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Abstract

In this thesis we investigate analytical and numerical methods to find a solution

of the radiative transfer equation in the presence of strong magnetic fields.

My Ph.D research theme is focused on those astrophysical objects which presum-

ably show an evidence of a strong magnetic field (B & 1012 G), with a particular

emphasis on the physics of X-ray spectral formation in these objects.

The radiative transfer equation which describes spectral formation is, in general,

rather complicated because of its integro-differential nature.

If we are interested in finding a solution, even numerically, we need to simplify

the problem.

For instance, we assume that stellar atmospheres can be represented, in first ap-

proximation, by a plane-parallel slab of fully ionized plasma of non-relativistic

thermal electrons with an external uniform magnetic field. Since we are inter-

ested in modelling the high energy photon emission coming from the interaction

with such medium, we assume also that the dominant radiative process which

modifies the X-ray photon spectrum is multiple inverse Compton scattering. We

propose two approaches to the study of this problem and we discuss the related

solutions.

In the first part of this thesis, we present an analytical and numerical study of

the radiative transfer problem in the presence of a strong uniform magnetic field

(B & 4.4 × 1013G) taking place in a medium filled by non-relativistic thermal

electrons in plane-parallel geometry.

Even after making some initial assumptions, the equation governing such system

is still an integro-differential equation. Additional conditions are required to han-

dle the radiative transfer equation the with separation of variable method. Then

the radiative transfer problem can be reduced to the solution of the equation

which has a diffusion operator for the energy variable and an integral operator

for the space variable.

Such an integro-differential equation was firstly derived and its solution was esti-

mated in 1988 by Lyubarskii in [8],[9]. We have solved numerically the equation

proposed by Lyubarskii and we have confirmed this solution using the analytical

methods.

The second part of the thesis is devoted to the description of a numerical al-

gorithm that we implemented for the resolution of radiative transfer equation,



when it reduces to a pure differential form. This is usually the case when the

Fokker-Planck (diffusion) approximation is applicable.

The algorithm is essentially based on relaxation methods and, generally, it solves

all inhomogeneous second order elliptic partial differential equations with vanish-

ing mixed derivatives. The numerical code gives a stable solution of the equation

when the system has reached its steady-state equilibrium.

We test the code solving the radiative transfer problem in the case of cylindrical

accretion onto a magnetised neutron star, when a combined effect of bulk and

thermal Comptonization takes place.

Finally, we implemented the algorithm in the X-ray spectral fitting package

XSPEC and we successfully fitted the X-ray spectra of the two Supergiant Fast

X-ray Transients (SFXTs) XTE J1739-302 and IGR J17544-2619, observed with

the Swift Gamma-ray Burst Telescope. Our model is then compared with other

XSPEC models we used during the X-ray spectral fitting procedure and we briefly

discuss possible implications on the geometry of these systems. I critically discuss

and compare the results presented in the thesis in the conclusion section.
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Abstract

Con la presente tesi di Dottorato vorrei presentare il lavoro partito durante la

mia tesi specialistica e sviluppatosi nel corso dei tre anni successivi. Il campo su

cui la mia ricerca è stata incentrata è lo studio analitico e numerico del problema

del trasporto radiativo in presenza di campi magnetici esterni forti (B & 1012G)

nell’ambito dell’Astrofisica delle Alte Energie.

In particolare, campi magnetici così forti sono stati associati ad alcune sotto-

classi di stelle di neutroni, dalle pulsar X (B ∼ 1012 G) alle cosiddette magnetar

(B & 1014 G).

In generale, l’equazione del trasporto radiativo che descrive le atmosfere stellari

è molto complicata da risolvere. La causa di questa complicazione intriseca è che

tale equazione si presenta in forma integro-differenziale. Trovare una soluzione,

seppure numerica, risulta essere nella maggioranza dei casi impossibile senza in-

trodurre delle semplificazioni.

Nel nostro caso specifico, assumiamo di poter approssimare l’atmosfera di una

stella di neutroni magnetizzata come uno strato di plasma completamente ioniz-

zato, composto di elettroni termici non relativistici, immerso in un forte campo

magnetico uniforme. Inoltre assumiamo che l’unico processo dominante sia lo

scattering Compton inverso multiplo (Comptonizzazione).

In questa tesi discuterò due tipi di approccio che abbiamo scelto per risolvere il

suddetto problema e mostreremo i risultati ottenuti in dettaglio.

La prima tipologia di approccio consiste in uno studio prima analitico e suc-

cessivamente numerico dell’equazione del trasporto radiativo per uno strato di

elettroni termici e non relativistici in campi magnetici forti (B & 4.4 × 1013G).

Pur avendo già introdotto delle semplificazioni per quanto riguarda la definizione

del sistema fisico che andremo a trattare, l’equazione rimane ancora integro-

differenziale. Tuttavia, tramite ulteriori ragionevoli assunzioni che spiegheremo

in dettaglio nel corso della tesi, riusciamo a risolvere tale equazione tramite il

metodo della separazione delle variabili. A questo punto, infatti, otteniamo un

sistema composto da un’equazione puramente differenziale per la variabile in-

dipendente energia e un’equazione puramente integrale per la variabile spaziale.

Questo approccio si deve intendere come un approfondimento ed una estensione

di quello proposto nel 1988 da Lyubarskii in [8],[9].

La seconda parte di questa tesi è stata dedicata alla descrizione dell’algoritmo nu-
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merico che abbiamo implementato allo scopo di ottenere soluzioni di equazioni del

trasporto radiativo, quando queste possono essere ridotte a equazioni puramente

differenziali. Questo è tipicamente il caso in cui l’approssimazione di diffusione,

più propriamente detta approssimazione di Fokker-Planck, é applicabile.

L’algoritmo è basato sui cosiddetti "relaxation methods", ovvero trattando alle

differenze finite le derivate, si lascia dunque evolvere una configurazione iniziale

data nella soluzione finale reale dell’equazione iniziale. Il codice, in generale, può

risolvere equazioni alle derivate parziali ellittiche del secondo ordine non omoge-

nee con derivate miste nulle.

Abbiamo testato il nostro codice sull’equazione del trasporto in caso accresci-

mento cilindrico su una stella di neutroni magnetizzata (B ∼ 1012 G), quando

siano presenti sia Comptonizzazione termica che dinamica dovuta ad un moto di

bulk non trascurabile degli elettroni del plasma. Il modello è stato implementato

nella piattaforma per l’analisi spettrale XSPEC e presto sarà reso pubblico per la

communità scientifica. Gli spettri che otteniamo dal nostro modello teorico li

abbiamo quindi utilizzati per fittare i dati del telescopio Swift dei prototipi di

Supergiant Fast X-ray Transients (SFXTs) XTE J1739-302 e IGR J17544-2619 e

lo abbiamo confrontato con altri modelli utilizzati per questo tipo di analisi.

In conclusione verranno discussi i due approcci e i risultati relativi ad entrambi.





1
Introduction

The phenomena of energy transfer by radiation in media, which can absorb, emit

and scatter radiation, is considered a very important subject since, at least, a

hundred years. This interest started with the first study of the solar radiation

absorption by the cloudless terrestrial atmosphere, but suddenly it became fun-

damental in many complicated phenomena involving a wide range of physical

fields, from the astrophysical problems to nuclear explosion, from rocket engines

to plasma generators designed for nuclear fusion. In particular, for astrophysi-

cists the radiative transfer theory is strongly related to the studies of the internal

structures of the stars and their atmospheres [1].

Most of the information we have about astrophysical objects are those coming

from the radiation emitted into space. Understanding the radiation characteris-

tics of the stellar atmosphere seems to be a crucial issue to be solved in order to

comprehend the actual nature of the stars.

Defining uniquely the theory of stellar atmosphere is already a problem, because

we have not a clear definition of crucial concepts like, for instance, stellar radius

and surface temperature. In fact, typically, we can identify two research topics:

stars’ interior and stellar atmosphere, with practically no clue about the transi-

tion region [5].

I concentrate my efforts on the radiative transfer problem in the context of stel-

lar atmosphere. Indeed, we will discuss in details two different and simplified

approaches to the equation of radiative transfer (RTE) for radiation travelling

through a magnetised medium.

In this Chapter, we introduce the basics of radiative transfer and we define some

fundamental quantities that will be useful for the rest of the thesis. In Chap. 2

and 3, we deal with radiative transfer problem for a plane-parallel slab of non-

relativistic thermal electrons in a strong magnetic field. We solve analytically and

numerically the integro-differential equation describing the system. In Chap. 4,

5 and 6, we describe a numerical algorithm (COMPMAG ) that solves the differen-

tial (’diffusion-like’) equation for Compton scattering in a magnetised accretion

− 1 −



Introduction to the Radiative Transfer

column, obtained through the inclusion of an escape term, that takes into account

the photon diffusion through the walls of the column. In Chap. 7 we report the

spectral fitting of the SFXTs XTE J1739-302 and IGR J17544-2619 with several

models including COMPMAG . Concluding, we discuss our results and compare

the two approaches.

1.1 Introduction to the Radiative Transfer

Generally speaking, solving the complete radiative transfer problem is strongly

troublesome. Indeed, several physical simplifications are needed in order to study

’realistic’ systems, which are

♦ The use of geometric optics approximation. It is assumed that the scale

of variation of the macroscopic system’s parameter greatly exceed the elec-

tromagnetic radiation wavelength. Under this assumption the radiation

travels along straight lines in the medium.

♦ The medium is assumed to be rarefied, which means that the particles do

not shade each other and there is no mutual interference between them.

Hence the total effect of electromagnetic interactions with a group of par-

ticles is the summation over all the interactions on each particle.

♦ All the diffraction effects at the electromagnetic field interaction with an

individual particle should be taken into account.

♦ The processes which can take place within a volume of medium are absorp-

tion, emission and scattering.

Before presenting the proper RTE derived under the assumptions we made above,

we should define some general quantities. In particular, we need to specify what

is our unknown dependent function.

Let us start considering that we are looking at radiation as made of straight lines.

Thus, we can define the concept of energy flux : the amount of energy that passes

through an element of area dA for a time dt should be F dAdt, where F is the

energy flux and, in general, it depend on the orientation of the element dA. Thus

the flux is measured in erg s−1 cm−2.

In order to give a more detailed description of the phenomenon, instead of consid-

ering the amount of energy carried by all the rays, let us focus our attention on

the fraction of energy carried by a "single" ray. Of course, a single ray should be

defined as the ensemble of rays that are infinitesimally closer (within a solid angle

dΩ) to the given ray, because individually they carry no energy. Therefore we

can write the energy crossing the element of area dA in time dt and in frequency

dν as

dE = Iν dAdt dΩ dν, (1.1)

where Iν is the specific intensity, that is given in erg s−1 cm−2 ster−1 Hz−1[3].

The specific intensity is the unknown function in RTE and it depends upon

− 2 −



INTRODUCTION

space, direction, frequency and time (seven independent variables). If the specific

intensity is independent of direction at a certain point, it is said to be isotropic

at that point. If Iν is independent both of space and direction, the radiation field

is homogeneous and isotropic. In this case the radiation and the matter are in

complete thermodynamic equilibrium at temperature T and the specific intensity

is given by the Planck function b ≡ B(ν, T )

I = B =
2hν3

c2
1

ehν/kT − 1
, (1.2)

where h is the Planck constant, c is the speed of light and k is the Boltzmann

constant [72]. The specific intensity can be related to the photon occupation

number. Let fα(x,p, t) be the photon distribution function and fα(x,p, t)d
3x d3p

be the number of photons of spin state α at time t, located in the phase space

volume d3x d3p. The amount of energy possessed by these photons is

dE =

2∑

α=1

hν fα(x,p, t) d
3x d3p. (1.3)

Recalling that the vector momentum of a photon satisfies p = (hν/c) k̂ with k̂

being the unit vector in the direction of propagation of photons and considering

that the space volume occupied by photons travelling along k̂ through the area

dA with normal n̂ is d3x = c(k̂ · n̂) dt dA and the corresponding element of

momentum volume is d3p = (h3ν2/c3) dΩ dν, comparing (1.1) and (1.3), we have

Iν(Ω, r, t) =

2∑

α=1

(
h4ν3

c2

)
fα(x,p, t). (1.4)

Since h3 is the fundamental unit of phase space volume, we define the occupation

number nα ≡ h3fα for each spin state α = 1, 2. Thus, the specific intensity can

be written as a function of the photon occupation number as follows

Iν(Ω, r, t) =

2∑

α=1

(
hν3

c2

)
nα(x,p, t). (1.5)

In the following Chapters of this thesis, we will treat the specific intensity as a

classical quantity, hence we drop the spin index α [69].

1.2 Equation of Radiative Transfer in a Nutshell

The radiation may, in principle, propagate both in free space and through matter

and RTE represents the energy conservation law for the radiation field. For

instance, if the ray of light is travelling through free space (no interactions), we

expect that the variation of specific intensity along the ray is zero.

However, if the ray passes across a medium, it can interact with it and the
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energy may change due to emission, absorption or scattering processes, leading

to a non-zero variation of the specific intensity. A complete derivation of the

RTE in Cartesian, polar and spherical coordinates can be found in a plethora

of fundamental books, such as Pomraning [4], Rybicki & Lightman [3], Shapiro

& Teukolsky [71], Mihalas [6], Peraiah [73]. Here, we would give the basic ideas

behind the formal derivation.

When the radiation travels across a medium we can write a qualitatively equation

of transport of the kind

∂Iν
∂t

+ c k̂ · ∇Iν = sources− sinks, (1.6)

which tells us that the variation in time and space of the specific intensity along

the direction of propagation k̂ is equal to the difference between the amount of

intensity gained by processes acting like sources (emission and scattering into the

direction k̂) and the intensity lost due to processes playing like sinks (absorption

and scattering off the direction k̂) [69]. The right hand side of equation (1.6)

should be characterised by several terms accounting for all the processes that

may happen throughout the medium. The classical general form of the RTE is

written per unit length and reads as

1

c

∂Iν
∂t

+ k̂ · ∇Iν =
1

4π
̺jν − ̺kabsν Iν − ̺kscν Iν + ̺kscν Φν(k̂,x), (1.7)

where we have defined

Φν(k̂,x) ≡
∮

Φν(k̂, k̂′)Iν(k̂′)dΩ′, (1.8)

which is the intensity weighted by the scattering probability density.

Note that, for instance, for isotropic scattering Φν = 1/4π and, thus, Φν = Jν
which is the mean specific intensity.

The other quantities we have introduced are: ̺ is the mass density per unit

volume of the gas, jν is its emissivity per unit mass, kabsν is its total absorption

opacity (i.e. the total absorption cross-section per unit mass), kscν is its total scat-

tering opacity and Φν(k̂, k̂
′) is the scattering probability density (from k̂′ to k̂).

Looking at the right hand side of equation (1.7), we can identify the physical

processes involved in the problem:

(i) emission: ̺jν represents the source term for radiation that comes from true

emission, where the 1/4π-factor accounts for the solid angle;

(ii) absorption: ̺kabsν Iν accounts for the amount of light removed from the

beam per unit length of photon travel due to true absorption;

(iii) scattering out k̂-direction: ̺kscν Iν is the quantity of radiation scattered out

the direction of the beam along k̂′;

(iv) scattering toward k̂-direction: ̺kscν Φν(k̂,x) is the integral contribution

given by all the radiation scattered into the beam from any other line of

sight.
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It is worth noticing that the emission coefficient has two components, namely jν =

jspontν +jstimν . While the spontaneous emission is, in almost all the cases, isotropic

in the local rest frame of the medium, the stimulated emission are coherent

with the absorbed radiation. Indeed, if the system is close to thermodynamic

equilibrium the coefficient for stimulated emission can be written as jstimν =

kabsν Iνe
−hν/kT , so it plays the role of a negative absorption term. Therefore it is

convenient to replace jν and kabsν with

j′ν = jν − jstimν , (1.9)

k′ν = kabsν

[
1− e−hν/kT

]
, (1.10)

where both these coefficients are isotropic [7]. Thus equation (1.7) reads as

1

c

∂Iν
∂t

+ k̂ · ∇Iν =
1

4π
̺j′ν − ̺k′νIν − ̺kscν Iν + ̺kscν Φν(k̂,x). (1.11)

Nevertheless in writing (1.11) we still neglect important physical aspects. In par-

ticular, we should consider the quantum statistics obeyed by photons. Photons

follow Bose-Einstein statistics, therefore the processes of emission and scattering

are increased depending on the number of photons which are in the final state

of the interaction. This sort of processes are called induced processes. Hence, if

P is the probability of an emission or a scattering process, then, including also

induced processes, the actual probability P ′ is P ′ = P (1 + n), where n is the

number of photons in the final state of the transition. Considering equation (1.5),

such probability becomes

P ′ = P

(
1 +

Iνc
2

2hν3

)
. (1.12)

The probability P ′ can be included in equation (1.11) as multiplicative factor for

the emission and scattering terms. Accounting for induced processes into RTE

provides a great hindrance for the resolution of the problem, since it involves

handling non-linear terms (quadratic in the specific intensity). The neglect of

this terms leads to the Wien, rather than the Planck function as the equilibrium

distribution for the specific intensity. For almost all the astrophysical application,

the induced processes are negligible in the RTE.

A further central assumption that holds in the majority of the studied cases in

RTE of stellar atmospheres is the so-called condition of Local Thermodynamic

Equilibrium (LTE). Such condition states that the properties of the medium are

dominated by atomic collisions which maintain thermodynamical equilibrium lo-

cally, while the radiation field even if it deviates significantly from the equilibrium

Planck distribution, does not affect this equilibrium. Therefore, we assume that

the particles of the medium have the equilibrium Maxwell-Boltzmann distribu-

tion and photons, having a shorter mean free-path, can escape experiencing a

departure from their equilibrium distribution which is the Planck distribution

without implying the breaking of LTE.

Both the above assumptions make easier the estimates of the absorption, emis-

sion and scattering coefficients of RTE.
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However, since the specific intensity depends upon seven independent variables

(r, ν,Ω, t), solving it analytically, even in the most simple geometric configuration

(plane geometry) in which the number of independent variables reduces to two (z

and µ), can be possible only in a few number of limiting cases. The characteris-

tic that makes the RTE so complicated is that is an integro-differential equation.

The most popular approach is to analytically approximate the frequency and an-

gle dependences of the specific intensity which are responsible for giving rise to

the integral terms.

In the first part of this thesis, we will discuss the easier formulation of RTE in

slab geometry in the presence of strong magnetic fields. In this case analytical

results may be obtained [8],[9]. We present a semi-numerical treatment of RTE

compared with the analytical approach. The second part is dedicated to a fully

numerical approach to a differential RTE in Fokker-Plank approximation for an

accretion column geometry in strong magnetic fields.

− 6 −



2
Radiative Transfer Problem in

Strong Magnetic Fields

Although there are several radiative processes that are involved in the study of

the phenomenon of radiation travelling through a medium, nonetheless we are

interested in modelling the physical situations where Compton scattering is the

dominant process.

In particular, we tackle the problem of Comptonization in strong magnetic fields.

The study of the scattering process of photons by electrons in strong magnetic

fields has begun a very hot topic since radio pulsars were discovered by Hewish

and Bell (1967) and cyclotron lines in X-ray pulsars [26] were detected. In fact,

from their observations we have the first evidences of magnetic fields of order

of 1012 G. Moreover indirect estimates seem to confirm in the last years that

there exist astrophysical objects with a magnetic field even larger (B & 1014−15

G). This class of objects, called "magnetars", is divided into two sub-classes,

namely Anomalous X–ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs)

[27]. The physics of radiative transfer in presence of a strong magnetic field is

rather complicated [71], and analytical or numerical solutions of the problem can

be found only under unavoidable simplified assumptions. Here, we consider the

case of a plane-parallel slab of thermal electrons having Thomson optical depth

τ0 and uniform temperature kTe, dipped into an strong magnetic field, oriented

along the normal of the plane. Our work can be considered an extension and

essential improvement of the analytical solutions found by Lyubarskii ([8] and

[9], hereafter L88) for this particular geometrical configuration.

In this Chapter we provide the fundamentals of standard Compton scattering

(zero external field), then we describe our approach to the strong magnetic field

case.
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2.1 Standard Compton Scattering

Compton scattering is an incoherent or inelastic scattering between an hot pho-

ton of energy E = hν and an electron, which is considered at rest. The collision

causes the electron to recoil and a new photon with energy E1 = hν1 is created

at angle θ respect to the incoming direction of the initial photon. The relation

between the initial and final energy is provided by the kinematics of the process

and it is

E1 =
E

1 + E
mec2

(1− cos θ)
, (2.1)

or, equivalently

λ1 − λ = λc(1− cos θ), (2.2)

where we have defined λc ≡ h/(mec) = 0.02426Å as the Compton wavelength for

the electron.

For photon energy hν ≪ mec
2, basically there is no photon energy exchange in

the rest frame of the electron (ERF) and the scattering can be considered still

elastic. In this range of energies, the differential cross section of the interaction

is the Thomson differential cross section for unpolarised photons

dσT
dΩ

=
1

2
r20(1 + cos2 θ), (2.3)

where r0 = e2/(mec
2) ≅ 2.8× 10−13 cm is the classical electron radius.

At energies hν & mec
2, quantum corrections become important and (2.3) is

replaced by the Klein-Nishina differential cross section [22]

dσ

dΩ
=
r20
2

E2
1

E2

[
E

E1
+
E1

E
− sin θ2

]
. (2.4)

In the limit of small photon energy exchange E1 ∼ E, it can be easily seen that

the formula (2.4) reduces to (2.3). Besides it is worth noticing that for increasing

photon energies, the cross section (2.4) considerably decreases.

However, we will concentrate for the rest of this thesis on the non-relativistic

regime (hν ≪ mec
2) and also on the situation in which the electron has a suf-

ficiently large amount of energy respect to the photon. Thus, the energy is

transferred from electrons to photons. This process is called inverse Compton.

In particular, not to digress to much from the aim of the thesis, we are inter-

ested in the case of multiple inverse Compton scatterings in slab of medium filled

by thermal electrons. In this physical framework, we should define a parameter

that describes how significantly will be changed the photon energy after passing

through the medium. This quantity is the so-called Compton y parameter. In

the non-relativistic regime, one can demonstrate that the Compton parameter is

yNR = 4
kT

mec2
Nsc, (2.5)

where 4kT/(mec
2) is the average fractional energy exchange per scattering and

Nsc is the mean number of scatterings. If y & 1 both the total photon energy
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and the spectrum will appears significantly different from the initial configuration,

instead for y ≪ 1 they will remain closer to their initial value and shape.

The equation which describes the emerging spectrum evolution of the radiation

due to multiple inverse Compton scatterings is the Boltzmann equation for the

photon phase space density n(ν)

1

c

∂n

∂t
(ν) =

∫
d3p

∫
dσ

dΩ
[fe(p1)n(ν1)(1 + n(ν))− fe(p)n(ν)(1 + n(ν1))] dΩ,

(2.6)

where fe is the electron phase space, that for a thermal plasma of non-relativistic

electrons is fe(E) = ne(2πmekT )
−3/2e−E/kT . The terms 1+n take into account

stimulated processes. Here n(ν) is assumed to be isotropic.

