon emission can be also triggered by Sr
2+

 but its affinity is about 100 fold lower than 

that of Ca
2+

, while lanthanides have high affinity for the photoprotein (e.g. are a potential source 

of artifacts in experiments where they are used to block Ca
2+

 channels). pH was also shown to 

affect aequorin luminescence but at values below 7. Due to the characteristics described above, 

experiments with aequorin need to be done in well-controlled conditions of pH and ionic 

concentrations. 

Recombinant aequorins.  
 
For a long time the only reliable way of introducing aequorin into living cells has been that of 

microinjecting the purified protein. This procedure is time consuming and laborious and requires 

special care in handling of the purified photoprotein. Alternative approaches (scrape loading, 

reversible permeabilization, etc.) have been rather unsuccessful. The cloning of the aequorin gene 

has opened the way to recombinant expression and thus has largely expanded the applications of 

this tool for investigating Ca
2+

 handling in living cells. In particular, recombinant aequorin can be 

expressed not only in the cytoplasm, but also in specific cellular locations by including specific 

targeting sequencing in the engineered cDNAs. Extensive manipulations of the N-terminal of 
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aequorin have been shown not to alter the chemiluminescence properties of the photoprotein 

and its Ca
2+

 affinity. On the other hand, even marginal alterations of the C-terminal either abolish 

luminescence altogether or drastically increase Ca
2+

 independent photon emission. As 

demonstrated by Watkins and Campbell, the C-terminal proline residue of aequorin is essential for 

the long-term stability of the bound coelenterazine (Watkins N.J., and Campbell A.K., 1993). For 

these reasons, all targeted aequorins synthesized in our laboratory include modifications of the 

photoprotein in the N-terminal. Three targeting strategies have been adopted: 

1. Inclusion of a minimal targeting signal sequence to the photoprotein cDNA. This strategy was 

initially used to design the mitochondrial aequorin and was followed also to synthesize an 

aequorin localized in the nucleus and in the lumen of the Golgi apparatus. 

2. Fusion of the cDNA encoding aequorin to that of a resident protein of the compartments of 

interest. This approach has been used to engineer aequorins localized in the sarcoplasmic 

reticulum (SR), in the nucleoplasm and cytoplasm (shuttling between the two compartments 

depending on the concentration of steroid hormones), on the cytoplasmic surface of the 

endoplasmic reticulum (ER) and Golgi and in the subplasmalemma cytoplasmic rim. 

3. Addition to the aequorin cDNA of sequences encoding for polypeptides that bind to 

endogenous proteins. This strategy was adopted to localize aequorin in the ER lumen. We 

routinely included in all the recombinant aequorins the HA1 epitope-tag that facilitates the 

immunocytochemical localization of the recombinant protein in the cell. 

Chimeric aequorin cDNAs  
 
Below we briefly describe the constructs produced in our laboratory. A few other constructs have 

been produced in other laboratories and will not be dealt with in detail here. 

Cytoplasm (cytAEQ): an unmodified aequorin cDNA encodes a protein that, in mammalian cells is 

located in the cytoplasm and, given its small size, also diffuses into the nucleus. An alternative 



  

27 

construct is also available that is located on the outer surface of the ER and of the Golgi apparatus. 

This construct was intended to drive the localization of aequorin to the inner surface of the plasma 

membrane given that it derives from the fusion of the aequorin cDNA with that encoding a 

truncated metabotropic glutamate receptor (mgluR1). The encoded chimeric protein, however, 

remains trapped on the surface of the ER and Golgi apparatus, with the aequorin polypeptide 

facing the cytoplasmic surface of these organelles. The cytoplasmic signal revealed by this chimeric 

aequorin is indistinguishable from that of a cytoplasmic aequorin, but it has the advantage of 

being membrane bound and excluded from the nucleus. 

Mitochondria (mtAEQ): mtAEQ was the first targeted aequorin generated in the laboratory, which 

has been successfully employed to measure [Ca
2+

] of mitochondrial matrix of various cell types. 

This construct includes the targeting presequence of subunit VIII of human cytochrome c oxidase 

fused to the aequorin cDNA. 

Endoplasmic Reticulum (erAEQ):The erAEQ includes the leader (L), the VDJ and Ch1 domains of an 

Ig2b heavy chain fused at the N-terminal of aequorin. Retention in the ER depends on the 

presence of the Ch1 domain that is known to interact with high affinity with the luminal ER protein 

BiP. 

To expand the range of Ca
2+

 sensitivity that can be monitored with the different targeted 

aequorins we have also employed in many of our constructs a mutated form of the photoprotein 

(asp119 → ala). This point mutation affects specifically the second EF hand motive of wild type 

aequorin. The affinity for Ca
2+

 of this mutated aequorin is about 20 fold lower than that of the wild 

type photoprotein. Chimeric aequorins with the mutated isoform are presently available for the 

cytoplasm, the mitochondrial matrix, the ER and SR, the Golgi apparatus and the sub- 

plasmamembrane region. 
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Cell preparation and transfection 

Although in a few cases the aequorin cDNA has been microinjected, the most commonly employed 

method to obtain expression of the recombinant protein is transfection. Different expression 

plasmids have been employed, some commercially available (pMT2, pcDNAI and 3) other have 

been kindly provided by colleagues. The calcium phosphate procedure is by far the simplest and 

less expensive and it has been used successfully to transfect a number of cell lines, including HeLa, 

L929, L cells, Cos 7, A7r5 and PC12 cells, as well as primary cultures of neurons and skeletal muscle 

myotubes. Other transfection procedures have been also employed, such as liposomes, the “gene 

gun” and electroporation. Viral constructs for some aequorins are also available (Alonso M.T. 

1998; Rembold C.M., 1997). In this section we briefly describe the calcium phosphate procedure, a 

simple and convenient transfection method for HeLa cells. 

One day before the transfection step, HeLa cells mantained in Dulbecco Modified Eagle’s Medium 

(DMEM) supplemented with 10% Fetal Bovine serum (FBS) are plated on a 13 mm round coverslip 

at 30-50% confluence. Just before the transfection procedure, cells are washed with 1 ml of fresh 

medium. 

Calcium-Phosphate transfection procedure 

The following stock solutions need to be prepared and conserved at -20°C until used: CaCl2 2.5 M, 

HEPES Buffered Solution (HBS): NaCl 280mM, Hepes 50 mM, Na2HPO4 1.5 mM, pH 7.12, Tris-EDTA 

(TE): Trizma-base 10mM, EDTA 1mM, pH 8. 

All solutions are sterilized by filtration using 0.22 μm filters. For one coverslip, 5 μl of CaCl2 2.5 M 

are added to the DNA dissolved in 45 μl of TE. Routinely, 4 μg of DNA are used to transfect one 

coverslip. The solution is then mixed under vortex with 50 μl of HBS and incubated for 20 to 30 

minutes at room temperature. The cloudy solution is then added directly to the cell monolayer. 

18-24 hours after addition of the DNA, cells are washed with PBS (2 or 3 times until the excess 
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precipitate is completely removed). Using this protocol the transfected cells are usually between 

30 and 50 %. Although an optimal transfection is obtained after an overnight incubation, we found 

that a substantial aequorin expression, sufficient for most experimental conditions, is obtained 

also with an incubation of only 6 hours with the Ca
2+

-phosphate-DNA complex.  

Reconstitution of functional aequorin 

Once expressed, the recombinant aequorin must be reconstituted into the functional 

photoprotein. This is accomplished by incubating cells with the synthetic coelenterazine for 

variable periods of time (usually 1-3 hours) and under conditions of temperature and [Ca
2+

] that 

depend on the compartment investigated. Practically, coelenterazine is dissolved at 0.5 mM in 

pure methanol as a 100X stock solution kept at - 80°C. This solution tolerates several freeze-thaw 

cycles. 

However, we recommend the supply of coelenterazine solution to be split into small aliquots (50 

μl). Coelenterazine must be protected from light. 

For compartments with low [Ca
2+

] under resting conditions (cytosol and mitochondria) the cells 

transfected with the appropriate recombinant aequorins are simply incubated at 37°C in fresh 

DMEM medium supplemented with 1% FBS and 5 μM coelenterazine. Higher or lower 

coelenterazine concentrations can be also used, if necessary. Good reconstitution is achieved with 

1hour incubation, but an optimal reconstitution requires 2 hours. 

For compartments endowed with high [Ca
2+

] under resting conditions (ER), to obtain good 

reconstitution and interpretable data it is first necessary to reduce the [Ca
2+

] in the organelle, 

otherwise aequorin would be immediately consumed after reconstitution and in steady state little 

functional photoprotein would be present in cells. Depletion of Ca
2+

 from the organelles can be 

achieved in different ways. Here we describe a simple protocols: cells are incubated at 37°C for 5 

minutes in KRB solution (Krebs-Ringer modified buffer: 125 mM NaCl, 5mM KCl, 1mM Na3PO4, 
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1mM MgSO4, 5.5 mM glucose, 20 mM Hepes, pH 7.4) supplemented with 600 μM EGTA, 10 μM 

ionomycin). After washing with KRB containing 100 μM EGTA and 5% bovine serum albumin, cells 

are further incubated in the same medium supplemented with 5 μM coelenterazine for 1 hour, 

but at 4°C. 

