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Introduction

High-impact meteorological events have in the last decade received increasing inter-

est for the relevant negative consequences on both social and economical matters.

Considerable efforts have been made to mitigate the effects of floods and landslides

on human life and economy, on one hand trying to mitigate ground effects with

progresses in civil engineering, environmental protection and in the strategies to

optimize the reaction of the population to the predicted hazard, and on the other

hand improving the monitoring and forecasting of meteorological forcing.

Many projects addressing different aspects of the risk mitigation strategy have been

financed from Governmental Institutions, focusing on meteorological, hydrological,

management and social aspects. Among others, one of the last project is PROSA

(Prodotti di Osservazione Satellitare per l’Allerta Meteorologica - Satellite prod-

ucts for meteorological alert), funded by the Italian Space Agency (ASI) as a pilot

study designed to provide institutional end users, such as the Italian Civil Protection

Agency, with advanced nowcasting tools. With the term nowcasting are indicated

a class of algorithms and techniques that aim to provide the detailed description of

the current weather and the state of the atmosphere at a local scale and the extrap-

olation of the current state in the forthcoming hours. PROSA represents the Italian

attempt to solve the meteorological side of the hazard mitigation scheme and it is

oriented to design, develop, test and demonstrate a prototype system dedicated to

the innovative dynamic characterization of meteorological parameters at the ground

by means of satellite data.

This Thesis work arises from PROSA and finds its development as implementation

and optimization of a satellite precipitation estimation algorithm. Started from a

similar algorithm implemented over British Isles, the algorithm uses Artificial Neu-

ral Networks to correlate multi-sensors satellite data, in the Visible, Infrared and

Microwave bands, and precipitation rate at ground.
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2 INTRODUCTION

The whole work is divided in three main steps, following the PROSA structure: the

first version of the algorithm gives a qualitative precipitation estimate divided in rain

and no-rain classes, with seasonal and day-time characterization of the precipitation

maps. The second version gives a quantitative estimate, dividing the rain-rate in

five precipitation classes. Finally, the last version provides precipitation maps with

quantitative values expressed in mm h−1.

The study carried out and the results obtained are reported here in four chapters,

followed by a final concluding section.

Chapter 1 gives an overview of the meteorological hazard problem with a quan-

tification of human and economic losses and the possible solutions in order to miti-

gate the risk. In this chapter many projects addressed to mitigation strategies are

described and in particular the Italian PROSA Project with all its aspects and al-

gorithms developed.

Chapter 2 illustrates precipitation retrieval instruments and satellite sensors,

giving a description of the spectral bands used for this work and of the physical

principles on which the use of satellite measured reflectance and radiance to infer

precipitation is possible.

Chapter 3 describes the theoretical basis of Artificial Neural Networks, mention-

ing some examples of the use of Neural Network for precipitation estimates.

Chapter 4 gives a detailed description of the algorithms developed in this work.

Main characteristics of the used technique are explained and major problems are

illustrated. Finally, validation results are reported and the performances of the

technique are discussed, with insights on possible future work.



Chapter 1

Nowcasting and flood risk

mitigation

Over recent years we are experiencing destructive precipitation events, many of

which generate floods with consequent relevant effects at the ground, i.e. a great

number of casualties and economic losses worldwide. This is due not only to an

increasing of high-impact weather events, but also to the vulnerability created by

various human activities. Considerable efforts have been made to mitigate the ef-

fects of floods on human life and economy, on one hand trying to mitigate ground

effects, and on the other hand improving the monitoring and forecasting meteoro-

logical aspects.

With the term Nowcasting, after Scofield (1977) [1], is intended the detailed descrip-

tion of the current weather and the state of the atmosphere at a local scale and the

extrapolation of the current state in the forthcoming hours. The ability to make

frequent and detailed observations of the atmosphere is fundamental to any attempt

to nowcast the evolution of mesoscale processes, such as, for example, high-impact

weather events.

This chapter gives an overview of the research efforts undertaken in the last years

to mitigate the meteorological risk, and presents a review of different nowcasting

approaches, illustrating some example of successful operational systems. Finally, a

description of the system designed under the PROSA project is presented.

3



4 CHAPTER 1. NOWCASTING AND FLOOD RISK MITIGATION

1.1 High-impact meteorological events

Heavy precipitation is the most dangerous meteorological hazard affecting the Eu-

ropean and Mediterranean countries, followed by windstorms and hail. Generally

speaking, the impact of a meteorological event on the society mainly depends on

four different factors: the severity of the meteorological phenomena, the geomor-

phological characteristics of the ground, the population density and assets value

and the readiness of the ground structures (and population) to react to the hazard

[2]. Following the United Nations International Strategy for Disaster Reduction ter-

minology (UNISDR, 2009) the term hazard can be used to mention the first two

factors, while the term vulnerability refers to the other two. Thus, the actual dam-

age is determined by the complex interactions of the four basic factors: in order to

mitigate the effects of high-impact meteorological events, a strategic action on any of

them is strongly required. While improving numerical weather predictions, with an

emphasis on extreme events, is recognized to be of primary importance, an effective

losses reduction can only be achieved if the improvement in forecast is accompanied

by progresses in civil engineering and in the strategies to optimize the reaction of

the population to the predicted hazard. Quite often, however, meteorology could be

regarded as the dominant factor in case of very high rain intensities, especially if pro-

duced by rapidly growing cloud systems (such as thunderstorms). Convective cloud

systems at all scales, from isolated, single-cell thunderstorm to large storm cluster,

are often responsible for high rain-rates and their initiation and development are

difficult to forecast with conventional numerical weather prediction tools. For these

cases, a forecasting approach based on detailed observation and simple evolution

models, such as nowcasting, can be considered a valuable operational choice for a

more effective prevention strategy [3][4].

1.1.1 Global, continental and local relevance of the problem

The collection of detailed and complete data about floods and hydro-meteorological

hazards at regional to continental scales is made difficult because of the need of in-

formation of different nature, from a quantitative description of the meteorological

settings to the estimates of human and economic losses.

Local authorities and hydrological institutes often collect flood data at basin, re-

gional or national scale: a valuable option to create a flood episodes database is the
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search of newspaper records. As an example, the Swiss Federal Institute for Forest,

Snow and Landscape Research has been systematically collecting informations on

flood and mass movement damage in a database since 1972, estimated direct finan-

cial damage as well as fatalities and injured people have been documented using

press articles as the main source of information [5]. This strategy allowed the AVI

(Aree Vulnerate Italiane - Italian Areas affected by mass-movements and floods)

and SICI (Sistema Informativo Catastrofi Idrogeologiche - Information System on

Hydrogeological Catastrophes) Italian Projects [6] to create a database on flood and

landslide in Italy from 1918 onwards, and similar efforts are carried on for Catalonia

(Spain) to record local flood episodes since 1982 [7]. Moreover, the press, and more

generally mass-media, can play a relevant role in increase the population readiness

to the hazard and significantly influence how the population and the government

view, perceive, and respond to hazards and disasters [8].

A further source of information for flood episodes are records of insurance compa-

nies, that usually collects data for internal purposes. Porcú et al. (2003) [9] used at

European scale the data of the reinsurance company Munich RE to create a short

term climatology of flood episodes: the Munich RE archive was searched for rele-

vant damages and meteorological archives (of both conventional and satellite data)

to complete the classification of flood episodes. At smaller scale, Llasat et al. (2008)

[8] used the record of the Consorcio de Compensacion de Seguros, a Spanish insur-

ance company, to evaluate damages produced by floods in Catalonia and to evaluate

the trend.

The Munich RE Natural Catastrophes archive (MRNatCat) issues periodical re-

ports with some statistics about natural catastrophes occurrence and distribution.

In fig.1.1 are shown the number of natural catastrophes recorded from 1980 to 2010

in the world, distributed in four categories: geophysical (earthquakes and volcano

eruptions) in red, meteorological (storms, wind, hail) in green, hydrological (floods

and landslides) in blue and climatological (heat waves, droughts, wildfires) in or-

ange.

Meteorological and hydrological events represent the large majority of the catas-

trophic events in the considered decades and, while earthquakes and climatological

catastrophes account for the largest number of human losses (75% of total casual-

ties), meteorological and hydrological events causes the 62% of the total estimated

losses (2500 billions of US$) [10].
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Figure 1.1: Number of significant natural catastrophes over the world from 1980 to
2010. Red bars indicate geophysical events, blue bars indicate hydrological events,
green bars indicate meteorological events, and orange bars indicate climatological
events. See text for definitions.

A deeper analysis of the he MRCatNat archive shows that hydro-meteorological

hazards in Europe are characterized by elevated economic losses and limited number

of fatalities if compared with events occurred in Asia or Southern and Central Amer-

ica. In 2009-2010 considering the most catastrophic hydro-meteorological events, in

Europe were estimated economic losses for 16800 millions of US$ and were recorded

109 fatalities. For the same period, in Asia the economic losses were less than the

double as in Europe (27875 millions of US$), but the number of fatalities was as

high as 5902. This indicates that in Europe the hydro-meteorological catastrophes

prevention and mitigation strategies developed in the latest decades are effective

in protecting population but the areas most prone to frequent severe episodes are

among the economic heartlands of the European Union, rich in assets and produc-

tive capacity, and difficult to defend effectively.

Considering the decade 1987-1996, out of the events reported in MRNatCat archive,

Porcú et al (2003) [9] estimated damages for about 27000 millions of US$, and 974
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fatalities in Europe due to hydro-meteorological events. From a rough comparison

with 2009-2010 figures reported above, it seems that the overall number of fatalities

has decreased for a factor of 2, while the economic losses has increased of a factor

of 3. The spatial distribution of catastrophic events in the 1987-1996 decade re-

ported in fig.1.2, points out that a number of European areas are particularly prone

to hydro-meteorological catastrophes: Mediterranean coasts of Spain, France and

Italy, Alpine region, Po Valley in Italy and Central Germany collect a large part of

the total number of events occurred in Europe.

Figure 1.2: Spatial distribution events with recorded damages in Europe in the
decade 1987-1996. Crosses indicate events with human and economic losses reported;
asterisks indicate only economic losses [9].

Italy is one of the European regions most exposed to hydro-meteorological haz-

ards. From the meteorological point of view, the surrounding sea provide a source

of moist and unstable air, that in warm month is likely to form convective clouds,

while autumn is dominated by cyclonic systems with frontal development, that usu-

ally lead to long lasting precipitation [11]. On the other side, the peculiar geomor-

phology of the Italian Peninsula is favorable to the triggering and enhancement of
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precipitation episodes, given the presence of steep reliefs close to the coasts (such

as in Liguria, Toscana, Campania and Calabria), the Alps [12][13][14][15] and the

general short hydrological response time of the drainage basins. Moreover, the risk

is also strongly influenced by human activities: increasing population density, illegal

building practices, continuous deforestation, use of farming methods with little re-

spect for the environment and failure to keep the hill and mountain sides and water

courses in safe condition, have certainly increased the vulnerability and evidenced

the fragility of the Italian territory to a greater degree.

A basic study to understand the relevance of the problem in Italy resulted in the

implementation of AVI archive, that collected the Italian areas affected by mass-

movements and floods since 1918 [16], and the follow-on project SICI [6]. The AVI

Project, based on newspaper records, collected more than 15000 landslide and flood

episodes in Italy until 1994, and the SICI continued the archive, adding also more

detailed informations coming from other datasets. The SICI archive is online at the

website sici.irpi.cnr.it and can be freely accessed to compile plots and maps.

As an example, the occurrence maps for Italy for floods and landslides are reported

from Guzzetti and Tonelli (2004) [6] in fig. 1.3a and 1.3b, respectively.

These maps confirm the presence of the already mentioned high-risk areas:

coastal areas, Central Italy Apennines, different sectors of the Alpine chain, Po

Valley, Calabria. The ”patchy” pattern of flood-prone areas in Italy has been more

deeply addressed by Salvati et al. (2010) [17] evaluating at the regional scale the

societal risk, defined as the relationship between frequency and the number of people

suffering from a specified level of harm in a given population from the realization of

specified hazards. The geographical distribution of sites where landslides and floods

have caused direct damage to the population shows that harmful landslide and flood

events are not distributed homogeneously in Italy. To rank the 20 Italian Regions

on their societal landslide and flood risk levels, the frequency of the harmful events

versus the intensity of the events are computed, revealing that societal landslide risk

in Italy is highest in Trentino-Alto Adige and Campania Regions and lowest in the

Emilia-Romagna Region, and that societal flood risk is largest in the Piemonte and

in Sicilia Regions, and lowest in the Umbria and Basilicata Regions.

Given the impact of meteo-hydrological hazards on the European Countries, The

European Union funded in the last decades a number of research and application

Projects and Programmes aiming to an improvement of the risk mitigation strategies
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Figure 1.3: Density of landslide (A) and flood (B) events sampled on a 10×10 km2

resolution.
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in the continent. In the next section an overview of these efforts is presented.

1.1.2 Research activities in Europe

European research focused on flood and hydro-meteorological risk since early ’80s,

financing under Framework Programmes a number of Projects addressing different

aspects of the risk mitigation strategy. In tab.1.1, a list of EU-funded Projects is

reported from the newest to the oldest, attesting these activities: project full name,

acronym, total project costs and end year are reported. In the third column is also

shown the main focus of the Project in terms of Meteorological (Me) or hydrological

(H) aspects, management (Ma) and social (S) issues. Projects with focus on Me and

H developed or optimized meteorological and/or hydrological models, respectively,

for flood simulation, and/or worked on data analysis for flood study and monitoring.

Project labeled with Ma deals with the study of optimal risk reduction strategies,

risk management, and often the hydro-meteorological risk is treated as part of a more

general risk ensemble, including earthquake, fires, volcanism, drought and others.

Projects labeled with S focus on the social aspects, including economical effects and

populations reactions and post event organization by civil protection agencies.

Other type of projects, dealing with aspects such as the broad impact of floods on

ecosystems or on urban structures are not included in this list. After a total cost

of more than 56 millions of euro, several achievements have been reached and some

example, relevant for this thesis work, will be discussed below.

Table 1.1: EU-founded projects of risk mitigation.

Full project name Acronym Focus Cost

Me

End

Organizing disaster OD S 1.18 2014

Improving preparedness and risk

management for flash floods and

debris flow events

IMPRINTS Ma, S 3.28 2012

Table 1.1: continued on next page . . .
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Table 1.1: . . . continued from previous page

Full project name Acronym Focus Cost

Me

End

Integrated advanced distributed

system for hydro-meteorological

monitoring and forecasting us-

ing low-cost high-performance X-

band mini-radar and cellular net-

work infrastructures

HYDRORAD Me, H 1.44 2011

Observations, Analysis and Mod-

eling of Lightning Activity in

Thunderstorms, for use in Short

Term Forecasting of Flash Floods

FLASH Me 1.64 2010

Hydrometeorological data re-

sources and technologies for

effective flash flood forecasting

HYDRATE H, Ma 3.42 2010

Integrated flood risk analysis and

management methodologies

FLOODSITE Ma, S 14.02 2009

Flood and drought risk assess-

ment tools using modeling and

Earth observation for early warn-

ing systems in the Nile basin

FATE-EWS-

NILE

H, Ma,

S

1.7 2008

Earthquakes, tsunamis and land-

slides in the Corinth rift, Greece

A multidisciplinary approach for

measuring, modeling, and pre-

dicting their triggering mode and

their effects

3HAZ-

CORINTH

Ma 2.01 2007

Mediterranean grid of multi-risk

data and models

MEDIGRID Ma 1.36 2006

Achieving technological innova-

tion in flood forecasting

ACTIF Me, H,

Ma

0.27 2006

Table 1.1: continued on next page . . .
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Table 1.1: . . . continued from previous page

Full project name Acronym Focus Cost

Me

End

Real-time flood decision support

system integrating hydrological,

meteorological and radar tech-

nologies

FLOODRELIEF Me, H,

Ma

2.5 2006

Near real-time flood forecasting,

warning and management system

based on satellite radar images,

hydrological and hydraulic mod-

els and in-situ data

FLOODMAN Me, H 3.35 2006

Towards natural flood reduction

strategies

ECOFLOOD H 0.35 2005

Multi-sensor precipitation mea-

surements integration, calibra-

tion and flood forecasting

MUSIC Me, H 1.9 2004

Investigation of extreme flood

processes and uncertainty

IMPACT H 2.6 2004

Decision support system for Risk

Assessment and Management of

FLOODs

RAMFLOOD H, Ma 1.8 2004

Earth Observation Linking SMES

To face real time natural disaster

management

EOLES S, Ma 1.8 2004

Mitigation of climate induced

natural hazards

MITCH H, Ma 0.198 2003

European satellite rainfall analy-

sis and monitoring at the geosta-

tionary scale

EURAINSAT Me 2.43 2003

An European flood forecasting

system

EFFS Me, H 3.05 2003

Table 1.1: continued on next page . . .
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Table 1.1: . . . continued from previous page

Full project name Acronym Focus Cost

Me

End

Systematic, palaeoflood and his-

torical data for the improvement

of flood risk estimation

SPHERE H 1.52 2003

Cluster Initiative for Flood and

Fire emergencies

CLIFF Ma 0.15 2002

Data Fusion for Flood Analysis

and Decision Support

ANFAS Ma 3.8 2002

Runoff and atmospheric processes

for flood hazard forecasting and

control

RAPHAEL Me, H 2000

Satellite and combined satellite-

radar techniques in meteorologi-

cal forecasting for flood events

MEFFE Me 1999

River Basin Modeling, Manage-

ment and Flood Mitigation

RIBAMOD H 1999

The development of active on-

Line hydrological and meteoro-

logical models to minimize im-

pact of flooding

HYDROMET H, Me,

Ma

1999

Heavy precipitation in the alpine

area

HERA Me 1999

Storms, Floods and Radar Hy-

drology

H, Me 1995

Flood hazard control by multisen-

sors storm tracking in Mediter-

ranean areas

Me 1994

A comprehensive forecasting sys-

tem for flood risk mitigation and

control

APHORISM H 1994

Table 1.1: continued on next page . . .



14 CHAPTER 1. NOWCASTING AND FLOOD RISK MITIGATION

Table 1.1: . . . continued from previous page

Full project name Acronym Focus Cost

Me

End

Flood hazard assessment Me, H 1994

Weather radar and storm and

flood hazard

Me, H 1992

European Flood Study 1983

Table 1.1: . . . concluded from previous page

A first task of many Project was to make an inventory of the past flood events

over different regions of interest, to increase the knowledge of the event itself and

to assess its relevance on the local environment and human activities. As an ex-

ample, one of the outcome of the project MEFFE, funded under FP4 [18], was to

collect flood events over Europe to propose a classification scheme for a European-

level flood database, in which severe flood episodes were related to meteorological

conditions and mesoscale settings [9]. It was clear that extratropical cyclones are

the most common meteorological phenomena related to flood episodes and any at-

tempt to improve meteorological forecast of floods should include better knowledge

of extra-tropical cyclones and, thus, better modeling capabilities. These tasks have

been pursued by a number of FP funded projects listed in tab.1.1 (HYDROMET,

HERA, among others) and also projects funded by other organizations, such as

The Observing System Research and Predictability Experiment (THORPEX) [19],

funded by WMO.

A number of Project aimed to provide better estimation (or measure) of the precip-

itation intensity at different scales, especially using remote sensor such as weather

radar and radiometers on earth orbiting platforms. Quantitative Precipitation Es-

timates (QPE) from ground weather radar, due to the large spatial coverage, the

high resolution and the availability in real time, provides reliable data for spatially

detailed hydrological simulations [20][21]. However, the set up an effective ground

radar network for QPE could be difficult and costly in case of complex terrain

[22][23][24], and often the QPE has large uncertainties that can impact on both hy-

drological modeling results and hydrological model parameter estimates [25]. Radar
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operational activity in Europe are harmonized under the Operational Programme

for the Exchange of weather RAdar information (OPERA 3) a joint effort of the

European Network of National Weather Services (EUMETNET). The main tasks

of this long lasting Project (OPERA 1 has started in 1999) are: to maintain an

inventory on European weather radars, their characteristics, their data, and prod-

ucts derived from them and to foster the exchange and harmonization of weather

radar data and products throughout Europe and to maintain the Odissey data cen-

ter [26][27].

European Commission coordinated cooperation on radar meteorology also by means

of COST Actions: COST (European Cooperation in Science and Technology) is one

of the longest-running European instruments supporting cooperation among scien-

tists and researchers across Europe. In particular, COST Actions 72 and 73 estab-

lished first cooperation protocols among member states on radar operational uses

and networking [28]. More recently COST Action 717 examined and defined the re-

quirements on European radar data for their use in Numerical Weather Prediction

(NWP) and hydrological models, and, in order to increase the level of management

of river flow in rural and urban catchments, brought together radar engineers, me-

teorologists and hydrologists. They initiated a European-wide action to homogenize

procedures related to radar data [21]. This effort continues beyond the duration

of the Action in the above mentioned EUMETNET‘s OPERA initiative. COST

Action 731, focused more on the quality and uncertainty of meteorological obser-

vations, along with their impacts on hydro-meteorological outputs from advanced

forecast systems. The Action also made a major contribution to the genesis of se-

ries of European Conferences on Radar Meteorology, which became one of the main

channels of the dissemination of the results [29].