The Boltzmann equation is rather complicated to be solved without making some

assumptions and, for instance, in the relativistic regime, since the amount of en-

ergy exchanged ∆ ≡ (hν1−hν)/kT per scattering is large, the integro-differential

form of equation (2.6) cannot be simplified. This unfortunately happens in most

of the cases. However, in the non-relativistic regime and for small exchanged

energy, equation (2.6) can be expanded up to the second order in the small quan-

tity ∆, leading to a pure differential equation, called Kompaneets equation [51],

which is
∂n

∂tc
=

kT

mec2
1

x2
∂

∂x

[
x2(n′ + n+ n2)

]
, (2.7)

where x ≡ hν/kT is the dimensionless energy and tc = neσTc t is the dimension-

less time measured in units of mean time between each collision of photons off

electrons.

The aim of this thesis is that to propose two different approaches to the multiple

inverse Compton problem in a thermal strongly magnetised medium. The intro-

duction of an external strong magnetic field has several effects and, of course,

it constitutes a further complication of the problem. Not least, the fact that it

introduces a strong anisotropy which makes impossible to use the Fokker-Planck

(diffusion) approximation without making any assumption. We propose two al-

ternative treatments to the problem of Comptonization in strong magnetic fields.

In particular, in this Chapter and Chap. 3, we present a solution of a simplified

version of (2.6) for a plane-parallel medium in the presence of strong magnetic

field, which maintains its integro-differential nature.

2.2 Compton Scattering in Strong Magnetic Fields

The radiative processes that occurs in a magnetised plasma are several and the

kind of approach that we need to deal with them it is different depending on the

magnetic field strength. For instance, at relatively low magnetic fields B . Bc

processes like cyclotron absorption and emission or Compton scattering are dom-

inant. When the magnetic field is largely overcritical other processes will occur,

such as one-photon pair production and annihilation, photon splitting and bound

pair creation [23].
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A complete treatment of all the radiative processes that happens in a strong mag-

netised plasma would require a whole book, or, better, many books, itself. There-

fore, since we are interested in modelling the spectrum in the non-relativistic

regime and for photon energy well below Ec, the multiple inverse Compton scat-

tering is the dominant process [21].

The presence of a strong magnetic field entails significant deviation from the

canonical Thomson scattering theory [14], [15]. Moreover, relativistic effects

become important when the external magnetic field reaches the critical value

Bc = 4.413 × 1013 G so that hνg ≈ mec
2, where νg is the cyclotron frequency

which is given by the relation

hνc = ~
eB

mec
= 11.57B12 keV, (2.8)

where we have defined B12 = B/(1012G). Of course, a complete treatment of

Compton scattering in the proximity of a strongly magnetised stellar surface nec-

essarily involves quantum mechanical relativistic calculation of the cross section.

The scattering cross sections in the non-relativistic regime (B ≪ Bc) were firstly

derived in the Thomson limit, neglecting electron recoil, by Ventura [15] in 1979.

These calculations have proved to be fundamental for the understanding of the

approximated effects of the angle, frequency and polarisation dependence of the

cross sections in strong magnetic fields. Then, Herold [16] and, later, in 1983,

Melrose & Parle [17] provided relativistic expressions of the magnetic Compton

cross section, considering the possibility of the excitation of electrons, at least, to

the first Landau state (see Appendix D). The complete quantum electrodynam-

ics (QED) Compton cross sections were derived by Daugherty & Harding [18] in

1986 and Harding & Daugherty [19] in 1991, in which are included excitations of

the electrons to an arbitrary Landau state and they depend also on the incident

photon polarisation. Besides, in this case, is needed a proper treatment also of

the electron spin transition and it is worth taking into account the possibility

that electrons remain in an arbitrary excited state after the scattering (Raman

scattering).

However, we are not interested here in a full treatment of the problem, thus we

will consider much simpler approximations of the cross sections which are still

valid in the regimes of our interest. The initial, but crucial, simplification we

introduce is that the electrons are non-relativistic. In the non-relativistic regime

and for energies hν . hνg, we can assume that photons have two polarisation

modes both nearly linear.

The photons having the electric field ~E ‖ ~k ∧ ~B (where ~k and ~B are the pho-

ton momentum and the external magnetic field, respectively) are called ordinary

photons (O-photons), while those which have ~E ⊥ ~k ∧ ~B are named as the ex-

traordinary ones (E-photons).

The normal modes have significantly different opacity, thus the mode switch-

ing remarkably affects the radiative transfer. The magnetic Thomson scattering

differential cross-sections for the interaction with the plasma, under such approx-
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Figure 2.1: Schematic picture of a plane-parallel slab of thermal elec-

tron plasma. The magnetic field B is oriented along the

slab normal. ψ and ψ′ are the angles between the mag-

netic field and the ingoing and outgoing photon directions,

respectively.

imations, are:

dσO→O(µ, µ
′) =

3

4
σT
[
(1− µ2)(1− µ′2) +

1

2

(
ν

νg

)2

µ2µ′2]dµ (2.9)

dσE→E(µ, µ
′) =

3

8
σT

(
ν

νg

)2

dµ′ (2.10)

dσO→E(µ, µ
′) =

3

8
σT

(
ν

νg

)2

µ2 dµ′ (2.11)

dσE→O(µ, µ
′) =

3

8
σT

(
ν

νg

)2

µ′2 dµ′ (2.12)

where µ = cosψ and µ′ = cosψ′ are the cosines of angles between the direction

of the magnetic field and the direction of the motion of photons before and after

the scattering, respectively, while σT = 6.6524× 10−25cm2 is the Thomson cross-

section.

Since we are interested in studying the spectral shape of the radiation induced

by Comptonization in strong magnetic fields, we assume that all the initial seed

photons have ordinary polarisation. Taking into account a starting non-zero

amount of extraordinary seed photons would lead to a complete dominance of

them in the emerging spectrum, because they escape almost freely from the

medium, having a much smaller cross section, while the ordinary photons diffuse

across the slab.

Therefore, we will consider hereafter as E-photons exclusively those originated

from the fraction of O-photons that have changed their polarisation.

If we consider a strong magnetic field of order of B ≈ 1014G, the second term in

(2.9) becomes negligible for energies up to MeV, so that the study of the spectral
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(a)

(b)

Figure 2.2: Panel (a): The solid line is the cross-section of O-photons

(2.9) in units of Thomson cross section as a function

of µ. Panel (b): The solid and dashed lines are the

cross-section of the mode-switching from O-photons to

E-photons (2.11) in units of Thomson cross section as a

function of µ for hν = 50, 100 keV.

formation in the range below the electron-positron annihilation line (511 keV) is

no longer affected by it. However, we will only present spectra up to ∼ 100 keV

in order to show clearly our results, even if would be safer not to exceed a few

tens of keV to be surely in the non-relativistic regime.

In this range, the energy exchange with plasma for photons of the ordinary mode

is not sensitive to the intensity of the magnetic field. On the other hand, the

dependence on magnetic field strength is strong for the propagation of E-photons

and for mode switching. In Fig. 2.2, we present a plot of cross-sections (2.9) and

(2.11). In Panel (a), the solid line refers to the first order approximation of the

O-photons cross-section, in which we are neglecting the second term in (2.9).

In Panel (b) the solid and dashed lines represent the cross-section of the mode-

switching O → E (2.11) for energies, hν = 50, 100 keV, respectively. Although

the cross-section of the mode-switching is evidently suppressed by magnetic field,

it increases rapidly as energy increases, and for energies & 100 keV, we cannot
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consider still valid the approximation we have made on cross-section (2.9) and

we need a proper relativistic approach to the problem, but this is outside of the

purpose of this thesis.

2.3 Solution of RTE in a Magnetised Medium

We study the case of a plan-parallel configuration of thermal plasma with uni-

form temperature distribution. The homogeneous integro-differential form of the

radiative transfer equation for the ordinary mode, neglecting induced processes

and considering inverse Compton as the leading process, is given by

µ
∂

∂r
nO(µ, ν, ~r) =

∫
dp dσO→O{nO(µ′, ν′, ~r)Ne(p

′)

− nO(µ, ν, ~r)Ne(p)} − σO→EN̄e nO(µ, ν, ~r) (2.13)

where N(ǫ) is the electron distribution function, that we assume to be the one-

dimensional Maxwellian distribution, N̄e is the integrated Maxwellian. In order

to find an approximate solution of the integro-differential equation (2.13), we

expand both the occupation number and the Maxwellian electron distribution

in Taylor series up to second order in ∆ν and ∆ǫ, respectively [3]. After term

collection, we may write equation (2.13) in a more compact form as

µ
∂

∂r
nO(µ, ν, ~r) =− (σOO + σOE) N̄e nO(µ, ν, ~r)+

+ N̄e

∫
dσOO(1 + Â)nO(µ

′, ν, ~r), (2.14)

where

Â = 〈(∆ν)2〉
[
1

2

∂2

∂ν2
+

h

kT

∂

∂ν
+

1

2

(
h

kT

)2
]
+ 〈∆ν〉

[
∂

∂ν

h

kT

]
. (2.15)

Note that, where an external magnetic field is present, even after the Taylor ex-

pansion, equation (2.13) does not reduce to a purely differential equation, like in

the general case reported in Par. 2.2.

Following the arguments reported in L88, it worth noticing that the Comptoniza-

tion parameter, which in strong magnetic fields is yNR = (2/15)(4kT/mec
2)Nsc,

is considerably smaller than in the unmagnetised case. Thus, we need to assume

that our system is optically thick (τ ≫ 1), so that the number of scatterings may

be large enough to make the Comptonization process effective.

The condition of large optical depth ensures us that multiple scattering occurs

and, as we will discuss briefly, a sort of diffusion approximation can be applied.

Indeed, we cannot simply use the usual Fokker Planck approximation (diffusion

approximation), because of the intrinsic anisotropic nature of the problem. Due

to the presence of the magnetic field, we should consider that photons may es-

cape, even from large optical depths, without having done a sufficiently number

− 13 −



Solution of RTE in a Magnetised Medium

of scatterings, if they are moving at small angles ψ < τ−1 to the field [30]. The

cross sections (2.9) and (2.11) are, indeed, angular dependent, as we have seen

in Fig. 2.2 and discussed in Par. 2.3. Since both the probability of scattering

in this range of angles and the probability of diffusion escape scale as 1/τ2, we

should take into account the amount of escaping photons in the overall energy

balance. Clearly, only the photons which move at sufficiently large angles to the

field undergo enough number of scatterings to be effectively Comptonized, i.e.

their spectrum will deviate substantially respect to the Planck distribution. At

such large angles the optical depth τ is as large as we have supposed above, and

we can assume, in first approximation, that Comptonized photons diffuse almost

isotropically. Therefore, under the conditions of large angles and large optical

depths, we neglect the anisotropic part δn of the occupation number n = S+ δn,

where we have defined

S(ν, r) =
3

8π

∫
(1− µ2) nO(ν) dΩ, (2.16)

which is the angle-averaged occupation number. In fact, in this regime the rela-

tion ∫
f(
−→
k )δn d

−→
k ≪ S

∫
f(
−→
k )d

−→
k , (2.17)

with f(
−→
k ) is a bounded function of the angles, holds. Changing the space variable

from r to τ =
∫ R

0
N̄e σOO dr and averaging over angles following the definition

(2.16), the equation for the isotropic part S(ν, τ) reads as

8π

3

[
4

3
S(ν, τ)−

∫ τ0

−τ0

dτ ′
∫ 1

−1

dµ
(1− µ2)2

|µ| e−
(1−µ2)

|µ| |τ−τ ′|S(ν, τ ′)

]
=

+

∫ 1

−1

dµdµ′(1− µ2)3(1− µ′2)Â

∫ τ0

−τ0

dτ ′

|µ| e
− (1−µ2)

|µ| |τ−τ ′|nO(µ
′, ν, τ ′)

− 3

8

(
ν

νg

)2
∫ 1

−1

dµ(1− µ2)2
∫ τ0

−τ0

dτ ′

|µ| e
− (1−µ2)

|µ| |τ−τ ′|nO(µ, ν, τ
′). (2.18)

Under the assumptions of τ ≫ 1 and (1 − µ2)/|µ| & 1, if we are assuming that

the occupation number is a sufficiently smooth function of τ , we can use the

approximated identity

(1− µ2)

|µ|

∫
e−

(1−µ2)
|µ| |τ−τ ′|n(τ ′) dτ ′ ≈ n(τ), (2.19)

because the integrand function e−
(1−µ2)

|µ| |τ−τ ′|(1 − µ2)/|µ| in this regime can be

approximated by a δ(|τ − τ ′|) function. Hence equation (2.18) may be written as

4

3

[
S(ν, τ)−

∫ τ0

−τ0

dτ ′K(|τ − τ ′|)S(ν, τ ′)
]
=

2

15

kT

mec2
1

ν2
∂

∂ν
ν4
[
∂

∂ν
S(ν, τ) +

h

kT
S(ν, τ)

]
− 1

4

(
ν

νg

)2

S(ν, τ), (2.20)
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where we have defined the kernel K(|τ − τ ′|) of the equation as

K(|τ − τ ′|) = 3

4

∫
(1− µ2)2

|µ| e−
(1−µ2)

|µ| |τ−τ ′|dµ. (2.21)

Equation (2.20) may be handled with the separation of variable method. Indeed,

on the left hand side of (2.20) there is an integral operator depending only on

space, while on the right hand side we recognise the characteristic differential

Comptonization operator. Defining the dimensionless energy x ≡ hν/kT , we

seek a solution of the form S(x, τ) ≈ n(x, τ) = s(τ)Z(x). Substituting it into

equation (2.20) and, introducing a source distribution of seed O-photons S(x),
we obtain the system

1

x2
d

dx
x4
(
d

dx
Z(x) + Z(x)

)
− (lx2 + γ)Z(x) = S(x), (2.22)

(
1− 3

4
λ

)
s(τ) =

∫ τ0

−τ0

dτ ′K(|τ − τ ′|)s(τ ′), (2.23)

where we have defined the quantities

γ =
15

2

mec
2

kT
λ and l =

15

8

mec
2

kT

1

xg2
. (2.24)

Equation (2.22) is a "Kompaneets-like" diffusion equation, without the Z2-term

accounting for the induced processes, plus a term containing the magnetic field

dependence, via xg, which is the dimensionless cyclotron energy of the electron.

Equation (2.22) can be solved using the Green’s function convolutional method

(see Par. 2.5).

Equation (2.23) is instead an homogeneous Fredholm equation of the second

kind (eigenvalues equation) with the logarithmically singular kernel (2.21). The

solution of equation (2.23) is not straightforward, since the standard integration

techniques cannot handle with a kernel singularity, even if it is moderate. We

adopt an algorithm suggested by Atkinson & Shampine [31] (see Par. 2.4), which

is thought specifically for kernels with a "quasi"-smooth behaviour.

The overall solution of the radiative transfer problem for the isotropic part of

the O-photon occupation number described by the system (2.22)-(2.23) should

be found in the form

n(x, τ) =
∞∑

k=1

nk(x, τ) =
∞∑

k=1

cksk(τ)Zk(x) , (2.25)

where sk(τ) is the kth-eigenfunction of equation (2.23) and Zk(x) is the solution

of equation (2.22) for the kth-eigenvalue. The coefficients ck are the Fourier

coefficients of the series, obtained considering an exponential spatial distribution

f(τ) = e−τ/2τ0 of photons as initial condition.
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2.4 Solution of the Eigenvalue Problem

The space problem is an homogeneous Fredholm integral equation of the second

kind (eigenvalue problem), namely

Lτs(τ) ≡
∫ τ0

−τ0

K(|τ − τ ′|)s(τ ′)dτ ′ = σs(τ) (2.26)

where σ =
(
1− 3

4λ
)
. The kernel of the equation (2.26) is integral kernel

K(|τ − τ ′|) = 3

4

∫ 1

0

(1− µ2)2

µ
e−

(1−µ2)
µ

|τ−τ ′|dµ. (2.27)

Even if the kernel has a logarithmic singularity in τ = τ ′, the integral operator

Lτ is still compact. The property of compactness becomes evident integrating

the kernel over τ ′

∫ τ0

−τ0

K(|τ − τ ′|)dτ ′ = 3

4

∫ τ0

−τ0

∫ 1

0

(1− µ2)2

µ
e−

(1−µ2)
µ

|τ−τ ′|dµ dτ ′. (2.28)

Performing the integration over τ ′, we obtain an analytical expression for the

integrand function

∫ τ0

−τ0

K(|τ − τ ′|)dτ ′ = 3

4

∫ 1

0

(1− µ2)

[
2− e−

(1−µ2)
µ

(τ0+τ) − e−
(1−µ2)

µ
(τ0−τ)

]
dµ .

(2.29)

The integrand is smooth and the integral is finite, so the integral operator Lτ is

a compact operator, thus it is bounded and it has a complete set of eigenvalues

and eigenfunctions (see [25]).

2.4.1 Numerical Treatment of the Singularity

Even though in principle a logarithmic singularity is integrable, we have to pay

attention to the behaviour of the kernel at the slab boundaries. In order to do

so, we study analytically the kernel for t = |τ − τ ′| → 0. Expanding the kernel

around t, we find

K(t) =
3

4

∫ 1

0

(1− µ2)2

µ
eµte−

t
µ dµ

≈ 3

4

∫ 1

0

(1− µ2)2

µ

[
1 + µt+

(µt)2

2!
+ . . .

]
e−

t
µ dµ . (2.30)

If we change the variable µ into 1/y, it is possible to write the kernel as a sum

of exponential integrals (see Abramovitz & Stegun [2]), that for Re(t) > 0, are

defined as

En(t) =

∫ ∞

1

e−yt

yn
dy . (2.31)

− 16 −



RADIATIVE TRANSFER PROBLEM IN STRONG MAGNETIC FIELDS

Figure 2.3: The exponential integrals En(t), for n = 0, 2, 4, 6, 8 as

defined in Abramovitz & Stegun [2]. The solid line is

the exponential integral with n = 0, the smaller is the

dashing the higher is the index n.

The exponential integrals En(t), if | arg t| < π, can be written also in the form

[24]

En(t) =
(−t)n−1

(n− 1)
[− log t+ ψ(n)]−

∞∑

m=0
m 6=n−1

(−t)m
(m− n+ 1)m!

(2.32)

where

ψ(1) = −γ, ψ(n) = −γ +
n−1∑

m=1

1

m
(n > 1) (2.33)

and γ = 0.57721... is Euler’s constant. We note that (2.32) may be write more

concisely as

En(t) = − log t P (t) +Q(t), (2.34)

where P (t) is a polynomial and Q(t) is a series around t. Therefore the kernel

(2.27) takes the form

K(|τ − τ ′|) = 3

4

[
− log(|τ − τ ′|) +Q(|τ − τ ′|)

]
, (2.35)

in which P (|τ − τ ′|) = 1. In this explicit form, the logarithmic singularity has

been separated from the regular part Q(|τ − τ ′|). Whereas the smooth part can

be easily treated, the integration of the logarithmic term requires more attention.

Indeed, a direct integration over the logarithmic part of (2.35) is not straightfor-

ward to perform with the standard analytical and numerical integration tech-

niques (see references from [33] to [38] and Appendix A).

2.4.2 Atkinson & Shampine Method

Therefore, we adopt the algorithm described by Atkinson & Shampine ([31], here-

after AS07). They present a numerical MATLAB program, called Fie, which is

taught for solving numerically Fredholm integral equations of the second kind
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on a interval that can be either finite [a, b] or semi-infinite [0,∞). The authors

considered not only kernels K(s, t) that are smooth functions on R = [a, b]× [a, b],

but also kernels having a modest singularity behaviour across the diagonal s = t.

Fie is designed to treat different kind of rather smooth kernels, which are the

followings

• Smooth The kernel K(s, t) is smooth on all R. Simpson’s rule∗ is used

to discretize the integration, then the Nyström interpolant provides an

approximate solution on all the interval [a, b].

• Discontinuous The kernel has a discontinuity in a low-order derivative

across the diagonal. Fie uses a modified Simpson’s rule which gives the

same rate of convergence as the canonical Simpson’s rule applied to a

smooth kernel.

• Logarithmic Singularity The kernel can be written as

K(s, t) = L(s, t) log |s− t|,

where L(s, t) is a smooth function on all R. Fie handles the singular be-

haviour across the diagonal, using product integration. A graded mesh has

been chosen to deal with the lack of differentiability of the solution at the

end of the interval.

• Algebraic Singularity The kernel can be expressed as follows

K(s, t) = L(s, t)/|s− t|α,

with L(s, t) which is a smooth function on all R and 0 ≤ α ≤ 1. The

singularity is handled like in the logarithmic case.

The third class of kernels considered in AS07 has the same singular behaviour

which (2.35) has, therefore the algorithm is applicable to our case.

As we see from (2.35), the smooth function L(s, t) for our kernel is a constant.

Since we have already shown that the kernel K(s, t) can be split into two terms,

and each of them can be handled with the same generalised quadrature rule

because of the compactness property of (2.35), we describe the algorithm consid-

ering only the logarithmic term implicitly implying that the non-singular term

will be treated in the same way.

∗The Simpson’s rule is a scheme for the approximation of the integral of a function f using

quadratic polynomials, instead of straight lines used in the trapezoidal rule. Simpson’s rule

also corresponds to the 3-point Newton-Cotes quadrature rule. In particular, assuming that

the function f is known at points x0, x1 and x2 equally spaced by the distance h and defining

fn = f(xn), then the Simpson’s rule says that

∫
x2

x0

f(x)dx =

∫
x0+2h

x0

f(x)dx ≈
1

3
h(f0 + 4f1 + f2) .

The error in approximating an integral by Simpson’s rule is (1/90)h5|f (4)(ξ)|, where ξ is a

number between a and b.
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The modified quadrature rule used by AS07 is a product Simpson’s rule (see

Appendix B). Mildly singular kernels, as long as they conserve compactness, are

easily integrated with this method. In addition, since integral equations like

λx(s)−
∫ b

a

log |s− t|x(t) dt = f(s), a ≤ s ≤ b, (2.36)

may have solutions x(s) which cannot be necessarily smooth at the boundaries of

the integration interval, AS07 introduced a mesh of integration points {t0, . . . , tn}
which is graded near the integration limits, a and b, where the behaviour of the

solution can be critical. The index n is always chosen to be divisible by 4, and

sufficiently large, in order to guarantee the existence of a unique solution of the

problem. The solution is requested to satisfy the convergence criterion for n→ ∞

||x− xn||∞ ≤ c ||K x−Kn x||∞ (c > 0), (2.37)

where we have defined the integral operators

K x =

∫ b

a

log |s− t|x(t) dt , (2.38)

and Kn is its approximated form, that we will describe later on. Inequality (2.37)

holds if the separation between the mesh points is chosen properly. Roughly

speaking, the grading of the mesh should be intensified near the critical points

for the integration. In particular, we want that the error ||x − xn||∞ should be,

at least, of order O(n−p) with p = 3. The general prescription about how to

calculate the nodes of the mesh given by AS07 is the following: starting from the

points with odd index j = 1, 3, . . . , n− 1, we have

tj =
1

2
(tj−1 + tj+1), (b− tn−j = tj − a). (2.39)

The points with even index are instead defined as

tj = a+
b− a

a

(
2j

n

)q

,

tn−j = b+ a− tj , j = 0, 2, 4, . . . , n/2, (2.40)

where q ≥ 1 is the grading parameter. If the convergence is faster enough, as in

this case, q = 3 ensures us that ||K x−Kn x||∞ = O(n−3). The general integration

scheme, suggested by AS07, says that for any triplet of points {tj−1, tj , tj+1} with

j odd, the solution x(t) is approximated with a piecewise quadratic interpolation
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function x̃j(t), so that the integral K x(t) becomes

K x(t) ≡
∫ b

a

log |s− t|x(t) dt =
n−1∑

j=1,
j odd

∫ tj+1

tj−1

log |s− t|x(t) dt

≈
n−1∑

j=1,
j odd

∫ tj+1

tj−1

log |s− t| x̃j(t) dt

=

n∑

k=0

Mk(s)x(tk) ≡ Kn x(s), (2.41)

where wk(s) are the weights of the interpolating function over each subinterval.