Slight variations in these depletion protocols have been used both by our group and other 

investigators. Here it is necessary to stress a few general aspect of the procedure: i) the more 

efficient the Ca
2+

 depletion, the better the reconstitution; ii) some compartments (e.g. the Golgi 

and in part the ER) can deeply morphologically altered by the Ca
2+

 depletion protocol. The 

incubation at 4°C largely prevents these morphological changes, without altering the efficacy of 

the reconstitution; iii) if ionophores or SERCA inhibitors are employed for depletion they must be 

removed completely before starting the experiment. For this reason extensive washing of the cell 

monolayer with Bovine Serum Albumin (BSA) is recommended at the end of the reconstitution 

procedure. 

Luminescence detection 
 
The aequorin detection system is derived from that described by Cobbold and Lee and is based on 

the use of a low noise photomultiplier placed in close proximity (2-3 mm) of aequorin expressing 

cells. The cell chamber, which is on the top of a hollow cylinder, is adapted to fit 13-mm diameter 

coverslip. The volume of the perfusing chamber is kept to a minimum (about 200 μl). The chamber 

is sealed on the top with a coverslip, held in place with a thin layer of silicon. Cells are continuosly 

perfused via a peristaltic pump with medium thermostated via a water jacket at 37°C. The 

photomultiplier (EMI 9789 with amplifier-discriminator) is kept in a dark box and cooled at 4°C. 

During manipulations on the cell chamber, the photomultiplier is protected from light by a shutter. 

During aequorin experiments, the shutter is opened and the chamber with cells is placed in close 

proximity of the photomultiplier. The output of the amplifier-discriminator is captured by an 
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EMIC600 photon-counting board in an IBM compatible microcomputer and stored for further 

analysis. 

Ca2+ measurement 

For the cells transfected with cytosolic, mitochondria or nuclear aequorins, the coverslip with the 

transfected cells is transferred to the luminometer chamber and it is perfused with KRB saline 

solution in presence of 1 mM CaCl2 to remove the excess coelenterazine. The stimuli or drugs to 

test are added to the perfusing medium and reach the cells with a lag time that depends on the 

rate of the flux and the length of the tubes. In order to make the stimulation more rapid and 

homogeneous the rate of the peristaltic pump is set to its maximum speed. Under these 

conditions we calculated that the whole monolayer is homogeneously exposed to the stimuli in 2 

sec. At the end of the experiments, all the aequorin is discharged by permeabilizing the cells using 

a hypotonic solution containing digitonin (100 μM) and CaCl2 (10 mM). 

For erAEQ transfected cells, unreacted coelenterazine and drugs are removed by prolonged 

perfusion (3-6 min) with a saline solution containing 600 μM EGTA and 2% BSA. BSA is then 

removed from the perfusion buffer and the refilling of the compartments is started by perfusing 

the medium containing 1mM CaCl2. To note that BSA increases luminescence background level. 

We found that, despite the depletion protocol and the use of a low Ca
2+

 affinity aequorin mutant, 

the rate of aequorin consumption upon Ca
2+

 refilling is so rapid that most aequorin is consumed in 

30 sec and the calibration of the signal in terms of [Ca
2+

] becomes unreliable. Two alternative 

solutions to this problem have been developed, i) the use of Sr
2+

 as a Ca
2+

 surrogate and ii) the 

reconstitution not with the wild type coelenterazine, but with the analogue coelenterazine n that 

reduces the rate of aequorin photon emission at high [Ca
2+

]. In the latter case [Ca
2+

] between 10
-4

 

and 10
-3

 M can be reliably calibrated (Robert V., 1998). 
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Conversion of the luminescent signal into [Ca2+] 

To transform luminescence values into [Ca
2+

] values, we have used the method described by Allen 

and Blink. The method relies on the relationship between [Ca
2+

] and the ratio between the light 

intensity recorded in physiological conditions (L, counts/s) and that which would have been 

reported if all the aequorin was instantaneously exposed to saturating [Ca
2+

] (Lmax). Given that the 

constant rate of aequorin consumption at saturating [Ca
2+

] is 1.0 s
-1

, a good estimate of Lmax can be 

obtained from the total aequorin light output recorded from the cells after discharging all the 

aequorin. This usually requires the addition of excess Ca
2+

 and detergents as shown in the previous 

section. As aequorin is being consumed continuously, it must be stressed that, for calibration 

purposes, the value of Lmax is not constant and decreases steadily during the experiment. The value 

of Lmax to be used for [Ca
2+

] calculations at every time point along the experiment should be 

calculated as the total light output of the whole experiment minus the light output recorded 

before that point. 

The relationship between the ratio (L/Lmax) and [Ca
2+

] has been modeled mathematically. 

The model postulates that each of the Ca
2+

 binding sites has two possible states, T and R and that 

light is emitted when all the sites are in the R state. Ca
2+

 is assumed to bind only in the R state. 

This model contains three parameters: KR, the Ca
2+

 association constant, KTR= [T]/[R], and n, the 

number of Ca
2+

 binding sites. The values we obtained for the recombinantly expressed aequorin 

for each parameter are: KR = 7.23 10
6
 M

-1
, KTR = 120, n=3. The equation for the model provides 

the algorithm we used to calculate the [Ca
2+

] values at each point where Ratio is (L/Lmax)1/n. 

Ca
2+

(M) = Ratio + (Ratio x KTR)-1 

                 KR – (Ratio x KR) 
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Imaging techniques 

All imaging experiments were carried out on Zeiss Axiovert 200 inverted microscopes, equipped 

with cooled CCD digital cameras. Z-series of images were acquired at 0.5 μm distance, 

deconvolved using a custom-made algorithm and 3D reconstructed as described previously 

(Carrington W.A., 1995; Rizzuto R., 1998b). 

 

ATP  measurements 

Luciferase assay was carried out, as previously described. (Jouaville L. S. 1999). In brief, HeLa cells 

(50,000-70,000 per coverslip) were transfected with mitochondrial targeted luciferase (mtLUC)  

according to a standard calcium-phosphate procedure. 

24 hours after transfection, the coverslip with the cells was transferred to the 37°C termostated 

chamber of a luminometer and perfused with a Krebs Ringer Buffer containing: 125mM NaCl, 

5mM KCl, 1mM Na3PO4, 1mM MgSO4, 20μM Luciferin, 20mM Hepes, 5,5 mM Glucose (pH7,4). 

Luminescence is entirely dependent on the continuosly provided luciferin and proportional to its 

concentration between 20 and 200 μM. After a preliminary phase of equilibration, during which 

light emission of  mitochondrial luciferase transfected cells was in the range of 14000-16000 cps 

versus a background lower than 10 cps, cellular response was evoked by the agonist Histamine 

100μM added to the perfusion medium. 

 

Subcellular fractionation and proteomic analysis 

HeLa cells and mouse liver were homogenized, and crude mitochondrial fraction (8,000g pellet) 

was obtained. Mouse tissue was subjected to separation on a 30% self-generated Percoll gradient 

as described previously (Vance J.E., 1990). A low-density band (denoted as MAM fraction) was 

collected and analysed by immunoblotting. For SDS-PAGE analysis of MAM fraction proteins 10 μg 

proteins were loaded on 10% SDS-polyacrilamyde gels. The antibodies used were: αIP3R3, isotype 
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specific monoclonal antibody, 1:1000, Cell Signaling; αVDAC2, 1:1000 Molecular Probe; Smad2/3 

monoclonal antibody 1:1000, Cell Signaling, phospho-Smad3 1:1000 monoclonal antibody, Cell 

Signaling; αActin 1:10000 Cell Signaling;  Sigma Receptor 1, 1:1000 monoclonal antibody, Sigma. 

 

The pSUPER RNAi system 
 

In several organisms, introduction of double-stranded RNA has proven to be a powerful tool to 

suppress gene expression through a process known as RNA interference. However, in most 

mammalian cells this provokes a strong cytotoxic response. This non-specific effect can be 

circumvented by use of synthetic short [21- to 22-nucleotide] interfering RNAs (siRNAs), which 

can mediate strong and specific suppression of gene expression. However, this reduction in gene 

expression is transient, which severely restricts its applications. To overcome this limitation, the 

pSUPER RNAi system provides a mammalian expression vector that directs intracellular synthesis 

of siRNA-like transcripts. The vector uses the polymerase-III H1-RNA gene promoter, as it produces 

a small RNA transcript lacking a polyadenosine tail and has a well-defined start of transcription 

and a termination signal consisting of five thymidines in a row (T5). Most important, the cleavage 

of the transcript at the termination site is after the second uridine, yielding a transcript resembling 

the ends of synthetic siRNAs, which also contain two 3’ overhanging T or U nucleotides. The 

pSUPER RNAi System has been used to cause efficient and specific down-regulation of gene 

expression, resulting in functional inactivation of the targeted genes. Stable expression of siRNAs 

using this vector mediates persistent suppression of gene expression, allowing the analysis of loss-

of-function phenotypes that develop over longer periods of time. To effect the silencing of a 

specific gene, the pSUPER vector is used in concert with a pair of custom oligonucleotides that 

contain, among other features, a unique 19-nt sequence derived from the mRNA transcript of the 

gene targeted for suppression (the “N-19 target sequence”). 
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The N-19 target sequence corresponds to the sense strand of the pSUPER-generated siRNA, which 

in turn corresponds to a 19-nt sequence within the mRNA. In the mechanism of RNAi, the 

antisense strand of the siRNA duplex hybridizes to this region of the mRNA to mediate cleavage of 

the molecule. The technical procedure is summarized in the following paragraph. 