A space view of rainfall pattern and intensity can be obtained by satellite rainfall

estimation techniques. Among the first efforts to the use of satellite data it has

to be mentioned the FP4 Project MEFFE [18], that used combination of satellite

(both microwave and visible-infrared spectra) and detailed ground radar observa-

tion to optimize the accuracy of instantaneous rainfall maps. Significant results

were reached in studying the clouds and precipitation structures of cyclonic devel-

opment [30][31][32][18], in proposing new nowcasting-oriented, satellite estimation

techniques [33][34] and multi-sensor studies on severe convective systems [35][32][36].

Moreover, an attempt was made to introduce satellite rainfall maps as direct input
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in hydrological models [37].

The FP5 Project EURAINSAT focused on the satellite precipitation retrieval tech-

niques development and assessment, exploiting the new capabilities of multispectral

satellite sensors, cloud resolving numerical models and weather radar [38]. A large

part of the results are collected in the book Measuring Precipitation from Space:

Eurainsat and the Future [39]. The main tasks of the Project were: 1) contribute

to improving the knowledge of clouds and precipitation formation processes using

meteorological satellite sensors, and 2) make available new precipitation products

for weather analysis and forecasting. The first task has been accomplished by study-

ing the impact of aerosols in determining the structure of convective clouds [40][41],

and the relationship between lightning cloud activity and convection for the discrim-

ination of convective and stratiform regimes [42]. As for the second task, several

approaches have been pursued, publishing a number of new techniques based on

microwave data or on combination of data from different platforms [43][32][44][45].

The European Commission funded projects related to the prevention and mitigation

of hydro-meteorological hazards also under the Interreg programmes (now in the IV

stage) designed to promote the cooperations among European Regions, financed by

the European Fund for Region Developing. In particular, Interreg III funded the

Risk Advanced Weather forecast system to Advise on Risk Events and Management

(Risk-Aware) with two general objectives: the prevention of geo-hydrological natural

disaster at regional, national and trans-national level forced by meteorological sit-

uation, and the design and implementation of regional, national and trans-national

programmes for geo-hydrological hazards assessment and risk management. A part

of the efforts under Risk-Aware aimed to increase the knowledge of precipitating sys-

tems by means of new multi-sensor techniques [46] based on polarimetric radar and

multispectral satellite observation to infer internal structure of relevant precipitat-

ing cloud systems. New techniques were also introduced to improve the quantitative

precipitation estimates from weather radar [47] and satellite data [48][49], and also

to optimize the use of raingauges data [50]. More oriented to operational activities,

Verdecchia et al. (2008)[51] introduced a flood forecasting platform that uses based

on coupled mesoscale atmospheric and a newly developed distributed hydrological

model with in-situ and remote sensing data integration. The focus is on small-

catchment flood forecast in complex topography in Central Italy, with emphasis on

the integration of numerical models and retrieval algorithms with aim to provide



1.1. HIGH-IMPACT METEOROLOGICAL EVENTS 17

an overview of an objective system for hydro-meteorological alert-map emission. A

fully model-based approach has been proposed by Diomede et al. (2008)[52], based

on a hydrological ensemble forecasting approach that uses multiple precipitation

scenarios provided by different high-resolution NWP models, driving the same hy-

drological model. In this way, the uncertainty associated with the meteorological

forecasts can propagate into the hydrological models and be used in warnings and

decision making procedures relying upon a probabilistic approach. A strategy based

on geostationary satellite, weather radar and lightning network data, has been intro-

duced by Tafferner et al. (2008)[53] to track the development of deep convection in

Central Europe for nowcasting purposes. The same objective has also been pursued

by Zinner et al. (2008)[54] only relaying on Meteosat 7 SEVIRI 6.2 µm and 10.8

µm channels data and tropopause temperature obtained from ECMWF analysis.

Under Interreg III has been also funded the Project Weather Risk Reduction in

the Central and Eastern Mediterranean (RISKMED) with the aim to create an

Early Warning System (EWS) for the eastern Mediterranean [55]. A further Inter-

reg III funded project was HYDROPTIMET, with the main goal to improve of the

knowledge of severe events phenomena, the optimization of the meteorological and

hydrological aspects for the prevention of natural hazards, the experimentation of

new tools (such as numerical models) to be used operationally for the Quantitative

Precipitation Forecast (QPF) and the improvement of the collaboration between the

partners (exchange of data, methodologies, information). The territory affected by

the activities of the project includes the following regions: the Italian side of the

western part of the Alps, subject to severe events and to strong vulnerability due to

the complex orography; the regions along the Apennines and some region of South

Italy, where the interaction with the sea is more pronounced; the northeast part of

Spain, where severe events are less frequent, but produce intense damages due to

the vicinity of the sea with the mountains; the south-eastern France is also prone

to heavy precipitating events, specially during fall. The results of the project after

the three years of activity, can be subdivided into four main categories [56]: gen-

eral description of the test cases, results of the meteorological applications, meteo-

hydrological chain, and connection with the end-users.

To complete the overview of the European coordinated efforts for the mitigation of

meteo-hydrological risks it has to be mentioned the set up in 2005 of the Satellite

Application Facility on Support to Operational Hydrology and Water Management
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(H-SAF), funded by the European Agency for the Exploitation of Meteorological

Satellites (EUMETSAT) in the frame of the European network of Satellite Appli-

cation Facilities. The aim of this effort (expected to end in 2015) is to provide new

satellite-derived products from existing and future satellites with sufficient time and

space resolution to satisfy the needs of operational hydrology. In particular, Eu-

ropean users will benefit of the following identified products: precipitation (liquid,

solid, rate, accumulated); soil moisture (at large-scale, at local-scale, at surface,

in the roots region); snow parameters (detection, cover, melting conditions, water

equivalent); Moreover, H-SAF performs independent validation of the usefulness of

the new products for fighting against floods, landslides, avalanches, and evaluating

water resources. These activity includes: downscaling/upscaling modeling from ob-

served/predicted fields to basin level; fusion of satellite-derived measurements with

data from radar and rain-gauge networks; assimilation of satellite-derived products

in hydrological models; assessment of the impact of the new satellite-derived prod-

ucts on hydrological applications.

1.2 The research in Italy and the PROSA System

Italian researchers are very active in the European and global efforts to mitigate nat-

ural risks, participating in most of the initiatives outlined in the previous section.

Nevertheless, significant activities are carried on since 80s funded and coordinated

by Italian Ministries and Governmental Institutions devoted to develop and make

applicable techniques on the Italian territory. First activities were gathered under

the National Group for Hydro-Geological Disaster Prevention (Gruppo Nazionale

per la Difesa dalle Catastrofi Idrogeologiche, GNDCI), a research network of the

Italian National Research Council (CNR). The group is composed of research orga-

nizations from Universities, from State Administration, and from private and public

organizations. Since 1986, the GNDCI has been the operating group of the Italian

Civil Protection Department (Dipartimento della Protezione Civile, DPC) for issues

related to hydro-geological disasters, with the following main tasks:

Coordination of interdisciplinary activities to improve the scientific knowledge

in the fields of civil defense against flood, landslides, aquifer deterioration and

coastal erosion;
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Provision of scientific and technical consulting in the field of hydro-geological

risk, to the national, regional and local authorities, with particular attention

to the civil protection authorities;

Management of the scientific community in support to the hydro-geological

disasters mitigation activities of the Italian Civil Protection Department.

In parallel, the Italian Space Agency (ASI) started financing national earth ob-

servation programs with focus on precipitation systems. The project ’Hydrological

Cycle from Satellite: Clouds and Precipitation’ lasted for 5 years (1995-2000) to work

on case studies of severe events over Italy using combined infrared-passive microwave

techniques [57]. As a follow on project, in 2001 MeditRain (Use of newly-available

advanced space-borne instruments for prototype generation of precipitation infor-

mation over the Mediterranean area) has been funded by ASI for 2 years to continue

on satellite estimation techniques development.

The 2003-2005 National Space Plan of ASI assumed as main mission of the Earth

Observation branch the improvement of the capability of prevention natural disas-

ters in Italy by means of satellite products. To set up the research structure and to

identify potential users, the Pilot Project LAMPOS (Lotta alle Alluvioni Mediante

Prodotti di Osservazione Satellitare - Flood mitigation by means of satellite obser-

vations) was funded and completed the preliminary study, suggesting the guidelines

for the implementation of a National Project to provide operational satellite tools

for the prevention of meteo-hydrological catastrophes.

The Project PROSA (Prodotti di Osservazione Satellitare per l’Allerta Meteorolog-

ica - Satellite products for meteorological alert) started in 2007 to: design, develop,

test and demonstrate a prototype system dedicated to the innovative dynamic char-

acterization of meteorological parameters at the ground. This project will be illus-

trated in detail in the next section.

1.2.1 The PROSA structure

PROSA is based on combined use of EO satellites data, ”in situ” data and tradi-

tional technologies. PROSA is aimed at supporting the Italian DPC in managing

the risks associated with floods and hydro-geological hazardous events. The project,
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started on October 2007 is managed by Carlo Gavazzi Space SpA whereas the sci-

entific coordination is carried out by CNR-ISAC Bologna (Prof. Franco Prodi).

PROSA system had been developed in three years time; three incremental versions

of PROSA had been developed, along with the gradual integration in the system of

the technical innovations coming from research activities of the scientific institutes

(CNR-ISAC, CNR-IFAC and CETEMPS) and universities (University of Rome ”La

Sapienza”, University of Ferrara and Politecnico di Bari). PROSA system had been

developed in collaboration with ASI and the institutional end-user, the Italian DPC.

The PROSA system can be divided into three main sub-systems: 1) instantaneous

and cumulate precipitation estimate and observation; 2) numerical weather predic-

tions; 3) surface products (snow parameters and soil moisture). A scheme of the

whole system is shown in fig.1.4

PROSA is a prototype system developed to be used in a demonstration mode and de-

signed to receive near-real-time data from satellite sensors (SSM/I, SSMI/S, AMSR-

E, AMSU-A, AMSU-B, MHS in the MW band, MSG in VIS-IR bands, that will be

introduced in the next chapter) and LINET data for lightening. Algorithms based

on MSG data can produce final products every 15 minutes, just some minutes after

the availability of data. MW algorithms, instead, are usually intermediate products,

used in others algorithms as calibrating data. This type of products, depending on

sun-synchronous satellite, can be available just in presence of a satellite track passing

on the target area. The project had been developed in three years time span with

41 products available for operational application as part of the PROSA operational

chain. Many of these products are different versions of the same algorithm, released

in three versions during the project.

1.2.2 PROSA Products

Before entering in the detail of Ferrara University work-packages, we want to men-

tion the different algorithms developed for PROSA. They are 20 EPP products

(Precipitation Products Elaboration), 11 EMN products (Elaboration of Numerical

Modeling prediction products) and 10 EPS products (Surface Products Elabora-

tion).
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Figure 1.4: PROSA system scheme.



22 CHAPTER 1. NOWCASTING AND FLOOD RISK MITIGATION

1.2.2.1 PROSA Precipitation Products

The PROSA structure provides several precipitation products, obtained with differ-

ent techniques and satellite data in order to provide the uses a wide range of possible

options to have precipitation maps [58]. The validation program undertaken under

PROSA and the operational use of the different products is expected to give a trade-

off of potential and drawbacks of each technique, and to drive the user to choose the

more suitable product to describe at best the current weather situation. The tech-

niques used in PROSA will be briefly described below. The EPP MULS technique,

developed within this PhD thesis work will be only briefly introduced because it will

be the subject of chapter ??.

Instantaneous precipitation estimates by PMW conical scanning radiome-

ters This technique provides ground instantaneous precipitation (in mm h−1) ob-

served in the MW (Microwave) band (with liquid or solid phase flag) from SSM/I

(Special Sensor Microwave/Imager) - SSMI/S (Special Sensor Microwave Imager/-

Sounder) sensors [59][60][61]. The algorithm uses as input the TB of PMW channels

and a Digital Terrain Model (DTM). The first part of the algorithm, that works of-

fline, aims to solve the direct problem: a database is constructed (Cloud Dynamics

and Radiation Database CDRD) where the TBs as would be measured by a satellite

sensor are associated with synthetic cloud structures generated by a Cloud Resolving

Model (CRM). In the CDRD each cloud microphysical vertical profile is associated

the set of simulated TBs, the terrain structure, the dynamic and thermodynamic

characteristics, and the lightning activity as measured by the LIghtning NETwork

(LINET). The second part solves the inverse problem, computing the actual rain-

rate. For each satellite Instantaneous Field of View (IFOV), the CDRD is searched

to find the set of simulated TBs that are closes, in terms of Bayesian analysis, to the

set of actual TBs, as measured by the sensor. The precipitation rate is assigned to

the IFOV as computed from the assigned cloud profile microphysical characteristics.

The CDRD includes 23 different simulations (with about 106 cloud profiles) carried

on by the University of Wisconsin Nonhydrostatic Modeling System (UW-NMS,

Tripoli, 1992), on precipitation events occurred in the Mediterranean area, focusing

on heavy precipitation cloud systems. Finally, a screening procedure is adopted in a
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data pre-processing phase, to separately consider coastal IFOV, where the retrieval

is made difficult by the different emissivity of land and sea. The algorithm applies

on data from conical scanners, such as SSM/I, SSMIS on board the Low Earth Orbit

(LEO) satellites of the US Defense Meteorological Satellite Program (DMSP), and

the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on board the

Earth Observing System (EOS) Aqua LEO spacecraft. Specific CDRDs are needed

for the different sensors, since the number and the central frequency of the chan-

nels varies, and the radiative transfer simulations have to be performed accordingly.

These algorithms are used to retrieve the products labeled EPPn PI-A (for SSM/I

and SSMIS) and EPPn PI-B (for AMSR-E), where n indicates the number of the

product release in the PROSA system. Precipitation maps are delivered from 4 to

8 times/day (depending on the LEO satellite overpasses) at a ground resolution of

12×12 km2 over Italy.

Instantaneous precipitation estimates by PMW cross-track scanning ra-

diometers This algorithm computes instantaneous precipitation rates by means

of data from the PMW cross-track scanning sensors Advanced Microwave Sounding

Unit (AMSU), on LEO satellites NOAA, EOS-Aqua, MetOp, and Microwave Hu-

midity Sounder (MHS) on MetOp and NOAA [62].

The first phase of the algorithm aims to reduce the IFOVs of the different channels

(ranging from 16 to 52 km at nadir) at the same resolution, the one of the final

product, i.e. 16 km at nadir; moreover, in this phase a correction for the slant path

of the radiation through the atmosphere in case of larger viewing angle (the so called

limb broadening effect). In the second phase, a screening is applied to the TBs, in

order to eliminate contaminate IFOV, for example due to snow at the ground. In

the third phase the retrieval of precipitation rate at the ground is performed, by

an Artificial Neural Network (ANN) algorithm. The training of the ANN has been

performed on a supervised dataset using 38 NOAA15 orbits and the corresponding

precipitation data as computed by the US weather radar network NEXRAD. Input

data to the ANN are for each valid IFOV: the actual sensor scanning angle, 3 TBs

in the water vapor absorption band, the first 3 principal components of the TBs in

the oxygen absorption band and the first 2 principal components of the TBs in the

window channels. The Principal Component Analysis has been applied in parallel

to the ANN training aiming to select the TBs with more information related to the
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precipitation layers.

This product is labeled EPP1 PI-C in the PROSA system, and it is delivered in

real time just 30 minutes after the reception of the satellite data. The has a ground

resolution at nadir of 16 km, to be intended as the diameter of the circular IFOV,

that become elliptical and larger close to the edge of the swath (ellipsis axes around

23 and 52 for the last IFOV in the swath). The product is available depending on

the satellite orbits and availability, from 4 to 8 times a day.

Finally, it has to be mentioned that this EPP1 PI-C is the only PMW product

available in near real time, and thus it is used as input for other PROSA products.

Multi sensor precipitation estimates from VIS-IR and PMW data The

products of these algorithms are labeled by the PROSA system as EPPn PI-MULS.

Three version of the ANN-based algorithm are released: the first algorithm computes

the probability of precipitation from geostationary satellite Visual-Near Infrared-

Infrared (VIS-NIR-IR) data, the second one computes precipitation rates divided

in 5 intensity classes, using VIS-NIR-IR data, the last makes use of PWM (Passive

Microwave) precipitation products combined to VIS-IR-NIR data and the output is

given as rain-rate in mm h−1.

Since the development and implementation of this algorithms is the main subject of

this PhD Thesis, they will be described in details in chapter ??.

Precipitation estimate by means of a blended technique This algorithm

makes a synergistic use of satellite IR and PMW data to retrieve instantaneous pre-

cipitation rate. It is based on the Naval Research Laboratory Technique (NRLT)

[45] and uses co-located SEVIRI IR TB (at 10.8 µm) and rain-rate from PMW algo-

rithm (in this case EPP1 PI-C product). Statistical relationships between TB and

rain-rate are created based on the dataset, and updated every time a PMW sen-

sor overpasses the region of interest. The matching is performed on wide boxes of

2.5×2.5 degrees. The SEVIRI images preprocessing includes a screening to exclude

certainly non precipitating pixel based on thresholds applied to different SEVIRI

channels: considered channels are: 0.65 µm (during daytime to screen out thin

clouds, 1.6 µm (during daytime to screen out snow at the ground), 3.9 µm (to

screen out partially cloudy pixels), while 6.2 µm and 12.0 µm are used in combina-
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tion to flag overshooting top of convective clouds. The products is at the resolution

of SEVIR sensor, i.e. 3.5×4.5 km2 over Italy.

The 15-minutes output of this algorithm is also used to construct cumulated precip-

itation products (labeled EPP3 PC-BLE) at 3, 6, 12 and 24 hours.

Precipitation estimates by hybrid techniques This technique aims to pro-

vide a forward extrapolation of the rainfall fields produced by other algorithms of

the PROSA system. In particular, SEVIRI images and the EPP2 PI-BLE product

are entered as input, and the algorithm provides the precipitation map for one hour

later.

The approach used here is the Steady State Displacement [63]: two successive SE-

VIRI IR images are processed and the displacement of the cloud entities in the

images is computed as motion vector. Given the short time lag between SEVIRI

images (15 minutes), it is assumed that the image characteristics and cloud shapes

do not change significantly: the nowcasted image will be the last received image,

translated accordingly to the computed motion vector. The motion vector is com-

puted by a cross-correlation algorithm between subsequent SEVIRI images.

This product is labeled and EPPn PI-IBR in the PROSA system, has the same

ground resolution of SEVIRI (around 3.5×3.5 km2 over Italy) and it is delivered for

Italy and surrounding area every 15 minutes.

Instantaneous and cumulated precipitation estimates by means of a mor-

phing algorithm The morphing algorithm is derived from the CPC MORPHing

(CMORPH) technique developed for global precipitation estimates [64] and it is

tailored for Italian region for the PROSA system, and new features are also added.

The technique ingests the last PMW precipitation product (in this system EPP1 PI-

C product is used), and the nearly simultaneous IR SEVIRI TB image (at time t0),

and the rain-rate is re-sampled over the IR TB image, identifying in the IR image

the precipitating areas (as defined by the PWM algorithm) by a pattern matching

technique. At time t0+15 min a new IR image is available, and the rain areas are

searched on this image, by means of a cross correlation algorithm, and new precip-

itating areas are identified in the t0+15min image by translation and deformation

(morphing) of the areas at time t0. Actual rain-rates at time t0 are transferred to
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the new areas and the estimate at time t0+15min is produced. This procedure goes

on iteratively at every 15 min step, for each new SEVIRI TB map, until a new PMW

precipitation map becomes available, and the procedure starts from the beginning.

1.2.2.2 PROSA soil products

The final design of PROSA structure includes the delivery of six soil products derived

from satellite observations. These products are listed below.

Low resolution soil moisture content (bare and vegetated soil) This prod-

uct is derived by AMSR-E data at 6.9 GHz. The algorithm is based on an ANN

procedure trained with archive data: it takes as input TB6.9V (sensitive to soil mois-

ture), polarization indices at 10.65 and 18.7 GHz (sensitive to vegetation coverage)

and TB36.5 to estimate the soil temperature. The output is given as percentage on

a 30×30 km2 grid on a daily basis.

High resolution soil moisture (bare and vegetated soil) This product is

derived by SAR (PALSAR on board ALOS and ASAR on ENVISAT) data and it

based on a Bayesian inversion technique. Optical data and land use maps are also

used to classify the land cover (bare/vegetated). The output is as percentage of

water over dry soil in the surface layer, it is delivered on a grid of 100×100 m2, and

can be obtained over regional scale areas. The revisiting time spans between 15 to

35 days, depending on SAR data availability.

Medium resolution snow water equivalent and snow cover The algorithm

works on ENVISAT-ASAR data and optical data from the SPOT4 satellite. It is

based on neural networks, the output is on a 500×500 m2 grid, and the revisiting

time is between 15 to 35 days.

Medium resolution snow surface condition (wet/dry) This algorithm uses

ENVISAT-ASAR data and classify the areas as wet snow/dry on a grid 500×500

m2 over small areas. The revisiting time is between 15 to 35 days.

Low resolution snow water equivalent This product is derived by AMSR-E

data at 10.65, 18.7 and 36.5 GHz by means an ANN algorithm trained on archive
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data and validated on field campaigns over basin-scale target areas. The output is

delivered daily on a 20×20 km2 grid, as meters of water.

High resolution snow water equivalent and snow cover The algorithm

works on SAR data (ALOS-PALSAR, ENVISAT-ASAR, COSMO-SkyMed-X-SAR)

and optical satellite data (SPOT4). Provides snow water equivalent in meters of

water and a flag for wet snow. The output is available on a regional scale over a

grid with variable (depending on the sensor used) between 100 and 200 m. The

revisiting time is between 15 and 35 day.