Thanks to the property of compactness of both terms of (2.35), we use the same

mesh to calculate the non-singular part of the kernel too and, thus, we define

the total weight matrix Mk(τ) =MS
k +MNS

k . The solution is found solving the

algebraic equation that for each eigenvalue σ is the following

σx(τ) =

n∑

k=0

Mk(τ)x(τk), −τ0 < τ < τ0 . (2.42)

To calculate the weight matrix. We need to define three kind of integrals. Con-

sidering the quantity hj = tj+1 − tj = tj − tj−1 for odd j, we have

I1,j =

∫ tj+1

tj−1

γ1,j(t) log |t− s|dt,

I2,j =

∫ tj+1

tj−1

γ2,j(t) log |t− s|dt,

I3,j =

∫ tj+1

tj−1

γ3,j(t) log |t− s|dt, (2.43)

where we have defined the product functions

γ1,j(t) =
(t− tj)(t− tj+1)

2h2j
,

γ2,j(t) =
(t− tj−1)(t− tj+1)

−h2j
,

γ3,j(t) =
(t− tj−1)(t− tj)

2h2j
. (2.44)

The function γj(t) x̃j(t) which interpolates better the solution x(s) is a linear

composition of the γ-functions

xj(t) = γj(t)x̃j(t) = a1,jγ1,j(t) + a2,jγ2,j(t) + a3,jγ3,j(t). (2.45)

The γ-functions should fulfil the conditions γj(tj−1) = a1,j , γj(tj) = a2,j , and

− 20 −



RADIATIVE TRANSFER PROBLEM IN STRONG MAGNETIC FIELDS

Figure 2.4: Numerical representation of the kernel (2.35) with t =

|τ − τ ′|. The dotted line is the singular logarithmic part

of the kernel. The dashed line describes the smooth re-

maining term of the kernel. The solid line is the sum of

the two contributions.

γj(tj+1) = a3,j . Considering then each triplet of nodes for j odd, and calling

xj = x̃j(tj), we have

K x(s) ≈
n−1∑

j=1, j odd

∫ tj+1

tj−1

log |s− t| γj(t)xj dt

=

n−1∑

j=1,
j odd

∫ tj+1

tj−1

log |s− t|
{
a1,jγ1,j(t) + a2,jγ2,j(t) + a3,jγ3,j(t)

}
xj dt

=
n−1∑

j=1,
j odd

{
a1,j xj−1 I1,j + a2,j xj I2,j + a3,j xj+1 I3,j

}
. (2.46)

The explicit form of the sum is the following

K x(s) ≈ a1,1 I1,1 x0 + a2,1 I2,1 x1 +
(
a3,1 I3,1 + a1,3 I1,3

)
x2

+ a2,3 I2,3 x3 +
(
a3,3 I3,3 + a1,5 I1,5

)
x4 + . . .

+ · · ·+
(
a3,n−3 I3,n−3 + a1,n−1 I1,n−1

)
xn−2

+ a2,n−1 I2,n−1 xn−1 + a3,n I3,n xn . (2.47)

If we define the weight matrix for the singular part of the kernel as

MS
kj =





a1,1 I1,1(tk) j = 0

a2,j I2,j(tk) j odd
[
a3,j−1 I3,j−1(tk) + a1,j+1 I1,j+1(tk)

]
j even, j 6= 0, n

a3,n−1 I3,n−1(tk) j = n,
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(a)

(b)

Figure 2.5: Panel (a): The figure presents the analytical expressions

of the auxiliary integrals for small |β| (2.51). Panel (b):

Same picture of Panel (a) but for large |β| (2.53).

we finally obtain the algebraic system

n∑

j=0

Mkjxj = σkxk , (2.48)

where the matrix Mkj is the sum of MS
kj which are the weights for the singular

part of the kernel, and MNS
kj , that accounts for the smooth part of K(|τ − τ ′|).

The matrix MNS
kj is calculated applying the same algorithm without loss of gen-

erality. The integrals I1,j , I2,j , I3,j can be rewritten using the auxiliary integrals

method [32], which consists in replacing the actual integration function with a

suitable auxiliary (primitive function) that facilitates the integration. In terms
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of auxiliary integrals, the integrals (2.43) reads as

I1,j =
1

3
hj log hj +

hj
2

[I2(β)− I1(β)] ,

I2,j =
4

3
hj log hj + hj [I0(β)− I2(β)] ,

I3,j =
1

3
hj log hj +

hj
2

[I2(β) + I1(β)] , (2.49)

where we have defined as auxiliary integrals

Ik(β) =

∫ 1

−1

uk log |u− β|du, k = 0, 1, 2 (2.50)

with β = (s− tj)/hj . These integrals, in the case of relatively small |β|, have the

analytical expressions

I0(β) = (1− β) log |1− β|+ (1 + β) log |1 + β| − 2 ,

I1(β) = −β +
1

2
(1− β2) log

∣∣∣∣
1− β

1 + β

∣∣∣∣ ,

I2(β) = −2

9
(1 + 3β2) +

1

3
(1− β3) log |1− β|+ 1

3
(1 + β3) log |1 + β|. (2.51)

However, for graded mesh |β| can be quite large and we need more sophisticated

expressions for auxiliary integrals to deal with large |β| properly. Equation (2.50)

becomes

Ik(β) =

∫ 1

−1

uk
{
log |β|+ log

∣∣∣∣1−
u

β

∣∣∣∣
}
du. (2.52)

Expanding the term log |1− u/β| in Taylor series, for |β| > 10, we use the ap-

proximations given by AS07, which are

I0(β) ≈ 2 log |β| − 2

{
1

6β2
+

1

20β4
+

1

42β6
+

1

72β8
+

1

110β10
+

1

156β12

}
,

I1(β) ≈ −2

{
1

3β
+

1

15β3
+

1

35β5
+

1

63β7
+

1

99β9
+

1

143β11

}
,

I2(β) ≈
2

3
log |β| − 2

{
1

10β2
+

1

28β4
+

1

54β6
+

1

88β8
+

1

130β10
+

1

180β12

}
.

(2.53)

Each of these expressions accounts for an error which is negligible.

2.5 Green’s Function of the RTE Energy Operator

The energy problem (2.22) is an inhomogeneous differential equation or, to be

more specifically, a confluent hypergeometric equation which is typically solved

with the Green’s function method. After collecting terms, we obtain a more

explicit form of (2.22), which is

x2
d2Z

dx2
+
(
4x+ x2

) dZ
dx

+
(
4x− lx2 − γ

)
Z =

δ(x− x0)

x3
, (2.54)
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where, following the Green’s function prescription, the source term S(x) on the

right hand side has been replaced by a delta function δ(x − x0), divided by x3,

representing a monochromatic source of injected photons. The solution of the

equation is given by the Green’s function which has the general form

G(x, x0) =
̺(x0)

x30p(x0)w[Z1(x0), Z2(x0)]

{
Z1(x)Z2(x0), x ≤ x0,

Z1(x0)Z2(x), x ≥ x0,
(2.55)

where ̺(x0) is an integrand factor which allows to write the correspondent ho-

mogeneous equation of the (2.54) in the self-adjoint form

[p(x)Z ′(x)]′ + q(x)Z(x) = 0, (2.56)

and w[Z1(x0), Z2(x0)] is the wronskian of the two solutions of (2.56).

The integrand factor is defined as

̺(x) = e

∫
b(x)
a(x)dx. (2.57)

For equation (2.54) a(x) = 1 and b(x) = 1+4/x, thus, in our case, the integrand

factor is ̺(x) = x4ex. Once that the self-adjoint form of (2.54) has been found,

we should expect for a solution in the form Z(x) = x−2e−x/2W (x) [66] where

W (x) are the Whittaker functions [2]. The homogeneous equation then becomes

d2W

dx2
+W

[
− (γ + 2)

x2
+

2

x
− l − 1

4

]
= 0. (2.58)

Defining z = x
√
1 + 4l we obtain

d2Wz

dz2
+Wz

[
− 1

z2

(
1

4
− 9

4
− γ

)
+

1√
1 + 4l

2

z
− 1

4

]
= 0, (2.59)

which, after some algebra, explicitly becomes the Whittaker equation

d2Wz

dz2
+Wz

[
1

z2

(
1

4
−m2

)
− 1

4
+
k

z

]
= 0, (2.60)

where

k =
2√

1 + 4l
and m =

√
9

4
+ γ. (2.61)

The two linearly independent solutions of equation (2.60) are

Mk,m(z) = e−
z
2 zm+1/2

1F1

(
1

2
+m− k, 1 + 2m, z

)
,

Wk,m(z) = e−
z
2 zm+1/2U

(
1

2
+m− k, 1 + 2m, z

)
. (2.62)

The explicit form of the solutions of the homogeneous equation (2.54) are then

the following




Z1(x) = e−
x
2 x−2e−

x
2

√
1+4l(x

√
1 + 4l)m+1/21F1

(
1

2
+m− k, 1 + 2m,x

√
1 + 4l

)
,

Z2(x) = e−
x
2 x−2e−

x
2

√
1+4l(x

√
1 + 4l)m+1/2U

(
1

2
+m− k, 1 + 2m,x

√
1 + 4l

)
,

(2.63)
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and their associated wronskian is

w [Z1(x), Z2(x)] = e−xx−4
√
1 + 4l

Γ(1 + 2m)

Γ(1/2 +m− k)
. (2.64)

Thus, the Green’s function of equation (2.54) is given by

G(x, x0) =
e

x0
2 (1−

√
1+4l)

x0 Γ(2α+ 4)
×





1F1(α+ 2− k, 4 + 2α, x
√
1 + 4l)e−

x
2 (1+

√
1+4l)

(
x

x0

)α+3

I(x0, α, l), x ≤ x0,

1F1(α+ 2− k, 4 + 2α, x0
√
1 + 4l)e−

x0
2 (1+

√
1+4l)

(
x

x0

)−α

I(x, α, l), x ≥ x0,

(2.65)

where the function

I(α, x, l) =

∫ ∞

0

(x
√
1 + 4l + t)

α+1+ 2√
1+4l t

α+1− 2√
1+4l etdt, (2.66)

is evaluated using the steepest descend method (see Appendix C), and α is the

spectral index

α = −3

2
+

√
9

4
+ γ, (2.67)

which defines the final shape of the spectrum. The spectral index depends on

the eigenvalue of the space equation (2.23) through the parameter γ which is

proportional to λ as described in the first relation in (2.24), therefore we have a

Comptonization mode for each eigenvalue. Once we get the Green’s function of

equation (2.54), it is possible to obtain the O-photons emerging Comptonization

spectrum for a proper seed photon energy distribution S(x) through the integral

convolution

ZO,k(x) =

∫ ∞

0

GO(x, x0, λk)S(x0) dx0, (2.68)

which is, indeed, the solution of (2.22) for a single eigenvalue λk of equation

(2.23).

2.6 Angular Distribution and Specific Intensity

The solution of the system (2.22)-(2.23) for a particular eigenvalue is

nk(ν, τ) = sk(τ)Zk(ν), (2.69)

thus we can write the specific intensity I = hν3n/c2 as a series of products of

two functions with separated dependences on the independent variables, energy
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and space. Therefore, apart from dimensional factors and using the solutions

obtained from (2.22)-(2.23), the specific intensity is

I(x, µ, τ) ≈
∞∑

k=1

ckJk(µ, τ)Zk(x), (2.70)

where Z(x) is given by (2.68), in which we dropped the label "O" for the sake

of clarity, while the angular distribution is related with the eigenfunctions sk(τ),

solutions of the space problem (2.23), as described in the following relation

Jk(µ, τ) =





(1− µ2)

∫ τ

−τ0

e−
(1−µ2

µ
(τ−τ ′)sk(τ

′)dτ
′

µ , µ > 0,

−(1− µ2)

∫ τ0

τ

e
(1−µ2

µ
(τ ′−τ)sk(τ

′)dτ
′

µ , µ < 0.
(2.71)

The coefficients ck are calculated as the projection of the eigenfunctions over the

spatial distribution of the source, i.e.

ck =

∫ τ0

−τ0

sk(τ
′)e−

τ′
2τ0 dτ ′, (2.72)

where we have assumed that the initial spatial distribution is exponential.

However, we should recall that in equation (2.13) we have included also the term

which accounts for mode-switching from O to E, thus we should calculate the

contribution to the total specific intensity provided by the population of extraor-

dinary photons which has been created by this mechanism.

After having performed the angular integration which leads to equation (2.18), we

notice that the term accounting for the creation of E-photons is angle-independent.

Thus, the E-photons originated via mode-switching O → E from a fraction of the

O-photons, can be considered isotropically distributed, namely IE = ZE , where

ZE is their energy flux defined as (see L88)

ZE(x) =
1

4

(
x

xg

)2 n∑

k=1

ZO,k(x)

∫ τ0

−τ0

sk(τ)dτ, (2.73)

with ZO,k(x) as calculated in (2.68). The flux of E-photons turns out to be, under

this very rough approximation, a small fraction respect to the sum of Zk,O over

all k, and, besides, further modulated by the sum of the eigenfunction integrals

and suppressed by the magnetic field.
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Emerging Spectra in Strong

Magnetic Field

In Chap. 2, we have discussed the details which lead us to the solution of the

radiative transfer problem for a plane parallel slab of thermal plasma in presence

of a strong magnetic field. We have obtained the solution of the radiative transfer

equation through separation of variables under the assumptions of large angles

θ and large optical depth τ . We have solved a system of two equations resulting

from the separation of variables and we have found the overall solution as an

infinite series. Each term of the series is a product of two functions with separated

dependences on energy and space, which are solutions of the two equations of the

system.

In this Chapter we present the solution of the two equations, separately, and the

entire solution of the problem. Then, we discuss our results and we compare

them to those formerly derived in L88.

3.1 Solution of the Space Equation: Eigenvalues

& Eigenvectors

Since energy equation (2.22) can be solved only if we know eigenvalues and eigen-

functions of the space equation (2.23), we need to solve, at first, the eigenvalue

problem. The algorithm we have described in Chapter 2, in principle, is able to

find all the terms of the infinite series of eigenvalues and eigenvectors. Nonethe-

less, the limitation comes from the numerical accuracy. We assess, as distinct

eigenvalues, near eigenvalues which differ, at least, at the order of 10−3.

In Panel (a) of Fig. 3.1 we show five sets of 64 eigenvalues for increasing maximum

optical depth τ0 (from filled circles to filled down triangles). The number of eigen-

values we have chosen to plot is completely arbitrary, the only request needed is

that the number should be a multiple of 4, because of the kind of grid we want to
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(a)

(b)

Figure 3.1: Panel (a): Five series of eigenvalues of equation (2.23) for

optical depths τ0 = 5, 10, 20, 40, 70. The filled dots are

the eigenvalues for τ0 = 5, the filled squares for τ0 = 10,

the filled rhombuses for τ0 = 20, the filled up triangles

τ0 = 40 and the filled down triangles for τ0 = 70. Panel

(b): Comparison between first eigenvalue obtained with

different methods and optical depth τ0 as defined in Panel

(a). The filled rhombuses are the numerical eigenvalues

we found with the method described in Chapter 2. The

filled squares represent the eigenvalues obtained with the

variational approach proposed by Lyubarskii (3.2). The

filled circles are the first eigenvalues as calculated in (3.1).

consider. We have defined in Appendix (2.4) the relation σk = 1− 3λk/4, where

σk are the eigenvalues we found directly from the AS technique. The calculation

of the actual eigenvalues λk from the above relation is straightforward. As we

expect, all the sets of eigenvalues λk are monotonically increasing from a value

close to zero up to the saturation value ∼ 1.3.

Although we are able to find with this algorithm the entire set of eigenvalues, it

is worth noticing that we obtain perfectly distinguishable eigenvalues for k . 10

due to the error introduced by numerical treatment, and the calculation becomes
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(a)

(b)

Figure 3.2: Panel (a): First eigenfunctions for different values of max-

imum optical depth τ0 = 5, 10, 20, 40, 70 (from solid to

dotted line as τ0 increases). Panel (b): The dots repre-

sent the ratio between the values of the first eigenfunc-

tion at the boundary of the slab τ = τ0 and at the centre

τ = 0.

more and more complex for increasing maximum optical depth. However, the

physical upper limit to the optical depth of the simplified system under consider-

ation can be reasonably set to τ0 ≈ 20, which we will consider from now on as the

value of optical depth when it will be assumed as a constant. Large optical depth

is required in order to maintain the system in the regime of unsaturated Comp-

tonization and multiple scattering. Additionally, we will show that, not only

eigenvalues with k & 10 are not necessary for the understanding of the physics,

but that the leading term in the series is indeed exclusively the first (k = 1).

In Panel (b) of Fig. 3.1, we compare the first eigenvalue that we obtain from

numerical computations with respect to the analytical estimates performed in

L88. Lyubarskii provides two estimates of the first eigenvalue: one is obtained

performing a Fourier transform of the kernel (2.21), assuming τ0 → ∞, which
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(a)

(b)

Figure 3.3: Panel (a): Eigenfunctions for k = 1, 2, 3 and maximum

optical depth τ0 = 20. Panel (b): The points present

on the dotted line indicate the spectral index of the flux

when a strong magnetic field is present (3.5). The points

on the dashed line represents the case in which there is a

negligible, or relatively small, magnetic field (3.6).

gives

λ1 =
π2

4τ20
(log 4τ0 − 2), (3.1)

instead, the other estimate, which is

λ1 =
5

2τ20

(
log 8τ0 + γ − 13

3

)
, (3.2)

is found solving (2.23) with a variational method. Here γ is the Euler’s constant

0.577 . . . . As suggested by the author, the relation (3.1) is no longer satisfied

if we are in the case of large optical depths (τ0 & 20). Nevertheless, the eigen-

value obtained by (3.2) is, by definition, an upper limit of the exact value of λ1,

hence we expect smaller first eigenvalues for fixed optical depth. Even though

the behaviour is quite similar, especially at small τ , the numerical computation

finds smaller eigenvalues with respect to the eigenvalues obtained either from the
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variational method or from the Fourier transformation of the kernel.

Panel (a) of Fig. 2.4 represents the first eigenfunction for different values of max-

imum optical depth τ0. The plot shows that, in analogy with other physical

situations, like, for instance, a potential well with increasing height, eigenfunc-

tions are decreasing at the boundaries, approaching zero as τ → ∞. Then, we

suggest that the larger is the optical depth the smaller is the number of photons

which escape from the slab boundary, the closer is the regime of saturated Comp-

tonization. This behaviour can be seen, even more clearly, if we compare the

ratio of the eigenfunction at τ = τ0 and at τ = 0 (right panel in Fig. 2.4). The

ratio rapidly decreases to zero as optical depth becomes larger and larger. Com-

paring this result with respect to the analytic expression of the first eigenfunction

considered in L88, which is

s1(τ) = 1−
(
τ

τ0

)2

, (3.3)

it is evident that this function cannot describe the actual eigenfunction at the

boundaries. In fact, in order to proceed with the calculations, Lyubarskii intro-

duces a modified first eigenfunction, namely

s̃1(τ) = s1(τ) +
3

2τ0

∫ 1

0

µ

[
e−

(1−µ2)
µ

(τ0−τ) + e−
(1−µ2)

µ
(τ0+τ)

]
dµ (3.4)

in which the integral term gives a nonzero contribution at τ = τ0.

In Panel (a) of Fig. 3.3 we present the eigenfunctions sk(τ) for k = 1, 2, 3 and

maximum optical depth τ0 = 20. It is worth noticing that the eigenfunctions

sk(τ) are quite similar in shape and parity to the eigenfunctions of other physical

problems, such as the one-dimensional harmonic oscillator. The eigenfunctions

are orthogonal and normalized to unity. Besides, all eigenfunctions turn out to

be nonzero, at the slab boundary.

A crucial test that we can do in order to verify our results is to draw comparisons

with a known and well studied similar system. In Panel (b) of Fig. 3.3 we compare

the spectral index of the emerging energy flux for different maximum optical

depth values both in the case of a strong magnetic field and without a considerably

large magnetic field. The analytic expression of the spectral index that we obtain

in presence of a strong magnetic field is

αmag,k = −3

2
+

√
9

4
+

15

2

mec2

kTe
λk. (3.5)

In principle, we can calculate the spectral index for any eigenvalue, and thus

for any Comptonization mode. Following Sunyaev & Titarchuk [66], when the

magnetic field is negligible, or, at least, well at below its critical value (B =

4.4×1013G), for a planar geometry, the spectral index is described by the relation

αnomag = −3

2
+

√
9

4
+
mec2

kTe
λ, (3.6)
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(a) (b)

(c) (d)

Figure 3.4: Panel (a): Angular distribution of O-photons for −1 ≤

µ ≤ 0. Panel (b): Angular distribution of O-photons for

0 ≤ µ ≤ 1. The solid line is the angular distribution

for the first eigenfunction obtained with the algorithm

described in Chapter 2. The dashed line presents the

angular distribution for the first eigenfunction defined by

Lyubarskii. Panel (c): The same figure of Panel (b), but

with the dotted line representing the corrected angular

distribution (3.8). Panel (d): Angular distribution of O-

photons for 0 ≤ µ ≤ 1. The dotted line is the angular

distribution calculated for τ0 = 5, the solid line is the

same for τ0 = 20 and the dashed line is for τ = 40.

where λ accounts exclusively for the first eigenvalue and reads as

λ =
π2

12
(
τ0 +

2
3

)2 . (3.7)

In the case of not remarkably large magnetic fields, the authors claimed that the

contribution of the first eigenvalue, i.e. the first Comptonization mode, is the

leading term in the series (2.25), and consequently the main contribution to the

formation of the emerging spectrum. As we will discuss in the Par. 3.3, the mag-

netic field no longer affects the number of leading terms in the series. We find

that the spectral index of the first Comptonization order in the strong magnetic

field case is larger with respect to the unmagnetised case for any considered value

of optical depth. Indeed, the magnetic field makes the Comptonization process

less efficient overall, because photons, travelling at small angles to the field lines,

undergo a small amount of scattering, giving no contribution to the high energy
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k λk(τ = τ0) αk(τ = τ0)

1 0.0085 0.8460

2 0.0297 2.1922

3 0.0555 3.3498

4 0.0838 4.3623

5 0.1130 5.2496

τ λ1(τ) α1(τ)

5 0.0622 3.6101

10 0.0248 1.9290

20 0.0085 0.8460

40 0.0021 0.2533

70 0.0001 0.0193

Table 3.1: Left: Eigenvalues λk and spectral index αk (3.5) for

k = 1, 2, 3, 4, 5 and fixed optical depth τ0 = 20. Right:

First eigenvalue λ1(τ) and related spectral index α1(τ) for

optical depth τ = 5, 10, 20, 40, 70.

part of the spectrum.