 
>> Step One: Anneal Oligos 

Two custom DNA oligonucleotides were dissolved in sterile, nuclease-free H2O to a concentration 

of 3 mg/ml. The annealing reaction was assembled by mixing 1 μl of each oligo (forward and 

reverse) with 48 μl annealing buffer (100 mM NaCl and 50 mM HEPES pH 7.4) and incubated at 

90°C for 4 minutes, and then at 70°C for 10 minutes. Slowly the annealed oligos were cooled to 

10°C. 

>> Step Two: Linearize the Vector  

1 μl of the pSUPER vector was linearized with Bgl II and Hind III restriction enzymes, then the 

reaction was heat inactivated (raising the temperature to 65 or 80°C for 20 minutes). Following 

digestion, purification of the linearized vector, on a 1% agarose gel, was performed to remove the 

fragment, and to help to separate the prep from any undigested circular plasmid and to decrease 

the background in ligation and transformation. 

>> Step Three: Ligation into pSUPER Vector 

For the ligation 2 μl of the annealed oligos, 1μl of T4 DNA ligase buffer, 1μl pSUPER vector, 5μl 

nuclease-free H2O, and 1μl T4 DNA ligase were assembled and incubated overnight at room 

temperature. A negative control cloning reaction was performed with the linearized vector alone 

and no insert. 

>>Step Four: Transformation in Bacteria 

Recombinant pSUPER vector was transformed into competent cells. In order to monitor the 

efficiency of the transformation steps, as a negative control, cells should also be transformed 

either with a vector that has been ligated with a scrambled-base hairpin oligo, or with a circular 

vector containing no oligo insert. Bacteria were grown in amp-agarose plates overnight (16-24 

hrs), then colonies were chosen for additional cycle in an ampicilin broth. Finally we checked the 
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presence of positive clones by digesting with EcoRI and Hind III. After digestion, we determine our 

results as follows: 

Positive clone: vector with insert of 281 bp  

Negative clone: vector with insert of 227 bp  

In addition, the presence of the correct insert within recombinant pSUPER vector was confirmed 

by sequencing prior to transfection in mammalian cells.  

 
High-throughput assay based on  a SiRNAs Library  
 

A custom siRNA library targeting 750 human kinases with three fold redundancy was obtained 

from Ambion Inc. and the three siRNA duplexes for  each target were individually arrayed in 96-

well format. A stable clone of HeLa cells overexpressing mitochondrial targeted aequorin probe 

was exploited. Cells were seeded on 96-well plates at density of 10000 cells per well and cultured 

overnight at 37°C. 24 hours post-seeding cells were transfected with 50nM siRNA using 

Lipofectamine 2000 reagent. Forty-eight hours after transfection, thanks to the MicroBeta 

multiplate reader, cells were challenged with histamine 50μM and mitochondrial calcium 

transients were measured. 
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RESULTS 

High throughput screen of human kinases for the identification of new regulators of 

mitochondrial calcium signaling 

To establish the role of protein kinases in mitochondrial calcium signaling we designed a functional 

assay  based on RNA interference to perform a genetic screen using small interfering RNA (siRNA) 

targeting the complete array of human kinases.  HeLa cells were systematically co-transfected with 

the mitochondrially targeted probe aequorin and siRNAs using a kinome library comprising 750 

kinases at three fold redundancy. 48 hours post transfection HeLa cells were measured by the 

multi detector system MicroBeta JET based on the biolumiscent reaction of Aequorin. The 

aequorin photoprotein undergoes a bioluminescent reaction in the presence of calcium ions, 

producing a flash of light at 469 nm. This wavelength correlates well with the maximum efficiency 

of the photo-multiplier tubes used in the MicroBeta. 

aequorin + Ca
2+

 –> apoaequorin + coelenteramide + CO2 + light (469nm) 

 

The effect of each siRNA was compared with that of a validate one (VDAC2 siRNA) and that of a 

scrambled sequence, both of them were transfected on each single plate and measured along with 

the respective samples. 
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Figure 1 

  

Fig. 1 MicroBeta® JET is a multi-detector instrument designed for liquid scintillation or luminescence detection of 

samples in microplates, tubes or on filters. MicroBeta JET also includes one or more reagent injectors for measuring 

prompt (or ‘flash’) reactions. Multi-detector versions of the instrument can have one or two Injector Modules installed 

to measure one or two injection and counting sequences. 

The single detector MicroBeta JET can have up to four Injector Modules. 

 

 

Calcium transients were measured  in HeLa cells, after reconstitution with the aequorin co-factor 

coelenterazine, cells were challenged with histamine 100 μM and luminescence was measured 

and converted in numbers representing the percentage of probe consumption after agonist 

stimulation, this number was transformed in a percentage of variation of each sample compared 

to the scrambled siRNA spotted on each plate and Library samples are shown in Table1.  Table 1 

contains  proteins which the three siRNA sequences exert the same effect on mitochondrial 

calcium uptake, 217 kinases, (28.9% of the entire array) among them the 4.1% shows an increasing 

in calcium uptake more than 20% while the 37.8%  reduces it more than 20% (Fig.2). For 186 

(24.8%) human kinases only two siRNA sequences out of three showed consistent effects on 

mitochondrial calcium signaling, the third one producing no effect at all. The last subgroup of 347 
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(46.26%) kinases consisted in those with no reproducible effect on calcium transients (data not 

shown).    

 

Table1 

Plate_N° Row Col Symbol % varsiRNA/scrambled full_name locus_link_id 

17 B 4 TLK1 -50.7 tousled-like kinase 1 9874 
11 C 2 EPHB2 -48.0 EphB2 2048 
11 C 1 EPHB1 -43.0 EphB1 2047 

11 C 10 FGFR1 -42.4 

fibroblast growth factor 
receptor 1 (fms-related 
tyrosine kinase 2, Pfeiffer 
syndrome) 2260 

11 B 1 DDR1 -40.5 
discoidin domain receptor 
family, member 1 780 

11 H 3 TXK -40.2 TXK tyrosine kinase 7294 
11 B 9 EPHA5 -39.7 EphA5 2044 
11 C 4 EPHB4 -39.6 EphB4 2050 

4 G 6 
C14orf
20 -39.4 

chromosome 14 open 
reading frame 20 283629 

9 A 4 STK4 -37.2 serine/threonine kinase 4 6789 

11 B 4 EGFR -36.5 

epidermal growth factor 
receptor (erythroblastic 
leukemia viral (v-erb-b) 
oncogene homolog, avian) 1956 

12 H 10 
ACVRL
1 -36.2 

activin A receptor type II-like 
1 94 

11 H 6 YES1 -36.2 
v-yes-1 Yamaguchi sarcoma 
viral oncogene homolog 1 7525 

11 B 11 EPHA8 -35.6 EphA8 2046 

9 A 2 STK3 -35.0 
serine/threonine kinase 3 
(STE20 homolog, yeast) 6788 

11 B 7 EPHA3 -34.9 EphA3 2042 

11 B 2 DDR2 -34.1 
discoidin domain receptor 
family, member 2 4921 

7 B 4 CDKL2 -33.8 
cyclin-dependent kinase-like 
2 (CDC2-related kinase) 8999 

7 C 6 ERK8 -33.7   225689 
11 C 5 EPHB6 -33.2 EphB6 2051 

9 A 1 STK25 -33.1 
serine/threonine kinase 25 
(STE20 homolog, yeast) 10494 

11 B 6 EPHA2 -32.6 EphA2 1969 

17 C 1 
PRKW
NK3 -31.6 

protein kinase, lysine 
deficient 3 65267 

16 G 5 NEK11 -31.4 
NIMA (never in mitosis gene 
a)- related kinase 11 79858 

11 B 3 STYK1 -31.3   55359 

11 D 4 FLT1 -31.2 

fms-related tyrosine kinase 
1 (vascular endothelial 
growth factor/vascular 
permeability factor receptor) 2321 

16 G 1 KIS -30.3   127933 
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16 D 7 ASB10 -30.3 
ankyrin repeat and SOCS 
box-containing 10 136371 