1.2.2.3 PROSA Numerical Weather Prediction products

In addition to the remote sensing products, PROSA provides also NWP products,

despite they are usually not considered in nowcasting systems, given the relatively

longer leading time of the forecast (12 hours). Two series of products are operatively

disseminated, based on two Limited Area Models: BOLAM and MOLOCH.

BOLAM [65][66] is an hydrostatic model and it is designed to operate within PROSA

system on a grid of 15×15 km2. The MOLOCH model [67][68] is a non-hydrostatic

model operating at an horizontal resolution of 0.0225×0.0225 degrees (about 2.5

km). The operational chain takes in input low resolution analysis for BOLAM ini-

tialization (GFS from NCEP on a 0.5×0.5 degree grid) and geographical data, and

starts the BOLAM processing. BOLAM outputs are delivered after post-processing

as a medium resolution products, and also are used to initialize MOLOCH that

runs nested on the BOLAM outputs. MOLOCH outputs are post-processed and

disseminated as high resolution forecasts. Data assimilation of satellite products

(EPP2 PI BLE) is performed during the BOLAM runs by means of a nudging

scheme [66].

NWP product are: high and medium resolution precipitation rate forecast in mm h−1;

medium resolution convective precipitation forecast; medium and high resolution

snow rate forecast in mm h−1; medium and high resolution cumulated precipitation

forecast at 3, 6, 12 and 24 hours in mm; medium and high resolution soil moisture

forecast as fraction of water mass respect to dry soil mass in m3m−3; medium and

high resolution snow amount forecast in m of water equivalent. All the products are

updated every 12 hours on grids covering whole Italy.
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1.2.3 PROSA validation and demonstration activities

Within the PROSA project efforts have been devoted to validate the satellite prod-

ucts with respect to independent rainfall measurement, that are assumed as ground

truth. Validation of satellite products with other datasets, of different nature, is a

thorny issue not yet resolved by the scientific community at any spatial and tempo-

ral scale ([69], [70], [71], among others). From one side, the user community needs

a detailed knowledge of the error structure of the products to better exploit their

capability and get aware of their limitations; from the other side, the algorithm

developers claim that validation of satellite products by matching with rainfall data

measured by instruments operating with different physical principles. The latter is

particularly true when we validate satellite instantaneous, areal integrated rain-rate

with time-integrated, point-like rain-gauges measurements.

1.3 Nowcasting systems

Before to describe in a detailed way the algorithm developed for this Thesis, it is

useful to introduce few examples of current nowcasting systems developed or in op-

erational use, with a particular attention to precipitation retrievals. It is important

to stress that nowcasting systems have the relevant role of forecasting meteorological

events in the few minutes after the availability of the data: a powerful and rapid

computational system is fundamental to deliver products in near-real-time. Also

an user-friendly interface is very important to facilitate public users to interpret

products and, in case, to quickly disseminate warnings. Nowcasting systems devel-

opers made great efforts to take into account all these characteristics and implement

complete and rapid systems [3][4].

1.3.1 UK Met Office Nowcasting Systems

1.3.1.1 The Nimrod System

Nimrod is the first operationally used system of the UK Met Office. Developed dur-

ing the early 1990s, it integrated nowcasting techniques with NWP model products

to provide forecasts over the UK and surrounding waters up to six hours ahead.

With this system it was possible to analyze and forecast the main weather variables,
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such as precipitation, clouds and visibility. The visibility and precipitation products

were generated on a 5 km grid, while cloud and most of the derived products were

produced on a 15 km grid. Cloud and visibility analyses and forecasts were updated

hourly, with forecasts generated half-hourly to six hours ahead. The precipitation

component, however, used a cycle of 15 minutes with forecasts also generated every

15 minutes. The NWP component used by Nimrod was the Mesoscale Model ver-

sion of the Met Office’s Unified Model and its input was updated every 6 hours at

present, the new data becoming available about 3 hours after data time.

The system was divided into five major components: observation processing, NWP,

data blending, merged forecasts and product generation.

The main source of observation were satellite imagery, radar imagery and surface

synoptic reports. Upper air information was obtained indirectly through the NWP

assimilation procedure. Satellite imagery was received from both geostationary (Me-

teosat) and polar orbiting (NOAA) platforms. Radar imagery were pre-processed

at the radar site to calibrate the observed reflectivity, to remove fixed clutter and

to re-map to a common 5km grid.

The NWP used a version of Unified Model with a grid spacing of about 17 km for

short range forecasting. Forecasts to at least 18 hours ahead were updated four

times a day. For data blending two basics algorithms were used. The visibility and

precipitation rate analyses used a two-dimensional variational scheme based on a

standard descent algorithm, while the cloud analysis used a two-dimensional recur-

sive filter algorithm applied to each level.

The forecast procedure consisted of two main steps: computation of an extrapola-

tion from recent values or trends and optimal merging of this with other independent

forecast estimates [72].

1.3.1.2 The GANDOLF System

A disadvantage of Nimrod’s precipitation forecasting was represented by its lim-

ited ability to generate new areas of precipitation. In the short-range prediction of

frontal precipitation, the modeling of atmospheric disturbances with time scale of

many hours or days is not required, and it is more effective to extrapolate the current

weather and its recent trends in such a way to preserve the most significant features.

In the nowcasting of showers associated with outbreaks of air mass convection this
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sort of approach is much less successful. With this assumption, the Environment

Agency requested to develop an operative system to make the Nimrod system more

complete.

GANDOLF (Generating Advanced Nowcasts for Deployment in Operational Land-

based Flood forecasts) system had been designed to address this problem. Developed

in the mid-1990s, this system is able to forecast the development of ’daughter cells’

associated with existing convective cells.

System data inputs were received from various operational and database computer

systems at Met.Office HQ. These included near-real time multi-site radar network

data with a 5 km spatial resolution and 15 minutes time step and Satellite data

from geostationary satellite (Meteosat) sampled every 30 minutes with a spatial res-

olution of 5 km in the IR and 2.5 km in the VIS band at the sub satellite point.

Mesoscale Model data from Nimrod system were also used for forecast with a 15 km

spatial resolution and updated four times daily.

The precipitation model implemented in GANDOLF was the Object-Oriented con-

ceptual Model of convection (OOM): it could benefit of 2 km spatial resolution and

10 minutes temporal step. This means that a GANDOLF product could be received

within 10 minutes of Data Time. The OOM incorporated a conceptual model of the

life cycle of a shower cloud. Five cell growth stages were recognized, among which

the developing, mature (young and fully mature), early dissipating and dissipating

phases in the life of a convective cloud. Cell stages were distinguished on the basis

of vertical rain rate profiles, derived from multi-beam, single-site radar data. The

development potential of a cell was determined by comparing the current develop-

ment stage with that classified 10 minutes and 20 minutes earlier [73].

The OOM was specifically designed to run during periods of non-frontal air mass

convection. On occasions when precipitation was frontal in origin, or was associated

with convection embedded in a frontal feature, the life cycle model was not appli-

cable. The accurate identification of meteorological conditions suitable for running

the OOM was therefore critical to the successful operation of the GANDOLF sys-

tem. The main method used operationally for identifying the types of rainfall pixels

(convective or non-convective) used a neural network cloud classifier. In the GAN-

DOLF system was then implemented a Neural Network Cloud Classifier capable of

distinguish four cloud classes. [74].
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1.3.1.3 STEPS System

Since 2008, the UK Post-Processing system includes the Short Term Ensemble

Prediction System (STEPS). The goal of this algorithm, developed in collabora-

tion with the Australian Bureau of Meteorology, is to generate products to replace

those previously provided by the Nimrod and Gandolf precipitation nowcasting sys-

tems. STEPS is an ensemble-based probabilistic precipitation forecasting scheme

that blends an extrapolation nowcast with a downscaled NWP forecast. The use of

ensembles allows the scheme to be used for applications that require forecasts of the

probability density function of areal and temporal averages of precipitation.

STEPS derives forecast data from two separate sources, radar-based rain analyses

and NWP model forecasts. These data are merged with uncertainty estimates, in

order to give the right weight to every contribution (extrapolation forecast, NWP

model forecast and noise). The output from NWP forecast model is downscaled so

that the small scales not represented accurately by the model are injected into the

forecast using stochastic noise. As the forecast progresses, the extrapolation com-

ponent will become less skillful, especially at the smallest scales. The loss of skill

is modeled to allow precipitation features to be smoothed out trough a decreasing

in power of the extrapolation forecast cascade. The power lost at the small scales

can be replaced by noise. This allows the scheme to better represent the distribu-

tion of precipitation rate at spatial scales finer than those adequately resolved by

operational NWP. Finally, in order to produce nowcasts with a useful range of at

least 6 hours, it is necessary to merge these nowcasts with NWP forecasts. This

merging will allow the resultant precipitation nowcasts to reflect the influence of the

large-scale dynamical evolution of the atmosphere on the precipitation field [75].

1.3.2 The TAMORA algorithm

A multi-spectral rainfall estimation algorithm has been developed for the Sahel re-

gion of West Africa with the purpose of producing accumulated rainfall estimates for

drought monitoring and food security. Several Satellite-based techniques have been

designed for rainfall estimation over Africa, including TAMSAT [76], an algorithm

using only a single IR channel from the SEVIRI instrument on board MSG. After

that work, much work has been done on utilizing multiple channel data from SEVIRI
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and other similar instruments for cloud classification and rainfall identification.

The starting point is the UK Met Office SatPrecip algorithm which uses a real-time

radar calibration to produce rainfall estimates over Europe and the North Atlantic.

This algorithm, reconfigured and recalibrated to take account of West-African con-

ditions, is named TAMORA (TAMSAT, Met Office Rainfall for Africa) algorithm.

The most useful combinations of SEVIRI channels for rainfall identification used in

both UK Met Office SatPrecip and TAMORA algorithms are the 0.8, 1.6, 3.9 and

10.8 µm channels during daytime and the 3.9, 10.8 and 12.0 µm channels at night.

The data from each SEVIRI channel are binned into a number of discrete classes

and combining these multi-channel binned data into a contingency table, a number

of satellite pixel data classes are obtained. Taking the radar data as ”truth”, coin-

cident radar and satellite pixels are compared and a probability of rainfall for each

satellite data class is computed. This process is performed for each rain-rate thresh-

old used by the algorithm, and in this case ”probability of rainfall” is the probability

of a rain-rate greater than the rain-rate threshold. The probability threshold is cho-

sen for each rain-rate by the ”minimum percent” method, whereby the difference

between the number of observed and diagnosed rainy pixels is minimized by an it-

erative procedure.

The differences between SatPrecip and TAMORA start with a different calibration

of the two algorithms, the first from the Uk and European networks and the latter

from Niamey (Niger) radar. As well as using different calibration data, several other

changes are made in order to optimize TAMORA for use in Africa. The relationship

between SEVIRI brightness temperature/reflectance and probability of rainfall vary

greatly between European and Niamey data, so binning of radiances in the con-

tingency tables is altered increasing bin resolution for areas where the probability

of rainfall is relatively high for Niamey. An other big difference between the two

algorithms is in the long timescale accumulation: SatPrecip simply estimates in-

stantaneous rain-rate every hour and accumulates this directly to longer timescales,

TAMORA uses an half-hour estimate obtained averaging over 4 scans (one every

10 minutes) of radar data and maps them to the equivalent half-hourly mean by

histogram matching. This equivalent half-hourly rain-rate is used as output of TA-

MORA and accumulated to decadal timescale [77].
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1.3.3 PERSIANN Systems

PERSIANN (Precipitation Estimation from Remotely Sensed Information using an

Artificial Neural Network) are satellite-based rainfall estimation algorithms. The

PERSIANN-GT (PERSIANN GOES-IR-TRMM TMI) algorithm, developed from

University of Arizona, uses an Artificial Neural Network model that estimates rain-

fall rates using geostationary satellite imagery (GOES-8, GOES-10, GMS-5, Metsat-

6, and Metsat-7) in the IR and VIS band and rainfall estimates from low-orbital

satellites, including TRMM, NOAA-15, -16, -17, DMSP F13, F14, F15. An adaptive

procedure is used to recursively update the network parameters when low-orbital

satellite estimates are available. This system can generate a global rainfall estima-

tion with a spatial resolution of 0.25◦×0.25◦ and a temporal scale of 30 minutes to

6 hour accumulated rainfall [78][79][80].

The PERSIANN-CCS (PERSIANN Cloud Classification System) is the new version

of the PERSIANN algorithm: it uses computer image processing and pattern recog-

nition techniques to develop a patch-based cloud classification and rainfall estimation

system based on satellite infrared images. This system enables the categorization of

cloud-patch features based on cloud height, areal extent, and variability of texture

estimated from satellite imagery. At the heart of PERSIANN-CCS is the variable

threshold cloud segmentation algorithm. In contrast with the traditional constant

threshold approach, the variable threshold enables the identification and separation

of individual patches of clouds. The individual patches can then be classified based

on texture, geometric properties, dynamic evolution, and cloud top height. These

classifications help in assigning rainfall values to pixels within each cloud based on a

specific curve describing the relationship between rain-rate and brightness temper-

ature. Precipitation intensity and distribution of classified cloud patch is initially

trained using ground radar and TRMM observations. The PERSIANN-CCS en-

ables recursive (in space and time) data assimilation and system training, allowing

for flexibility in the adjustment of the cloud-rain distribution curves as new ground

or space-based radar measurements become available [81][82].
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1.3.4 Satellite Application Facility to support Nowcasting

(SAFNWC)

The SAFs for Support to Nowcasting and for Very Short-range Forecasting provides

product extraction from the Meteosat Second Generation (MSG) data for near-real-

time needs. Activities started in 1997 by a consortium of meteorological institutes,

hosted by Spain, integrating Austria, France and Sweden, and it is designed to be

completed in 2012 [83]. The general objective of the SAFNWC is to provide opera-

tional services (i. e. satellite products) to ensure the optimum use of meteorological

satellite data in Nowcasting and Very Short Range Forecasting by targeted users.

This is applicable to the MSG and the polar satellite systems over European area.

To achieve this goal, the SAFNWC is responsible for the development and mainte-

nance of appropriate SW Packages, as well as of all related tasks for user’s support.

SAFNWC is delivering a number of algorithms to operationally derive atmospheric

parameters useful for nowcasting procedures. A first product family is labeled ”cloud

products” that includes four parameters: cloud mask, cloud top temperature, pres-

sure and height, cloud type, and precipitation rate (in 5 intensity classes). The

first three products are derived by means of thresholds in different channels of both

LEO and GEO sensors, while the precipitation product is derived from PWM data

(AMSU/MHS sensor). A GEO satellite product (labelled ”precipitating clouds”)

deals with precipitation probability (0 to 1): a linear combination of SEVIRI radi-

ances, calibrated with rain-gauges rain-rate measurements, is used, with also NWP

products (e.g. temperature at the ground) to infer this parameter. A further GEO-

scale precipitation product is called ”Convective rainfall rate”, and it is computed

by using linear combinations of SEVIRI radiances, taking also into account the time

evolution (growth and decay) of the convective system, calibrated with ground radar

network rainfall maps. The ”rapid development thunderstorm” is also dealing with

convection: based on IR channels SEVIRI sequences, it allows the identification,

monitoring and tracking of convective and rapid developing cloud systems.

The product ”high resolution winds” computes Atmospheric Motion Winds, by us-

ing a cross-correlation approach between 15 min apart SEVIRI images in the two

VIS channels, two WV channels and two IR window channel (10.8 and 12 µm). The

product includes pressure level information (10 levels), and a quality control flagging

giving some indication of its error in probabilistic terms, with auxiliary indicators
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about how the product was determined.

The ”air mass analysis” is currently comprised of 4 sub-products: 1) classification

of air masses (polar, tropical, arctic and equatorial); 2) analysis of dark stripes in

WV6.2; 3) analysis of the ridge lines of the equivalent-potential temperature field; 4)

analysis of gradient zones of the equivalent-potential temperature field in cloudfree

areas. All the product corresponds to well established conceptual models widely

used for operational forecast and present in the literature. All these products are

mainly derived by SEVIRI absorption channels and NWP products.

The ”SEVIRI physical retrieval” product is based to the retrieval of vertical profiles

of tropospheric temperature and humidity. The main parameter computed from IR

window and absorption channels, and NWP forecast are: Total Precipitable Water,

Layer precipitable Water (corresponding to water vapor in the pressure layer be-

tween surface and 850 hPa), middle layer water vapor (between 850 hPa and 500

hPa), high layer water vapor (above 500 hPa), and three stability indexes (Lifted

Index, Showalter Index (SHW) and K-index).

Finally, the product labelled as ”automatic satellite image interpretation”, makes

use of SEVIRI data, NWP forecasts, and some other SAFNWC products to help

the user in recognizing features in the images that can be interpreted as conceptual

models such as: cold fromt, warm front, occlusion, frontal wave, dry intrusion, MCS,

comma clouds, and many others.

All documentation about SAFNWC, from where the above reported information are

derived, is available at the website nwcsaf.org.
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Chapter 2

Instruments for precipitation

estimate

In this chapter the instruments commonly used for operational precipitation es-

timates are reviewed: in the first section the ground based instruments, such as

rain-gauges and weather radar, are briefly introduced. In the second one the rain

detection capabilities of the two sensors used in this work are addressed with more

detail

2.1 Ground based instruments

2.1.1 Rain-gauges

Rain-gauge, or pluviometer, is the only instrument able to measure directly the

amount of precipitation at the ground, collecting hydrometeors in a funnel and

sampling them over a given cumulation time (usually spanning from a minute to a

day, one hour for most of the cases). Rain-gauges network data are widely used as

precipitation reference measure for most of the operational application, from the di-

rect precipitation monitoring, for weather radar and satellite algorithms calibration

and validation, for NWP model forecast verification and as input to hydrological

models. Nevertheless, it is well known that the rain-gauge measure is affected by

several sources of uncertainty difficult to mitigate, especially in case of tipping bucket

instruments, the most common device worldwide used.

37
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First of all, very light rain-rates (2 mm h−1 and less) can be incorrectly estimated

due to the long time it takes the rain to fill the bucket [84]. On the other side,

high rain-rates (above 50 mm h−1) are usually underestimated due to the loss of

water during the tips of the buckets [85]. Drifting wind can also greatly reduce

the size of the effective catching area, if rain does not fall vertically, resulting in a

rain-rate underestimation quantitatively assessed in about 15% for an average event

[86]. Further errors occur in case of solid precipitation (snow or hail), when frozen

particles are collected by the funnel but not measured by the buckets, resulting in

a temporal shift of the measurements since the melting (and the measure) can take

place several hours (or days, depending on the environmental conditions) after the

precipitation event [87][88]. This error can be mitigated by an heating system that

melts the particles as soon as are collected by the funnel, but, in our case, Italian

rain-gauges are not equipped with.

All these errors can be mitigated and reduced, but in general not eliminated, by a

careful maintenance of the instrument and data postprocessing [89].

Other disadvantages concern the matching between rain-gauge data and satellite or

radars data. First of all, the relatively small section of the funnel (about 20 cm

of diameter) allow to obtain just a point-like measure of precipitation. Secondly,

the hourly temporal sampling gives a measure of accumulated rainfall, missing any

information about the time evolution of the meteorological event within the cumu-

lation time.

In this study the gauges of the Italian network collected by the Italian DPC are

used as true data for the Artificial Neural Networks training and validation. They

are irregularly distributed over the surface (see fig.2.1), and have a cumulation time

of one hour, and the number of operational instruments varies from 1500 to 1700.

More detailed information on the rain-gauge network used in this work will be given

in the next chapter.

2.1.2 Meteorological Radar

The Radar is an instrument that operates emitting radiation at a well defined wave-

length and measuring the radiation fraction backscattered by a target. It is com-

posed by a transmitter which transmits electromagnetic waves at a fixed wavelength
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Figure 2.1: Italian rain-gauges network, where the 1512 rain-gauges used in this
work are positioned (grey dots).

and a receiver, which receives the electromagnetic signal after its interaction with

the target.

The weather radar is designed to measure the radiation backscattered by hydrom-

eteors that, under a number of conditions, can be related to the precipitation rate

it is expected from the scanned volume. Wavelengths used for meteorological radar

are the ones that can interact with atmospheric objects, such as rain drops, ice ag-

gregates and hail. At centimetric wavelengths, the radiation emitted from the radar

can be absorbed or scattered from hydrometeors. The backscattered signal is the

information that reaches the receiver and can be analyzed to understand intensity

and motion of precipitation. The radiation is emitted and received on a narrow con-

ical beam (see scheme in fig.2.2), usually around 1 degree width (β angle), and can

be measured the signal on a maximum range between 100 and 200 km, depending

on the radar power and wavelength. The parabolic antenna usually rotates, in the

operational surveillance mode, around a vertical axis in order to acquire a series of

conical scans, at different elevation angles (θ angle). The ratio between transmitted

and received signal (after backscattering from hydrometeors) depends on a number

of radar characteristics (such as wavelength, antenna pattern and gain) and the

characteristics of the target, i.e. the hydrometeors.
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Figure 2.2: Schematic representation of radar system.