Following this considerations, we calculate the angular distribution J , as defined

in equation (2.71), assuming that the first eigenfunction gives the dominant con-

tribution. In Panel (a)-(b) of Fig. 3.4 we compare the angular distribution we

obtain with the algorithm described in Chap. 2 (solid line) and the angular dis-

tribution calculated using the first eigenfunction suggested in L88 (dashed line).

The distributions appear qualitatively the same, except for a scale factor. The

normalization gap remains practically unchanged even if we use the angular dis-

tribution

J̃(µ, τ0) =
2

χτ0
− 2

(χτ0)2
+

[
2

χτ0
− 2

(χτ0)2

]
e−2χτ0+

3χ

2τ0

(
2 + χ2

2
√

4 + χ2
log

[
2 + χ+

√
4 + χ2

2 + χ−
√

4 + χ2

]
− 1− χ

2
logχ

)
, (3.8)

calculated including the corrected first eigenfunction (3.4) introduced in L88.

Here we have defined the quantity χ = (1 − µ2)/µ. However, the angular distri-

bution (3.8), which has been corrected including the boundary effect, does not

vanish at µ = 0 as it results from our estimates and it is due to the use of the

eigenfunction (3.4).

Panel (d) of Fig. 3.4 presents the change in the angular distribution for τ =

5, 20, 40. The peak of the distribution becomes wider and is shifting through the

centre of the slab as the optical depth increases. As expected, for τ → ∞ the

function J tends to be flatter throughout the slab, approaching to an isotropic

distribution of the photons.
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(a)

(b)

Figure 3.5: Panel (a): Energy fluxes, solution of equation (2.22) for

eigenvalues λk with k = 1, 2, 3, 4, 5 (see the left table in

Tab. (3.1)) and maximum optical depth τ0 = 20. The

index k increases from solid to dotted line. Panel (b):

Energy fluxes, as in Panel (a) for spectral index α(τ, λ1)

defined in the relation (3.5) and maximum optical depth

τ0 = 5, 10, 20, 40, 70. The values of the spectral indexes

and eigenvalues are reported in Tab. 3.1

3.2 Solution of Energy Equation: Energy Fluxes

Once that eigenvalues and eigenfunctions have been found and studied, we are

able to handle equation (2.22) and seek the energy emerging flux. However, before

we should choose initial distribution and position of the injected photons. We

assume that photons propagate from the bottom of the slab through the upper

boundary and we consider as seed photon spectrum a blackbody distribution

S(x) = Ce−τ/2τ0kT 3
e

x3

ex(kTe/kTbb) − 1
(3.9)
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at temperature kTbb where kTe is the electron temperature and C = RKm/D
2
10

a normalization constant with a blackbody emitting area in kilometres RKm and

a source distance in units of 10 Kpc D10.

For all the figures we are going to discuss from now on, we assume a magnetic

field of order of B ∼ 1014 G, blackbody temperature kTbb ∼ 1 keV and a plasma

temperature kTe ∼ 10 keV.

In Fig. 3.5, the left panel represents the energy flux for eigenvalues λk with (k =

1, 2, 3, 4, 5) for a fixed maximum optical depth τ0 = 20. It is worth noting that the

Comptonization mode, relative to the first eigenvalue, dominates at high energies,

which is precisely what happens in the case of pure thermal Comptonization, like

was predicted, for instance, by [66]. Also L88 made this assumption in order to

find an analytical solution of equation (2.23), but the author never verified it.

We extended the solution of L88 in order to study higher orders of the series and

verify if the assumption of taking as leading term exclusively the first, still holds

within a good approximation.

Panel (a) of Fig. 3.5 demonstrates that, above the blackbody peak (for a kTbb ≈ 1

is of order of ∼ 3 keV), the first Comptonization mode is completely dominant

with respect to the others. In the left table of Tab. 3.1, we present the eigenvalues

λk(τ = τ0), found as described in the Par. 3.1, and the spectral index αk(τ =

τ0) (3.5) for k = 1, 2, 3, 4, 5 and fixed optical depth τ0 = 20. As we expect

from relation (3.5), the larger is the eigenvalue, the larger is the index, which

means that the spectrum becomes steeper and steeper. In particular, the step

between the first and the second eigenvalue is peculiar: even though eigenvalues

and indexes are, in good approximation, equally separated, basically only the

first energy flux remarkably differs from a "BB-like" spectrum. Of course, this

statement holds if the system remains in the regime of multiple scattering and

unsaturated Comptonization. On the other hand, higher orders give a relevant

contribution to the soft energy peak, nonetheless, even if we do not include such

terms, this feature can be modelled with an additional blackbody component

with a proper normalization [43][74][81][82][83].

In Panel (b) of Fig. 3.5, we present five energy fluxes for increasing maximum

optical depth τ0 = 5, 10, 20, 40, 70. The optical depth becomes larger from solid

to dotted line. Varying τ corresponds to a change in the spectral index α as

pointed out in the right table of Tab. 3.1. The spectral indexes considered here

are those relative to the first eigenvalue. We found that the larger is the optical

depth, the flatter becomes the spectrum and, as in the previous case, it is possible

to see that, directly from the table. Indeed, the spectral index drops rapidly for

increasing optical depth. Smaller indexes imply more and more Comptonized

spectra that physically can be interpreted as the approach of the spectrum to

saturation as τ → ∞. Therefore, photons get scattered more efficiently and gain

a large amount of energy, shifting to the high energies part of the spectrum.
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Figure 3.6: The solid line is the solution of equation (2.14), i.e. the

specific intensity of O-photons (3.10) and the dashed line

is the specific intensity of E-photons created via mode-

switching from a fraction of O-photons as calculated in

(2.73) for τ0 = 20 and λ1 = 0.0085.

3.3 Specific Intensity

As a consequence of the above considerations, we consider only the first term of

the series of Comptonization mode, thus the specific intensity for the ordinary

photons is

I(x, µ, τ) ≈ J1(µ, τ0)Z1(x) (3.10)

where the angular distribution J1(µ, τ0) is calculated following (2.71) including

exclusively the eigenfunction s1(τ), and Z1(x) is the energy flux for the first eigen-

value λ1(τ) at τ0 = 20. We include in Fig. 3.6, together with the specific intensity

for the O-photons, the specific intensity of that fraction of photons which changes

polarisation mode during the scattering process, becoming extraordinary photons.

The amount of E-photons which is produced via the mode-switching mechanism

is several order smaller than the total number of O-photons. Following L88, we

consider extraordinary photons isotropically distributed, since their cross section

is extremely suppressed for energies well below the cyclotron energy, that for a

magnetic field of order of ∼ 1014 G is about xg ∼ 11.6 MeV. The spectrum of

E-photons that we are presenting in the Fig. 3.6 has been calculated through

the relation (2.73). Since such spectrum belong to photons which were already

scattered as O-photons, the spectral shape is basically a small bump at high en-

ergies in correspondence with the Comptonized part of the O-photons spectrum.

Nonetheless, this cannot be treated like an actual physical information about the

radiative transfer of extraordinary photons just because we do not have any other

information with respect to the overall number of E-photons, being outside the

purpose of this thesis. We can only say that, from the considerations resulting

from our calculations, we may reasonably expect that the specific intensity result-

ing from the solution of the radiative transfer equation for extraordinary photons

will give a much higher specific intensity, of the order of the O-photons specific

intensity, with a pronounced soft energy peak, because most of them will escape
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almost freely from the medium for x≪ xg, due to their small cross section.
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A Relaxation Method for RTE

The solution of the radiative transfer equation (RTE) describing the modification

of a seed photon spectrum due to Comptonization in a plasma is actually a strong

mathematical issue. The general equation is an integro-differential equation [4],

which, in principle, cannot be analytically solved except under assumptions that

are typically very restrictive, such as electron temperature Te = 0 [74] or in the

energy domain when the emerging spectrum is a power-law [67]. A typical ap-

proach in order to transform the equation into a pure differential one [3] is to

make the assumption of small photon energy exchange at each scattering process

(ν
′ − ν/ν ≪ 1), which is commonly known as the Fokker-Planck approxima-

tion. This statement holds in the regime of non-relativistic electron temperature

(kTe . 100 keV) and sufficiently large optical depth (τ & 1).

In this Chapter, we present the general approach to RTE in Fokker-Planck ap-

proximation, then we describe a numerical algorithm that can be used with the

purpose of finding solutions of such problem.

4.1 Introduction to the RTE problem

The general integro-differential radiative transfer equation [4] for the specific

intensity of radiation I(ν,Ω) including induced processes, reads as

1

c

∂I(ν,Ω)

∂t
+Ω· ∇I(ν,Ω) = S(ν)

[
1 +

c2

2hν3
I(ν,Ω)

]
− σa(ν)I(ν,Ω)

+

∫ ∞

0

dν′
∫

4π

dΩ′ ν

ν′
σs(ν

′ → ν,Ω′·Ω)I(ν′,Ω′)

[
1 +

c2

2hν3
I(ν,Ω)

]

−
∫ ∞

0

dν′
∫

4π

dΩ′σs(ν
′ → ν,Ω·Ω′)I(ν,Ω)

[
1 +

c2

2hν3
I(ν′,Ω′)

]
,

(4.1)
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where S(ν) is a generic source function, σa and σs are the absorption and scat-

tering coefficients, respectively.

Frequently, there are two basic approximations which are made that we have

discussed in Chap. 1. The first is to assume LTE, whenever is possible, and the

second is to neglect induced processes, considering the classical RTE (1.11).

In the range of low electron temperatures and large optical depths, the radiation

field is almost completely isotropized by scattering and the specific intensity can

be written as I(ν) = J(ν)+∇·F(ν), where J and F are the zero and first moment

of the intensity field, respectively. This is the so-called Eddington approximation.

Moreover, we should make a further consideration to be sure that Fokker-Planck

approximation holds for our system. We want to consider a plasma which is not

simply static, but it can have a dynamical bulk motion with a characteristic ve-

locity v(τ). If we want to avail the Fokker-Planck approach, such velocity should

be sub-relativistic.

The general form of the RTE in Fokker-Planck approximation for the photon

occupation number n(ν) = J(ν)/ν3, where J(ν) is the angle-averaged specific

intensity, with non-relativistic electron plasma in the presence of sub-relativistic

bulk motion (kTe . 100 keV and v(τ)/c ≪ 1) was firstly derived by Blandford

& Payne ([49], hereafter BP81), and can be written as

∂n

∂t
+ v· ∇n =∇·

(
1

3neσ(ν)
∇n
)
+

1

3
(∇·v) ν ∂n

∂ν

+
1

ν2
∂

∂ν

[
neσ(ν)

me
ν4
(
n+ T

∂n

∂ν

)]
+ j . (4.2)

BP81 found an analytic solution of (4.2) in a limiting case. They assumed that

the bulk motion of the electrons greatly exceed their thermal velocity, so they

consider the energy transfer by thermal motion negligible. The authors suggested

that, when bulk velocity is much larger than thermal velocity, the photons that

scatters off electrons, gain energy and give rise to a characteristic power-law spec-

trum at high energies.

Note also that for v = 0 and σ(ν) = σT , equation (4.2) reduces to the Kompa-

neets equation for a finite medium [51]. Solutions of this static case, when only

thermal effects are considered, can be found in references [60],[66], [61].

Nevertheless the study of the mutual influence of thermal effects and bulk motion

on the Comptonization process is fundamental for the understanding of radiative

transfer.

Lyubarskii & Sunyaev ([57], hereafter LS82), Colpi [64], Riffert [65] considered

both thermal and bulk components studying radiative transfer in the framework

of accretion onto a black hole.

Analytical solution of (4.2) was reported by Titarchuk, Mastichiadis & Kylafis

([43], hereafter TMK97) for the case of spherical accretion. The authors showed

that these solutions can be found assuming a free-fall velocity profile of the ac-

creting matter (vR ∝ R−1/2). In this case, equation (4.2) can be handled with

the separation of variable method, which leads to an equation of the form

Lxn(x, τ) + Lτn(x, τ) = −s(x, τ). (4.3)
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Figure 4.1: Scheme of a gas accretion column onto the magnetized

polar cap of a neutron star proposed by Becker & Wolff

[63],[28].

The solution of equation (4.3) can be written as

n(x, τ) =
∞∑

k=1

ckRk(τ)Nk(x), (4.4)

where ck and Rk(τ) are the expansion coefficients and eigenfunctions of the space

operator Lτ , respectively, while Nk(x) is the solution of the differential equation

LxNk(x)− γkNk(x) = −s(x), (4.5)

where γk ∝ λ2k and λ2k is the kth-eigenvalue of the space operator.

TMK97 also pointed out that the Comptonization spectrum obtained by the in-

finite series (4.4) is dominated at high energies by its first term (i.e., that one

correspondent to the first eigenvalue) while the higher terms (k ≥ 2) contribute

to the formation of the soft energy peak.

Starting from the results of TMK97, Farinelli et al. ([55], hereafter F08) devel-

oped a model COMPTB for the X-ray spectral fitting package XSPEC which com-

putes the emerging spectrum through the numerical convolution of the Green’s

function of the energy operator with a blackbody-like seed spectrum. The model

has been successfully applied to a sample of sources belonging to the Neutron

Star Low-Mass X-ray binary (NS LMXBs) class.

The method of the variable separation has been adopted also by Becker & Wolff

([28], hereafter BW07), to find analytical solutions of the RTE in the case of

cylindrical accretion onto the polar cap of a magnetised neutron star (Fig. 4.1).
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The starting equation of BW07 is formally the same of BP81: the most signif-

icant difference consists in the fact that the Thomson cross-section is replaced

by angle-averaged cross sections which takes into account the presence of the

magnetic field (B ∼ 1012 G).

We note that the introduction of such averaged and approximated cross sections

allows to maintain the differential nature of equation (4.2) instead of bringing it

back to an integro-differential expression like (4.1) or (2.13), even if intrinsically

we are still considering the contribution of the magnetic field.

Following the results of LS82, Becker [62],[61], and, later, Becker & Wolff [63]

calculated the flow velocity profile

v(τ) =
7

8
vc

{
1− tanh

[
7

2
(τ − τ∗)

]}
(4.6)

as solution of a second-order nonlinear differential equation derived from the

momentum, energy and mass conservation equations, where vc is the flow velocity

at the sonic point (τ = 0) and τ∗ ≡ (2/7) tanh−1(1/7) ≈ 0.041. Using the profile

(4.6) allows the RTE to be separable in energy and space variable.

In BW07, similarly the authors assumed a velocity profile v(τ) ∝ −τ with the

same purpose. Note that the adopted velocity profile implies that the matter flow

stagnates at the stellar surface, contrariwise with the solution of TMK97, where

the matter velocity increases towards the central object, which can be either a

neutron star or a black-hole. When the velocity profile, however, is not a version

of the typical free-fall (TMK97, F08) or ∝ −τ (BW07), the variable separation

method can be no longer be applied and the solution of the RTE can be obtained

only through numerical methods.

In the next Section we proposed a numerical algorithm which solve RTE in Fokker-

Planck approximation for a more general velocity profile for the accreting matter

[52].

4.2 Relaxation Method

The algorithm we are proposing is essentially based on the relaxation method.

Relaxation method takes its name from the idea of convergence from an initial

guess to a solution by iterations over a discrete grid of points. In particular, the

concept of iteration can be seen as a sort of "time" evolution if, for instance, we

express an elliptic partial differential equation (PDE) as a parabolic PDE. If we

assume an initial distribution of the unknown function at t = 0, then we say that

the solution has relaxed to a steady state as t → ∞. Thus, the parabolic PDE

reduces to an elliptic PDE when the "time" derivative vanishes at t→ ∞.

Remaining within the purpose of this thesis, let’s consider, as a general example

to explain the method, a linear second-order elliptic PDE [59] with vanishing

mixed derivatives and a source term

P(x, y)
∂2u

∂x2
+Q(x, y)

∂u

∂x
+R(x, y)u+W(x, y)

∂2u

∂y2
+Z(x, y)

∂u

∂y
= −S(x, y), (4.7)
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which has, in fact, the general form of the radiative transfer equation in Fokker-

Planck approximation. We need to find the function u(x, y) within a certain

region D, given the source function S(x, y) within D, and given the behaviour of

u(x, y) at the boundary ∂D. The last condition we have mentioned is necessary

in order to fix the boundary conditions. Choosing properly with respect to the

specific problem, the boundary conditions can fix the value of the function u(x, y)

on D (Dirichlet boundary condition), or the value of its gradient normal to ∂D
(Neumann boundary conditions), or a mixture of the two.

We define a three-dimensional grid of discrete points for the variables x, y and t

xi = x0 + ihx , i = 0, 1, . . . , Nx,

yj = y0 + jhy , j = 0, 1, . . . , Ny,

tm = t0 +mht , m = 1, 2, . . . ,M, (4.8)

where t is the fictitious time we will use to obtain the steady solution of (4.7) at

t → ∞ and hx, hy, ht are the grid spacings. The function u(x, y, t) is evaluated

at any point of the grid, so we write it as a function of the three indexes, uj,mi .

Thus, we write the first and second derivatives over the variables using finite

differences:

∂u

∂x
=
uj,mi+1 − uj,mi

hx
,

∂2u

∂x2
=
uj,mi+1 − 2uj,mi + uj,mi−1

h2x
,

∂u

∂y
=
uj+1,m
i − uj,mi

hy
,

∂2u

∂y2
=
uj+1,m
i − 2uj,mi + uj−1,m

i

h2y
,

∂u

∂t
=
uj,mi − uj,m−1

i

ht
. (4.9)

Substituting the above definitions into equation (4.7) and collecting terms, we

obtain

ajiu
j,m
i−1 + bjiu

j,m
i + cjiu

j,m
i+1 + djiu

j−1,m
i + ejiu

j,m
i + f ji u

j+1,m
i = −Sj

i , (4.10)

where the coefficients have the general form

aji =
P(xi, y

j)

h2x
,

bji = −2P(xi, y
j)

h2x
− Q(xi, y

j)

hx
+R(xi, y

j),

cji =
P(xi, y

j)

h2x
+

Q(xi, y
j)

hx
,

dji =
W(xi, y

j)

h2y
,

eji = −2W(xi, y
j)

h2y
+

Z(xi, y
j)

hy
,

f ji =
W(xi, y

j)

h2y
− Z(xi, y

j)

hy
,

Sj
i = S(xi, yj), (4.11)
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that, together with the boundary conditions, can be written in the matrix form

A·u = S, (4.12)

and can be solved, in theory, directly inverting the matrix A, that represents

the action of the differential operator. The matrix A is called "tridiagonal with

fringes" and it is, typically, a sparse matrix. Nevertheless, in the case of (4.7), the

nonzero entries of such matrix may not be constants, therefore we need alternative

approaches to find the solution without an extremely expensive computational

storage.

One of the possible method to handle this problem is the relaxation technique.

Basically, we are going to find the solution of (4.10) by generating a series of

guesses uj,mi which starts with an arbitrary configuration uj,0i , and that converges

to the solution uj,∞i of the linear system (4.12). One possibility to generate

such sequence is to imagine that we are not solving (4.7), but rather the time-

dependent equation

P(x, y)
∂2u

∂x2
+Q(x, y)

∂u

∂x
+R(x, y)u+W(x, y)

∂2u

∂y2
+Z(x, y)

∂u

∂y
=
∂u

∂t
− S(x, y),

(4.13)

which actually is a parabolic PDE. Iterating for a sufficient number of steps,

the initial configuration u(x, y; 0) will relax to a time-independent configuration

u(x, y;∞) that satisfies uxx(x, y;∞) + uyy(x, y;∞) + S(x, y) = 0, which is, of

course, (4.7). Therefore, we need to solve equation (4.13) that in the finite

difference representation is the following

ajiu
j,m
i−1+b

j
iu

j,m
i +cjiu

j,m
i+1+d

j
iu

j−1,m
i +ejiu

j,m
i +f ji u

j+1,m
i =

(uj,mi − uj,m−1
i )

ht
−Sj

i .

(4.14)

Defining the differential operators over the x and y variables as

∆x = aji + bji + cji ,

∆y = dji + eji + f ji , (4.15)

and introducing in the 3D grid intermediate points m− 1/2 in the fictitious time

direction, we are able to split (4.14) into a system of two equations, which is




∆xu
m−1/2 +∆yu

m−1 =
um−1/2 − um−1

ht
− S ;

∆y(u
m − um−1) =

um − um−1/2

ht
,

(4.16)

where we have temporarily dropped the indexes i, j for the sake of simplicity.

The first equation of (4.16) is basically (4.14) which one that provides us the

solution at the intermediate m− 1/2 layer, given the initial guess function um−1.

At the step m = 1, i.e. t = 0, we should set the initial arbitrary configuration u0.

Then, the solution um of the second equation in (4.16) can be found using both

configurations that we already know, um−1 and um−1/2, and it is the solution of
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equation (4.10) at t = t∗. Iterating this procedure for a certain number of steps,

uM relaxes on the actual time-independent solution of (4.10).

The numerical accuracy of the solution can be estimated by combining both

equations in the system (4.16), from which we get

∆xu
m +∆yu

m + S − ht∆x∆y

(
um − um−1

)
︸ ︷︷ ︸

residuals

=
um − um−1

ht
, (4.17)

where the underlined term is the residual error introduced by the application

of the relaxation method. As first step in finding solution of the problem, the

equations of the system (4.16) can be rearranged by collecting the terms with

the same index in both equations (4.16), obtaining

(
∆x − 1

ht

)
um−1/2 = −

(
∆y +

1

ht

)
um−1 − S,

(
∆y −

1

ht

)
um = ∆yu

m−1 − um−1/2

ht
. (4.18)

Both equations are defined inside a 2D (x, y)-domain, with boundary conditions

defined according to the specific problem under consideration. In particular, we

need to fix the solution at the (x, y) boundaries for any t and give the initial

configuration at t = 0, as we have discussed above.

First of all, for any m and j value, we should impose the boundary condition at

the left of the x-domain (i = 0) for the function u
j,m−1/2
0 , which is

u
j,m−1/2
0 = gj0, (4.19)

while the source term Sj
0 is defined at the beginning. Thus, for i = 0, the first

equation of system (4.18) can be written as

u
j,m−1/2
0 = L̂j

0u
j,m−1/2
1 + K̂j

0 , (4.20)

where

L̂j
0 =− cj0

bj0 − 1
ht

, K̂j
0 =

Ŝj,m−1
0

bj0 − 1
ht

,

Ŝj,m−1
0 =−

(
dj0 + ej0 + f j0 +

1

ht

)
uj,m−1
0 − Sj

0. (4.21)

with the coefficients defined in equations (4.11).