11 C 9 FER -30.2 

fer (fps/fes related) tyrosine 
kinase (phosphoprotein 
NCP94) 2241 

4 F 5 CAMK4 -30.2 
calcium/calmodulin-
dependent protein kinase IV 814 

4 F 6 CASK -29.9 

calcium/calmodulin-
dependent serine protein 
kinase (MAGUK family) 8573 

17 B 8 ULK1 -29.7 
unc-51-like kinase 1 (C. 
elegans) 8408 

11 C 3 EPHB3 -29.6 EphB3 2049 

11 C 11 FGFR2 -29.4 

fibroblast growth factor 
receptor 2 (bacteria-
expressed kinase, 
keratinocyte growth factor 
receptor, craniofacial 
dysostosis 1, Crouzon 
syndrome, Pfeiffer 
syndrome, Jackson-Weiss 
syndrome) 2263 

11 H 8 INSRR -29.4 
insulin receptor-related 
receptor 3645 

7 C 7 HIPK4 -28.9 
homeodomain interacting 
protein kinase 4 147746 

16 D 11 
TP53R
K -28.9 TP53 regulating kinase 112858 

7 B 8 CLK2 -28.8 CDC-like kinase 2 1196 

11 H 5 TYRO3 -28.5 
TYRO3 protein tyrosine 
kinase 7301 

21 B 3 PKLR -28.5 
pyruvate kinase, liver and 
RBC 5313 

11 B 5 EPHA1 -28.4 EphA1 2041 

7 B 6 CDKL5 -28.0 
cyclin-dependent kinase-like 
5 6792 

13 D 1 ZAK -28.0   51776 
7 B 10 CLK4 -28.0 CDC-like kinase 4 57396 

8 G 4 
MAP3K
8 -27.8 

mitogen-activated protein 
kinase kinase kinase 8 1326 

11 H 7 FES -27.4 feline sarcoma oncogene 2242 

5 A 5 
PRKAA
1 -27.3 

protein kinase, AMP-
activated, alpha 1 catalytic 
subunit 5562 

13 C 1 
MAP3K
13 -26.8 

mitogen-activated protein 
kinase kinase kinase 13 9175 

13 C 2 
MAP3K
7 -26.7 

mitogen-activated protein 
kinase kinase kinase 7 6885 

4 G 5 
KIAA18
11 -26.3   84446 

11 D 10 IGF1R -26.2 
insulin-like growth factor 1 
receptor 3480 

7 D 1 ICK -26.1 
intestinal cell (MAK-like) 
kinase 22858 

20 D 3 
FLJ108
42 -26.1   55750 

16 H 5 PIK3R4 -25.9 
phosphoinositide-3-kinase, 
regulatory subunit 4, p150 30849 

11 D 2 FGFR4 -25.8 
fibroblast growth factor 
receptor 4 2264 
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7 D 9 
MAPK1
4 -25.1 

mitogen-activated protein 
kinase 14 1432 

16 D 9 BUB1 -25.1 

BUB1 budding uninhibited 
by benzimidazoles 1 
homolog (yeast) 699 

7 B 7 CLK1 -25.0 CDC-like kinase 1 1195 

4 H 7 MKNK1 -25.0 
MAP kinase interacting 
serine/threonine kinase 1 8569 

26 D 7 T3JAM -24.7   80342 

7 A 8 CDK4 -24.4 cyclin-dependent kinase 4 1019 

16 D 6 AAK1 -24.3 AP2 associated kinase 1 22848 

4 F 8 
CAMK1
D -24.1 

calcium/calmodulin-
dependent protein kinase ID 57118 

4 G 4 
KIAA09
99 -22.8   23387 

20 B 6 CKB -22.7 creatine kinase, brain 1152 

5 B 6 
STK17
B -22.4 

serine/threonine kinase 17b 
(apoptosis-inducing) 9262 

13 D 3 ANKK1 -22.4 
ankyrin repeat and kinase 
domain containing 1 255239 

5 B 7 
STK22
B -22.4 

serine/threonine kinase 22B 
(spermiogenesis associated) 23617 

5 G 1 
CDC2L
1 -22.3 

cell division cycle 2-like 1 
(PITSLRE proteins) 984 

21 B 2 PRKD2 -22.2   25865 

13 C 3 
MFHAS
1 -22.1 

malignant fibrous 
histiocytoma amplified 
sequence 1 9258 

16 G 7 NEK3 -22.0 
NIMA (never in mitosis gene 
a)-related kinase 3 4752 

13 C 11 
TGFBR
2 -22.0 

transforming growth factor, 
beta receptor II (70/80kDa) 7048 

11 C 8 ERBB4 -21.9 

v-erb-a erythroblastic 
leukemia viral oncogene 
homolog 4 (avian) 2066 

25 C 5 
CDKN2
D -21.5 

cyclin-dependent kinase 
inhibitor 2D (p19, inhibits 
CDK4) 1032 

5 B 3 SNRK -21.4   54861 

4 F 2 
CAMK2
B -21.4 

calcium/calmodulin-
dependent protein kinase 
(CaM kinase) II beta 816 

13 C 10 
TGFBR
1 -21.3 

transforming growth factor, 
beta receptor I (activin A 
receptor type II-like kinase, 
53kDa) 7046 

5 A 6 
PRKAA
2 -21.2 

protein kinase, AMP-
activated, alpha 2 catalytic 
subunit 5563 

5 C 7 
LOC91
807 -20.8   91807 

11 D 5 FLT3 -20.7 
fms-related tyrosine kinase 
3 2322 

17 B 3 TEX14 -20.0 
testis expressed sequence 
14 56155 

7 B 9 CLK3 -19.8 CDC-like kinase 3 1198 

17 A 3 
PRKW
NK2 -18.4 

protein kinase, lysine 
deficient 2 65268 
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5 B 8 
STK22
C -18.1 

serine/threonine kinase 22C 
(spermiogenesis associated) 81629 

5 C 1 TRAD -17.9   11139 

7 D 3 MAK -17.8 
male germ cell-associated 
kinase 4117 

16 H 2 NPR2 -17.2 

natriuretic peptide receptor 
B/guanylate cyclase B 
(atrionatriuretic peptide 
receptor B) 4882 

16 D 10 BUB1B -17.1 

BUB1 budding uninhibited 
by benzimidazoles 1 
homolog beta (yeast) 701 

5 C 4 CHEK1 -16.2 
CHK1 checkpoint homolog 
(S. pombe) 1111 

8 E 11 
FLJ230
74 -16.0   80122 

13 C 4 RAF1 -15.2 
v-raf-1 murine leukemia viral 
oncogene homolog 1 5894 

5 B 9 
STK22
D -14.3 

serine/threonine kinase 22D 
(spermiogenesis associated) 83942 

4 E 10 CAMK1 -13.9 
calcium/calmodulin-
dependent protein kinase I 8536 

8 G 2 
MAP3K
5 -13.2 

mitogen-activated protein 
kinase kinase kinase 5 4217 

5 G 5 
SCGB2
A1 -12.8 

secretoglobin, family 2A, 
member 1 4246 

5 F 3 
CSNK1
G3 -11.9 casein kinase 1, gamma 3 1456 

8 G 11 MST4 -11.6   51765 

5 F 2 
CSNK1
G2 -9.8 casein kinase 1, gamma 2 1455 

5 F 1 
CSNK1
G1 -9.5 casein kinase 1, gamma 1 53944 

25 C 11 
CSNK2
B -9.2 

casein kinase 2, beta 
polipeptide 1460 

26 C 9 
PRKCD
BP -9.2 

protein kinase C, delta 
binding protein 112464 

20 F 9 
MGC26
597 -9.2   206426 

7 A 11 CDK7 -9.0 

cyclin-dependent kinase 7 
(MO15 homolog, Xenopus 
laevis, cdk-activating kinase) 1022 

20 F 3 ITPKA -8.6 
inositol 1,4,5-trisphosphate 
3-kinase A 3706 

26 D 4 SKIV2L -8.6 
superkiller viralicidic activity 
2-like (S. cerevisiae) 6499 

7 D 7 
MAPK1
2 -8.5 

mitogen-activated protein 
kinase 12 6300 

14 D 1 BRD2 -8.3 bromodomain containing 2 6046 

7 A 10 CDK6 -8.1 cyclin-dependent kinase 6 1021 

26 B 6 PKIA -7.7 

protein kinase (cAMP-
dependent, catalytic) 
inhibitor alpha 5569 

25 H 1 OSRF -7.6   23548 

13 B 3 IRAK3 -7.6 
interleukin-1 receptor-
associated kinase 3 11213 

21 C 4 SPHK2 -7.5 sphingosine kinase 2 56848 

2 D 4 CDC42 -7.4 CDC42 binding protein 9578 
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BPB kinase beta (DMPK-like) 