The spectral bands used by meteorological radars define the radar capabilities,

and are:

L-Band: λ = 0.3 m

S-Band: λ = 7 - 15 cm

C-Band: λ = 4 - 7 cm

X-Band: λ = 2 - 4 cm

Ku-Band: λ = 1 - 2 cm

Ka-Band: λ = 8.5 mm

W-Band: λ = 3 mm

Shorter is the wavelength, smaller are the objects which interacts with the radi-

ation. Usually, for rain drop sizes and quite long distances, the S or C-band radars

are used. X-band are short distances precipitation radars, whereas Ku, Ka and W-

band are mainly clouds radars.

In case of Rayleigh scattering approximation the hydrometeor characteristics enter-

ing the radar equation are expressed by the reflectivity factor, defined as:
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Z =

∫ ∞
0

D6N(D)dD (2.1)

where N(D) is the hydrometeor size distribution and D is the hydrometeor di-

ameter: N(D)dD represents the number of hydrometeors for unit of volume with

diameter in the interval [D,D + dD], and Z is measured in mm6 m−3. The actual

rainfall rate is also related to the function N(D) as follows:

R = 0.6 π 10−3

∫ ∞
0

D3v(D)N(D)dD (2.2)

where v(D) is the hydrometeor terminal velocity, depending on the diameter.

The exponential relationship between Z and R, for operational uses, is experimen-

tally fitted as:

Z = aR b (2.3)

where a and b are parameters that are to be experimentally determined and

depend on the radar characteristics, the wavelength and, more important, on the

characteristics of the precipitation. A number of a and b sets are proposed in the

literature and operational practice, and usually each radar site computes its own pa-

rameter set, depending on the rainfall type. The radar conical output are remapped

onto a regular cartesian volume composed by 1×1×1 km3 elementary volumes, while

the precipitation product is usually released on a horizontal, constant altitude, map.

Precipitation maps can be obtained at rather high temporal frequency, varying from

few minutes (in case of severe precipitation events) to half an hour.

The weather radar certainly is the principal instrument for operational precipitation

monitoring and precipitation nowcasting, and it is a critical component of any flood

prevention forecasting system ([20] [90], among others): it provides high resolution

rainfall maps in real time, with an acceptable level of quantitative accuracy. How-

ever, two classes of error affect the radar precipitation estimation reliability. The

first class groups the error due to the possible fail of assumptions made to apply the

Rayleigh theory to the radar signal: hydrometeors in the unit volume analyzed are

assumed to be homogeneous dielectric spheres small with respect to the wavelength,

the elementary volume is homogeneously filled by random scattered hydrometeors,

multiple scattering is negligible, the hydrometeors size distribution is known.
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Other error family is related to the interaction of the radar beam with atmosphere

and hydrometeor, and are summarized as follows, with reference to figure 2.3:

1. precipitation below the radar beam colud be underestimated;

2. evaporation and strong winds below the cloud base may results in overestima-

tion of rainfall rate;

3. orographic enhancement effects can be underestimated;

4. melting layer signal usually results in a rainrate overestimation (bright band);

5. radar beam attenuation behind strong rainshaft;

6. anomalous propagation and secondary echoes;

7. beam blocking on fixed obstacles.

2 

5 

4 
* 
* * * * 

* 
* 

1 

6 

dry 

moist 

3 

7 

Figure 2.3: Schematic representation of radar errors due to interaction of radar
beam with atmosphere and hydrometeors.

These errors can be mitigated by using specific algorithms, e.g. the bright band

([91], among others), but the more effective strategy for radar errors reduction is

to create a radar network. A number of radar are distributed over a region with
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partially overlapping areas, where to apply mutual correction algorithms and in-

tercalibrate: an example of the reduction of the attenuation problem by using two

partially overlapping radars is presented in Celano et al. (2006) [92].

A new class of weather radar is used mainly for research purposes but the exten-

sion to operational use is envisaged, the polarimetric radar. The polarimetric radar

transmits both horizontal and vertical polarization electromagnetic wave pulses and

receive the backscattered signals in co-polar and cross-polar components. The po-

larization depends on hydrometeors physical parameters (i.e. shape, orientation,

phase etc.) therefore the polarimetric capability gives a more direct information

on the nature of the scatterers. Some of the fundamental variables measured by

polarimetric radars are introduced below.

The differential reflectivity (ZDR) is the ratio between the reflected horizontal and

vertical power returns. It depends on the asymmetry of the shape and it is a good

indicator if the particle is oblate or prolate. ZDR is positive for oblate raindrops,

near zero for hail and graupel.

The linear depolarization ratio is a ratio of a vertical power return from an hori-

zontal pulse or an horizontal power return from a vertical pulse. Depolarization of

a polarized pulse is caused by asymmetric particles with their major or minor axis

not aligned nor orthogonal to the electric field. Depolarization is high for melting

snow and hail precipitation.

The specific differential phase shift (Kdp) is a comparison of the returned phase dif-

ference between the horizontal and vertical pulses. This phase difference is caused

by the difference along the propagation path for horizontal and vertically polarized

waves, because rain drops are oriented and their larger dimension is horizontal. The

specific differential phase is a ”propagation effect”, it is independent by the radar

calibration and it results a very good estimator of rainfall.

The use of polarimetric variables (especially Kdp) reduces the uncertainties on hy-

drometeor size distribution and properties, allowing higher quality rainfall estima-

tion [93]. In figure 2.4 are reported the results of an intercomparison among al-

gorithms using different polarimetric variables [94], using the Root Mean Square

Error (RMSE) between hourly radar estimate and rain-gauge measures as quality

indicator. Results show the great impact of the use Kdp and other parameters in

reducing the error for both point-like and areal integrated values. The diffusion of

the operational use of polarimetric radar networks is expected to increase the accu-
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racy of precipitation measurements and the overall quality of nowcasting and very

short term forecasts [95].
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Figure 2.4: RMS errors of point and areal hourly rainfall accumulations for various
algorithms (from Ryzhkov et al., 2005).

2.2 Satellite Remote sensing

As described in the previous chapter, satellite observations represent a valuable

solution for a wide scale monitoring of atmospheric parameters. Remote sensing is

based on the understanding of the relationship between satellite measured radiation

and the physical and chemical characteristics of atmospheric gases, particles, clouds

and Earth’s surface.

We know that the radiation we deal with interacts with atmospheric objects and

can be absorbed, emitted or scattered, depending on its wavelength and on objects

dimension and nature. Radiation at different wavelengths can then bring to the
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sensor different informations and for this reason the multi-sensor remote sensing is

the preferred approach.

Satellite sensors for atmospheric monitoring are designed to work at VIS-IR and

MW wavelengths because of the object dimensions they want to observe, and the

radiative characteristics of relevant atmospheric component.

Figure 2.5: Schematical representation of VIS-IR-MW radiation interaction.

If we are interested in clouds, we have to consider the interaction between ra-

diation and hydrometeors. Shorter wavelengths, such as the ones in the VIS band,

coming from the sun, weakly interact with atmospheric gases, but strongly inter-

act with clouds particles and are not able to penetrate them. The informations

that reach the satellite radiometer come then from the top of clouds (green lines in

fig.2.5).

Radiation in the IR band measured by a satellite sensor is emitted by objects and

gases: the amount of emitted radiance is a growing function of the object or gas

temperature, following the Planck’s Law. Focusing on clouds, each hydrometeor
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layer absorbs warmer radiation from layers below and emits radiation isotropically,

according to its equilibrium temperature: the satellite sensor measures the radia-

tion coming from the upper cloud layer, and no information on the underlying cloud

structure is provided (red line in fig.2.5).

MW radiation can be considered the more direct physical information about precipi-

tation layers, because it comes from the inner layers of clouds (blue line in fig.2.5) or

even from precipitation layers (violet line in fig.2.5), thanks to its longer wavelength,

which weakly interacts with smaller cloud particles.

In the next sections will be explained with more detail the physical properties of the

atmospheric radiative transfer at the wavelengths used for this work.

2.2.1 Basic definitions

Electromagnetic radiation is a form of energy (Radiant Energy Q [J]) that travels

trough the space from a source without the necessity of transfer medium. The rate

of energy transfer by electromagnetic radiation is called Radiant Flux and is denoted

by:

F =
dQ

dt
[J s−1 (W )] (2.4)

The radiant flux per unit area is called Irradiance or Radiant Flux Density and

can be expressed as:

E =
dQ

dt dA
[W m−2] (2.5)

The irradiance per unit wavelength (or frequency or wavenumber) interval is

called Monochromatic Irradiance:

Eλ =
dQ

dt dAdλ
[W m−2µm−1] (2.6)

In general the irradiance is determined by the contribution of energy coming

from all directions. The irradiance per unit solid angle is called Radiance and is

denoted by:

Iλ =
dQ

dt dAdλ dΩ
[W m−2µm−1sr−1] (2.7)
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For a perfect emitter (black body) the spectral distribution of radiant energy is

defined by the Planck Law:

Bλ(T ) =
2hc2

λ5

(
exp

(
hc

λkT

)
− 1

)−1

[W m−2µm−1sr−1] (2.8)

where h = 6.626 × 10−34J s is the Planck constant, c = 2.99792 × 108ms−1 is

the speed of light, k = 1.38054× 10−23J K−1 the Boltzmann constant and T is the

equilibrium temperature in Kelvin degrees (K).

Alternatively, the Planck Law can be more simply formulated as:

Bλ(T ) =
c1

λ5

(
exp

(
c2

λT

)
− 1

)−1

[W m−2µm−1sr−1] (2.9)

where c1 = 1.1910441̇0−8W m−2cm−4sr−1 and c2 = 1.438769 cmK are the first

and the second radiation constants, respectively.

Blackbody radiation represents the upper limit to the amount of radiation that a real

substance may emit at a given temperature. At any given wavelength λ, Emissivity

is defined as the ratio of the actual emitted radiance to that from an ideal blackbody

(refer to the scheme in fig.2.6 for notation):

ελ(↑Ω̂, T ) ≡ Ieλ(Ω̂)cosθdΩdA

Bλ(T )cosθdΩdA
(2.10)

where ↑ denotes the emission direction and in the following equations ↓ will

denote the incident direction.

Considering now an incident beam of radiation (primed symbols) with a particular

direction within a solid angle dΩ′, there will be a radiation fraction absorbed by

atmosphere. The Absorbance is the ratio of the absorbed radiation to the incident

one:

αλ(↓Ω̂, T ) ≡ Ie↓λ (Ω̂′)cosθ′dΩ′dA

I↓λ(Ω̂′)cosθ′dΩ′dA
(2.11)

At the same time, Transmittance can be defined as the ratio of the transmitted

radiation over a particular layer to the incident radiation:
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Figure 2.6: Sun-pixel-satellite geometry.

τλ(↓Ω̂
′,↓ Ω̂) ≡ dI t↓λ (Ω̂)

I↓λ(Ω̂′)cosθ′dΩ′
(2.12)

And concluding, the reflectance bidirectional distribution is the ratio of reflected

radiation in Ω̂ direction to the incident energy over the surface (denoting with surface

in our case a cloud layer):

ρλ(↓Ω̂
′,↑ Ω̂) ≡ dIr↑λ (Ω̂)

I↓λ(Ω̂′)cosθ′dΩ′
(2.13)

When electromagnetic radiation at a given wavelength passes through a medium,

the Beer-Lambert Law (or Extinction Law) describes the attenuation of an incident

beam because of absorption or scattering with the medium components (in our cases

the atmospheric components, particles and gas molecules):

dIλ(s, Ω̂) = kextIλ(s, Ω̂)ds (2.14)

that measures the decrement of Iλ due to the interaction with the medium along
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the infinitesimal path ds, where kext is the extinction coefficient, linked to the ex-

tinction cross section through the definition:

σext ≡
kext
na

(2.15)

where na is the number of absorber-particles in the unit volume.

Equation 2.14 can be integrated along a vertical path from the surface to the

sensor to yeld:

Iλ(sat, Ω̂) = Iλ(0, Ω̂)exp(−τ/µ) (2.16)

where Iλ(0, Ω̂) is the incident beam intensity (i.e. the radiation upwelling from

the surface), Iλ(sat, Ω̂) is the radiance reaching the satellite position and µ = cos θ,

being θ the satellite viewing angle with respect to the vertical.

τ is the atmosphere optical depth (or optical thickness) along the path from the

surface to the satellite and is defined as:

τ ≡
∫ s

0

kextds (2.17)

Finally, we introduce a quantity widely used in climate modeling to estimate the

radiative impact of clouds on the Earth’s energy balance, and in cloud microphysics

as a relevant feature of the cloud structure: the hydrometeors effective radius (reff )

defined as follows:

reff =

∫∞
0
r3n(r)dr∫∞

0
r2n(r)dr

[µm] (2.18)

where n(r)dr represents the hydrometeor concentration with radius between r

and r + dr. The meaning of this parameter can be summarized as follows. The

scattering process occurs on particle surface, given the fact that the electromagnetic

field is zero inside the particle, while the absorption process depends on the mass of

the particle: scattering depends on r2 while absorption on r3. The net reflectance

is thus qualitatively proportional to the ratio between scattering and absorption,

i.e. the ratio between the contribution of all the particles surface area and all the

particles volume in the cloud layer, which is proportional to r−1
eff . Therefore, where

absorption is dominant, reflectance is related to the reff profile: large particles have

low reflectance, while small particles are more reflective.
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2.2.2 Visible

For wavelengths between 0.4 and about 4 µm, solar radiation is dominant (see in

fig.2.7 the solar spectrum in the VIS band). At these wavelengths thick clouds, snow

and ice can be easily recognized because of their intense reflection of solar radiation.

Comparing images 0.6 an 0.8 µm, it is expected that clouds are better discriminated

from clear sky at 0.6 µm, because of the different reflectivity values of leaves and

soil in the two wavelengths, low at 0.6 µm and higher at 0.8 µm (in fig.2.7 indicated

with orange and green arrows).

Ch01 

Ch02 
Ch03 

Figure 2.7: Solar energy spectrum in the VIS wavelengths (Copyright 2010 EU-
METSAT).

In fig.2.8 it is shown an example of satellite images in the two different wave-

lengths and it is possible to note that in both cases thick clouds are clearly detected

(green arrows), whereas thin clouds appear only in the 0.6 µm because of the higher

contrast between land and clouds (red closed line) that is clearly observable com-

paring the two images (orange arrows). Because of the great separation between

leaf and soil reflectance curves at 0.8 µm (in fig.2.7 indicated in orange and green),

using this wavelength it is also possible to recognize Earth’s surface characteristics

(soil or vegetation).
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Ch01: 0.6  

(a)

Ch02: 0.8  

(b)

Figure 2.8: Example of satellite images in the 0.6 µm (a) and the 0.8 µm (b)
wavelengths (Copyright 2010 EUMETSAT).

Figure 2.9: Absorption of ice and water cloud.
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An other important wavelength to be considered is the 1.6 µm, in which it is

possible to distinguish between ice and water clouds because of the separated trend

between the imaginary part of the refraction index (related to absorption properties)

of water (blue solid line in fig.2.9) and ice (red dotted line in fig.2.9). This wave-

length, because of this important property, can help also for a correct classification

of snow at ground. Fig.2.10 is an example of satellite images comparison in which

it is possible to correctly classify water clouds, ice clouds and snow at ground just

through a simple comparison between them.

The possibility to discriminate clouds from snow at the ground is due to the different

reflectance of snow and clouds at 0.6 µm and 1.6 µm: clouds are good reflectors at

both wavelengths, while snow reflects much less at 1.6 µm.

A further application of 1.6 µm wavelength will be presented in the next section

discussed in parallel to radiation at 3.9 µm.

2.2.3 3.9 µm

Between VIS and IR spectral bands there is a small part of electromagnetic spectrum

for which the measured radiation is composed by scattered solar radiation and Earth

system emitted thermal radiation. The behavior of this particular band is different

between day and night-time because of the strong dependence on solar zenith angle

of the solar component. For this reason, applications and algorithms using this

wavelength have to be different for day and night-time.

In fig.2.12 it is highlighted the strong interpretation difference between the two

situations (day and night-time) for the same wavelength. In red the actual scene

temperature, measured during night-time as a normal IR wavelength and in blue the

satellite measured scene temperature, higher with respect of the actual one because

of the reflected sunlight contribution.

In fig.2.13 it is reported an example of day and night-time images. During night-

time (fig.2.13b) there is only thermal contribution and clouds are brighter (colder)

than ocean surfaces, given the fact that IR channels images are rendered in gray scale

with an inverse relationship between radiance and pixel intensity. During day-time

(fig.2.13a) there are thermal and solar contribution and low clouds appear darker

than ocean surfaces: they are colder than the ocean, but reflect much more solar ra-

diation. High, cold-top clouds appear white in both day-time and night-time scenes.
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Ch01:0.6 

(a)

Ch03:1.6 

(b)

Figure 2.10: Satellite images at 0.6 µm (a) and 1.6 µm (b). With blue arrows are
indicated snow areas, with orange ice clouds, with green water clouds, with pink
an example of transparent cloud and with yellow it is indicated Earth’s surface
(Copyright 2010 EUMETSAT).
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Figure 2.11: 3.9 µm wavelength between Solar and Earth spectra.

Schematic: Blackbody 
Radiation for T=300K 

(actual scene 
temperature) 

Wavelength 
3.9  

IR3.9 Radiance 
at 300K 

IR3.9 Radiance 
Measurement: 

300K + 
reflected 
sunlight 

Schematic: Blackbody 
Radiation for T=350K 

(satellite measured scene 
temperature) 

Radiance 
Intensity 

Figure 2.12: Scheme of different blackbody radiation considering or not reflected
sunlight (Copyright 2010 EUMETSAT).
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(a) (b)

Figure 2.13: Satellite images at 3.9 µm for day-time (a) and night-time (b) (Copy-
right 2010 EUMETSAT).

This wavelength because of its particular characteristic, can be used for different

applications. During both the day and night-time, it is used for the detection of

low clouds, thin cirrus, super-cooled clouds and fog. A peculiar application is for

night-time images due to the high sensitivity of this wavelength to warm spot in the

satellite pixel. The temperature sensitivity α is defined as the percentage change in

radiance corresponding to a percentage change in temperature:

∆B

B
= α

∆T

T
(2.19)

and substituting the Planck equation 2.9 it can be solved for α = c2/λT . Inte-

grating the equation in B and T between Tref and T and Bref and B we obtain:

B = Bref (
T

Tref

)α (2.20)

Computing α at 3.9 µm and at 11 µm, it is verified that the temperature sensi-
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tivity is much higher for the shorter wavelength. Thus, in case of partially cloudy

pixel, the temperature measured at 3.9 µm will be sensitively higher than if mea-

sured at 11 µm.

This property poses two prompt applications of the differences between 3.9 µm and

11 µm TB at night: 1) in case of partially cloudy pixel TB3.9 will be higher then

TB11, while in case of homogeneous cloudy coverage the two temperatures would be

very similar; in case of the presence of a small, very hot spot inside the pixel, as in

case of wildfire, again TB3.9 will be higher then TB11. The TB3.9-TB11 difference

could be used for the discrimination of sub-pixel cloud and for the early detection

of wildfires.

A last feature of the radiation between 1 and 4 µm is that the cloud reflectance

depends on the reff radius of the cloud particles. By means of radiative transfer

simulations Capacci [96] computed the reflectance at 1.6 µm and 3.9 µm as function

of the cloud layer optical thickness for different values of the cloud particles effec-

tive radius, and the results are shown in figure 2.14 for a given triplet of solar and

satellite zenith and azimuth angles.

Figure 2.14: Reflectance at 1.6 µm (a) and at 3.9 µm (b) as function of cloud layer
optical thickness for different values of the cloud particle effective radius [96].

At 1.6 µm the dependence of the reflectance from reff becomes negligible for

optical thickness higher than 20, indicating that the 1.6 µm radiance can be used

to retrieve cloud particle reff for τ > 20 for effective radius smaller than 25 µm,

where the signal saturates. The 3.9 µm plot shows similar behavior with significant
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differences. First, the radiance values are lower by a factor around 2; secondly, the

reflectance dependence on τ is negligible for optical thichness between 5 and 10,

indicating the radiance can be used to estimate reff in very thin cloud layer. Finally,

the reflectance sensitivity to reff is limited to reff < 25µm. This indicates that the

reflected component of daytime 3.9 µm radiance, that can be extracted from the

total radiance by simple radiative transfer computations, can be used to infer an

estimate of cloud top reff, while by means of the reflectance at 1.6 µm is possible to

compute reff for cloud layers below the cloud top. This approach was used by [97]

to infer the cloud upper layers structures by using the four channels between 1 to 4

µm of the Moderate resolution Spectroradiometer MODIS.

Moreover, Lensky and Rosenfeld (1996) [98] made an important study about rela-

tion between effective radius and precipitation and they developed an algorithm for

precipitation retrieval based on effective radius detection principle. The algorithm

first of all detects fully clouded pixels, then it assigns an effective radius of cloud-top

particles to these pixels, it divides the area into windows of about 2000 km2, it as-

signs to each window a cloud type by the cloud radius parameter and it assigns rain

area and rain rate to each of the cloud types. Capacci [96] continued in this direction

and used the 3.9 µm wavelength to appreciate the cloud particles effective radius

and correlate it with precipitation. In fig.2.15 is shown an example of comparison

between satellite image, radar precipitation estimate and effective radius map. It is

clear from the graphs (fig.2.16) that effective radius greater than 15 µm is confirmed

as being correlated with the precipitation region in case of convective precipitation.