At the next step, i = 1, using equation (4.20) we obtain

(
aj1L̂

j
0 + bj1 −

1

ht

)
u
j,m−1/2
1 + cj1u

j,m−1/2
2 = Ŝj,m−1

1 − aj1K̂
j
0 , (4.22)

which can be written as a function of the new coefficients L̂j
i and K̂j

i as follows

u
j,m−1/2
1 = L̂j

1u
j,m−1/2
2 + K̂j

1 , (4.23)
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where we have defined

L̂j
1 = − cj1

aj1L̂
j
0 + bj1 − 1

ht

, K̂j
1 =

Ŝj,m−1
1 − aj1K̂

j
0

aj1L̂
j
0 + bj1 − 1

ht

. (4.24)

From this first steps, we derived the general form of the first equation in (4.18)

and the coefficients for any iteration of the index i, obtaining

u
j,m−1/2
i = L̂j

iu
j,m−1/2
i+1 + K̂j

i , (4.25)

where

L̂j
i =− cji

aji L̂
j
i−1 + bji − 1

ht

, K̂j
i =

Ŝj,m−1
i − aji K̂

j
i−1

aji L̂
j
i−1 + bji − 1

ht

.

(4.26)

Then, imposing the second boundary condition at the right boundary of the

x-domain (i = Nx)

ujNx
= gjNx

, (4.27)

and using equation (4.25), we can thus build up the solution over the x-variable

iteratively as

u
j,m−1/2
Nx−1 = L̂j

Nx−1 g
j
Nx

+ K̂j
Nx−1,

u
j,m−1/2
Nx−2 = L̂j

Nx−2 u
j,m−1/2
Nx−1 + K̂j

Nx−2,

. . . . . .

u
j,m−1/2
0 = L̂j

0 u
j,m−1/2
1 + K̂j

0 . (4.28)

Thus, the construction of the solution is obtained in two steps: a bottom-up

process which allows to build the coefficients L̂j
i and K̂j

i (Eq. [4.26]) starting

from the left boundary condition on uj0 (Eq. [4.19]), followed by a top-down

procedure determined by the right boundary condition ujNx
(Eq. [4.27]).

Once the solution over the x-variable for the m − 1/2 layer is obtained for any

j (the index of the y variable), then we may proceed with the solution of the

second equation in the system (4.16). The procedure is fundamentally the same

that we have described above, hence we should start imposing the initial boundary

condition at j = 0

u0,mi = L̃0
iu

1,m
i + K̃0

i , (4.29)

then, similarly to equation (4.26), we derived the general expressions for the

coefficients L̃j
i and L̃j

i , which are

L̃j
i = − f ji

dji L̃
j−i
i + eji +

1
ht

, K̃j
i = − S̃j,m

i − dji K̃
j−1
i

dji L̃
j−i,m
i + eji +

1
ht

, (4.30)

where

S̃j,m
i =

(
dji + eji + f ji +

1

ht

)
uj,m−1
i − u

j,m−1/2
i

ht
(4.31)
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Figure 4.2: Picture of the iteration scheme. Each plane represents the

solution of the system (4.18) at fixed m. The grey planes

are those related with the intermediate layers m − 1/2.

The picture shows the evolution of the solution through

the iteration process.

depends on the solutions u
j,m−1/2
i and uj,m−1

i obtained in the layers m−1/2 and

m− 1. As required for the procedure over the x-variable, the coefficients L̃j
i and

K̃j
i are built from L̃0

i and K̃0
i , therefore they are determined by the left boundary

conditions (j = 0) for the function u0i . The solution for any j is determined, given

the right boundary condition u
Ny

i = g
Ny

i , by a similar bottom-up iteration:

u
Ny−1,m
i = L̃

Ny−1
i u

Ny,m
i + K̃

Ny−1
i ,

u
Ny−2,m
i = L̃

Ny−2
i u

Ny−1,m
i + K̃

Ny−2
i ,

. . . . . .

u0,mi = L̃0
iu

1,m
i + K̃0

i . (4.32)

Up to now, we have shown how to build a specific configuration uj,mi for each

x and y and a generic t. Practically, we have found the solution of the system

(4.18) for a given value of the index m.

At the first step (m∗ = 1), we provide, as arbitrary guess at m = m∗ − 1 (t = 0),

a source function distribution, thus the solution uj,mi at m = m∗ corresponds to

the relaxation of the source function at first iteration. For m∗ ≥ 2, we use the

configuration uj,m
∗

i as initial guess for the next step, i.e. for seeking solution of

the system (4.18) at m = m∗, according to the scheme

m = 1 → (u0, u1/2, u1),

m = 2 → (u1, u3/2, u2),

. . . . . . . . . ,

m =M → (uM−1, uM−1/2, uM ). (4.33)

The loop over m stops when the some convergence criterion is satisfied, which

physically means that the solution has "relaxed" to its stationary value.
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The amount of performed iterations is a crucial point. Too much relaxations

may lead to numerical instabilities, while too little may slow down convergence.

Similarly, a poorly chosen convergence criterion can lead to either poor results

(when too loose) or excessive computational times (when too tight).

Therefore, selecting the number of relaxations and the convergence criterion prop-

erly can be difficult, but, nonetheless, it is necessary to find the actual solution

of the problem within a reasonable amount of computational time. The choice

among different convergence criteria depend on the specifics of the problem to be

solved and may change during the evolution of the configuration. Unfortunately,

there are no universal guidelines for selecting convergence criterion because it

depends not only on the physical processes being approximated, but also on the

details of the numerical formulation.

For the numerical formulation given here, one possible criterion could be 1− ε <

|u|m−1|/|u|m−1/2 < 1 + ε and 1 − ε < |u|m−1/2|/|u|m < 1 + ε, where ε is a user

defined numerical tolerance.

In the next Chapter we will show instead the convergence criterion we have

chosen to stop the iteration procedure, for the particular case of the RTE in

Fokker-Planck approximation in the presence of strong magnetic fields.
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Application to Cylindrical

Accretion Onto Magnetised

Objects

In this Chapter we apply the algorithm described in Chap. 4 to obtain the solution

of the RTE in Fokker-Planck approximation for accretion towards the polar cap of

magnetised neutron star. The mathematical formalism was developed in BW07,

in the framework of spectral formation of accretion-powered X-ray pulsars. We

slightly modify such formalism and, removing some of the constraints introduced

in BW07, we solve the RTE for a more general velocity profile. With the purpose

to compare our results with that one given in BW07, we solve the problem also

for the velocity profile v ∝ −τ .

5.1 Application to the RTE and Boundary Condi-

tions

As we have already pointed out in Chap. 4, the general form of the RTE in the

presence of subrelativistic bulk motion of a plasma with constant temperature

Te is given by (see Eq.[18] in BP81)

∂n

∂t
+ v · ∇n = ∇ ·

(
1

3neσ(ν)
∇n
)
+

1

3
(∇ · v) ν ∂n

∂ν

+
1

ν2
∂

∂ν

[
neσ(ν)

me
ν4
(
n+ Te

∂n

∂ν

)]
+ j(ν, r), (5.1)

where n(ν, r) is the zero-moment occupation number of the intensity of the radi-

ation field, v is the plasma bulk velocity vector, σ(ν) is the electron scattering

cross-section, ne(r) is the electron density and j(ν, r) is the source term. Given

that the spectral formation is determined by the optical depth τ of the system,
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we use the latter quantity as the actual space variable throughout the change

of variable dτ = neσdz. The solution of equation (5.1) is fulfilled by imposing

as inner boundary condition at the stellar surface (τ = 0, which represents the

starting point of the integration domain) for the spectral flux, which is given by

F(ν, r) = −ν3
[(

1

3neσ(ν)
∇n
)
+

1

3
Vν

∂n

∂ν

]
. (5.2)

Under particular symmetries of the system configuration (e.g., cylindrical or

spherical), the problem becomes one-dimensional. For constant electron temper-

ature Te it is also more convenient to use the dimensionless variable x ≡ hν/kTe;

moreover, when performing numerical integration using finite-difference meth-

ods, we use a logarithmic binning of the energy through the additional change of

variable x→ eq. Under these assumptions, equation (5.2) becomes

F (q, τ) = −
[
1

3

∂J

∂τ
+

1

3
v

(
∂J

∂q
− J

)]
, (5.3)

where J ≡ n x3 is the specific intensity.

At the inner boundary we impose the condition

F (q, 0) = −1

2

(
1−A

1 +A

)
J, (5.4)

where A is the albedo at the surface. A fully absorptive surface (A = 0) is ap-

propriate for a black hole, while 0 < A ≤ 1 accounts, e.g., for a neutron star

atmosphere. However, the inner boundary condition (5.4) depends on energy as

well as space (see Eqs. [5.2] and [5.3]). For mixed boundary value problems,

no analytical solutions are possible (see Appendix E in TMK97) and numerical

methods may lead to unstable solutions. We propose a phenomenological approx-

imation which allows to avoid this issue. As previously noted by TMK97, the

spectrum can be modelled with a power-law in a properly chosen energy inter-

val, when we are in the case of unsaturated Comptonization. In this range, the

specific intensity can be written as J(x, τ) = R(τ)x−α, thus substituting this

relation into equation (5.4), we find

− dR

dτ
+ β0(α+ 3)R = −3

2

(
1−A

1 +A

)
R, (5.5)

where β0 is the bulk velocity at the inner radius (τ = 0). It is worth noticing

that the boundary condition (5.5) depends exclusively on the space variable τ

and on the power-law index α.

Writing the derivative in terms of finite-difference at j = 0 (i.e., τ = 0), equation

(5.5) then becomes

− u1i − u0i
hτ

+ β0(α+ 3)u0i = −3

2

(
1−A

1 +A

)
u0i . (5.6)

After collecting terms, we obtain the inner boundary condition in the form

u0i =
1

1 + hτ [β0(α+ 3) +G(A)]
u1i , (5.7)
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Figure 5.1: Iteration scheme describing the determination of the spec-

tral index αm for each m step. At first step, the spectral

index α1 is given as initial guess. Then, it used in the

calculation of the boundary condition (BC) (5.7). When

the emerging spectrum has been found, we estimate its

spectral index α′

1 which becomes the index used in the

calculation of the BC at the next step.

where we have defined the quantity G(A) = 3/2(1 − A)/(1 + A). Following the

procedure described in Chap. 4, equation (5.7) provides the definition of the

coefficients L̃0
i and K̃0

i (4.30) as

L̃0
i =

1

1 + hτ [β0(α+ 3) +G(A)]
, K̃0

i = 0. (5.8)

As outer boundary condition over τ , we impose that u
Ny

i = 0, which means that

the specific intensity goes to zero for τ → τmax.

Concerning the energy variable x = hν/kTe, we impose that the solution uji ,

which, in the framework of RTE, physically represents a specific intensity, it must
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OBJECTS

be, by definition, approach zero in the limits hν → 0 and hν → ∞, therefore we

set uj0 = ujNx
= 0 (see Eqs. [4.19] and [4.27]).

We emphasise that the general condition uji > 0 for any (i, j)-value implies a

specific restriction in the choice of the step size hτ , which ensures that L̃0
i > 0

(as β0 ≤ 0). More specifically, we imposed this condition on hτ such that the

number of steps over τ be Nτ = τmax/hτ ≥ 10.

5.1.1 Convergence Criterion

As we have already mentioned in Chap. 4, the choice of a proper convergence

criterion is a fundamental step for seeking the actual solution of the equation we

are dealing with. Considering the boundary condition (5.7), we note that at each

iteration m, the power-law index αm of the configuration u0,mi (corresponding

to τ = 0) is calculated, in a given energy range Emin − Emax. In order to

minimise bias or wrong estimates of αm, the definition of the energy interval

for the computation of the spectral slope must be chosen carefully. If the seed

photon spectrum is a blackbody with temperature kTbb, a reasonable choice can

be the assumption Emin ≈ 7 kTbb and Emax ≈ 20 kTbb, respectively, given that

this interval is above the major contribution of the blackbody component and

below the expected high-energy cut-off value.

At the first iteration (m = 1), we set an initial guess for the spectral index,

which will be provided to the boundary condition (5.7). Fulfilling this condition,

we extrapolate the specific intensity at m = 1 and we calculate the spectral index

that will be used in the boundary condition at the next iteration. Repeating this

scheme for each m step, we expect to see that the solution uj,mi should relaxes

into the final configuration satisfying the initial equation.

We stop the iteration process when αm and αm+1 differ less than 10−5 provided

that the condition holds for a sufficiently high number of iterations (> 100).

Note that the same criterion is adopted also if β0 = 0, even if, of course, L̃0
i

remains constant across the iteration. We have also verified that this criterion

automatically satisfies the convergence of the norms |u|m−1, |u|m−1/2, and |u|m.

5.2 Cylindrical accretion onto a magnetised neu-

tron star

We applied our algorithm to solve the problem of radiative transfer in the sce-

nario of matter accretion towards the polar cap of a magnetised neutron star,

whose mathematical formalism was developed by BW07 in the framework of the

spectral formation of accretion-powered X-ray pulsars.

As we described in Chap. 2, the strong magnetic field (B & 1012G) of the neu-

tron star is expected to channel the accretion flow towards the polar caps, and

for small values of the altitude of the accretion column above the stellar sur-

face, the problem can be treated in a axis-symmetric approximation where the

space variable is defined by the vertical coordinate Z. The medium, subjected
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to the effect of the magnetic field, becomes birefringent entailing the formation

of two linear polarisation modes (ordinary and extraordinary) of the radiation,

each having a characteristic scattering cross-section. For energy below the first

cyclotron harmonic at Ec ≈ 11.57 B12 keV (where B12 ≡ B/1012 G), BW07

defined angle-and energy-averaged cross-sections parallel and perpendicular to

the magnetic field lines as σ‖ = 10−3σT and σ⊥ = σT, respectively, where σT is

the Thomson scattering cross-section. Such approximation allows to handle the

problem, both analytically and numerically. Indeed, averaging the cross-section

over the angle, smears out anisotropy effects and makes applicable the Fokker

Planck approximation.

A full angle-dependent treatment of the radiative transfer problem can be faced

only through the use of MonteCarlo techniques. For instance, Nobili et al. ([[41]],

hereafter NTZ08), developed a 3D Monte Carlo code for a twisted magneto-

spheric model with resonant Compton scattering (RCS) assuming that isotropic

and unpolarised blackbody photons are emitted at the neutron star surface. Such

photons are then Comptonized by a Maxwellian population of electrons which

moves in 1D dimension across the field lines, subjected to a global bulk motion.

In order to avoid complications introduced by Quantum Electrodinamic (QED)

effects in the scattering cross section, NTZ08 generated a grid of spectra for

different sets of the model parameters only up to 15 keV. NTZ08 successfully

applied their model to a sample of highly magnetised compact objects, namely

AXPs and SGRs, observed by XMM and INTEGRAL. On the other hand, we

note that Ferrigno et al. [56], starting from the analytical solutions reported in

BW07, developed a model that was later almost successfully tested on the ac-

creting pulsar 4U 0115+63. Their model is based essentially on the convolution

of the column-integrated Green’s function of the thermal plus bulk scattering

operator with a given seed photon distribution. The basic assumption of this

derivation is that the velocity profile of the accreting matter is assumed to be

v(τ) ∝ −τ , which allows one to find analytical solutions through the variable

separation method (Eqs. [36] and [37] in BW07).

The numerical algorithm we developed directly solves the RTE in Fokker-Planck

approximation, without the need of this prescription for the dynamical configu-

ration of the accreting matter field. Specifically, we included some modifications

with respect to the approach of BW07 and Ferrigno et al.[56]. First, following

TMK97, we include in equation (5.1) a second term in the thermal Comptoniza-

tion operator that accounts for the contribution of the bulk motion velocity of

electrons in addition to their thermal (Maxwellian) component. Besides, we

consider the time-independent version of (5.1), in order to apply correctly the

algorithm described in Chap. 4. With this prescription in mind, equation (5.1)

becomes

−S(ǫ, Z) =− v

c

∂n

∂Z
+
dv

dZ

ǫ

3c

∂n

∂ǫ
+

∂

∂Z

(
1

3neσ‖

∂n

∂Z

)

− n

ctesc
+

neσ

mec2
1

ǫ2
∂

∂ǫ

{
ǫ4
[
n+

(
kTe +

1

3
mev

2

)
∂n

∂ǫ

]}
, (5.9)
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where ǫ ≡ hν, σ = 10−1σT, while tesc is the photon mean escape timescale (see

Eq. [17] in BW07)

tesc =
neσ⊥r20

c
. (5.10)

Now, defining the optical depth as dτ = neσ‖dZ and introducing the dimension-

less energy x ≡ hν/kTe, (5.9) becomes

−σ‖
σ
S(x, τ) = −σ‖

σ

v

c

∂n

∂τ
+
σ‖
σ

1

c

dv

dτ

x

3

∂n

∂x
+

1

3

σ‖
σ

∂2n

∂τ2
−
(
ξv

c

)2 σ‖
σ
n

+
kTe
mec2

1

x2
∂

∂x

{
x4
[
n+

(
1 +

1

3

mev
2

kTe

)
∂n

∂x

]}
(5.11)

where we have divided all the equation by σ/σ‖ and we have introduced the

dimensionless parameter ξ given by (see Eq. [26] in BW07)

ξ =
15.8 r0
ṁ

. (5.12)

Looking at equation (5.11), we see that, in the escape time prescription provided

by BW07, the spatial diffusion of photons is described by

1

3

σ‖
σ

∂2n

∂τ2‖
−
(
ξv

c

)2
n

σR
= λ2n, (5.13)

or, more clearly, by
1

3

σ‖
σ

∂2n

∂τ2‖
− n

r0neστ⊥
= λ2n, (5.14)

where dτ‖ = neσ‖dZ is the optical depth along the Z-axis and dτ⊥ = neσ⊥dr is

the optical depth along the r-axis, perpendicular to the magnetic field, and λ is

the eigenvalue. The right hand side of equation (5.14) can be approximated as

[
1

3τ2‖

σ‖
σ

− 1

r0neστ⊥

]
n ≈ λ2n (5.15)

and, as we know from Chap. 2 and 3, since the eigenvalue λ2 < 1, also both

the coefficients on the right hand side of (5.15) should be less than 1, simultane-

ously, in order for diffusion approximation to hold. In particular, the coefficient

D‖ = σ‖/(3στ
2
‖ ) takes into account the spatial diffusion of photons propagating

along the magnetic field lines, while the coefficient D⊥ = 1/(r0neστ⊥) accounts

for the diffusion of photon travelling perpendicular to the field.

Following the approach of BW07, since τ‖ ≪ τ⊥ thus D‖ ≫ D⊥, which means

that, the spatial diffusion in the perpendicular direction (r-axis) is more efficient

than along the Z-axis, therefore photons travelling at large angles to the field

lines have a smaller diffusion escape probability, i.e. a smaller coefficient D⊥.

As result, the authors focused their attention on the diffusion of those photons

propagating along magnetic field lines, approximating a proper treatment of the

diffusion in the perpendicular direction (i.e. the solution of integral equation
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(2.23)) with the coefficient D⊥.

Having these considerations in mind, we go ahead with our calculations. Intro-

ducing a logarithmic binning of the dimensionless energy, the stationary version

of equation (5.9) for the mean specific intensity J(q, τ) becomes

−S(q, τ)
H

=

[
1 +

mev(τ)
2

3kTe

]
∂2J

∂q2
+

[
3kTe(e

q − 3 + δ̂)−mev(τ)
2

3kTe

]
∂J

∂q

+

[
eq − 3δ̂ − ξ2v(τ)2

Hc2

]
J +

1

3H

∂2J

∂τ2
− v(τ)

Hc

∂J

∂τ
, (5.16)

where we have defined the quantities

H =
σ

σ‖

kTe
mec2

, (5.17)

and

δ̂ =
1

3H

dβ(τ)

dτ
, (5.18)

in which β(τ) = v(τ)/c. Equation (5.16) is given in the general form (4.7) and

for this particular case, we find that the coefficients are

P(τ) = 1 +
mev(τ)

2

3kTe
,

Q(τ) =
3kTe(e

q − 3 + δ̂)−mev(τ)
2

3kTe
,

R(τ) = eq − 3δ̂ − ξ2v(τ)2

Hc2
,

W(τ) =
1

3H
,

Z(τ) = −v(τ)
Hc

,

Ŝ(q, τ) = S(q, τ)
H

. (5.19)

To solve equation (5.16), it is necessary to define the behaviour of the velocity

profile β(τ). We considered two possibilities: the first one is to assume a generic

profile

β(Z) = −A (Zs/Z)
−η, (5.20)

where the normalization constant is defined as A = β0(Z0/Zs)
η, and β0 is the

terminal velocity at the stellar surface Z0.

The continuity equation for the system under investigation gives the electron

number density

ne =
Ṁ

πmp|β(Z)|cR2
0

, (5.21)

where ṁ ≡ Ṁ/ṀE is the mass accretion rate in Eddington units and R0 is the

radius of the accretion column.

We then define the dimensionless quantities z and r0 through the change of
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variables Z → RS⊙mz and R0 → RS⊙mr0, where m ≡ M/M⊙, while MS⊙
and RS⊙ are the Sun mass and Schwarzschild radius, respectively. The effective

vertical optical depth of the accretion column is then given by

τ(z) =

∫ z

z0

neσ‖dZ
′ = C

ṁ

A r02

(
zη+1 − zη+1

0

)

η + 1
, (5.22)

where C = 2.2×10−3, and z0 is the vertical coordinate at the neutron star surface.

Inverting relation (5.22), we also define the velocity profile of the accreting matter

as a function of the optical depth τ instead of the space variable z

β(τ) = −A

{
zη+1
0 +

A r20(1 + η)τ

Cṁ

}− η
η+1

. (5.23)

As a second possibility, following BW07, we considered the velocity profile

β(τ) = −Ψτ, (5.24)

where Ψ = 0.67ξ/z0 (see Eq. [32] in BW07).

Since the optical depth τ represents one of the free parameters of our model,

once we provide the dimensionless accretion column radius r0, the accretion rate

is determined inverting equation (5.22), if β(τ) is defined as in equation (5.23),

or from equation (28) in BW07 if β(τ) belongs to equation (5.24). This step

is necessary to determine the ξ parameter (Eq. [5.12]), and requires fixing the

maximum altitude of the accretion column zmax. We assumed zmax = 2z0, and

all emerging spectra that we will present in the next Chapter were computed

with this choice.
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6
Examples of Emerging Spectra

In this Chapter we report some examples of the theoretical spectra obtained by

the application of our model, described in Chap. 4, 5, to equation (5.16). We

discuss the spectral shapes we obtain for different sets of the physical quantities

which define the system.