11 G 6 RYK -7.2 
RYK receptor-like tyrosine 
kinase 6259 

8 F 2 JIK -7.1   51347 

25 G 2 
MAPK8
IP3 -6.6 

mitogen-activated protein 
kinase 8 interacting protein 
3 23162 

17 A 1 
RNASE
L -6.6 

ribonuclease L (2,5-
oligoisoadenylate 
synthetase-dependent) 6041 

8 F 3 
MAP2K
1 -6.3 

mitogen-activated protein 
kinase kinase 1 5604 

14 C 11 BCR -6.0 breakpoint cluster region 613 

25 C 7 CIB2 -5.8 
calcium and integrin binding 
family member 2 10518 

2 F 8 PKN2 -5.8 protein kinase N2 5586 

5 E 9 
CSNK1
A1 -5.7 casein kinase 1, alpha 1 1452 

8 F 1 LYK5 -5.7   92335 

11 E 6 KIT -5.4 

v-kit Hardy-Zuckerman 4 
feline sarcoma viral 
oncogene homolog 3815 

8 H 2 MYO3B -5.3 myosin IIIB 140469 

12 H 11 
ACVR1
C -5.1 activin A receptor, type IC 130399 

26 B 2 PIK3R3 -5.1 

phosphoinositide-3-kinase, 
regulatory subunit, 
polypeptide 3 (p55, gamma) 8503 

17 B 6 TOPK -4.7   55872 

13 C 6 RIPK2 -4.7 
receptor-interacting serine-
threonine kinase 2 8767 

8 H 5 PAK2 -4.5 
p21 (CDKN1A)-activated 
kinase 2 5062 

7 B 11 CRK7 -4.2   51755 

21 B 5 PMVK -4.1 phosphomevalonate kinase 10654 

25 G 1 
MAPK8
IP2 -4.1 

mitogen-activated protein 
kinase 8 interacting protein 
2 23542 

2 D 9 GRK5 -4.1 
G protein-coupled receptor 
kinase 5 2869 

5 F 8 VRK2 -4.1 vaccinia related kinase 2 7444 

20 F 6 KHK -4.1 
ketohexokinase 
(fructokinase) 3795 

14 D 5 CABC1 -4.1 
chaperone, ABC1 activity of 
bc1 complex like (S. pombe) 56997 

25 E 9 
LOC28
3846 -3.9   283846 

14 D 11 HSPB8 -3.7 heat shock 22kDa protein 8 26353 

13 C 7 RIPK3 -3.7 
receptor-interacting serine-
threonine kinase 3 11035 

21 C 9 TPK1 -3.5 
thiamin pyrophosphokinase 
1 27010 

13 B 7 LIMK2 -3.5 LIM domain kinase 2 3985 

5 A 10 PSKH1 -3.2 protein serine kinase H1 5681 

2 H 8 SGKL -3.1 
serum/glucocorticoid 
regulated kinase-like 23678 

26 B 4 
PIP5K1
C -3.1 

phosphatidylinositol-4-
phosphate 5-kinase, type I, 23396 
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gamma 

2 D 8 GRK4 -2.9 
G protein-coupled receptor 
kinase 4 2868 

20 F 11 MRC2 -2.9 mannose receptor, C type 2 9902 

13 A 2 RIPK4 -2.9 
receptor-interacting serine-
threonine kinase 4 54101 

8 F 6 
MAP2K
4 -2.8 

mitogen-activated protein 
kinase kinase 4 6416 

7 F 2 CDK11 -2.7 
cyclin-dependent kinase 
(CDC2-like) 11 23097 

25 C 8 CIB3 -2.7 
calcium and integrin binding 
family member 3 117286 

8 H 1 MYO3A -2.6 myosin IIIA 53904 

14 E 11 PRKDC -2.4 

protein kinase, DNA-
activated, catalytic 
polypeptide 5591 

20 F 1 IHPK3 -2.4 
inositol hexaphosphate 
kinase 3 117283 

25 C 10 CRIM1 -2.3 cysteine-rich motor neuron 1 51232 

26 B 3 
PIP5K1
B -2.3 

phosphatidylinositol-4-
phosphate 5-kinase, type I, 
beta 8395 

17 B 5 TLK2 -2.3 tousled-like kinase 2 11011 

26 B 5 
PIP5KL
1 -2.2 

phosphatidylinositol-4-
phosphate 5-kinase-like 1 138429 

14 D 6 EEF2K -2.1 
eukaryotic elongation factor-
2 kinase 29904 

13 A 3 ARAF1 -2.0 
v-raf murine sarcoma 3611 
viral oncogene homolog 1 369 

20 F 5 ITPKC -1.9 
inositol 1,4,5-trisphosphate 
3-kinase C 80271 

14 D 4 BRDT -1.9 bromodomain, testis-specific 676 

8 F 4 
MAP2K
2 -1.7 

mitogen-activated protein 
kinase kinase 2 5605 

26 C 7 
PRKCA
BP -1.4 

protein kinase C, alpha 
binding protein 9463 

20 G 2 NAGK -1.0 N-acetylglucosamine kinase 55577 

7 D 11 MAPK6 -0.8 
mitogen-activated protein 
kinase 6 5597 

7 E 9 RAGE -0.6 renal tumor antigen 5891 

26 C 5 
PRKAR
1B -0.6 

protein kinase, cAMP-
dependent, regulatory, type 
I, beta 5575 

14 D 10 FRAP1 -0.5 

FK506 binding protein 12-
rapamycin associated 
protein 1 2475 

2 E 8 PKN3 -0.4 protein kinase N3 29941 

4 E 8 TRIB3 0.0 
tribbles homolog 3 
(Drosophila) 57761 

2 F 7 PKN1 0.1 protein kinase N1 5585 

20 H 10 
PFKFB
4 0.2 

6-phosphofructo-2-
kinase/fructose-2,6-
biphosphatase 4 5210 

26 A 9 
PIK3C
D 0.3 

phosphoinositide-3-kinase, 
catalytic, delta polypeptide 5293 

26 D 1 SCAP1 0.4 
src family associated 
phosphoprotein 1 8631 

20 B 11 DCK 0.5 deoxycytidine kinase 1633 
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2 E 7 PDPK1 0.7 
3-phosphoinositide 
dependent protein kinase-1 5170 

14 D 9 ADCK4 0.8 
aarF domain containing 
kinase 4 79934 

7 E 8 
PRPF4
B 1.0 

PRP4 pre-mRNA processing 
factor 4 homolog B (yeast) 8899 

20 D 5 
FN3KR
P 1.2   79672 

26 A 2 
PIK3AP
1 1.2 

phosphoinositide-3-kinase 
adaptor protein 1 118788 

16 E 6 
CSNK2
A1 1.3 

casein kinase 2, alpha 1 
polypeptide 1457 

21 C 2 RBKS 2.3 Ribokinase 64080 

26 C 11 
PRKRI
R 2.8 

protein-kinase, interferon-
inducible double stranded 
RNA dependent inhibitor, 
repressor of (P58 repressor) 5612 

14 E 10 PDK4 3.0 
pyruvate dehydrogenase 
kinase, isoenzyme 4 5166 

2 D 7 
FLJ250
06 3.1   124923 

20 D 8 
PIP5K2
C 3.4 

phosphatidylinositol-4-
phosphate 5-kinase, type II, 
gamma 79837 

26 B 11 
PRKAB
2 3.5 

protein kinase, AMP-
activated, beta 2 non-
catalytic subunit 5565 

14 D 7 FASTK 3.5   10922 

2 F 2 
PRKCB
1 3.7 protein kinase C, beta 1 5579 

20 F 8 LCK 4.3 
lymphocyte-specific protein 
tyrosine kinase 3932 

21 A 9 
PIP5K1
A 4.4 

phosphatidylinositol-4-
phosphate 5-kinase, type I, 
alpha 8394 

13 A 6 BMPR2 4.5 

bone morphogenetic protein 
receptor, type II 
(serine/threonine kinase) 659 

7 E 11 STK23 4.9 serine/threonine kinase 23 26576 

13 A 5 
BMPR1
B 5.2 

bone morphogenetic protein 
receptor, type IB 658 

8 H 7 PAK4 5.9 
p21(CDKN1A)-activated 
kinase 4 10298 

14 D 8 RIOK2 6.0 RIO kinase 2 (yeast) 55781 

26 D 2 
SH3KB
P1 6.3 

SH3-domain kinase binding 
protein 1 30011 

16 E 7 
CSNK2
A2 6.5 

casein kinase 2, alpha prime 
polypeptide 1459 

13 A 4 
BMPR1
A 8.7 

bone morphogenetic protein 
receptor, type IA 657 

26 D 5 SKP2 8.9 
S-phase kinase-associated 
protein 2 (p45) 6502 

20 B 9 CKMT2 9.2 
creatine kinase, 
mitochondrial 2 (sarcomeric) 1160 

25 F 8 
MAP3K
7IP2 11.1 

mitogen-activated protein 
kinase kinase kinase 7 
interacting protein 2 23118 

2 F 1 PRKCA 11.5 protein kinase C, alpha 5578 

25 F 7 MAP3K 15.0 mitogen-activated protein 10454 
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7IP1 kinase kinase kinase 7 
interacting protein 1 

7 A 5 CDK10 15.8 
cyclin-dependent kinase 
(CDC2-like) 10 8558 

25 B 5 AKAP9 31.1 
A kinase (PRKA) anchor 
protein (yotiao) 9 10142 

25 B 4 
AKAP8
L 31.1 

A kinase (PRKA) anchor 
protein 8-like 26993 

25 D 11 IHPK2 32.9 
inositol hexaphosphate 
kinase 2 51447 

25 B 1 AKAP6 33.2 
A kinase (PRKA) anchor 
protein 6 9472 

2 F 4 PRKCE 37.6 protein kinase C, epsilon 5581 

25 A 3 AKAP1 46.4 
A kinase (PRKA) anchor 
protein 1 8165 

20 E 9 HK2 49.6 hexokinase 2 3099 

25 B 8 CALM1 72.9 
calmodulin 1 (phosphorylase 
kinase, delta) 801 

25 B 9 CALM2 130.0 
calmodulin 2 (phosphorylase 
kinase, delta) 805 

 

  
 

Table1. The table shows 217 kinases which RNAi produce an effect ranging from -50% to 130% on mitochondrial 

calcium uptake. They are all the mean of the effect of three difference siRNA sequences. 