2.2.4 Infrared: atmospheric window wavelengths

In the IR spectral band, where Earth thermal emitted radiation is dominant, in

order to investigate clouds and Earth’s surface with negligible gases absorption, it

is necessary to choose particular wavelengths in which radiation does not interact

much with atmospherical gases. To clarify the roles of IR wavelengths it is useful to

introduce the weighting functions. The weighting function of a wavelength, defined

as the vertical derivative of the atmospheric transmittance, indicates the contribu-

tion of the different standard atmosphere layers to the radiation reaching the top of

the atmosphere (and thus the satellite sensor) at the given wavelength. It is clear

from the weighting functions (fig.2.17, light blue, pink and yellow lines) that at
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Figure 2.15: IR satellite image (left), precipitation radar map (center) and effective
radius map (right). The selected cases in the boxes are convective clouds [96].

Figure 2.16: Plots of rainfall rate (top), 3.9 µm measurement, with the separated
emitted and reflected parts (centre) and effective radius values along the vertical
and horizontal lines in the box 1 of fig.2.15 (bottom) [96].

this particular wavelengths, the radiation reaching the satellite sensor, in clear sky

conditions, comes effectively from Earth’s surface, in fact the normalized weighting

function is equal to 1 for surface pressure. These wavelengths, called atmospheric

windows, are 8.7, 10.8 and 12.0 µm and are indicated in fig.2.18 with red lines.
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Figure 2.17: IR wavelengths weighting functions (Copyright 2010 EUMETSAT).

These wavelengths are useful for cloud systems recognition thanks to the ther-

mal radiation of clouds and Earth’s surface. They are indicative of high thin cirrus

clouds (particularly the 12.0 µm) and are a good support to 1.6 µm for the discrim-

ination between ice and water clouds (see in fig.2.9 also for 10.8 and 12.0 µm the

significative difference between water and ice imaginary refraction index, responsible

for absorption).

2.2.5 Infrared: absorption wavelengths

In the IR band, apart from atmospheric window, it is useful to consider also some

wavelengths where the atmosphere transmittance is low (called also opaque spectral

regions) to understand atmosphere composition. Water Vapor (WV), among ab-

sorption gases, can be considered the most important for precipitation retrieval and

for air mass classification and tracking. Strong absorption bands at 6.2 and 7.3 µm

(see in fig.2.18 indicated with blue lines) are important to estimate the content of
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8.7 10.8 12.0 6.2 7.3 9.7 13.4 

Figure 2.18: Earth emitted spectrum.

WV in two different layers of troposphere (in fig.2.17 red and green lines represent

the weighting functions of WV). In particular, the 6.2 µm is more in the center

of absorption band with a consequently strong absorption and gives informations

about the WV content in the higher tropospheric layers, whereas, the 7.3 µm is

more to the wings of absorption band, with less absorption and giving informations

about lower layers of the troposphere. These two wavelengths are also useful for the

height determination of transparent clouds and for the Atmospheric Motion Vectors

(AMV) computation in clear sky regions. Other two absorption bands are retrieved

in the IR, but they are not relevant for this work and for this reason they will be

just mentioned. They are the 9.7 µm and the 13.4 µm, in the O3 and in the CO2

absorption band respectively. The Ozone wavelength gives information about high

stratospheric Ozone concentrations which have protruded relatively far down into

the troposphere (its weighting function is the light blue one in fig.2.17). The Carbon
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Dioxide band is useful for a temperature profile and for informations about winds

and instabilities.

2.2.6 Microwave

MW radiation is the most physical information able to reach satellite sensors. It

comes from the inner layers of clouds or even from precipitation layers because it

weakly interact with clouds droplets and small ice crystals. In fig.2.19 we can note

that Mie scattering at MW wavelengths is possible only with objects larger than 10

µm, so the interaction can happen only with large cloud droplets or larger particles

(such as rain drops, graupel, snowflakes and hail).

Figure 2.19: Type of scattering for different particles size in the different wave-
lengths.

Precipitation estimate in this spectral band, physically speaking, can then be

considered the most accurate and reliable, but because of technical problems it is

difficult to obtain a good time and spatial resolution (this concept will be better

explained in sec.2.3). The only physical problem is the different behavior of radiation
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depending on background, because of the different and time varying emissivity of

land and sea surfaces. To solve this problem, Staelin and Chen (2000)[99] developed

an algorithm for MW wavelengths using absorption bands, because they are able to

sense precipitation over land without strong surface emissivity effects. This work is

used for the MW precipitation product of PROSA Project, described in sec.1.2.2.1.

The frequency used are the 54 and 183 GHz and are respectively in O2 and in H2O

absorption bands (see fig.2.20).

183 54 

Figure 2.20: MW spectrum.

At 54 GHz, all solid, liquid or mixed-phased hydrometeors absorb and scatter

radiation and the ones above about 4 km are generally visible against the warmer

opaque atmospheric background below (in contrast with the tendency of window

frequencies over land to respond to both liquid hydrometeors and random surface

variations). Because of a general dependence of frequency from penetration depth

of radiation, low-altitude hydrometeors impact primarily those sensors channels at

lower, more transparent frequencies, whereas hydrometeors at higher altitudes pro-

duce a cold spot across all tropospheric sensor channels. In this way, 54 GHz signal

is sensitive to the altitude of precipitating layers, even when they are hidden un-

der thin cirrus or other light clouds. Moreover, at this frequency it is possible to
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establish a close relationship between rain-rate and vertical velocity and absolute

humidity of the saturated air of convective cells because this velocity is directly re-

lated to the cell top altitude [99].

The 183 GHz frequency is also important for convective cells identification, because

they are generally characterized by ascending air masses and wet adiabatic temper-

ature profiles. In absence of hydrometeors, for an idealized adiabatic atmosphere,

the relation between water vapor content and temperature at any altitude is fixed

and also the penetration depth of 183 GHz frequency is fixed. In this way the ide-

alized observed brightness temperature at this frequency is fixed and independent

from surface emission at any latitude. Out from this ideal situation, in presence of

hydrometeors scattering and absorbing radiation, the brightness temperature mea-

sured from satellite sensors is lower then its nominal value for a saturated atmo-

sphere. This cold precipitation signature is unique because brightness temperature

below those corresponding to saturation generally can not be generated otherwise.

183 ±1 GHz nominal brightness temperature corresponds to ice in saturated atmo-

sphere, whereas 183±7 GHz temperature corresponds to both ice and water. This

leads to a strongly response of 183±7 GHz to stratiform rain and low precipita-

tion rates, contrarily 183 ±1 better responds to strong convection thrusts large ice

particles, substantially higher in the atmosphere.

2.3 Space-borne sensors

The lack of data in some regions not covered by rain-gauges or meteorological

radars gave the idea of using satellite sensor to monitor precipitation at wide scale.

There are two types of meteorological satellites: the Low Earth Orbit (LEO), sun-

synchronous, orbiting from 400 to 1500 km from the Earth-surface, and the Geo-

stationary Earth Orbit (GEO) satellites, orbiting at 36000 km at the same angular

velocity of the Earth rotation, in a fixed position with respect to the Earth’s surface.

Most space-borne sensors are passive instruments which collect radiation emit-

ted from Earth-surface or atmosphere. GEO satellites can carry visible/infrared

(VIS/IR) sensors, while on LEO spacecrafts there can be also antennas for mi-

crowave (MW) signals. The problem of this type of sensors stays in the dimensions

of antennas: following the Rayleigh criteria (eq.2.21), it is known that higher or-

bits require larger telescope dimensions making impossible to carry them on GEO
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satellites.

r =
hλ

d
(2.21)

where r is the minimum resoluble dimension at ground from sensor, h is the

satellite orbit altitude, λ is the wavelength of radiation and d is the antenna diameter.

2.3.1 SEVIRI sensor

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor is a radiome-

ter on board MSG (Meteosat Second Generation) satellite. Launched in 2002, since

2004 it produces images of the Earth’s disc centered at 0◦ latitude and 0◦ longitude

every 15 minutes.

Its operating principle is based on collecting radiation from a target area and focus-

ing it on detectors sensitive to 12 different bands of the electromagnetic spectrum

by means of a telescope.

The 1 km resolution of the High Resolution Visible (HRV) channel is achieved by

using 9 broad-band detection elements. The other channels are sampled at 3 km

resolution by using 3 narrow-band detection elements per channel.

In tab.2.1 are resumed the main features of SEVIRI channels.

The full Earth disc image is obtained after 1250 scan line steps (south north

direction) of 9 km SSP per line step with 3750 total pixels. The rapid scan (line

scan) is performed from East to West thanks to the satellite rotation around the

spin axis (spin rate at 100 rotations per minute). The spin axis is perpendicular to

the orbital plane and is nominally oriented along the South-North direction.

For this work a SEVIRI image dimension of 444×705 pixels is used, in order to

consider only the Italian region.

2.3.2 AMSU sensors

The Advanced Microwave Sounding Unit (AMSU) is a cross-track microwave ra-

diometer on board the NOAA satellite (NOAA-15, NOAA-16, NOAA-17). The

instrument is composed by two sensors, AMSU-A observes at 15 frequencies up to

90 GHz with about 50 km spatial resolution and AMSU-B observes at 5 frequencies,

88-191 GHz with about 15 km resolution at nadir with a circle IFOV (Instantaneous
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Figure 2.21: Schematic image of SEVIRI acquisition system [100].

Channel
number

Channel
name

Nominal
central
wavelenght
(µm)

Nominal
spectral
band (µm)

Spatial
resolution
at nadir
(km)

ch01 VIS0.6 0.64 0.56-0.71 3
ch02 VIS0.8 0.81 0.74-0.88 3
ch03 NIR1.6 1.6 1.50-1.78 3
ch04 NIR3.9 3.92 3.48-4.36 3
ch05 WV6.2 6.2 5.35-7.15 3
ch06 WV7.3 7.3 6.85-7.85 3
ch07 IR8.7 8.7 8.30-9.10 3
ch08 IR9.7 9.7 9.38-9.94 3
ch09 IR10.8 10.8 9.80-11.80 3
ch10 IR12.00 12.0 11.00-13.00 3
ch11 IR13.4 13.4 12.40-13.40 3
ch12 HRV0.75 0.75 0.6-0.9 1

Table 2.1: SEVIRI spectral channels and corresponding resolutions.
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Field Of View) shape. IFOV areas increase getting away from nadir and became

elliptic, with maximum axes dimensions of 51.6×25.3 km2 (in fig.2.22 are plotted

all AMSU IFOV sizes). The antenna provides a cross-track scan, scanning ±48.95◦

from nadir with a total of 90 Earth IFOV per scan line. This instrument completes

one scan every 2.67 seconds. Both sensor spectral bands are reported in tab.2.2.

AMSU-A Channels
Channel Central frequency (GHz)

ch1 23.8
ch2 31.4
ch3 50.3
ch4 52.8
ch5 53.596±0.115
ch6 54.4
ch7 54.94
ch8 55.5
ch9 57.290
ch10 57.290±0.217
ch11 57.290±0.3222±0.048
ch12 57.290±0.3222±0.022
ch13 57.290±0.3222±0.010
ch14 57.290±0.3222±0.0045
ch15 89.0

AMSU-B Channels
Channel Central frequency (GHz)

ch16 89.0±0.9
ch17 150.0±0.9
ch18 183.31±1.00
ch19 183.31±3.00
ch20 183.31±7.00

Table 2.2: AMSU-A and AMSU-B spectral channels.
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Figure 2.22: AMSU IFOV dimensions along track and cross track.
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Chapter 3

Artificial Neural Networks

In this chapter, after an introduction on the use of Artificial Neural Network in

satellite rainfall estimation, a basic theory of the ANN will be presented.

3.1 Neural Network in geophysics and remote sens-

ing

The satellite estimate of geophysical parameters is very often the only chance to have

information on some process taking place in the Earth system over a wide range of

spatial and temporal scales, wiht an accuracy suitable for quantitative analysis. Di-

rect measurements for many parameters of interest are in general not available: even

when in situ measurements are available, they are usually sparse and can be at a

level of accuracy and reliability difficult to control. The quality of geophysical pa-

rameters derived from remote sensing measurements varies significantly depending

on the strength and uniqueness of the signal from the geophysical parameters and

mathematical methods applied to extract these parameters, i.e. to solve forward

and inverse remote sensing problems: neural network techniques are a widely used

tool to approach this problem [101].

Precipitation is a clear example of a geophysical parameter highly variable, diffi-

cult to measure and nevertheless, crucial for several applications. Moreover, the

relationship between remotely sensed electromagnetic signal and precipitation char-

acteristics is unfortunately weak and elusive, as will be shown in the next chapter.

We have available today a large number of coincident radiance measurements, at
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different wavelengths, from the current satellite systems, each of them carrying in

general small information on the precipitation key characteristics: Artificial Neural

Networks are often exploited to study these relationships and to establish retrieval

techniques [102].

Chen and Staelin (2003) [62] used an ANN with one hidden layer with 5 nodes,

using the tan(h) sigmoid function, that accepts in input the radiances of Advanced

Microwave Sounding Unit (AMSU) to retrieve precipitation over the U.S., after a

training with the ground weather radar data. similar approach was used by Capacci

and Porcú (2009) [103] to retrieve precipitation over the British Isles: a Multi Layer

Perceptron ANN was implemented with one hidden layer wit ten nodes. As input

the radiances of SEVIRI sensor, in geostationary orbit, was used, and the training

has been performed on the U.K. radar network.

Geostationary VIS-IR data have been trained by means of TRMM-PR data to re-

trieve precipitation over tropical ocean by Bellerby et al. (2000) [104]: they used

a Multilayer Feed Forward Network with two hidden layers and sigmoidal transfer

function. The Precipitation Estimation from Remotely Sensed Information Using

Artificial Neural Networks (PERSIANN) is based on a two hidden layers Modified

Counter Propagation Network [78]. This system, originally trained with hourly

gauges data, applies to geostationary VIS-IR input data and, in its latest version, is

able to accept several different inputs and to adapt to different sources of calibration

[105].

3.2 ANN introduction

The Artificial Neural Network is a statistical approach based on the human brain

mechanism of learning information from experience and apply them to next similar

experiences.

The Human Neural Network is composed of neurons, electrically excitable cells that

processes and transmits information by electrical and chemical signaling. Chemical

signaling occurs via synapses, specialized connections with other cells. A typical

neuron possesses a cell body (often called the soma), dendrites and an axon (fig.

3.1). Dendrites are thin structures that arise from the cell body, often extending

for hundreds of micrometers and branching multiple times, giving rise to a complex

”dendritic tree”. An axon is a special cellular extension that arises from the cell body
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at a site called the axon hillock and travels for a distance, as far as 1 micrometer in

humans or even more in other species. The cell body of a neuron frequently gives

rise to multiple dendrites, but never to more than one axon, although the axon may

branch hundreds of times before it terminates. At the majority of synapses, signals

are sent from the axon of one neuron to a dendrite of another. The axon hillock

is the last site in the soma where membrane potentials propagated from synaptic

inputs are summated before being transmitted to the axon. If the voltage changes

by a large enough amount, an electrochemical pulse, called an action potential, is

generated and travels rapidly along the cell’s axon. A voltage threshold is in this

way beaten and the ”neural signal” can be transmitted and activates synaptic con-

nections with other cells.

Figure 3.1: Biological neuron schematization.

The Human Neural Network inspired the Artificial Neural Network, where neu-

rons are called perceptrons. Every individual computational element is called node,

it receives one or more inputs (representing the one or more dendrites) and sums

them to produce an output (representing a biological neuron’s axon). Every input is

associated to a weight (representing the strength of the synapses) and an activation

function (representing the action potential in the hillock axon) is applied to the node

in order to obtain the output.
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3.3 Single Layer Perceptron

In principle a perceptron can contain an arbitrary number of layers of nodes in

addition to the input and output layers. Here we begin with the so-called simple

perceptron, the more similar to the biological neuron, where the input layer feeds

directly into the output layer through an activation function (see fig. 3.2).

Figure 3.2: Single layer perceptron. g is the activation function with i = 1, In and
wk0 is the bias term.

Every input xi (i = 1, In) is multiplied by the weight wi. The mathematical sum

of all those products becomes the argument of the activation function, defined by

3.1.

yk(x) = g(ak) = g
( In∑
i=1

wkixi + wk0

)
(3.1)

where wk,0 is the bias term (not in a statistical meaning). This bias determines

the position of the hyperplane in x-space (fig. 3.3).

It could be convenient to adopt a notation in which input and weights are defined

with new (In+ 1)-dimensional vectors with an extra input variable x0 (see fig. 3.4)

whose value is permanently set at x0 = 1 (eq. 3.2).

yk(xi) = g(ak) = g
( In∑
i=0

wkixi

)
(3.2)



3.3. SINGLE LAYER PERCEPTRON 73

Figure 3.3: A linear decision boundary, corresponding to y(x) = 0, in a two dimen-
sional input space (x1, x2). The weight vector w, which can be represented as a
vector in x-space, defines the orientation of the decision plane, while the bias w0

defines the position of the plane in terms of its perpendicular distance from the
origin [106].

Figure 3.4: Single layer perceptron. g is the activation function with i = 0, In.

The activation function is generally chosen to be monotonic, smooth (continuous

first derivative) and asymptotic. It can be a step function, a linear function or a

sigmoidal function. Usually the logistic sigmoid activation function (eq. 3.3) is the
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best choice for ANN because it allows the outputs to be interpreted as posterior

probabilities [106].

g(ak) ≡
1

1 + exp (−ak)
(3.3)

Using discriminant functions having a decision boundary which is linear or more

generally hyperplanar is however a very restricted choice and we can expect such

network to have less than optimal performance for many practical applications.

3.4 Multi-Layer Perceptron

After the starting idea of using fundamentals of the Human Neural Network as base

for an Artificial Neural Network, mathematical and statistical exigences force hence

to develop the ANN joining several layers of perceptrons.

Figure 3.5: Multi layer perceptron.
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The way the perceptrons are connected determines the kind of ANN. The multi-

layer perceptron (MLP) is a special Network with one or more layers between the

input and the output ones (fig. 3.5). These middle layers are called hidden layers

and are introduced to solve linearly inseparable problems otherwise not solvable (ex.

XOR problem) [106] [107].

The connections allowed in a MLP scheme are only the ones between every node in

a layer to every node in the next layer, but not between nodes in the same layer. In

addition the diagram must be feed-forward, so that it contains no feedback loops.

The first ANN used in this work is determined by a double application of the acti-

vation function. At first the activation function is applied to the linear combination

of input and secondly it is applied to the output of the first hidden layer to obtain

the output of ANN:

aj =
In∑
i=0

wjixi (3.4)

ak =
H∑
j=0

wkjg(aj)

=
H∑
j=0

wkjg
( In∑
i=1

wjixi

)
(3.5)

yk = g(ak) = g
( H∑
j=0

wkjg(aj)
)

= g

( H∑
j=0

wkjg
( In∑
i=0

wjixi

))
(3.6)

The activation function is of the same type described in 3.3. In the contest of

classification problems, networks with sigmoidal non-linearities and two layers of

weights (input layer and one hidden layer) can approximate any decision boundary

to arbitrary accuracy [106].

The number of hidden nodes is determined by the number of inputs: the number of

hidden units must grow as the size of the data set grows. If we try to approximate a

given function with a network having a finite number of hidden nodes, we will intro-

duce a residual error. This error will decrease increasing the number of hidden units.
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3.5 ANN building phases

To make an ANN operative, three building phases are necessary:

1. Data set building phase

2. Training phase

3. Testing phase

3.5.1 Data set building phase

In order to train the Neural Network, it is necessary to provide a supervised data

set. An ensemble of input data (features) is prepared and every set of features

(x1, x2, . . . , xIn) is associated to a ”true” output value. The value of truth is consid-

ered as a ”target” (t) and it is necessary in order to ”teach” how to interpret input

values to the ANN.

The kind of feature x depends on the problem under examination and the phase

where they are chosen and calculated is called features extraction.

Among all the calculated features, there is an ideal group of them which gives the

best performance when used as input to the ANN. The departing from this ideal

number can lead to a reduction in performances, due to redundant effect of some

features or to the ”course of dimensionality”, which is a poor representativeness of

output ”true” values if the dimension of the feature space is too high [96]. This

ideal group is extracted in the training phase simply trying several combinations of

features as ANN inputs and choosing the one giving the best result.

3.5.2 Training phase

The aim of this phase is to define the weights w in order to obtain an output y as

close as possible to the target t. To obtain the best output, an error function, called

cost function, is used. Knowing the inputs of the so called training data set, the

weight are adjusted in order to minimize the cost function which is a differentiable

function of the network outputs yk and the outputs are functions of weights and

biases through the activation function g (eq.3.6). If g is differentiable, also yk are

differentiable with respect to the weights and biases and so is the cost function. In



3.5. ANN BUILDING PHASES 77

this way, using the differentiability property of the cost function, it is possible to

find the set of weights which minimize it.

The function we choose for this work is the sum-of-squares error function:

E =
k=1∑
Out

Ek (3.7)

in which Ek =
1

2

N∑
n=1

[yk(w,x
n)− tnk ]2 (3.8)

Out is the number of output nodes and N is the number of target-features set.

The algorithm used to evaluate the derivative of the error function is known as

back-propagation and consists in a propagation of errors backwards through the

neural network [106]. The training algorithm involve an iterative procedure for the

minimization of the error function, with adjustments to the weights being made in

a sequence of steps (epochs). The optimization method used in this work to update

weights and find the ones which minimize the cost function is called the gradient

descent technique and can be summarized in the following equations:

wτ+1
kj = wτkj − η

∂E

∂wkj

∣∣∣∣
wτ

(3.9)

wτ+1
ji = wτji − η

∂E

∂wji

∣∣∣∣
wτ

(3.10)

At the step τ the weights are known and they are calculated for the step τ + 1

through equations 3.9 and 3.10. At the beginning (τ = 0) the weights values are

randomly assigned. η is a small positive number called the learning rate parameter.