6.1 Results

We consider a blackbody seed photon spectrum at given temperature kTbb with

exponential spatial distribution across the vertical direction, according to

S(x, τ) = Cne
−τ kT 3

e x
3

ekTe/kTbb x − 1
, (6.1)

with the normalization constant defined as Cn = R2
km/D

2
10, where Rkm and D10

are the blackbody emitting area in kilometres and the source distance in units

of 10 kpc, respectively. The spectra were computed using the velocity profiles

defined in equations (5.23) and (5.24), respectively. The common parameters

for both cases are consequently the blackbody temperature kTbb, the electron

temperature kTe, the optical depth τ , the albedo at the inner surface A and the

radius of the accreting column r0. On the other hand, for β(τ) belonging to equa-

tion (5.23), additional parameters are the index η and the terminal velocity at

the star surface β0. We first present the results for this second physical case. In

Fig. 6.1 we show the emerging spectra for different values of the electron temper-

ature kTe and two terminal velocities β0 = 0.1 and β0 = 0.64. As expected, both

times higher values of kTe produce flatter spectra and push the cut-off energy Ec

to higher energies; on the other hand, the bulk contribution as a second channel

of Comptonization depends on the value of kTe. The two extreme temperature

values reported here, kTe = 5 keV and kTe = 50 keV, are particularly instructive:

for low electron temperatures the spectrum changes from blackbody-like when

β0 = 0.1 to a cut-off power law with Ec & 30 keV when β0 = 0.64, while the
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Figure 6.1: Emerging spectra obtained from the solution of equation

(5.16) for different values of the electron temperature kTe,

with the velocity profile of equation (5.23). In both cases

the fixed parameters are kTbb = 1 keV, τ = 0.2, η = 0.5,

r0 = 0.25, A = 1.

Panel (a): β0 = 0.1, Panel (b): β0 = 0.64.

spectral change is much less enhanced for a hot plasma. These can be considered

as typical examples of bulk-dominated and thermal-dominated Comptonization

spectra, respectively. Together with the electron temperature, the optical depth

τ is an important parameter that plays a key role in determining the spectral

slope and cut-off energy, as clearly shown in Fig. 6.2. We note that in Fig. 6.1

and Fig. 6.2 the index of the velocity profile was chosen to be η = 0.5, typical
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Figure 6.2: Same as Fig. 6.1 but for different values of the opti-

cal depth τ , with the velocity profile of equation (5.23).

Fixed parameters are kTbb = 1, r0 = 0.25, η = 0.5,

β0 = 0.64, A = 1. Panel (a): kTe = 5 keV, Panel (b):

kTe = 15 keV.

of accretion onto a compact object where gravity and radiation pressure are the

only force terms that determine the dynamical configuration. Here, the termi-

nal value of the matter velocity β0 depends on the ratio of the radiative and

gravitational forces, provided the condition |Fr|/|Fg| . 1 is satisfied. This rel-

atively simple approach is valid for low values of optical depth τ , while when

τ > 1 radiative transfer becomes important, the problem requires in principle

a more accurate radiation-hydrodynamics treatment. It is outside the scope of
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Figure 6.3: Same as Fig. 6.1 but for different values of the index of

the velocity profile η (see Eq. 5.23). Fixed parameters

are kTbb = 1, τ = 0.2, β0 = 0.64, r0 = 0.25, A = 1.

Panel (a): kTe = 5 keV, Panel (b): kTe = 15 keV.

this paper to compute the exact velocity profile for accreting matter under the

presence of a strong radiation field in a high optical depth environment. We

merely introduced a simple parametrisation for modifying the velocity field by

changing the index η, with the results shown in Fig. 6.3, for two different values

of the electron temperature kTe. As Fig. 6.3 shows, the lower the value of η, the

harder the spectrum: this behaviour can be explained in a quantitative and a

qualitative way. Indeed, as η increases, the velocity profile β(z) becomes sharper,

and for a fixed terminal velocity β0, electron temperature kTe, and optical depth
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Figure 6.4: Same as Fig. 6.1 but for different values of the inner ve-

locity β0 for the velocity profile of equation (5.23). Fixed

parameters are kTbb = 1, τ = 0.2, η = 0.5, r0 = 0.25,

A = 1.

Panel (a): kTe = 5 keV, Panel (b): kTe = 15 keV.

τ , while photons diffuse through the bounded medium, on average the energy of

the electrons (caused by their Maxwellian plus bulk motion) will be lower, and

consequently the net energy gain of the photons due to inverse Compton will

be less. From the mathematical point of view, it is worth mentioning that Mas-

tichiadis & Kylafis ([68], hereafter MK92) reported the analytical solution of the

RTE in the Fokker-Planck approximation with the variable separation method

for spherical accretion without magnetic field in the limit Te = 0. Assuming a
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Figure 6.5: Same as Fig. 6.1 but for different values of the albedo

A, with the velocity profile of equation (5.23). Fixed

parameters are kTbb = 1, τ = 0.4, η = 0.5, β0 = 0.64,

r0 = 0.25.

Panel (a) kTe = 5 keV, Panel (b): kTe = 15 keV.

general velocity profile βr ∝ r−η, the authors showed that the spectral index of

the kth-Comptonization order emerging spectrum yields αk = 3+3λk/(2−η) (see

Eq. [4.4]), where λk is the kth-eigenvalue of the space operator. Using equation

(B12) of MK92, it follows immediately that as η increases, the spectral index αk

increases as well. This mathematical result in terms of spectral formation can

be considered as general in the framework of the Fokker-Planck treatment, and

is accordingly qualitatively meaningful for our research. We also emphasise that
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Figure 6.6: Same as Fig. 6.1 but for different values of the accretion

column radius r0, with the velocity profile of equation

(5.23). Fixed parameters are kTbb = 1, τ = 0.2, η = 0.5,

β0 = 0.64, A = 1.

Panel (a): kTe = 5 keV, Panel (b): kTe = 15 keV.

analytical solutions for η 6= 0.5 have been possible for MK92 only because of

the condition Te = 0, which drops the thermal Comptonization operator in the

RTE, while when Te > 0 this is possible only for η = 0.5 (TMK97, F08). In

Fig. 6.4 we show results for different terminal bulk velocities β0 for two electron

temperature values. The figure can be considered an extension and completion

of Fig. 6.1 because more values of β0 are shown to better appreciate the induced

changes in the emerging spectra. The spectral modifications as a result of dif-
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Figure 6.7: Emerging spectra obtained from the solution of equation

(5.16) for different values of the electron temperature kTe,

with the velocity profile of equation (5.24). In both cases

the fixed parameters are kTbb = 1 keV, τ = 0.2, β0 = 0.64,

r0 = 0.25, A = 1.

Panel (a): τ = 0.2, Panel (b): τ = 0.4.

ferent values of the albedo A at the inner surface are instead shown in Fig. 6.5,

where we explored full absorption (A = 0) and full reflection (A = 1), together

with other intermediate values. From the point of view of a physical link to as-

trophysical objects it would be natural to associate a black hole to the condition

A = 0 and a neutron star to the condition A = 1, as was respectively suggested

by Titarchuk & Fiorito [54] and Farinelli & Titarchuk [53], even though this
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Figure 6.8: Same as Fig. 6.1 but for different values of the opti-

cal depth τ , with the velocity profile of equation (5.24).

Fixed parameters are kTbb = 1, r0 = 0.25, η = 0.5,

β0 = 0.64, A = 1. Panel (a): kTe = 5 keV, Panel (b):

kTe = 15 keV.

latter assumption may be considered an oversimplification of the problem. A

most realistic approach would consist indeed in an energy-dependent treatment

of the albedo, a problem that could be faced only with MonteCarlo simulations,

with the additional complications arising from a detailed treatment of the star

photosphere (surface) properties. For our unavoidably simplified assumptions,

the net effect of increasing values of A is a progressive flattening of the emerging

spectra. This is physically explained because when A > 0, a fraction of photons
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Figure 6.9: Same as Fig. 6.1 but for different values of the albedo

A, with the velocity profile of equation (5.24). Fixed

parameters are kTbb = 1, τ = 0.4, η = 0.5, β0 = 0.64,

r0 = 0.25.

Panel (a): kTe = 5 keV, Panel (b): kTe = 15 keV.

(which becomes 100% when A=1) suffers on average more scattering with respect

to A = 0. Qualitatively, the spectral modification leads in the same direction

as an enhanced optical depth of the system. The last parameter that strongly

influences the spectral formation is the radius of the accretion column r0, whose

effects are shown in Fig. 6.6. Indeed, following the BW07 prescription, the mean

escape time for photons using the diffusion approximation tesc ∝ r20 (see Eq.

[5.10]). On the other hand, both the bulk and thermal Comptonization parame-
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Figure 6.10: Same as Fig. 6.1 but for different values of the accretion

column radius r0, with the velocity profile of equation

(5.24). Fixed parameters are kTbb = 1 keV, τ = 0.2, and

A = 1. Panel (a): kTe = 5 keV. Panel (b): kTe = 15

keV.

ters (ybulk and yth, respectively) are related to the mean number of scatterings

that photons experience in the medium via

ybulk ≈ Nbulk
av ζbulk, (6.2)

yth ≈ N th
avζth,

where Nbulk
av , ζbulk, N

th
av and ζth are the averaged number of scatterings and

the fraction energy gain per scattering for bulk and thermal Comptonization,
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respectively. Both Nbulk
av and N th

av are of course also proportional to tesc (see

Eqs.[94]-[97] in BW07). Evidently therefore, for fixed velocity profile parameters

A and η (see Eq. [5.20]), once the optical depth τ is defined (see Eq. [5.22]), to

keep its value constant for increasing r0 (as reported in Fig. 6.6), the accretion

rate ṁ must also increase in a way to keep the ratio ṁ/r20 constant. Combining

equation (5.10) and (5.21) yields tesc ∝ ṁ, which in turn leads to an enhance-

ment of the Comptonization parameters ybulk and yth in equation (6.3) with a

hardening of the spectral shape. Considering now the velocity profile defined in

equation (5.24), we see that the results are qualitatively the same as in equa-

tion (5.23) as far as the spectral modifications induced by variations of kTe are

concerned (Fig. 6.7), τ (Fig. 6.8) and A (Fig. 6.9), respectively. But there are

opposite effects that are induced in the emerging spectra by different values of the

accretion column radius r0 for the velocity profile here considered. Indeed, using

equation (5.12) and the definition of τ in equation (28) of BW07, which allows us

to express the accreting matter velocity in terms of the z-coordinate, in spite of

the optical depth τ , it is straightforward to see that β(z) ∝ r
−1/2
0 . In particular,

if z0 = 2.42 and zmax = 2z0 we have βmax=0.60 for r0 = 0.1, βmax=0.38 for

r0 = 0.25, βmax=0.27 for r0 = 0.5 and βmax=0.2 for r0 = 1, respectively. Note

that because equation (5.24) describes matter that stagnates at the star surface,

here βmax represents the velocity at the accretion column altitude zmax. In other

words, while using equation (5.23), the choice of r0 does not modify the velocity

field of the accreting matter, which is only determined by the choice of β0 and η,

for (5.24) as r0 increases the bulk contribution to the spectral formation becomes

less important, and this drop is not compensated by the increase of the photon

mean escape time tesc, which, as explained above, would instead contribute to

spectral hardening.

6.2 XSPEC implementation

Our model will be distributed as a contributed model to the official XSPEC ∗ web

page.

In Table 6.1 we report a summary of the free parameters of the model, with their

physical meaning. The code was written in C-language, and can be easily in-

stalled following the standard procedure reported both in the official XSPEC manual

and in the brief cookbook which will be delivered together with the source code.

As a general concern for users, it is important to point out that, in general, the

emergent spectrum obtained from the Comptonization of a seed photon popula-

tion with any given energy distribution S(E) can be presented as the sum of the

seed spectrum plus its convolution with the scattering Green’s function G(E,E0)

of the electron plasma, each with their relative weight, according to the general

formalism

F (E) =
Cn

A+ 1
[S(E) +A S(E) ∗G(E,E0)], (6.3)

∗http://heasarc.nasa.gov/xanadu/xspec/newmodels.html
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Table 6.1: Parameter description of the XSPEC model COMPMAG .

Parameter Units Description

kTbb (keV) Seed photons blackbody temperature

kTe (keV) Electron temperature

τ Optical depth of the accretion column

η Index of the velocity profile (Eq. [5.23])

β0 Terminal velocity at the NS surface

(Eq. [5.23])

r0 Radius of the accretion column in

units of the NS Schwarzschild radius

A Albedo at the NS surface

Prof If Prof= 1, β(τ) defined in equation (5.23)

otherwise as in equation (5.24)

Norm R2
km/D

2
10

where Cn is a normalization constant. The ratio A/(A + 1) is the Comptoniza-

tion fraction and its value qualitatively determines the contribution to the total

spectrum of the Comptonized photons. The value of A may depend on several ge-

ometrical and physical factors, such as, e.g., the spatial seed photon distribution

inside the system configuration (see Fig. [4] in TMK97). The lower the value

of A, the more enhanced is the direct seed photon spectrum S(E). Examples

of XSPEC models which make use of the definition in equation (6.3) are BMC

(TMK97) and COMPTB (F08). Either model, however, does not solve the full

RTE including the photon spatial diffusion and distribution, the latter being an

unknown quantity which is phenomenologically described through the continuum

parameter log(A). On the other hand, in our present model it is not possible to

change arbitrarily, i.e., according to the observed spectra, the value of log(A).

Its value is implicitly determined once the seed photon spatial distribution is

fixed. We have presented the results of simulated spectra assuming a uniform

distribution over τ for S(E), which was assumed to be a black-body; in this case,

the transition from the low-energy part of the spectrum (the Rayleigh regime for

E . 3kTbb) to the high-energy (Comptonized) power-law shape is almost smooth;

this corresponds approximately to the case A ≫ 1 in equation (6.3). However,

for other seed photons spatial distributions (e.g., exponential over tau), the onset

between the black-body peak and the powerlaw-like regime can be characterised

by a jump, meaning A . 1. Thus, for observed spectra where a direct and en-

hanced blackbody-like component is required by the fit, our claim is to model the

source continuum with a (BB + COMPMAG ) model by keeping the temperatures

of the direct and Comptonized black-body component fixed and equal to each

other.

− 68 −



7
SFXTs Spectral Fitting

The present Chapter will be dedicated to the spectral fitting of the Swift observa-

tion of the prototype Supergiant Fast X-ray Transients (SFXTs) XTE J1739-302

(or, equivalently, IGR J17391-3021) and IGR J17544-2619 with several models

including COMPMAG .

7.1 Swift Gamma-Ray Burst Mission

The Swift Gamma-Ray Burst Mission is a robotic spacecraft, developed by an

international collaboration between United States, United Kingdom and Italy.

Swift is a part of NASA’s Medium Explorer Program (MIDEX) and is managed

by the NASA Goddard Space Flight Center. The spacecraft was launched into

orbit on 20 November 2004, 17:16:00 UTC on a Delta II 7320-10C expendable

launch vehicle. The near-perfect orbit is a 586×601 km of altitude, with an incli-

nation of 20°. The telescope was declared fully operational on February 1, 2005,

when the Swift team released the first light picture of the ultraviolet/optical in-

strument.

The name Swift is not a mission related acronym, but rather a reference to the

capability of the instrument to change direction abruptly and the nimble bird of

the same name. Indeed, the mission was conceived as dedicated to the study of

Gamma-Ray Bursts (GRBs) that need a very quick pointing in order to detect

the overall event from prompt emission to the end of the afterglow. In the time

between GRBs events, Swift is available for other scientific investigations. Ob-

servation times can be obtained through the submission of proposals.

The Swift Mission Operation Center (MOC), where commanding of the satellite

is performed, is placed in State College, Pennsylvania. The Swift main ground

station is located at the Broglio Space Centre near Malindi on the coast of East-

ern Kenya, and is operated by the Italian Space Agency. The operations are

directed by the Pennsylvania State University and industry subcontractors. The
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Science Data Center (SDC) and the archive are located at the Goddard Space

Flight Center outside Washington D.C. The UK Swift Science Data Centre is

located at the University of Leicester.

The spacecraft bus was built by Spectrum Astro, which was later acquired by

General Dynamics Advanced Information Systems. Swift is a multi-wavelength

space-based observatory made of three instruments that work together to detect

events from gamma-ray to optical wavebands.

The Burst Alert Telescope (BAT) firstly detects the GRBs events and calculates

its coordinates in the sky. It covers one steradian fully coded and three steradi-

ans partially coded over the 12.6 steradians of the full sky. Within 15 seconds

it determines the position of the event with an accuracy of 1 to 4 arc-minutes.

The coordinates are immediately communicated to the ground, where some wide-

field, rapid-slew ground-based telescopes catch themselves the GRB. The BAT

uses a coded-aperture mask of 52,000 randomly placed 5 mm lead tiles, 1 metre

above a detector plane of 32,768 four mm CdZnTe hard X-ray detector tiles; it

is purpose-built for Swift. The energy range coverage spans from 15 keV up to

150 keV. This instrument was thought for the study of bursts with a large variety

of intensities, duration and temporal structures. The solid state detector array

allows the detection even of very weak bursts, while the large field of view (FOV)

guarantees to see a good fraction of bright bursts. Since the field of view of the

BAT includes also the FOV of the other two instruments, its possible to study

simultaneously the duration gamma-ray/X-ray and UV/optical emission. The

BAT data will produce over the course of Swift ’s two years mission, a sensitive

hard X-ray all-sky survey.

The X-ray Telescope (XRT) takes images and performs spectral analysis of the

GRB afterglow. The XRT provides a more definite location of the event, with

a typical error circle of approximately 2 arc-seconds radius. Then it continues

monitoring the GRB afterglow light curves for a period of days up to weeks after

the event, depending on the brightness of the afterglow (it will cover a dynamic

range of more than 7 order of magnitude in flux). The XRT uses a Wolter Type I

X-ray telescope with 12 nested mirrors, focused onto a single MOS charge-coupled

device (CCD) similar to those used by the XMM-Newton EPIC MOS cameras.

The instrument is able to select by itself the most appropriate observing mode

for each object, depending on its measured count rate. The energy range of the

XRT is 0.2-10 keV.

After Swift has rapidly changed its pointing direction towards a GRB, the Ul-

traviolet/Optical Telescope (UVOT) is used to detect an optical afterglow. The

UVOT provides a sub-arcsecond position and provides optical and ultra-violet

photometry through lenticular filters and low-resolution spectra (170–650 nm)

in a 17′ × 17′ field through the use of its optical and UV grisms. Despite its

limited aperture, UVOT is a powerful complement to other instruments because

of its UV capabilities and the absence of atmospheric extinction, diffraction, and

background. The UVOT is also used to provide long-term follow-ups of GRB

afterglow light curves. The UVOT is based on the XMM-Newton mission’s Op-

tical Monitor (OM) instrument, with improved optics and upgraded on board
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processing computers. The UVOT is a diffraction-limited 30 cm (12" aperture)

modified Ritchey-Chretien UV/optical reflector, sensitive to magnitude 24 in

a 17 minute exposure, CO-aligned with the XRT. An 11-position filter wheel

allows low-resolution grism spectra of bright GRBs, magnification, and broad-

band UV/visible photometry. Photons register on a microchannel plate intensi-

fied CCD (MIC) [122]∗,†.

The scientific goals of the Swift mission, as the name suggests, are focused on the

GRBs physics. Indeed, the objectives are: the determination of GRBs’ origin,

their classification and, possibly, the discovery of new types, the interaction of

the ultra-relativistic outflows of GRBs with the surrounding medium, and the

use of GRBs to study early universe out to z > 10. However, in addition, the

mission is performing an hard X-ray survey to a sensitivity of ∼ 2 × 10−11 erg

cm−2 s−1 in the 15-150 keV, which will substantially improve the HEAO 1 A-4

survey. The extremely rapid follow-up observations and the rapid data sharing

system are making the mission very effective also for all the types of high-energy

transient sources, like Supergiant Fast X-ray Transients (SFXTs).

7.2 Supergiant Fast X-ray Transients

After the INTEGRAL galactic plane survey, which started in 2002, was claimed

the existence of a new class of High Mass X-ray Binaries (HMXBs). SFXTs

are binary systems, associated with an OB supergiant, and a compact object,

presumably a neutron star. they are persistent X-ray sources, which show a vari-

ability on short timescales, probably due to the physical characteristic of wind

accretion, and a relatively stable behaviour on the long term [84].

The outburst activity is shorter than typical Be/X-ray binaries and are charac-

terised by bright flares, that last a few hours [85],[86],[87], with a peak luminosity

of order of 1036 − 1037 erg s−1 [88],[89]. A small number of SFXTs has been

observed in a quiescent state, characterised by a soft spectrum approximately

thermal with lower luminosities (Lx ∼ 1032 erg s−1) [90],[91],[92]. The SFXT

luminosity seems to have a wide dynamical range and, if the orbit is eccentric,

can be modulated on the orbital period of the system [93].

A typical SFXT outburst is defined as a strong peak plus a flaring activity, with

secondary peaks before and after the maximum flux of the main peak. The av-

erage duration of the activity period is about ∼ 6 hours, but it depends on the

peculiar characteristic of the outbursts. As a general classification, there are

fainter (Lx ∼ 1033 − 1034 erg s−1) and more numerous outbursts having a mean

count rate ∼ 10 count s−1, and may have a very short duration (∼ 0.6 h), in

addition to brighter and less frequent outbursts with a mean count rate of order

of ∼ 60 count s−1, up to ∼ 190 count s−1 and, on average, they last 1 hour more

than the fainter ones [94].

The hard X-ray spectral shape of SFXTs presents all the characteristics of a spec-

∗http://www.swift.psu.edu/
†http://en.wikipedia.org/wiki/Swift_Gamma-Ray_Burst_Mission
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trum belonging to a HMXB hosting a neutron star. At energies below 10 keV the

spectrum is a flat hard power-law, then, for E ∼ 15−30 keV, there is high-energy

cut-off. Moreover, a fraction of SFXTs shows a strong absorption at soft energies

[96],[97].

Although, these features seem to confirm undoubtedly the identification of the

compact object as a pulsar, just a few SFXTs indeed show a pulsation, namely,

AX J1841.0-0536 with Pspin ∼ 4.7 s [98], IGR J16465-4507 with Pspin ∼ 228

s [99], IGR J11215-5952 with Pspin ∼ 187 s [100] and IGR J18483-0311 with

Pspin ∼ 21 s [101]. Several attempts have been proposed to explain the lack of

pulsations in the most of SFXTs. The photon index and, probably, a marginal

evidence of Cyclotron Resonant Scattering Feature (CRSF) at 30 keV and 60 keV,

suggested by [94] for XTE J1739-302, cannot completely ruled out the possibility

that the compact object is a black hole. Geometrical effects are also being inves-

tigated as possible explanation [102], [103], [104]. For instance, if the magnetic

axis is aligned with the spin axis of the neutron star, we are able to see only one

pole, or, we could obtain the same result if the orbit has a very small inclination

angle. Another possibility is that the pulsars in SFXTs are slowly pulsating, like

2S 0114+650 with a period of ∼ 2.8 h [105], or 4U 1954+319 in a Low Mass

X-ray Binaries (LMXBs) with a period of ∼ 5 h [106]. However, the apparent

lack of pulsations can be due, for instance, to electron scattering occurring in

an optically thick medium that smears out the pulsations [107]. This effect is

supported by the evidence of the presence of an high absorption column.

The large variety of activities and dynamic range of luminosities of SFXTs have

aroused the interest of the linked scientific community and different models have

been proposed to explain their properties. The Bondi-Hoyle accretion, per se,

can not, in fact, explain all types of outbursts.