 

Figure 2 

                                

Fig.2  A histogram showing the effect of each kinase (217 kinases with three fold redundancy) on mitochondrial 

calcium uptake, candidates with average increasing or reducing effect more than 20% are enlightened in red boxes. 
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According to prior studies Transforming growth factor–β (TGF-β) has been implicated as a key 

factor in mediating many cellular processes and it has also been demonstrated its ability to impair 

cytosolic calcium concentration which in some cases may result from the downregulation of the 

IP3 receptor Ca
2+

 channels (IP3Rs). Pieces of evidence collected from many different groups indeed 

demonstrate that the normal mobilization of intracellular Ca
2+

 stores is reduced in diabetic aortic 

and proglomerular smooth muscle cells and the alteration is mediated by TGF-β.  We decided to 

concentrate our attention on the study of TGF-β role on mitochondrial calcium uptake and the 

starting point was coming from the preliminary data collected from the above reported screen 

which shows that  calcium uptake is reduced of 22% by both the isofoms of TGF-β receptor (TGF-

βR I and II) .  

 

Mitochondrial Calcium signaling is affected by TGF- β receptor inhibition 

The first experiment to be performed was the reproduction of the siRNAs effect on a larger scale.  

HeLa cells were transfected with the mitochondrially targeted aequorin probe and a reconstituted 

with the aequorin co-factor coelenterazine; Ca
2+

 transients were trigger by maximal dose of 

histamine 100μM, luminescence was measured and then converted in [Ca
2+

]. Control coverslips, 

treated with DMSO, were compared to TGF-β receptor chemical inhibitors SB431542 5μM 

(inhibitor of TGF-β receptors I and II, signaling mainly through Smad2/3) and Dorsomorphin (DM) 

10μM (inhibitor of BMP activated receptors, signaling mainly through Smad1/5/8) treated cells. 

The time of treatment was reduced from 16 hours to 4 hours to 10 minutes in order to observe 

the acute effect on mitochondrial calcium of the chemical silencing of  TGF-β receptor signaling 

cascade. As shown in figure 3A, B and C, the chemical inhibition of TGF-β receptors causes an 

evident reduction of mitochondrial calcium uptake:  while in control cells the mitochondrial 
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calcium transient observed corresponded to [Ca
2+

]mt of 128+14.6 μM, after overnight treatment 

with SB431542 and Dorsomorphin [Ca
2+

]mt was reduced to 99.5+17.6μM and 72+17.6μM 

respectively. 

Figure 3 

 

Fig.3 HeLa cells were transfected with mitochondrially-targeted aequorin (mtAEQ). 36 hours after transfection, 

mitochondrial Ca
2+

 uptake evoked by Histamine 100μM, was measured in three different conditions : A) overnight 

treatment with SB 431542 (SB) 5μM (inhibitor of TGF-β receptors I and II, signaling mainly through Smad2/3) and 

Dorsomorphin (DM) 10μM (inhibitor of BMP activated receptors, signaling through Smad1/5/8);  B) 4 hours treatment  

and  C) 10 minutes  treatment with the same agents. The observed reduction in mitochondrial Ca
2+

 response produced 

by these treatments was the first indication of a role of TGF-β signalling in the regulation of mitochondrial Ca
2+

 

handling. 

 

Thus the effect of two different inhibitors, working on two different subfamily of TGF-β receptor is 

qualitatively the same, differences in the amplitude of reduction are probably linked to the greater 

number of inhibited BMP receptors than TGF-β receptors, or differences in receptor affinity to the 

two chemical compounds.  

HeLa cells were transfected with cytosol localizing aequorin Ca
2+

-probe (CytAeq) and low affinity 

ER-targeted aequorin based Ca
2+

-probe, cytosolic and Endoplasmic Reticulum calcium 

concentration were measured and representative experiments are shown in Fig.4. These results 

excluded that the mitochondrial calcium uptake reduction observed could be explained by general  

Ca
2+ 

handling impairment nor by defective storing within the major intracellular calcium store, 
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since no significant difference has been recorded in the two compartments. These data strongly 

supported the hypothesis of a direct activity of TGF-β on mitochondria while the homeostasis of 

this ion in the other compartment remained affected.  

Figure 4 

 

 
 

Fig.4 ER and cytosolic Ca
2+

 measurements with targeted aequorin probes. In both compartments, pretreatment with 

SB and DM did not modify either the resting values nor the peak (cytosol) or decrease (ER) caused by stimulation with 

Histamine 100μM. 

 

Mitochondrial membrane potential  (Δψmt ) was measured in HeLa cells in order to test whether 

mitochondrial calcium uptake reduction is dependent from mitochondrial respiratory chain 

activity. In living cells  Δψmt was measured using tetramethyl rhodamine methyl ester (TMRM), a 

fluorescent lipophilic cation that accumulates in the mitochondrial matrix in a Δψmt-dependent 

way. The fluorescence intensity of TMRM in individual cell was measured using laser scanning 

microscopy. To measure and compare the potential-dependent staining of TMRM of different 

conditions, cells were incubated with 1 μM FCCP, a protonophore that collapses the Δψmt. The loss 

of TMRM fluorescence was used to obtain quantitative analysis of Δψmt. The representative traces 
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in fig. 5 showed that overnight treatments with SB 5μM and DM 10 μM strongly reduced TMRM 

fluorescence basal level (-35 + 8.2% and -42 + 12.7%) if compared with untreated controls. Since it 

is well established the notion that  Δψmt drives mitochondrial uptake of Ca
2+

, these results 

appeared to be consistent with the previous observation about the mitochondrial calcium uptake 

impairment, obtained with aequorin measurements after TGF-β receptors inhibition. 

Figure 5 

 

 
 

Fig.5 The electrical potential across the mitochondrial inner membrane (Δψmt ) was measured with Tetramethyl 

Rhodamine Methil Ester (TMRM). Mitochondrial TMRM loading  at the steady state was significatively decreased by 

overnight treatment with SB 5μM and DM 10 μM (A, left representative traces; right, quantification in the whole array 

of analyzed cells). Upon treatment with FCCP, all traces reached the same background level. Figure B shows 

representative images of HeLa cells incubated with TMRM 10nM for 20 minutes and DMSO, SB 5μM and DM 10μM, 

fluorescent intesity of TMRM  was detected with laser scanning  microscopy. 

 

 

Along the same line were the measurements of mitochondrial ATP production carried out by 

means of ATP luciferase probe targeted to the mitochondrial compartment. The method is based 

on the reaction of luciferase with the substrate luciferin in presence of oxygen, being the following 

light emission a linear function of ATP concentration in a range between 10
-3

 and 10
-2

 M. HeLa 

cells were transfected with mitochondrial targeted luciferase (mtLUC)  and 24 later coverslips 

were transferred to the 37°C termostated chamber of a luminometer and perfused with a Krebs 

Ringer Buffer containing 20μM Luciferin. During the preliminary phase of equilibration, light 
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emission was in the range of 12000-17000 cps versus a background lower than 10 cps, cellular 

response was evoked by the agonist Histamine 100μM added to the perfusion medium. As 

previously reported (Jouaville L.S., 1999), agonist-dependent [Ca
2+

] increases in the mitochondrial 

matrix cause an increase in ATP levels, both in the mitochondria (Fig.6) and in the cytosol (data not 

shown). This was mainly attributed to the stimulation of Ca
2+

-dependent dehydrogenases. We 

evaluated the effect on level of ATP production produced by acute treatment of HeLa cells with SB 

5μM and DM 10 μM. In treated cells, in agreement with our previous results on calcium signaling, 

ATP  production is drastically reduced (fig.6). The impairment of calcium uptake occurring in  the 

organelle after TGF-β receptors inhibition correlates with a minor Ca
2+

-mediated stimulation of 

matrix dehidrogenases which leads to the reduction of ATP synthesis observed (-42.8+4.2% for SB 

and -37.1+6.1% for DM ).  