The choice of the value for η can be critical: if it is too small the reduction in error

will be very slow, if it is too large, divergent oscillations can result.

3.5.3 Testing phase

Once defined the best set of weights which minimize the cost function and than which

define outputs as close as possible to the targets, a last phase of test is necessary.
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The group of features in the input has to be of the same type used in the training

phase (with input data associated with targets). With a new dataset (independent

from the training dataset) and fixed weights, the output of the ANN is calculated

and compared with the expected output. The evaluation is performed using some

statistical parameters.

3.6 Interpretation of network outputs

Classification and regression problems are known as supervised learning because

they can learn from a sample in which the outputs are known. We talk about

regression when we predict quantitative outputs and about classification when we

predict qualitative outputs.

It is important to stress that the central goal in network training is not to memorize

the training data, but rather to model the underlying generator of the data, so that

the best possible predictions for the output vector can be made when the trained

network is subsequently presented with a new value for the input vector.

3.6.1 Regression problems

For regression problems the goal is to model the conditional distribution of the

output variables, conditioned on the input variables. The most general and complete

description of the generator of the data is in terms of the probability density p(x, t)

in the joint input-target space. It is convenient to decompose the joint probability

density into the product of the conditional density of the target data, conditioned

on the input data, and the unconditional density of input data:

p(x, t) = p(t|x)p(x) (3.11)

where p(x) =

∫
p(t|x)dt (3.12)

For the purpose of making predictions of t for new values of x, we need to model

the conditional density p(t|x).

Considering a network trained by minimizing a sum-of-squares error function, we

can derive that the outputs approximate the conditional averages of the target data.
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In the limit of N going to infinity, we can replace the sum over patterns in the 3.8

with an integral:

E = lim
N→∞

1

2N

N∑
n=1

∑
k

[yk(w,x
n)− tnk ]2 (3.13)

=
1

2

∑
k

∫∫
[yk(w,x)− tk]2p(tk,x) dtk dx (3.14)

and remembering the 3.11:

E =
1

2

∑
k

∫∫
[yk(w,x)− tk]2p(tk|x)p(x) dtk dx (3.15)

Using a conditional averages notation:

< tk|x > ≡
∫
tk p(tk|x)dtk (3.16)

< t2k|x > ≡
∫
t2k p(tk|x)dtk (3.17)

we can rewrite the 3.15:

[yk − tk]2 = [yk− < tk|x > + < tk|x > −tk]2 (3.18)

= [yk− < tk|x >]2 + 2[yk− < tk|x >][< tk|x > −tk] + [< tk|x > −tk]2

(3.19)

and substituting the 3.19 in 3.15 we can write the sum-of-squares error in the

form:

E =
1

2

∑
k

∫
[yk(w,x)− < tk|x >]2p(x)dx +

1

2

∑
k

∫
[< t2k|x > − < tk|x >2]p(x)dx

(3.20)

The second term on the right-hand side of 3.19 vanishes as a consequence of the

integration over tk. We can also note that the second term in 3.20 is independent
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of the network function yk and is therefore independent of the network weights, so

for the purposes of determining the network weights by error minimization, this

term can be neglected. Since the integrand in the first term is non-negative, the

absolute minimum of the error functions occurs when this first term vanishes, which

corresponds to the following result for the network function:

yk(x,w
∗) =< tk|x > (3.21)

where w∗ is the weight vector at the minimum of the error function. Equation

3.21 is a key result and says that the network function is given by the conditional av-

erage of the target data, in other words by the regression of tk conditioned on x [106].

Figure 3.6: A schematic illustration of the property 3.21. Here we consider a map-
ping from a single input variable x to a single target variable t. At any given value
x0 of the input variable, the network output y(x0) is given by the average of t with
respect to the distribution p(t|x0) of the target variable, for that value of x [106].

3.6.2 Classification problems

In classification problems the input vector is assigned membership in one of a number

of finite groups on the basis of whether they have some property or not. Typically

there is one output unit for each possible class and the activation of each output

unit represents the corresponding posterior probability p(Ck|x), where Ck is the kth
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class and x is the input vector.

The density function in target space for classification problems can be written as:

p(tk|x) =
c∑
l=1

δ(tk − δkl)P (Cl|x) (3.22)

since P (Cl|x) is the probability that x belongs to class Cl.

Substituting this last equation in 3.21 and remembering 3.16, we obtain:

yk(x) = P (Ck|x) (3.23)

which is exactly the Bayesian posterior probability.

If the network outputs represent probabilities, then they should lie in the range (0,1)

and should sum to 1. For a network with linear output units, trained by minimizing

a sum-of-squared error function, however, there is no guarantee that they will lie in

the range (0,1). In fact, the sum-of-squares error function is not the most appro-

priate for classification problems. It was derived from maximum likelihood on the

assumption of Gaussian distributed target data. However, the target values for a

1-of-c coding scheme are binary and hence far from having a Gaussian distribution.

However there are advantages in using a sum-of-squares error function, first of all

the fact that the determination of the output weights in a network represents a

linear optimization problem.

These probabilities can then be used in a subsequent decision-making stage to arrive

at a classification. In this work, the decision is taken over a probability rejection

threshold value, in others words, if the posterior probability falls below this thresh-

old, then no classification decision is made or, dealing with a binary classification

problem, the threshold divides the two classes.

For a two-class problem, as we will deal to in the first part of this thesis, we can

consider a single output y and a target coding which sets tn ≥ threshold if xn is

from class C1 and tn < threshold if xn is from class C2 [106].
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Chapter 4

Multi-sensor satellite precipitation

estimate algorithms:

implementation and results

In this chapter is presented a detailed description of the multi-sensor satellite pre-

cipitation estimate algorithm developed at the University of Ferrara (Department of

Physics - Atmospheric Physics Group) within the PROSA Project, which is the ma-

jor objective of my PhD Thesis work. The algorithm presented here is an adaptation

of the original algorithm developed for United Kingdom area [108] and consists in

an Artificial Neural Network designed to find the best correlation between satellite

data and precipitation at the ground. The original algorithm and all the further

implementations will be described in this chapter.

4.1 The original algorithm

The original idea comes from an algorithm developed for MODIS sensor data at first

[108] and for SEVIRI data in a second version [103] and optimized for working over

British Isles area.

As described in detail in sec.2.2, the relation between radiances and precipitation

at the ground in the VIS-IR bands is very weak and difficult to be physically inter-

preted and modeled. For this reason a statistical approach is used to find a relation

between radiation coming from the top layers of the cloud and measured by satellite

83
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sensors, and the precipitation at the ground as measured by independent instru-

ments.

The algorithm basis consists in an Artificial Neural Network of Multi Layer Percep-

tron type (described in detail in section 3.4). The ANN is a two layers Network,

with an input layer, one hidden layer and an output layer. The hidden layer has 10

hidden nodes and the activation function is sigmoidal (eq. 3.3). The ANN is set up

as a classification problem and gives as output a probability of belonging or not to

a defined class of precipitation (value 0 for no-rain class and 1 for rain class).

After the assessment of the seasonal dependence of the algorithm [48], it was sepa-

rately developed for winter and summer seasons.

The original algorithm was set up to work on the UK region and only during day-

time, in order to use all satellite sensors available channels (also in the VIS-NIR

band, not available during night-time). The training had been carried out with the

ground data of the UK network meteorological radar as precipitation ground truth

[109]. Radar data are particularly appropriate for this type of task because they

are areal and instantaneous precipitation estimate, more readily comparable with

satellite data also areal and instantaneous radiance measurements.

Three summer months (JJA: June, July and August 2004) and three winter months

(DJF: December 2004, January and February 2005) had been used as training

dataset and the Equitable Threat Score (ETS) had been used as statistical pa-

rameter for training testing and validation. ETS and others statistical parameters

used in this chapter will be described in detail in appendix A.

As a preliminary study during the algorithm developing, the sensitivity of SEVIRI

input channels to the precipitation at the ground had been carried out, separating

day-time performances from night-time ones and for different seasons. For each SE-

VIRI channel, satellite radiances are compared with nearly simultaneous, co-located

radar rainfall maps, and each pixel is classified as rain or no rain. With the term

nearly simultaneous we define two observations from different sensors of the same

meteorological phenomenon carried on with a time lag small if compared to the typi-

cal time scale of the observed phenomenon. The definition of the maximum time lag

allowed to compare two observations, in priciple, depends on the spatial resolutions

of the two observing systems (the smaller is the resolution, the shorter is the allowed

time lag) and on the considered cloud type (shorter time lag for convective clouds).

The frequency of raining and non raining pixels as function of the satellite radi-
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(a)

(b)

Figure 4.1: Sensitivity study for the UK-ANN, trained with UK radar network. Day-
time (a) and night-time (b) SEVIRI measurements distributions are plotted for every
channel considered. Curves are separated for seasons, red lines represent summer
distributions and blue ones represent winter distributions. Solid lines represent rain
estimates distributions and dash-dot lines represent no-rain estimates.



86 CHAPTER 4. SATELLITE PRECIPITATION ESTIMATE ALGORITHMS

ance values are plotted in figures 4.1 for reference, since the same sensitivity studies

were also been performed for the new technique development. The figure reads as

follows: the highest is the separation between corresponding blue and red curves,

the highest is the sensitivity of the channel to the precipitation at the ground. It

can be noted that the channel sensitivity is highly variable with channel number,

seasonal and diurnal cycle.

Generally, training and validating dataset have to be independent, in order to es-

timate the real capability of the network to generalize its performances after being

trained. For this reason the whole dataset had been separated into two sub-sets,

one for the training phase and one for the validation one.

In fig.4.2 are shown the ANN performances for the studied periods: it is possible to

note the different values of ETS for the two seasons, separately studied, considering

that the best value for ETS is 1. Best performances are obtained in summer season

with values of ETS reaching 0.6, while during the winter ETS never exceeds 0.5.

For both seasons the ETS is always above zero, which represents the no-skill value

for this parameter (see appendix A).

In fig.4.3 an example of ANN output is presented: the ANN derived Probability of

Precipitation (PoP) image (on the right) is compared to the nearly simultaneous

radar observation (center) and the correspondent SEVIRI. Here the rain flag on the

PoP image is assigned to those pixels with PoP greater than 0.5, and the resulting

ETS is around 0.42: all the major rain areas detected by the radar network are

correctly identified by the algorithm, with some overestimation.

After the set up of ANN for the UK region, some tests had been made applying

the ANN to other areas. An example is shown in fig.4.4 with the application of the

UK-ANN to the Italian Friuli Region, where the Fossalon di Grado weather radar

data has been available: for the reported maps the ANN algorithm shows some

overestimation of the rain areas and the overall performances of the technique for

the considered event over Italy are slightly lower than the performances over the

UK, with averaged ETS around 0.35 [110].
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(a)

(b)

Figure 4.2: ETS trend for summer (JJA 2004) (a) and winter (DJF 2004-2005) (b)
seasons. The gaps in winter graphics are due to an absence of precipitation within
the radar coverage.

Figure 4.3: 22/07/2004, 14.27 UTC case: SEVIRI image on the left, radar rain-no
rain map in the middle and ANN rain-no rain map on the right [111].
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Figure 4.4: 05/05/2004, 16.57 UTC case: Fossalon di Grado (GO, Italy) radar map
on the left and ANN classifier on the right.

The logical scheme of the algorithm can be summarized as follows:

- creation of a supervised dataset, with ground true precipitation data and

corresponding (spatially and temporally) satellite data;

- separation of the supervised dataset in two different sub-datasets (training-

testing dataset and validation dataset) using as criteria the division of odd

day number from even ones;

- separation of the training-testing dataset in two different sub-dataset (training

dataset and testing dataset), randomly picking up a fixed equal number of

pixels for each dataset;

- training of ANN, establishing the ANN weights (wji, wkj) trough the back

propagation algorithm, iterating the process a number n of times (epochs);

- testing the ANN, choosing the weights set which gives the best statistical

parameters (see appendix A);

- (optional) validate the ANN using the validation dataset to evaluate the ANN

generalizing capability.
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4.2 PROSA Product 1

This first algorithm developed for the Italian area, represents the first product of

the ’Multi-sensor satellite precipitation estimate’ of the PROSA system. Every 15

minutes, a new rain-no rain map is made available to the system few tenths of

seconds after the satellite images are available on the PROSA archive. It has to

be mentioned that the algorithm output format had to be adapted to fit all the

technical requirements imposed by the the PROSA system. In fig.4.5 an example of

the algorithm output available from the PROSA website.

(a) (b) (c)

Figure 4.5: 29/05/2008, 12.27 UTC case: precipitation map from rain-gauge network
(a), estimation map from ANN (b) and SEVIRI IR12.0 image (c).

This product uses ANNs trained with the UK radar network data and for this

reason its performances are not optimized for the Italian area. It presents a couple

of problems individuated during a systematic monitoring of the outputs during the

demonstration phase of the PROSA Project:

1. First of all, the fact of using two different ANN for day-time and night-time,

with different weights and thresholds, leads to an evident discontinuity between

the two subsequent precipitation maps produced by the two different ANN.

Actually, this anomaly can not be eliminated because of the intrinsic difference

between the input available to the two ANN.

2. The second problem is about the wrong classification of snow at ground, often

considered as precipitation, mainly during night-time, in which the VIS-NIR
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channels can not help for the identification (see an example in fig.4.6). The cold

snow temperature on the surface makes the ANN to misunderstand the real

non precipitating situation, producing many false alarm pixels. This anomaly

can be solved with an optimized training of the ANN for the region of interest.

Figure 4.6: 29/12/2010, 13.00 UTC case: example of wrong classification of snow
at ground over the Alps region.

4.3 ANN training over Italy

In 2009, I started my PhD program at the University of Ferrara in the Group of

Atmospheric Physics and my first task was to adapt the UK-algorithm to the Italian

area. After a first test application of the UK-ANN to some Italian regions (i.e. Friuli

Region) and then to the whole Italian area with the first release of PROSA, the idea

of training the ANN with Italian ground data was considered and a new supervised

dataset with Italian rain-gauges rain-rate measures was built.



4.3. ANN TRAINING OVER ITALY 91

The use of rain-gauges as true values for an ANN training cannot be considered the

absolute best choice. As described in sec.2.1.1, rain-gauges are not homogeneously

distributed over the surface and they are not representative of large areas because

of the small size of the catching area. Furthermore, in the Italian network rain-

gauges measure hourly cumulated precipitation values and are difficultly comparable

with instantaneous satellite measures (in tab.4.1 a comparison between rain-gauges,

radars and satellite measurement characteristics). However, at the time when this

work has started, the italian radar network was far to be fully operational and to be

reliable enough to constitute a true field for training and validation purposes over the

whole Italian Region. For this reason, despite all the described disadvantages, the

rain-gauges network was assumed as the best choice for this work as true rain-rate

values.

Rain Gauge Radar Satellite

sampling area 30 dm2 1×1 km2 3.5×4.5 km2

instrument sensitivity 0.2 mm continuous data continuous data
revisit time 60 min 15 min 15 min

sampling time 60 min ∼1 s ∼1 µs

Table 4.1: Instruments comparison

The pluviometric dataset for the Italian training is made available by the Italian

DPC and consists in a variable number of rain-gauges (between 1500 and 1700)

and are distribute as shown in fig.2.1. The number of operational stations greatly

varies on hourly, daily and monthly basis, because of malfunctions or discontinuity

in the data measure, transfer or storage. A relevant characteristics of the spatial

distribution of the Italian network is shown in fig.4.7, where the distribution of the

minimum distance between closest stations is reported: most of the stations have

a minimum distance ranging between 6 and 10 km from the closest station. This

distance can be assumed as a measure of the rain gauges network density.

To construct the supervised dataset with spatially and temporally correlated

satellite radiances and truth values, it was necessary to establish a criterion to spa-

tially and temporally match rain-gauges and satellite observations. Spatial matching

was obtained by projecting rain-gauges position on the SEVIRI grid, as computed by

routines provided by EUMETSAT; the rain-gauges coordinates were provided by the
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Figure 4.7: Minimum distances distribution between Italian pluviometric stations.

DPC and the World Geodetic System 84 (WGS84) was used for ellipsoid reference

values. As for the temporal matching, we know that the hourly cumulated measures

of rain-gauges have to be compared with four instantaneous reflectance/radiance

every hour. To better understand how to consider this temporal mismatching, two

possible solutions had been investigated through a channels sensitivity study:

1. consider only the central satellite slot data (hh:27) and compare them to the

hourly cumulated rain-gauge data of the successive hour (hh+1:00);

2. consider all the four slots (of minutes 12, 27, 42, 57), make a distribution

of radiance/reflectance for every channel and define a minimum value of re-

flectance/radiance variation allowed to a pixel to be considered in further pro-

cessing. A new training dataset is then built, considering only the samples in

which the reflectance/radiance variations are under the fixed threshold value.

Two reflectance/radiance distributions for every channel were then made, one for

the first solution (fig.4.10) and one for the second (fig.4.8). In fig.4.9 it is shown a

particular comparison between the two techniques for one VIS and one IR channel.

It is clear, both for VIS and IR channels, that considering constant reflectance/ra-

diance the raining and no-raining pixels are better resolved. This could lead to
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Figure 4.8: Sensitivity study for the Italian-ANN, trained with pluviometer Italian
network and reflectances/radiances considered hourly constant. Day-time (a) and
night-time (b) SEVIRI measurements distributions are plotted for every channel
considered.

choose the constant-reflectance/radiance approach for our aims, but this option has

actually more disadvantages than advantages. Considering only the constant ra-

diances/reflectance, the dataset would be drastically reduced, with a consequent

reduction in statistic significance. But the main problem is the assumption, using

this type of approach, that the cloud structure stays constant during the whole hour,

loosing all the rapidly varying systems, as, for examples, thunderstorms.

For these reasons, the Italian ANN uses 10 inputs (9 SEVIRI channels and 1

solar zenith angle) and is trained with hourly rain-gauges data compared with the

central slot (hh:27) of SEVIRI measures. The precipitative events considered in the

training are representative of a wide typology of meteorological situation, in order

to make the network better generalize the further situation it will encounter. The
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Figure 4.9: Sensitivity comparison between two SEVIRI channels, one in the VIS
band and one in the IR. (a) and (b) represent the reflectances/radiances distributions
obtained considering for the training dataset only the hh:27 slot. (c) and (d) are
the correspondents for the constant reflectance/radiance cases.

selected dataset of about 106 pixels is divided in summer and winter events, to train

the two seasonal separated ANN, and is here summarized:

Summer cases: 17-19/04/2008, 26-30/05/2008, 11-14/06/2008, 16-18/06/2008,

06-08/07/2008, 12-15/07/2008

Winter cases: 21-24/03/2008, 13-15/01/2009, 23-27/01/2009

From this total dataset, two smaller datasets are obtained, one used for the

training-testing procedure and one for a preliminary validation of the product. The

two groups are separated putting the odd days cases in one and the even days cases

in the other.

The training-testing phase is done following the procedure described in Capacci and

Porcú (2009) [103]. It consists in a random choice of pixels to divide training (50%)

and testing (50%) datasets. Then the ANN is trained and tested in order to find

the best choice of weights (see sec.3.5.2 and 3.5.3) using 50 epochs. This procedure

is repeated many times with different probability thresholds in order to find the

one which better classify raining and no-raining pixels (see sec.3.6.2 for the use of

thresholds in classification problems).

The validation phase is important to understand the real capability of the network to
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generalize what it learnt in the training-testing phase. The ANN is then applied to

an independent dataset and statistical parameters are considered (results are shown

in tab.4.6).

4.4 Night-time ANN

The Italian ANN is set from the beginning to be used 24 hours a day. A night-time

ANN is studied and implemented, and the ANNs of the Italian system are thus four

(summer-day, summer-night, winter-day, winter-night).

The separation between day-time and night-time networks is automatically per-

formed by a test on the solar zenith angle: the night-time ANN is used when the

zenith solar angle is larger than 85◦ for more than 5% of considered pixels or is not

available. Input radiances are in this case 6: VIS-NIR data (0.65, 0.85 and 1.6 µm)

and zenith solar angle are not available during night-time. In addition, the 3.9 µm

channel, in night-time case, does not contain the reflection contribution and for this

reason we have a different behavior from it in the ANN.

VIS-NIR channels give important informations about particles effective radius in the

cloud top layers [98] and about cloud optical thickness. These two parameters are

linked to the cloud structure and show a good correlation with precipitation areas.

Another important factor to be considered is that the reflection channels can help in

the understanding of ambiguous situations. Cirrus are very cold clouds, but being

thin they are not precipitating. Considering them only in the IR channels, there

could be a misunderstanding of the real situation due to their brightness tempera-

ture, referring to them as precipitating clouds and overestimating raining areas. On

the contrary, low and so relatively warm clouds can be thick enough to be precipitat-

ing, but, because of their relatively high brightness temperature, they can be missed

using only IR channels. In general during night-time, being the Earth surface colder

then in day-time, the clouds-surface thermal contrast is lower and performance of

ANN can reduce (see sec.2.2.2, 2.2.4 and 2.2.5 for physical details).

As for the UK-ANN, also for the Italian-ANN, with a rain-gauges training, a channel

sensitivity study is made. The resulting distributions are shown in fig.4.10.