In 2007, Sidoli et al. [108] suggested that the SFXTs period outbursts can be

originated by the crossing of an additional equatorial wind component. Indeed,

the authors proposed that, besides the spherical symmetric wind from the su-

pergiant, there may be a denser and slower equatorial component, which can, in

principle, be inclined with respect to the orbital plane of the system. Depending

on the inclination angle and on the eccentricity of the orbit, this model suggests

a possible explanation for both the periodic and persistent emission of SFXTs.

Grebenev & Sunyaev [109] and Bozzo et al. [110] proposed a gated mechanism

involving transitions across a magnetic or centrifugal barrier. The accretion can

be interrupted traversing the barrier. Such mechanism requires specific proper-

ties of the neutron star, which are long spin periods (Pspin & 1000 s) and strong

magnetic fields (B & 1014 G). Nonetheless, a magnetar-like field seems to be

extremely large for the hosted compact object in the SFXTs [94], [111].

Alternatively, in’t Zand [91] discussed the possibility to have a spherically sym-

metric clumpy wind. The short flares within this scenario are attributed to the

accretion of massive clumps (1022 − 1023 g) which are present in the supergiant

wind. The distribution of the clumps decreases as the distance from the OB star

increases. Therefore, HMXBs show a persistent emission because of the small

separation between the compact object and the companion. Conversely, SFXTs
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are transient sources due to the larger distance between the two components of

the system [112], [113], [114]. The main drawback of the clumpy wind model is

that it cannot explain the outburst periodicity.

A smart combination of the equatorially enhanced wind and a clumpy spherical

symmetric wind with distribution for the masses and the initial dimensions of

the clump have been proposed by Ducci et al. [115].

From the observational point of view, Swift [122] has been shedding new light

on the phenomenon of SFXTs, thanks to its unique properties of automatic fast-

slewing and broad-band energy coverage, that make it the only observatory which

can detect outbursts from SFXTs from the very beginning and observe their evo-

lution panchromatically.

The bright flares from SFXTs have been triggering the Burst Alert Telescope

[135] since early after launch. Several flares were also observed with the X-ray

Telescope [136] during the monitoring campaigns that were performed, taking

advantage of Swift’s scheduling flexibility, on 4 SFXTs during 2007-2009 [138],

[137],[132]. A few more flares were also caught by the BAT Transient Monitor

[129], [139]‡.

XTE J1739-302 and IGR J17544-2619 are considered the prototypes of the SFXT

class, and were therefore extensively studied with Swift. In this Chapter, we ex-

amine the most recent outbursts of these two sources, which triggered BAT in

2011.

7.3 XTE J1739-302

The source XTE J1739-302 is widely recognised as a SFXTs prototype. It was

discovered in August 1997 with Rossi X-Ray Timing Explorer (RXTE) after a

short outburst and was detected for a period of a few hours [116]. The spectrum

is well modelled with a bremsstrahlung component at temperature 21 − 22 keV

with a peak flux of 3.6 × 10−9 erg cm−2 s−1 in the 2 − 25 keV range and possi-

ble absorption features (CRSF) at 30 and 60 keV [94]. Otherwise, an absorbed

(4.2×1022 cm−2) cut-off power-law model was proposed [116]. Other short flares

were observed with the RXTE/Proportional Counter Array (RXTE/PCA) [90].

The optical counterpart was identified by Chandra as a O8I star [89] situated

at 2.7 kpc [117]. From March 2003 up to 2005 INTEGRAL IBIS/ISGRI ob-

served six bright outbursts, each of them lasted ∼ 5 hours and has a complex

structure [118], [90]. Recently, it was detected by Swift BAT, which managed to

observe the brightest part of a flare at soft energies [119] with the Swift X-Ray

Telescope (XRT). The same event was also detected by the INTEGRAL/JEM-X

monitor [120]. Throughout all these observations, no periodicity was found up

to timescales of 1000 s.

Recently, Drave [95] reported the discovery of a 51.47 ± 0.02d orbital period

based on ∼ 12.4Ms of INTEGRAL data.

‡http://swift.gsfc.nasa.gov/docs/swift/results/transients/
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Table 7.1: Spectral fits of simultaneous XRT and BAT data of XTE

J1739-302 with several models.

Parameters Models

COMPMAG COMPTT CUTOFF-PL BB+BB

NH × 1022 cm−1 1.18+0.12
−0.09 0.81+0.11

−0.10 1.97+0.17
−0.16 1.07+0.10

−0.09

kTbb (keV) 1.63+0.10
−0.17 - - -

kT0,bb=1 (keV) - 1.34+0.07
−0.06 - 1.88+0.09

−0.15

kT0,bb=2 (keV) - - - 6.60+0.57
−0.48

kTe (keV) 9.62+4.05
−2.58 8.83+1.88

−1.11 - -

Γ - - 0.25+0.11
−0.10 -

Ecut (keV) - - 9.19+0.95
−0.80 -

τ 0.33+0.30
−0.03 3.61+0.51

−0.79 - -

β0 0.05 - - -

r0 0.25 - - -

F ∗
0.1−200 keV 7.4 6.8 7.1 5.6

χ2/d.o.f. 1.21/242 1.19/242 1.50/243 1.18/242

∗ Unabsorbed 2–10 keV fluxes (10−9 erg cm−2 s−1).

7.4 IGR J17544-2619

IGR J17544-2619 was first detected by INTEGRAL in 2003 by [123], when the

source reached a flux of 160 mCrab (18–25 keV). Several more flares, lasting up

to 10 hours, were detected by INTEGRAL in the following years [124], [126],

[90], [125], [127] with fluxes up to 400 mCrab (20–40 keV); some were also found

in archival BeppoSAX observations [128]. Subsequent flares were observed by

Swift [129], [130],[131], [132], [133], [134], and SUZAKU [140]. [141] reported

the discovery of a 4.926 ± 0.0001d orbital period based on the ∼ 4.5 years of

INTEGRAL data. The optical counterpart is an O9Ib star at 3.6 kpc [142], [143].
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7.5 Spectral Analysis

We perform a broad-band spectroscopy of the 2011 outburst data collected by

Swift of the two SFXTs XTE J1739-302 and IGR J17544-2619. We extracted

simultaneous spectra from both XRT and BAT event lists in the time interval

147-903 s for XTE J1739-302 and 133-783 s for IGR J17544-2619 since the BAT

trigger. The energy band we considered are: 0.5 − 10 keV and 15 − 60 keV for

XRT and BAT, respectively. We include in the fitting process a factor for each

instrument, constrained within its allowed range (0.9-1.1), in order to have cor-

rect normalisation uncertainties between the two instruments.

We fit these data with several models, including COMPMAG . In particular, we

compare: a) a generic Comptonization model (COMPTT ) in diffusion approxi-

mation for a disk geometry without dynamical bulk component, b) a power-law

model with an exponential cutoff (CUTOFF-PL), which is a typical phenomeno-

logical model used to describe the X-ray emission from the accreting pulsars

hosted in HMXBs, c) a composition of two blackbodies with different temper-

atures and radii, sometimes used to fit magnetar (BB+BB) [29] and d) our

COMPMAG model for accretion column onto magnetised pulsars with bulk veloc-

ity profiles (5.23) with η = 0.5 and β0 = 0.05. The radius of the accretion column

is set to the value r0 = 0.25 and the optical depth is calculated following (5.22).

The set of initial parameters for both XTE J1739-302 and IGR J17544-2619

should satisfy the conditions on the spatial diffusion coefficients D‖ and D⊥ (see

Par. 5.2). For XTE J1739-302, we have

D‖ ∼ 10−3 and D⊥ ∼ 3× 10−2 (7.1)

for an optical depth τ = 0.33 and an accretion rate ṁ = 0.64. For IGR J17544-

2619, we obtain

D‖ ∼ 0.7× 10−4 and D⊥ ∼ 2× 10−3 (7.2)

for an optical depth τ = 1.19 and an accretion rate ṁ = 2.31. As we can see, the

diffusion coefficients are much less than 1 for both sources, therefore the diffusion

approximation, for these sets of parameters is applicable.

Table 7.1 reports the broad-band simultaneous fits we obtained for XTE J1739-

302. Comparing the reduced chi-squares, we note that the CUTOFF-PL is the

worst (χ̃2 = 1.50 for 243 d.o.f.) with respect to χ̃2 = 1.21 (for 242 d.o.f.) found

with COMPMAG , χ̃2 = 1.19 (for 242 d.o.f.) obtained with COMPTT and χ̃2 = 1.18

(for 242 d.o.f.) obtained with BB+BB. In the COMPMAG model we have frozen

four parameters: we have chosen the velocity profile (5.23) with η = 0.5 and

β0 = 0.05 and the accretion column radius is fixed to r0 = 0.25.

The photons absorption goes from ∼ 0.81× 1022 cm−1 of the COMPTT model to

∼ 1.97× 1022 cm−1 for the cutoff power-law. All the values of the NH parameter

are on average smaller or compatible than the previous estimates of the XTE

J1739-302 absorption, but, however, it seems to have wide range of variability

[90].
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Table 7.2: Spectral fits of simultaneous XRT and BAT data of IGR

J17544-2619 with several models.

Parameters Models

COMPMAG COMPTT CUTOFF-PL BB+BB

NH × 1022 cm−1 0.68+0.10
−0.08 0.58+0.07

−0.06 0.73+0.06
−0.06 0.58+0.07

−0.06

Eedge(keV ) 22±2 21±2 23±1 -

τedge 0.81+0.52
0.23 0.62+0.35

−0.31 1.35+0.54
−0.43 -

kTbb (keV) 0.73+0.11
−0.10 - - -

kT0,bb=1 (keV) - 0.63+0.07
−0.08 - 0.93+0.07

−0.07

kT0,bb=2 (keV) - - - 3.45+0.08
−0.07

kTe (keV) 3.47+0.34
−0.02 3.92+0.18

−0.16 - -

Γ - - 0.04+0.07
−0.07 -

Ecut (keV) - - 7.50+0.54
−0.49 -

τ 1.19+0.09
−0.10 10.7+0.7

−0.7 - -

β0 0.05 - - -

r0 0.25 - - -

F ∗
0.1−200 keV 8.2 8.1 7.7 7.9

χ2/d.o.f. 1.10/295 1.09/295 1.16/296 1.13/297

∗ Unabsorbed 2–10 keV fluxes (10−9 erg cm−2 s−1).

The Comptonization models (COMPTT and COMPMAG ) gives as best fit a black-

body temperature of the seed photons of the order of ∼ 1.3 − 1.6 keV and an

electron plasma temperature kTe of ∼ 9 keV. Such temperatures suggest that the

multiple inverse Compton process should be in the unsaturated regime (yNR ∼ 1

and τ of the order of unity) therefore both electrons and photons have maintained

the original information belonging to the source and the plasma itself.
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A possible interpretation that we may provide on the basis of the temperatures

found for the two blackbodies can be that, while the softer (∼ 1.8− 1.9 keV with

Rbb,1 ∼ 1 km) may carry some information about the seed photon distribution,

the harder (∼ 6.6 keV with Rbb,1 ∼ 0.1 km) population of photons can derived

from a saturated Comptonization and gives a Wien spectrum in which there is

no trace of the temperature of the plasma.

The power-law index (Γ ∼ 0.25) and the cutoff energy (Ecut ∼ 9.2 keV) seems to

be in good agreement with previous spectral analysis [90], [94].

For what concerns the comparison of optical depths between COMPMAG and

COMPTT , we need a much more extensively discussion.

From Table 7.1, we note that between the optical depths estimated with the two

models there is one order of magnitude (τ ∼ 0.33 for COMPMAG and τ ∼ 3.6 for

COMPTT ). In particular, the value reported from the COMPMAG best fit seems

to suggest a very low Comptonization parameter (See Chap. 2), thus a tiny de-

viation in the shape of the spectrum from the initial BB source function and an

almost negligible change of the total energy of photons. Nevertheless, as we see

also from Fig. 7.1 (Panel (a) and (b)), COMPMAG and COMPTT give rise basically

to the same spectrum. This is due to the presence of the strong magnetic field.

In COMPTT , which is a generic (zero external field) static Comptonization model

calculated in Fokker-Planck approximation, the optical depth is the standard

Thompson optical depth for electron scattering

τT =

∫ H

r

σTne(r
′)dr′, (7.3)

where σT is the classical Thomson scattering cross section, ne(r) is the electron

number density and H is the height of the slab [43].

In the COMPMAG model (applied to BW07) the scenario is more complex.

In BW07, the system under investigation is a cylindrical slab of magnetised

plasma. As we have already discuss in the previous Chapters, when a strong

magnetic field is present, the medium becomes birefringent respect to the radi-

ation and we may say that, in first approximation, there are two polarisation

modes with different cross-sections and, therefore, different opacity, depending

on energy and angle between the direction of propagation of photons and the

magnetic field.

Following Wang & Frank [121], BW07 introduced constant, energy- and angle-

averaged cross-sections, σ‖ and σ⊥, as a further approximation of (2.10)-(2.12),

in order to greatly simplify the RTE, which, in principle, should be a system of

two integro-differential equations.

The equation they considered to characterise the problem is the time-independent

version of Eq.18 in [49], plus an "escape time" term (see Eq. 5.9). Such equation

is purely differential, i.e. a RTE in Fokker-Planck approximation. As we have

discussed before, the diffusion approximation does not hold when a strong mag-

netic field is present, because the photon occupation number can be no longer

assumed as isotropically distributed. Under some assumptions, we have seen (see

− 77 −



Spectral Analysis

0.
01

0.
1

1

E
 F

(E
) 

ke
V

  c
m

−
2  

s−
1

1 10−
4

−
2

0
2

4

χ

Energy (keV)

(a)

10
−

3
0.

01
0.

1
1

E
 F

(E
) 

ke
V

  c
m

−
2  

s−
1

1 10−
4

−
2

0
2

4

χ

Energy (keV)

(b)

0.
01

0.
1

1

E
 F

(E
) 

ke
V

  c
m

−
2  

s−
1

1 10−
4

−
2

0
2

4

χ

Energy (keV)

(c)

10
−

3
0.

01
0.

1
1

E
 F

(E
) 

ke
V

  c
m

−
2  

s−
1

1 10−
4

−
2

0
2

4

χ

Energy (keV)

(d)

Figure 7.1: Absorption-corrected EF(E) spectra, best-fit models re-
ported in Table 7.1 and residuals between the data and
the model in units of σ for XTE J1739-302. Panel (a):
COMPMAG. Panel (b): COMPTT. Panel (c): CUTOFF-

PL. Panel (d): BB+BB.
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Chap. 2) that is possible to neglect the anisotropic part of the photon occupation

number, maintaining the integro-differential nature of RTE.

BW07, instead, argued that the diffusion approximation can be applied also in

this case, through the introduction of the escape time term. This term is included

in the RTE in order to describe the spatial diffusion of photons through the slab

with a differential diffusion operator (see Par. 5.2), replacing the solution of inte-

gral equation (2.23).

In particular, if both the coefficients in D‖ and D⊥ are < 1, the diffusion approx-

imation is valid. Therefore, it is crucial to choose the COMPMAG parameters in

order to operate in this regime.

The details of the escape time prescription and the validity of diffusion approxi-

mation are given in [62], [61] and [63].

If we assume that all the above assumptions are valid, the averaged optical depth

that characterises our system is (5.22) or, more simply dτ = ne σdz ≃ 0.1σTne dz,

where we have defined the mean cross section σ ∼ 0.1σT between the ordinary

(σ⊥ ∼ σT) and extraordinary (σ‖ ∼ 10−3σT) photons cross sections, as suggested

in [28]. The "effective" averaged optical depth is evidently an order of magnitude

less than (7.3).

In Fig. 7.1 are presented the best fit models. In Panel (a) and Panel (b) the

spectral fits are those obtained with COMPMAG and COMPTT , respectively, and,

as we have already pointed out, there is no appreciable difference between the

two fits. In Panel (c) we report the best fit relative to the cutoff power-law. We

may see immediately that the index of the power-law is not well constrained by

the fit, also due to the wide uncertainties that characterise the high-energy data

of BAT instrument. In Panel (d) there is shown the best fit obtained with the

two blackbodies.

Table 7.2 reports the best fit of IGR J17544-2619 obtained with the same mod-

els adopted for XTE J1739-302. The fit of the broad-band spectrum with a

photoelectrically-absorbed cut-off power-law provides χ2 = 1.28 for 298 d.o.f.

and indeed adequately describes the XRT spectrum and the BAT spectrum above

30 keV, but a a sinusoidal-like feature in the 15-30 keV region is clearly ob-

served. Including an absorption edge in the model improves the statistical result

to χ2 = 1.16 for 296 d.o.f., with Eed ∼ 23 keV and τed ∼ 1.35. The F-test for

discriminating among two different models (namely without and with the absorp-

tion edge) provides however a probability of chance improvement (PCI) of about

only 20%.

The models COMPTT and EDGE ×COMPTT with Eed ∼ 21 keV and τed ∼ 0.62

provide χ2 = 1.14 for 297 d.o.f. and χ2 = 1.09 for 295 d.o.f., respectively, with

PCI of 35%.

A satisfactory fit can also be obtained by the sum of two blackbody spectra,

which provides χ2 = 1.13 for 297 d.o.f. (Panel (b) in Fig. 7.2). The temperatures

and apparent radii (at a distance of 3.6 kpc) of the two BBs are kTbb,1 ∼ 0.9

keV, Rbb,1 ∼ 3.5 km, and kTbb,1 ∼ 3.5 keV, Rbb,2 ∼ 0.8 respectively. Panel (a)

in Fig. 7.2 presents the best fit for EDGE × COMPMAG for the values of the

parameters reported in Table 7.2. Also in this case we obtain an improvement if
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Figure 7.2: Absorption-corrected EF(E) spectra, best-fit models re-

ported in Table 7.2 and residuals between the data and

the model in units of σ for IGR J17544-2619. Panel (a):

BB+BB. Panel (b): EDGE ×COMPMAG , with β0=0.05,

r0 = 0.25.

we include an edge for Eed ∼ 22 keV and τed ∼ 0.81.

7.6 Discussion on SFXTs Accretion Geometry

The joint XRT/BAT spectra of both XTE J1739-302 and IGR J17544-2619

can be described by either a simple Comptonization model, like COMPTT and

COMPMAG or phenomenological models such as a sum of two BB spectra or a

cutoff power-law (see tables 7.1 and 7.2). From a pure statistical point of view

it is not possible to distinguish among these possibilities. There is however an

interesting aspect to discuss which has not been yet fully faced in the accretion

physics of SFXTs.

If we pay attention on the results using the COMPTT and COMPMAG models, it

easy to show that the electron density where Comptonization takes place is of

order of 1019 cm−3. Indeed, the Thomson optical depth is given by

τ ≈ 7 n19 r6, (7.4)
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where n19 ≡ ne/10
19 and r6 ≡ R/106 are dimensionless electron density and

system length scale, respectively. If spectral formation occurs close to the neutron

star (r6 ∼ 1-2), from the COMPTT best-fit values of τ reported in the tables 7.1

and 7.2, it is evident that n19 ∼ 1. The possible presence of a strong magnetic

field (B & 1012 G), with associated reduction of the Thomson cross-section σT
would actually require an even higher electron density. This is indeed confirmed

from the results obtained using the COMPMAG model (see tables 7.1 and 7.2)

developed by F12.

The electron density for column accretion, which is the configuration assumed in

COMPMAG is given by

ne = 1.1× 1019
ṁ

mr20βz
cm−3, (7.5)

where ṁ ≡ Ṁ/ ˙MEdd is the accretion rate in Eddington units, m = M/M⊙ is

the neutron star mass in units of solar masses, r0 = R0/(R
scw
⊙ m) is the accretion

column radius in units of the neutron star Schwarzschild radius, and βz = Vz/c is

the accretion column velocity. We derived ṁ from the best-fit value of τ reported

in the tables 7.1 and7.2 for XTE J1739-302 and IGR J17544-2619, respectively,

(with r0 = 0.25 and βmax = 0.05) and using equation (44) in [52] (hereafter F12)

for both sources. Then, substituting βz in equation (7.5) with a value averaged

over the vertical z-coordinate < βz >, we obtain ne ∼ 1021 cm−3 in both sources.

Now, let us consider the continuity equation for the wind of the supergiant for

spherical case

Nw
e = 1.4× 107

Ṁ7

r2auV
w
8

cm−3, (7.6)

where Ṁ7 is the supergiant mass-loss rate in units of 10−7 solar masses for year,

rau is the distance from the supergiant centre in astronomical units, and V w
8 is

the wind velocity in units of 108 cm s−1. For the system and orbital parameter

of IGR J17544-2619 (MSG ∼ 30M⊙, RSG ∼ 22R⊙, Ṁ7 ∼ 19, Porb ∼ 4.9 days)

and using Kepler’s third law, the orbital eccentricity must be e < 4. Assuming

e = 3, the distance of the neutron star from the supergiant centre varies from

R ∼ 0.13 AU at the periastron, to R ∼ 0.13 AU at the apoastron.

Assuming a terminal velocity of the wind Vt ∼ 103 km s−1, the velocity profile

defined in equation (3) of [115] and using equation (7.6) it is easy to shown that

close to the neutron star Nw
e ∼ 1010 cm−3.

Similar results are obtained for XTE J1739-302 (MSG ∼ 30M⊙, RSG ∼ 22R⊙,

Ṁ7 ∼ 24, Porb ∼ 51 days). This values of Nw
e are thus about 10 order of

magnitude lower than those derived from the Comptonization models. Of course,

this huge density contrast can be partially attenuated by the fact that the wind

is not homogeneous and that accretion is mostly due to higher density clumps in

the wind.

However, even denser clumps do not seem to be able to explain such high densities

of the Comptonization plasma. The most likely possibility is the generation of

strong shock waves due to the supersonic motion of the neutron star in the wind
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during its orbital motion (bow shock region).

The Mach number of the neutron star is given by

M ≈ 102V ns
8 (γZTe/µ)

−1/2, (7.7)

where V ns
8 is the neutron star orbital velocity in units of 108 cm s−1, γ is the

adiabatic index, µ = mi/mp, Z is the charge state and Te is the wind temperature

in eV. For wind temperatures in the range 105−107 K [115], and velocities of the

neutron star derived from the orbital parameters for both for XTE J1739-302 and

IGR J17544-2619, M varies from a few to about 30. The physics of shocks in these

systems is however very complicated for the intrinsic three-dimensional nature of

the problem. Indeed, if from one side the supersonic motion of the neutron star

ensures the formation of a bow shock, on the other hand this discontinuity occurs

in a region where the magnetic field plays an important role in determining the

gas configuration.

A pure dipolar magnetic field may lead to a channelling of accreting matter

towards the magnetic poles of the neutron star, but if non-negligible multipole

components are presents (e.g. quadrupole) then matter can also (or mainly)

being accreted at the equator of the neutron star.
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8
Conclusions

Radiative transfer describes the energy exchange between matter and electromag-

netic radiation through absorption, emission and scattering processes, therefore

it is a fundamental issue in a wide range of research fields.

In Astrophysics the radiative transfer is undoubtedly one of the most important

topics to be studied, since the radiation carries out most, and often all, the infor-

mation which we may receive from any kind of astrophysical objects, including

the Universe itself.