Figure 6 

 

Fig.6 A mitochondrially targeted chimera of ATP-sensitive photoprotein Luciferase (mtLUC) was exploited to 

dynamically monitore ATP synthesis within the mitochondrial subcellular compartment. HeLa cells were seeded on 

coverslips and grown in DMEM plus 10% FBS. Two days before the ATP measurements, the two groups of cells were 

transfected with  mtLUC probe, the following day one set of coverslips was treated with dmso (controls), one set with 

SB 5μM and one set with DM 10uM. For the measurements, the cells were rinsed twice with KRB, then transferred to 

the luminometer chamber and perfused with KRB supplemented with glucose 5,5mM, calcium 1mM and Luciferin 

20μM. 60 seconds were allowed for equilibration in the new medium, then ATP production was triggered by 

supplementing the perfusion buffer with Histamine 100μM. In presence of TGF-β receptors inhibitors ATP production 

appeared to be reduce of  -42.8+4.2% in the case of  SB and of 37.1+6.1% for DM. 

 

60sec 
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TGF-β receptors silencing by means of specific siRNA plasmids 

Mitochondrial network and the biophysical properties of mitochondrial calcium uptake have been 

studied in detail and since it has been demonstrated its high sensitivity to lipholic molecules. In 

order to evaluate the real effect of TGF-β receptors inhibition, without the usage of chemical 

compounds dissolved into DMSO, we decided to built up siRNA plasmids to downregulate  TGF-β 

receptor isoforms through RNA interference techniques, so doing we would get rid of any possible 

non-specific effect due to chemical treatment. Two different sequences for TGF-β receptor I and II 

were cloned into pSuper Vector (siRNA TGF-βRI and siRNA TGF-βRII) and the silencing capacity of 

the two most efficient plasmids, chosen for further experiments, is shown in figure 7. 

 

Figure 7  

                                              

Fig.7 HeLa cells were transfected with small interfering (siRNA ) plasmids created using a pSuper vector. We obtained 

two different  sequences  cloned in the expression vector, efficently silencing target genes of TGF-β receptor I and II. 

The western blot shows the most effective sequences we used to perform the following experiments. 

 

 

Intracellular calcium homeostasis was then analized in HeLa cells after co-transfection of TGF-ΒR I 

and II siRNAs and aequorin probes specifically targeted to mitochondria, Endoplasmic Reticulum 

and cytosol. 

The effect is reported in the panel below (fig. 8), where it is evident the peculiar reduction of 

mitochondrial Ca
2+

 uptake while the other two compartment appeared to be unaffected. 
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Figure 8 

 

Fig.8 Calcium measurements were carried out in HeLa cells  co-transfected with the siRNAs of the two  different 

isoforms of TGF-β receptor and aequorin-based Ca
2+

 probes. The data confirmed that  mitochondrial Ca
2+

 response 

after stimulation was significantly decreased upon suppression of TGF-β signaling, whereas cytosolic and ER Ca
2+

 

handling was unaffected. 

 

Mitochondrial membrane potential (Δψmt) was measured in presence of DMSO (as negative 

control, black line), SB 5μM (as positive control, orange line) and after 36 hours co-transfection 

with the siRNA plasmids of the two different isoforms of TGF-β receptor.  

Comparing the effect exerted by two different tools to achieve TGF-β pathway inactivation, we 

could assess that they were both on the same line of what had been observed by aequorin 

measurements, Δψmt was strongly reduced and mitochondrial  Ca
2+ 

uptake along with it. (Fig. 9) 

Fig. 9 

 

Fig. 9 Mitochondrial membranepotential (Δψmt) was measured with TMRM in untreated HeLa cells (black trace) or 

after TGF-β receptor inhibition by means of SB 5μM (orange line) or siRNA silencing (pink line). 

control 
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The effect on mitochondrial Ca
2+

 uptake was thus confirmed by direct specific intraorganelle 

measurements thanks to aequorin probes, indirectly exploting Luciferase probe specifically 

targeted to mitochondrial which measured ATP production and finally through TMRM analysis of 

potential across the mitochondrial membrane. 

 

Subcellular distribution of Smad proteins 

The question we had to answer then was: which was molecular mechanism ruling the effect ?  

Looking for possible molecular characters we decided to define subcellular localization of TGF-β 

downstream effectors: the Smad proteins. 

Among the huge family of these intracellular transducers we focused our attention on isoforms 2 

and 3 because from previous work (Jullig M., 2003) they were demonstrated to be the members 

with higher mitochondrial distribution. 

Mitochondrial cellular fractioning was performed as described in Materials and Methods on HeLa 

cells to compare Smads localization in mito crude fraction with or without TGF-β receptors 

inactivation by means of SB treatment. 

As it is shown in fig. 10 Smad2/3 was observed in mito crude of HeLa cells, interestingly its 

phosphorylated fraction appeared to be delocalized from mitochondria after the treatment 

applied.  
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Figure 10 

                                 

Fig.10 Subcellular localization of  Smad proteins, TGF-β receptor effectors. Western blots of subcellular fractions 

shows mitochondrial distribution of Smad2/3 that was decreased by SB 5μM  treatment. Interestingly, we observed 

the almost complete absence of the phosphorylated protein in mitochondria of HeLa cells treated with the inhibitor. 

 

We thus speculated that most likely the equilibrium between the phosphorylated and 

unphosphorylated fraction of Smad2/3 could be linked to those mitochondrial events produced by 

chemical or biological inhibition of TGF-β receptors, described before.  

 If the mitochondrial delocalization of the specific isoform of Smad proteins was responsible for 

the impairment of mitochondrial functionality, then the question was: what about the biological 

mechanism? 

Two different possibilities could be envisioned.  

In the first one the phosphorylated pool of Smad could act favouring calcium transfer between the 

major intracellular store, the Endoplasmic Reticulum and mitochondria, thus we measure calcium 

transient by means of mitochondrial aequorin probe in presence of TGF-β or not. What we 

observed is shown in figure 11, and despite what was expected, no increase has been recorded in 

mitochondrial calcium uptake. 
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Figure 11 

A                                                                                     B                                                                                                                            

                                                                                                                                             

Fig. 11  A) Mitochondrial calcium transients were measured in HeLa cells in presence of TGF-β (1h 1ng/ml), SB (5 μM  

20min) or not. Since no significative difference was observed  comparing control coverslips and TGF-β treated ones 

(control 120+ 5.4μM, TGF-β 118+6.7 μM, SB 88+ 2.4μM) we could asses that increasing the phosphorylated fraction of 

Smad proteins can not be considered responsible for mitochondrial calcium uptake regulation. B) Western Blot 

analysis of Smad2/3 and Phospho-Smad3 levels In presence of the same two treatments applied for calcium 

measurements 

 

In the second scenario, we speculated that the unphosphorylated fraction of Smads could be the 

true character behind the mitochondrial effect. Indeed inhibiting the plasma membrane receptors 

by chemical treatments or SiRNA plasmid, the unphosphorylated protein would accumulate and 

the mitochondrial fraction would increase as a consequence. Therefore if it was true that 

accumulation of Smads at the mitochondria negatively regulates calcium uptake, inhibiting regular 

gene expression of Smad proteins by means of specific SiRNA duplexes would revert the effect 

observed treating  HeLa cells with TGF-β  receptors inhibitor. Thus we co-transfected HeLa cells 

with ShRNA of Smad2/3 and Smad4 and mitochondrial aequorin probe in order to measure 

calcium transients after agonist stimulation. The data collected are shown in figure 12 and as 

expected mitochondrial calcium uptake is clearly increased where Smad proteins have been 

silenced.   

 

 

Dmso     SB     TGF-β 
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Figure 12 

A                                                                                                B 

                                                                                                  

Fig.12 A) Mitochondrial calcium transients were measured in HeLa cells co-transfected with two different ShRNAs of 

Smad2/3 or Smad4,  and mitochondrial aequorin. As shown in  panel A silencing Smad proteins enhances 

mitochondrial calcium uptake. (Scrambled 82+ 6.1μM, SiRNA Smad2/3 I 113+ 7.2μM, SiRNA Smad2/3 II 120+ 4.2μM, 

SiRNA Smad4 I 121+ 9.2μM, SiRNA Smad4 II 125+ 6.2μM). B) Western Blot analysis of Smad2/3 and Smad4 levels In 

presence of their specific ShRNAs. 

 

At this point, the study of a more physiological system than HeLa cells was fundamental, for this 

reason we wanted to analyze intracellular Smads distribution in mouse liver. 

Recently a very accurate method has been described by Wieckowsky and coworkers to obtain 

mitochondrial purification from different animal tissues by gradient centrifugation in order to 

separate pure mitochondria from the so called “mitochondria-associated membrane” (MAM) (fig. 