Comparing day and night-time distributions, the IR channels show almost the

same trend, whereas the big difference can be observed in the 3.9 µm channel. In

the night-time distribution, because of the scattered radiation lack, radiances values
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(a)

(b)

Figure 4.10: Sensitivity study for the Italian-ANN, trained with Italian pluviometers
network and considering the hh:27 slot of SEVIRI data. Day-time (a) and night-time
(b) SEVIRI measurements distributions are plotted for every channel considered.
Curves are separated for seasons, red lines represent summer distributions and blue
ones represent winter distributions. Solid lines represent rain estimates distributions
and dash-dot lines represent no-rain estimates.
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are smaller and, more important, the information on the cloud top particles reff

is missing. Furthermore, there is a better separation between rain and no-rain for

the summer season, because of the good capability of this channel to emphasize

cloud-surface temperature differences (greater in summer season).

Generally comparing this last sensitivity study with the one made for UK-ANN

(fig.4.1), we cannot appreciate marked differences. Both distributions are normal-

ized, so the different number of samples used in the two trainings does not constitute

an element of difference, also if the lower samples number represents a lower statis-

tic. On the contrary, focusing on single channels, some differences can be noted. In

the two visible channels (VIS0.6 and VIS0.8), the Italian-ANN can better resolve

the difference between raining and no-raining pixels and this difference is greater

in summer season (red lines). This behavior strongly depends on the solar zenith

angle, smaller at Italian latitudes (37-47◦N) than at UK ones (around 55◦N) and

in summer season than in winter one. At Italian latitudes we expect a greater oc-

currence of convective systems (better resolved at VIS-IR wavelengths) and, as said

before, a smaller solar zenith angle, so with a greater dynamics in VIS channels

which strongly helps in the rain-no rain discrimination. Again some differences are

noted for the 3.9 µm channel. Better performances are observed for the Italian ANN

in the summer season, mainly in the day-time distribution where the scattering con-

tribution can profit of the smaller zenith angle at Italian latitude, with consequent

better performances. On the contrary, in winter season, the UK-ANN presents bet-

ter performance. One of the possible reasons is the use of rain-gauges as training

instruments for the Italian ANN: as an example, in case of snow events, pluviome-

ters usually underestimate the real precipitation rate, giving false rates when the

snow melts.

In tab. 4.6 are shown the validation results divided for the four different networks

considered.

Network ETS (%) σETS(%)

Summer day 35 14
Summer night 19 16
Winter day 30 9
Winter night 10 7

Table 4.2: ETS values and variances for the first Italian ANN.
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As we expected, the night-time ANN gives lower values of ETS with respect to

the day-time one, due to the lack of VIS-NIR data. The dispersion of the ETS data

relatively increases for nigth-time, indicating higher variability of the performances,

and also the possibility to have ETS values lower than zero for some slot. The

quality of the estimate decreases for both day and night moving from summer to

winter due to different precipitation types and higher solar zenith angle.

4.5 Classes of precipitation intensity

A further development of the Italian algorithm consists in the introduction of pre-

cipitation classes as ANN output instead of the simple precipitation probability.

The basic ANN is the same as for the PoP extraction, but in this case it is used a

cascade scheme of several ANNs in order to separate pixels belonging to different

precipitation classes. As described in Capacci and Porcú (2009) [103], a first ANN

separates dry pixels (no rain) from wet ones (rain) in the same way of the precedent

algorithm version. After that, wet pixels satellite values are used as input of a sec-

ond ANN, which separates slight rain pixels from others. This scheme is repeated

4 times, in order to obtain 5 classes of rain-rate. In fig.4.11 it is shown a schematic

description of the cascade system.

Each ANN is trained separately, with the same procedure: the weights of the selected

ANN are those that maximize the ETS, that in this case measures the capability

of the ANN in correctly separate pixels between precipitation classes. The choice

of rain-rate classes limits is made on the Probability Density Function (PDF). The

continuous probability parameter has to be divided in such a way to guarantee al-

most the same population in all classes, in order to have enough cases statistic to

train the networks. Starting from a lower limit of 0.2 mm h−1 (the sensitivity of

most tipping bucket rain-gauges in the Italian network), classes are chosen following

a power law (see fig.4.12) and are summarized as follows:

Class 0 (no rain): 0.0 ≤ rr ≤ 0.2 mm h−1

Class 1 (slight rain): 0.2 < rr ≤ 0.6 mm h−1

Class 2 (slig/mod): 0.6 < rr ≤ 2.4 mm h−1

Class 3 (moderate rain): 2.4 < rr ≤ 9.6 mm h−1

Class 4 (heavy rain): rr > 9.6 mm h−1
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Figure 4.11: Schematic description of the ANN cascade system which divides the
precipitation pixels in 5 different classes.

Figure 4.12: Probability Density Function (PDF) of precipitation retrieved from
rain-gauges (black line) and precipitation integration in the five classes chosen (red
line). The PDF refers to April, May, June and July 2008 Italian pluviometers
network data.
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The dataset results then divided in the five classes as resumed in tab.4.3 for the

training-testing dataset and in tab.4.4 for the validation dataset:

Network Class Class Class Class
0-(1,2,3,4) 1-(2,3,4) 2-(3,4) 3-4

Summer day
tot. 137290

wet 8645 6130 2396 403
dry 128645 2515 3734 1993

Summer night
tot. 185763

wet 11512 8398 3393 403
dry 174251 3114 5005 2990

Winter day
tot. 44702

wet 10440 7259 1796 41
dry 34258 3185 5463 1755

Winter night
tot. 104250

wet 17849 11999 3218 123
dry 86401 5850 8781 3095

Table 4.3: Training-testing dataset: for every season and daytime, it is indicated the
number of pixels considered for every ANN. The first ANN divides class 0 pixels from
others (first column), the second divides class 1 from 2-3-4, the third separates class
2 from 3-4 and the last one class 3 from 4. The total number of pixels considered
for every season/daytime is also reported.

Network tot. Class 0 Class 1 Class 2 Class 3 Class 4

Summer day 87805 78980 2321 3699 2309 496
Summer night 117775 107852 2660 4066 2659 538
Winter day 60983 51128 2669 4950 2055 181
Winter night 143763 123947 6772 9095 3653 296

Table 4.4: Validation dataset: for every season and daytime, it is indicated the
number of pixels considered for every class. The total number of pixels considered
for every season/daytime is also reported.
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In general, also with this type of algorithm, mainly during night-time, the precipi-

tation amount is overestimated because of the misunderstanding of non-precipitating

cold clouds as precipitating. In this case the estimation error, made for the first class

is propagated to the others because of the cascade architecture of the algorithm, with

consequent mistakes in the rain-rate classification.

An other problem of this algorithm version, is the low representativeness of the

dataset. Although the efforts made for the rain-gauges dataset division, the high

rate events (with rr> 9.6 mm h−1) were not enough for the statistic. Looking tab.4.3

it is clear that the ANN separating the last two classes (last column) has a number

of samples very low with respect to the others and with respect to the total number

of samples. The ANN, for this reason, was not able to complete the training in

most of the cases. The summer-day ANN was the only one completed, but probably

the ANN weights are not considered reliable for the work. Others ANN did not

complete the training phase and are for this reason without the highest class (only

rr> 2.4 mm h−1 are considerd). Statistical parameters about the training-testing

phase are resumed in tab.4.5 (see appendix A for detailed descriptions about statis-

tical parameters).

A preliminary observation about the capability of satellite data to discriminate

among rain-rate classes can be made considering the SEVIRI channels sensitivity

with respect to the class division (fig.4.13).

For all channels excepts WV6.2 and NIR1.6, the no-rain class is clearly separated

from the others, while the rain classes are more similarly distributed, especially in

VIS channels. Channel NIR3.9 seems to be the most sensitive to rain-rate: increasing

the rain-rate, the low radiance peak increases significantly. Moreover, the high rain-

rate curve is better separated from other rain curves, especially for IR channels. A

preliminary check on the performance of the algorithm can be done by looking at

the ETS (and other parameters) values obtained by each ANN used in cascade. In

tab.4.5 are reported for the four ANN cascades the statistical parameter values for

each of the four ANN operating to distribute pixels among the precipitation classes,

as computed during the testing phase. The best performances are obtained by the

ANN that discriminate wet and dry pixels, as expected also by looking at fig.4.13,

and the other ANN have markedly lower ETS, but always greater than zero. The

decrease of the ETS is caused by both decrease in the probability of detection (POD)

and an increase of the false alarm ratio (FAR). The multiplicative BIAS is very high
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Network Class Class Class Class
0-(1,2,3,4) 1-(2,3,4) 2-(3,4) 3-4

Summer day

ETS (%) 33.06 8.16 6.21 4.21
FAR (%) 55.22 21.37 50.30 76.76
POD (%) 74.78 69.74 50.34 31.85
BIAS 1.67 0.89 1.01 1.37

Summer night

ETS (%) 18.93 5.17 5.89 -
FAR (%) 73.70 23.85 50.87 -
POD (%) 90.25 71.36 61.28 -
BIAS 3.43 0.94 1.25 -

Winter day

ETS (%) 23.06 10.96 9.79 -
FAR (%) 62.04 16.78 59.65 -
POD (%) 77.99 55.44 61.40 -
BIAS 2.05 0.67 1.52 -

Winter night

ETS (%) 10.16 5.37 6.44 -
FAR (%) 76.99 29.43 64.20 -
POD (%) 83.32 56.52 68.98 -
BIAS 3.62 0.80 1.93 -

Table 4.5: Statistical parameters of training-testing phase.

also for the first class (except for summer day ANN) indicating large overestimation,

which is reduced for the higher rain-rates ANN. In general, the diurnal cycle has

higher impact than the seasonal cycle in decreasing the capability of the ANN to

resolve precipitation classes.

To have a more useful information of he overall performance of the technique, the

categorical Heidke Skill Score (HSS) statistical parameter is computed the four ANN

cascades for the validation set and the results are reported in tab.4.6. The HSS can

be considered as the equivalent for matching data separated in classes of the Pearson

correlation coefficient for continuous variables and the maximum value for highest

correlation is 1 (see appendix A for definition). Results show values comparable to

those found in the literature for daytime performances, while during the night-time,

especially for winter, HSS becomes markedly lower.

In fig.4.14 are shown HSS distributions separated by season and day-time. As

mentioned above, best results are obtained for the summer-day ANN in which most
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Figure 4.13: Winter-day radiance and reflectance distributions for five precipitation
classes.

Network HSS (%) σHSS(%)

Summer day 27.87 10.58
Summer night 16.40 10.89
Winter day 20.38 7.44
Winter night 9.80 4.63

Table 4.6: HSS mean values and variances for the class-Italian ANN.

of the considered cases (26) have an HSS value between 25 and 35% (fig.4.14a). On

the contrary, the worst results are obtained for the winter-night ANN in which most

cases have an HSS between 5 and 15% (fig.4.14d). This is a consequence of the

already described situation of VIS-NIR channels lack during night-time (sec.4.4).

Winter performances are in general worse than summer ones because of the clouds

typology that leads to precipitation: stratiform clouds, typical of winter, have rela-
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Figure 4.14: HSS distributions separated by season and day-time: day summer (a),
night summer (b), day winter (c) and night winter (d).

tively low top and because of the cold ground, the difference in radiance can be very

low. This can lead to a general underestimation of precipitation and in a consequent

lower performances of the ANN.

4.6 PROSA Product 2

This second algorithm developed for the Italian area, represents the second product

of the ”Multi-sensor satellite precipitation estimate” of the PROSA system. It sepa-

rates the estimate rain-rate in five precipitation classes as described in the previous
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section and is trained with the Italian rain-gauges network as true values for the

supervised dataset. In fig.4.15 an example of the algorithm output.

(a) (b) (c)

Figure 4.15: 13/06/2008, 15.27 UTC case: precipitation map from rain-gauge net-
work (a), estimation map from ANN (precipitating areas are divided in 5 precipita-
tion classes) (b) and SEVIRI IR12.0 image (c).

This release of the algorithm from one side is able to solve problems of the

precedent product version, but new different problems are noted:

1. Again is present the not yet solved problem of day/night-time transition which

leads to discontinuities in the precipitation maps sequence (in fig.4.16 an exam-

ple of two subsequent estimations, where it is clear the discontinuity between

the two ANN).

2. A second problem is about the last class of precipitation training. Because

of the low statistic, as explained above, the class with rr > 9.6 mm h−1 could

not be trained for the summer-night, winter-day and winter-night ANNs and

also the summer-day one, although trained, can not be considered reliable. A

good solution is to increase the samples number in the supervised dataset (in

fig.4.16 it is possible to note the absence of the last class of rain-rate (green)

in the night-ANN image).

3. The problem of snow at the ground highlighted in the first release product,

is greatly reduced in this version. This confirms the hypothesis of using an

optimized dataset to train the ANN and correct the anomaly.
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(a) (b)

Figure 4.16: 05/07/2009, 17.00 (a) and 17.15 (b) UTC cases: example of switch
between day (a) and night (b) ANN and absence of the last class of rain-rate in the
night-ANN (b).

4.7 Precipitation rate as a continuous variable

The last version of the algorithm aims to overcome the classes problems establishing

a mathematical relation between output probability of the ANN and rain-rate values

(in mm h−1). This idea is developed in order not to radically change the basic

algorithm, and so to maintain the classification structure of the ANN.

After systematic testing work on several summer and winter events, we noted a

general relationship between the PoP value and the corresponding precipitation rate

as measured by the rain-gauge network. The probability is greater in correspondence

of higher precipitation rates (see fig.4.17). This can be explained with the fact that

more the cloud is precipitating, more correctly the PoP ANN should classify it and

give to this cloud an high PoP value.

The law connecting probability to rain-rate is defined studying the four proba-

bility distributions of the four separate ANN (fig.4.18). A set of piecewise-defined

functions can be introduced as fit of the four distributions: a constant, nominal

value (0.2 mm h−1) is assigned for PoP between the threshold value (as computed

during the ANN training phase) and the maximum of the distribution, while a linear



4.7. PRECIPITATION RATE AS A CONTINUOUS VARIABLE 107

Figure 4.17: Output probability of ANN vs. average rain-rate measured from rain-
gauges.

relationship is imposed for PoP values ranging from the maximum to the 95% of

rain-rate distribution.

PoP≤ threshold: rr = 0.0 mm h−1

threshold < P < maxPoP: rr = 0.2 mm h−1

maxPoP ≤ PoP ≤ 1: rr=m PoP+q

PoP is the output probability of the ANN, threshold is the fixed threshold of

the ANN, maxPoP is the probability with the greatest number of pixels, rr is the

rain-rate value, m and q are the coefficients of the linear dependance.

An example of this particular fit is shown on the summer-day ANN probability

distribution in fig.4.19. The rain-rate value corresponding to the 95% of rain-rate

distribution is extrapolated from the rain-rate distribution shown in fig.4.20.

The considered parameters of the four ANN are resumed in tab. 4.7.
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(a) (b)

(c) (d)

Figure 4.18: Probability distributions used to find the relation law between proba-
bility ANN output and rain-rate, separated by season and day-time: day summer
(a), night summer (b), day winter (c) and night winter (d).

Probability
threshold

maxP rr at 95%
of distribu-
tion

linear relation
between rain-rate
and probability

Summer-day 51% 95% 39 rr=780.2P-741.2
Summer-night 50% 85% 42 rr=276.8P-234.8
Winter-day 50% 86% 21 rr=149.6P-128.6
Winter-night 47.5% 70% 21 rr=69.3P-48.3

Table 4.7: Considered parameters for the four ANN.
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Figure 4.19: Example of fit used for the relation between ANN output probability
and rain-rate.

Figure 4.20: Rain rate distributions used to find the rain-rate values corresponding
to the 95% of the distribution for every season and day-time.
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4.8 Microwave data for ANN online calibration

The last algorithm improvement is the implementation of a new calibration strategy

to be flanked to the rain-gauges one used for the previous releases of the algorithm.

It is based on precipitation estimate products made with Passive Microwave data

and is based on a so called online re-calibration of the ANN. As described in sec.

2.2.6, the microwave radiation carries informations about clouds precipitating layers.

This characteristic allows to develop algorithms based on more physical approaches

than shorter waves ones.

A preliminary study was made over UK area and an algorithm had been developed

for the use of AMSR-E data for precipitation retrieval [103]. The estimate technique

was similar to the one developed for VIS-IR bands and is based on ANN. Radiance

temperatures in the 6.9, 10.7, 18.7, 23.8, 36.5 and 89.0 GHz channels of AMSR-E

sensor were used as ANN inputs and, for the training phase, a supervised dataset

with UK radar network as true values is used.

In fig.4.21 the outputs for daytime slots are compared with the outputs of the first

SEVIRI ANN (see sec.4.1) and it is possible to note a light better performance of

AMSR-E algorithm with respect to the SEVIRI one mainly in the summer season

when convective systems are dominant and better recognized by MW algorithms.

It has to be noted that during the night the PMW performance (very little

sensitive to diurnal cycle) are expected to be much bettere than the nighttime IR

ANN.

This preliminary study demonstrate that the use of MW data for a precipitation

estimate product can be considered a good instrument for nowcasting aims, but the

problem of low spatial and temporal resolution of MW data, force to find an other

solution. A good compromise can be a blending technique which uses both VIS-IR

and MW data.

The third algorithm developed for this thesis work, and discussed above about the

continuous values of estimation (sec.4.7), uses MW products, when available, as true

values to build a temporary supervised dataset for an online rapid update of the

ANN. The technique is divided in two main parts, an off-line and an on-line phase.

Off-line phase:

1. a calibration window is defined, in order to specify how many minutes before
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Figure 4.21: HSS daytime values for summer and winter seasons for the SEVIRI
(green) and AMSR-E (grey) estimates divided in four classes.

the SEVIRI data availability it is correct to consider the MW data as nearly

simultaneous;

2. the four ANNs are trained with a climatological dataset (same samples used

to train the ANN of the first and second algorithms, tab.4.3 and 4.4), in order

to obtain weights and thresholds for every ANN.

On-line phase:

1. the system is activated at every SEVIRI data availability and produces a

precipitation probability using weights and thresholds present at the moment

in the system;

2. the system looks for MW products in the calibration window (defined off-line);

3. if there are available MW products within the calibration window, the system

builds a new supervised dataset with the present slot SEVIRI data and the

MW products as true values;

4. the ANN is re-trained with the new supervised dataset and climatological

weights and thresholds are substituted with new ones;
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5. at the following SEVIRI data availability, the system produces a precipitation

probability using updated weights and thresholds.

In fig. 4.22 the flow chart of the technique.

The lineup of this procedure results from a system analysis and sensitivity work.

Every step can be explained in terms of physical characteristics and system opti-

mization.

The choice of calibration window finds a reason in the improvement of ANN sensi-

tivity. To better resolve precipitant systems it is useful to calibrate the ANN with

systems structurally similar to the ones the ANN would find some instants after

the training. In this way it is not necessary a great generalization capability of

the network, but simply it is required to recognize the same system it is trained

with. Actually, a different calibration window should be chosen for different seasons

and day-time, but this would involve a greater computational and analytical effort.

We thus evaluated this calibration window to be 150 minutes, assuming this as a

compromise between the need to have a statistically significant training set and the

hypothesis of limited variability of cloud structures during this time. This assumtion

is certainly questionable at single cloud scale, especially in the case of convective

systems that very often in 150 minutes can complete thier intere lifecycle, but it is

more acceptable at ”scene” scale. Considering a PMW swath wide cloudy scene, we

expect that the cloud structures in the scene, mainly detemined by slow-varying en-

vironmental conditions, can be assumed as stationary for the selected time interval.

For the nature of MW data, a consideration is made also about orbits. Being MW

sensors on board of polar satellites, could happen that some orbits are partially

coincident. In order to save computational time, a preliminary filtering is made and

in case of partially coincident orbits, the one with the greater number of IFOV is

used. A second filter is applied to MW products with less than 20 raining IFOV

which are not considered because a small number of data leads to a poor statistic

for the ANN training.

After the preliminary products filtering, the attention is focused on the spatio-

temporal matching of MW product pixels with VIS-IR ones. SEVIRI data are

available every 15 minutes, so an eventual MW product can have a difference in

time with the VIS-IR one of maximum 7.5 minutes to be considered in near-real-time

(see tab.4.8 for the detailed temporal matching). This time difference is acceptable

considering the low spatial resolution of MW sensors: we can assume that at this
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spatial scale and at this time order, a cloud structure and its precipitating properties

do not vary.

MW-sensor time (minute) SEVIRI time (minute)

03≤MWtime< 18 12
18≤MWtime< 33 27
33≤MWtime< 48 42
48≤MWtime< 03 57

Table 4.8: Temporal matching criteria between SEVIRI and MW-sensors data.

An other big problem is represented by the acquisition geometry of the sensor.

In the case of conical acquisition, there is no IFOV deformation along the swath, the

constant acquisition angle of the sensor with Earth’s surface, guarantees a constant

IFOV dimension. On the contrary, in the case of cross-track acquisition, the IFOV

dimensions depend on the nadir-IFOV angle. At nadir the IFOV is circular and

its dimensions could vary from about 6×4 km2 to about 74×43 km2 depending on

the sensor and on the frequency considered. The IFOV shape changes getting away

from the nadir and becomes an ellipse, increasing its axes measures till the swat

border.