Probably due to its extremely significance, the mathematical structure that de-

scribes the physics behind such phenomenon is rather complicated. The equation

that properly represents radiative transfer is, indeed, integro-differential. The

unknown function, i.e. the specific intensity of the radiation or, apart from a

dimensional constant, the photon occupation number, depends on seven indepen-

dent variables (space, direction, frequency and time). Finding complete solutions

of the RTE as a function of all these variables is, de facto, an extremely arduous

task, if not even impossible in most of the cases.

Unavoidable simplifications should be introduced starting, for instance, from the

choice of the geometry used to describe the system under investigation. Subse-

quently, considerations about the physics involved may lead to further reasonable

assumptions which can restrict the energy range of investigation, the number of

independent variables and the number of dominant processes, as well.

In the subclass of cases where a certain set of allowed assumptions is made, ana-

lytical, but prevalently numerical, solutions of RTE can be found.

Throughout the present thesis I introduced the problem of radiative transfer in

the presence of strong magnetic fields. The importance of studying RTE with the

inclusion of the effects of an external magnetic field increased dramatically with

the discovery of astrophysical sources which, through indirect evidences, showing

huge magnetic fields (B & 1012 G).

Generally, RTE describing the energy transfer by electromagnetic radiation trav-

elling across magnetised medium maintains its integro-differential nature.
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In our first attempt to face such problem, we initially followed the analytic pre-

scription suggested by Lyubarskii [8]-[9]. We assume that the stellar atmosphere

can be approximated by a plane-parallel slab of non-relativistic thermal electrons.

An external uniform magnetic field of the order of ∼ 1014 G with the axis aligned

with the normal of the slab is assumed and the soft seed photons source is placed

at the bottom. In this scenario, we assume that the dominant process which

modifies the photon energy is the multiple inverse Compton scattering.

In these circumstances, the non-relativistic electrons follow circular orbits along

the field lines. The transverse component of their kinetic energy is quantized

in the so-called Landau levels. The quantum of energy is the cyclotron energy

Ec = 11.57×B12 keV.

The properties of the medium are greatly affected by the magnetic field, not

least the fact that, in first approximation, it becomes birefringent, causing the

formation of two modes of radiation polarisation nearly linear and orthogonal

(ordinary and extraordinary), with different cross sections depending on energy

and angle between the photon propagation direction and the magnetic field.

Thus the process of photon scattering off electrons has, in principle, cross sections

which are resonant respect to the cyclotron energy. To avoid the treatment of

resonances, we consider the photon energy range E ≪ Ec. Under these condi-

tions, simplified cross sections can be used, but we still should solve a system of

integro-differential equations.

We decided to study only the RTE describing those photons (ordinary) which

have the large cross-section for inverse Compton and, since we include the O→E

mode-switching term (ordinary to extraordinary), we treat also the small amount

of extraordinary photons created from this process.

In order to emphasise this choice, we impose that the entire seed photon popula-

tion has ordinary polarisation.

The final equation can be reduced to a system of two equations if we consider that

the photons that can be efficiently Comptonized (yNR & 1) are those travelling

at large angles (ψ > τ−1) respect to the magnetic field axis in a large Thomson

optical depth environment (τ & 20).

The system is made of an integral homogeneous Fredholm equation of the second

kind, which is an eigenvalue problem providing the spatial diffusion of the pho-

tons inside the slab, and a differential equation describing the energy exchange

between electrons and photons. The energy equation can be solved even analyti-

cally without making further restrictions, but the space equation is rather compli-

cated. Lyubarskii provided an approximated treatment of such integral equation,

giving good results. We confirmed and tested the Lyubarskii’s analytical results

and we extended them using numerical techniques. We performed a very accurate

analysis of the eigenvalue problem obtaining a large set of eigenvalues and eigen-

functions. Introducing these new results as parameters into the energy equation,

we solve for the first five eigenvalues of the integral space operator and we found

that, as in the case of zero external field, the leading contribution to the emerging

spectrum of the radiation is provided by the first Comptonization mode, related

to the first eigenvalue.
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Subsequently to this very specific analysis, since, even numerically, handling

integro-differential equations is extremely demanding, we decided to implement

an algorithm which allows to solve differential RTE.

The problem of radiative transfer is described by a partial differential equation

(PDE) when the Fokker-Planck (diffusion) approximation is applicable. Perform-

ing a Taylor expansion of the photon occupation number and the electron dis-

tribution function for small energy exchange, RTE becomes a second order time-

dependent inhomogeneous parabolic PDE.

If we consider the static case, RTE reduces to an inhomogeneous elliptic PDE

with vanishing mixed derivatives. Such kind of equation are frequently dealt us-

ing relaxation methods. Relaxation methods are based on writing the equation

by finite differences then, making an initial guess for the configuration of the

unknown function and giving properly chosen boundary conditions, the configu-

ration relaxes into the actual solution of the equation.

We tested our code considering the RTE described by Becker & Wolff [28]. We

picked that equation because the authors, using the "escape time" prescription

and averaging over angle and energy the magnetic Thomson cross sections, found

a differential form of RTE in the case of high magnetic field (B ∼ 1012 G) for cylin-

drical geometry, describing an accretion column onto a magnetised neutron star.

The details of the algorithm and its application are given and discussed accurately,

as for what concerns the implementation of the code on the XSPEC package.

This second approach to the problem of radiative transfer is, of course, a further

simplification even respect to our previous treatment of RTE in the presence

of strong magnetic fields, because it approximates the solution of the integral

operator for spatial photon diffusion at large angles (2.23) to the field with the

coefficient D⊥, focusing instead on spatial diffusion of photons travelling along

field lines. However, operating in the parameter space in which the equation

proposed in [28] is valid, the results obtained by our code are comparable with

those we have found in the previous part of this thesis.

The main difference consists in the fact that in the BW07 treatment, they con-

sider angle- and energy-averaged cross sections for the two polarisation modes

and related optical depths. This approximation, plus the escape term prescrip-

tion which implies the substitution of the actual solution of the integral equation

describing the spatial diffusion at large angles to the field with a single coefficient

(D⊥), smears out all the energy and angle dependences of the photon emerging

spectrum and, therefore almost all the physical information we can extrapolate

from the solution of RTE.

Instead in the Lyubarskii’s approach, although we are making several assump-

tions too, we are preserving both the dependences on energy and angle in the

cross sections and part of the physics, as well. In this scenario, assuming 100% or-

dinary mode polarisation seed photons, indeed, the spatial diffusion is described

by the solution of the integral equation (2.23) for ordinary photons travelling

at large angles to the Z-axis, while the few extraordinary photons created via

mode-switching escape freely from the slab.

This fundamental point has to be consider using our code and, especially when
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we define the initial set of parameters, in order to operate in the parameters space

when diffusion approximation holds. A step forward would be a further extension

of the Lyubarskii’s approach, including also the extraordinary photons, and the

implementation of a dedicated code delivered to the scientific community.

As a result of the collaboration with the IASF-Palermo group, we implemented

our model in the X-ray spectral fitting package XSPEC and we used it to fit

the spectrum of the Supergiant Fast X-ray Transients XTE J1739-302 and IGR

J17544-2619 using simultaneous observations of Swift/XRT and BAT instru-

ments. We compared our model to the other models which are usually adopted

to describe the X-ray spectra of these sources and we found that it provides

satisfactory statistical results. The model will be also delivered to the scientific

community.

Although my research is still way too far to describe in details all the complex

processes that occurs in the atmospheres of strongly magnetised stars, I decided

to start from the comprehension of the very basics of the physics involved with

the purpose of developing numerical techniques which allow the resolution of

RTE at different stages of approximation. A first step towards this goal has been

made.

− 86 −



A
A Brief Review of Numerical

Integration Methods

The most general Fredholm equation of the second kind is defined as

λx(s)−
∫ b

a

K(s, t)x(t) dt = y(s), a ≤ s ≤ b, λ 6= 0. (A.1)

The integral operator is usually completely continuous and the integration region

is commonly a surface in R3. If the kernel function, K(s, t), is a continuous func-

tion, it is possible to find a convergent and stable solution of equation (A.1). The

numerical methods used for finding solutions of equation (A.1) are conventionally

subdivided into the following main classes [39]:

• Degenerate Kernel Approximation Methods

• Projection Methods

• Nyström Methods (or Quadrature Methods)

with, in addition, their iterative variants, that I will not discuss here.

The integral equation (A.1) can be written in the more compact form (λI−K)x =

y. Let’s assume that K is a compact integral operator belonging to a Banach

space∗ X , e.g. C[a, b] or L2(a, b), for the rest of this paragraph.

A.1 Degenerate Kernel Approximation Methods

A kernel K(s, t) is called degenerate if it can be written as

K(s, t) =
n∑

j=1

αj(s)βj(t). (A.2)

∗A Banach space is a normed linear space, X , that is a complete metric space with respect

to the metric d derived from its norm ||· ||, where d(x, y) = ||x− y||.
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Projection Methods

In this case equation (A.1) turns into a linear system, namely

λ cj −
n∑

j=1

(αj , βj) cj = (y, βj), i = 1, . . . , n (A.3)

with a solution of the form

x(s) =
1

λ


y(s) +

n∑

j=1

cjαj(s)


 . (A.4)

Although the majority of the kernels are not degenerate, in some cases it is

possible to find an approximate degenerate form for them. We construct an

ordered set of degenerate kernels Kn(s, t), which has the following property

max
a≤s≤b

∫ b

a

|K(s, t)−Kn(s, t)|dt→ 0 as n → ∞. (A.5)

Substituting the original kernel with the approximate Kn(s, t) into equation

(A.1), we find the solution xn. Introducing the same operator notation used

above, we define

Knz(s) =

∫ b

a

Kn(s, t)z(t)dt, a ≤ s ≤ b, z ∈ X . (A.6)

The solution xn fulfills the operator equation (λI − Kn)xn = y. Generally the

Banach space X corresponds to C[a, b] or L2(a, b). In particular, if we assume

that the operator K belongs to C[a, b], then the condition (A.5) is equivalent to

||K − Kn|| → 0 as n approach infinity. More detailed descriptions can be found

in the references [75], [76], [78].

A.2 Projection Methods

The approximate solution found through projection methods is a selected function

of a finite dimensional linear subspace Z of the initial X . Let’s z ∈ Z be this

function and let’s define the residual

r = (λI − K)z − y. (A.7)

We call x∗ the particular z which makes the residual r small, following a proper

criterion for the specific problem. If {φ1, . . . , φn} is a complete, but not necessar-

ily orthogonal, basis of Z, we define

x∗(s) =
n∑

j=1

cj φj(s) , (A.8)

and substituting it into the residual, we obtain

r(s) =

n∑

j=1

cj{λφj(s)−K φj(s)} − y(s). (A.9)
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At this point, we have several kind of projection methods in order to minimize

the residual and find the solution, but the principal ones are: (a) the collocation

method consists in setting the collocation node points {t1, . . . , tn} ∈ [a, b], requir-

ing that r(ti) = 0 for i = 1, . . . , n; (b) the Galerkin method or method of moments

is based on the request that the Fourier coefficients of r with respect to the basis

{φ1, . . . , φn}, vanish for i = 1, . . . , n. Independently on the method we decide to

follow to obtain the smallest residual, then we are able to define a set of projec-

tion operators Pn over the approximating subspaces Z = Xn, with n ≥ 1. Using

such operators, we can write equation (A.1) in a set of approximating equations

(λI − PnK)xn = Pny. (A.10)

The definition of the operation Pnx is slightly different depending on the specific

projection method we are considering.

These methods usually impose that the following relation is satisfied

Pnz → z as n → ∞, for all z ∈ X , (A.11)

nonetheless there exist important cases in which this is no longer valid. However

the weaker, but still reasonable, condition over the projections that still holds is

||K − PnK|| → 0 as n → ∞ , (A.12)

which follow from (A.11) and from the compactness of the operator K [39].

Projection methods are probably the most widely used collection for solving

integral equations ([77], [78]), even if a number of discrete projection methods

recently seems to take place [79].

A.3 Nyström Methods

The Nyström methods consist in approximating the integral operator in (A.1) by

numerical integration. Therefore initially we need to choose a proper approximate

quadrature rule, i.e. a numerical integration scheme

∫ b

a

y(s)ds ≈
n∑

j=1

wj y(sj) (A.13)

where the set {wj} are the weights of the quadrature rule and the n-points {sj}
are the abscissas [59]. These schemes are convergent as n tends to infinity for all

the functions y ∈ C [a, b].

The choice of the quadrature rule is arbitrary, although is preferable to use,

at least, high-order quadrature rules, since the solution method involves O(n3)

operations. For instance, the Gauss-Legendre quadrature rule is commonly used

for smooth, nonsingular problems [80].

Once that we have decided the most appropriate quadrature rule for the specific
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Nyström Methods

problem, we define

K z(s) ≡
∫ b

a

K(s, t) z(t) dt

≈
n∑

j=1

wjK(s, tj) z(tj) ≡ Kn z(s), a ≤ s ≤ b (A.14)

for all z ∈ C [a, b]. Equation (A.1) becomes (λI − Kn)xn = y or equivalently

λxi(s)−
n∑

j=1

wjK(s, tj)x(tj) = y(s), a ≤ s ≤ b. (A.15)

Calculating this equation at the quadrature points, we obtain a linear system

λ zl −
n∑

j=1

wjK(tl, tj) zj = y(tl), l = 1, . . . , n (A.16)

where zl ≡ xi(tl). To obtain the solution not only at the integration node points,

we have to interpolate the solution all over the interval [a, b]. Nyström found that

the best interpolation formula, in order to maintain the accuracy of the method,

is given by the formula (A.15), slightly rearranged as follows

xi(s) =
1

λ


y(s) +

n∑

j=1

wjK(s, tj) zj


 , a ≤ s ≤ b. (A.17)
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B
Generalized Quadrature Rules:

Simpson’s Rule

The standard quadrature rules such as the trapezoidal rule or the Simpson’s rule

are powerful tools for the numerical integration of a smooth function. In partic-

ular, when we are dealing with integral equations, the standard quadrature rules

are used in the cases in which the integral operator is a compact (completely

continuous) operator of a Banach space X . Nonetheless, this domain of applica-

bility can be extended to those operators having several continuous derivatives,

although they have singularities of the kind

log |s− t|, |s− t|α for α > −1, log | cos s− sin t|. (B.1)

In these cases too, the integration is performed by the substitution of the in-

tegrand function f(t)ϕ(t) where ϕ(t) is assumed to be a Lebesgue integrable

function (or, at least, the integral
∫ b

a
|ϕ(t)| dt should be an ordinary singular inte-

gral defined as a limit of Riemann integrals) on the interval [a, b] and f ∈ C [a, b],

with an approximate sequence {fn}, so that the integral becomes

∫ b

a

f(t)ϕ(t) dt ≈
∫ b

a

fn(t)ϕ(t) dt (B.2)

with the error decreasing as n increases. The sequence fn is generally chosen to be

an interpolating polynomial of degree n for the function f or an nth partial sum

of a series
∑
αjrj(t) for f ([25] and references therein). This kind of approaches

shares a common drawback. The evaluation of integrals as

∫ b

a

rj(t)ϕ(t) dt (B.3)

becomes increasingly complex as the index n increases. The generalized quadra-

ture rule, proposed by Atkinson and used in Chap.2, assumes, instead, fn to be
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a piecewise polynomial interpolating function. The error introduced with such

quadrature rule is

En(f) =

∫ b

a

|f(t)− fn(t)|ϕ(t) dt,

|En(f)| ≦ ||ϕ||1||f − fn||, (B.4)

where we have defined

||ϕ||1 =

∫ b

a

ϕ(t) dt. (B.5)

This approach, in principle, can be valid for the extension of several quadrature

rule, such as the trapezoidal rule, the Simpson’s rule, etc.

B.1 A Generalized Simpson’s Rule

For our purposes, we are interested in a generalized Simpson’s rule which is

based on the assumptions discussed above. Let consider then a n ≧ 1, a spacing

between nodes being h = (b−a)/(2n) and nodes defined as tj = a+ j h, with j =

0, 1, . . . , 2n. We assume that fn is a piecewise quadratic interpolating function

to f on all the points tj of the grid, with fn being a quadratic function on each

subinterval
[
t2j−2, t2j

]
for j = 1, . . . , n. The quadrature formula becomes

∫ b

a

fn(t)ϕ(t) dt =
n∑

j=1

[
αjf(t2j−2) + βjf(t2j−1) + γjf(t2j)

]
(B.6)

where we have introduced the quantities

αj =

∫ t2j

t2j−2

(t− t2j)(t− t2j−1)

2h2
ϕ(t) dt

γj =

∫ t2j

t2j−2

(t− t2j−1)(t− t2j−2)

2h2
ϕ(t) dt

βj =

∫ t2j

t2j−2

(t− t2j − 2)(t− t2j)

−h2 ϕ(t) dt. (B.7)

Defining the modulus of continuity as

ω(f ;h) = max
|s1−s2|≦h

|f(s1)− f(s2)|, (B.8)

and, consequently, the inequality

||f − fn|| ≦
5

4
ω(f ;h), (B.9)

we find that En(f) → 0 as n → ∞, assuming that ω(f ;h) → 0 as h → 0.

Additionally, Atkinson demonstrates that if f ′′′ ∈ C [a, b], the relation

|En(f)| ≦
√
3

27
h3||f ′′′|| ||ϕ||1 (B.10)
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is valid. It is worth noticing that this relation holds for a lower order with respect

to the ordinary Simpson’s rule. The reason is that the interpolating function for(
t− t2j−1

)2
is odd at t2j−1 on the triplet

[
t2j−2, t2j

]
. If ϕ ≡const, both the

integral and the numerical integral of
(
t− t2j−1

)2
over the triplet

[
t2j−2, t2j

]

will vanish. Therefore the numerical integration of cubics is exact. This is no

longer valid if ϕ 6=const. In these cases, the quadrature rule can be extended

using higher degree order polynomials as fn.
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C
Steepest Descent Method

The steepest descent method is a very powerful technique that allows the integra-

tion of function which are shaped as a narrow asymmetric peak and are almost

vanishing all over the rest of the interval. The method described by Titarchuk,

Mastichiadis & Kylafis [43] establishes that substituting the integrand function

with a Gaussian and neglecting the tail, the integral can be solved with suffi-

ciently high accuracy. Therefore, the numerical and analytical integration of

sharp functions is greatly simplified, using such method. In particular, we have

used the steepest descent method in order to study the asymptotic behavior of

the energy flux when we are in the non-relativistic regime kT << mec
2, i.e. if

the relation α+ 1 + (2/
√
1 + 4l) >> 1 is satisfied in the integral

I(x, α, l) =

∫ ∞

0

e−t(x
√
1 + 4l + t)

α+1+ 2√
1+4l t

α+1− 2√
1+4l dt . (C.1)

In order to substitute correctly the integrand function with a Gaussian, it is

convenient to define some quantities. Performing the substitution t′ = αt, we

define

ω+ = α+ 1 +
2√

1 + 4l

ω− = α+ 1− 2√
1 + 4l

(C.2)

and

φ(t) = α

[
t− ω+

α
ln(x

√
1 + 4l + αt)− ω−

α
ln(t)

]
. (C.3)

The integral (C.1) expressed with respect to the new quantities reads as

I(x, α, ω±) = (α)
ω−+1

∫ ∞

0

e−φ(t) . (C.4)

Following the steepest descent method, we should find the approximated form

I(x, α, ω) =
αα

t0
e−ϕ(t0)

[
2π

ϕ(t0)′′

]
(C.5)
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for the integral (C.4), hence we need to find the minimum of the exponent φ(t) at

t = t0 and its second derivative in such point. The first derivative is the following

φ(t)′ = α

[
1− ω+

(x
√
1 + 4l + αt)

− ω−

αt

]
, (C.6)

which vanishes at the point

t0 =

(
−x

√
1 + 4l + ω+ + ω−

)

2α
+

√
(x(1 + 4l)− ω+ − ω−)2 + 4ω−x

√
1 + 4l.

(C.7)

After some algebra, we find the second derivative of the exponent φ(t) which is

φ(t)′′ = α

[
ω+α

(x
√
1 + 4l + αt)2

+
ω−

αt2

]
. (C.8)

Then, substituting into (C.5), we obtain the approximated integral

I(x, α, ω±) = α(ω−−1)e−φ(t0)

[
2π

φ(t0)′′

] 1
2

. (C.9)

The approximated relation (C.9) provides good results for α > 1, while when

α ≤ 1 this approximation does not hold. For α ≤ 1, we should integrate by parts

the integral (C.4), obtaining

I(x, α, ω±) =
[I(x, α+ 1, y)− ω+I(x, α+ 1, y)]

ω− + 1
, (C.10)

then, following the same procedure, we find the approximated expression for

α ≤ 1, which is

I(x, α, ω±) = αω−+1e−φ(t0)

[
2π

φ(t0)′′

] 1
2

(C.11)

where

φ(t0) = α

[
t0 −

ω+

α
ln(x

√
1 + 4l + αt0)−

1

α
(ω−) ln(t0)

]

φ(t0)
′′ = α

[
ω+α

(x
√
1 + 4l + αt0)2

+
1

αt20
(ω−)

]
. (C.12)
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D
Landau Levels

Let’s suppose to have a medium made of ionized hydrogen atoms subjected to

the action of an external magnetic field. The physics that governs the motion of

a charged particles in a magnetic field is well known and presented in many text

books, such as [10], [11]. For a generic non-relativistic particle with charge ei
and mass mi moving in an external uniform magnetic field oriented along the z-

axis, the classical physics states that the particle follows circular orbits along the

field lines with angular frequency ωc = |ei|B/(mic). In non-relativistic quantum

mechanics, the transverse component of the kinetic energy is quantized in Landau

levels, and it turns out to be

E⊥,n = (nL +
1

2
)~ωc , nL = 0, 1, 2 . . . (D.1)

For an electron, the quantum of energy is the cyclotron energy

Ec = ~ωc = ~
eB

mec
= 11.57

(
B

1012G

)
keV. (D.2)

Including the kinetic energy associated with the z-momentum (pz) and the spin

energy Eσz
= e~/(2mec)σ · B = ~ωcσz/2 with (σz = ±1), the total electron

energy becomes

En = n~ωc +
pz
2me

, (D.3)

where n = nL+(1+σz)/2 = 0, 1, . . . . Note that the ground Landau level (n = 0)

have spin degeneracy one, because σz = −1, instead all the excited levels have

spin degeneracy two (σz = ±1). Besides, since the transverse energy (D.1) is

independent on the position of the guiding center of the gyration, the Landau

levels are degenerate by themselves.

When the external magnetic field is extremely strong such that ~ωc & mec
2, or

equivalently B & Bc = m2
ec

3/(e~) = 4.414 × 1013 G, the transverse motion of

the electrons becomes relativistic. The relativistic expression correspondent to
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(D.3) can be found through the solution of the Dirac equation in an homogeneous

magnetic field [20], and it reads as

En =

[
c2p2z +m2

ec
4

(
1 + 2n

B

Bc

)]1/2
. (D.4)

The wavefunctions, solution of the Dirac equation, should have the same shape

as the classical case. By the choice of these electron wavefunctions depends both

the rates and the cross-sections associated to the process in a uniform magnetic

field. The correct physical choice was proposed by Sokolov & Ternov (1968) [12]

and then confirmed by Graziani (1993) [13]. For further details see [23].
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