13) (Wieckowsky M., 2009). Intriguingly this fraction would prove to be not only mere 

contamination of pure mitochondria but also a very interesting mitochondrial subfraction, indeed 

since 1990 the specific mitochondrial regions showing close proximity to the ER cisternae were 

referred as MAMs by Vance et al. (Vance J.E., 1990). Although they have been firstly described as 

the headquarters of lipid transfer, today it is widely accepted the notion that MAMs are also 

involved in rapid movement of Ca
2+ 

ions between ER and mitochondria. So doing they play a 

fundamental role in the coordination of ATP production through the activation of mitochondrial 

dehydrogenase as well as the activation of the cell death program (Berridge M.J., 2002). The 
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shaping of the ER-mitochondrial network can be affected by bounding proteins and physiological 

ligands indeed recently Hajnoczky and coworkers demonstrated that exposure to TGFβ affects Ca
2+  

transfer to the mitochondria (Hajnoczky G., 2008).  

Figure 13 

       

 

Fig. 13 A) Isolation of Mitochondria Associated Membranes (MAMs) from animal tissues and cells  (Wieckowsky M., 

2009) B) Combined 3D imaging of mitochondria and ER in a HeLa cell transiently expressing mtGFP(Y66H,Y145F) and 

erGFP(S65T). The two 3D images were processed  and superimposed. The mitochondrial and ER images are 

represented in red and green, respectively; 

the overlaps of the two images are white and constitute the microdomains called MAMs. (Rizzuto R., 1998) 

  

Mouse liver were homogenized, and crude mitochondrial fraction (8,000g pellet) was subjected to 

separation on a 30% self-generated Percoll gradient as described previously (Vance J.E., 1990). A 

low-density band (denoted as MAM fraction, fig.14A) was collected and analysed by 

immunoblotting.  

Specific markers were chosen for each different fraction (IP3 Receptor 3 for MAM and ER fractions, 

VDAC2 for pure and crude mitochondria, Sigma1 Receptor for MAM and β-actin as cytosolic 

protein, see  figure 14), and from prelimary results Smad2/3 appeared to be clearly localized in the 

mitochondria and in particular into the MAM fraction.  
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Figure 14 

                                                 

Fig.14 A more extensive subcellular fractionation in mouse liver shows the presence of Smads in the MAM fraction, 

thus suggesting a direct regulatory role exerted in this signaling domain. 

 

 

The evidence of Smad2/3 presence in the MAMs obtained from a physiological system such as 

mouse liver, is the starting point of a wide work that would lead to the understandment of a new 

role of TGF-β signaling pathway in the orchestration of mitochondrial calcium signaling. 

Next step would be the analysis of Smads and phospho-Smads delocalization in vivo after TGF-β 

receptor inhibition or activation by means of mouse liver perfusion techniques carried out in 

presence of chemical compounds. Moreover it would be necessary the research of Smads 

molecular interactors by means of co-immunoprecipitation and Blue Native assays. 

Hence, further study will be done to assess a possible direct mitochondrial activity of Smad 

proteins on the organelle calcium homeostasis.  
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DISCUSSION 

Preliminary results obtained by a screening based on a human kinases library, showed that 

silencing TGF-β Receptors by means of siRNA duplexes, exerted a clear effect on mitochondrial 

calcium homeostasis. This starting information was then exploited to unravel the molecular 

mechanism by which mitochondria could orchestrate intracellular calcium homeostasis. 

TGF-β signaling has been widely studied and although its transcriptional activity is today well 

understood, less efforts have been made to investigate its non-nuclear functions which are still 

quite unknown. 

We thus decided to go deeply through this study, since according to previous works a 

transcriptional-independent activity of TGF-β cascade had already been observed. First of all, 

many different groups are engaged in the study of TGF-β role in the regulation of the intrinsic 

pathway leading to apoptosis. Gottfried in 2004 demonstrated TGF-β activation of ARTS, a 

proapoptotic protein localized in the mitochondria. Wang et al., in 2008 published the observation 

that TGF-β treatment could generate reactive oxygen species (ROS) and mitochondrial membrane 

potential loss in epithelial cell.  

Concerning calcium homeostasis, recent works showed that TGF-β could reduce IP3 Receptor 1 

calcium release from ER in diabetic aortic and proglomerular smooth muscle cells.  

The first step we took, was to obtain a more complete scenario about intracellular calcium 

homeostasis  after TGF-β signaling inhibition. Overexpressing  aequorin probe in HeLa cells, we 

observed that mitochondrial calcium uptake was impaired when TGF-β signaling was inhibited by 
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chemical treatments, whereas Endoplasmic Reticulum and cytosolic calcium handling was 

unaffected.  

The same scenario was there inhibiting TGF-β signaling both by molecular inhibitors acute 

treatment and by transfecting TGF-β receptor siRNA plasmids into the cells. 

Mitochondrial functionality was consistently affected in the same conditions, since we observed 

the reduction of mitochondrial membrane potential and also the ATP production resulted 

significantly impaired. 

Then we focused on how this effect was achieved. 

The biochemical meaning of TGF-β receptors inhibition is the reduction of the phosphorylated 

fraction of TGF-β receptors downstream effectors: the Smad proteins. Therefore we speculated 

that the mitochondrial specific effect could be the result of two different situation.  

According to the first one, reduction of Smad phosphorylation could be direct source of the 

mitochondrial effect, under the hypothesis that the phosphorylated Smad could positively control 

calcium transfer between the ER and mitochondrial. Thus we  hypothesized that the less is the 

amount of phospho-Smad working at the mitochondria, the less these organelles are exposed to 

high Ca
2+

 concentration generated at the mouth of IP3Rs. As described in the introduction of this 

work, this could explain the reduction in mitochondrial calcium transient after agonist stimulation.  

The second hypothesis envisioned the non-phosphorylated fraction of Smad proteins as 

responsible for a negative regulation of ER-mitochondrial contacts. Indeed switching off TGF-β 

receptors avtivity, the intracellular amount of non-pshorylated  Smads increased and consequently 

the equilibrium between the nuclear and mitochondrial (and cytosolic) pools of these proteins, 

most likely would shift toward the mitochondrial translocation. Blocking TGF-β receptors activity a 
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great amount of Smad would be potentially disposable for mitochondrial accumulation where it 

exerted a specific effect on calcium transients.        

We thus decided to silence, by means of short hairpin RNA interference, the total amount of 

specific isoforms of Smads, we chose to silence Smad 2/3 and Smad 4, members of a great family 

of nuclear factors, which are described to be localized into the mitochondria (which was confirmed 

in our lab also). So thanks to Smad2/3 and Smad4 shSiRNAs, we measured calcium transients in 

HeLa cells and we observed a clear augmentation in mitochondrial calcium uptake in coverslips 

where normal transcription of Smad proteins was blocked, compared to scrambled controls. This 

observation supported the second hypothesis : the non phosphorylated Smads exerted negative regulation 

on ER-mitochondrial transfer. 

On the other hand, we treated HeLa cells with TGF-β polypeptide and measured mitochondrial 

calcium uptake. If the first hypothesis had been true, the potentiation of TGF-β receptors activity 

would have increased the phosphorylation of Smad proteins and consequently the mitochondrial 

impairment described so far would have had to be inverted. Indeed if phospho-Smad was a 

positive regulator of mitochondrial function, in TGF-β treated coverslips we should have observed 

a mitochondrial calcium uptake enhancement. 

However no increase was recorded to further support the idea that it was not the phosphorylated 

but the non-phosphorylated pool of Smads which was responsible for a negative control of ER-

mitochondria contacts. 

Moreover subcellular fractionation obtained from mouse liver, showed that a good fraction of 

Smad2/3 protein is localized in the MAM, the well described contact sites between ER and 

mitochondria. 
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Although the molecular mechanism that controls different distribution of Smads are still 

completely unknown (apart from the classical pathway ruling gene transcription) according to our 

data, a new role for these proteins has been demonstrated, which is independent from the 

nucleus whereas it appears to be associated to the mitochondria. 

Aequorin probe measurements, carried out in living cells, revealed a clear engagement of TGF-β in 

regulating mitochondrial calcium transient evoked by agonists stimulation. 

Moreover biochemical studies demonstrated that there is a specific localization of Smad proteins 

both in crude mitochondrial fraction and in the low density mitochondrial associated membranes 

(MAMs) where, most likely, they could participate in complexes with other signaling partners. 

In conclusion this work highlights a quite unexplored signaling pathway for TGF-β, telling that 

Smad proteins can directly regulate mitochondrial calcium homeostasis.  

Although much remains to be unraveled, the notion that mitochondrial function could be 

modulated by highly specialized domains at the ER-mitochondria interface is today generally 

accepted. More and more efforts will be made in future and other experimental work will be 

necessary to make it completely understood, so doing  novel possibilities will be opened to 

modulate downstream pathological conditions linked to cellular proliferation or metabolism.  
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