Furthermore, the antenna pattern of this type of sensors acquisition is gaussian and

the IFOV diameter refers to the full width at half maximum of the curve. We

expect that the sensor can collect also radiation from outside the IFOV nominal

dimensions. An other problem are the geolocation parallax errors which increase

getting away from the nadir. Contrarily, limb-broadening are corrected in the MW

estimate algorithm. In order to reduce this type of problems, since AMSU is a

cross-track scanning sensor, we chose to consider only the central 50 IFOVs of the

swath, reaching maximum IFOV dimensions of about 21×18 km2.

The spatial resolution difference between SEVIRI and MW-sensors data poses a

pixels/IFOV matching problem that requires a study in terms of errors and perfor-

mances. To solve this problem, two options had been investigated:

1. Calculate the mean radiance of SEVIRI pixels contained in the MW-sensor

IFOV and assign this average as input value in the ANN, with the rain-rate

estimate of that particular MW-sensor IFOV as true value.
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2. Assign the same rain-rate estimate, calculated for the MW-sensor IFOV con-

sidered, to every SEVIRI pixel contained in it.

Both solutions present physical problems, in the first case we would make a linear

average of SEVIRI pixels radiances, although they are not in a linear relationship

with the precipitation estimate, and in the second case we would associate the same

precipitation rate to 9 different SEVIRI pixels with different radiances values, ignor-

ing the beam filling problem. We chose the second option, with the only explanation

of a greater number of data for the supervised dataset.

4.9 PROSA Product 3

The third release of PROSA product consists in an ANN with continuous rain-

rate values as output and is implemented with an online training procedure with

MW-sensors products as true precipitation values. Also if the algorithm can work

with any type of MW product, in this case are considered only AMSU sensors data,

processed by the CNR-Roma group to obtain an instantaneous precipitation product

which represents the input true precipitation value for the online calibration of our

product. In origin, the idea was to use many MW-sensors (such as AMSR-E, SSM/I,

SSMI/S, AMSU-A, AMSU-B and TMI) for the online updating, but analyzing the

time availability of data, many of these result to have a delay too big to respect the

nowcasting request of near-real-time data and make short range forecasting.

In fig.4.23 it is shown a comparison between AMSU and SEVIRI products, the latter

trained online with the MW product. It is possible to note a substantial difference

in the precipitation pattern resolution, the MW product can define a precise rain-

rate differentiation also in the same precipitating nucleus, while the VIS-IR one

presents an almost constant rain-rate. On the contrary, the AMSU product can

not differentiate spatially localized precipitation systems because of its low spatial

resolution.

Also for this product release, it is generally noted a better performance of the

summer-day ANN with respect to the others, for the same reason explained in detail

for the other versions of the product.

The official validtion inside the PROSA project has been carried out by a project

partner not involved in algorithm development (the University of Camerino): for the
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(a) (b)

Figure 4.23: 05/07/2009, 08.45 UTC case: AMSU precipitation map (a) and ANN
precipitation estimate produced after the ri-calibration of the ANN with the AMSU
precipitation map as input true value (b).

last release of the products, the Hanssen and Kuipers skill score has been computed

for two case studies, and the results are reported in table 4.9.

Product data used 5 July 2009 7-9 November 2009

EPP3 PI A PMW 0.168 0.116
EPP3 PI B PMW 0.072 0.102
EPP1 PI C PMW 0.466 0.109

EPP3 PI BLE IR+PMW 0.602 0.267
EPP3 PI IBR IR+PMW 0.644 0.497

EPP3 PI MULS IR+PMW 0.327 0.324

Table 4.9: HK values for precipitation products of the third release of PROSA.

Results show rather poor performance of PMW products, without clear seasonal

signal, except for EPP1 PI C, the product used in all the IR+PMW techniques, that

shows high performance for the summer case. Among the IR+PMW technique, the
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MULS (our algorithm) has comparably worst performance for the summer case and

average performance for the winter case. MULS is less dependent on the season,

probably given the input of PMW. The case studies include also night-time slots,

so the reported values are an ”averaged” value between night and day ANN.

Other statistical indicators can be applied to validate quantitative satellite esti-

mates, often referred as continuous verification scores: Fractional Standard Error

(FSE) and Pearson Correlation Coefficient (r), and normalized bias (NBIAS) (see

appendix for definition). We computed these parameters for the two case studies

used for the PROSA validation, but, unfortunately, we cannot compare our values

with other algorithms. Results are reported in table 4.10, with also the Binary Bias

(BB), a dichotomic indicator, for reference. The FSE values are well larger than

100% and r very close to zero, especially for the summer case, a quantitative over-

estimate, much larger for the November case, is also evident, while the rain area is

slightly overestimated in July and strongly underestimated in November.

FSE r NBIAS BB

5 July 2.25 0.02 -1.01 0.76
7-9 November 3.82 0.14 -4.55 1.30

Table 4.10: Statistical parameters of product 3 validation.

The values of these parameters, rarely considered for instantaneous precipitation

estimates validation given their sensitivity to small misplacement of precipitation

peaks and to rainrate oultiers, indicate that an acceptable quality of the quatitative

estimate is not reached in these case studies. The large overestimate of the rainrate

for both cases for the November case correspond to an overestimate of rainareas,

while for July the raining area is underestimated. Such quantitative rainrate over-

estimation is responsible for high FSE values, especially for the November case.

After the demonstration activity carried on under PROSA, some monitoring of the

products, and the validation activity, some problems are detected and are summa-

rized here:

1. the known problem of transition between day and night-time is not solved,

despite the MW update support;
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2. the fact that AMSU data are not continuously available involves a not sys-

tematic online calibration of the ANN with a consequent continuous switching

between climatological and updated ANN parameters. This continuous change

of ANN parameters leads to a discontinuous pattern sequence in the estimate

maps;

3. The overall performances of the technique is comparable to other similar tech-

niques in PROSA and in H-SAF, as far as dichotomic or categorical indicators

are used;

4. the quantitative estimate, as shown by continuous statistics indicators, are far

from being satisfactory: a part of the error comes from the PMW estimate,

that have to be more frequent and more accurate, as it will be expected af-

ter the full operational exploitation of the Global Precipitation Measurement

mission (GPM);

5. the task of any ANN algorithm is to replicate at best the input received during

the training phase, and the trainig and validation carried on using hourly

raingauge data it is not the first choice, given the different nature of the two

datasets;

6. no parallax correction is applied to co-locate SEVIRI pixel with raingauges

and with PMW IFOV neither to build the training set neither to validate

products: this could be responsible for a significant part of the error, since

most skill indicators are very sensitive to small misplacement between product

and reference maps.



Conclusions

This work aims to describe the development of three different algorithms for multi-

sensor satellite precipitation estimate. All the three algorithms are based on Arti-

ficial Neural Networks, having as main input satellite radiances in the VIS-IR part

of the spectrum, set up as classification problem and using rain-gauges data as true

values of precipitation at the ground for network training.

The goal of the first algorithm is the classification of raining and non raining

areas over the Italian region. A preliminary study about satellite channels sensitiv-

ity to precipitation is done to understand the different performances of the ANN at

day-time and night-time and to evaluate which channels carry more information on

precipitation. Better results are observed in the day-time case, when VIS channels,

providing information on cloud optical thickness and hydrometeors effective radius,

are available.

The algorithm is also tuned according to seasonal cycle, and best performances are

observed for summer season when solar zenith angle is lower and precipitating events

are mainly convective, better recognized in VIS-IR bands.

The second algorithm is focused on the precipitation classification in rain-rate

classes. After a study about the distribution of rain-rate, five classes are defined.

The classifier uses a cascade scheme of four ANNs in order to separate pixels be-

longing to different precipitation classes. The first ANN separates dry pixels (no

rain) from wet ones (rain) in the same way of the first algorithm version. Then, wet

pixels are used as input of the second ANN, which separates slight rain pixels from

others. This scheme is repeated 4 times in order to obtain 5 rain-rate classes. In

general, best performances are observed again for the summer day-time ANN. Some

problems of the first version algorithm, such as the misinterpretation of snow at the

119
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ground, are corrected.

The last algorithm gives as output precipitation maps expressed in mm h−1 val-

ues. In order to define a relation between probability of detection (PoP), output of

the ANN, and rain-rate values, a study about probability distributions of the ANN

is done. A set of seasonal and diurnal cycle dependent relationships between PoP

and rain-rate are introduced. A further relevant improvement of the algorithm is

performed by using MW precipitation data for the online calibration of the ANN.

The online calibration aims to provide the ANN with a set of weights, trained on the

newest PMW estimate, optimized for the current cloud scene. In order to do that,

a specific work on SEVIRI and MW data matching is done, because of the different

spatial and temporal resolutions of the two type of sensors. The PMW estimates

are available from LEO AMSU sensor in near real time.

In general, better performances are always observed for day-time algorithms

because a greater number of inputs is available for this ANN (VIS+IR+zenith) and

more informations are taken into account. Considering the seasonal cycle, summer is

usually the best one because of the greater occurrence of convective systems, better

resolved at VIS-IR wavelengths.

It has to be highlighted that algorithms performances strongly depend on true rain-

rate values available for the ANN calibration, since ANN tends to replicate the

reference data processed during the training phase. In order to improve performances

it is necessary to improve the true precipitation data quality and the matching with

satellite data. MW sensors data could be considered a good solution because of their

physical informations more linked to the precipitation structure, especially in the

view of the forthcoming Global Precipitation Measuring mission era, that will ensure

a more dense PMW satellite constellation and an unprecedented precipitation radar

covering mid-latitudes.

Finally, we remark the wide flexibility of the proposed approach in terms of input

data: in principle it is possible to feed the proposed on-line ANN training strategy

with any near real time reliable precipitation data, such as well calibrated ground

weather radar, to extend the estimate outside the radar coverage with small decrease

of the estimate quality.



Appendix A

Satellite estimates validation

A significant part of the work done for the development and tuning of a satellite pre-

cipitation estimation technique is often labeled as ”validation”. Validation means

basically to compare the estimated precipitation values to a corresponding observa-

tion of what actually occurred, or some good estimate of the true outcome. In the

latest years new sensors and algorithms have produced a number of precipitation

products that aims to provide quantitative values reliable enough to compete with

other precipitation measuring instruments (such as rain-gauges and weather radars)

for operational or research purposes. As a consequence, the demand for a definition

of the error structure of the estimated precipitation field is also growing, to allow

the user to decide how to make use of satellite products in his activity.

Most of the initiatives mentioned in Chapter 1, aiming to improve satellite tech-

niques, include validation activities, but two international efforts should be men-

tioned for their relevance.

In 2003 the International Precipitation Working Group (IPWG) began a project

to validate and intercompare operational and semi-operational satellite rainfall es-

timates over Australia and the US in near real time. A European verification was

added in 2004, and other regions may be included in the future. This study focuses

on the large-scale validation of daily rainfall estimates, for two reasons. First, the

large number of rainfall observations from rain-gauges at the 24-hour time scale

provides good quality verification data on a large scale. Second, daily rainfall esti-

mates are required as input to a large number of climate and other applications. For

comparison, 1-day forecasts from a limited number of numerical weather prediction
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models, namely the ECMWF, the US (NCEP), and US Navy global models, and

the Australian regional model, are also verified [112].

Within the H-SAF initiative, the group of Atmospheric Physics of Ferrara Univer-

sity has the responsibility to validate precipitation products over Italy, and also is

charing the Working Group on rain-gauges. The challenging task of the Validation

activity is to validate high resolution satellite products to assess the performances

of instantaneous satellite estimates at the finest available spatial resolution (ranging

from 5 km to 20 km depending on sensor used). During the H-SAF validation activ-

ity several studies have been carried out to improve the quality and the significance

of the matching between satellite estimates and ground references. A number of

statistical indicators are tested to better describe the products error, and some of

them have also been used in the development of the algorithms presented in this

work. They are defined here highlighting some of their properties. Most, if not all,

have a long historical background but they are still used very commonly. It has

also to be mentioned that in no case it is sufficient to apply only just one single

verification measure.

A.1 Dichotomic parameters

A class of parameters is designed to assess the product capability to discriminate

between wet and dry pixels. To this end, a contingency table (see tab.A.1) is defined

after the careful spatial co-location of product and reference nearly simultaneous

rainfall maps.

After the number of observations to be evaluated is fixed, all the pixels (N) with

valid data are used to fill the table. The values in the table are then used to compute

the following dichotomic indicators.

Probability of Detection (POD):

POD =
hits

hits+misses
(A.1)

POD ranges from zero (worst) to one (best). POD is sensitive to hits but takes

no account of false alarms. It can be artificially improved by producing excessive yes
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Event estimated

Event observed

Yes No Marginal total

Yes Hit False Alarm Es Yes

No Miss Correct negative Es No

Marginal total Obs Yes Obs No Sum total

Table A.1: 2×2 contingency table showing the frequency of yes and no estimations
and corresponding observations.

estimations to increase the number of hits (with a consequence of numerous false

alarms). While maximizing the number of hits and minimizing the number of false

alarms is desirable, it is required that POD be examined together with False Alarm

Ratio (FAR):

FAR =
false alarm

false alarm+ hits
(A.2)

Range of FAR is one to zero, a perfect score FAR = 0, i.e. FAR has a negative

orientation. FAR is also very sensitive to the climatological frequency of the event.

Contrarily to POD, FAR is sensitive to false alarms but takes no account of misses.

Likewise POD, it can be artificially improved, but now by producing excessive no

estimations, i.e. to reduce the number of false alarms. Because the increase of POD

is achieved by increasing FAR and decrease of FAR by decreasing POD, POD and

FAR must be examined together.

An overall skill score, that consider both ability in detecting rain and in not

detecting no rain is the Critical Success Index (CSI), defined as:

CSI =
hits

hits+ false alarm+misses
(A.3)

Range of CSI is zero to one, a perfect score has CSI = 1. CSI is sensitive to hits

and takes into account both false alarms and misses and can be seen as a measure

for the event being estimated after removing correct (simple) no estimations from
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consideration. CSI is sensitive to the climatological frequency of events (producing

poorer scores for rarer events), since some hits can occur due to random chance. A

random assigned precipitation classification could produce CSI of about 0.2 or 0.3,

depending on precipitation pattern. To overcome this effect the Equitable Threat

Score (ETS) adjusts for the number of hits associated with random chance, and is

defined as:

ETS =
hits− hitsrandom

hits+ false alarm+misses+ hitsrandom
(A.4)

Range of ETS is -1/3 to one, for a perfect score ETS = 1, no skill estimate ETS

= 0. The ETS has been chosen as main skill indicator in the whole training testing

validation procedure for the set up of the various ANN algorithms presented in this

work.

An other popular skill score is the Hanssen-Kuipers Skill Score defined as:

HK =
hits

hits+misses
− false alarm

false alarm+ correct negative
(A.5)

Range of HK is minus one to one, a perfect score = 1, no skill estimation = 0.

For rare events, the frequency of correct negative cell is typically very high in the

contingency table compared to the other cells, leading to a very low False Alarm

Rate and, consequently, HK is close to POD.

The Binary Bias (BB) of binary estimates compares the frequency of positive esti-

mates to the frequency of actual occurrences and is computed by the ratio:

BB =
hits+ false alarm

hits+misses
(A.6)

Range of BB is zero to infinity, an unbiased score = 1. With B>1 (<1), the

estimate exhibits overestimation (underestimation) of the rain area.

A.2 Multicategorical parameters

Categorical events are naturally not limited to binary estimates of two categories

and the associated 2×2 contingency tables. The general distributions approach

in rainfall estimation verification studies the relationship among the elements in

multi-category contingency tables. One can consider rain-rate in several mutually
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exhaustive classes, at it is done for the release 2 of the ANN product described in

this work.

It is advisable to initiate verification again by constructing a contingency table

where the frequencies of estimates and observations are collected in relevant cells

as illustrated in tab.A.2 for a 3×3 category case. A perfect estimation system

would (again) have all the entries along the diagonal (r, v, z, in the example),

all other values being zero. The verification measures introduced in the previous

section are valid only with the binary yes/no estimate situation. To be able to

apply these measures, one must convert the k>2 contingency table into a series

of 2×2 tables. Each of these is constructed by considering the estimated event

distinct from the complementary non-estimated event, which is composed as the

union of the remaining k-1 events. The off-diagonal cells provide information about

the nature of the estimation errors. For example, Binary Biases (BB) reveal if

some categories are under- or over-estimated, while PODs quantify the success of

detecting the distinct categorical events. The categorical Heidke Skill Score (HSS)

gives in a single parameter an overall measure of the estimate accuracy, and can be

interpreted as the discrete version of the Pearson Correlation coefficient. HSS for

multi-category cases can be written as:

HSS =

∑
p(ei, oi)−

∑
p(ei)p(oi)

1−
∑
p(ei)p(oi)

(A.7)

where the subscript i denotes the dimension of the table, p(fi, oi) represents

the joint distribution of estimations and observations (i.e. the diagonal sum count

divided by the total sample size), and p(fi) and p(oi) are the marginal probability

distributions of the estimations and observations (i.e. row and column sums divided

by the sum total), respectively.

Also HK can be generalize for a multi-categorical case:

HK =

∑
p(ei, oi)−

∑
p(ei)p(oi)

1−
∑

(p(ei))2
, (A.8)

A.3 Continuous variables

The verification of continuous variables typically provides statistics on how much the

estimated values differ from the observations and, thereafter, computation of relative
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Estimated

Observed

o1 o2 o3 Es
∑

e1 r s t
∑

e1

e2 u v w
∑

e2

e3 x y z
∑

e3

Obs
∑ ∑

o1

∑
o2

∑
o3

∑
Table A.2: Multi categorical contingency table showing the frequency of yes and no
estimations and corresponding observations.

measures against some reference estimating systems. Among the continuous statistic

parameters is the Pearson Correlation Coefficient, defined as:

r =

∑
(ei − ei)(oi − oi)√∑

(ei − ei)2
√∑

(oi − oi)2
(A.9)

Range of r is minus one to one, a perfectly correlated score has r = 1.

Two further error measurements are then presented: Fractional Standard Error

(FSE) and Normalized Bias (NBIAS). FSE is a measure of the relative error made

in the estimate, NBIAS quantifies the relative departure between estimations and

observations indicating over or underestimation in therm of quantitative values.

These errors measures are given by:

FSE =

√
1
N

∑
(oi − ei)2

1
N

∑
oi

(A.10)

NBIAS =
1
N

∑
(oi − ei)

1
N

∑
oi

(A.11)
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[32] F.Porcú, F.Prodi, S.Dietrich, A.Mugnai, and R.Bechini. Multisensor estima-

tion of severe rainfall events. In Eumetsat Meteorological Satellite Data Users’

Conference, pages 371–378. EUM P 29, Eumetsat, Darmstadt, 2000.

[33] G.Panegrossi, S.Dietrich, F.S.Marzano, A.Mugnai, E.A.Smith, X.Xiang,

G.J.Tripoli, P.K.Wang, and J.P.V.Poiares Baptista. Use of Cloud Model Mi-

crophysics for Passive Microwave-Based Precipitation Retrieval: Significance

of Consistency Between Model and Measurement Manifolds. J. Atmos. Sci.,

55:1644–1673, 1998.
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F. Prodi, J.F.W.Purdom, D.Rosenfeld, J.Schmetz, E.A.Smith, F.Tampieri,

F.J.Turk, and G.A.Vicente. EURAINSAT - Looking into the future of

satellite rainfall estimations. In EUMETSAT Meteorological Satellite Data

Users’ Conf., pages 375–384, EUM P 33EUMETSAT, Darmstadt, 2001.

[39] V.Levizzani, P.Bauer, and J.F.Turk, editors. Measuring precipitation from

space: EURAINSAT & the future (Advances in global change research), vol-

ume 28. Springer, 2007.

[40] D.Rosenfeld, R.Lahav, A.Khain, and M.Pinsky. The Role of Sea Spray in

Cleansing Air Pollution over Ocean via Cloud Processes. Science, 297:1667–

1670, 2002.

[41] A.Khain, D.Rosenfeld, and A.Pokrovsky. Aerosol Impact on Precipitation

from Convective Clouds. In V.Levizzani, P.Bauer, and J.Turk, editors, Mea-

suring precipitation from space: EURAINSAT and the Future, volume 28,

pages 421–434. Springer, 2007.

[42] S.Dietrich, R.Solomon, C.Adamo, and A.Mugnai. Rainfall monitoring at geo-

stationary scale: potential of lightning data in a rapid update approach. In

Proceedings 2001 EUMETSAT Meteorological Data Users’ Conference, pages

393–398, Antalya, 2001.

[43] C.Kidd, F.J.Tapiador, V.Sanderson, and D.Kniverton. The University of

Birmingham global rainfall algorithms. In V.Levizzani, P.Bauer, and J.Turk,

editors, Measuring precipitation from space: EURAINSAT and the Future,

volume 28, pages 255–267. Springer, 2007.



134 BIBLIOGRAPHY

[44] F.S.Marzano, N.Cimini, and F.J.Turk. Multivariate Probability Matching for

Microwave Infrared Combined Rainfall Algorithm (MICRA). In V.Levizzani,

P.Bauer, and J.Turk, editors, Measuring precipitation from space: EURAIN-

SAT and the Future, volume 28, pages 269–280. Springer, 2007.

[45] F.Torricella, V.Levizzani, and F.J.Turk. Application of a Blended MW-IR

Rainfall Algorithm to the Mediterranean. In V.Levizzani, P.Bauer, and J.Turk,

editors, Measuring precipitation from space: EURAINSAT and the Future,

volume 28, pages 497–507. Springer, 2006.
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